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Abstract
Baishuihe Landslide is a large active landslide that threatens shipping transportation in the Three Gorges
Reservoir (China). A manual monitoring system has been active since 2003. However, after the realization
of some intervention works in 2018-2019, new automatic instruments providing continuous data on
displacements, rainfall, reservoir water level, and groundwater table were installed. The data recorded by
the new system show that these works led to an effective stabilization improvement since the present
displacement rate is lower than that detected before interventions. However, the relevance of the Three
Gorges basin and the potential hazard of a possible collapse requires a reliable forecast of the landslide
evolution in a time scale from a few hours to a few days. To this aim, a two steps procedure is here
proposed. In the �rst step, after a preliminary preprocessing-denoising of data, carried out by means of
Discrete Wavelet Transform (DWT), a Continuous Wavelet Transform (CWT) procedure is used to provide
scalograms of the time series of three quantities, e.g., landslide displacement rate, rainfall and the
difference of water level between the piezometer and reservoir water level. In the second step, to evaluate
the relationships among the velocity trend and the other signi�cant quantities and obtain a reliable
velocity forecast, the images given by binding together two or three scalograms of the mentioned
quantities were analyzed with a Convolutional Neural Network (CNN) tool. Several trials with different
combinations of input time series of 2 or 3 quantities were carried out in order to recognize the factors
which mainly affect the current displacement evolution. The results show that, after the works, rainfall is
an important factor inducing deformation acceleration. The hydrodynamic pressure induced by the
difference between the ground water pressure and reservoir water level also plays a dominant role in
accelerating the Baishuihe landslide. Furthermore, the coupling of rainfall and hydrodynamic pressure
produces displacement velocities higher than what the quantities singularly do. These results provide
valuable indications for optimizing the monitoring con�guration on the landslide and obtaining velocity
forecasts in a few hours/days.

1. Introduction
Baishuihe landslide is one of the landslides activated with the impoundment of the Three Gorges
Reservoir. It is a large-scale deep-seated landslide deforming all the time (Li et al. 2009; Miao et al. 2016).
Its possible failure poses threats to the coastal buildings and facilities, also to people safety (Xu et al.
2018). Moreover, because of its acceleration, channel warnings and closures affect the shipping
transportation causing substantial economic losses. In relation to the above, it is vital to ensure the
stability of the Baishuihe landslide as much as possible, but also maintain an e�cient monitoring system
and improve the analysis of compiled data to increase the knowledge and improve the reliability of the
landslide evolution forecasting.

The manual monitoring system, active since 2003, showed a regular displacement trend with a "step-like"
shape once a year (Du et al. 2012). Since the magnitude of the "step-like" displacement tended to
increase, some intervention works were conducted from October 2018 to October 2019. Meanwhile, the
monitoring system was upgraded and converted to an automatic quasi-continuous acquisition of
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displacements, rainfall and water level. The data obtained by the newly-built monitoring shows that the
landslide signi�cantly changed its displacement trend, becoming more stable. According to qualitative
analysis, the periodical acceleration seems to be caused by rainfall. However, literature shows that the
periodic water level �uctuation in the Three Gorges Reservoir is one of the main factors affecting the
evolution of landslides in the area (Miao et al. 2020; Song et al. 2018). Hence, it is necessary to
quantitatively analyze the factors that directly and potentially affect the displacement trend. Apart from
this, displacement forecast is treated as an effective way to provide the basis for early warning. In this
speci�c case, it is meaningful for forecasting the displacement evolution after stabilization.

In recent years, many mathematical and computational methods, such as statistical regression, machine
learning and deep learning methods (Tehrani et al. 2022; Wang et al. 2022) were applied to landslide
analysis. These methods are effective in many areas, including research on landslide forecasting (Ahmad
et al. 2019). In this subject, many factors that induce landslides were considered. For instance, Orland et
al. (2020) used soil moisture, pore pressure, and rainfall data to construct a deep learning model to
predict the timing and magnitude of hydrologic response at multiple soil depths for the 36-hr interval for
landslide-prone hillslopes in Oregon, USA. Moreover, factors such as evaporation, in�ltration and runoff
under different rainfall types were used for feature recognition to predict the Baishuihe landslide
displacements between April 2007 and December 2008 (Liu et al. 2016). Martelloni et al. (2013) proposed
the use of snow accumulation and melting as reference factors for an integrated model used in regional-
scale landslide forecasting and early warning system. Finally, rainfall and water level are two signi�cant
factors always considered when analyzing mechanisms (Miao et al. 2020) or predicting displacement
trends (Long et al. 2022) of landslides at the Three Gorges Reservoir in China.

As an essential landslide in the Three Gorges area, Baishuihe landslide has already been studied in many
aspects, and various researches were already carried out to interpret its movements. In particular, many
researchers studied its "step-like" displacement curve adopting a “decomposition” approach, according to
which the real-time series is considered as the result of three overlapped displacement terms, one of each
due to a different physical cause: the long-term related to the viscous trend, the periodic term due to the
oscillations of the basin water level (Du et al. 2020; Du et al. 2012; Pei et al. 2021) and the residual term
related to the climatic conditions (Jiang et al. 2021, Li et al. 2020; Liao et al. 2020; Liu et al. 2021; Wang
et al. 2021; Zhang et al. 2020, Zhou et al. 2018; Zhu et al. 2018). After decomposition, different methods
are applied to forecast the movements, such as Extreme Learning Machine (ELM) methods (Du et al.
2020; Huang et al. 2016; Lian et al. 2013; Liao et al. 2020), Binomial Regression with Back Propagation
Neural Network (Du et al. 2012), Periodic Neural Network (PNN) (Liu et al. 2021), etc. Among them, the
deep learning method was applied to Baishuihe landslide as well, like Long-Short Term Memory Network
(LSTM) (Orland et al. 2020; Wang et al. 2021; Wang et al. 2021; Yang et al. 2019), Recurrent Neural
Network (RNN) (Chen et al. 2013), Convolutional Neural Network (CNN) (Pei et al. 2021; Catani 2020), etc.
However, all the studies mentioned above concentrated on evolution before 2018, when the stabilization
project started. No evolution studies after stabilization works were performed yet, even if the landslide
needs to be further studied to explore its displacement characteristics and regularity and evaluate the
intervention effects. On the other hand, the mentioned decomposition approaches were generally
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characterized by high time-consuming methods since they need to split the displacement data into two or
three terms, analyze them separately making an individual prediction for each one and, �nally, combining
them up to provide the results.

In this paper, a new approach is proposed for analyzing the monitoring data recently collected at
Baishuihe landslide, for exploring which factors and how they affect its current kinematic, and, �nally, for
optimizing the forecasting system for short and long-term warnings. The proposed approach maintains
the original displacement time series and uses a time-frequency analysis. The displacement time series,
together with those of rainfall, water level in the basin, and pore pressure measured in one piezometer, are
elaborated with a multi-stage procedure coupling several tools for the signal analysis, speci�cally the
Discrete Wavelet Transform (DWT), the Continuous Wavelet Transform (CWT) and the Convolutional
Neural Network (CNN). The proposed method is an upgrade of the one proposed by Teza et al. (2022),
previously successfully applied to the forecast of a landslide active in the North-East of Italy and
implemented in the MATLAB toolbox named WADENOW, free supplied within an open-platform.

2. Methodology
In the initial version of WADENOW toolbox only two factors are related together: rainfall and landslide
velocity. Here, in order to consider multi-factors to forecast landslide displacement trend, an upgraded
version is developed to simultaneously process three parameters (velocity, rainfall, and difference
between reservoir level and water table, which is proportional to pore pressure) and gain a more
comprehensive application. In addition, in the new version the parameter combination is feasible,
allowing to effectively evaluate and predict the combined impact of two or three factors on the target
factor.

Figure 1 shows a �owchart which summarizes all the steps composing the improved version of
WADENOW.

As depicted in Fig. 1, the procedure is subdivided into three main parts: data preprocessing, not existing in
the previous WADENOW version; the scalogram generation and, �nally, the CNN-based forecasting, whose
inputs are the scalograms and output is the landslide motion prediction. In the tuning stage, the CNN
training, validation and testing is carried out by using available data.

A new pre-processing step is added to obtain a �ltered displacement rate time series. If the landslide
displacement is measured with a �xed time step, for example by using GNSS stations, an interferometric
radar or a robotized total station which acquire a series of retro-re�ecting targets, it is possible to obtain
the curve of displacement rate that can be in turn treated as a signal. If the landslide is very slow moving,
i.e. the average velocity is between the 16 mm/y and 1.6 m/y (Cruden and Varnes 1996), where y
indicates the non-SI unit “year”, the measuring errors induced by the monitoring system can generate
velocity values that have no physically meaningful that have to be corrected by a denoising process. To
solve this issue, the hourly displacement rate is computed and the result is denoised by using DWT to
correct data without a physical meaning (e.g., negative values), leading to a reliable velocity value.
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In the second part, the CWT is used to provide scalograms of physical factors affecting the phenomena.
Scalogram images, which can be used as CNN inputs, are then obtained from scalograms. With respect
to the �rst version in Teza et al (2022), the procedure is modi�ed in order to allow the use of scalograms
of two or three different monitoring quantities. The size of scalogram images is constrained by the CNN
model used for transfer learning (Weiss et al. 2016).

A CNN learns to provide the forecasts by means of training, validation and testing. Since the aim is the
tuning of a forecasting system, the input data are both scalogram images and the kinematic data which
correspond to the same time steps of the forecasts in the operational stage. The data (input and output
that should be reproduced) are subdivided into three subsets for training, validation and test respectively.
In particular, training and validation are performed at the same stage. The training data are used to train
the CNN, i.e., the model parameters are estimated by means of these data. The validation data are used in
the same stage to evaluate the forecasting performance and prevent overtraining. Finally, in the testing
stage the CNN performance is evaluated by computing and interpreting the confusion matrix. As such a
stage is successfully completed, the CNN can be used to provide forecasts.

Obviously, it is necessary to train a speci�c CNN for each of the considered con�gurations (rainfall and
velocity; pore pressure and velocity; rainfall, velocity and pore pressure), as depicted in Fig. 1.

In the following a brief description of the processing tools implemented in the methodology is provided.

2.1 Discrete Wavelet Transform (DWT)
In the Fourier transform, the base for the representation of a generic function consists of sinusoids
having in�nite duration; therefore, in the transform process the local information is lost. The wavelet
transforms are based on wavelets with varying frequency and limited duration instead. In this way, a
signal can be analyzed both in frequency and time. In particular, a DWT decomposes a given signal into a
number of sets, where each set is a time series of coe�cients describing the time evolution of the signal
in the corresponding frequency band (Hosseinzadeh 2020).

In order to represent a signal by means of DWT, a mother wavelet and a corresponding scaling function
are to be chosen. The wavelet coe�cients obtained by projecting a signal onto scaled and time-translated
versions of the scaling function are the approximation coe�cients because they are related to different
levels of approximation, whereas the wavelet coe�cients obtained by projecting such a signal into scaled
and time-translated versions of the mother wavelet are the detail coe�cients because they encode the
differences between two adjacent levels of approximation. The original time series can be reconstructed
by means of inverse DWT (IDWT).

The DWT-based denoising is based on a fact that such a transform concentrates the signal features in a
few large-magnitude wavelet coe�cients. The wavelet coe�cients which are small in value are typically
noise and they can be removed (i.e., taken to zero) without affecting the signal information. After this
treatment, the signal is reconstructed by means of IDWT. The DWT computation is performed by means
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of �lter banks, see e.g., Mallat (2008). Such an architecture has the advantage that the DWT can be
implemented without the need to consider the explicit form of the scaling function and wavelets.

There are many wavelets that can be used for denoising, each of them with some advantages and
disadvantages, e.g., Daubechies (Daubechies 1992), Biorthogonal (Cohen et al. 1992) and Coi�ets
(Burrus and Odegard 1997) Wavelets with similar properties may have different denoising performance;
however, depending on the type of data, a speci�c wavelet could be more suitable (Cai and Harrington
1998). In this study, the Biorthogonal wavelet (Bior 3.1), which is characterized by biorthogonality,
compactness and symmetry, was selected to denoise the kinematic data.

In the speci�c case, denoising is based on Bior 3.1, in which scaling constant equals to 3 and translating
constant equals to 1. Moreover, wavelet decomposition level is carried out at the level 1 to ensure data
�delity, and the mode “periodic” is set to be run in signal decomposition and subsequent reconstruction.
All these choices come from a trial-and-error approach based on real data.

2.2 Continuous Wavelet Transform (CWT)
The CWT of a signal y(t) is given by:

1

where  is the mother wavelet, i.e., is a zero-average oscillating function well localized both in time
and frequency,  is the scaling constant,  is the translation in time and  is the complex
conjugate of . As  and  change, the analysis of a non-stationary signal at multiple scales and
different times can be carried out. The range of  and  are de�ned on the basis of the chosen mother
wavelet and from the Nyquist frequency (half of sampling frequency). In the speci�c application, these
ranges are automatically assigned by a WADENOW function.

Among the various possible CWT obtained by selecting different mother wavelet functions, the Morlet
wavelet (Goupillaud et al. 1984) is particularly suitable for detecting and analyzing transient signals
(Bello et al. 2005) and is often used mainly as a mother wavelet for CWT of geophysical time series,
including climatological and meteorological data (Hochman et al. 2019). The complex Morlet wavelet
with center frequency  and time decay parameter  is an oscillation with a frequency  tapered by a
Gaussian window with variance , i.e.:
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these two parameters are such that (Cohen 2019):

3
,

where n is the cycle count that governed the frequency domain energy spread and the time domain decay.
In particular, as n grows, the CWT energy concentrates more at , the wavelet decay in the time domain
slows down, and the sinusoid oscillates more frequently. The selection of n and, consequently, ,
depends on the application. The result of CWT application is the scalogram, i.e., the CWT modulus, which
represents the signal energy.

Scalogram images compatible with the subsequent CNN-based stage are generated by integrating two or
three synchronous scalograms, one over the other, on a same image, depending on the number of input
signals (velocity and rainfall, velocity and pore pressure, or also velocity, rainfall and pore pressure).

2.3 Convolutional Neural Network
The data provided by monitoring systems can be analyzed by means of arti�cial intelligence systems in
order to obtain useful information regarding the studied phenomenon.

In general, a CNN consists of two parts:

(1) a convolutional base, aimed at generating some features from the input image and composed by a
stack of convolutional and pooling layers;

(2) a classi�er, aimed at classifying the image on the basis of the features detected by the convolutional
base and usually composed of fully connected layers.

Here, a pre-trained CNN, i.e., the VGG19 model proposed by Simonyan and Zisserman (2015), is used for
the recognition and classi�cation of scalogram images after transfer learning. Transfer learning consists
in replacing the original classi�er with a new classi�er that �ts the new classi�cation purposes by means
of a speci�c training. In terms of the network architecture, the VGG19 CNN consists of 47 layers, among
which there are 19 layers (16 convolutional layers and 3 fully connected layers). Additional layers like
MaxPooling and dropout are also included (LeCun et al. 2015). Input images for VGG19 have size 224 x
224 pixels.

2.4 WADENOW toolbox
The WADENOW toolbox was upgraded in order to include DWT-based denoising, CWT-based scalogram
generation and CNN-based scalogram classi�cation for two or three input time series and to improve its
power in movement-inducing factor evaluation and short-term forecasting.

σt =
n

2πf

f0

σ2
t
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Let  be a generic evaluation time, i.e., a time at which the monitoring data are to be analyzed and a
forecast should be provided, expressed in days. As depicted in Fig. 2 the time span is set from 
to , where  is the observation interval used for obtaining the forecasting and  the
forecasting interval. In this application,  and  are set equal to 15 and 2 days, respectively.
Figure 2(a) and (b) represent the schemes of the basic version of WADENOW with two parameters and
the upgraded version with three parameters.

To implement the image classi�cation, the velocity is used as a reference parameter for classifying the
evolutional state of the landslide according to a typical displacement-time evolution of a creeping slope
evolving towards failure (Fig. 3). The displacement-time curve could be divided in several portions: B is
the threshold between an initial deformation stage AB and the constant deformation stage BC, while C is
the threshold between the constant deformation stage BC and the acceleration stage CF preceding the
collapse (Qiang et al. 2008).

Stage AB is always considered to be safe, while stage BC is a relatively stable state from which the
landslide can have two evolutions: a subsequent increasing of the displacement rates (CF stage) up to
reach the failure or a deceleration and a regression to the stable condition (AB stage). Most of the
landslides in the reservoir are in stage BC. Within the stage CF, it is possible also to distinguish a span CD
of low acceleration and a span DE of medium acceleration. When entering the EF span, i.e., the sliding
acceleration stage, it is necessary to give the warning and evacuate the area.

As for the forecasting activity, seven landslide phases, from L1 to L7, are considered. These phases are
obviously related to the above described landslide kinematic stages (Fig. 4). In particular, they are: L1)
phase of low speed; L2) transition from low to medium speed, whose threshold is ; L3) phase of
medium speed; L4) transition from medium to high speed, whose threshold is ; L5) phase of high
speed; L6) deceleration from high to medium speed and L7) deceleration from medium to low speed.

The output of CNN is the prediction of the landslide phase among L1, …, L7 on the basis of input data. In
order to give an evaluation of the tool performance, it is necessary to compare the prediction with the
reality by means of a confusion matrix. This is a matrix with two dimensions, one is indexed by the actual
event, and the other is indexed by the event that the classi�er predicts with the same input data.

Figure 5 shows the confusion matrix for a multi-event classi�cation task, with the events A1, A2, to An. In
the confusion matrix, Nij represents the number of samples actually belonging to event Ai but classi�ed
as event Aj (Deng et al. 2016).

To quantify the reliability, two indexes are chosen in this paper:

1) Accuracy de�ned as the proportion between the correct predictions and the totality:

tc
tc − NA

tc + NB NA NB

NA NB

VM

VH
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4

2) Precision is a measure providing how many times a speci�c event is correctly predicted, according with
the de�nition:

5

3. Case study: Baishuihe Landslide

3.1 Landslide general features
Baishuihe landslide is a large-scale deep-seated landslide located in the administrative area of Zigui
County, Hubei Province (31° 01′ 34″ N, 110° 32′ 09″ E), 56 km uphill of the Three Gorges Dam along the
Yangtze River (Fig. 6).

The elevation of the summit point is 297 m a.s.l. with the main crack as the rear boundary (Fig. 7). The
lower point is at an elevation of about 120–130 m a.s.l. which is always below the water level of the
Yangtze River reservoir (about 145 m a.s.l.). The landslide spreads 500 m long from North to South and
430 m wide from East to West, covering an area of 215,000 m2 with a shape of an “irregular circle” (Li et
al. 2009). Its average thickness is about 30 m (Fig. 8) and its volume is 6.45×106 m3. The main sliding
direction is from SSW to NNE, along the slope dip direction and toward the Yangtze River.

The body of the landslide is constituted by a chaotic loose material within which a uniform layering is not
recognizable. There is not a continuous unique base at the contact with the lower rock and the thickness
of the sliding mass varies between 7.5 and 37.7 m (Fig. 8). The zone where the sliding movements are
concentrated is mainly composed of silty clay containing gravel or breccia fragments with a thickness
varies from 0.2 to 1.3 m with an average value of 0.7 m. The stable bedrock is mainly composed of the
Jurassic Xiangxi Formation (J1x), a strati�ed siltstone-mudstone, with a dip direction of 15°N and a mean
dip angle of 36°.

3.2 Evolutionary Process
According to the displacement data and the macroscopic deformation characteristics of Baishuihe
landslide, it was divided into three parts (Fig. 6(c)): two warning areas (W1 and W2), showing the major
intensity of deformation, and one non-warning area (N), where only low intensity deformation was
observed. Deformation occurs mainly during the �ood season, generating the gradual formation of many

Accuracy =
∑n

i=1Nii

∑n
i=1∑

n
j=1Nij

Precision =
Nii

∑n
k=1Nki
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cracks, some of which did not expand until landslide failure while others were eliminated during the
stabilization project.

3.3 Monitoring systems and stabilization works
Figure 7 shows the monitoring system originally implemented after the �rst macroscopic deformations,
since June 2003. A total of 11 manual monitoring stations were set up: 5 in N area (ZG91, ZG92, ZG94,
ZG119, ZG120) and 6 in W1 and W2 areas (ZG93, ZG118, XD-01, XD-02, XD-03, XD-04). Since the water
level in Three Gorges Reservoir reached 175m in 2008, XD-02, XD-03 and XD-04 are submerged by the
water during every �ood season.

In October 2018, to prevent the landslide from other displacements and endanger the safety of shipping
in the Yangtze River, the landslide was subjected to some stabilization interventions. The project includes
(Fig. 10): stabilization of the slope toe with a back�ll; reduction of rainwater in�ltration with four large
drainage trenches installed along the slope from the top to the toe; drainage of sur�cial water in the left
side of the slope with a short drainage culvert; protection of the relatively steep areas with a cover turf;
excavation of a large volume above the steep area to reduce the weight of the upper slope, prevent
rockfalls and improve the overall stability; realization of a retaining wall on the rear part of the excavated
area to protect the riverside road crossing from one side to the other the landslide area. In the two years
after the work the landslide displacement trend slowed down signi�cantly, as shown in Fig. 12.

In addition to the works, a new monitoring system (Fig. 11) was installed for checking the mitigation
effect gave by interventions and the subsequent slope kinematic. A total number of 10 GNSS stations,
including 4 stations (DB4, DB5, DB7 and DB8) with automatic recording every hour and 6 (DB1, DB2, DB3,
DB6, DB9 and DB10) with manual registration, are devoted for the sur�cial displacement monitoring. To
complete the system there are 4 groundwater monitoring stations, SW1, SW2, SW3, and SW4, reaching
depths of 23 m, 24 m, 23.5 m, and 31 m, respectively.

3.4 Analysis of data after stabilization works
In Fig. 12 the displacements accumulated with time at the stations ZG93, ZG118 and XD-01, installed in
2003, are compared with the reservoir water level and the monthly rain. It is evident as consequently to
the rise of the maximum water level in the reservoir, from about 140 m to 145 m in 2003 and then to 155
m in 2006, a “step-like” deformation appeared with the majority of annual displacements occurring in the
rainy season. A relatively large displacement increment appeared in 2015, probably due to a cruise
capsizing occurred in the Yangtze River which led to the abnormal regularity of reservoir water level (Yang
et al. 2017). Next, the “step-like” deformation started to slow down from the beginning of 2019 during the
stabilization work realization and the same displacement trend is maintained after their completion.

Figure 13 shows a detail of the previous plot in the period from October 2018, when the stabilization
started, to the end of 2021. In addition to the reservoir water level and the daily rain, the displacement
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observed at the new station DB5 and the groundwater level in SW1 are also reported. When zooming the
displacement graph, the “step-like” trend, even if less evident as in the past years, is also present.

Figure 13 clearly shows that the groundwater table (GWT) in SW1 is strongly related to the reservoir water
level (RWL) and to the rain. In fact, when in the winter season the RWL is high, i.e., over 169 m, the GWT in
SW1 is at the same level. On the contrary when the reservoir is drained and its water level goes below
169m, the GWT in SW1 remains high and the difference ΔW between the two levels increases reaching
maximum value to 32.6 m. It is also easy to note that when a heavy rainfall occurs a rise to 10 m of GWT
in SW1 can be observed only if the RWL is lower than 169 m. The “step-like” displacement seems occur
precisely at this stage: on the contrary, if a rainy event occurs when the RWL is high, no oscillation of
GWT in SW1 appears.

In order to evidence this behavior, three events of deformation with different conditions of rainfall, RWL
and GWT in the piezometer are selected in the period 2020–2021 and the impacts of rainfall and RWL are
qualitatively analyzed. According to Fig. 14(a), during August every year, the RWL �uctuates and heavy
rainfall rarely happens in this period. The velocity oscillates around the zero value, showing also negative
values due to the di�culty of accurately calculating this quantity. In fact, the velocity is obtained as the
difference between the measured values of accumulated displacement into subsequent instants: if the
landslide moves very slowly, like it happens after the stabilization project, a small measuring error in the
displacement can give a negative difference that, of course, has no physical meaning because a
landslide does not come back. From this example, it cannot be concluded that the RWL and GWT have no
in�uence on velocity because it seems that its variation has no effect.

A second typical situation, reported in Fig. 14(b), occurs after the rainy season in mid-November. The
reservoir water keeps to the maximum level and GWT does the same. In general, apart from some
oscillations, the landslide in this period can be considered in a stable state, despite some intense rainfall
episodes. Similar with RWL and GWT, the rainfall still cannot be considered a factor surely affecting the
displacement velocity.

Finally, in Fig. 14(c) it is reported what occurred from the beginning to the end of July 2021. In this rainy
period, while the water level in the reservoir is maintained around 145m, the heavy rainfall induces a
temporary increase of the water table in the piezometer with respect to the level in the reservoir. At once, it
is observed a signi�cant increase in the displacement velocity, which has consistency with both rainfall
and GWT.

Due to the uncertainty of the cases above, it is necessary to quantify how much these factors affect the
deformation after intervention. As it is well-known, hydrodynamic pressure is one of the main elements
affecting landslide kinematic mechanisms. Therefore, the difference of RWL and GWT, here de�ned as
ΔW, was used in the model as an indirect measure of the hydrodynamic pressure acting inside the
landslide body. Consequently, in the following, the factors used in this study are ΔW, rainfall and
displacement velocity.
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4. Calculation and results
In order to have a more signi�cant series of velocity for studying the kinematic behavior of Baishuihe
after stabilization, only the data series of the station DB5 from the 1st November 2019 to the 31st
December 2021 is used. After application of the previously described denoising procedure with Bior 3.1
Wavelet, the database composed by approximately 19750 hourly data is subdivided in three parts: about
70% of it is used for training the CNN model, 15% for the validation and then 15% for the prediction, and
�nally evaluating its reliability is necessary.

Regarding the velocity thresholds  and , identifying the points B and C (Fig. 3), these values are
“landslide speci�c”. Based on the data from automatic GPS monitoring stations since 2003 to 2018, in
every rainy season, Baishuihe entered in DE stage, even sometimes in EF stage. However, after
stabilization work, the velocity is strongly reduced and to better classify the velocity state of Baishuihe it
is convenient to adopt two velocity thresholds within the range CD of the initial acceleration, for instance,
points G and H. For this reason, also in this case, like in the original application of WADENOW, it was
adopted velocity thresholds  and  equal to 13.7 mm/d and 9.5 mm/d, respectively.

According to this choice, the time series of rainfall, ΔW and velocity are classi�ed in the groups L1 – L7

and the relative scalograms are obtained. Figure 15 and Fig. 16 show some typical scalograms for the
various L1 – L7 groups obtained with CWT in analysis considering 2 or 3 factors at once.

In the �rst case (2 factors analysis), two con�gurations are considered: one considering rainfall (R) and
velocity (V) scalograms together (Fig. 15(a)), the other considering rainfall R and ΔW scalograms
(Fig. 15(b)).

On the other side, Fig. 16 shows the scalograms of analysis with all the factors (R–ΔW–V) together.

5. Evaluation and comparison
Tens of thousands of images were used to form the scalogram dataset to be transferred into CNN. After
training and validation of CNN, performed using the 70% and 15% of the entire database, respectively, the
confusion matrix is obtained on the basis of the last portion of database (15% of all). Figure 17 shows
the confusion matrices of 2-factors con�gurations (i.e., R vs V and ΔW vs V, respectively), while Fig. 18
shows the confusion matrix of 3-factors con�guration (i.e., R + ΔW vs V).

Then accuracy and precision were used to compare and analyze as Fig. 19 shows.

The values of accuracy show that the overall accuracy of prediction obtained on the basis of a single
factor (rainfall or difference of levels) is very good, e.g., equal to 94.2% with both the factors, while with
their combination the accuracy is a little bit smaller (94.1%) but still satisfying.

Looking at the precision, it is not possible to arrive at a unique judgement, because this parameter
presents different values for each phase. The L1 phase always happens when the reservoir water level

VH VM

VH VM
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RWL starts to draw down in March every year. With the RWL drawing down, the hydrodynamic pressure,
considered by ΔW in the analysis, generates. However, at the same moment, the rainfall occurs and the
landslide deformation starts to develop. For this reason, the precision of CNN based on R only is high
(96.7%) but it increases more when adding the factor is ΔW reaching to 98.7%.

From April to June in every year, the RWL is drawing down and hydrodynamic pressure gradually
increases. This condition generally happens in the groups L2, L3 and L4, for which it is evident that ΔW
plays a dominant role in deformation speeding up and the precision of the ΔW scalogram is the highest
among the three possible combinations of factors (98.8%, 92.9% and 93.2%, respectively).

The “step-like” phase appears exactly immediately after this period and is contained in the L5, when the
displacement rate reaches the highest values. This condition is no longer determined by a single factor
but by the combination of R and ΔW: the prediction precision of the double scalograms reaches in
absolute the highest value among all the cases (99.1%).

If heavy or continuous rainfall occurs when the RWL is at its minimum value, the velocity will be pushed
to within the high-speed deformation range (L5 phase). It is a common phenomenon in the rainy season
in June, July and August. For this reason, also rainfall has a fundamental rule, as depicted by the CNN
based only on R for phase L5.

In phase L6 rainfall is dominant with a CNN precision (96.6%) higher respect of precision of CNN based
only on ΔW or the combination of rainfall and ΔW. In this state, the landslide begins to decelerate from
high to medium speed and this generally happens in September, when RWL is risen and the
hydrodynamic pressure reduces progressively.

Finally, phase L7 is when RWL reaches the maximum value, e.g., 175 m. A very high RWL stabilizes the
landslide and in the meanwhile a small rainfall can cause low-speed deformation. In this case, the result
shows that the combined factors, whose CNN precision is 96.8%, are more e�cient for predicting L7.

6. Discussion and conclusion
This study upgraded a DWT-CWT-CNN-based forecasting procedure. The upgrade is based on
displacement rate evaluating the in�uence magnitude of various factors in a speci�c kinematic state and
predicting the future displacement change trend. Finally, the upgrade version is here applied to the case
of Baishuihe landslide in Three Gorges Reservoir in China.

At �rst, Baishuihe is a well-known landslide that many researchers have already extensively studied
because, in the years, it has developed very large deformation. The regular “step-like” displacement
evolution displayed in the period 2003–2018 was clearly caused by the periodic �uctuation of the
reservoir water level, but after the stabilization works carried out in 2018–2019 the deformation evolution
underwent a complete change. The “step-like” behavior becomes less evident, especially starting from the
second year, and the effect of rainfall seems to be predominant. According to the velocity classi�cation,
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at present the velocities are in the ranges of initial deformation, constant deformation and initial
acceleration stages. It can be summarized that after interventions Baishuihe landslide is quasi-entirely
stabilized.

Secondly, even if the risk is surely mitigated and the laws of deformation in years before stabilization are
no longer applicable to the current Baishuihe landslide, a landslide status evaluation coupled with an
early warning still remains a very effective and timely strategy for the correct management of the area. To
this purpose and to better evidence the effects of various factors, the deep learning method here
proposed considers landslide monitoring data such as rainfall, reservoir water level, groundwater table
and speci�c velocity, the last one evaluated on the base of sur�cial displacement time series. On the
basis of these data the procedure generates scalograms, which are variously combined to form the
images sent to the deep learning procedure. The selection of these parameters is conditioned by the
existing database in this case study, but, if the method have to applied for the analysis of other
landslides, they can be changed according to the available dataset: consequently, the sur�cial velocity
could be substituted with the rate of deep displacement variation obtained on the base of data acquired
by an inclinometer or an extensometer, or, it may be that other parameters, for instance the temperature or
the snow area covering, could have larger in�uence.

Finally, the here developed procedure reveals the accuracy and precision of Baishuihe landslide forecast
under different factors: rainfall, hydrodynamic pressure, displacement rate and their combination. There
is not a unique result, because depending on the landslide status a better prediction can be obtained or
on the base of only one single factor or considering the in�uence of different factors. Rainfall mainly
affects the phases L1 (activation of slow mobility) and L6 (deceleration), whereas hydrodynamic pressure
plays a dominant role in more signi�cantly accelerating the deformation (L2, L3, and L4 phases), In
addition, in the high-speed phase L5, the resulting velocity is affected by the combination of rainfall and
hydrodynamic pressure: although the prediction precision using a single factor is high (97.2% for rainfall
and 97.9% for ΔW), the coupling of these factors pushes up the precision of prediction even more to
99.1%. In conclusion, it is proved that both rainfall and hydrodynamic pressure play a dominant role in
the trigger of Baishuihe landslide deformation, but their combination could push the displacement rate
even higher.

It is important to emphasize that having more than one CNN makes it possible to obtain forecasts even if
one of the monitoring systems is temporarily unable to provide data. For example, if it were not possible
to have data about pore pressure, it would still be possible to obtain predictions using only velocity and
rainfall.

The computation time required for CNN training/validation/test is around 45 min for each of the two
inputs and 55min for the three inputs con�guration respectively, with a PC with Intel i9-10900 CPU @
3.7GHz (GPU accelerated), 16.0 GB RAM. This means that the proposed approach is completely
compatible with the typical currently available computation resources. Moreover, as the CNNs are trained,
the complete forecast computation, including data pre-�ltering, can be carried out instantly after the data
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receiving. Since the time for completing data acquisition and transmission is less on the order of few
minutes maximum, this means that forecasts are promptly available.

The fact that the reference CNN used for transfer learning allows 224x224 input images limits the
number of possible scalograms that can be represented in the same image. With three scalograms it is
still possible to maintain adequate frequency details. Note that this implies limitations on the choice of 

. Future CNN models could be not affected by these size limits.

Referring to the application, the program demonstrated to be very sensitive to the velocity change in the
reservoir landslide cases, especially when the RWL changes and groundwater in the slope cannot follow it
in time: this produce a dynamic water pressure which can be considered trough the parameter DW. In
addition, short-term heavy rainfall can also be obviously identi�ed. It always causes pore pressure
suddenly rising, then breaks the equilibrium. Therefore, on the geological aspect, the program is more
inclined to be applied to slopes constituted by low permeability soils or weathered rocks.

This study is based on an upgraded version of WADENOW, a short-term prediction system of landslide
velocity proposed as a signi�cant reference value for monitoring and early warning. At the same time, it
can also quantitatively determine the in�uence of triggering factors and implement a forecast. To sum
up, from the result, it turns out that the procedure is valid for landslide prediction and the upgraded
version is �exible to be applied on multi-factors affecting landslides and provide support for landslide
early warning. In areas where landslides are concentrated, it can conveniently evaluate landslide status,
distinguish factors and predict future kinematic evolution. This is especially important in the Three
Gorges Reservoir area where, since the reservoir was impounded to 175m in 2009, more than 5,000
landslides have been found and hundreds of landslides are being well monitored. Here this method can
provide reference values for regional landslide management.
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Figure 1

Flowchart of the new multi-stage analysis method
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Figure 2

Schematic con�gurations of forecasting model in con�guration with one or two factors related to the
velocity
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Figure 3

Sketch of various deformation phases of a slope evolving to failure (Qiang et al. 2008)

Figure 4

Scheme of seven classi�ed events
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Figure 5

Confusion Matrix
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Figure 6

Location of Baishuihe landslide in Three Gorges Reservoir and panorama view of the slope in 2018
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Figure 7

Geomorphic map of Baishuihe landslide
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Figure 8

Cross section (A-A') of Baishuihe landslide

Figure 9

Panorama image by UAV of Stabilization construction in progress
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Figure 10

Stabilization measures on Baishuihe landslide
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Figure 11

Layout of monitoring stations after stabilization works
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Figure 12

Monthly rainfall, accumulative displacement in some landslide positions, and reservoir water level from
2003 to 2021

Figure 13

Daily rainfall, accumulative displacement in DB5, reservoir water level and water table in one piezometer
from the stabilization work beginning
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Figure 14

Three typical situations of heavy rainfall in a short period with different reservoir water levels

Figure 15

CNN Input Images with V-Single Factor Scalograms for Seven Highlighted Events
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Figure 16

CNN Input Images with V-R-ΔW Factors Scalograms for Seven Highlighted Events

Figure 17

Confusion Matrices of tests with R-V and ΔW-V Scalograms
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Figure 18

Confusion Matrix of test on V-R-ΔW Scalograms
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Figure 19

Comparison among three con�gurations of CNN-trained scalograms


