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a b s t r a c t

The Oxford Cognitive Screen (OCS) was developed to measure cognitive impairment in

stroke. Here, we test if the OCS administered acutely in stroke patients provides useful

information in predicting long-term functional outcome. A group of first-time stroke pa-

tients (n ¼ 74) underwent an acute behavioral assessment comprising the OCS and the

NIHSS within one-week post-stroke. Functional outcome was evaluated using the Stroke

Impact Scale 3.0 (SIS 3.0) and the Geriatric Depression Scale (GDS) at 6 and 12-months post-

stroke. We compared the predictive ability of the OCS and NIHSS, separately or in com-

bination, to predict different domains of behavioral impairment at a chronic evaluation.

The OCS accounted for 61% of variance of SIS physical domain, 61% of memory domain,

79% of language domain, 70% of participation domain and 70% of recovery domain. The

OCS accounted for a greater percentage of outcome variance than demographics and

NIHSS. The most informative predictive model included the combination of demographics,

OCS and NIHSS data. The OCS, performed early after stroke, is a strong independent pre-

dictor of long-term functional outcome and significantly improves the prediction of

outcome when considered alongside the NIHSS and demographics.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Stroke prognosis can be determined by predictors such as age,

acute severity, gender, education level, and pre-existing

comorbidities1,2,3. Among these features, acute severity is

considered the most important factor affecting long-term

outcome4,5,6. In clinical practice, stroke severity is typically

assessed with the National Institutes of Health Stroke Scale

(NIHSS), a stroke-specific version of the neurological exami-

nation, including subtests covering different functional do-

mains (i.e. visual field, motor, sensory, attention and language

deficits). This scale has gained broad acceptance in clinical

practice since it provides strong prognostic value and applica-

bility, however it has been criticized for emphasizing the

physical domain, neglecting the assessment of cognitive defi-

cits that affect the great majority of stroke survivors (de Haan

et al., 2006; Jaillard et al., 2009). To assess this issue, several

authors have developed stroke-specific and clinically appli-

cable cognitive screening tools (Veerbeek et al., 2011). Among

such tools, the Oxford Cognitive Screen (OCS) has gained

acceptance for the assessment of cognitive impairments with

robust validity and reliability (Demeyere et al., 2015). The OCS is

a neurobehavioral battery that allows a rapid assessment of

several cognitive domains (i.e., language, memory, attention,

calculation and praxis). The main advantage of this evaluation,

in addition to its bedside design, is its high sensitivity for

stroke-specific cognitive deficits, especially aphasia and

neglect910. Although these tools have shown promising results

in the acute setting, their prognostic value for long term func-

tional outcome in comparison to well-known clinical features

(e.g., age, education, and acute impairment) remains uncertain.

As a result, while several studies have shown that cognitive

deficits represent powerful predictors of recovery and quality of

life (Fahey et al., 2018; Harvey, 2015), they remain cursorily

assessed in the acute clinical setting, and in commonly

employed measures of outcome (i.e. the mRS and Barthel

Index). (Weimar, K€onig, Kraywinkel, Ziegler, & Diener, 2004).

Toaddress this issue,we investigated thepredictivepowerof

acute cognitive deficits on long term functional outcome with

twomain objectives. The first aimwas to test whether the OCS,

administered early after stroke, is an independent predictor of

long-term functional outcome at 6e12 months as measured by

the Stroke Impact Scale (SIS) (Weimar et al., 2004) and the

Geriatric Depression Scale (GDS). These behavioral batteries

provide an outcome evaluation beyond the physical sequelae of

stroke, assessing health related quality-of-life features that are

not evaluated incommonlyusedoutcomemeasures (i.e. Rankin

scale and Barthel Index) including emotion, communication,

memory and thinking, and social role function (Adams et al.,

1999). The second aim was to compare the predictive ability of

knownprognosticvariables (i.e. age,demographics,NIHSS)with

the OCS to select the best set of clinical variables for long-term

functional outcome prediction.
2. Methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/
exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study. No part of the

study procedures or analysis plans was preregistered prior to

the research being conducted.

2.1. Study sample

Patients were prospectively recruited during a period of 11

months (from January 2018 to November 2018), from the

Neurology Clinic and Stroke Unit of the Padova Hospital and

the Stroke Unit of the S. Antonio Hospital of Padova. Patients

with a first-symptomatic stroke, either ischemic or hemor-

rhagic, were selected according to the following inclusion and

exclusion criteria.

Inclusion criteria: (1) Age 18 or greater. No upper age limit;

(2) First symptomatic stroke, ischemic or hemorrhagic; (3) Up

to two ischemic lacunes, clinically silent, less than 15 mm in

size on CT scan; (4) Time of enrollment: <2 weeks from stroke

onset; (5) Awake, alert and capable of participating in

research.

Exclusion criteria: (1) Previous stroke based on clinical

imaging; (2) Multifocal strokes; (3) Inability to maintain

wakefulness in the course of testing; (4) more than two

asymptomatic lesions on CT scan; (5) Presence of central

nervous system Neoplasms; (6) Presence of neurodegenera-

tive diseases; (7) Previous central nervous system surgeries; (8)

Presence of schizophrenia, bipolar disorder,major depression,

or other severe psychiatric conditions; (9) Presence of other

medical conditions that preclude active participation in

research and/ormay alter the interpretation of the behavioral/

imaging studies (10) Absence of the patients’ consent.

From January 2019 to May 2019, all patients previously

selected whose stroke occurred either 6 or 12 months before

(N ¼ 114) were administered a telephonic assessment by

means of the Stroke Impact Scale 3.0 (SIS 3.0) to evaluate long-

term functional outcome.

For 40 out of 114 patients we were not able to collect

functional outcome data at follow-up. The great majority of

them did not answer the phone-calls, others had a second

stroke, died, or did not give their consent to participate (see

Supplementary Figure 1_Enrollment flowchart). The final

sample included n ¼ 74 patients.

2.2. Behavioral assessment

All recruited patients were assessed within the first week

post-stroke after symptoms onset with an acute neuro-

behavioral battery that included the NIHSS and OCS (see

Supplementary Figure 2_ Study design). The NIHSS is a battery

of 15 subtests: level of consciousness, gaze and visual field

deficits, facial palsy, upper and lower motor deficits (right and

left side), limb ataxia, sensory impairment, inattention,

dysarthria and language deficits. The total score was used as a

measure of initial stroke severity. The OCS is structured in ten

subtests covering five cognitive domains: language (picture

naming, pointing and sentence reading subtests), praxis

(meaningless gestures test), number processing (number

writing and calculation subtests), attention (broken heart test

to measure sustained attention and egocentric/allocentric

https://doi.org/10.1016/j.cortex.2023.04.015
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Table 1 e Nested prediction models.

Models Predictors of interest

M0 Intercept only

M1_Demographics1 Age

M2_Demographics2 Age þ Gender

M3_Demographics3 Age þ Gender þ Education

M4_Demographics&Disability Age þ Gender þ Education þ
Comorbidities

M5_Clinical Age þ Gender þ Education þ
Comorbidities þ NIHSS

M6_Clinical&Cognitive Age þ Gender þ Education þ
Comorbidities þ NIHSS þ OCS

MOCS OCS scores

MNIHSS NIHSS score
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neglect) and memory (orientation, recall and recognition, and

episodic memory subtests).

Several additional clinical data were collected for each

patient based on detailed history: demographics (age at

enrollment, gender, education, handedness and profession),

stroke etiology (hemorrhagic or ischemic), the presence of

stroke risk factors and relevant comorbidities (i.e., smoke,

neurological history, psychological history, cardiac history,

diabetes mellitus, vision history), stroke familiarity, clinical

presentation, and home therapy.

Outcome was measured either at six (n ¼ 38) or twelve

months (n¼ 36) using the SIS 3.0 during a telephone interview.

The SIS 3.0 is a stroke-specific outcomemeasure that consists

of itemsmeasuring eight domains of function (strength, hand

function, activities of daily living/instrumental activities of

daily living, mobility, communication, emotion, memory and

thinking, and participation). (Duncan et al., 2003).

Furthermore, since depression is a common sequela

following stroke (Medeiros et al., 2020) and it is considered a

possible confound for the evaluation of stroke functional re-

covery (Robinson & Jorge, 2016; van de Weg et al., 1999), we

also evaluated depression using the Geriatric Depression Scale

(GDS) (Saposnik et al., 2011). The GDS is a robust tool for the

assessment of mood disorders, specifically developed for the

elderly population. Importantly, both SIS 3.0 and GDS tele-

phone administration (Kwon et al., 2006) have been validated

on the Italian population (Vellone et al.; Galeoto et al., 2018).

When patients were not available to undergo the tele-

phonic interview on their own (for incapability of using the

phone, aphasia, or poor general health conditions; n ¼ 6), we

administered the SIS 3.0 to their relatives or other proxies

living with them using a validated SIS proxy version (Duncan

et al., 2002).

Conversely, patients for which was not possible to obtain a

GDS score for different reasons (i.e., proxy respondents’

interview, lack of compliance in completing the test, tired-

ness; n ¼ 10), the GDS was not administered to their relatives

since a proxy version of this tool has not been validated.

2.3. Data preprocessing

Demographics and acute behavioral data were collected as

mentioned above and used as potential outcome predictors.

Acute behavioral data consisted of OCS subtests scores and

NIHSS total score. We chose to use the NIHSS total score

instead of its sub-scores since we were more interested in

understanding whether the degree of stroke severity, rather

than specific physical deficits, was a reliable predictor of post-

stroke functional outcome.

All OCS sub-scores were transformed such that larger

values corresponded to more severe deficits. Then, non-

informative variables (i.e., showing a SD close to zero), and

variables showing a significant floor effect (i.e, �90% of pa-

tients scoring 0) were excluded. Considering these two

criteria, two OCS subtests were removed from the analysis,

i.e., Orientation and Semantics.

We then checked whether there were significant differ-

ences in SIS sub scores between patients tested at 6 (N¼ 38) or

12 (N ¼ 36) months. To this end, we built a logistic regression

model that showed that none of the SIS sub scores
significantly differed between the 6- and 12-months popula-

tion; this result suggests that functional outcome at 6 months

after stroke was comparable to that obtained at 12 months

(See Supplementary Figure 3_Comparison of SIS scores dis-

tributions). This is in line with several studies showing that

the great majority of functional recovery occurs within the

first 6 months (Lee et al., 2015; Meyer et al., 2015). For these

reasons, the two populations were merged in a single larger

population for the statistical analyses.

Finally, since SIS is a self-report questionnaire, the an-

swers could be affected by the individual level of depression.

To rule out the impact of depression on individual responses,

the GDS score was included as covariate in the subsequent

analysis. In the cases of patients for which a GDS score was

not available, we estimated it from the SIS item 3 “Mood and

emotions” since literature reports high correlation (i.e.,

r¼ .7723) among these indices, as confirmed also in our sample

(Pearson's r ¼ .78, p < .001).

2.4. Statistical analysis

Age, gender, education level, comorbidities, NIHSS and OCS

scores were included as predictors of long-term functional

outcome in a series of nested linear regression models. We

built each model by progressively adding predictors to a null

model including only the intercept (see Table I, Nested pre-

diction models). Then, we compared baseline demographic

models with models including clinical data (NIHSS) and a

cognitive screen (OCS). Specifically, we tested three models

including demographic variables (M1 to M3), one model

included also pre-stroke disability features

(M4dDemographics&Disability), one model considered acute

stroke severity measures by means of the NIHSS as in the

everyday clinical practice (M5dClinical); onemodel added the

OCS scores, thus including a cognitive evaluation

(M6dClinical&Cognitive). We also built two models including

only OCS variables and NIHSS score, respectively (see Table I,

MOCS and MNIHSS).

All models included GDS score as covariate to account for

mood-related potential biases in the responses to the SIS

questionnaire. The presence of pre-stroke comorbidities was

also evaluated and included as predictor as it was crucial to

control for possible concomitant diseases affecting functional

abilities.

https://doi.org/10.1016/j.cortex.2023.04.015
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The whole set of multiple linear regression models was

then built to predict each functional outcome domain (i.e., SIS

score). All models were compared in terms of R2 to highlight

the best model.

Finally, the best model was used to predict SIS scores with

a leave-one-out (LOO) procedure: in each step the model was

built on N-1 observations and tested with the left-out obser-

vation. This procedure was repeated for N iterations and the

accuracy of the prediction was assessed by correlating actual

and predicted SIS scores (Pearson's r).

All patients included in the present study gave their writ-

ten consent, and the study conforms with World Medical

Association Declaration of Helsinki.

Table I. Nested Prediction Models. Notably, all models included

the GDS score as a covariate to account for mood-related potential

biases in the responses to the SIS questionnaire.
3. Results

A sample of patients (n ¼ 114) with a first symptomatic stroke,

either ischemic or hemorrhagic, were prospectively recruited

from two neurology units of the Azienda Ospedale Universita’

of Padua according to the inclusion criteria. Patients were

tested with an acute neurobehavioral battery at 5 ± 3.6 days

post stroke. Approximately half of the patients (n ¼ 58) were

contacted by phone at 6 months (187 ± 20 days) after the first

neurobehavioral assessment, of which n ¼ 38 underwent the

follow-up assessment. The remaining patients (n ¼ 56) were

contacted at 12months post stroke (378 ± 15 days), with n¼ 36

undergoing the follow-up assessment.

The recruited patients that did not undertake the follow-up

assessment (n ¼ 40) did not differ significantly from our clin-

ical sample in terms of stroke severity (mean NIHSS 3.8 vs 2.7;

p¼ .11). Patientswith SIS score obtained by proxy respondents

(n ¼ 6) did not show significantly stroke higher severity as

compared to our study population at the acute timepoint

(mean NIHSS 3.9 vs 2.5; p ¼ .19). At the follow-up evaluation

proxy responders performed significantly worse in the SIS

Communication and Understanding subdomain (proxy re-

sponders mean SIS score 55.7 vs non-proxy responders 83.5; p

.009, while no significant differences emerged in the other

subdomains. While this result is in line with previous studies

(Duncan et al., 2002) and may partially depend on the nature

of certain lesions that selectively cause a certain degree of

anosognosia, larger samples of patients (n ¼ 6 proxy re-

spondents in our sample) are needed to assess this issue in

depth.

3.1. Clinical representativeness of the study sample

The study sample was composed of all Caucasian participants

with amean age of 67 years old. Most patientsweremale (59%)

with amean age of 65 years old. Female participants were 41%

of the sample with a mean age of 69 years old. Most partici-

pants completed Middle school (52%), 8 years in the Italian

educational system. The most frequently identified risk fac-

tors were hypertension (65% of patients), smoking (37%), dia-

betes mellitus (16%), atrial fibrillation (12%), and coronary

artery disease (4%).
ThemeanNIHSS on admissionwas 6.9 ± 6.4 and 2.6 ± 2.9 at

the time of testing. At the time of admission, 59% of the cases

were mild (score 0e6), 30% moderate (score 7e15), and 11%

severe (score 16e42). Motor deficits were most frequently

observed (90% of patients), while aphasia (38%) and neglect

(22%) were identified less frequently. Lesions equally involved

the right hemisphere and the left hemisphere (45% and 42%,

respectively). Only 3% involved the cerebellum or brain stem.

The great majority of strokes were ischemic (90%), with 10%

hemorrhagic (See Supplementary Table 1 for Study sample

characteristics).

3.2. Functional outcome assessment

We collected SIS scores by telephonically administering the

questionnaire at 6 or 12 months after stroke onset. Since we

did not find significant differences in SIS scores between pa-

tients tested at 6 vs. 12 months, the data from both samples

were pooled. Supplementary Figure 3 shows the distribution

of scores in each domain (i.e., physical, memory and thinking,

mood and emotion; communication and understanding;

participation; and recovery) for the whole group of patients.

Fig. 1 shows the distribution of SIS scores across each

subtest with higher scores indicating better performance.

Supplementary Figure 4 shows the cumulative distribution of

OCS scores with higher scores indicating better performance.

To evaluate the relation between SIS sub scores, OCS sub

scores, GDS, and NIHSS scores, we computed a correlation

matrix (see Fig. 2; red: positive correlation; blue: negative

correlation). We found a strong positive correlation between

SIS subdomain scores (mean Pearson's r¼ .62, SD ¼ .148), with

the highest correlation between participation and recovery

(r ¼ .87). We also observed a moderate correlation within the

OCS scores (mean r ¼ .38, SD ¼ .22), with the highest corre-

lation between episodic memory and number writing (r ¼ .78),

and between these scores and the SIS scores (mean r ¼ .27,

SD ¼ .12). Importantly, the GDS scores (i.e., high scores indi-

cate higher levels of depression) showed a strong negative

correlation with all SIS scores (mean r ¼ �.64, SD ¼ .12), con-

firming the expected important negative impact of depression

on functional outcome as measured by a questionnaire.

Finally, initial stroke severity captured by the acute NIHSS

scores (i.e., high scores indicate worse performance) showed a

negative relationshipwith both long-termoutcome (SIS;mean

r ¼ �.52, SD ¼ .12) and OCS scores (mean r ¼ �.39, SD ¼ .17).

3.3. Prediction of long-term post stroke impairment

Besides describing the correlation between acute and follow-

up measures, we aimed to formally quantify and compare

the accuracy of acute measurements (i.e., NIHSS, OCS) in

predicting long-term functional outcome. To this end,we built

a series of linear regression models to select the best pre-

dictors for long-term outcome. The models are described in

the Methods section and Table I. In summary, the models

included baseline demographic information (M1 to M3), co-

morbidity (M4), clinical (M5) and clinicalþcognitive (M6) in-

formation collected in acute. In addition, two models were

built including only OCS and NIHSS scores, respectively (MOCS

M NIHSS). Importantly, all models included GDS scores as

https://doi.org/10.1016/j.cortex.2023.04.015
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Fig. 1 e Distribution of weighted-SIS scores. A score of 100 represents no disability; a score of 0 represents the highest

degree of disability. Notably, “Physical” is composed of “Physical problems”, “Mobility”, “Daily activities”, “Hand function”

SIS domains (right).
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covariate to account for the influence of depression on SIS

scores. For each model we computed the percentage of

explained variance of the corresponding SIS score in terms of

R2, computed as in (Jaeger et al., 2017).

Then, for each SIS score we ran a series of pairwise non-

parametric comparisons (across 2000 permutations) on the

difference of R2, to decide the best model explaining SIS data

(see Fig. 3). All models were significant but showed markedly

different levels of R2 across SIS scores (range: .21d.83; see

Fig. 3), with the highest performance reached by model M6 for

Mood and Emotions, and the lowest being related to model M0

for Communication and Understanding.

On average the inclusion of demographic data (age and

gender) to the null model significantly improved the per-

centage of explained variance (M1-M2). The further inclusion

of education and comorbidities (M3-M4) did not substantially

increase the level of R2. The most informative models

included acute stroke severity data (i.e., NIHSS; M5) and clin-

ical and cognitive impairment (i.e., NIHSSþOCS; M6). In

particular, the addition of cognitive deficits substantially

improved the prediction of outcome in all subdomains of

function. Indeed, M6 explained the highest percentage of

variance in Physical (R2 ¼ .68), Memory and thinking (R2 ¼ .66),
Mood and emotions (R2 ¼ .83), Communications and under-

standing (R2 ¼ .44), Participation (R2 ¼ .73) and Recovery

(R2 ¼ .73). Notably, the level of acute cognitive impairment

alone (MOCS) also performed well. In fact, MOCS was more

predictive of SIS domains as compared to MNIHSS (see

Supplementary Table 2 for R2 values for each model in each

SIS subdomain).

Taken together, these results show that M6 e a combina-

tion of demographics, NIHSS and OCSdoutperformed all the

othermodels and accounted for the greatmajority of outcome

variance for all SIS domains (mean explained variance across

SIS scores ¼ 67%, range: 44%e83%). Interestingly, the second

most predictive model included only on OCS scores (MOCS;

mean explained variance ¼ 64%, range: 40%e79%). The SIS

domain less accurately described by the set of models was

Communication and Understanding (30% on average).

Since model M6 explained the greatest percentage of

behavioral variance in all SIS scores, as compared to the other

models, we tested its ability to predict SIS domains in a Leave-

One-Out (LOO) design. Specifically, the model was iteratively

built on N-1 observations and tested on the remaining

observation, and the prediction accuracy was evaluated by

correlating actual and predicted SIS values (Fig. 4). The model

https://doi.org/10.1016/j.cortex.2023.04.015
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Fig. 2 e Correlation matrix showing the degree of correlation (Pearson's r) between SIS, OCS, GDS and NIHSS scores.

Red ¼ positive correlation; Blue ¼ negative correlation; White ¼ no correlation.
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M6 showed a good predictive performance in 5 out of 6 SIS

domains (all Pearson's r > .44). Specifically, the model pre-

dicted Physical (r¼ .70, p < .001), Memory and thinking (r¼ .44,

p < .001), Mood and emotions (r ¼ .82, p < .001), Participation

(r ¼ .65, p < .001), and Recovery (r ¼ .68, p < .001) domains

(Fig. 4). Conversely, the correlation was not significant for the

Communication and understanding score (r ¼ .10, p ¼ .42).
4. Discussion

We investigated whether the Oxford Cognitive Screen (OCS)

can be considered an acute predictor of long-term functional

outcome. Furthermore, we studied the combination of pre-

dictors that better explain long-term functional impairment.

We aimed to define the role of the OCS compared to other

clinically relevant predictors in the definition of post stroke

prognosis.

4.1. The OCS as an independent predictor of functional
outcome

The OCS administered early after stroke is a relevant predictor

of long-term functional outcome. Specifically, the OCS relates

to long-term performance (assessed with the SIS 3.0) in

cognitive and physical functional domains. Acute OCS scores

(MOCS) significantly predicted memory, mood and emotions,

language ability, social participation, physical status
(including physical impairments, mobility, ADL/IADL, and

Hand function) and global recovery (Fig. 3 and Supplementary

Table 2).

“Memory and thinking” scores were well predicted by the

OCS. This result is in line with recent studies that have shown

a high sensitivity of the OCS in detecting post-stroke cognitive

deficits. Acute impairment in the memory domain has been

consistently associated with long-term negative outcome

(Demeyere, Robotham, & Oestergaard Riis, 2019; Mancuso et

al., 2018). Only the OCS was able to significantly improve

outcome prediction in this domain in comparison to all other

factors (from R2 ~.4 vs to .6).

OCS subtests showed a general good prediction ability of

post stroke mood. In this domain, established predictors are

stroke severity, age, level of disability and gender (Murata

et al., 2000; Vojtikiv-Samoilovska & Arsovska, 2018). Even

though a few studies found no correlation between acute

cognitive deficits and post-stroke depression (Hackett &

Anderson, 2005), others have reported a strong association

(Murata et al., 2000; Vojtikiv-Samoilovska & Arsovska, 2018).

Our results suggest that acute cognitive impairment should be

considered a definite risk factor for post-stroke depression. At

the chronic timepoint we found a strong negative correlation

between chronic GDS scores and all SIS subdomains (see Fig. 2

correlation matrix). While this confirms that mood disorders

have a negative effect on outcome, the direction whether

cognitive impairment leads to depression or whether post-

stroke depression leads to impairment is still being debated

https://doi.org/10.1016/j.cortex.2023.04.015
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Fig. 3 e Comparison of model predictions for individual SIS

subdomains. For each SIS score, a comparison between
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(Godefroy et al., 2018; Hackett & Anderson, 2005) and further

analysis (i.e., a moderation analysis) need to be performed to

better characterize this complex relationship.

OCS significantly predicted perceived language impair-

ments even though it explained a relatively low percentage of

variance in comparison to other considered domains. As the

“communication and understanding” SIS domain does not

only evaluate the patient's aphasia but includes tasks that

assess executive functions and social involvement (i.e.,

questions regarding: “how difficult was it to call another per-

son on the telephone, selecting the correct phone number and

dialing?”), we expected to predict a greater amount of variance

for this comprehensive domain. On the other hand, as for the

‘Memory and Thinking’ domain, the OCSwas the only variable

that significantly increased the amount of explained behav-

ioral variance.

A high percentage of variance of “Participation” and “Re-

covery” domains were accounted for by acute OCS scores.

Specifically, executive functions impairments were strongly

associated with long-term social participation. This result is

consistent with studies that identify these deficits as reliable

predictors of long-term participation (Skidmore et al., 2010;

Viscogliosi et al., 2011). Social restriction is common after

stroke and strongly influences the quality of life and the

perceived health status of these patients (Mayo et al., 2002;

Saposnik et al., 2011). The identification of the most relevant

predictors of participation and recovery is becoming impera-

tive as patients at risk of social restriction would benefit from

targeted rehabilitation interventions (Obembe & Eng, 2016).

Finally, it is worth noting that we found that the model

including cognitive data showed comparable results with the

model including the NIHSS score for the physical/motor

outcome domain. On one hand, this is in line with recent

studies showing that the presence of cognitive impairments

significantly correlates with a greater dependence and motor

inactivity (Paker et al., 2010; Oros et al.). On the other hand, we

show that a purely cognitive screening, performed at patient's
bedside, can be as informative as the NIHSS, amainly physical

evaluation, even about motor outcome function. Besides its

important practical implications, this result is in line with the

high correlation values we found among SIS patient scores at

different timepoints: within SIS functional domains (chronic)

and between NIHSS and OCS subtests (acute) (see Fig. 2 Cor-

relation Matrix). NIHSS scores were highly anti-correlated

with OCS cognitive scores. In previous work, we have shown

this correlation can be explained by the low dimensional
different models (x axis) in terms of explained variance

(R2;y axis) is presented. The shaded area indicates the 95%

Confidence Interval. For all variables a peak of R2

corresponded to model M6 (i.e., in which OCS scores were

added to a model including demographics and NIHSS

score). The set of matrices shows the pairwise comparison

of models' R2. Each square depicts the difference between

two models (MODELrowdMODELcolumn) and the color

indicates magnitude and sign of such difference. Red

indicates higher values (i.e., MODELrow's
R2 > MODELcolumn's R2) and blue indicating lower values

(i.e., MODELrow's R2 < MODELcolumn's R2).
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structure of acute impairment that follows stroke. In other

words, a few factors of correlated deficits, both physical and

cognitive, can explain the majority of behavioral variance of

stroke survivors (Corbetta et al., 2015, Bisogno et al., 2021). In

this work, we confirm this result and show this relationship

persists at a chronic stage evenwhen considering a functional

outcome measure (i.e., SIS). Namely, the SIS subdomain

scores were strongly related (i.e., especially participation and

recovery), suggesting physical and cognitive outcome tend to

be positively correlated, thus explaining the high percentage

of variance accounted for by our cognitive evaluation across

all behavioral domains.

4.2. The integration of the OCS in acute stroke clinical
assessment

If the OCS is a strong prognostic factor for functional outcome,

how does it perform compared to other known features? Can it

lead to a significant improvement in post stroke prognosis

prediction if applied in the everyday clinical practice? To test

this hypothesis, we compared different nested prediction

models based on classical clinical features with the addition of

an acute post-stroke cognitive evaluation. Specifically, we

considered age, stroke severity (NIHSS), gender, education

level, and previous comorbidities as further predictors for our

analysis. The M6 model (see Table 1), comprising de-

mographics, stroke severity (NIHSS) and cognitive status (OCS),

explained the highest percentage of long-term behavioral

variance in all SIS domains (Fig. 3). Furthermore, this model

significantly predicted, with moderate to high correlation co-

efficients, all functional domains except for the ‘Communica-

tion and Understanding’ scores (Fig. 4). These findings

substantially show the integration of a short bedside cognitive

assessment and the NIHSS significantly improved the predic-

tion of long-term functional outcome in stroke patients. This

integration was possible in approximately 90% of our sample,

showing very high levels of applicability in the clinical popu-

lation. Finally, and most importantly, previous studies have

shown it can be considered a sensitive measure of the main

axes of behavioral impairment in a prospective sample of first-

time stroke patients. Specifically, while previous studies on the

factor structure of the sole NIH stroke scale (Lyden et al., 2004)

have identified two factors explaining the majority of post

stroke behavioral variance, we show in previous work the

NIHSS/OCS combination replicates the 3-factor structure pre-

viously identified in Corbetta et al., 2015 through a compre-

hensive 2-h long neurobehavioral battery covering multiple

domains (i.e., motor, language attention, memory). Overall,
these results demonstrate the robust applicability, sensitivity,

and prognostic value of the OCS, thus suggesting its integration

in clinical practice for acute stroke management.
5. Limitations

Regarding the present study's limitations, it is important to

note that the final sample included n ¼ 74 patients. This rep-

resents a small-medium population and replication studies in

larger independent datasets are necessary to confirm our re-

sults. Nevertheless, our results showed reliable statistical

significance and general agreementwith the known literature.

Another limitation relates to the evaluation of the patients'
pre-stroke status. Specifically, quantitative information on

the amount of WMC (i.e. leukoaraiosis) were not available for

all patients since not all of them had undergone an MRI scan.

No other pre-event standardized cognitive evaluations (i.e,

MMSE or MoCA) or depression screening tools (GDS/BDI) were

available. As these variables have been identified as solid

predictors of functional outcome (Luijten et al., 2021) further

studies should consider them as potential confound.
6. Conclusion

The high prevalence of cognitive deficits following stroke and

their impact on patients' recovery strongly suggests the

importance of a cognitive evaluation early after stroke. In this

study we show that a prompt detection of cognitive deficits is

a strong predictor of post stroke functional outcome. Most

importantly, we demonstrate that the integration of a short,

bedside cognitive screening tool with common clinical fea-

tures significantly improves the clinicians' ability to predict

patients’ prognosis and can therefore allow early in-

terventions as well as tailored rehabilitation programs.
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