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1. Introduction

The aim of this paper is providing an explicit representation of higher order terms for the formal Taylor 
expansion of Mather’s β-function (or minimal average action) for symplectic and outer billiards. In par-
ticular, we write these new coefficients in terms of the affine curvature and length of the boundary of the 
billiard table. In the specific case of symplectic billiards, the corresponding Mather’s β-function is related to 
the maximal area of polygons inscribed in the billiard table. Conversely, for outer billiards, such a function 
corresponds to the minimal area of circumscribed polygons. These areas are special cases (i.e. for periodic 
billiard trajectories of winding number = 1) of the corresponding marked area spectrum invariants for 
symplectic and outer billiards. In order to state our main theorem, we need some preliminaries.

1.1. Twist maps and Mather’s β-function

Let S1 × (a, b) be the annulus, where S1 = R/Z and we allow that a = −∞ and/or b = +∞. Given a 
diffeomorphism

Φ : S1 × (a, b) → S1 × (a, b),
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we denote by

φ : R × (a, b) → R × (a, b), (x0, y0) �→ (x1, y1)

a lift of Φ to the universal cover. Then φ is a diffeomorphism and φ(x +1, y) = φ(x, y) +(1, 0). We assume – 
if a (resp. b) is finite – that φ extends continuously to R × {a} (resp. R × {b}) by a rotation of fixed angle:

φ(x0, a) = (x0 + ρa, a) (resp. φ(x0, b) = (x0 + ρb, b)). (1.1)

Once fixed the lift, the numbers ρa, ρb are unique. The choice of ρa (resp. ρb) if a = −∞ (resp. b = +∞) 
depends on the dynamics at infinity. For example, in the case of outer billiards where b = +∞, it is natural 
to set ρb = 1/2, we refer to the beginning of Section 1.3 for details.

The next definition of monotone twist map is well consolidated in literature, we refer e.g. to [14, Page 2].

Definition 1.1. A monotone twist map φ : R × (a, b) → R × (a, b), (x0, y0) �→ (x1, y1) is a diffeomorphism 
satisfying:

(1) φ(x0 + 1, y0) = φ(x0, y0) + (1, 0).
(2) φ preserves orientations and the boundaries of R × (a, b).
(3) φ extends to the boundaries by rotation, as in (1.1).
(4) φ satisfies a monotone twist condition, that is

∂x1

∂y0
> 0. (1.2)

(5) φ is exact symplectic; this means that there exists a generating function S ∈ C2(R × R; R) for φ such 
that

y1dx1 − y0dx0 = dS(x0, x1). (1.3)

Clearly, S(x0 + 1, x1 + 1) = S(x0, x1) and, due to the twist condition, the domain of S is the strip 
{(x0, x1) : ρa + x0 < x1 < x0 + ρb}. Moreover, equality (1.3) reads

{
y1 = S2(x0, x1)
y0 = −S1(x0, x1)

(1.4)

and the twist condition (1.2) becomes S12 < 0. As a consequence of the monotone twist condition and (1.4), 
{(xi, yi)}i∈Z is an orbit of φ if and only if S2(xi−1, xi) = yi = −S1(xi, xi+1) for all i ∈ Z. Equivalently, the 
corresponding bi-infinite sequence x := {xi}i∈Z is a so-called critical configuration of the action functional:∑

i∈Z

S(xi, xi+1).

We say that a critical configuration x of φ is minimal if every finite segment of x minimizes the action 
functional with fixed end points (we refer to [14, Page 7] for details). For a twist map φ generated by S, we 
finally introduce the rotation number and the Mather’s β-function (or minimal average action).

Definition 1.2. The rotation number of an orbit {(xi, yi)}i∈Z of φ is

ρ := lim
i→±∞

xi

i

if such a limit exists.
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In view of the celebrated Aubry-Mather theory (see e.g. [3]), a monotone twist map possesses minimal 
orbits for every rotation number ρ inside the so-called twist interval (ρa, ρb).

Definition 1.3. The Mather’s β-function of φ is β : (ρa, ρb) → R with

β(ρ) := lim
N→∞

1
2N

N−1∑
i=−N

S(xi, xi+1)

where {xi}i∈Z is any minimal configuration of φ with rotation number ρ.

Clearly, all these facts remain true if we consider a monotone twist map on {(x0, x1) : ua(x0) < x1 <

ub(x0)}. A relevant class of monotone twist maps are planar billiard maps. The study of such systems goes 
back to G.D. Birkhoff [7], who introduced the so-called Birkhoff billiard map, where the reflection rule is 
“angle of incidence = angle of reflection”. In the setting of planar billiards, the rotation number of a periodic 
trajectory is the rational

m

n
= winding number

number of reflections ∈ (0, 1
2

]
,

we refer to [14, Page 40] for details.
A. Sorrentino in [15] gave an explicit representation of the coefficients of (formal) Taylor expansion at 

zero of Mather’s β-function associated to Birkhoff billiards. More recently, J. Zhang in [18] got (locally) 
an explicit formula for this function via a Birkhoff normal form. Moreover, M. Bialy in [5] obtained an 
explicit formula for Mather’s β-function for ellipses by using a non-standard generating function (involving 
the support function) of the billiard problem.

1.2. Symplectic billiards

Let C be a strictly-convex planar domain with smooth boundary ∂C and fixed orientation. Moreover, 
throughout the paper, we suppose that ∂C has everywhere positive curvature. Since C is strictly-convex, 
for every point x ∈ ∂C there exists a unique point x∗ such that

Tx∂C = Tx∗∂C.

We refer to

P := {(x, y) ∈ ∂C × ∂C : x < y < x∗}

as the (open, positive) phase-space and we define the symplectic billiard map as follows (see [1, Page 5]):

Φ : P → P, (x, y) �→ (y, z)

where z is the unique point satisfying

z − x ∈ Ty∂C.

We refer to Fig. 1. We notice that Φ is continuous and can be continuously extended to P̄ so that

Φ(x, x) = (x, x) and Φ(x, x∗) = (x∗, x)
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Fig. 1. The symplectic billiard map reflection.

and therefore the twist interval is (0, 1/2). Moreover, see [1, Section 2] for exhaustive details, the symplectic 
billiard map turns out to be a twist map with generating function S(x, y) = ω(x, y) where ω is the area 
form

ω : P → R, (x, y) �→ ω(x, y),

with dynamics given by

(y, z) = Φ(x, y) iff ∂

∂y
[ω(x, y) + ω(y, z)] = 0.

We refer also to [4] for recent advances on symplectic billiards.

Definition 1.4. The marked area spectrum for the symplectic billiard is the map

MAs(C) : Q ∩ (0, 1
2

)
→ R

that associates to any m/n in lowest terms the maximal area of the periodic trajectories having rotation 
number m/n.

We refer to [14, Sections 3.1 and 3.2] for an exhaustive treatment of the marked length spectrum and 
corresponding invariants for the Birkhoff billiard map. Clearly, periodic symplectic billiard maximal trajec-
tories (with winding number = 1) correspond to convex polygons realizing the maximal (inscribed) area. We 
call them best approximating polygons inscribed in C. More precisely, let Pi

n the set of all convex polygons 
with at most n vertices that are inscribed in C. We define

δ(C,Pi
n) := inf{δ(C,Pn) : Pn ∈ Pi

n} (1.5)

where δ(C, Pn) := Area(C � Pn) is the area of the symmetric difference of sets C and Pn. Then:

β

(
1
n

)
= − 2

n
MAs(C)

(
1
n

)
= − 2

n

(
Area(C) − δ(C,Pi

n)
)
. (1.6)

We underline that the sign minus in the above equality comes from the use of the generating function 
−ω(x, y); in fact – according to Definition 1.3 – the Mather’s β-function is defined by using minimal, 
instead of maximal, trajectories.
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Fig. 2. The outer billiard map reflection.

1.3. Outer billiards

For the same planar domain C as in Section 1.2, we finally briefly introduce the outer billiard map, which 
is defined on the exterior of ∂C as follows. A point A is mapped to Φ(A) iff the segment joining A and Φ(A)
is tangent to ∂C exactly at its middle point and has positive orientation at the tangent point. We refer to 
Fig. 2. The natural phase-space for the outer billiard map is the cylinder S1 × (0, +∞). We notice that Φ is 
continuous and can be continuously extended to S1 × [0, +∞) by fixing S × {0}. We set ρ = 1/2 at +∞ so 
that the twist interval is (0, 1/2). Moreover – we refer e.g. to [6] – also such a Φ satisfies the twist condition, 
with the area of the curvilinear triangle of vertices x, Φ(A) and y (see Fig. 2 again) as a generating function. 
In view all these facts, the marked area spectrum for the outer billiard map is defined as follows.

Definition 1.5. The marked area spectrum for the outer billiard is the map

MAo(C) : Q ∩ (0, 1
2

)
→ R

that associates to any m/n in lowest terms the minimal area of the periodic trajectories having rotation 
number m/n.

We notice that periodic outer billiard minimal trajectories (with winding number = 1) correspond to 
convex polygons realizing the minimal (circumscribed) area, the so-called best approximating circumscribed 
polygons. Analogously to the previous section, we denote by Pc

n the set of circumscribed convex polygons 
with at most n vertices and

δ(C,Pc
n) := inf{δ(C,Pn) : Pn ∈ Pc

n} (1.7)

where δ(C, Pn) := Area(C � Pn) is the area of the symmetric difference of C and Pn, as in (1.5). Conse-
quently:

β

(
1
n

)
= 1

n

(
MAo(C)

(
1
n

)
−Area(C)

)
= 1

n
δ(C,Pc

n). (1.8)

We conclude by recalling that in [13] D.E. McClure and R.A. Vitale study circumscribed (resp. inscribed) 
polygons for which D(C, Pn) is minimal, where D(C, Pn) denotes different “distances” between C and Pn, 
including – besides the area of the symmetric difference – the Hausdorff distance and the difference of the 
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perimeters of C and Pn. In such a paper, see Theorems 1 and 5, they prove that inf{D(C, Pn) : Pn ∈
Pc
n} = O(1/n2) (resp. inf{D(C, Pn) : Pn ∈ Pi

n} = O(1/n2)) when n → +∞ for all considered measures 
D. Moreover, see [13, Theorems 2, 3, 6 and 7] sequences of polygons are explicitly constructed giving 
asymptotically efficient approximations of C.

1.4. Main result

S. Marvizi and R. Melrose’s theory, first stated and proved for Birkhoff billiards [11, Theorem 3.2], applies 
both to symplectic and outer billiards (see [1, Section 2.5] and [16, Section 8] respectively). It assures that 
the corresponding dynamics equals to the time-one flow of a Hamiltonian vector field composed with a 
smooth map fixing pointwise the boundary of the phase-space at all orders. We refer to [9, Section 2.1] for 
a detailed proof in the general case of (strongly) billiard-like maps. As an outcome, this result gives the 
following expansion at ρ = 0 of the corresponding minimal average function

β (ρ) ∼ β1ρ + β3ρ
3 + β5ρ

5 + β7ρ
7 + . . .

in terms of odd powers of ρ. It is well-known – see e.g. [11, Section 7] again – that for usual billiards the 
sequence {βk} can be interpreted as a spectrum of a differential operator, see also Remark 2.11 in [1]. The 
question is open for symplectic and outer billiards. Coefficients β1, . . . , β5 are known. We refer e.g. to [10]
for detailed computations: Theorem 1 for the symplectic case and Theorem 2 for the outer one. Moreover, 
we suggest [2] for a recent discussion on this topic. The main result of the present paper, stated in the next 
theorem, is providing coefficients β7 both in the symplectic and outer case.

Theorem 1.6. Let C be a strictly-convex planar domain with smooth boundary ∂C. Suppose that ∂C has 
everywhere positive curvature. Denote by k(s) the affine curvature of ∂C with affine parameter s. Let λ be 
the affine length of the boundary.

(a) The formal Taylor expansion at ρ = 0 of Mather’s β-function for the symplectic billiard map has 
coefficients:

β2k = 0 for all k

β1 = −2Area(C)

β3 = λ3

6

β5 = −λ4

5!

λ∫
0

k(s)ds

β7 = − 9λ6

5 · 7!

λ∫
0

k2(s)ds + λ5

15 · 5!

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

.

(b) The formal Taylor expansion at ρ = 0 of Mather’s β-function for the outer billiard map has coefficients:

β2k = 0 for all k

β1 = 0

β3 = λ3
24



L. Baracco et al. / J. Math. Anal. Appl. 537 (2024) 128353 7
β5 = λ4

2 · 5!

λ∫
0

k(s)ds

β7 = 421λ6

5 · 8!

λ∫
0

k2(s)ds− λ5

5 · 5!

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

.

As a straightforward consequence, in Corollary 5.2 we point out that the two coefficients β5 and β7 allow 
to recognize an ellipse among all strictly-convex planar domains, both for symplectic and outer billiards.

There are several – highly non trivial – questions about the structure of the formal expansion of coefficients 
β2h+1 as h → +∞ (we use only here the index h in order to avoid confusions with the affine curvature k). 
In the case of Birkhoff billiards, these problems have been discussed in different papers; we refer to [11, 
Theorem 5.19], [12, Conjecture 1] and [17, Conjecture 1.2]. Moreover, we observe that – according to the 
fact that the generating function is the length – from the explicit coefficients given in [15, Theorem 1.3], 
it arises that the derivative’s degree of the standard curvature involved in the expression of the β2h+1’s 
increases as h → +∞. In the symplectic and outer cases, our computations suggest that for h ≥ 4 the terms 
β2h+1 may depend on the affine curvature through 

∫ λ

0 kh−1(s)ds and 
(∫ λ

0 k(s)ds
)h−1

even if the technique 
to obtain the β7’s should be refined for higher orders.

Acknowledgments

We are thankful to Misha Bialy and Alfonso Sorrentino for the interesting and useful discussions on 
mathematical billiards. We are grateful to the referees for careful reading and suggestions.

2. Preliminaries of affine differential geometry

Since the dynamics of symplectic and outer billiards – defined in Sections 1.2 and 1.3 respectively – are 
invariant with respect to affine transformations, we use the affine arc length to parametrize C.

We recall that the affine arc length and the affine length are given respectively by

s(t) =
t∫

0

κ
1
3 (τ)dτ 0 ≤ t ≤ l

and

λ =
l∫

0

κ
1
3 (τ)dτ

where t and l are the ordinary arc length parameter and ordinary length respectively and κ(t) is the curvature 
of C. In the following, let x(s) be an affine arc length parametrization of ∂C. We denote by x(i) the i-th 
derivative of x and we omit the dependence on s. Then we have (see [8, Section 3]):

ω(x(1), x(2)) = 1, ω(x(1), x(3)) = 0 (2.1)

and

k(s) := ω(x(2), x(3)) (2.2)

is called the affine curvature of C.
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The next lemma, which is a straightforward consequence of formulae (2.1) and (2.2), will be very useful 
through the paper.

Lemma 2.1. The following relations hold:

ω(x(1), x(4)) = −k, ω(x(2), x(4)) = k′, ω(x(1), x(5)) = −2k′ (2.3)

and

ω(x(3), x(4)) = k2, ω(x(2), x(5)) = k′′ − k2 ω(x(1), x(6)) = −3k′′ + k2. (2.4)

Proof. By deriving the second equality in (2.1) and taking into account (2.2) we have that ω(x(1), x(4)) = −k. 
Similarly, from (2.2) we get ω(x(2), x(4)) = k′. Moreover, by deriving the first identity of (2.3) we obtain the 
third one. In order to obtain the relations in (2.4) it is enough to recall that x(3) = −kx(1) and to derive 
the identities in (2.3). �
3. Asymptotic expansion for δ(C, Pi

n)

We gather in this section all the technical results in order to prove point (a) of Theorem 1.6.
We begin with a refinement of Lemma 1 in [10].

Proposition 3.1. For 0 ≤ r ≤ s ≤ λ, let F (r, s) be the area of the region between the arc {x(t) : r ≤ t ≤ s}, 
and the line segment with end points x(r) and x(s). Then

F (r, s) = 1
2

(
(s− r)3

3! − (s− r)5

5! k(r) − 3(s− r)6

6! k′(r) − (s− r)7

7 · 5! k′′(r) + (s− r)7

7! k2(r) + o((s− r)7)
)

uniformly for all 0 ≤ r ≤ s ≤ λ as (s − r) → 0.

Proof. Without loss of generality, we assume r = 0. The area of the region of C bounded by the segment 
[x(0), x(s)] is given by

F (s) := F (0, s) = 1
2

s∫
0

ω(x(t) − x(0), x(1)(t))dt. (3.1)

We consider the Taylor expansion of the function inside the integral and we have

ω(x(t) − x(0), x(1)(t)) =
m∑
l=2

⎛
⎝ ∑

1≤j< l+1
2

(h− j)ω(x(j)(0), x(h)(0))
j!h!

⎞
⎠ tl + o(tm). (3.2)

By Lemma 2.1 and formula (3.2) we get

ω (x(t) − x(0), x′(t)) = t2

2 − k(0)
4! t4 − 3k′(0)

5! t5 +
(
k2(0)

6! − k′′(0)
5!

)
t6 + o(t6)

and the statement follows after integration on 0 ≤ t ≤ s. �
The remaining of this section is devoted to characterize the affine lengths of the n arcs in which ∂C is 

divided by the vertices of a best approximating polygon Pn inscribed in C.
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Proposition 3.2. For n ≥ 3 let Pn ∈ Pi
n be a best approximating polygon inscribed in C. Let x(sn,i), 

i = 1, . . . , n, be the ordered vertices of Pn and

λn,i := sn,i − sn,i−1.

Then

λn,i+1 = λn,i + 1
30k

′(sn,i)λ4
n,i + ε1(sn,i, λn,i) (3.3)

where limn→∞
ε1(sn,i,λn,i)

λ5
n,i

= 0 uniformly in i.

Proof. Since Pn is a best approximating polygon, its vertices satisfy:

ω
(
x(sn,i−1) − x(sn,i+1), x(1)(sn,i)

)
= 0 for i = 1, ..., n (3.4)

To study (3.4), we assume sn,i = 0 and consider the equivalent equation:

x(s) − x(t) + hx(1)(0) = 0 for some h ∈ R.

Excluding the trivial solution t ≡ s, we obtain (up to rename h):

x(s) − x(t)
s− t

+ hx(1)(0) = 0. (3.5)

Let us define

G(s, t) := x(s) − x(t)
s− t

and extend it, smoothly, to s = t by setting G(s, s) = x(1)(s). Thus we have

G(s, t) = x(s) − x(t)
s− t

=
m∑

k=1

x(k)(0)
k!

(
sk − tk

s− t

)
+ o((s− t)m−1)

and s = t = 0, h = −1 is a solution for (3.5). In order to apply the Implicit Function Theorem to solve (3.5)
for h and t in terms of s, we compute the Jacobian matrix of G(s, t) + hx(1)(0) in s = t = 0, h = −1:

Jh,t
(
G(s, t) + hx(1)(0)

)
|s=t=0,h=−1 =

(
x(1)(0), x

(2)(0)
2

)
.

Since detJh,t = 1
2 , it is possible to solve (3.5) and find h(s) and t(s). Deriving we get

d

ds

(
G(s, t(s)) + h(s)x(1)(0)

)
= ∂sG(s, t(s)) + ∂tG(s, t(s))t′(s) + h′(s)x(1)(0) = 0. (3.6)

Since for s = 0, t(0) = 0, we have

x(2)(0)
2 + x(2)(0)

2 t′(0) + h′(0)x(1)(0) = 0,

and therefore we get t′(0) = −1.
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In order to obtain the higher order derivatives of t in 0 it is enough to argue in the same way that is 
deriving (3.6) again and taking into account Lemma 2.1. In such a way we get

t(s) = −s + 1
30k

′(0)s4 + o(s5).

The previous expansion written for general sn,i �= 0 gives immediately formula (3.3). �
The next proposition is a refinement of Lemma 2 in [10].

Proposition 3.3. Under the same assumption of the previous proposition, it holds

λn,i = λ

n
− λ2

30n3

λ∫
0

k(s)ds + λ3

30n3 k

(
iλ

n

)
+ o

(
1
n3

)
(3.7)

uniformly in i as n → ∞.

Proof. Through the whole proof, we assume that sn,0 = 0. By a standard comparison argument of difference 
equations, we first prove that

λn,i = λ

n
+ O

(
1
n3

)
uniformly in i as n → ∞ (3.8)

Let D be a constant such that D > 1
30 max |k′| and consider the two difference equations

vn,i+1 = vn,i
(
1 −Dv3

n,i

)
, Vn,i+1 = Vn,i

(
1 + DV 3

n,i

)
. (3.9)

In view of Lemma 2 in [10], λn,1 = cn
n for some uniform constant cn (that is |cn| uniformly bounded in n). 

By taking the first terms of (3.9) both equal to cnn , it clearly holds

vn,i ≤ λn,i ≤ Vn,i, i = 1, ..., n.

Moreover, the sequence Vn,i is increasing and Vn,n is uniformly bounded. In fact, let k ≥ 1 be the largest 
integer such that Vn,k ≤ 2cn

n . If k < n, then we should have Vn,k+1 > 2cn
n and therefore

2cn
n

<
cn
n

(
1 + D

(
2cn
n

)3
)k

<
cn
n

(
1 + D

(
2cn
n

)3
)n

⇒ 2 <

(
1 + D

(
2cn
n

)3
)n

Since the last term tends to 1, this contradicts the fact that k < n.
With an analogous argument, it follows that the sequence vn,i is decreasing and vn,n is uniformly bounded.
Therefore, up to rename the constant D, we have

λn,1

(
1 − D

n3

)i−1

≤ λn,i ≤ λn,1

(
1 + D

n3

)i−1

.

Summing for i = 1, . . . , n, we get

λn,1
1 −

(
1 − D

n3

)n
D

≤ λ ≤ λn,1
1 −

(
1 + D

n3

)n
D

⇒ λn,1
n

D
≤ λ ≤ λn,1

n
D

n3 −n3 1 + n2 1 − n2
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so that λn,1 = λ
n + O

( 1
n3

)
, which corresponds to formula (3.8). Such a formula immediately gives sn,i =

iλ
n + O

( 1
n2

)
and therefore – up to renaming the function ε1 – expansion (3.3) of Proposition 3.2 can be 

equivalently written as

un,i+1 = un,i + 1
30k

′
(
iλ

n

)
u4
n,i

n3 + ε1

(
iλ

n
,
un,i

n

)
(3.10)

where un,i = n λn,i. Let un be the solution of the Cauchy problem (corresponding to (3.10)):

{
u′
n(t) = 1

30λk
′(t)u

4
n(t)
n2

un

(
λ
n

)
= un,1

(3.11)

and set un(i) := un

(
iλ
n

)
.

The second part of the proof is devoted to establish the next estimate:

un(i) − un,i = o

(
1
n2

)
(3.12)

uniformly in i = 1, . . . , n as n → ∞.
By integrating (3.11) between iλn and (i+1)λ

n via separation of variables, we get

−1
3

(
1

un(i + 1)3 − 1
un(i)3

)
= 1

30λn2

[
k

(
(i + 1)λ

n

)
− k

(
iλ

n

)]
,

that is

(un(i + 1))−3 = 1
10λn2

[
k

(
iλ

n

)
− k

(
(i + 1)λ

n

)]
+ un(i)−3,

implying

un(i + 1) = un(i)
(

1 + 1
10λn2

[
k

(
iλ

n

)
− k

(
(i + 1)λ

n

)]
un(i)3

)−1/3

= un(i)
(

1 + 1
30λn2

[
k

(
(i + 1)λ

n

)
− k

(
iλ

n

)]
un(i)3

)
+ O

(
1
n4

)

= un(i) + 1
30n3 k

′
(
iλ

n

)
un(i)4 + o

(
1
n3

)
.

Taking into account the previous formula and the difference equation (3.10), we immediately have

un,i+1 − un(i + 1) = un,i − un(i) + 1
30n3 k

′
(
iλ

n

)
(u4

n,i − un(i)4) + o

(
1
n3

)
.

Equivalently, zn,i := un,i − un(i) solves

zn,i+1 = zn,i + Cn,i

30n3 k
′
(
iλ

n

)
zn,i + o

(
1
n3

)
(3.13)

where Cn,i > 0 are constants uniformly bounded in i for n → ∞. As in the first part of the proof, let E be 
a constant such that E >

Cn,i max |k′| (for every i and n) and consider the difference equation
30
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Zn,i+1 = Zn,i

(
1 + E

n3

)
+ cn

n3 ,

with cn = o(1) and Zn,1 = 0. Comparing the zn,i+1’s in (3.13) with the terms Zn,i+1 of the previous 
difference equation, for every i = 1, . . . , n, we get

zn,i+1 ≤ Zn,i+1 = cn
E

((
1 + E

n3

)i

− 1
)

≤ o(1)
(

1
1 − iE

n3

− 1
)

= o(1) i

n3 = o

(
1
n2

)
,

which corresponds to (3.12).
We finally make explicit the term of order 3 in formula (3.7). By integrating (3.11) between λn and (i+1)λ

n , 
we have

un(i + 1) = un(1)
(

1 + 1
10λn2

[
k

(
λ

n

)
− k

(
(i + 1)λ

n

)]
un(1)3

)−1/3

= un(1)
(

1 + 1
30λn2

[
k

(
(i + 1)λ

n

)
− k

(
λ

n

)]
un(1)3

)
+ O

(
1
n4

)
.

Moreover, by formula (3.12), un,i+1 = un(i + 1) + o 
( 1
n2

)
or equivalently (since λn,i = un,i

n )

λn,i+1 = un(i + 1)
n

+ o

(
1
n3

)
.

Plugging the previous expression of un(i + 1) (in terms of un(1) = n λn,1) into formula above, we obtain

λn,i+1 = λn,1

[
1 + 1

30λn2

(
k

(
(i + 1)λ

n

)
− k

(
λ

n

))
n3λ3

n,1

]
+ o

(
1
n3

)
.

In more detail, since λn,1 = λ
n + en

n3 + o 
( 1
n3

)
for some uniform constant (see formula (3.8)), we have

λn,i+1 = λ

n
+ λ3

30n3

(
k

(
(i + 1)λ

n

)
− k

(
λ

n

))
+ en

n3 + o

(
1
n3

)
. (3.14)

Summing for i = 0, . . . , n − 1, we conclude that

λ =
n−1∑
i=0

λn,i+1 = λ + λ3

30n3

n−1∑
i=0

(
k

(
(i + 1)λ

n

)
− k

(
λ

n

))
+ en

n2 + o

(
1
n2

)
,

that is

en = − λ3

30n

n−1∑
i=0

(
k

(
(i + 1)λ

n

)
− k

(
λ

n

))
+ o(1)

and the limit for n → ∞ leads to

en = −λ2

30

λ∫
0

k(s) − k (0) ds.

Plugging the expression for en into formula (3.14), we finally obtain (for n → ∞):
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λn,i+1 = λ

n
− λ2

30n3

λ∫
0

k(s)ds + λ3

30n3 k

(
(i + 1)λ

n

)
+ o

(
1
n3

)
,

which equals to (3.7). �
4. Asymptotic expansion for δ(C, Pc

n)

In this section, analogously to the previous one, we collect the technical results in order to prove point 
(b) of Theorem 1.6.

The next result is analogous of Proposition 3.1 for circumscribed polygons.

Proposition 4.1. For 0 ≤ r ≤ s ≤ λ, let H(r, s) be the area of the region between the tangents in x(r) and 
x(s) and the arc {x(t) : r ≤ t ≤ s}. Then

H(r, s) = (s− r)3

24 + (s− r)5

2 · 5! k(r) + 3(s− r)6

6! k′(r) + (s− r)7

7 · 5! k′′(r) + 17(s− r)7

8! k2(r) + o((s− r)7))

uniformly for all 0 ≤ r ≤ s ≤ λ as (s − r) → 0.

Proof. Without loss of generality, we assume r = 0. Consider the vertex P of the polygon Pn ∈ Pc
n whose 

edges are tangent to C in x(0) and x(s):

P = x(s) + t1x
′(s) = x(0) + t2x

′(0) ⇒ ω(x′(0), x(0) − x(s)) = t1ω(x′(0), x′(s))

so we get

P = x(s) + x′(s)ω(x′(0), x(0) − x(s))
ω(x′(0), x′(s)) . (4.1)

The area of the triangle of vertices x(0), x(s) and P is

−1
2ω(P − x(s), x(0) − x(s)) = 1

2
ω(x′(s), x(s) − x(0))ω(x′(0), x(0) − x(s))

ω(x′(0), x′(s)) .

Taking M, N, L, J ∈ N large enough in order to approximate the above quantity at order 7, we obtain

1
2ω

(
M∑

h1=1

x(h1)(0)sh1−1

(h1 − 1)! + o(sM−1),
N∑

h2=1

x(h2)(0)sh2

h2!
+ o(sN )

)(
−

L∑
h3=2

ω(x′(0), x(h3)(0))sh3−1

h3!
+ o(sL−1)

)
·

·
(

J∑
h4=2

ω(x′(0), x(h4)(0))sh4−2

(h4 − 1)! + o(sJ−2)
)−1

=

= 1
2

⎛
⎝ M∑

m=1

∑
j+h−1=m

ω(x(h)(0), x(j)(0))sm

j!(h− 1)! + o(sM )

⎞
⎠(

−
L∑

h3=2

ω(x′(0), x(h3)(0))sh3−1

h3!
+ o(sL−1)

)
·

·
(

J∑
h4=2

ω(x′(0), x(h4)(0))sh4−2

(h4 − 1)! + o(sJ−2)
)−1

=

= 1
(

1
s2 − k(0)

s4 − 3k′(0)
s5 − k′′(0)

s6 + k2(0)
s6 + o(s6)

)(
1
s− k(0)

s3 − 2k′(0)
s4+
2 2 4! 5! 5! 6! 2 4! 5!
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−3k′′(0)
6! s5 + k2(0)

6! s5 + o(s5)
)(

1 − k(0)
3! s2 − 2k′(0)

4! s3 − 3k′′(0)
5! s4 + k2(0)

5! s4 + o(s4)
)−1

=

= 1
2

(
1
2s

2 − k(0)
4! s4 − 3k′(0)

5! s5 − k′′(0)
5! s6 + k2(0)

6! s6 + o(s6)
)(

1
2s−

k(0)
4! s3 − 2k′(0)

5! s4+

−3k′′(0)
6! s5 + k2(0)

6! s5 + o(s5)
)(

1 + k(0)
3! s2 + 2k′(0)

4! s3 + 3k′′(0)
5! s4 − k2(0)

5! s4 + k2(0)
36 s4 + o(s4)

)
=

= 1
2

(
1
4s

3 + 3k2(0)
4 · 6! s7 + o(s7)

)
.

By difference of areas and taking into account the result of Proposition 3.1 for F (0, s), we get

H(0, s) = 1
24s

3 + k(0)
2 · 5!s

5 + k′(0)
4 · 5! s

6 + k′′(0)
14 · 5!s

7 + 17k2(0)
8! s7 + o(s7). �

The next two results correspond to Propositions 3.2 and 3.3 in the case of circumscribed best approxi-
mating polygons.

Proposition 4.2. For n ≥ 3 let Pn ∈ Pc
n be a best approximating polygon circumscribed to C. Let x(sn,i), 

i = 1, . . . , n, be the ordered tangency points of the edges of Pn to C and

λn,i := sn,i − sn,i−1.

Then

λn,i+1 = λn,i −
8
5!k

′(sn,i)λ4
n,i + ε2(sn,i, λn,i) (4.2)

where limn→∞
ε2(sn,i,λn,i)

λ5
n,i

= 0 uniformly in i.

Proof. If x(sn,1), x(sn,2) and x(sn,3), 0 ≤ sn,i ≤ λ, are three successive tangent points of Pn to C, the 
corresponding vertices of Pn are

P = x(sn,2)+x′(sn,2)
ω(x′(sn,1), x(sn,1) − x(sn,2))

ω(x′(sn,1), x′(sn,2))
, Q = x(sn,2)+x′(sn,2)

ω(x′(sn,3), x(sn,3) − x(sn,2))
ω(x′(sn,3), x′(sn,2))

.

Since Pn is a best approximating circumscribed polygon, we have

ω(x′(sn,1), x(sn,1) − x(sn,2))
ω(x′(sn,1), x′(sn,2))

= −ω(x′(sn,3), x(sn,3) − x(sn,2))
ω(x′(sn,3), x′(sn,2))

.

Setting sn,2 = 0, we define the function

G(s) = ω(x′(s), x(s) − x(0))
ω(x′(s), x′(0)) .

The proof can be concluded as the one of Proposition 3.2, by solving G(s) = −G(t) and applying the 
Implicit Function Theorem. �

Finally, an argument analogous to the proof of Proposition 3.3 gives the next precise characterization of 
the λn,i’s.
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Proposition 4.3. Under the same assumption of the previous proposition, it holds

λn,i = λ

n
− 8

5!
λ2

n3

λ∫
0

k(s)ds + 8
5!

λ3

n3 k

(
iλ

n

)
+ o

(
1
n3

)

uniformly in i as n → ∞.

5. Proof of Theorem 1.6

We finally state and prove the higher order terms of δ(C, Pi
n) and δ(C, Pc

n) defined in Sections 1.2 and 
1.3 respectively. This theorem is a refinement of Theorem 1 and Theorem 2 in [10]. In view of equalities 
(1.6) and (1.8), the proof of Theorem 1.6 is a straightforward application of this result.

Theorem 5.1. Let C be a strictly-convex planar domain with smooth boundary ∂C. Suppose that ∂C has 
everywhere positive curvature. Denote by k(s) the affine curvature of ∂C with affine parameter s. Let λ be 
the affine length of the boundary.

(a) The formal expansion of δ(C, Pi
n) at n → ∞ is given by

δ(C,Pi
n) = a2

1
n2 + a4

1
n4

λ∫
0

k(s)ds + 1
n6

⎡
⎢⎣a6

λ∫
0

k2(s)ds + b6

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2⎤⎥⎦ + o

(
1
n6

)

with coefficients

a2 = 1
12λ

3, a4 = − 1
2 · 5!λ

4, a6 = − 9
10 · 7!λ

6, b6 = 1
30 · 5!λ

5.

(b) The formal expansion of δ(C, Pc
n) at n → ∞ is given by

δ(C,Pc
n) = a2

1
n2 + a4

1
n4

λ∫
0

k(s)ds + 1
n6

⎡
⎢⎣a6

λ∫
0

k2(s)ds + b6

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2⎤⎥⎦ + o

(
1
n6

)

with coefficients

a2 = 1
24λ

3, a4 = 1
2 · 5!λ

4, a6 = 421
5 · 8!λ

6, b6 = − 1
5 · 5!λ

5.

Proof. Theorem 1 in [10] establishes that

δ(C,Pi
n) − 1

12
λ3

n2 + 1
2 · 5!

λ4

n4

λ∫
0

k(s)ds = o

(
1
n4

)

as n → ∞. We determine

lim
n→∞

n6

⎛
⎝δ(C,Pi

n) − 1
12

λ3

n2 + 1
2 · 5!

λ4

n4

λ∫
k(s)ds

⎞
⎠ . (5.1)
0
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By means of Proposition 3.1, we get

δ(C,Pi
n) = 1

2

n∑
i=1

[
λ3
n,i

3! −
λ5
n,i

5! k(sn,i) −
3λ6

n,i

6! k′(sn,i) −
λ7
n,i

7 · 5!k
′′(sn,i) +

λ7
n,i

7! k2(sn,i) + o(λ7
n,i)

]

= 1
2

n∑
i=1

[
1
3!

(
λ

n
+

(
λn,i −

λ

n

))3

−
λ5
n,i

5! k(sn,i) −
3
6!

λ6

n6 k
′(sn,i) −

1
7 · 5!

λ7

n7 k
′′(sn,i)

+ 1
7!

λ7

n7 k
2(sn,i) + o

(
1
n7

)]
.

We compute (5.1) by dividing the limit in four terms. We stress that 
∑n

i=1 λn,i = λ, so that 
∑n

i=1(λn,i −
λ/n) = 0.

We first consider

1
2

1
3!

n∑
i=1

[
λ

n
−

(
λn,i −

λ

n

)]3

− 1
12

λ3

n2

= 1
12

n∑
i=1

[
λ3

n3 − 3λ
2

n2

(
λn,i −

λ

n

)
+ 3λ

n

(
λn,i −

λ

n

)2

−
(
λn,i −

λ

n

)3
]
− 1

12
λ3

n2 .

Applying Proposition 3.3, this term is equal to

1
4

n∑
i=1

⎡
⎢⎣ 1

900
λ5

n7

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

+ 1
900

λ6

n7 k
2
(
iλ

n

)
− 2

900
λ6

n7 k

(
iλ

n

) λ∫
0

k(s)ds + o

(
1
n7

)⎤
⎥⎦ .

And the corresponding limit gives:

lim
n→∞

n6

4

n∑
i=1

⎡
⎢⎣ 1

900
λ5

n7

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

+ 1
900

λ6

n7 k
2
(
iλ

n

)
− 2

900
λ6

n7 k

(
iλ

n

) λ∫
0

k(s)ds + o

(
1
n7

)⎤
⎥⎦

= 1
4 · 900λ

6
λ∫

0

k2(s)ds− 1
4 · 900λ

5

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

. (5.2)

Second, we compute the limit:

lim
n→∞

n6

2

n∑
i=1

[
−
λ5
n,i

5! k(sn,i)
]

+ 1
2 · 5!λ

4n2
λ∫

0

k(s)ds

= lim
n→∞

1
2 · 5!λ

4n2

⎡
⎢⎣ n∑

i=1

⎛
⎜⎝−k(sn,i)λn,i +

sn,i+1∫
sn,i

k(s)ds

⎞
⎟⎠
⎤
⎥⎦ + n6

2 · 5!

n∑
i=1

−k(sn,i)λn,i

(
λ4
n,i −

λ4

n4

)
.

The limit of the first summand is zero, in fact:

lim
n→∞

1
2 · 5!λ

4n2

⎡
⎢⎣ n∑

i=1

⎛
⎜⎝−k(sn,i)λn,i +

sn,i+1∫
s

k(s)ds

⎞
⎟⎠
⎤
⎥⎦ = lim

n→∞
1

2 · 5!λ
4n2

⎡
⎢⎣ n∑

i=1

sn,i+1∫
s

(k(s) − k(sn,i)) ds

⎤
⎥⎦
n,i n,i
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= lim
n→∞

1
2 · 5!λ

4n2

⎡
⎢⎣ n∑

i=1

⎛
⎜⎝

sn,i+1∫
sn,i

(k′(sn,i)(s− sn,i) + k′′(sn,i)
(s− sn,i)2

2 + o((s− sn,i)2)

⎞
⎟⎠ ds

⎤
⎥⎦

= lim
n→∞

1
2 · 5!λ

4n2

[
n∑

i=1
k′(sn,i)

λ2
n,i

2 + k′′(sn,i)
λ3
n,i

3!

]

where, in the last equality, we dropped o((s − sn,i)2) because after integration and summation it gives a 
negligible term. Now – again by Proposition 3.3 – the above limit equals to

= lim
n→∞

1
2 · 5!λ

4n2

[
n∑

i=1
k′(sn,i)

λn,i

2
λ

n
+ k′′(sn,i)

λn,i

3!
λ2

n2

]
.

The second term clearly converges to a constant times 
∫ λ

0 k′′(s)ds which is 0. Also the first term converges 
to 0, and to see this it is sufficient to rewrite the summation as

lim
n→∞

1
4 · 5!λ

5n

⎡
⎢⎣ n∑

i=1

sn,i+1∫
sn,i

(k′(sn,i) − k′(s))ds

⎤
⎥⎦ (5.3)

and then use the Taylor expansion of k′(s) around sn,i. Therefore, it remains to compute

lim
n→∞

n6

2 · 5!

n∑
i=1

−k(sn,i)λn,i

(
λ4
n,i −

λ4

n4

)
= − 1

15 · 5!λ
6

λ∫
0

k2(s)ds + 1
15 · 5!λ

5

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

, (5.4)

where, the last equality, is a straightforward application of Proposition 3.3.
By arguing as in (5.3), we obtain that the third term (of order 6) in the expansion of (5.1) does not give 

contribution:

lim
n→∞

n6

2

n∑
i=1

− 3
6!k

′(sn,i)λ6
n,i = 0.

Finally, we compute the limit of the last term:

lim
n→∞

n6

2

n∑
i=1

[
− 1

7 · 5!
λ7

n7 k
′′(sn,i) + 1

7!
λ7

n7 k
2(sn,i)

]
= lim

n→∞
λ6

2

n∑
i=1

[
− 1

7 · 5!λn,ik
′′(sn,i) + 1

7!λn,ik
2(sn,i)

]

= 1
2 · 7!λ

6
λ∫

0

k2(s)ds. (5.5)

The coefficients of point (a) of the theorem are obtained by summing up (5.2), (5.4) and (5.5). From (5.1), 
we immediately obtain that the term of order 5 has zero coefficient. This fact follows also from S. Marvizi 
and R. Melrose’s theory, as recalled in Section 1.4.

Point (b) can be proved in the same way. �
As pointed out in [1, Theorem 6], in the symplectic billiard case, the first two coefficients β1 and β3 make 

it possible to distinguish an ellipse. In fact, the inequality

3β3 ≤ −2π2β1
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equals to the affine isoperimetric inequality

λ3 ≤ 8π2Area(C),

which always holds for every strictly-convex closed curve ∂C and it is an equality only for ellipses. This is 
not the case of outer billiards, since β1 = 0. However, in the next corollary we underline that coefficients β5
and β7 – even if not geometrically significant – allow to fix an ellipse, also in the outer billiard case.

Corollary 5.2. Same assumptions of Theorem 1.6. The coefficients β5 and β7 recognize an ellipse. In par-
ticular:

(a) For symplectic billiards, one always has the inequality

42λ3β7 ≤ 5!(β5)2, (5.6)

with equality if and only if ∂C is an ellipse.
(b) For outer billiards, one always has the inequality

7λ3β7 ≥ 170(β5)2, (5.7)

with equality if and only if ∂C is an ellipse.

Proof. By Cauchy-Schwartz inequality, it holds

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

≤ λ

λ∫
0

k2(s)ds,

with equality if and only if k(s) is constant (that is, ∂C is an ellipse). As a consequence, in the symplectic 
billiard case, we get

β7 ≤
(
− 9

5 · 7! + 1
15 · 5!

)
λ5

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

= λ5

7!

⎛
⎝ λ∫

0

k(s)ds

⎞
⎠

2

= 5!
42λ3 (β5)2

which gives the result of point (a). Point (b) is obtained analogously. �
6. Ellipses and circles

In the case of circles and ellipses, all coefficients of the Mather’s β-function – both for symplectic and 
outer billiards – can be easily obtained directly. In particular, by the affine equivariance of both maps, it 
is sufficient to consider the case of circular tables. In this final section, we compute these coefficients for 
circles (and therefore for ellipses) and check their consistency with the βi’s of Theorem 1.6.

6.1. Symplectic billiards

For a disc centered in 0 with radius R, the generating function is twice the area of the triangle x0y:

ω(x, y) = 2Area(x0y)

and periodic orbits of rotation number 1 (n ≥ 3) correspond to inscribed regular polygons with n edges.
n
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Fig. 3. The outer billiard in circles.

The generating function for an ellipse x2
1

a2 + x2
2

b2 = 1 is obtained by applying the affine transformation (
a/R 0
0 b/R

)
, so that

ω(x, y) = ab sin
(

2π
n

)
.

As a consequence, from Definition 1.3 of Mather’s β-function, it follows

β

(
1
n

)
= ab

∞∑
k=0

(−1)k+1

(2k + 1)!

(
2π
n

)2k+1

. (6.1)

Since the affine length and curvature of the ellipse (and circle, for a = b = R) are respectively λ = 2π(ab)1/3
and k = (ab)−2/3, the above coefficients are consistent with the ones of point (a) of Theorem 1.6.

6.2. Outer billiards

For the circular table of boundary x2
1 +x2

2 = R2, periodic orbits of rotation number 1
n (n ≥ 3) correspond 

to circumscribed regular polygons with n edges and the generating function is the area:

R2
[
tan

(π
n

)
− π

n

]

of the gray region in Fig. 3. Therefore, the generating function for an ellipse x
2
1

a2 + x2
2

b2 = 1 results:

ω(x, y) = ab
[
tan

(π
n

)
− π

n

]
and the corresponding Mather’s β-function is

ab

∞∑
k=2

(−1)k−14k(4k − 1)B2k

(2k)!

(π
n

)2k−1

(the B2k’s are the Bernoulli numbers), whose coefficients are consistent with the ones of point (b) of Theo-
rem 1.6.
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