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Abstract—Modern cars’ complexity and increased reliance
on electronic components have made them a prime target
for attackers. In particular, the in-vehicle communication
system is one of the major attack surfaces, with the Controller
Area Network (CAN) being the most used protocol. CAN
connects electronic components with each other, allowing them
to communicate and carry out control functions, as well as
managing the vehicle state. However, these components, called
Electronic Control Units (ECUs), can also be exploited for
malicious purposes. Indeed, since the CAN bus was not designed
with security features, attackers can exploit its vulnerabilities to
compromise ECUs and corrupt the communication, allowing for
remote vehicle control, disabling breaks, and engine shutdowns,
causing significant safety threats. In response to the absence
of standardized authentication protocols within the automotive
domain, researchers propose diverse solutions, each with
unique strengths and vulnerabilities. However, the continuous
influx of new protocols and potential oversights in meeting
security requirements and essential operational features further
complicate the implementability of these protocols.

This paper comprehensively reviews and compares the 15
most prominent authentication protocols for the CAN bus. Our
analysis emphasizes their strengths and weaknesses, evaluating
their alignment with critical security requirements for automotive
authentication. Additionally, we evaluate protocols based on
essential operational criteria that contribute to ease of implemen-
tation in predefined infrastructures, enhancing overall reliability
and reducing the probability of successful attacks. Our study
reveals a prevalent focus on defending against external attackers
in existing protocols, exposing vulnerabilities to internal threats.
Notably, authentication protocols employing hash chains, Mixed
Message Authentication Codes, and asymmetric encryption
techniques emerge as the most effective approaches. Through our
comparative study, we classify the considered protocols based
on their security attributes and suitability for implementation,
providing valuable insights for future developments in the field.

Index Terms—Controller Area Network, Authentication,
Vehicle Security, Comparative Analysis.

I. INTRODUCTION

THE rising number of vehicles has led to increased traffic
congestion and safety concerns for drivers [1], [2]. To

address these challenges, industries, and academia are actively
developing technologies for Intelligent Transportation Systems
(ITSs). These systems aim to enhance road coordination through

Authors are with the Department of Mathematics, University of Padova,
via Trieste 63, Padova, Italy (email: alessandro.lotto@math.unipd.it,
francesco.marchiori@math.unipd.it, alessandro.brighente@unipd.it,
mauro.conti@unipd.it).

M. Conti is also affiliated with the Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology, Mekelweg
4, 2628 CD Delft, Netherlands.

innovative services, including traffic management and vehicle-
to-infrastructure communication [3], [4]. While Vehicular Ad-
hoc Networks (VANETs) are seen as a step towards secure
ITSs and autonomous driving, it is crucial to ensure security
at individual network nodes [5]. In this context, securing the
in-vehicle communication is paramount, considering the potential
impact on network reliability and user safety [5]. Moreover, the
automotive market’s increasing focus on advanced technology has
led to a proliferation of electronic components, such as Electronic
Control Units (ECUs), that facilitate communication between
vehicles [5]. Indeed, in the first years of 2000, typical vehicles
included around 40 ECUs with luxury brands incorporating up
to 70 [6]. Around 20 years later, this number has risen to 150
and is expected to grow to over 200 by 2030 [7].

The Controller Area Network (CAN), introduced by Robert
Bosch GmbH in 1983, has become a renowned and widely used
serial bus, initially designed for automotive applications [8],
[9], [10]. Still, CAN has found versatile use in fields like
medical devices, industrial automation, and robotics, thanks
to its reliable, robust, efficient, and flexible communication
capabilities [10], [11], [12]. Despite its adoption as the de-facto
standard in modern cars, CAN lacks inherent security features,
as its design assumes an isolated and friendly environment [13],
[12], [14], [15]. However, with modern cars featuring various
communication channels like Bluetooth, On-Boad Diagnostic
(OBD) ports, and cellular technology, interactive systems expose
potential vulnerability surfaces for attackers [16], [17], [18]. The
absence of security features in CAN, including confidentiality,
encryption, data integrity, and authenticity, renders the system
susceptible to exploitation. This vulnerability was demonstrated
by C. Miller and C. Valasek, who remotely hacked a Fiat
Chrysler (Jeep) through the internet-connected “Uconnect”,
exploiting open Transmission Control Protocol (TCP) ports on
the Sprint mobile network [19], [20], [21], [22]. This breach
enabled remote code execution, providing attackers full control
over the vehicle and leaving users powerless to regain control.
Other incidents also show the possibility of exploiting the CAN
bus to damage the Anti-lock Braking System (ABS) [23] and
adversarially control the vehicle to stop the engine [24].

A crucial yet vulnerable aspect of CAN is its broadcast
communication, where each message contains a field specifying
data type rather than the sender’s identity. Such a lack of sender
identification poses severe authentication issues and security
threats, endangering vehicle and passenger safety [25], [26].
Researchers have proposed various authentication schemes for
securing CAN communications to address this vulnerability.
Despite widespread recognition of the authentication issue in
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the automotive industry and the proposal of several solutions,
a practical lack of adoption persists in modern cars. This gap
exposes vehicles to potential malicious attacks, such as the
injection of packets in the CAN bus for vehicle theft [27].
This further highlights the need for comprehensive analysis and
comparison of authentication solutions to understand the reasons
behind their limited usage [28]. Moreover, given the constant
introduction of new protocol proposals from researchers, who
can often oversee essential security requirements or necessary
features for the protocols’ implementation, the available body of
literature has become particularly cumbersome and convoluted.
This emphasizes the importance of thoroughly assessing the
most promising authentication solutions in practical scenarios.

Contributions. In this paper, we provide a comparative
analysis of the 15 most prominent authentication protocols
for CAN. On top of the protocols’ descriptions, we offer a
comprehensive review and a unified model for comparing
these protocols. Furthermore, we discern the critical security
requirements necessary for the automotive framework, many
of which have been overlooked or defined with limitations in
related works. We bridge crucial gaps in the existing knowledge
by highlighting these limitations and discussing how to address
them. To complement our analysis, we introduce additional
comparison criteria that can aid practitioners in selecting the
most suitable protocol for real-world implementations. Lastly, we
take a forward-looking approach by proposing enhancements that
can fortify the existing protocols, making them more robust and
secure. Additionally, we offer valuable insights for developing
future authentication protocols in the context of the CAN bus.
Together, these contributions advance our understanding of CAN
authentication protocols and provide practical guidance for their
implementation and improvement in automotive systems. To
the best of our knowledge, this survey work marks the first
of its kind in the literature, as also demonstrated in Table I.

The main contributions of our work are summarized as follows.
• We present a technical and detailed overview of 15

cryptographic authentication protocols for CAN. To the
best of our knowledge, this is the first contribution to provide
a detailed review and unified model for comparison. Table II
reviews the considered protocols, which are the most surveyed
in the literature, with the addition of the two latest protocols.

• We identify and define security criteria necessary for CAN
authentication protocols applied to the automotive framework.
Some are either not considered in related works or defined
with some limitations. We highlight such limitations and
provide a discussion to address them.

• We identify and define operational criteria crucial for
selecting the protocol for real-world implementation. In
conjunction with security requirements, these characteristics
provide a comprehensive analytical overview of the protocols.

• We propose enhancements that may be applied to make
protocols more robust and secure and provide indications for
developing future authentication protocols in the CAN bus.
Organization. An overview of the paper’s organization is

shown in Fig. 1. Section II presents the related works. Section III
provides an overview of CAN specifications and the current
standard scenario. Section V presents the possible attacks to
the CAN bus and defines the adversarial model. Section IV

discusses hardware security solutions to introduce cryptographic
primitives in CAN. Section VI presents all the authentication
protocols considered in this work. Section VII defines the criteria
according to which the protocol comparison will be based.
In Section VIII and Section IX the comparison is presented.
Section X presents an analysis of the results from the comparison.
Section XI provides the takeaway messages, and Section XII
highlights future directions for in-vehicle communications.
Finally, Section XIII concludes the paper. Furthermore,
Appendix A provides the necessary background knowledge
about cryptographic elements that will be introduced in the paper.

II. RELATED WORKS

Our research shows that most surveys about CAN security
mainly analyze CAN vulnerability surfaces, possible exploits,
and corresponding countermeasure approaches. Furthermore, the
large part of existing surveys in the literature that focus on a
specific security aspect, thus carrying out a detailed review and
comparison of existing security mechanisms, mainly cares about
Intrusion Detection System (IDS). On the contrary, only a few
works specifically survey cryptographic authentication solutions
in an extensive and in-depth manner. The absence of a compre-
hensive literature review about the authentication framework for
the CAN bus and limitations shown by existing works prevents
us from reaching a definite solution for CAN authentication
protocols, which highlights the importance of conducting a
comprehensive and in-depth comparative analysis between the
most discussed and promising authentication protocols for CAN.

Authentication Protocols. Several survey works overview
the most common and discussed vulnerability surfaces and
corresponding threats and exploits, together with possible
countermeasure approaches for security solutions [29], [30], [31],
[33], [36], [37], [40]. From the analysis of these surveys, we can
conclude that the current state-of-the-art approaches to secure the
CAN bus environment are encryption-based mechanisms (authen-
tication and encryption schemes), IDSs, firewalls, and network
segmentation. However, these papers only conduct a high-level
and general discussion about possible countermeasure approaches
and mitigation solutions, giving some case studies as examples.
Works [36] and [40] present a dedicated section about authen-
tication schemes. However, the protocol analysis and (when
present) comparison are carried out from a high-level perspective
without providing detailed security analysis and comparison
criteria, which is our work’s goal. These works are considerably
noteworthy in value and thus will constitute the starting point for
our work. Table I compares related works to ours, highlighting
the contribution of our survey. Furthermore, Table II compares
the protocols considered in this survey to the ones considered
in the related works. We consider the most promising protocols
from the literature and related survey works for our analysis.
Nowdehi et al. [32] conducted an effective comparison analysis
between 10 authentication protocols for CAN. The authors
defined five industrial requirements they identified as necessary
to satisfy for a security solution to be usable in practice. Protocol
comparison is performed in light of the defined requirements:
effectiveness, backward compatibility, support for vehicle repair
and maintenance, sufficient implementation details, and accept-
able overhead. The limitations of their survey paper encompass
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TABLE I: Comparison of the aspects considered for the CAN authentication protocols by related surveys in the literature. The
table highlights a lack of a structured definition of security criteria that protocols shall comply with and a deep analysis of
their security properties. All these points are instead addressed in this work.

Survey Year Protocols
Description

Protocols
Comparison

Security
Criteria

Operational
Criteria

Security
Analysis

Security
Classification

Wolf et al. [29] 2004
Studnia et al. [30] 2013
Liu et al. [31] 2017
Nowdehi et al. [32] 2017
Avatefipour et al. [33] 2018
Groza et al. [34] 2018
Gmiden et al. [35] 2019
Bozdal et al. [36] 2020
Hartzell et al. [37] 2020
Aliwa et al. [38] 2021
Jo et al. [39] 2021
Fakhfakh et al. [40] 2022
This work 2024

indicates full consideration of a specific aspect.
indicates partial consideration of a specific aspect (i.e., less protocols, security requirements, or complementary features).
indicates no consideration of a specific aspect.

CAN Authentication Survey
Literature Review

(Section 2, 3)

System Model Definition
(Section 4)

Threat Model Definition
(Section 5)

Authentication Protocols
Analysis

(Section 6)

Comparison Criteria
Definition
(Section 7)

Security Evaluation
(Section 8)

Operational Evaluation
(Section 9)

Protocols Classification
(Section 10)

Takeaways, Discussion,
and Conclusion

(Section 11, 12, and 13)

Fig. 1: Paper Structure. From the literature review, we define the system and threat model used to analyze the considered
authentication protocols. We identify the comparison criteria based on the protocol analysis and literature review. According
to the defined criteria, we evaluate protocols on their security and operational properties. As a result of these two evaluations,
we classify protocols in terms of security to highlight the most suitable ones for CAN authentication purposes. Finally, based
on this classification and the results of our evaluation, we identify the key takeaways and future research directions.

concerns regarding cost-effectiveness in mandating hardware-
supported cryptographic primitives for all ECUs in safety-critical
real-time systems, potential backward compatibility issues, and
the necessity of acceptable overhead for hardware-based solutions.
We present a more detailed analysis of these limitations in
Section VII-A. It is worth noting that these limitations are rooted
in a requirements definition that is implementation-oriented
and performance-oriented, as stated by the authors. On the
contrary, our paper prioritizes a security analysis of authentication
protocols for CAN, marking it as the first of its kind.

Groza et al. [34] conducted a survey presenting the evolution
of protocol proposals for CAN security in chronological order
from 2007 to 2016. Besides, the authors discussed some
cryptographic tools and solutions for the key-sharing problem
when using encryption-based mechanisms in CAN. Some
authentication protocol proposals were briefly mentioned as
examples of possible authentication approaches, but no detailed
description nor protocol analysis were given. Furthermore, no

comparison between the protocols was presented.

Gmiden et al. [35] work surveys IDS and cryptographic security
solutions designed for the CAN bus. Regarding the cryptographic
solutions, the authors evaluated and compared the considered
protocols according to the following criteria: authentication,
integrity, confidentiality, backward compatibility, replay attack
resistance, and real-time performance. The survey’s limitations
include a narrow focus on only six protocols, which does not
comprehensively represent the entirety of the literature. Moreover,
the lack of precise definitions for evaluation criteria, particularly
regarding backward compatibility, raises ambiguity about proto-
col compliance. The generic nature of the protocol evaluation in
the survey results in a limited and high-level analysis, potentially
overlooking variations in authentication effectiveness in different
scenarios and against different types of attackers.

Aliwa et al. [38] presented the CAN-bus protocol and its limita-
tions with related vulnerabilities and corresponding exploits an at-
tacker can carry out. Then, they discussed possible approaches to
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enforce security in the CAN framework - such as authentication,
encryption, and IDS deployment - and presented some case stud-
ies. The authors outlined several protocols for the authentication
framework according to their main features and working princi-
ples. Furthermore, they provided a summary table that compares
the protocol based on several aspects comprising security and
operational features. We highlight, however, that the considered
comparison criteria are less than those we will consider for our
analysis. On the other hand, this work lacks a precise definition of
evaluation criteria and a proper security analysis and discussion.
Jo et al. [39] presented a classification of possible CAN
attack surfaces (physical access-based, wireless access-based
requiring initial physical access, wireless access-based without
physical access) and a categorization of defense approaches
(preventative protection, intrusion detection, authentication,
and post-protection). For each defense category identified, the
authors gave an overview of several implementation approaches,
analyzing their pros and cons by presenting some implementation
proposals in the literature. Regarding the authentication part,
the authors focused on solutions for the authentication key
sharing and transmission of the authentication tag. They revised
possible approaches for each authentication aspect and pointed
out some related works employing them. However, this survey
did not define any protocol evaluation criteria, nor was any
protocol comparison performed. Rather, a conceptual analysis
of the authentication methodology, advantages, and drawbacks
of the considered protocols was presented.
Finally, Pesè et al. [41] proposed the S2-CAN authentication
protocol. In their work, the authors compared their proposal
with other related works. However, the compared protocols were
generally presented in their main authentication strategy, and
the comparison was carried out according to technical details of
the induced latency and authentication method, i.e., employed
cryptographic algorithms, Message Authentication Code (MAC)
length, use of hardware modules. However, no comprehensive
and in-depth security analysis and comparison was present.

IDSs. CAN authentication protocols aim to ensure the integrity
of the exchanged packets. In this way, it is possible to identify
possible intrusion and eventual attackers that might try to compro-
mise the vehicle. Although fundamentally different, IDSs can also
provide the same functionalities, as they analyze the network traf-
fic to identify divergent behavior w.r.t. the legitimate. Karopoulos
et al. [42] introduce a new meta-taxonomy that categorizes the pri-
mary vehicle IDS classification characteristics presented in prior
works. While presenting a comprehensive review of the main
aspects of the development of IDSs and their reliance on datasets
and simulations, the authors also highlight their advantages in
tackling the CAN lack of security. Indeed, since IDSs can identify
attacks simply by monitoring the traffic, they do not involve any
form of alteration of the original system, as instead is the case
with authentication protocols. Rajapaksha et al. [43] focus on the
use of Artificial Intelligence (AI) approaches for intrusion detec-
tion. Their novel taxonomy highlights how data-driven techniques
are particularly suitable as IDSs and widely used in the literature
since they can efficiently detect anomalous patterns. Nagarajan
et al. [44] further support the use of AI-based IDSs on Connected
and Autonomous Vehicles (CAVs). Indeed, the traffic for CAVs
is significantly increased w.r.t. traditional vehicles since they

are equipped with additional sensors and need to communicate
with each other. However, it is worth noting that these systems
might be vulnerable to adversarial attacks, which can disrupt the
functionalities of these defenses [45], [46]. Furthermore, as [42]
also highlights, IDSs performances are highly related to the
datasets on which they are trained and simulated. As such, while
IDSs can provide security by only monitoring the traffic, they
have the disadvantage of not detecting every type of intrusion, as
it is impossible to capture the non-finite kinds of behaviors that an
attacker can have when compromising a vehicle. Moreover, IDSs
can identify possible intrusions, but preventing them at runtime is
more difficult with respect to an authentication mechanism. This
also motivates the importance of designing proper authentication
protocols to harden the probability of attack success.

III. BACKGROUND

In this section, we provide a background overview of the
CAN standard protocol [9], [10] in its main and most significant
aspects necessary for a complete comprehension of the following
discussions (Section III-A). Moreover, we also present two
other protocols, CAN+ [47] (Section III-B) and CAN-FD [48]
(Section III-C), which are two more recent versions of the
standard CAN protocol.

A. CAN

In this section, we provide a presentation of the four core
aspects of the CAN standard: (i) the physical layer and ECU
structure, (ii) the structure of a CAN frame, (iii) the procedure
to access to the bus, (iv) the arbitration algorithm.

1) Physical Layer: CAN is a multi-master differential two-
bus protocol. Every ECU of the system is connected to all the
others through two wires named CAN H and CAN L [9], [10].
Being a multi-master protocol, every message is broadcast to all
the other ECUs. The differential property is related to the physical
encoding of the bits into voltage values, which occurs as follows.{

0→CAN H−CAN L≈2V,

1→CAN H−CAN L≈0V.

In the equation, bit 0 is referred to as dominant and bit 1 as
recessive. This labeling suggests the bus behavior when a 0 and 1
are written simultaneously: as a 2V difference dominates over a
0V difference, the bit 0 will always overwrite the bit 1. Moreover,
thanks to this differential encoding, the electrical current flows in
opposite directions for the two wires, resulting in a field-canceling
effect. This makes CAN immune to noise and fault tolerant.

In practice, the signal is imperfect and needs some time to stabi-
lize. Therefore, when writing and reading the bus, delays must be
considered. The bit transmission time is then divided into 8 to 25
time intervals, and after about 2/3 of the bit time, the signal sam-
pling is performed. A synchronization process at the beginning
of the transmission is required as well [47]. ECUs synchronize
by themselves the position of the sample point to a specific phase
in relation to the edges of the monitored bit stream. Receivers
shift the phases of the samplings relatively to the phase of the
transmitter’s ones. Thus, a node’s specific phase shift depends on
the signal delay time from the transmitter to that node [48]. The
typical speed of a CAN bus is 500 Kbit/s with a limit of 1 Mbit/s.
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TABLE II: Comparison of the surveys’ considered protocols for CAN authentication.
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Wolf et al. [29]
Studnia et al. [30]
Liu et al. [31]
Nowdehi et al. [32]
Avatefipour et al. [33]
Groza et al. [34]
Gmiden et al. [35]
Bozdal et al. [36]
Hartzell et al. [37]
Aliwa et al. [38]
Jo et al. [39]
Fakhfakh et al. [40]
This work

2) ECU Structure: A typical ECU usually comprises
three parts: a micro-processor, a CAN controller, and a CAN
transceiver. Even though messages are always broadcasted, the
CAN controller filters out unwanted messages by looking at
the identification field of the message, thus understanding if
the content is of interest. CAN transceivers connect the physical
transmission medium to the controller and physically operate
the two bus lines to generate the logical bits.

3) CAN Frame: A CAN data frame is composed of several
fields, and generally, there are two formats of the protocol:
the standard and extended, with an 11-bit and 29-bit identifier,
respectively [10]. An overview of these two formats is shown
in Fig. 2. Each field is described as follows.

• Start of Frame (SOF): single dominant bit marking the
beginning of the message.

• Identifier (ID): 11-bit field that establishes the message’s
priority and discriminates the type of payload, i.e., the type
of data sent. The extended version also uses the Extended
ID (IDE) field.

• Remote Transmission Request (RTR): dominant single-bit
field when information is required from another node. In this
case, the ID identifies the type of information requested.

• Substitute Remote Request (SRR): substitutes the RTR
bit as a placeholder in the extended version.

• Identifier Extension (IDE): single bit field, dominant if
Extended ID is used.

• r0, r1: unused, reserved for future standard definitions.
• Data Length Code (DLC): 4-bit field indicating the number

of bytes of the payload. Values are taken from 0000 to 1000.
• Data: message payload ranging from 1 to 8 bytes.
• Cyclic Redundancy Check (CRC): contains the checksum

of the data field for error detection.
• Acknowledge (ACK): 2-bit field. The first bit is originally set

to recessive. Every node receiving the message correctly over-
writes it with a dominant bit. If the bit is left recessive, no ECU
correctly receives the message, which is discarded and sent
again after re-arbitration. The second bit is used as a delimiter.

• End-of-frame (EOF): 7 recessive bits marking the end of
the frame.
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Data

8 - 64 bits
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(a) Standard CAN 11-bit identifier.
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4 bits

Data

8 - 64 bits

CRC

16 bits

ACK

2 bits

E
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F

1111111

Extended ID

18 bits

R
T
R

0

r1

0

(b) Extended CAN 29-bit identifier.

Fig. 2: CAN frame structure.

4) Arbitration Algorithm: CAN is a Carrier-Sense Multiple-
Access/Collision Detection and Arbitration Message Priority
(CSMA/CD+AMP) communication protocol [49]. CSMA
means that each node must wait for a determined period of
inactivity before attempting to access the bus and send a
message. CD+AMP means collisions with multiple messages
sent simultaneously are solved through a bit-wise arbitration
algorithm based on the message priority encoded in the
identifier field. When two or more ECUs try to access the bus
simultaneously, only the one with higher priority succeeds, and
no other ECU attempts to access the bus until complete message
transmission [50]. Besides, the arbitration algorithm also assures
that no message is lost due to an interruption caused by a bus
access attempt from an ECU with higher priority than the one
currently transmitting. Notice that, thanks to the differential
encoding, a higher priority corresponds to a lower ID, as
bit 0 dominates over bit 1. As a drawback, the arbitration
mechanism strongly limits CAN bus bandwidth. Indeed, protocol
specifications require that the signal propagation between any
couple of nodes is less than half of one-bit time [10]. This clearly
defines an upper bound for the bit rate and (physical) bus length.

B. CAN+

In recent years, the number of ECUs used is rising, and the
workload on the bus is getting higher, causing a longer response
time and degrading the real-time capability of the system. The
CAN+ protocol was introduced in 2009 as a solution for higher
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throughput, enabling a data rate up to 16 times higher compared
to the standard CAN [47]. By analyzing the transmission time
of a single bit in classic CAN protocol, researchers found a
gray zone period during which the bus could take any value
without disturbing the normal CAN communication. This gray
zone is delimited by the synchronization and sampling zones,
as shown in Fig. 3, and it is the one used by CAN+ to transmit
the additional information at a higher data rate. These additional
bits are called overclocked bits. Since overclocking is possible
only when we can assure the presence of a single transmitter,
we can exchange the overclocked bits during data transmission
only. By defining f as the overclocking factor, and recalling
that a CAN standard data field is at most 8 bytes, the maximum
amount of transmitted bytes per message is:

Ntotal=64+f×64=(1+f)×64.

A detailed analysis shows that the overclocking factor can take
a maximum value of 16, over which no feasible overclocking
is possible [47]. It is also worth mentioning that to implement
the CAN+ protocol properly, transceivers need to support data
rates up to 60 Mbit/s [47].

CAN Bit

New Data
Rate

Data

CAN+

1 0 0 1

Synchronization
Zone

Gray
Zone

Sampling
Zone

SOF Data Bits

Fig. 3: Transmission of a standard CAN bit and of overclocking
bits of CAN+.

C. CAN-FD

CAN with Flexible Data rate (CAN-FD) was designed
in 2011 to (i) improve the header-to-payload ratio, and (ii)
speeding up the frame transmission [48]. The protocol offers
major improvements to the standard CAN [51].
• Extension of Data field up to 64 bytes.
• Average transmission rate increased up to 6 Mbit/s.
• Higher performance in the CRC algorithm, lowering the risk

of undetected errors.
As CAN+, CAN-FD exploits the fact that only a single node
can access the bus after the arbitration. Thus, switching to a
faster and predefined transmission rate is possible. It is worth
noting that all nodes must switch to the new rate synchronously
and return to the standard rate at the end of data transmission.
The speed-up factor is thus determined by (i) the speed of
the transceivers (if the bit time is too short, it will not be
possible to decode it) and (ii) the time resolution of the
synchronization mechanism. Other secondary precautions must
be taken for complete backward compatibility and functioning
of the protocol [48]. Besides data field extension, the protocol
modifies the frame by defining new fields, as shown in Fig. 4.

• Flexible Data Format (FDF): single dominant bit providing
an edge for resynchronization before a possible bit rate switch.

• Bit Rate Switch (BRS): single bit that defines whether to
switch into CAN-FD decoding mode. If recessive, ECUs
must switch to the faster bit rate.

• Error State Indicator (ESI): single bit set to dominant for
error active, recessive for error passive.

Furthermore, the length of the payload is still defined by the
DLC field but with an additional encoding: values from 1001 to
1111 define the data length up to 64 bytes. Thus, each increase
corresponds to a 4-byte increase in the data length (e.g., 1001
corresponds to 12 bytes, 1010 to 16 bytes).
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(a) Standard CAN-FD 11-bit identifier.
S
O
F

0

ID

11 bits

S
R
R

0

I
D
E

0

r0

0

DLC

4 bits

Data

8 - 64 bits

CRC

16 bits

ACK

2 bits

E
O
F

1111111

Extended ID

18 bits

R
T
R

0

r1

0

F
D
F

0

B
R
S

E
S
I

1 bit 1 bit

(b) Extended CAN-FD 29-bit identifier.

Fig. 4: CAN frame structure.

IV. SYSTEM MODEL

As CAN protocol design was not meant for security, some com-
plications arise when trying to build an authentication protocol on
top of it. These obstacles are mainly related to the introduction
of cryptographic primitives and the management of related
security parameters. Besides, because CAN IDs only identify
the message’s content type when introducing cryptographic
primitives, there may be a need for transmitter identification.

In this section, we address the following two main aspects:
(i) handling cryptographic primitives (Section IV-A), and (ii)
transmitter-receiver identification (Section IV-B).

A. Hardware Security Modules

Generally, using cryptographic primitives requires a secure
storage of keys and related parameters to offer accountability and
confidentiality [52]. Besides, when moving into the vehicular
framework, we must consider other requirements and limitations,
such as hard real-time constraints, power consumption, limited
computing and storage resources, and implementation and
maintenance costs. To meet these constraints and limitations,
the European E-Safety Vehicle Intrusion Protected Applications
(EVITA) project aimed to design building blocks for secure
automotive on-board networks for securing security-relevant
components [53]. As such, they designed Hardware Security
Modules (HSMs) as root of trust modules to be easily integrated
as an on-chip extension to the ECUs [54]. A HSM provides
secure hardware and cryptographic functions for secure com-
munication between nodes without occurring in high costs [55].
Also, engineers developed low-level drivers based on AUTOSAR
to interact with EVITA HSMs [56]. AUTOSAR is a set of
specifications and standards for Secure On-board Communication
Modules to reduce costs and improve ECUs scalability [57].
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Components of an HSM are divided into mandatory and
optional, depending on the security requirements that must
be fulfilled. EVITA also specifies three HSM variants to meet
different security levels and cost-effectiveness.
• Full HSM – It focuses on protecting the in-vehicle domain

from security vulnerabilities from vehicle-to-everything
communications. It provides the maximum functionality level,
security, and performance among the three HSM variants.
It is designed to provide a security lifetime of over 20 years.
It comprises blocks to perform symmetric and asymmetric
cryptographic operations, such as hash computations and
random number generations [56]. The major cryptographic
building blocks are composed as follows.
– ECC-256-GF(p): high-performance asymmetric

cryptographic engine based on a high-speed 256-
bit elliptic curve arithmetic using NIST-approved prime
field parameters [58].

– WHIRLPOOL: AES-based hash function, as proposed by
NIST [59].

– AES-128: symmetric block encryption/decryption engine
using the official NIST advanced encryption standard [60].

– AES-PRNG: pseudo-random number generator, seeded
with a truly random seed from a true internal physical
random source.

– Counter: a 64-bit monotonic counter function block that
serves as a simple, secure clock alternative.

• Medium HSM – It aims to secure communications only
within the vehicle. Compared to the full version, it is not
provided with a hardware Error Correction Code (ECC)
engine and a hardware hash engine. This module can
quickly execute symmetric and non-time-critical asymmetric
operations. Security credentials are permanently protected
since they are kept from the application CPU [56].

• Light HSM – It focuses on protecting ECUs, sensors,
and actuators. The security scheme is limited to a single
very-specialized symmetric AES hardware accelerator, while
the application CPU handles all security credentials. This
fulfills the strict cost and efficiency requirements typical of
sensors and actuators [56].

B. Transmitter-Receiver Identification

The other issue that naturally occurs when introducing cryptog-
raphy on the ECUs into the CAN framework is identification. In-
deed, several protocols we consider expect some direct communi-
cation between nodes (i.e., “node A sends to node B”). However,
direct communication is not supported in a broadcast environment
without sender/receiver identification. Hence, some enhancements
to the standard are required. Since the ID field does not identify
the sender or receiver but the payload data type, direct communi-
cations should require the sender and receiver identifiers to be at-
tached to the frame. Without such information, the receiver could
not identify the transmitter and the correct cryptographic key for
decryption. As a result, we need ECU-specific internal identifiers
to provide such functionalities. Since not all the considered proto-
cols mention this fact explicitly, we assume ECUs to be provided
with internal specific identifiers when not directly reported.

One next step would be to consider embedding these
identifiers into CAN frames. We identify using the extended
CAN ID field as the optimal solution since it is very unlikely
that all the 229 possible values are used for the standard CAN
IDs. Therefore, available bits may be used for this purpose. This
prevents adding further bits in frames, which would lead to an
increase in the bus load. On the other hand, manufacturers can
arbitrarily decide their specifications since there is no global
standard to this scope yet. We report the existence of the SAE
J1939 protocol, widely adopted in industrial applications as
a high-level protocol built on top of CAN, which also gives
specifications on how to structure the extended ID field to
include ECU-specific identifiers [61], [62], [63].

V. THREAT MODEL

This section defines the adversarial model we consider for our
analysis and investigates the possible attacks on an adversary
may pursue on the CAN bus. Considering what has already been
discussed in the related works, known limitations and vulnera-
bilities of the CAN protocol, we classify attacks in two classes:
injection and Denial of Service (DoS) [13], [33], [41], [39].

The first class of attacks envisions the injection of malicious
packets into the bus to modify the behavior or take control of
the system. Among injection attacks, we distinguish between
replay attacks and masquerade attacks. A replay attack consists
of injecting previously recorded legitimate messages without
modification. In a masquerade (or fabrication) attack, the
attacker properly builds the content of the malicious packet to be
transmitted, choosing the header and payload of the message. This
attack involves sending messages with forged IDs, impersonating
any other legitimate ECU authorized to send those specific IDs.
It is worth noting that the replay attack is a special case of the
masquerade attack. Still, we prefer to distinguish between the
two since, in replay attacks, the attacker takes no action on the
message apart from recording and re-transmitting it afterward.

DoS attacks consist of preventing legitimate ECUs (or a
specific target ECU) from accessing the bus and transmitting
messages. This happens because a malicious entity may flood the
bus with high-priority messages, not allowing the transmission of
frames with lower ID values. Consequently, a DoS attack prevents
the correct functioning of the system. However, DoS attacks
are out of the scope of this work as we cannot prevent them
with cryptographic authentication mechanisms alone. Rather,
we would need a higher perspective system, such as an IDS,
capable of monitoring and analyzing the ongoing traffic in the
bus and recognizing whether a DoS attack is currently running.

After defining the possible attacks on the CAN bus, we need
to define how the attacker can perform an injection attack. To
get access to the CAN bus, an attacker may (i) make use of
an external device or (ii) compromise a legitimate ECU. In the
first case, we define an external device as any instrument not
belonging to the original system. This can be either an external
non-legitimate ECU physically plugged into the network or a
diagnostic instrument attached to the OBD port through which
it is possible to inject packets. In the second case, the adversary
manages to compromise a legitimate ECU by physically
tampering with the device or remotely hacking it. The two most
common attacker behaviors are described as follows.
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• Target Injection – Using the compromised ECU, the attacker
sends packets with ID values the ECU is allowed to send,
but faking the data field’s values. We refer to this scenario as
target injection because we do not classify it as a masquerade
attack but as false data transmission. In this case, the attacker
must tamper with exactly an ECU using the target IDs. We
do not consider this scenario in our discussion since detecting
and avoiding such attacks simply with an authentication
scheme is impossible. It would be necessary, in fact, to have
a specifically designed IDS.

• Masquerade Injection – In this scenario, the attacker exploits
the tampered ECU to send messages with IDs it was not sup-
posed to use, thus performing a masquerade or replay attack.

We assume the attacker can remotely compromise an ECU and
perform a masquerade injection in all scenarios. We can justify
our claim thanks to the fact that, in general, modern vehicles
are equipped with an ECU that keeps remote access ports open
for external networks such as WiFi or Bluetooth [39]. Besides,
it is much harder to implement a target injection remotely than
physically compromising the target ECU. However, this does
not mean it is not possible.

Finally, we assume the following conditions to hold [38].
• The attacker fully knows the underlying system. The

attacker knows if security mechanisms are in place and, in
case, the specifics of the mechanism in use.

• The attacker has full access to the bus. The attacker can
read and record exchanged messages. This assumption is rea-
sonable given that potential attackers may have physical access
to the CAN bus through multiple points within the vehicle, both
internal and external, including locations like headlights [27].

• It is not possible for the attacker to access data stored
in protected memory from the outside. The attacker
cannot access the protected data of an ECU from another
ECU or by physically tampering with the target device.
Rather, they can access the protected data of the compromised
ECU. This assumption is justified by the discussion in the
next section introducing tamper-proof memories [64].

VI. AUTHENTICATION PROTOCOLS

In this section, we present the protocols considered for
our comparison. We provide a detailed description of their
key working points, whereas information related to design
decisions and performance results can be found, if not stated,
in the referenced papers. When available, we also report the
computation overhead for each protocol as calculated by the
authors. However, this is not always possible, as some papers
do not include enough details on the proposed implementation
to perform a detailed evaluation. Additionally, some studies
focus on benchmarks or timing evaluations rather than formal
analysis. This prevents us from providing standardized overhead
values due to the variability introduced by different hardware
configurations. Furthermore, in this section, we only focus on
the protocols’ implementation explicitly stated in the papers.
We instead present additional considerations in Section VIII and
Section IX. Table III summarizes the protocols’ authentication
approaches and provides the organization of this section.

TABLE III: List of considered CAN authentication protocols
and their descriptions.

Sec. Protocol Year Standard Authentication

VI-A CANAuth [14] 2011 CAN+ HMAC

VI-B Car2X [65] 2011 CAN MAC

VI-C LCAP [15] 2012 CAN Hash chain

VI-D LinAuth [66] 2012 CAN MAC

VI-E MaCAN [67] 2012 CAN MAC

VI-F CaCAN [68] 2014 CAN Centralized HMAC

VI-G VeCure [69] 2014 CAN Trust-group MAC

VI-H Woo-Auth [13] 2015 CAN HMAC

VI-I LeiA [8] 2016 CAN
Lightweight
cryptography

VI-J vatiCAN [70] 2016 CAN HMAC

VI-K LiBrA-CAN [71] 2017
CAN
CAN+
CAN-FD

M-MAC

VI-L VulCAN [72] 2017 CAN MAC

VI-M TOUCAN [73] 2019 CAN Chaskey algorithm

VI-N AuthentiCAN [74] 2020 CAN-FD Asymmetric

VI-O S2-CAN [41] 2021 CAN
Payload cycling
shifting encoding

A. CANAuth

CANAuth (2011) bases its security upon Hash-based Message
Authentication Codes (HMACs) and Session Keys [14]. Because
of the limited payload size of standard frames and the hard
real-time requirement for an in-vehicle communication protocol,
the authors decided not to put inside (or attach to) the data
frame of the HMAC nor to send a long data packet over multiple
messages. Therefore, they decided to build the authentication
mechanism on top of CAN+.

1) Session Key Generation: The key establishment
procedure assumes that each node i possesses one or more
128-bit pre-shared master keys Ki. Also, the protocol introduces
the concept of Group messages Gi, where G is the group and
i is the group index. This allows the authentication of a group
of related messages using the same key, called Group key. Keys
are stored in a tamper-proof memory. The session key KS,i

for the group Gi is generated by the first node that attempts
to send message Mi∈Gi. In case multiple nodes transmit Mi,
the key established is the one generated by the node with the
lowest ID. The session key Ks,i is derived as:

KS,i=HMAC(Ki,ctrAi ‖ri) mod2128,

where ctrAi is a counter for message Mi stored in a non-volatile
memory, and ri is a random number. By applying the mod2128

operation, only the 128 least significant bits of the HMAC are
considered.

By knowing the counter and the random value, every node
with the master key Ki can generate KS,i. Since it is the first
sender to define ctrAi and ri, it must also deliver them to all
the other nodes. Hence, the session key establishment process
develops into two phases, as shown in Fig. 5.

• Transmission of parameters. The transmitter broadcasts a
CAN message with attached a CAN+ message structured as in
Fig. 5a. The first bit of the status frame is recessive to signal
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that the key establishment phase is occurring. The second bit
is set dominant to signal that this is the first of two messages.
The remaining six bits are dominant and are unused.

• Authentication of the key establishment. The transmitter
broadcasts a second message structured as shown in Fig. 5b
to prove the effective knowledge of the session key. In this
case, both the first two bits are recessive. The payload of
the message consists of a 112-bit signature

sigAi=HMAC(KS,i,ctrAi ‖ri)mod2112.

10 0 ctrAi ri

Status Bits
(2+6 bits)

Counter Value
(24 bits)

Random Number
(88 bits)

(a) Frame in the first part of session key establishment.
11 0 sigAi

Status Bits
(2+6 bits)

Signature
(112 bits)

(b) Frame in the second part of session key establishment.

Fig. 5: CANAuth session key generation exchanged messages.

If any receiving ECUs raises an error in response to any
of the two messages, the transmitting node will restart the
transmission from the first message but change the counter (the
random number could be the same as before).

2) Message Authentication: Once the session key
establishment process has been completed, messages
can be authenticated. The authentication of the CAN frame Mi

is performed by transmitting a CAN+ message whose payload
comprises a counter ctrMi, used for replay attack resistance,
and the signature sigMi. An overview of the CANAuth frame
used for authentication is shown in Fig. 6.

0 0 ctrMi sigMi

Status Bits
(1+7 bits)

Counter Value
(32 bits)

Signature
(80 bits)

Fig. 6: CANAuth data frame during message authentication.

Notice that the counter ctrMi is independent of ctrAi
(which is used for session key establishment), and it must
be increased at least by one for every authenticated message.
Receiving nodes accept the message if the received ctrMi value
exceeds the stored one. If so, they check for the correctness
of the signature as follows:

sigMi=HMAC(KS,i,ctrMi ‖Mi)mod280.
3) Computational Overhead: Authors do not report any

experimental evaluation on the computational overhead induced
by CANAuth protocol.

B. Car2X

Car2X (2011) is a cost-effective approach to ensuring trust
in Car2X applications using in-vehicle symmetric cryptography.
The protocol uses MAC-based authentication and allows MAC
truncation. The security solution establishes trust between
ECUs through an open and symmetric cryptography approach.

It integrates into vehicles’ existing infrastructure, requiring
only the addition of security hardware modules essential for
cryptographic acceleration.

1) Architecture: The security framework employs HSMs to
store symmetric keys, ensuring secure and controlled key access.
Metadata, including expiration dates and use-flags, allows for
differentiated functionalities. The system uses dynamic key
exchanges through a Key Master (KM), distributing keys for
authentication and transport encryption. Multiple KMs support
domain-specific key sharing. Integrated into a broader security
framework, the system provides API abstractions for entity au-
thentication, secure communication, and access control. The com-
munication module facilitates flexible and secure communication
channels, supporting various attributes and security levels through
key exchanges and secure channel establishment managed by
the access control framework and key distribution protocol.

2) Protocol: The key distribution and entity authentication
process involves secure communication between an ECU (e.g.,
e1) and a group of ECUs (e.g., gx). A session key pair (ks,g ,
ks,v) is locally generated at e1, with ks,v being exportable. This
key is exported as an encrypted key blob (b1) to the Key Master
(KM) using the transport key (k1,t) and authenticated with k1,a.
These two keys are pre-shared with the KM. The KM authorizes
communication and distributes the session key to group members,
ensuring cryptographic operations occur within HSMs. The
protocol incorporates security features, preventing impersonation
and imposing a limited key lifetime of 48 hours. Indeed, thanks to
HSM’s use-flags, an attacker cannot impersonate a group’s sender
despite using symmetric keys. Due to constraints like limited
message payload in CAN buses, a data segmentation approach is
employed for transmitting cryptographic keys and signatures. This
segmentation introduces delays and relies on packet sequencing to
address transmission challenges. The protocol is augmented with
a mandatory security header indicating cryptographic payload
details to enhance security. Privacy and security requirements
vary, prompting the option for MAC truncation for efficiency,
considering factors like bus speed and load. A minimum 32-bit
MAC length is deemed reasonable within specified environmental
limitations, balancing security and resource constraints.

3) Computational Overhead: The authors conducted an
evaluation of the proposed solution through a software-based
simulation using the Matlab-Simulink toolkit. The assessment
focused on measuring the induced time overhead associated with
different MAC lengths. The results demonstrated an average
overhead of 1.8ms for 32-bit, 2.1ms for 64-bit, and 0.30ms
for 128-bit MAC values, respectively.

C. LCAP

Lightweight CAN Authentication Protocol (LCAP) (2012)
provides source authentication by using a hash chain mecha-
nism [15]. For each pair of Sender-Receiver ECU (S,R), there
exists a pre-shared 128-bit secret key KSR assumed to be stored
in a protected memory. The authors then define data messages,
the class corresponding to the standard CAN messages, and
handshake messages, the class of messages that identify a specific
action. Within the handshake messages and for each sender-
receiver pair, we distinguish between 5 actions, each with the
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same 11-bit ID field but different IDE value: Channel Setup
Request, First Response Message, Consecutive Response Message,
Soft Synchronization Request, Hard Synchronization Request.
This implies that in addition to the standard CAN identifiers,
5·n·m identifiers must be added. The last two bytes of each
message contain the checksum of the first six. The protocol can
work in two possible operating modes: extended mode, where
the hash value is sent using the extended identifier field, and
standard mode, where the hash value is sent within the payload.

1) Initialization: Each sender creates the following elements.

• HC – Handshaking hash chain.
• CC – Channel hash chain.
• KS – 80-bit session key.
• KH – 16-bit HMAC key.
• M i

C – Hash chain for message type i. One chain is created
for each message type i the ECU can send.

We use the subscript C to define the whole chain and the
subscript j to refer to the jth element of the chain.

2) Channel Setup: The sender delivers KS , C0 and KH to
each receiver separately with the following steps:

• The receiver generates a Channel Setup Request to the sender
with a message containing a 32-bit nonce n.

• The sender replies with a First Response message that
contains the hash value of the nonce truncated to 16 bits,
together with the correct element Hj ∈HC .

• At this point, the session key needs to be exchanged. It is worth
noting that since it is 80 bits long, a single CAN frame is not
enough. Hence, it is split into three parts. The sender forwards
three Consecutive Response messages, each containing a part
of KS and Hj+{1,2,3}. The receiver can verify the authenticity
of each message by checking if hash(Hi)=Hi−1.

• The sender transmits C0 and KH .

All the messages are encrypted with KSR, except for the last
one that uses KS . An overview of the process is shown in Fig. 7.

Sender Receiver

32-bit nonce n

(Ks[1], H1)

(Ks[2], H2)

(Ks[3], H3)

(C0, KH, H4)

( (n), H0)

Fig. 7: LCAP Channel Setup performed the first time.

3) Message Setup: For every message type the ECU can send,
it broadcasts a series of data messages containing M i

0 ∈M i
C .

Each message i is authenticated using the corresponding element
Cj : C1 can be verified since C0 was previously shared.

4) Data Exchange: True data are exchanged and
authenticated by appending the element M i

j ∈ M i
C and

encrypted with the session key KS . Each receiver decrypts
the message and verifies its authenticity using KH : if
hash(M i

j)=M i
j−1, the message is accepted.

5) Chain Refresh: Since it is periodically necessary to refresh
the hash chain M i

C before it is completely consumed, the sender
must generate a new one in advance. A possible solution may
be to compute a new value each time one chain element is used.
Then, the ECU provides the new chain to its receivers and authen-
ticates the message with the last hash value of the current chain.

6) Soft Synchronization: In case of message losses, the
sender and the receiver will be out of synchronization with
respect to the hash values of the chain. Hence, the receiver asks
for re-synchronization, and the sender replies by delivering the
current hash values for each message it sends to that receiver.
These are encrypted with KS and authenticated as in the
Channel Setup phase. An overview is shown in Fig. 8.

7) Hard Synchronization: This phase allows the receiver to
ask for the session and HMAC keys in case of message loss
during the handshake. This phase develops as in Soft Synchro-
nization, with the only difference that before the M i

j value, the
KS and KH are exchanged. Authentication is performed as in
Soft Synchronization as well. An overview is shown in Fig. 8.

Sender Receiver

Soft/Hard Synchronization Request

Soft/Hard Synchronization Response

(Ks[1], Cj)

(Ks[2], Cj+1)

(KH, Cj+3)

(M1
k, Cj+i)

(ML
k, C(j+i)+L-1)

Hard Synchronization
Only

(Ks[1], Cj)

(Ks[2], Cj+1)

(Ks[3], Cj+2)

(KH, Cj+3)

Fig. 8: LCAP Soft/Hard Synchronization. Element k refers to
the current value of the chain.

8) Computational Overhead: The authors conducted their
evaluation on a real microcontroller test-bed to assess the
performance of LCAP. The results indicated a time overhead
of 160µs for the encryption and decryption of a single message.
Additionally, the overhead for HMAC computation in the
worst-case scenario was reported to be 256µs.

D. LinAuth

LinAuth (2012) is a pair-wise MAC-based authentication
protocol [66]. This implies that for each pair of ECUs,
(ECUi,ECUj), there exists a shared secret key Ki,j . Besides,
given a message m with ID k (mk), a transmitter ECU
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computes the MAC values for authentication only for those
receiver nodes that will be interested in receiving frames with
message ID k. It follows that (i) to let the receiver understand
which is the correct key to use for verification, the authenticated
message must also carry the ECU-specific identifier ECUID
of the transmitting node; (ii) to know which are the nodes for
which the transmitter has to compute the MAC value, there
is the need to maintain an ID-table that associates the message
IDs to the corresponding interested ECUs [66].

When an ECU has to transmit a message mk, it computes
the corresponding MAC value for each receiver associated with
IDk listed in the ID-table. Then, it attaches the counter Ck and
the collection {MACk,j} for all the receivers j, of the MACs
computed. It is worth noticing that, to let the receivers understand
which MAC value they need to retrieve for verification, the
order in which the MACs are attached must be pre-defined.

To face possible message loss leading to counter out of
synchronization counter and to reduce the bus load, authors
decide to split the counter into the most and least significant
bits: Ck=CMk ||CLk . Only CLk is transmitted, and the following
rules apply for message verification (transmitter ECUi, receiver
ECUj) [66]:
• If CLk,i>C

L
k,j , the receiver verifies the MAC value using as

counter Ck=CMk,j ||CLk,i. If the verification holds, the receiver
accepts the message and updates its counter: CLk,j=CLk,i.

• If CLk,i ≤CLk,j , the receivers verifies the MAC value using
as counter Ck = CMk,j + 1||CLk,i. If the verification holds,
the receiver accepts the message and updates its counter:
Ck,j =CMk,j +1||CLk,i. If, instead, the verification fails, the
message is deemed as replayed and thus discarded.
Lastly, to reduce communication overhead, the authors also

designed LinAuth with the possibility of using a group keys
approach, thus assigning the ECUs to several [66].

1) Computational Overhead: The authors evaluate various
assumptions regarding the upper-bound probability of a
successful attack (i.e., P ) and the upper-bound of the probability
that a counter is out of synchronization (i.e., Q). Given a fixed
number of message receivers (i.e., nk) to 1, the additional
overhead provided by the protocol w.r.t. the original bus load
ranges from 0.94% when P = 10−1 and Q= 10−1 to 6.01%
when P =10−9 and Q=10−4. Similarly, the average message
latency increase ranges from 2.41% when P = 10−1 and
Q= 10−1 to 12.32% when P = 10−9 and Q= 10−4. Instead,
when the number of receivers increases (i.e., nk=3), the increase
in bus load ranges from 2.44% when P =10−1 and Q=10−1

to 6.01% when P = 10−3 and Q = 10−4 and the average
message latency increase ranges from 5.06% when P =10−1

and Q=10−1 to 12.32% when P =10−9 and Q=10−4.

E. MaCAN
MaCAN (2012) relies on MACs for establishing trust in the

origin of signals on the CAN bus [67]. The primary reason for
choosing MACs over asymmetric cryptography is the inherent
constraint of the CAN frame’s payload size, which makes the
latter option impractical. The core components of the MaCAN
security framework encompass three key elements: (i) the
degree of MAC truncation, (ii) the signing protocol, and (iii)
the selection of the freshness element.

1) MAC Truncation: To ensure the system’s real-time
capabilities, MaCAN opts for MAC truncation, limiting the
signature length to 32 bits. This truncated signature is included
in a single CAN frame alongside the signal. Several factors
influence this design choice.
• CAN Bus Speed – The relatively low speed of the CAN bus

restricts the number of authentication attempts an attacker
can make within a given time frame.

• Session Keys – Short-lived session keys are employed for
ECU communication, limiting the exposure of keys over time.

The typical MAC authentication element length matches the
underlying block cipher’s block length (e.g., 128 bits with AES).
MaCAN, however, considers using lightweight ciphers like
PRESENT in real-world implementations [75]. The number
of attacker guesses possible determines the truncation level
of 32 bits during a session key’s lifespan. NIST guidelines
usually recommend a minimum 64-bit MAC element, but in
MaCAN, due to the slow bus speed and short-lived session
keys, 32 bits suffice. This leads to a 1 in 500 risk of guessing a
single signature during the key’s lifetime. To mitigate frequent
attempts, MaCAN suggests monitoring actual vs. expected
message frequencies and limiting responses to false signatures.

2) Signing Protocol: MaCAN offers two message authen-
tication formats, accommodating multiple signals within most
Original Equipment Manufacturer (OEM) defined CAN frames.
• Dedicated CAN Frame – This format involves a dedicated

CAN frame that carries only one signal and its signature as
payload. While this format increases the number of frames
needed to transmit the same number of messages, it can be
chosen for a limited number of critical signals. However, the
limited number of available CAN-IDs and message overhead
must be considered.

• Newly Introduced CAN-ID – In this format, a new CAN-ID
is introduced, and it is included alongside an unauthenticated
standard CAN frame. This combined frame simplifies the
mapping between signals and signatures, making it suitable for
on-demand authentication of typically unauthenticated signals.
3) Message Freshness: To safeguard against replay attacks

in a unidirectional environment with event-driven signals and
potential ECU unavailability, MaCAN employs timestamps
for message freshness. A Time Server (TS) is introduced to
synchronize time signals across nodes, transmitting timestamps
at regular intervals and providing on-demand authenticated
timestamps. MaCAN’s protocols allow flexibility in defining
which signals are signed and the signature frequency relative to
message frequency, adapting the security system to the signal’s
characteristics and resource availability in various scenarios.

4) Protocols: MaCAN defines three crucial protocols
to enhance CAN bus security: signal authentication, key
distribution, and authenticated time distribution.
• Message Format – MaCAN introduces a new 6-bit ECU iden-

tification token (ECU-ID) for secure communication. A “crypt
frame” partitioning scheme is used within the CAN payload
to accommodate this. This format allows for direct ECU
addressing, consisting of a destination field and crypt message
flags. Despite the addition of these security features, the crypt
frame format maintains compatibility with standard CAN
frames, making it compatible with hardware CAN-ID filters.
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• Signal Authentication – This protocol governs signal
authentication on the CAN bus. The process involves defining
the desired signal and its signature frequency in relation to
the message frequency. The protocol employs two message
types: request messages (i.e., initial message specifying the
requested signal and signature frequency) and authenticated
signal messages (i.e., response to the control message).

• Key Distribution Protocol – Manages session keys for pairs or
groups of ECUs. It introduces a key server (KS) that shares a
symmetric long-term key (LTK) with security-enabled nodes
on the bus. The protocol’s non-time-critical nature allows
challenges to ensure message freshness.

• Authenticated Time Distribution Protocol – Tackles issues
related to non-bidirectional freshness elements like counters or
timestamps. A Time Server (TS) provides a reliable, monoton-
ically increasing time signal to all nodes on the bus while safe-
guarding it cryptographically. Nodes can request authenticated
time signals to synchronize their counters or detect tampering.
5) Computational Overhead: Authors do not report any

experimental evaluation on the computational overhead induced
by MaCAN protocol.

F. CaCAN

Centralized authentication in CAN (CaCAN) (2014) follows
a centralized authentication approach with the introduction of a
central Monitor Node (MN) having the purpose of authenticating
all the ECUs of the network and verifying the authenticity of the
exchanged messages [68]. Despite the term centralized may also
suggest a topology modification of the network, moving from
broadcasting to a star topology, this is not the case: the MN is
central just from an operational point of view. Besides, the MN
is equipped with a special HMAC-CAN controller that can detect
and destroy unauthorized frames at runtime by overwriting them
with an error frame. To verify messages’ authenticity, the protocol
requires the MN and ECUs to share a 512-bit cryptographic key,
thanks to which the MACs are computed. This key is computed
from a pre-shared secret S assumed to be stored in a Read-Only-
Memory (ROM) together with the unique identifier of the ECU.

1) Authentication and Key Distribution: The protocol
expects a two-way authentication in a challenge-response
fashion. Let us consider ECUj that needs to authenticate to
MN. Assuming that the ECUs can identify each other:
• The MN sends a random nonce n to ECUj .
• As the nonce is received, both the MN and the ECU start

to compute the Authentication Code (AC) as
AC=SHA-256(S ‖n),

where SHA-256 is the hash function the authors decided to
employ. It returns a 256-bit value.

• After waiting a worst-case computation time for AC, the
monitor node sends a data frame to ECUj , whose payload
comprises a few bits of the AC.

• ECUj checks for correctness and sends a response with a
few continuation bits of the received ones.

• MN checks for correctness.
The AC computed is also used as the cryptographic key for MAC
computation. It is worth noting that some key bits are leaked
and thus discarded because of the authentication procedure.

2) Monitoring of Data Frames: When messages are
exchanged, the MN checks if they carry the MAC by checking
the message’s ID. If so, the monitor node immediately starts
computing the HMAC and validating the MAC of the message.
If an error is detected, it overwrites the message with an error
frame by the end of the transmission. The MAC attached to
the message is 1 byte long and derived from keeping just 8
bits of an HMAC algorithm.

MACi=HMAC(ECUID,msgi,FCi,Kj),

where ECUID is the unique identifier of the ECU, msgi is
the payload of the message (without any counter attached),
FCi is the full counter for message i, Kj is the cryptographic
key for sender j. The authors decided to attach a counter to
the message payload to prevent reply attacks. However, due
to its 32-bit length (full counter FC=UC ‖LC), it cannot be
fully transmitted within the payload. Thus, only the lowest few
bits (LC) are attached. The MN stores the full counters for
each sender and, when receiving a message, checks for counter
freshness according to the following policy:

• If LCi=OLCi, the message is discarded as it is classified
as a reply attack (where OLCi are the holding lowest bits
of the monitor node).

• If LCi>OLCi, the message is accepted and OCi is updated.
• If LCi<OLCi, the message is accepted, OLCi is updated

(OLCi =LCi), and the holding upper value OUCi of the
counter is increased by 1.

3) Computational Overhead: The authors conducted their
evaluation on a real test-bed consisting of an Altera FPGA board
paired with a CAN transceiver board. The evaluation results
revealed an average time overhead of 2.12µs for executing the
hash function on a single frame.

G. VeCure

VeCure (2014) is a MAC-based authentication protocol in
which ECUs are divided into different trust groups according to
their trust level [69]. The trust level of an ECU identifies how
easily that ECU could be compromised. There is no specification
on the number of groups that one can define. Trust groups are hier-
archically structured: nodes in the lowest-trust group do not have
any secret key, while nodes belonging to the group i are provided
with all the (symmetric) secret keys of groups j<i, and the secret
key Ki of the group itself. By doing so, nodes in group i can
verify the authenticity of messages transmitted by nodes belong-
ing to groups j≤ i. Without loss of generality, for VeCure design,
authors define two trust groups: high-trust and low-trust [69].

1) Initialization: VeCure provides ECU-authentication. Thus,
at the initialization phase, each node in the network receives a
unique identifier ECUID of 1 byte. Besides, ECUs belonging
to the high-trust group are provided with: (i) a 128-bit secret
key K, a 2-byte session number cs, and message counter cm.
The session number is a driving session parameter. Thus, ECUs
will update it each time the vehicle is started, while the message
counter is updated at each message authentication. As cm
only allows authenticating 65536 messages per session before
overflow, ECUs are also required to store an overflow counter
co that is incremented each time cm overflows (per session).
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The triple (cs,cm,co) uniquely identifies any message that was
sent by a specific ECU since the vehicle was initialized [69].

Since each message is bound to the ECUID , every node also
needs to keep track of the counters of all the other nodes in the
same group to verify the authenticity of the received messages.

2) Authentication Scheme: Message authentication is
achieved via MAC computation over the transmitted data. When
a node in the high-trust group has to send some data, it transmits
two consecutive messages: the first one is the CAN standard
frame and contains the actual data to transmit. In contrast, the
second message is structured as (ECUID,cm,MAC,0xFF ),
where 0xFF is a marker used to help the receiver verify that is
the follow-up message for authentication, and MAC is 4-byte
MAC value.

Due to the strict requirements for induced delay for
authentication, authors design the MAC computation in two
phases: a light-weight online calculation and a heavy-weight
offline calculation. The MAC value is thus computed as follows:

hash=H(ECUID,cs,co,cm,K),

MAC=BME(hash,m),

where H(·) is a one-way cryptographic hash function, m is the
data transmitted, and BME (Binding, Mapping, Extraction) is
a function performing which ensures that there is a one-to-one
mapping between m and the MAC value [69]. It is worth notic-
ing that the computation of the hash parameter is independent of
the data message m; thus, it can be computed offline beforehand
for both the sender and receivers. This reduces the induced delay
in the communication for MAC computation and verification.

3) Computational Overhead: The authors conducted their
evaluation on a real test-bed using Freescale’s automotive devel-
opment board EVB9S12XEP100. The evaluation results indicated
a processing delay of 50µs attributed to message authentication.

H. Woo-Auth

Woo-Auth (2014) is an HMAC and session keys-based
authentication protocol [13]. The gateway ECU (GW) is
assumed to have a higher computing power than standard ECUs.
Each ECU i and the GW are provided with their own unique
identifier ECUIDi

and GWID.
1) Loading Long-Term Symmetric Keys: Each ECUi loads

in a secure storage and through a secure channel, its long-term
symmetric key Ki and KGW , while the GW loads all the keys
{Ki} for each node i and its own key KGW . Key Ki is used
between the GW and ECUi, KGW instead is shared among
GW and all the ECUs.

2) Distribution of Initial Session Keys: When starting the
vehicle, each ECU begins a session key derivation process with
the GW in a predefined order according to the following steps.

• ECUi selects a random value R and sends it to GW.
• GW selects a random number S and generates the MAC:

MAC1 =H1Ki
(ECUIDi

,GWID,R,S),

where H1 is the keyed hash function using Ki as key and
giving a 64-bit output. Then, it sends MAC1 to ECUi
together with S.

• ECUi verifies MAC1 and computes the initial session keys.
KE ‖KA ‖KEK ‖KG ‖KU =KDF (KGW ,S),

where KDF (KGW ,S) is the keyed one-way hash function
using key KGW and S as parameters; KE is the encryption
session key for CAN data frames; KA is the authentication
session key for CAN data frames and session key update;
KEK is the encryption key for the session key update phase;
KG is the key used for the following session key derivation
process; KU is a key used for external devices communication.

• ECUi generates the following:
MAC2 =H2Ki

(ECUIDi
,S),

MAC3 =H1KA
(ECUIDi ‖KGW ),

where H2 is a keyed hash function using key Ki and returning
a 32-bit output. Then, it sends MAC2,MAC3 to GW.

• GW verifies MAC2 to check if S was correctly received. Af-
terward, it starts the session keys derivation as done by ECUi.

• With the session keys, GW can now verify MAC3 to be
sure they share the same keys.
3) Authentication of CAN Frames: Due to the restricted

payload size of CAN frames, authors propose two possible
solutions for sending messages: a basic method in which the
output of the encryption is truncated to fit the payload size,
and an enhanced method in which the encryption result is split
into two parts and sent through two subsequent messages. For
both approaches, the encryption and decryption procedures are
the same. The authors propose to use AES-128 for encryption
and Keyed-Hash MAC for authentication.

Let us assume to be at the kth session. Sender ECUi generates
the ciphertext C and the authentication tag MACi as follows:

C=AES-128KE,k
(CTRECUi)⊕M,

MACi=H2KA,k
(ECUIDi

‖C ‖CTRECUi
),

where M is the message payload, and CTRECUi is the counter
of ECUi used for freshness. The MAC is split and inserted
into the first 16 bits of the IDE field (the two remaining unused
bits are set to zero) and the remaining part in the CRC field.
Notice that, as the CRC field contains part of the MAC, which
aims to provide integrity and authentication, the CRC field
still can be considered as proof that the message has not been
altered. The receiving ECU first verifies the MAC received and
then decrypts the message as follows.

M=AES-128KE,k
(CTRECUi

)⊕C.
Lastly, it increments the counter associated with the sender ECU.

4) Session Key Update: Encryption and authentication keys
are periodically updated according to the following mechanism.
1) The GW selects a new random value Sk+1 and broadcasts

a Key Request Message whose payload is given by
(C ‖MAC), where

C=AES-128KEK,k
(CTRGW )⊕Sk+1,

MAC=HKA,k
(GWID ‖C ‖CTRGW ).

2) Every ECU, receiving the Key Request Message, verifies
the message and derives the session keys to be used in the
(k+1)th session KE,k+1 ‖KA,k+1 ‖KEK,k+1 ‖KG,k+1 =
KDFKG,k

(Sk+1). Also, frame counters are initialized to
zero. It is worth noting that to derive the new session keys
for k≥2, we use the key KG,k−1.

3) Each ECU generates a Key Response Message with payload
M=H1KA,k+1

(ECUIDi
‖Sk+1),

and transmits it to GW to confirm the reception of the
previous request.
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4) After receiving the confirmation response, the gateway sets the
counters for the corresponding ECUs to zero. Then, when all
response messages are received, it can set its counter to zero.

5) Computational Overhead: The authors evaluated their
proposal using a dual approach: they implemented a secure
ECU test-bed with functionality mirroring actual devices and
conducted simulations with the CANoe software to assess
key distribution and update procedures. The evaluation results
demonstrated that the enhanced technique allows encryption
and authentication to be completed within 378µs.

I. LeiA

Lightweight Authentication Protocol for CAN (LeiA) (2016)
makes use of session keys and lightweight cryptographic primi-
tives to assure a good level of security [8]. Moreover, LeiA is the
first protocol compliant with AUTOSAR specifications (release
4.2) [57]. Each ECU needs to store a tuple (IDi,Ki,ei,KS,i,ci)
for each message type i, and the security parameter η, where:
• IDi is the CAN ID for data type i;
• Ki is a 128-bit long-term symmetric key used to generate

the session key;
• ei is a 56-bit epoch value incremented at each vehicle start-up

or when the counter ci overflows;
• KS,i is a 128-bit session key used to generate the MACs;
• ci is a 16-bit counter included in the MAC computation.

1) Setup: ECUs are initialized by generating a tuple (s,ns)
from the security parameter η. The parameter

s=<K0,...,Kn−1>
is a collection of master keys, one for each ID, while parameter

ns=<(c0,e0),...,(cn−1,en−1)>
is public and is a collection of epoch and counter values couples.
Both counters and epochs are initialized to zero.

2) Session Key Generation: For each IDi the Key
Generation Algorithm (KGA) is used to derive the corresponding
session keys according to the following procedure:
• ei=ei+1;
• KS,i=KGA(Ki,ei);
• ci=0.

3) Sending Authenticated Messages: After the generation of
the session keys, the ECU can authenticate messages. It must first
update counter ci and generate the following authentication tag.

MACi=AGA(KS,i,ci,msg),
where AGA is the Authentication Generation Algorithm and
msg is the payload of the message. If ci overflows, ei is
incremented to compute a new session key. Afterward, the sender
will transmit ci, msg MACi. On the other hand, after reading
and checking for counter freshness, the receiver updates it and
verifies the MAC. For any message, the counter is placed in the
extended identifier field preceded by a 2-bit command code that
specifies the content of the payload according to the encoding:
• 00 for normal data;
• 01 for the MAC of the data;
• 10 for the epoch value;
• 11 for the MAC of the epoch.
From this encoding, we can understand that the MAC is sent
in a subsequent message with respect to the one containing
msg. Moreover, MACs are transmitted with a different ID with

respect to the message they are authenticating. The authors
propose to set IDMAC =IDdata+1.

4) Resynchronization: The resynchronization procedure is
used when a MAC cannot be verified, and the receiver sends
an error signal. In this case, the sender broadcasts a message
containing its current ei, ci, and the authentication tag MAC(ei)
for the epoch value. This allows receivers to resynchronize their
epoch and counter. It is worth noting that receivers will update
the two parameters only if the received values are higher than
the stored ones. Indeed, if the counter’s value were lower than
the receiver’s, it would be a sign of a replay attack. In this case,
the ECU must not update the stored counter.

5) Computational Overhead: Authors do not report any
experimental evaluation on the computational overhead induced
by LeiA protocol.

J. vatiCAN

Vetted Authenticated CAN (vatiCAN) (2016) is based on
HMAC authentication, and to reduce bandwidth overhead, only
safety critical messages are authenticated [70]. The choice of
which IDs to protect is manually performed during development.
Each ECU is provided with a table with IDs expected to be
authenticated and 128-bit cryptographic keys for each message
type it can transmit among them. Besides, the protocol also allows
grouping related IDs together to use a unique key. Of course,
the key for each ECU or group needs to be provisioned to any
other ECU that will receive the corresponding messages. These
keys are assumed to be stored in ECUs at manufacturing time. A
64-bit MAC can authenticate exchanged messages returned from
an HMAC function (authors suggest using the SHA-3 function).
The MAC for IDi, or group Gj , is computed as follows.

MACi=HMAC(IDi ‖msg‖ci),
where IDi is the CAN identifier of the message type i, msg
is the payload and ci is an ID-specific counter. The ID of
the message is considered for MAC computation to prevent
the same payloads with different identifiers from having the
same MAC if they share the same key. The MAC is sent
in a subsequent frame, which is done with a different ID
concerning one of the authenticated messages. To maintain
the priority relationship between messages, the choice is to pose
IDMAC =IDmessage+1. Because of possible losses, an ECU
may remain out of synchronization, i.e., not aligned with the
counter ci. This situation will lead the considered receiver to
reject the messages related to IDi or Gj since the MACs it
computes will not correspond to those received. For this reason,
authors introduced a Nonce Generator (NG) node. The NG
periodically broadcasts a random global nonce g to be used as
the new starting value for all counters. In other words, the NG
node resets the counters, giving a new starting point. The authors
suggest a generation frequency of the new counter of 50 ms.

1) Computational Overhead: The authors conducted their
evaluation on a real test-bed using an Atmel AVR microcontroller.
They assessed the execution times for various steps involved in
implementing the proposed authentication scheme. The reported
induced latency for authenticated messages is 3.3ms.
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K. LiBrA-CAN

Lightweight Broadcast Authentication for CAN (LiBrA-CAN)
(2017) is designed to protect against internal attackers, and it
is based on two paradigms: key splitting and MAC mixing [71].
The protocol is designed to work upon both CAN-FD and
CAN+ and in doing so, it benefits from their features, achieving
better performance compared with the standard CAN. The
following assumptions hold.

• The adversary can be an external device plugged into the net-
work or a legitimate ECU that has been compromised. In both
cases, the corrupted nodes are assumed to be in the minority.

• Cryptographic keys are assumed to be stored in secure memory
and distributed to the nodes through a secure key distribution
mechanism. Keys are renewed at each protocol initialization
and refreshed at periodic intervals. There is no discussion
on the specific key generation and sharing algorithms.

• Since the protocol uses counters, a resynchronization
mechanism to align nodes to the correct counter value is
assumed to be in place.

• ECUs i are provided with unique identifiers Ni.

The authors also propose two other approaches based on master
and distributed-oriented authentication. However, for our work,
we present only the main proposed scheme.

1) Mixed Message Authentication Codes: The Mixed Mes-
sage Authentication Codes (M-MACs) technique is at the basis
of the protocol and consists of aggregating multiple MACs into a
single one. The M-MAC uses an array of keys to build a tag that
is verifiable by any of these keys. The M-MAC mechanism is
required to satisfy two fundamental security properties: unforge-
ability, which is standard for MACs and ensures that an adversary
is not able to forge an authentication tag correctly, and strong
non-malleability, which allows a verifier to detect whenever
an adversary had tampered with any part of the M-MAC. A
mixed message authentication code is a tuple (Gen,Tag,V er)
of probabilistic polynomial-time algorithms such that:

• K̄ ← Gen(1l, s) is the key generation algorithm. It takes
in input a security parameter l and outputs a key set
K̄={K1,...,Ks} of s keys.

• τ←Tag(K̄,M̄) is the MAC generation algorithm. It takes as
input the key set K̄ and the message tuple M̄=(m1,...,ms),
and outputs a tag τ .

• v←V er(ki,mi,τ) is the verification algorithm. It takes in
input the key ki∈K, the message mi, the tag τ and outputs
a single bit v, equal to 1 if and only if the tag is valid with
respect to the used key and input message.

The easiest way to build the M-MAC is by concatenating
multiple tags.

2) LiBrA-CAN Main Scheme: Given n nodes placed in
groups of size g, the protocol develops into the following steps.

• Setup – This is the key setup phase that generates t random
l-bit keys. The parameter t is given as t=

(
n
g

)
, representing

the number of subsets of size g out of n nodes. Each node
is then provided with the keys for its group. Let us define
K̄i = {Ki

1, ..., K
i
t′} the set of keys for node Ni, where

t′=
(
n−1
g−1

)
, and K̄i,j={Ki

1,...,K
i
t′′} be the set of share keys

of node Ni with Nj , where t′′=
(
n−2
g−2

)
.

• Send authenticated message – When node Ni wants to
broadcast message m, it increments its local counter and
computes the corresponding M-MAC using its key set K̄i.
Then, the message is sent together with its M-MAC. It is
worth noting that in this case, the M-MAC construction
receives as input M̄=(m,m,...,m) composed by s repetition
of the same message m.

• Verification – Node Nj receives an authenticated message
sent by node Ni. Then, it first checks for freshness, and then
if v= 1 for all the keys belonging to K̄i,j , the message is
then assumed to be authentic, and the counter is updated.
3) Computational Overhead: The authors do not specify the

message latency induced by their protocol but detail the additional
bus load, noting a 21% increase due to separating the message
and authentication frames. This data comes from simulations on
various controllers, such as the S12X and TriCore TC1797. They
also evaluate the computational overhead of hash operations
like MD5, which extend computational times from 10.16µs to
689µs based on input size and the specific ECU tested. Other
hash functions result in even higher computational overheads.

L. VulCAN

VulCAN (2017) employs MACs to provide strong message
authentication for secure communication. The paper articulates
an attacker model where malicious parties have remote access
to the car’s internal network and can thus perform arbitrary
message manipulation and code execution. Based on the
problem statement, authors identify four requirements closely
following previous research: (i) message authentication, (ii)
lightweight cryptography, (iii) replay attack resistance, and
(iv) backward compatibility. On top of these requirements,
they provide five guarantees that authors claim were not
achieved by state-of-the-art authentication schemes: (i) real-time
compliance, (ii) component isolation, (iii) component attestation,
(iv) dynamic key update, and (v) secure legacy ECU integration.

1) MAC Generation: VulCAN associates a symmetric
128-bit cryptographic key with each authenticated CAN
identifier for message authentication. This key generates a 64-bit
MAC over the message identifier (ID) and payload, including
a monotonically increasing counter to protect against replay
attacks. The MAC generation process is as follows.
• For a message with identifier i, payload p, and counter ci,

the MAC is computed as
m=MAC(keyi,(i|p|ci)).

• This MAC is transmitted as the payload of a separate CAN
message with the ID i+1.

This approach avoids priority inversion issues in the CAN bus,
as CAN identifiers also serve as priority indicators during bus
arbitration. In cases where the identifier i+1 is already in use by
a legacy application, a different application-specific authentication
ID is selected to maintain compatibility with legacy ECUs.

2) Nonce Initialization and Resynchronization: VulCAN
includes nonce values in the MAC computation to address
replay attacks and packet loss. Nonces ensure the same counter
values are not reused under the same cryptographic key and
associated data. Nonce initialization is typically handled with
short-term session keys generated at system boot time or
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when the session counter overflows. Nonce resynchronization
mechanisms are implemented to deal with packet loss scenarios,
ensuring that sender and receiver nonces remain synchronized.
Depending on the application, unused parts of the message
payload may be used to encode nonce values.

3) Computational Overhead: The VulCAN protocol analysis
reveals that latency overhead is considerable, with authenticated
CAN message transmission taking 0.96 ms, significantly longer
than unauthenticated messages. Due to payload limitations, this
is mainly due to MAC computation and sending authentication
data separately. Additionally, VulCAN increases bus load by
about 3%, due to extra authentication frames, not impacting
network efficiency in high-traffic scenarios.

M. TOUCAN
TOUCAN (2019) makes use of the Chaskey MAC algorithm

and AES-128 encryption to authenticate and secure CAN
communications, and it is designed to be AUTOSAR compliant
(release 4.3.1) [73]. Authors assume that all the needed
cryptographic material is already available to each ECU, which
then shares 128-bit cryptographic keys for authentication and
encryption. The authentication tag is computed using the
Chaskey MAC algorithm, an efficient permutation-based MAC
algorithm [76]. Chaskey receives in input a 128-bit key and
a message split into 128-bit blocks, to which it applies a
permutation π. If the last block is incomplete, padding values
are inserted to reach the desired length. The permutation π is
applied eight times for each block mi performing an Addition-
Rotation-XOR (ARX) permutation. This means that a sequence
of three operations is applied for each block: addition mod232,
bit rotation, and XOR operation. The output of the Chaskey
algorithm is a tag τ of t<n bits, where n is the length of the key.
The authors propose to dedicate 40 bits out of the 64 available for
the payload and the remaining 24 bits for the authentication tag.

1) Computational Overhead: The authors evaluated the
TOUCAN protocol in a real test-bed setup using an STM-32F407
Discovery board. They reported a computational overhead of
11.65µs for AES-128 encryption and 11.90µs for Chaskey tag
computation.

N. AuthentiCAN
AuthentiCAN (2020) is a protocol built on CAN-FD and

implements encryption and authentication by using asymmetric
cryptographic primitives [74]. This choice is motivated by
the authors wanting to avoid using a single shared key since
this could be a serious issue in case of a compromised ECU.
ECUs are assumed to be provided with hardcoded key pairs
and their unique identifiers ECUID in a secure memory at
the manufacturing phase. The protocol develops through four
different Transmission States discriminated by the first two
Most-Significant-Bits (MSB) in the frame’s payload.

1) Broadcast Public Key (00): The payload is the
transmitter’s public key sent in clear so any node can read it.
This phase is performed in a predefined order. The choice of
broadcasting the public key rather than hardcoding the other
nodes’ public keys on the ECU is because faulty nodes can
be detected and replaced, or other new nodes can be added
without the need to hardcode the new keys.

2) Send Nonce List (01): A node entering this state wants
to send a nonce list after exchanging the public keys or
because a previous list is exhausted. In the first case, the ECU
generates a list of all the other nodes and encrypts it with the
respective public key. In the second case, only the new list for
a transmission with a specific node is generated and delivered.
It is worth noting that node A, to communicate with a node
B, uses the nonces in the list sent from B, and vice-versa. Of
course, they can send only as many messages as many nonces
in their lists, and when the list is exhausted, B needs to request
A for a new list. The authors decided to set the size of the
nonces to 8 bits and to fill the list with as many nonces as
possible. Moreover, they also decided to design the protocol
to avoid making the nodes send the nonce list at the startup
but rather just when actually needed for communication.

3) Send Message (10): A node enters this state when it
wants to communicate with another node by sending actual
data. In this case, the payload contains the encrypted message
consisting of the concatenation between the plaintext and the
correct nonce. After message delivery, the sender erases the
nonce used. Thanks to encryption with the receiver’s public
key, only the legitimate receiver can decrypt it and check if
the nonce matches what is expected.

4) Synchronize Nonce List (11): A node enters this state
when it has no more nonces available for communication with
another node or after a fixed number of rejected messages due to
a possible message loss, which makes the two ECUs misaligned
for the counter list. The payload contains the receiver’s ECUID
in plaintext. The receiver is then triggered to enter in the Send
Nonce List state. As it may also happen that a node sends a resyn-
chronization request before the actual nonce list is exhausted, the
receiver locally deletes its internal list and generates a new one.

5) Computational Overhead: The authors do not provide
precise values for the computation overhead and rather provide
a graphical representation of the induced delay in the function
of the exchanged messages. In a test-bed comprising of 3 ECUs,
the authors claim an induced overhead ranging from ∼100%
to ∼400% w.r.t. normal bus load.

O. S2-CAN
Unlike all the others presented so far, S2-CAN (2021)

is an authentication protocol that aims to offer authenticity,
confidentiality, and freshness without using cryptography [41].
Indeed, the security of the protocol depends on (i) randomly
generated internal IDs and counters to offer authenticity and
freshness, (ii) frames payload cyclic shifting of a random
integer to offer secrecy and confidentiality. Despite the protocol
not using cryptography for message authentication, it is a
session-based protocol. Hence, some cryptographic primitives
for securing the session parameters are still needed. To this
purpose, ECUs are equipped with pre-installed symmetric keys.
Furthermore, the protocol also requires a logical ordering among
ECUs. The session parameters consist of the following.
• Global 3-byte encoding parameter f .
• ECU-specific integrity parameter int IDj . It is a 1-byte ran-

domly generated internal identifier of the j-th ECU (ECUj).
• ECU-specific integrity parameter posint,j for ECUj . It

specifies the random position within the CAN payload where
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the internal identifier will be located. This parameter is needed
since the ECU internal ID is embedded inside the free space of
the CAN payload, which can change each time. Authors studied
in detail how much free space is available on average [41].

• ECU-specific 2-byte counter value cntj for ECUj . It is
randomly generated and represents the starting value for the
counters used to avoid replay attacks.

1) Handshake: The handshake phase, depicted in Fig. 9,
develops through three stages for each new session Si, where
i is the number of the session, and repeats with a fixed periodic
interval of period T . The gateway ECU, also named Master
ECU (ECUM ), handles the handshake phase and establishes
new sessions.

• Stage 1 - Initialization. ECUM sends an initialization
message msginit, identified by a specific standard CAN
identifier, to indicate the beginning of the handshaking
phase for establishing a new session Si. The payload of this
message includes a randomly generated encoding parameter
fi=(r0,r1,...,r8), where rl∈ [0,7] represents the bit rotation
number for the lth byte in the 8-byte CAN payload. Each
rl can be represented with 3 bits. Moreover, a 2-byte counter
cnt0 (not to be confused with the ECU-specific session
parameter cntj previously defined) is also attached for replay
attack defense. The message is encrypted with the pre-shared
symmetric key K and authenticated thanks to a 32-byte
SHA256-HMAC of the previous 5 bytes. It is worth noting
that since only 3 bytes are left, the MAC should be truncated.
However, as authors claim that a 3-byte MAC is too short,
they decided to split msginit into two consecutive messages
msginit,1 and msginit,2. These messages contain payload
p1 and p2, respectively. Payload p2 is composed then by the
following 8 bytes of the MAC. This results in a total of 11
bytes MAC. Finally, AES-128 is used for encryption.

• Stage 2 - Acknowledgment. ECUs decrypt p1 and p2

and extract the encoding parameter fi. Afterward, follow-
ing the established ordering, each ECUj sends back an
acknowledgment message msgj,ACK containing a 1-byte
positive acknowledgment code ack and the three ECU-
specific parameters (int IDj , posint,j , cntj). Besides, to
provide integrity and freshness protection, the acknowledgment
message must include a 2-byte handshake counter cnti and
the truncated HMAC of the message. As in Stage 1, two
messages msgj,ACK,0, msgj,ACK,1 are needed. It is worth
noting that, to avoid internal identifier collisions, an ECU must
discard those IDs that were generated by the previous ECUs.

• Stage 3 - Finalization. ECUM completes the handshake
phase by sending a final message msgfin to signal it has
successfully received all the acknowledgment messages from
the ECUs. A specific CAN ID identifies this message, and
its payload comprises a random non-zero payload (again split
into two messages).

If any acknowledgment message delay exceeds a certain
threshold, the handshake times out, and ECUM will restart
it from Stage 1. If the handshake is still unsuccessful after
several attempts, all the ECUs can revert to the standard CAN
communication until the next start of the vehicle.

ECUM

fi = (r0, r1, r2, r3, r4, r5, r6, r7)

cnt0

MAC = SHA256(fi, cnt0)MSB_11

p1 || p2 = AES-128K(fi, cnt0) || MAC

msginit,1 = (ID, p1) msginit,2 = (ID, p2)

parameter extraction

Stage 1
Initialization

msgj,ACK = (ack, int_IDj, posint,j, cntj, cnt0)

p1 || p2 = AES-128K(msgj,ACK) || MAC

msgj,ACK,1 = (ID, p1) msgj, ACK,2 = (ID, p2)

Stage 2
Acknowledgment

CAN bus

for each ECU j:

msgfin Stage 3
Finalization

Fig. 9: S2-CAN handshake process.

2) Operation: This consists of the regular exchange of data.
To save space in the payload, a 2-byte parameter qj is computed
from the previously stored parameters.

qj=LEFT ZERO PAD(int IDj ,8)⊕cntj .
The message’s payload is first logically XORed with qj , and
then a Circular Shift (CS) operation is applied according to the
previously stored encoding parameter fi. This CS operation is a
byte-wise bit rotation to the lth byte according to the value of the
corresponding lth element of fi. The encoded message is then
broadcast in the bus with the ECU-specific counter cntj , which
will be incremented for the next message. The receiving ECUs
will reverse the encoding process and check for the message’s
authenticity, integrity, and freshness. Possible losses may lead
to an out-of-synchronization scenario. For this reason, receivers
can accept packets with a counter value greater than expected
within a certain threshold, depending on the packet loss rate.

3) Computational Overhead: The authors conducted a
software-based simulation to evaluate the S2-CAN protocol.
The results indicated that the authentication procedure induced
a transmission latency of 75µs.

VII. COMPARISON CRITERIA

This section outlines the comparison criteria we identify
to highlight the strengths and weaknesses of the considered
protocols. We distinguish between two classes of criteria:
security criteria and operational criteria. The security criteria
identify those properties necessary for a secure and effective
authentication protocol for CAN. The operational criteria are
features, apart from the security capabilities, that one may
consider when deciding which authentication protocol to adopt.
These operational features do not change the ability of the
system to be resistant or not to some vulnerability. Rather, they
can help enhance the security and reliability of the system. For
example, using session keys does not make a system resistant to
replay attacks, but it can harden for the attacker to succeed in the
attack [77]. This way, the operational criteria integrate into the
security requirements, offering a complete view of the protocols.
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Section VII-A outlines the identified limitations of the
defined requirements in the related works. Section VII-B and
Section VII-C present the identified security requirements and
operational criteria, respectively, upon which we carry out
our comparative analysis of the protocols. A summary of the
comparison criteria is presented in Table IV.

A. Related Works Limitations

Nowdehi et al. [32] define five industrial requirements that
compare the considered protocols: effectiveness, backward
compatibility, support for vehicle repair and maintenance,
sufficient implementation details, and acceptable overhead.
However, we point out the following limitations regarding the
definition of these requirements.
• Cost effectiveness – According to Nowedhi et al. [32] definition:

“[...] requiring all ECUs to have hardware-supported crypto-
graphic primitives to achieve necessary performances for safety-
critical real-time systems is not cost-effective”. In the definition,
the authors are mostly referring to HSMs, since from the analy-
sis of the protocols given in Section VI, these are the hardware
modules that are used to store the cryptographic primitives.
While on the one hand, we acknowledge that their requirements
increase the cost of production, on the other, it is important
to point out that without those modules, any authentication
protocol based on secret keys would be completely insecure.
Indeed, probing attacks can be carried out in these unprotected
scenarios, and the loss of the key confidentiality would make
any authentication attempt useless [78], [79]. Although the
cost of an ECU equipped with an HSM might vary depending
on its computational capabilities [80], some works in the
literature are focused on the minimization of the number of
those modules in automotive applications [81], [82], [83],
[84]. Furthermore, as detailed in Section IV, different types of
HSMs exist based on their security level, granting additional
flexibility during the design process of the vehicle network.

• Backward compatibility – According to Nowedhi et al. [32]
definition: “[...] backward compatibility means that a new
solution must be able to co-exist with existing technologies and
implementations. [...] Consequently, only a message authentica-
tion solution that manages the authentication in an extra frame
can be considered backward compatible”. Limitations of such a
definition of backward compatibility are (i) the fact that nodes
that are not required to provide authentication can be firmware
updated in such a way they ignore the authentication part, and
(ii) providing authentication in a subsequent frame may raise
delay issues, as we will point out better later in our analysis.
Besides, the authors did not consider the trend of shifting to the
CAN-FD protocol (which is considered backward compatible)
as the new standard, which would allow for a much larger pay-
load transmission [48], [85]. Hence, the authentication bits can
be inserted into the additional space in the payload, and those
ECUs that do not deal with authentication can ignore those bits.
Lastly, we highlight that the requirements defined by Nowdehi

et al. [32] are implementation and performance-oriented. At the
same time, they can not provide an understanding of the security
level and possible vulnerabilities of the considered protocols.
Therefore, no security analysis is carried out, meaning the

security criteria and possible vulnerabilities of the proposed
authentication mechanisms are not evaluated. On the contrary,
providing a security analysis of authentication protocols for
CAN is the major purpose of this work. To the best of our
knowledge, ours is the first work of this kind.

B. Security Criteria

In the following, we define the security requirements an
authentication scheme for CAN shall comply with for in-vehicle
communications.
• Atomic Authentication – The authentication process must

be an atomic operation [86]. This means that any extra data
needed for the authentication process cannot be separated from
the message it belongs to. Non-compliance to this requirement
would (i) increase the bus load and (ii) delay the overall
process, possibly causing serious issues as the receiving node
could not process the received data [87], [88], [89].

• Replay Attack Resistance – This property ensures that the
system can discriminate the freshness of a received message,
thus correctly deciding whether to accept or discard it. The
verifying nodes should discard messages intended to replay
previous authenticated messages. The replay attack is one
of the most common, effective, and threatening attacks that
can be easily performed on the standard CAN bus [90]. It
can be performed even in a trustworthy environment and may
affect the vehicle’s security in critical scenarios [91].

• Masquerade Attack Resistance – It is an attack in which
a malicious entity pretends to communicate with the victim
by impersonating another legitimate entity [92]. Specifically
for the CAN framework, a malicious ECU impersonates
another one by transmitting frames with IDs it is not expected
to transmit. The rogue ECU can either be an external one
(external masquerade attack) [93] or a compromised legitimate
one (internal masquerade attack) [94], [95], as discussed in
Section V. Since CAN IDs do not identify the transmitter but
the message’s priority, an authentication protocol shall allow
the receiver to discriminate whether it is a legitimate or rogue
ECU sending the message. Within the internal masquerade
attacks, we distinguish between two types of attacks:
– General-internal: this is the general case of an internal

masquerade attack in which a rogue ECU attempts to
transmit and authenticate messages with IDs that the ECU
was not supposed to transmit. Particular attention should be
given when using the group keys approach. Indeed, it may
be the case in which an ECU belongs to a certain group G
but for which it can transmit only a subset of the IDs of
that group. Suppose the ECU is compromised. In that case,
the membership to the group G allows the attacker to know
the cryptographic key also for the IDs the ECU was not
supposed to use, but which it can correctly authenticate any-
way as it has the correct secret key and related parameters.

– Selective-internal: this is a special case in which
symmetric keys are employed, and an ECU is interested
in receiving message(s) with certain ID(s), but that it
can not transmit messages with those ID(s). Although
the ECU does not transmit those types of messages, to
verify their authenticity at reception, the ECU must be
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TABLE IV: Security and operational criteria definition for the protocols’ comparative analysis.

Type Property Description

Security
Criteria

Atomic authentication Authentication data is transmitted together with authenticated message

Replay attack resistance Nodes can discriminate the freshness of the received messages and discard already
transmitted ones

Masquerade attack resistance The receiver can discriminate whether a legitimate or rogue ECU sends the message

Hard real-time compliance Employed cryptographic algorithms must be considered as fast algorithms

Resynchronization capability Ability of the system to restore the alignment with respect to the parameters between
devices in case of message loss

Operational
Criteria

Backward compatibility No hardware or topology modifications applied to the already existing one

Group keys
A same key is used to authenticate correlated message IDs. In particular:
• Use of one key for each message ID, or
• ECUs that can send any ID∈Gi can also send all the other IDs belonging to that group

Session keys Periodic refresh of the authentication keys

Additional storage memory Additional amount of memory needed for the handling of the authentication parameters
and keys

provided with the corresponding secret keys anyway, thus
opening possible breaches for an internal masquerade
injection. Indeed, by having the key, the ECU may be
able to authenticate forged messages correctly.

During our analysis, we will refer to Internal Masquerade
Attack when no distinction between General-internal and
Selective-internal is made, thus considering both scenarios.

• Hard Real-Time Compliance – As on-board networks
handle safety-critical messages whose arrival time is a critical
aspect, the hard real-time constraint is a must [96]. To meet
this requirement, the cryptographic mechanisms used for
the authentication shall be fast and do not add any large
overhead [97]. We make the following assumptions.
1) Comparison, counter increment, and message build op-

erations are fast with negligible execution time. Therefore,
we only focus on cryptography-related operations.

2) Protocol setup or session parameter exchange phases are
amortized in time as they are periodically performed and
not at every message authentication. Thus, we focus only
on the authentication transmission.

3) HMAC algorithms are fast. This assumption is sustained
by the results presented in Groza et al. [34], in which the
authors report that encryption algorithms like AES-128
or SHA-256 are suitable for practical applications.

• Resynchronization Capability – The system can restore the
alignment with respect to the parameters between devices in
case of message loss [98]. Indeed, losses may lead ECUs to be
out-of-synchronization, causing the impossibility of success-
fully authenticating any message, which in turn makes ECUs
continuously discard them. Hence, a proper resynchronization
mechanism is necessary for system reliability.

C. Operational Criteria

In the following, we define operational features we consider
for a complete evaluation of a protocol for CAN authentication.
• Backward Compatibility – This is one of the biggest

problems encountered while developing an authentication
protocol for CAN [99]. From our perspective, one of the most
important aspects is that to be fully backward compatible
with the CAN standard protocol, no hardware or topology

modifications should be applied. We exclude from our
definition of hardware modification the inclusion of possible
HSMs, as we believe these modules are essential to provide
authentication in in-vehicle communications, and future ECUs
shall be provided with HSMs by default. While other surveys
discussed in Section II also consider software updates on ECUs
to invalidate this compatibility, we argue that the ability of a
system to introduce authentication just by updating its firmware
makes it backward compatible since it does not require physical
modification [100]. Furthermore, some surveys also consider
the addition of specific frames in the payload or other fields
of the CAN message to invalidate the backward compatibility
since other ECUs might not be able to interpret them cor-
rectly [32]. However, since some fields of the CAN messages
are left unused for this exact purpose, ECU that are not
involved in the authentication process ignore them by default.
Moreover, given that ECUs use specific encodings to exchange
messages, the payload often has free bits that are not utilized,
providing free space for the exchange of the MAC values [101].

• Group Keys – It is reasonable to think that if the same key is
used to authenticate correlated message IDs, then the size of
key storage will reduce. In general, ensuring this requirement
is not very demanding [14]. However, this solution must be
carefully designed and weighted against the advantages it
could bring. As anticipated, we stress that using the same key
for authenticating more than one ID provides opportunities
for masquerade attacks: a compromised ECU could send a
message with an ID that was not expected to but that belongs
to the same group of another ID that is allowed to send [102],
[103]. Hence, that ECU can authenticate the message correctly
as it possesses the correct key. This would make the attack
impossible to detect unless with any additional sophisticated
control mechanism [104]. Nonetheless, additional IDSs might
also introduce new attack vectors to exploit [105]. The worst
case occurs when using just one single key. Because of these
motivations, we decide to redefine the group keys feature
as either (i) the use of one key for each message ID, (ii) or
as the case in which the ECUs that can send any ID∈Gi
can also send all the other IDs belonging to that group.

• Session Keys – To defend against replay attacks, the most com-
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mon solution is introducing a counter value somewhere during
the authentication or encryption process to ensure the freshness
of the incoming message. To make this solution effective, the
counter shall not be reused. Note that the counter may overflow
its maximum value if there are many authenticated messages. A
common solution is to adopt a session key approach that allows
the reuse of the same counter value when the encryption key
changes. Also, this limits the damages due to key disclosures
for the key’s lifetime, after which the new key must be learned.

• Storage Overhead – The storage memory available is an
important aspect to consider when designing an in-vehicle
system [106]. The available storage for an ECU impacts the
authentication protocol’s security level since it influences
several security parameters, such as the length of the nonces
and encryption keys. Besides, the amount of available storage
per ECU also influences the overall system’s implementation
cost, which is another important aspect to consider. In our
analysis, we consider only the additional storage, with respect
to the standard CAN, required by the ECUs to implement the
authentication protocol. We do not consider temporary values
like intermediate parameters or authentication tags/signatures,
as they are of interest and stored just for the time needed,
after which the space can be easily freed.

VIII. EVALUATION OF SECURITY CRITERIA

In this section, we provide a comparison of the security criteria
offered by the presented protocols in light of the security require-
ments defined in the previous section, which are atomic authenti-
cation (Section VIII-A), replay attack resistance (Section VIII-B),
masquerade attack resistance (Section VIII-C), hard real-time
compliance (Section VIII-D), and resynchronization capability
(Section VIII-E). Table V summarizes results from our analysis.

A. Atomic Authentication

CANAuth does not properly send the authentication tag
with the authenticated message. Still, since it is sent through
the overclocked bits of CAN+, they can be considered unique
messages. Indeed, no other ECU can interpose between the
transmission of the two messages as the CAN+ message is sent
during the standard CAN transmission.
Car2X employs data segmentation to transmit cryptographic keys
and data packets. Thus, for n segments, there is at least n times
the packet transmission and handling time with respect to a single
packet. Furthermore, other ECUs might interpose in between
during packet transmission due to arbitration, delaying packet
reception. Although authors state that for some applications re-
quiring a less strict security level, MAC truncation can be adopted
because an even level of security must be guaranteed across the
whole CAN bus, atomic authentication is not guaranteed. For
these reasons, Car2X does not comply with this requirement.
LinAuth attaches the employed counter and all the MACs for
authentication to the authenticated frame. However, since the
protocol expects that a transmitting ECU computes a MAC value
for each of the interested ECUs, the number of MACs computed
may exceed the available space in a single CAN frame payload.
Since there is no mention of how to handle such a scenario in the
protocol specification, we assume the easiest and best scenario

possible. Hence, we assume that in case the MACs do not fit
into the authenticated message, the ECU immediately transmits a
second frame in which the payload contains the remaining MACs.
To prevent other ECUs accessing the bus in between the transmis-
sion of the two messages, one of the free bits of the CAN protocol
can be used to signal that a following message will be transmitted
carrying the remaining MAC values. In doing so, we let the
protocol comply with the atomic authentication requirement.
MaCAN ensures atomic authentication by incorporating several
values in the authentication request message, such as the desired
message, the prescaler value, and the cryptographic MAC
computed using the sender’s key. The recipient ECU, upon
receiving the request, processes it as a complete authentication
request. This ensures that the authentication process is atomic,
with no intermediate or partial stages.
VeCure does not attach the MAC value to the authenticated
message but transmits it in a subsequent frame. However, the
protocol defines that the authentication frame is transmitted
immediately after the one carrying the data. Hence, if a
receiving ECU sees a CAN message with an ECUID that
is in a trusted group (thus will be authenticated), it will not
attempt to access the bus due to the immediate transmission
of the authentication message. This guarantees that no ECU
can transmit in between the transmission of the two messages.
VeCure authentication procedure can thus be considered atomic.
LCAP uses a hash chain mechanism to authenticate the
exchanged frames. Chain values are attached to the same frame
to authenticate, thus making the protocol compliant with the
atomic authentication requirement.
Woo-Auth expects two possible operation modes for authen-
tication. If the protocol follows the basic method, it complies
with this requirement as the authentication tag is attached to
the frame. Otherwise, if using the enhanced method, the tag
is split into two messages, thus leading to possible interruptions
and delays between their transmission, making it not compliant.
CaCAN, LiBrA-CAN and TOUCAN authenticate the
exchanged frames by attaching the corresponding HMAC value
to the same message they are authenticating, thus letting the
receivers be able to verify the authenticity of the message imme-
diately. Therefore, the protocols comply with this requirement.
LeiA, vatiCAN and VulCAN do not comply with the atomic
authentication requirement since they expect to transmit the
authentication tag in a separate message with respect to the
authenticated data. Moreover, all protocols expect to transmit
the authentication message with a different ID with respect
to the corresponding message it wants to authenticate. As
a drawback, if the number of data messages is greater than
2|IDbits|−1, where |IDbits| is the number of bits used for the
ID, then not all the messages can be authenticated.
AuthentiCAN does not require using any specific authentication
tag as this is achieved thanks to the uniqueness of the private key
used for encryption. Therefore, if a message is decrypted, the
transmitter uses the correct private key, proving its legitimacy.
The protocol complies with this requirement since a correct
encryption grants authentication.
S2-CAN provides authentication through a correct encoding
of the exchange payload, thus providing atomic authentication.
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TABLE V: Security criteria comparison of the different protocols.

Protocol Atomic
Authentication

Replay Attack
Resistance

Masquerade Attack Resistance Hard Real-Time
Compliance

Resynchronization
CapabilityGen. Int. Sel. Int. Ext.

CANAuth [14] 3 3 3** 7 3 3 3

Car2X [65] 7 7 3 3 3 7*** Not needed****
LCAP [15] 3 3 (216−n)−1-secure 3 3 3

LinAuth [66] 3 3 3 3 3
With group keys: 3

Without group keys: 7
3

MaCAN [67] 3
If not using
group keys

500−1-secure 7 3 3 3

CaCAN [68] 3 3* 2−8-secure 3 3 3 7

VeCure [69] 3 3 7 7 3 3 7

Woo-Auth [13]
Basic: 3

Enhanced: 7
3 7 7 3 3 7

LeiA [8] 7 3 7 7 3 7*** 3

vatiCAN [70] 7 7 3** 7 3 7*** 3

LiBrA-CAN [71] 3 3 3 3 3 3 3

VulCAN [72] 7 3 2−6-secure 7 3 7*** 3

TOUCAN [73] 3 3 2−24-secure 7 3 3 Not needed****
AuthentiCAN [74] 3 3 3 3 3 3 3

S2-CAN [41] 3 3 7 7 3 3 3

Gen. Int. = General Internal; Sel. Int. = Selective Internal; Ext. = External.
* Lower security strength compared to the other protocols.
** If proper group design.
*** Possible delays due to non-atomic authentication.
**** No use of nonces/counters.

B. Replay Attack Resistance

CANAuth and LeiA make use of a fresh element for each
security object computed (i.e., session key, session key signature,
payload signature, MAC). Whenever a message with a nonce
that has already been used is received, it is discarded a prior.
Car2X does not mention any usage of counter or nonces in the
MAC computation. Furthermore, while the protocol uses session
keys, they last up to 48 hours, giving plenty of time for an attacker
to flood the CAN bus with previously sniffed authenticated
messages. Thus, Car2X is not resistant to replay attacks.
LinAuth uses an increment counter for MAC computation,
thus protecting against replay attacks. In the case of a replayed
message, since the frame only carries the least significant bits
of the counter, the verifier would increase the most significant
part. This will result in a different MAC value than carried by
the message, thus leading to message rejection.
MaCAN utilizes timestamps for message freshness in
unidirectional, event-driven scenarios where replay attacks
are a concern. It introduces a Time Server (TS) to ensure
synchronized time signals, transmitting timestamps regularly
and offering on-demand authenticated timestamps. However,
replay attacks are still a threat when using group keys since
all group members cannot verify the challenge sent by the ECU
to the TS in the authenticated time distribution protocol.
LCAP is resistant to reply attacks thanks to the hash values
attached to each message. Indeed, replaying any previously
authenticated message leads the receiver to reject it, as the au-
thentication check will fail. The only non-authenticated message
happens during the Channel Setup phase with the transmission
of the 32-bit nonce from the receiver. It is worth noting that this
message cannot be exploited for a reply attack as the sender will

perform the hash computation over a non-valid nonce, forcing
the legitimate receiver not to accept the transmitted parameters.
VeCure is resistant to replay attacks since, for a given ECUID ,
the MAC computation depends on the triple (cs,co,cm), which is
unique during the vehicle lifetime. Thus, the receiver will reject
any previously authenticated message. It is worth mentioning
that in our analysis, we only consider the authenticated messages.
Messages from ECUs in the low-trust group are not authenticated.
Nevertheless, we can provide replay attack resistance in this latter
case by simply introducing authentication for the low-trust group.
Woo-Auth is resistant against replay attacks. If during the Initial
Session Key Distribution phase, a malicious ECU tries to replay
an old (S,MAC1) message, the receiving ECU would not accept
it. Indeed, the MAC1 value also depends on the previously
exchanged R value, which differs from the one in use. Therefore,
because of the security assumptions for the HMAC algorithms,
the expected MAC value will differ from the received one, and the
message will be discarded. A similar reasoning applies to the Ses-
sion Key Update phase. Lastly, messages are authenticated using
a counter, which assures freshness and replay attack resistance.
CaCAN uses counter values for HMAC computation, avoiding
that two equal messages return the same hash value. However, it
must be noticed that only the 8 least significant bits of the HMAC
are considered for authentication, and only the least significant
part of the counter is exchanged. Therefore, an attacker may
have the chance to succeed in replaying a message. Two equal
messages may authenticate with two different counters but with
the same least significant part, return different HMAC values but
having the same 8 least significant bits. In such a scenario, the
central node would classify the message as legitimate. We are
aware that this scenario is very unlikely. However, we believe that
8 bits are not enough to guarantee a security level and resistance
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that can be considered absolute, as in previous protocols. There-
fore, we have to highlight such a difference in resistance strength.
LiBrA-CAN uses counters attached to each message to ensure
freshness in messages and resistance against replay attacks.
VulCAN uses an increasing counter or nonce ci as a source
of freshness in the MAC computation (where i is the message
identifier). Nonces are always different when using the same
key and associated data. Thus, the authors provide a detailed
description of the nonce initialization and resynchronization
process in case a packet loss occurs.
vatiCAN uses a counter value to provide freshness for MAC
computation. However, the protocol may still be vulnerable to
replay attacks. Indeed, because no session key is used, a payload
with the same IDi and ci will always return the same MACi.
Therefore, if for message IDi, the counter used was ci= t, but
the Nonce Generator broadcasts a value g<t, an attacker will
successfully replay all messages IDi such that g<ci<t.
TOUCAN makes use of the Chaskey algorithm to compute the
MACs. Although the Chaskey algorithm does not use any fresh
element for the computation, its design proves it is resistant
to replay attacks [76].
AuthentiCAN attaches a fresh element to the exchange
message’s payload, thus avoiding possible replay attacks.
S2-CAN uses a counter value both in the Handshake and
Operation phases, thus defending against possible replay attacks.

C. Masquerade Attack Resistance

CANAuth may be vulnerable to both internal masquerade
attacks (General and Selective) if the group keys approach is
adopted and groups are poorly designed. Instead, if the approach
is adopted consistently to what we defined in Section VII, the
protocol will be resilient to General-internal masquerade attacks.
The attacker must first learn either the master key or session
key to authenticate correctly a forged message. This is, however,
not possible as Ki is assumed to be stored in a secure memory.
At the same time, Ks,i is computed using an HMAC algorithm
that assures a very high level of security. However, the protocol
remains vulnerable to Selective-internal masquerade attacks.
Lastly, the protocol is resilient against external masquerade
attacks but vulnerable to the Selective-internal masquerade attack.
Car2X is resistant against internal and external masquerade
attacks thanks to its use of a Key Master (KM) entity, which
handles the key distribution. We assume the KM cannot
be compromised since the authors define it as an external
entity. External masquerade attacks can be prevented since
external devices do not own a key pair ks,g and ks,v needed
to communicate with the KM. Internal masquerade attacks,
regardless of their type (i.e., General or Selective), are prevented
since the KM authorizes communication between an ECU e1

and a group gx based on predefined policies.
LinAuth is secure against both internal and external masquerade
attacks. Since the protocol employs a pairwise key approach,
a rogue ECU would need to learn all the necessary keys to
successfully compute the MACs for all the interested ECUs.
On the other hand, if a group keys approach were employed,
groups must be carefully designed; otherwise, this may open
to internal masquerade attacks vulnerability.

MaCAN authors provide a detailed analysis of the risk of
guessing the signature during the lifetime of a key. Indeed,
considering an attempt each 20 ms and a key lifetime of 48
hours, the total number of attempts becomes 8640000. Therefore,
with a 32-bit MAC, internal masquerade attacks have a 0.002 (1
in 500) chance of occurring with a brute force attack. However, an
intrusion detection system can easily mitigate attempts at a high
frequency on the bus. Instead, using a symmetric key to compute
the MAC, Selective-internal masquerade attacks can still occur.
LCAP may be vulnerable to a masquerade attack carried on by
an internal attacker. Consider transmitter A and receivers B, C,
and D. It should be noted that after the Channel Setup phase, all
the receivers will have the same session and HMAC keys and the
hash chain exchanged values. Hence, we can say that the Channel
Setup phase actually sets up all the needed parameters to receive
messages from that transmitter. As a result, a compromised ECU-
B could correctly encrypt a forged message and send it to ECU-C
on behalf of transmitter ECU-A. However, to have the message
accepted, the attacker must guess the correct M i

j , which is as-
sumed impossible from the previous values thanks to the security
properties granted by the HMAC algorithm. In their proposal,
authors assume hash values of 16 bits. Therefore, 216 different
values are possible. The attacker can discard the already used
values, making the attack success probability higher if performed
close to the end of the hash chain. We derive that the security
of LCAP against a masquerade attack carried on by an internal
attacker at step k is: (216−n)−1. On the other hand, the protocol
is secure against external attackers as they first have to learn the
session or master key, which is assumed to be computationally
difficult or not possible because it is stored in protected memory.
VeCure is resistant against external masquerade attacks since an
external device would need to learn the secret key of the trust
group of the target ECU. However, this is not possible thanks
to the security assumption for the hash and BME functions.
On the contrary, VeCure is vulnerable to internal masquerade
attacks: a compromised ECU in trust-group i could successfully
authenticate messages on behalf of any ECU belonging to
group j≤ i. Indeed, the rogue ECU would have the proper keys
and the session counter (which is the same for all the ECUs).
Moreover, it could monitor the bus to retrieve the message
counter cm of the target ECU and could align with the overflow
counter co by (i) trials and errors from previous authenticated
messages or (ii) sniff on the bus since the beginning of the
session. Therefore, the rogue ECU would have all the elements
to authenticate messages on behalf of another node.
Woo-Auth is completely vulnerable to an internal masquerade
attack. It must be noticed that to verify the received messages, the
KEK between sender and receiver must be the same. The key is
derived from the KDF function, which in turn depends on IDGW

(that is the same for all ECUs), and the random seed S, provided
by GW. Therefore, seed S must be the same for all ECUs. We
conclude that all ECUs in the network will have the same session
keys. As a result, any compromised ECU can perform the AES−
128 encryption correctly. The compromised ECU can thus make
trials to understand, given the legitimate exchanged message
M , which is the counter value returning the correct C value,
and consequently the MAC. Once this operation is performed
successfully, the attacker is aligned with the counter value and

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3486367

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE COMMUNICATION SURVEYS & TUTORIALS 23

can correctly authenticate future messages on behalf of the target
ECU. On the other hand, external attackers must first learn the ses-
sion keys to perform the operations described above. Still, since
the security property assures the secrecy of the KDF process,
we conclude the protocol resists external masquerade attacks.
CaCAN behaves similarly to WooAuth, and an analogous
analysis can be made. Indeed, even though the counter is not
fully transmitted, the attacker must sniff an exchanged packet
to be aligned with its least significant part. Consequently, an
internal attacker may forge a frame with the correct LCi value.
At this point, they must guess the 8 bits of the HMAC value
correctly. It is worth noting that no advantage can be taken from
previously exchanged authenticated frames, as the authentication
value is part of the full HMAC value. Thus, repetitions are not
possible since the full hash value is guaranteed to be almost
unique. To conclude, the protocol offers a 2−8-security level
against General-internal masquerade attacks. The protocol is
instead secure against Selective-internal attacks, as the only
entity that verifies the authentication tags is the Monitor Node.
It is also secure against external attacks since the key should
be learned first. However, this is assumed to be impossible.
LeiA is completely vulnerable to an internal masquerade attack.
In fact, it should be noticed that since the Setup phase only de-
pends on a common security parameter η, every ECU will possess
the long-term keys Ki∀IDi. Therefore, an ECU can compute
Ks
i for any IDi and authenticate any message successfully. This

clearly leads to a masquerade attack vulnerability. On the other
side, the protocol is secure against external attacks, as the attacker
must first learn either the long-term key or session key, which
is not possible because of assumptions for the (i) secure storage
and (ii) security provided by the session key derivation function.
vatiCAN masquerade resistance analysis is analogous to the one
we did for CANAuth. If the group keys are well-designed, the
protocol resists masquerade attacks. Otherwise, a vulnerability
flow is left against the internal masquerade attacks. Resistance
against external attacks is guaranteed.
LiBrA-CAN is resistant against both internal and external
masquerade attacks. Each ECU is provided with the keys of
the groups it belongs to. Thus, if ECUj wants to impersonate
ECUi, it will need all the keys in K̄i, but this is not possible
by group construction because this would mean that ECUj
has to belong to the same groups ECUi is part of.
VulCAN does not provide specific mechanisms for addressing
masquerading attacks. Anyway, by using a symmetric key for
the computation of the 64-bit MAC, it provides 2−6-security
against General-internal masquerade attacks. Selective-internal
masquerade attacks can still occur since an attacker can send
a malicious CAN frame and subsequently compute its MAC,
assuming the attacker has also gained knowledge on the counter.
Since the nonce increases in each sent message, the leakage
of one counter, or the knowledge of the starting value, allows
the attacker to infer it. Furthermore, the authors explicitly state
that nonce values are not confidential and that receivers can
accept MACs generated with any nonce that is strictly higher
than the previously authenticated nonce value.
TOUCAN protocol specifications do not directly define how the
keys are managed and shared, whether all the ECUs have the
same key, or if keys are ECU-specific or message ID-specific.

Therefore, an analysis for each of these three scenario must be
considered. If just one single key is used, the protocol would be
vulnerable to an internal attacker. This also holds in the second
case, in which we had ECU-specific keys: it is reasonable to
assume, indeed, that all the ECUs are equipped with the keys
of (almost) all the others since they would need that for authen-
tication verification. This situation can be reduced to the case in
which just one key is used, thus making the protocol vulnerable.
The last possible case is the only one in which the protocol is not
vulnerable: to successfully authenticate a message, a malicious
ECU should first learn the corresponding key or guess the correct
authentication tag. The probability of this happening is 224, which
is very low. Thus, we can consider the protocol resistant against
General-internal masquerade attacks. For the rest of our analysis,
we will assume TOUCAN will adopt this last solution as it is the
most secure and reasonable. This is also reflected by the security
level reported in Table V. However, the protocol is instead fully
vulnerable against a Selective-internal attacker in any of the three
presented scenarios. TOUCAN is resistant to external attacks.
AuthentiCAN is masquerade attacks resistant since an
attacker must learn the target ECU’s private key for a correct
authentication. However, this is assumed not possible for
asymmetric encryption’s security properties.
S2-CAN is completely vulnerable against an internal masquerade
attack for the same reasons presented during the analysis of
LeiA protocol. Indeed, after the handshake phase, all the ECUs
will be provided with (i) the same global encoding parameter
f , and (ii) all the parameters of the other ECUs in the network.
Therefore, a compromised ECU can correctly encode (thus
authenticate) a message on behalf of another node. On the other
hand, the protocol is resistant to external masquerade attacks.

D. Hard Real-Time Compliance

CANAuth is compliant with the atomic authentication
requirement, making the only overhead introduced given by the
generation and verification of the authentication message. As
sigMi is computed with an HMAC algorithm that is assumed to
be fast, the protocol can be considered hard real-time compliant.
LinAuth only requires a counter comparison and MAC
computation for authentication, which are considered fast
operations. However, it is worth noticing that an ECU has to
compute several MACs, one for each of the interested receiving
ECUs. This may lead to the case for which the computation of
all the MACs introduces a significant time delay, not ensuring
hard real-time properties. Using a group keys approach (which
the protocol allows for) can reduce the number of keys and
MACs to compute, thus making the protocol hard real-time
compliant. On the other hand, as already discussed, when using
a group keys solution, particular attention must be paid to group
design as this could open to masquerade attacks.
MaCAN truncates the MAC signatures down to 32 bits to
fit into the frame payload, allowing for atomic authentication
and protecting real-time capabilities. On the other hand, it is
worth noting that Nowdehi et al. [32] states that MaCAN does
not have an acceptable overhead and thus would not comply
with the hard real-time requirement. In doing so, Nowdehi
et al. [32] cite a work of Vasile et al., which carries out a
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performance analysis of broadcast authentication protocols in
for CAN [107]. However, this work (Vasile et al.) focuses on
implementing protocols in FlexRay and CAN-FD, while the
authors of MaCAN explicitly state that their focus is on the
standard CAN standard. To conclude, MaCAN satisfies the hard
real-time requirements according to our definition.
LCAP complies with the atomic authentication requirement
attaching the hash value to the authenticated frame. As the
time needed for (i) hash chain computation, (ii) setup, and
(iii) synchronization can be considered amortized, the only
significant time overhead is due to the hash verification. This
is considered fast because of the HMAC algorithm. Therefore,
the protocol satisfies the hard real-time requirement.
Woo-Auth uses AES−128 encryption and hashing during the
frame authentication process. Both algorithms are considered
fast [34]. Hence, the protocol offers hard real-time capabilities
since the session key distribution and update phases can be
considered amortized in time.
CaCAN uses an HMAC algorithm for authentication, which
is considered fast by assumptions. The protocol is thus hard
real-time compliant.
VeCure satisfies the atomic authentication requirement. Besides,
thanks to the MAC design, the computation of the hash value
can be carried out offline, removing the most demanding
operation from the online MAC computation and verification
process. In conclusion, VeCure offers hard real-time capabilities.
LeiA is not hard real-time compliant as the authentication tag
is transmitted in a separate message than the data frame. This
may raise issues for the processing of the messages. Suppose
an ECU with a high priority accesses the bus after sending the
data message. In that case, the authentication message would
be delayed, making the receiver wait for the MAC, unable to
verify and process the data received timely.
vatiCAN hard real-time compliance analysis follows the same
reasoning of LeiA: due to the non-atomic authentication, there
can be possible delays in receiving the authentication tag. There-
fore, we classify the protocol as not hard real-time compliant.
LiBrA-CAN may raise some doubt about its hard real-time
execution because of the computation of multiple MACs for
a single message. However, M-MAC computation is still fast
enough to ensure hard real-time capabilities, as shown by
simulation results [71].
VulCAN considers real-time compliance as a system-level
guarantee that is provided by the protocol. Indeed, while the
authors do not consider the issue of denial-of-service attacks, they
still acknowledge the safety-critical functionality provided by
the data exchanged on the bus. To provide this requirement, the
MAC payload is truncated to adhere to AUTOSAR specifications.
However, due to the non-atomic authentication, several delays
might occur, which can alter the normal functionality of an ECU.
TOUCAN attaches the MAC to the authenticated message and
encrypts it with AES-128. The only overhead introduced is then
due to the two cryptographic mechanisms. As both AES-128
and Chaskey are considered to be fast algorithms, we conclude
that the protocol is hard real-time compliant.
AuthentiCAN may raise concerns about the time overhead it
may introduce due to its employment of asymmetric encryption.
However, simulations have shown that the encryption overhead

is minimal [74]. Hence, because of this, the fact that ECUs are
becoming increasingly powerful (reducing computational times),
and that public key broadcasting and nonce list transmission
phases can be considered amortized in time, the protocol can
be considered hard real-time compliant.
S2-CAN is hard real-time compliant as the payload encoding is
a fast operation (as also shown by experiment results [41]), and
the session update phase can be considered amortized in time.

E. Resynchronization Capability
CANauth and S2-CAN provide no explicit mechanism

for resynchronization. However, since nodes will accept the
authentication tag if the received nonce is greater than the
stored one, even in case of losses, future legitimate messages
can still be successfully authenticated.
MaCAN uses a Time Server (TS) to prevent issues that may
occur when ECUs maintains the time signal using an internal
counter. The message the TS sends exclusively comprises a
32-bit timestamp transmitted regularly. Each node can receive
and compare the time signal to its internal clock. If the signals
differ significantly or resynchronization is needed, such as after
an ECU reboot, an authenticated time signal can be requested.
LCAP, LeiA and AuthentiCAN provide explicit procedures
for resynchronization, being then robust to losses and letting
ECUs be aligned to the last exchanged parameters and thus
guaranteeing the correct functioning of the system.
Woo-Auth and VeCure do not provide any resynchronization
mechanism. Therefore, if a message is lost, the ECU will not
be aligned with the counter(s) value(s) and will not accept
future messages because of verification failure until the next
session update and counter(s) reset.
LinAuth does not provide any counter resynchronization
mechanism in case of message losses. However, we may notice
that such a mechanism is not needed, as the condition for
message acceptance is not counter matching (i.e., received
counter = stored counter +1) but counter increasing (i.e.,
received counter > stored counter). This allows ECUs to
correctly verify the authentication even in case of message losses.
CaCAN does not offer any resynchronization mechanism as
well. Thus, if the monitor node misses one frame, all the
following messages will be blocked by raising an error due
to counter-value misalignment. This situation will last until the
UC value of the counter is increased since the OLC value will
be set as the received LC.
vatiCAN provides a means to periodically align all the ECUs
to the same counter values thanks to the Nonce Generator node.
Thus, if a node remains out of synchronization, it cannot accept
authenticated messages for a limited time.
LiBrA-CAN assumes a resynchronization mechanism is in
place, but possible implementations are not mentioned.
VulCAN provides nonce resynchronization by “vulcanizing” the
process employed by vatiCAN. In this implementation, 16-bit
nonces are encoded in the extended CAN identifier, allowing
for the re-establishment of session keys or counters.
TOUCAN does not need any nonce or counter for authentication,
which means that no resynchronization mechanism is needed:
if a message loss occurs, it will not affect the possibility of
authenticating the following messages.
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IX. EVALUATION OF OPERATIONAL CRITERIA

In this section, we present an analysis based on the operational
features previously defined, which are backward compatibility
(Section IX-A), group keys (Section IX-B), session keys
(Section IX-C), and storage overhead (Section IX-D). Again,
these comparison criteria do not change the security capabilities
of the protocols. Rather, they may increase their security level
and give a more complete overview of their features. While
computational overhead is an important factor that we reported
in Section VI, a direct comparison was not possible due to the
lack of standardized overhead values reported in the literature.
Indeed, these values vary significantly depending on specific
implementation details, which might not be available in every
study. To address this, we shift our focus from the numerical
value to the security implications that the computational overhead
might have on the protocols’ reliability. Therefore, in Section VIII,
we prioritized atomic authentication as a critical indicator of
a protocol’s viability for secure communication. Indeed, if
a protocol can achieve atomic authentication, it inherently
manages the computational overhead effectively, ensuring the
system remains secure without excessive performance trade-offs.
Table VI summarizes what is discussed in this section.

A. Backward Compatibility

CANAuth relies on CAN+, requiring transceivers to support
up to 60 Mbit/s data rate. Therefore, the protocol is backward
compatible for ECUs that supports such data rate. Otherwise,
ECUs not equipped with such transceivers will require a
hardware modification or substituting.
Car2X is not backward compatible since it requires the
implementation of the Key Master module to function properly.
The authors define this component as an external device and, as
such, cannot be implemented on an existing device in the bus.
LinAuth, LCAP, VeCure, Woo-Auth, LeiA, vatiCAN,
LiBrA-CAN, VulCAN, TOUCAN, and S2-CAN are fully
backward compatible as they only require software update to
the ECUs to implement the authentication protocol.
MaCAN is also backward compatible with the standard CAN
frame format but also needs the implementation of the Time
Server. As stated by the authors, this component can be added
to an existing ECU. Therefore, since it requires introducing
new specific hardware, the protocol is not backward compatible
according to our definition.
CaCAN is not backward compatible as it requires adding a
task-specific Monitor Node adopted with specific hardware
(special CAN controller) [68]. Conversely, no hardware
modification is needed for all the other standard ECUs.
AuthentiCAN is backward compatible as it relies on CAN-FD
protocol, and no further hardware modification is needed.

B. Group Keys

CANAuth and vatiCAN use a group keys approach.
However, as already discussed, if this solution is not properly
designed, the protocols will become fully vulnerable to an
internal masquerade attack.

Car2X uses a group key approach thanks to the predefined
policies enforced by the KM. Indeed, the KM must first
authorize ECUs that request to send messages to a group.
LinAuth allows a group keys approach in which ECUs are
assigned to groups, and all share the same key. However, as
already discussed, the groups must be carefully designed to
avoid open to internal masquerade attacks.
MaCAN makes use of group keys. However, using those
keys allows the attacker to perform replay attacks during the
authenticated time distribution protocol.
LCAP does not use any group keys approach. Rather, it lets every
receiver possess all the security parameters for each sender, which
may lead to possible masquerade attacks, as previously discussed.
Woo-Auth makes use of no group key approach and, as well
as LCAP protocol, it makes all the ECUs share the same
session keys, opening them to the internal masquerade attack
vulnerability previously discussed.
VeCure protocol is based on trust-level group ECUs partitioning
the ECUs, and for each group a key is defined. This represents a
group keys approach. However, as discussed in the masquerade
attack resistance section, VeCure’s group design opens to
masquerade attacks.
CaCAN, VulCAN, TOUCAN, and S2-CAN do not use any
group keys approach.
LiBrA-CAN makes use of group keys securely.
LeiA uses one key for each message ID, thus being consistent
with our definition of group keys.
AuthentiCAN does not use group keys because of the
asymmetric encryption.

C. Session Keys

CANAuth, Car2X, MaCAN, LeiA, and LiBrA-CAN make
use of session keys, thus improving their security in the case in
which a key is compromised. Possible damages are then limited
for the key lifetime, after which the new key must be learned.
LCAP and Woo-Auth make use of session keys as well.
However, we want to specify that because of their specifications,
this solution only has beneficial effects against external attackers.
At the same time, no advantage is gained against internal
attackers as all the receiver ECUs possess all the session keys.
LinAuthCaCAN, VeCure and vatiCAN do not make use of
any session key approach.
VulCAN uses short-term session keys, which are refreshed at
system boot time or whenever the session counter ci overflows.
These session keys are based on the long-term pre-shared secret
and a larger epoch counter, safely allowing nonces to start from
zero at each session.
TOUCAN does not make use of session keys. Moreover, since
Chaskey does not make use of nonces for the MAC computation,
authors state that to avoid attacks with a practical complexity
of off-line permutation evaluations, the total number of blocks
to be authenticated with the same key shall be at most 264 [76].
Even though this is a very large number, we must consider that
as the number of electronic components continuously increases,
this number may not be sufficient anymore to cover a vehicle’s
lifetime.
AuthentiCAN does not make use of session keys. However,
considering the security behind asymmetric key generation,
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TABLE VI: Operational criteria comparison of the different protocols.

Protocol Backward Compatibility Group Keys Session Keys Storage Overhead
CANAuth [14] 3* 3** 3 332·n groups+29·x·log2(n groups)

Car2X [65] 7 3 3 (86+256+128)·2n

LCAP [15] 3 3 3
164·(n−1)+96·n+λ·(36+16·x send)+

+16·
∑n−1
i=1 x sendi

LinAuth [66] 3 3** 7
LK ·(n−1)+LID ·

(∑xsend
j xreceivej +1

)
+Lc ·(x+xsend)

MaCAN [67] 7 3** 3 LK ·n
CaCAN [68] 7 7 7 Lss+512

VeCure [69] 3 3 7
128·(i−1)+(16+Loc)·

∑i
j=2gj+24

where i=2,...,n groups

Woo-Auth [13] 3 7 3**** 2·LMK+LSKs+(Lc+LID)·n
LeiA [8] 3 3 3 328·|ID|+Lη

vatiCAN [70] 3 3*** 7
(128+Lc)·n groups+29·
·(log2(n groups)·xgroups+p)

LiBrA-CAN [71] 3 3 3
(n−1
g−1

)
·LK+Lc

VulCAN [72] 3 7 3 (LK+LEC+32)x

TOUCAN [73] 3 7 7 128·(x+xsend)
AuthentiCAN [74] 3 Not needed Not needed (512+LK)·n+LK
S2-CAN [41] 3 7 3 LK+Q+48

* Only for transceivers supporting up to 60 Mbit/s
** Adoption may open to replay attacks.
*** Adoption may open to internal masquerade vulnerabilities without proper group design.
**** Effective only against external attackers.

we recognize that using session keys in an end-to-end
communication protocol does not offer any significant
improvement in terms of security. Rather, this could increase
some non-necessary overhead and power consumption.
S2-CAN does not properly use session keys in the strict
meaning of the term. However, payload encoding is performed
according to the global encoding parameter f , which can be
considered a key. As a result, since this is updated at each new
session, we can consider that the protocol uses session keys.

D. Storage Overhead

In analyzing the storage overhead of these authentication
protocols, several values and components must be considered,
which can vary between protocols. Table VII defines the
common symbols we use across our analysis to maintain
consistency. Values specific to a single protocol will be
introduced within that protocol’s analysis context. It is important
to note that the protocols often do not specify the number of
bits reserved for each parameter. Additionally, storage overhead
depends on various factors that may not be present in other
protocols’ analyses. For instance, while using group and session
keys can potentially reduce the storage overhead of a protocol,
this reduction is contingent on several variables, such as the
number of groups and the number of ECUs in the network.
Moreover, protocols employing group or session keys might
appear more advantageous in theory compared to those that do
not, but this can shift depending on other factors, like the length
of the secret key. Therefore, our analysis aims to provide the
most general evaluation possible, considering these complexities.
CANauth requires an additional storage of 128 bits for Ki and
KS,i each, 24 bits for ctrAi and 32 bits for ctrMi. This holds
for each defined group. Moreover, ECUs must maintain a table

TABLE VII: Notation for the storage overhead analysis.

Value Meaning

n Number of ECUs in the network
n groups Number of groups when using the group keys approach
gi Size of the group i when using the group keys approach

x
Number of different messages (IDs) the ECU is interested
in receiving

xsendi Number of IDs that ECUi can transmit
xreceive Number of different receivers that the ECU considers

LMK Number of bits for the master key

LSKs Sum of the number of bits of the session keys used

LK
Number of bits used for the secret keys (no distinction
between master or session keys)

Lc Number of bits used for the counter

LID Number of bits used for the ECU-specific identifier

Lss Number of bits used for the stored shared secret

Lη Number of bits used for the secret parameter η

λ Number of elements of the hash chain

that relates the IDs to the corresponding group. The minimum
size of the table depends on how many IDs the specific ECU
is interested in. Therefore, we have that 29·log2(n groups)·x
additional bits are required for storing the table (analysis is
done in the worst case where the extended identifier is used). To
conclude, CANAuth requires a total of (128+128+24+32)·
n groups+29 ·x · log2(n groups) = 332 ·n groups+29 ·x ·
log2(n groups) additional storage bits per ECU.
Car2X stores in the HSM of each ECU two keys that
carry a header field of 86 bits, key data of 256 bits, and an
authentication code of 128 bits, as defined also in [108]. These
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two keys are Ki,a and Ki,t. Each KM then stores the same two
keys for each ECU i in the group the KM manages. However,
since the KM is an additional node in the bus, we do not
count its storage in the overhead since we assume that external
hardware is equipped with the necessary capabilities. Thus, the
additional storage is (86+256+128)·2n.
LinAuth requires that each ECU stores a symmetric key with
each of the other ECUs in the network, requiring LK ·(n−1)
bits. Besides, ECUs are required to store their own specific
ECUID and an ID-table listing for each of the possible
message ID they can transmit, the ECUID of those nodes
interested in receiving the corresponding message. For each
ID j that an ECU can transmit, storing the table requires
LID ·

∑xsend

j xreceivej bits. Furthermore, for every transmitted
and received message ID, the ECU must also store a counter
for freshness in MAC computation/verification. This requires
Lc ·(x+xsend) bits. In conclusion, the protocol requires a total
of LK ·(n−1)+LID ·

(∑xsend

j xreceivej +1
)

+Lc ·(x+xsend)

additional storage bits for each ECU.
MaCAN requires all participating nodes to have secure memory
to store the key material. However, since session keys can be
requested at any time to the key server, there is no need for
the nodes to permanently store any information other than their
long-term key (LTK). However, the paper does not specify the
length of the long-term key. Thus, the storage overhead becomes
LK ·n This is valid whether the ECUs that need to communicate
belong to the same group, since in the former case, a common
group key can be requested and stored by the group members.
LCAP protocol expects that for each couple of ECUs, a 128-
bit master key is stored. This will then require 128 · (n−1)
bits. Further, ECUs will have to store their own and one for
any other node 80-bit session key, requiring 80 ·n bits. The
same reasoning is for the HMAC key: 16 ·n bits. Moreover,
2 ·16 ·λ bits are required to store the handshake and channel
hash chains, while just a single hash value is required for
received messages verification, which leads to 2 · 16 · (n−1)
bits. As last, 16·λ·x send bits are needed for the transmitted
messages hash chain, and 16 ·

∑n−1
i=1 x sendi are needed for

the received messages. Therefore, the protocol requires a total
of 128 · (n−1)+80 ·n+16 ·n+2 ·16 ·λ+2 ·16 · (n−1)+16 ·
λ · x send+ 16 ·

∑n−1
i=1 x sendi = 164 · (n−1) + 96 · n+ λ ·

(36+16·x send)+16·
∑n−1
i=1 x sendi bits storage overhead.

VeCure protocol introduces the ECU identifier of 8-bits length
and a session counter cs of 2 bytes. Then, assume having
n groups trust level groups that are enumerated starting from
1, corresponding to the lowest trust level group. An ECU in
group i has to store a 128-bit cryptographic key for each
group j=2,...,i (remember the lowest group does not provide
authentication; hence it has no secret key), thus 128 · (i−1)
are needed. Besides, each ECU has to store a 2-byte message
counter cm and an overflow counter co for itself and each of
the ECU belonging to security groups j = 2, ..., i. This will
then require 16·

∑i
j=2gj+Loc ·

∑i
j=2gj bits, where Loc is the

length of the overflow counter since it is not specified in VeCure
protocol. To conclude, VeCure requires each ECU belonging to
group i=2,...,n groups to handle 128·(i−1)+16·

∑i
j=2gj+

Loc ·
∑i
j=2gj+16+8 = 128 ·(i−1)+(16+Loc) ·

∑i
j=2gj+24

additional bits for authentication.
WooAuth assumes that the gateway ECU has higher computing
power than standard ECUs, so our analysis will focus on the
standard ECUs. Moreover, protocol specifications do not give
any information about the length of the master and session keys
or the counter values. Therefore, we will perform a very general
analysis. Each ECUi has to store its own ECUID , its long-term
key Ki, the gateway key KGW , and all the other session keys
(KE ,KA,KEK ,KG,KU ). Besides, ECUs also has to store its
counter and one for each other ECU. Since the counter is ECU
specific, there must be maintained a table associating it to the
corresponding ECU: (Lc+LID) ·n. This results in a total of
2·LMK+LSKs+(Lc+LID)·n additional storage bits.
CaCAN assumes the participation of a special Control Node,
for which it is reasonable to assume it is provided with all
the needed memory storage and computing power. Hence, our
analysis will be based solely on the standard ECUs. A standard
ECU must store the shared secret of length Lss, the 512-bit
encryption key, and a 32-bit counter value. This requires a
Lss+512+32 additional storage bits.
LeiA protocol expects that each ECU stores two 128-bit keys
(master and session), one 56-bit epoch value, and one 16-bit
counter for each message ID. Besides, each ECU has to store its
security parameter η. Assuming that |ID| different message IDs
are exchanged in the network, each ECU will have to store a
total of 2·128·|ID|+56·|ID|+16·|ID|+Lη=328·|ID|+Lη
additional bits.
VatiCAN expects that each ECU stores a 128-bit key for
each message it is interested in or for each group it is part of,
and a Lc bits for the counter. Moreover, since the possibility
of the group key approach, a table that relates the IDs with
the corresponding group must be maintained within each
network node. Hence, following the same analysis we did for
CANAuth, 29× log2 (n groups) additional bits are required
for this purpose. Lastly, since not every ID is authenticated,
a table of critical messages must be maintained. To conclude,
given xgroups the number of groups the ECU is interested in,
and p the number of protected IDs, the protocol requires an
additional amount of 128 ·n groups+Lc ·n groups+ 29×
log2(n groups)·xgroups+29·p= (128+Lc)·n groups+29·
(log2(n groups)·xgroups+p) storage bits.
LiBrA-CAN expects that each ECU is provided with an
encryption key for each group it belongs to and a personal
counter value. Hence, knowing that each ECU will belong
to
(
n−1
g−1

)
groups, each ECU is required of

(
n−1
g−1

)
·LK +Lc

additional bits storage capacity.
VulCAN uses 128-bit session keys for each connection. The
session keys are generated by both parties based on the
long-term pre-shared secret and a larger epoch counter. The
session keys are not stored on every ECU but rather generated
by the Attestation Server (AS) and distributed to all Protected
Modules (PMs) during load-time attestation. However, PMs
are hosted in each ECU as a protected software module. It
also uses a 32-bit nonce for each authenticated connection. By
defining LK as the length of the long-term pre-shared secret
and LEC as the length of the epoch counter, the additional
storage required is (LK+LEC+32)x.
TOUCAN storage overhead analysis will consider the message
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ID-based keys scenario since it is the only situation for which
the protocol offers General-internal masquerade attack resistance
properties. Hence, given x as the number of IDs an ECU is inter-
ested in, and x send the number of IDs the ECU can transmit,
recalling that the protocol uses 128-bit keys, the total amount of
additional storage an ECU must support is 128·(x+x send).
AuthentiCAN protocol specifications suggest defining a nonce
length of 8 bits with a total list length such that it fulfills
the payload size. CAN-FD protocol offers up to 64 bytes of
payload size. Thus, we derive that a nonce list can contain up
to 64 nonces. A list is kept for communication with each node
in the network. Additionally, an ECU must store its private and
public keys and all the other nodes’ public keys. Hence, an
ECU is required to maintain a total additional memory storage
of 8·64·n+LK+LK ·n=(512+LK)·n+LK bits.
S2-CAN protocol specifications require each ECU to store a
shared symmetric key (whose length is not given), the 3-byte
global encoding parameter f , the 1-byte int IDj parameter,
the Q-byte posint,j parameter, and a 2-byte counter cntj . This
results in a total amount of LK+24+8+Q+16=LK+Q+48
additional storage bit requirement.

X. SECURITY CLASSIFICATION

From the analysis above and relative summary tables,
we notice that among the security requirements, the most
discriminating one is the masquerade attack resistance.
Table VIII presents our ranking of the protocols resulting
from our security analysis. The ranking divides protocols into
four categories, which are secure protocols (Section X-A),
partially secure protocols (Section X-B), non-secure protocols
(Section X-C), and non-suitable protocols (Section X-D).

TABLE VIII: Protocols’ ranking.

Security Level Protocols

Secure Protocols

1) LiBrA-CAN [71]
2) AuthentiCAN [74]
3) LCAP [15]
4) CaCAN [68]
5) LinAuth [66]

Partially Secure Protocols
6) TOUCAN [73]
7) CANAuth [14]
8) MaCAN [67]

Non-Secure Protocols
9) S2-CAN [41]

10) Woo-Auth [13]
11) VeCure [69]

Non-Suitable Protocols

12) VulCAN [72]
13) LeiA [8]
14) Car2X [65]
15) vatiCAN [70]

A. Secure Protocols

In this class belong protocols that satisfy all the security
requirements. However, one may notice that CaCAN does not
satisfy the resynchronization capability requirement. Since we be-
lieve designing a proper one is not very demanding, we decide to
include CaCAN in this class anyway. In particular, what discrimi-
nates these protocols from the almost secure protocols class is the

resistance against Selective-internal internal masquerade attacks.
Therefore, we conclude that approaches based on H-MAC, hash
chain, or asymmetric encryption are the most secure in this partic-
ular framework of in-vehicle communications. Besides, LinAuth
also shows how using pair-wise shared secret keys allows one to
successfully defend against internal masquerade attacks; however,
this may raise issues with possible hard real-time compliance.

We classify LCAP and CACAN protocols one and two steps
lower than LiBrA-CAN and AuthentiCAN because they offer
weaker resistance against internal masquerade attacks. However,
we recall that this lower resistance is given by the fact that
the length of the authentication tags has been constrained due
to the limited size of standard CAN payloads. Therefore, if
protocols were adapted to work on top of CAN-FD, they would
benefit from the increased payload size, having the chance to
increase the length of the authentication tag, which results in
an increased level of security. Finally, LinAuth is last classified
within this group due to the possible issues for hard real-time
deriving from the multiple MACs computation due to the
pairwise secret keys approach.

B. Partially Secure Protocols

In this class belong protocols that satisfy all the security
requirements apart from the resistance against the Selective-
internal masquerade attacks. This class of protocols offers a high-
security level with the only exception of that particular situation.

We classify TOUCAN with a higher ranking than CANAuth
because (i) it is fully backward compatible and (ii) tends to
introduce a lower storage overhead. MaCAN instead scores
even lower due to the problematic use of group keys that might
allow for replay attacks in specific scenarios.

C. Non-Secure Protocols

In this class, some protocols do not offer protection against
internal masquerade attacks. This clearly is a significant security
lack that makes the protocol insecure for our scenario. This
is because the security elements of the protocols all depend
on one or more common security parameters. Thus, these
approaches are not a good solution and are not applicable for
secure authentication over CAN.

We classify S2-CAN better than WooAuth and VeCure
because these two protocols lack of a resynchronization
mechanism, and WooAuth is better than VeCure as it tends to
require less storage overhead.

D. Non-Suitable Protocols

These protocols are unsuitable for hard real-time in-vehicle
communication applications as they are not secure and do not
satisfy the hard real-time and atomic authentication requirements.
However, we have to specify that if CAN-FD was considered,
all protocols could become hard real-time compliant with respect
to our definition since they would take advantage of the much
larger payload size. This would, in fact, allow the transmission
of the authentication tag together with the authenticated message
without the need to split them into two frames. As a result, if
this were the case, LeiA and VulCAN would jump into the
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Non-Secure Protocols class, while vatiCAN and Car2X would
still be in this class due to their non-compliance with the replay
attack resistance requirement.

XI. TAKEAWAYS AND LESSON LEARNED

In this section, we point out the key takeaways and lessons
learned from our security analysis concerning adopting
cryptographic authentication solutions for the CAN-bus in the
automotive application.

Lesson 1 – Masquerade attack resistance is one of the most
important security requirements to ensure protocol security.

By looking at the results of our security requirements
comparison in Table V and the protocols classification, we
can identify the resistance to masquerade attacks as being the
most discriminating requirement. In particular, thanks to our
analysis, we highlight that the major focus in the literature for
CAN bus cryptographic authentication protocols is protecting
against external attackers, as defined in Section V. While all the
considered protocols resist external masquerade attacks, only half
are secure against General-internal internal masquerade attacks.
Further, just one-third of the considered protocols are fully
secure, thus also offering protection against the specific scenario
identified by the Selective-internal masquerade attack (VII-B).

Lesson 2 – Limited space in a CAN frame compromises
the security level, and thus CAN-FD should be preferred.

One of the major criticalities in designing an authentication
protocol for CAN is making the authentication tag fit into
the frame payload. This is due to the limited space in a CAN
frame. The most common solutions to face this issue are either
a tag truncation or splitting the authentication phase into two
messages and embedding the tag in a frame after the data frame.
However, as we have extensively discussed throughout our
analysis, these approaches lead to a lower security level in the
case of tag truncation or to non-atomic authentication and hard
real-time issues, in the case of message splitting. On the other
hand, these problems can be solved by adopting the CAN-FD
protocol as the new standard for in-vehicle communications.
Indeed, CAN-FD not only allows for an extended data payload
while maintaining an acceptable transmission time and bus load
but also offers full backward compatibility.

Lesson 3 – To meet security standards, novel authentication
schemes should align with the maturity level of the
highest-ranking protocols in our assessment.

The maturity of cryptographic authentication schemes for
CAN seems promising, as demonstrated by the fact that as
a result of our analysis, 5 out of 15 protocols (LiBrA-CAN,
AuthentiCAN, LCAP, CaCAN, LinAuth) are perfectly suitable
for a real-life implementation offering a very high level of
security and reliability. Besides, three other protocols (TOUCAN,
CANAuth, MaCAN) offer a high level of security but leave
open vulnerabilities only against the very specific scenario of
a Selective-internal internal masquerade attack.

Lesson 4 – Most secure approaches rely on hash chains,
asymmetric encryption, or M-MACs.

The best approaches for secure authentication in CAN are
based on (i) hash chains, (ii) asymmetric encryption, and (iii)
M-MACs, as they offer full security against the threat model
considered in this work. By adopting M-MACs in a broadcast
scenario, we gain the advantage that an internal attacker must
first learn the (symmetric) secret keys for all the receiving nodes
in order to successfully carry out a masquerade attack and
correctly generate the ensemble of MAC values. By adopting a
hash-chain solution, we rather gain advantage of the pre-image
resistance property guaranteed by the hash function. Therefore,
given the hash value Hi, an attacker cannot guess the following
value Hi+1 (which computation comes before Hi during chain
development) for correct authentication.

XII. CHALLENGES AND FUTURE DIRECTIONS

In this section, we look at the open challenges that need
to be addressed in automotive security and, more specifically,
CAN security. Furthermore, we highlight possible directions
for the future of in-vehicle communication.

A. Open Challenges

DoS attacks. Although applying authentication on CAN
bus messages can prevent attackers from compromising ECUs
by injecting malicious packets, it does not make the network
completely secure. Indeed, DoS attacks remain a significant
vulnerability of the CAN protocol [109]. While authentication
protects data integrity by ensuring only authorized entities can
send or modify messages, it does not address the availability
issue. Although it is possible to include mitigation techniques
such as message prioritization and redundancy checks in
the authentication protocols, their effectiveness in providing
comprehensive protection against DoS attacks is still uncertain,
making this an important area for future research.

Implementability. While analyzing the 15 authentication
protocols outlined in this study, it is pertinent to address their
real-world adoption. Despite extensive research and development
in this field, information regarding their widespread adoption
or implementation by vendors is limited. Indeed, while several
vehicle manufacturers have publicly stated their intentions to
enhance in-vehicle security, the details of their implementation
are either proprietary or not disclosed [110]. This opens up a
gap between academia and industry, hardening coherent research
progress in automotive security. Furthermore, it is essential to
note that manufacturers are often bound by industry standards and
regulations that mandate certain levels of security in automotive
systems. For instance, standards like AUTOSAR [57], ISO 26262
for functional safety [111], or ISO/SAE 21434 [112] impose
requirements for cybersecurity in automotive systems. These stan-
dards necessitate robust security measures to ensure the integrity
and safety of vehicle networks, which may indirectly influence
the adoption and implementation of authentication protocols like
those examined in this study. Finally, it is worth noting that propri-
etary authentication solutions might not strictly adhere to the spec-
ifications of the protocols presented in this paper. Nonetheless, the
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lessons learned from our analysis in this work are necessary as a
guideline for a secure and robust authentication implementation.

Protocol Integration. A third significant issue pertains to the
need for secure integration of different in-vehicle communication
protocols, a scenario becoming increasingly prevalent as vehicles
incorporate hybrid communication networks combining, for
example, CAN and Automotive Ethernet. This integration
presents unique challenges in establishing a robust and secure
authentication framework that can operate seamlessly across
diverse communication protocols.

Computational Overhead Comparison. As highlighted by our
analysis in Section VI, the lack of implementation details makes
it challenging to compare the computation overhead of these
protocols. Although, as stated in Section IX, the most important
security aspect in our scenario is compliance with atomic authen-
tication, it would still be beneficial to compare each protocol’s
time and energy overhead to optimize the proposals further.
Thus, developing a standardized benchmark to test authentication
protocols in common testbeds is a future direction to consider.

B. Future of In-Vehicle Communications

Due to the increasing demand for higher bandwidth to support
applications like autonomous driving and advanced infotainment
systems, Ethernet has recently gained attention and support to re-
place older protocols for future in-vehicle communications [113],
[114], [115]. The 10BASE-T1s protocol is a promising solution,
which enables standard Ethernet communication, removing the
need for gateways to interconnect incompatible communication
systems, thus favoring system scalability [116], [117]. In parallel
with the development of secure-by-design technologies for in-
vehicle communications, it will be paramount to carry on research
to secure existing vehicles that cannot be updated. Future research
should then focus on implementing new methods and optimizing
existing ones for key distribution and management tasks. Indeed,
many protocols considered in this work designed the authenti-
cation procedure assuming key distribution and maintenance as
a service. However, in real-life scenarios, these two aspects (i.e.,
key distribution and maintenance) are still open issues that delay
the adoption of these protocols in the industry, which, from the
security point of view, would be mature enough for deployment.

XIII. CONCLUSIONS

In addressing the critical challenge of securing CAN
communications in modern vehicles, this study presents and
compares the most promising authentication protocols currently
under discussion. Identifying essential security requirements as
foundational, our analysis evaluates the strengths and weaknesses
of these protocols. Additionally, we extend our comparison
to include operational criteria, providing a comprehensive
understanding of the protocols’ specifications and features.
In our findings, we observe a prevalent emphasis in existing
solutions on fortifying defenses against external attackers,
leaving potential vulnerabilities open to internal threats.
However, a notable subset of protocols, namely LiBrA-CAN,
AuthentiCAN, LCAP, CaCAN, and LinAuth, emerges as capable
of providing comprehensive security for message authenticity
and system reliability. These protocols, leveraging approaches

such as hash chains, asymmetric encryption, and M-MACs,
showcase robustness in safeguarding CAN communications. In
particular, the efficacy of the hash-chain approach, coupled with
asymmetric encryption and M-MAC techniques, stands out as
the optimal solution. This comparative analysis underscores the
availability of secure and viable authentication solutions within
the literature, dispelling any reservations about adoption. Such
protocols not only ensure secure communication exchanges but
also substantially mitigate potential harm from malicious attacks.

In conclusion, this work contributes valuable insights to the
realm of CAN security, advocating for the widespread adoption
of authentication mechanisms in in-vehicle communication. By
fortifying CAN bus security, our findings aim to motivate and
persuade manufacturing industries to embrace these proven and
secure authentication solutions, thereby enhancing the overall
resilience of automotive systems against cybersecurity threats.
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APPENDIX A
CRYPTOGRAPHY

This section presents an overview of the cryptographic
primitives that are introduced in this paper. We assume we have
two entities, Alice and Bob, that want to communicate with
each other and an eavesdropper, Eve.

A. Symmetric Encryption Cryptosystem
Alice and Bob want to communicate secretly, meaning that

a possible eavesdropper, Eve, listening to the communication,
cannot grasp the meaning of the conversation. Assume that
Alice and Bob share a secret K. We call it secret key. In a
symmetric encryption cryptosystem, Alice encrypts a secret
message u through a predefined encryption algorithm E(u,K).
The algorithm takes as input the secret message u, the secret key
K, and returns in output the encrypted message x: x=E(u,K).
Then, Alice transmits x to Bob, which in turn execute the
decryption algorithm D (x,K), giving as input the received
encrypted message x and the key K: u=D(x,K). We can then
derive that the following relation must hold: DK =E−1

K . It is
worth noticing that the secrecy of the communication between
Alice and Bob comes from the fact that Eve does not know the
secret key K, which is rather shared between Alice and Bob.

B. Symmetric Authentication
We want to authenticate the communication, ensuring that

Bob distinguishes whether a received message comes from Alice
or Eve masquerading as Alice. Assume that Alice and Bob
share a symmetric key k. Alice generates a signature x of the
transmitted message in a symmetric authentication mechanism
with a signing function S(u,k). The function receives as input
the message u and the key K: x= S(u,K). Eve wants Bob
to accept a forged message u′ rather than u. The authentication
problem can thus be modeled as a binary problem with a switch
b= 0 if the message comes from Alice, b= 1 otherwise. Bob
verifies the authenticity of the message thanks to the verification
function V (x̃,K), taking as input the received signature x̃ and
the key K. Hence: b̂=V (x̃,K). If b̂=0, then Bob accepts the
message, as this is coming from the legitimate transmitter; if
instead b̂=1, the message is rejected.

C. Asymmetric Encryption Cryptosystem

In an asymmetric encryption cryptosystem, there is no shared
key between Alice and Bob. Rather, each entity possesses a
couple of keys: a private key K and a public key K ′=f(K).
While the former is private and only known by the owner, the
latter is known to anybody. There is a special relationship between
the two keys, so if Alice encrypts a message using Bob’s public
key, only Bob can decrypt it as he is the only one who possesses
the corresponding private key. This system ensures that anyone
can encrypt a message, but only the legitimate receiver can
remove the encryption. The security of an asymmetric encryption
cryptosystem is based on the following assumptions: (i) it is com-
putationally hard to derive K from K ′; (ii) it is computationally
hard to derive the message u given K ′ and the encrypted message
x; (iii) it is computationally hard to derive K from u and x.

D. Cryptographic Hash Functions & Hash Chains

In general, a hash function h :X −→Y maps an arbitrarily
long input x∈X into a fixed-length output y∈Y , called as hash
value. The hash value is unique to the input data and should be
uniform in Y . A cryptographic hash function is a special class
of hash functions for which the following properties must hold:
1) Pre-Image Resistance – Given y ∈ Y it must be

computationally difficult retrieve x|h(x)=y.
2) Second Pre-image Resistance – Given x1 ∈ X ,

it must be computationally difficult to find
x2∈X ,x2 6=x1|h(x2)=h(x2).

3) Strong Collision Resistance – It must be computationally
hard to find any pair (x1,x2)∈X 2,x1 6=x2|h(x2)=h(x2).

A hash chain is a collection of hash values {y0,...,yn} where
the following relation holds: y0 =h(x),yi=h(yi−1),i=1,...,n,
and h(·) being a cryptographic hash function.
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