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ABSTRACT
This work presents an experimental analysis of first-grade students’
block-based programming trajectories. These trajectories consist of
edit-level program snapshots that capture learners’ problem-solving
processes in a navigational microworld. Our results highlight the
potential of this fine-grained data capture. Snapshot frequencies in
trajectories collected before and after a coding intervention show-
case the collective progress of the learners. Graph visualizations,
in which nodes represent snapshots and directed edges code ed-
its, highlight strategies, pitfalls and debugging procedures. Indi-
vidual programming trajectories shed light on details of learners’
problem-solving processes that less granular analysis would con-
ceal. Various works in the field of Learning Analytics research show
the usefulness of collecting fine-grained process data that proceed
from programming activities. However, how to analyze this data is
still an open question and research on the subject is in an experi-
mental phase. We contribute to this experimentation by analyzing
and discussing results collected from 30 first-grade students in a
pretest-posttest study.
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• Social and professional topics → Computational thinking;
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1 INTRODUCTION
Research on Computational Thinking (CT) has seen interest in
recent years [10]. Helping learners develop CT skills is a goal often
motivated by the need for a digitally-skilled workforce [3, 5]. Other
motivations include the role that computation itself has as a field
of knowledge [6] and the importance for learners to make the step
from passive consumers to creators of digital content [18].

While CT does not equate with programming [21], one of the
main ways to develop its skills is indeed through learning to solve
problems using programming artifacts [4]. Block-based program-
ming languages have shown potential in helping novices learn how
to interact with programmable systems: among the advantages they
are reported to offer are reduced cognitive loads and the elimina-
tion of syntactic errors [3]. With regard to CT learning problems
targeted at novices, microworlds have been used since the very
beginnings of research in CT [14] and, in recent years, have grown
in variety, goals and intended audiences [16].

Regardless of the specific programming language and problem
solving environment, learning activities that involve interaction
with a digital system automatically generate a wealth of data, the
study of which is the core of Learning Analytics research. We divide
this information in product data - programming artifacts in some
form of "finished" state, e.g. executed programs - and process data,
i.e. pure human-machine interactions like clicks and keypresses, or
code snapshots representing sequences of code edits.

Product data is often used in conjunction with grading rubrics
to assess CT competencies [22].

Process data help capture details that highlight strategies and
patterns that disappear from finished products. Research in this
direction experimented with the analysis of programming trajec-
tories, i.e. sequences of code snapshots that show the evolution
of learners’ programs during problem solving activities [11, 17].
Trajectories capture details such as common errors and strategies
used to overcome them. Other research analyzed process data using
data mining techniques such as clustering [8, 13].

This work leverages programming trajectories to study problem
solving strategies from collective and individual points of view. Be-
ing able to visualize and study this information has been reported
by CT educators as a valuable contribution [23]: collective insights
about learners can help direct educational activities; individual tra-
jectories can show details about thinking processes and support
instructors in better assisting learners in need. We aim to 1) show
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how to extract information from fine-grained process data, via anal-
yses and visualizations; 2) give examples of how this information
could be used to aid educators and learners in real-life learning
contexts.

We conducted an experiment with 30 first-grade students, whose
programming proficiency we tested before and after a coding inter-
vention. The tests consisted of block-based programming games in
navigational microworlds, similar to those offered by the platform
Code.org. During these evaluations we collected interaction data
that allowed us to reconstruct and analyze the students’ program-
ming trajectories.

The remainder of this paper is organized as follows: Section 2 dis-
cusses related works. Section 3 outlines our methodology. Section
4 reports our results. Section 5 draws conclusions on this work.

2 RELATEDWORK
Our design foundations are inspired by the work of Pelánek and
Effenberger who, in [15], thoroughly discuss the design of block-
based programming microworlds. In particular, when addressing
data logging, they define edits in block-based programming lan-
guages every action that changes one block by insertion, deletion,
reordering or field change. We analyze data at this level of granu-
larity. We collect code snapshots after each edit and are thus able
to reconstruct programming trajectories, from start to finish.

Other works in the literature discuss the analysis of process data
collected from programming activities.

Tsung et al., in [23], present BlockLens: a system capable of
logging learners’ block edits and use them to create programming
trajectories. The system is built to meet requirements collected
by the authors from educators working with CT in K-12 contexts.
These requirements suggest that a system aimed at supporting
CT education should be able to: 1) analyze learners’ performance
collectively on a single task, e.g. by showing the success rate of the
task; 2) highlight different problem solving strategies; 3) recognize
milestone snapshots, i.e. those that strongly correlate with correct
solutions, or early warning signs; 4) summarize problem solving
processes; 5) present individual processes and strategies in detail.
The paper then proceeds to showcase BlockLens and to present
examples of its usage, however, it does not discuss data collected
from real educational contexts. We aim to fill this gap by discussing
and analyzing data collected from an actual experimentation.

Piech et al., in [17], use edit level program snapshots to automat-
ically generate hints targeted at learners. Their analysis is based
on Code.org’s 2013 Hour of Code dataset (HoC2013), which only
contains product data, i.e. code snapshots that learners actually
executed. Thus, the authors interpolate code snapshots with the
most likely sequence of edits that separates them. This is an inter-
esting solution to the problem of working with lower-granularity
datasets. However, the authors observe that, even for simple pro-
gramming problems, the sets of solutions proposed by learners
tend to be very large. In other words: learners tend to collectively
submit sets of different solutions with high cardinalities, even for
relatively straightforward problems. This, of course, also applies to
the sequences of edits that lead to those solutions. Thus, by logging
the actual code edits we are able to see "outlier" problem solving

processes that would not be inferred by automated interpolation,
such as the misstep presented later in Figure 6.

Jiang et al., in [11], also use theHoC2013 dataset to study learners’
problem solving trajectories in block-based programming activities.
Their analysis is based on sequences of executed code snapshots.
They study snapshot frequencies and how learners’ partial solu-
tions evolve with subsequent executions. In particular, they analyze
the Abstract Syntax Tree distance (AST distance) between partial
solutions and final, successful, solutions to a problem. In this work,
we use the same algorithm discussed by Jiang et al., i.e. the Zhang-
Shasha algorithm [25], to study edit level snapshots.

Zhang et al., in [26], use process data to study undergraduate
students’ debugging strategies in Java programming tasks. They
analyze programming trajectories consisting of sequences of code
submissions, similarly to the previously discussed work bt Jiang et
al. By using an automated error-checking system that labels each
submission with the errors it contains - e.g. syntax errors, failed unit
tests, etc. - the authors are able to compute metrics such as the rate
of style/syntax/unit test errors fixed between subsequent submis-
sions and the time these fixes required. Measuring the time spent
on a specific snapshot could reveal insights on problem solving
processes, we discuss this further in Section 4.4.

Other research has discussed the collection and analysis of gran-
ular data from a data mining point of view. The following works’
approach differs from ours in the choice of programming environ-
ment - open-ended programming tasks in Scratch vs. navigational
microworlds a la Code.org - and in the data analysis, based on
machine learning techniques such as clustering.

Kesselbacher and Bollin, in [13], collect fine-grained interaction
data for a single, open-ended, Scratch programming exercise. The
data consists of learners’ interactions with the programming task:
block creation, deletion, drag-and-drop, field-changes. The low-
level interactions, called "block listen events", are then combined
to form higher-level "program change events". For example: the
program change event "add new block to program" is the combi-
nation of the block listen events "create new block", "drag block"
and "attach block to program". The authors use vectors represent-
ing frequencies of events in learners’ problem solving processes to
create clusters. For example, they find that those who execute their
programs frequently tend to be less successful in solving the task.

Filvà, et. al, in [8] perform clickstream analysis - i.e. analysis
of data representing each mouse click and keyboard stroke - on
learners interactions with Scratch. As in the previously discussed
work by Kesselbacher and Bollin, they use this data to perform
clustering analysis on learners’ processes.

3 METHOD
3.1 Experimental setup
We conducted a pilot quasi-experimental study with pre-posttest
assessment [9]. We evaluated and showcased techniques to analyze
and visualize fine-grained process data. To this end, during an
academic semester, we involved a total of 30 first-graders from 2
class groups from the same primary school in northern Italy.

We assigned each class group to a different experimental condi-
tion: the experimental group consisted of 14 students (M=5, F=9);
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the waiting-list group consisted of 16 students (M=6, F=10). The
students were 6 years old at the time of the experimentation.

We evaluated both groups’ proficiency with block-based pro-
gramming with a pretest in January 2023 and a posttest in April
2023. The experimental group received a programming interven-
tion between the pre-posttest evaluations. The waiting-list group
received the intervention after the posttest.

This study followed the ethical code of conduct guidelines of, and
was approved by, the Institutional Review Board of the University
of Padua. We involved the students in the project after receiving
signed informed consent from their legal guardians.

3.2 Programming intervention
The programming intervention consisted of 8 training sessions,
each of the duration of 1 hour. During each session one or more
instructors, part of the research group, provided each student with
a tablet device. The students used the tablets to solve programming
exercises aimed at teaching the following learning goals: sequencing
of instructions, use of loops, debugging.

Each exercise presented the students with a tile-based map, con-
taining a goal, a path, obstacles and a sprite to guide to the goal,
e.g. the bee of Figure 1. Moreover, each exercise provided a set of
code blocks used to program the sprite’s movement: move forward
1 tile, turn left/right, repeat instructions a set amount of times.

Students were asked to attempt to solve the programming tasks
autonomously: they could ask for help by the instructors - who
were instructed never to give away the solutions but only provide
hints - and discuss solutions with each other.

3.3 Programming evaluation
We conducted the pre-posttest programming evaluations on indi-
vidual students. Each student was assigned to an instructor who
provided assistance by: 1) conducting an initial briefing that de-
scribed the goals of the evaluation tasks and the function of the
code blocks that would be available to solve them; 2) checking in
with the student after a trial exercise to ensure that there were no
doubts, and 3) providing assistance in the usage of the tablet when
necessary.

After the trial, the evaluation consisted of five exercises of in-
creasing difficulty. Taking inspiration from research byKanellopoulou
et al. [12], we associated difficulty to the lengths of the paths, the
number of necessary turn instructions and the complexity of the
available code blocks. Easier exercises had short paths, few turns
and only basic movement blocks (move forward, turn left/right).
Harder exercises had longer paths, more turns and included loop
blocks.

Due to the limited time slots negotiated with the schools to
conduct the evaluations, the students were given a maximum of 3
attempts per exercise. For each exercise, students were scored 4−𝑛,
where 𝑛 was the number of attempts necessary to solve it. Solving
an exercise at the first attempt thus gave 3 points, solving it at the
third attempt 1 point. Failing to solve an exercise for three times in
a row resulted in 0 points. Total scores ranged from 0 to 15.

In this work we analyze two exercises, shown in Figure 1, which
stand at the opposites of the spectrum of difficulty. The Naviga-
tion exercise requires the sprite to traverse a short path with a

Figure 1: Exercises used in our data analysis, shown along
programs that solve them, presented in block form and tex-
tual codification.

single turn. The Loop exercise involves a longer path, two turns,
intermediate goals, and the loop block.

In order to observe improvements in performance and the evo-
lution of problem-solving processes, we used the same exercises
for both the pretest and posttest.

4 RESULTS & DISCUSSION
4.1 Overall pre-posttest performance
The experimental group scored, on average, 2.000 (𝑆𝐷 = 3.942)
points at the pretest and 8.714 (𝑆𝐷 = 4.874) at the posttest. The
waiting-list group scored 0.125 (𝑆𝐷 = 0.342) points at the pretest
and 2.813 (𝑆𝐷 = 3.270) at the posttest. As the proficiency scores
were not normally distributed in both groups, we performed a
Wilcoxon/Kruskal-Wallis test to compare the two groups. Before the
intervention, the proficiency scores distribution was similar among
the two groups (𝜒2 = 1.714, 𝑝 = .19, 𝑑 𝑓 = 1). After the intervention,
the proficiency score distribution of the experimental group was
significatively different from the waiting-list one (𝜒2 = 10.297, 𝑝 =

.0013, 𝑑 𝑓 = 1). We calculated effect size by estimating 𝑟 = 𝑍/
√
𝑁

[20]: the effect size of the difference between experimental and
waiting-list groups at the posttest was 𝑟 = .58 (large). These results
show that the coding intervention had a significant effect on the
programming proficiency of the experimental group.

4.2 Code snapshots
We regard as snapshots all intermediate programs that learners cre-
ate while combining blocks to compose exercise solutions. Figures
6 and 7 showcase some examples. In writing, we refer to snapshots
using a textual codification: the start blocks at the root of every
program are represented by s; move forward blocks by f; turn
left/right blocks by t(l/r); loop blocks repeating instructions 𝑛
times by r(n){...}.

Analyzing snapshots in a cumulative way helps capture how the
strategies of a group change after a period of exposure to coding.

Table 1 presents statistics about the cumulative snapshots the
students of the two groups produced during their pre-posttest prob-
lem solving processes. The Table shows 1) the number of distinct
snapshots produced by the students, and 2) the average AST dis-
tance - i.e. the number of edits necessary to transform the snapshots
ASTs into those of the closest goal programs - weighted by snapshot
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Navigation Exercise
goal: sfft(l)ff

# of Snapshots Avg. AST Distance
Group Pretest Posttest Pretest Posttest
Experimental 73 24 6.248 2.798
Waiting-list 77 64 5.538 4.959

Loop Exercise
goal (using loops): sr(5){f}t(r)r(5){f}t(r)r(5){f}

goal (without loops): sffffft(r)ffffft(r)fffff
# of Snapshots Avg. AST Distance

Group Pretest Posttest Pretest Posttest
Experimental 203 90 12.523 7.259
Waiting-list 136 192 12.574 11.453

Table 1: Number of distinct snapshots and their average,
weighted, AST distance from the goal programs.

frequency. Goal programs are listed in the rows below the exercise
title using the previously described textual codification.

The results show how the problem-solving process of the exper-
imental group becomes more focused after the intervention: the
number of distinct code snapshots is more than halved for both ex-
ercises. Moreover, the problem-solving process also becomes more
successful: the weighted AST distance between the snapshots and
the goal programs is approximately halved for both exercises. This
means that intermediate snapshots on programming trajectories
tend to be closer to actual solutions. On the other hand, students
in the waiting-list group continue to produce a large number of
different code snapshots - in the case of the Loop exercise, they
even increase this number - and only slightly reduce the weighted
average AST distance of these snapshots.

AST distances give an idea of how close or far from success
programs tend to be. Analyzing which snapshots are actually the
most commonly produced by the learners can also highlight spe-
cific progresses: e.g. disappearing misconceptions. Tables 2 and 3
show the 5 most frequent snapshots produced by the groups for
the Navigation and Loop exercises. Note that we omit the initial
snapshot consisting only of the start block as it is present in ev-
ery trajectory. We highlighted in bold the snapshots that lead to a
successful goal program, i.e. the prefixes to a successful solution.

The pretest results of Tables 2 and 3 show that the 5most frequent
snapshots for both exercises present a common misconception: the
confusion of the turn right block - which is a relative movement
block that rotates the direction of the sprite 90 degrees clockwise,
without changing its position - for an absolute movement block
with the effect of moving the sprite to the right. Note that both
exercises indeed require the sprite to initially move to the right (see
Figure 1). The effects of the training show in the posttest results:
the misconception snapshots disappear from the top 5 of the ex-
perimental group. Indeed the experimental group’s top 5 posttest
snapshots for both exercises are all part of successful trajectories.
The misconception snapshots remain in the waiting-list posttest top
5. However, two of the waiting-list group’s top pretest snapshots
for the Navigation exercise, st(r)t(r)t(r) and st(r)t(r)t(r)f,
disappear from the posttest results. This is interesting because these
snapshosts contain another error: a miscalculation of the distance

Experimental group
Pretest Posttest

Snapshot %/14 Snapshot %/14
st(r) 64.29% sf 92.86%
sf 42.86% sff 92.86%
st(r)t(r) 35.71% sfft(l) 85.72%
st(r)f 28.57% sfft(l)ff 78.57%
sff 28.57% sfft(l)f 71.43%

Waiting-list group
Pretest Posttest

Snapshot %/16 Snapshot %/16
st(r) 81.25% st(r) 81.25%
st(r)t(r) 62.50% st(r)t(r) 75.00%
st(r)t(r)t(r) 43.75% st(r)t(r)f 62.50%
st(r)t(r)t(r)f 37.50% st(r)t(r)ff 62.50 %
st(r)t(r)f 37.50% sf 43.75%

Table 2: Most frequent snapshots for the Navigation exercise.

Experimental group
Pretest Posttest

Snapshot %/14 Snapshot %/14
sf 50.00% sr(0){} 78.57%
st(r) 42.86% sr(0){f} 71.43%
st(r)t(r) 42.86% sr(5){f} 71.43%
st(r)t(r)t(r) 35.71% sr(5){f}t(r) 64.29%
sff 35.71% sr(5){f}t(r)

r(5){f}t(r)
r(5){f}

64.29%

Waiting-list group
Pretest Posttest

Snapshot %/16 Snapshot %/16
sf 56.25% st(r) 50.00%
st(r) 37.50% sf 43.75%
st(r)t(r) 31.25% sr(0){} 31.25%
st(r)t(r)t(r) 31.25% st(r)t(r) 31.25 %
st(r)t(r)t(r)t(r) 25.00% st(r)t(r)t(r) 31.25%
Table 3: Most frequent snapshots for the Loop exercise.

that the sprite has to cover to the right. The waiting-list group
overcoming this distance miscalculation could be evidence of their
natural cognitive development in the time interval between the
pretest and the posttest.

4.3 Snapshot transitions & intervals
Figures 2, 3, 4 and 5 show graph representations of the students’

trajectories. Each node represents a code snapshot and each edge
a code edit that transformed one snapshot into another. The size
of the nodes is weighted on the average time interval the students
spent on those particular snapshots. The size of the edges on how
many students performed the relative code edit. Nodes are colored
according to their AST distance from goal programs: yellow if closer,
blue if further away. To reduce noise we only present nodes and
edges traversed by more than one trajectory.

These visualizations can help capture at a glance the progress,
or lack thereof, of a group. By looking at Figures 2 and 3, which
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Figure 2: Pretest and posttest trajectories created by the ex-
perimental group for the Navigation exercise.

Figure 3: Pretest and posttest trajectories created by the ex-
perimental group for the Loop exercise.

Figure 4: Pretest and posttest trajectories created by the
waiting-list group for the Navigation exercise.

Figure 5: Pretest and posttest trajectories created by the
waiting-list group for the Loop exercise.

represent the experimental group’s results, we can clearly see how
the most traversed trajectories change after the intervention. The
pretest trajectories either go to areas of the graphs characterized
by misconceptions, such as mistaking turn right for move right,
or only partially overlap with trajectories that lead to correct so-
lutions. The posttest trajectories, on the other hand, clearly lead
towards the goals, represented by star-shaped nodes. Conversely,
the waiting-list group most traversed trajectories remain largely
the same between pre- and posttest. It is interesting to observe that

Figure 6: Two different trajectories that solved theNavigation
exercise at the first attempt

the snapshots leading to the goal in Figure 4 tend to be rather large,
indicating more time, and possibly effort, spent on the trajectory.

It is interesting to observe the presence, or lack thereof, of multi-
snapshot loops in the graphs: sub-trajectories that start and end
on the same snapshot. These only appear in the posttest results of
the experimental group. In Figure 2 we can see the loop starting
from, and returning to, snapshot sff; in Figure 3 the loop from
snapshot sr(5){f}t(r)r(5){f}. These loops represent common
errors - in both cases the choice of an erroneous direction for a
turn block - and the students’ subsequent debugging processes.
While on the pretest results (and, for the waiting-list group, also
the posttest results) making errors while programming seems to
make the students’ trajectories "go off on their own", on the posttest
results the errors seem to result only in transient deviations from a
generally successful trajectory.
4.4 Individual trajectories
We now present some examples of individual trajectories. We want
to showcase how inspecting problem-solving processes at a granu-
lar level helps recognizing different strategies. Figures 6, 7 and 8
all compare two trajectories, created for the same exercise by two
different students. We shall refer to the students as Student A and
B, although the names may not be associated to the same people
across the Figures. The histogram bars represent the interval of
time each student spent on the corresponding snapshot. Executed
snapshots are framed and labeled: those that solved the exercise in
green, those that did not in red.

Figure 6 presents two trajectories produced by students who
solved the Navigation exercise at the first attempt. Both students
spent ∼23 seconds on the task. However, their strategies are some-
what different. Student A’s problem-solving process began with a
misstep: connecting a turn left block to the start block. The
student immediately corrected this misstep and proceeded to solve
the exercise. The sequence of intervals is characterized by peaks
and valleys, up until the last three snapshots: once the sfft(l)
snapshot is reached, the last few steps are executed with apparent
confidence, evidenced by the rapidly decreasing time spent on each
snapshot. Student B, conversely, spent a longer time on the initial
snapshot, ∼7 seconds, and then proceeded to build a correct solution
without missteps and with a monotonically decreasing sequence of
intervals. Student B’s trajectory suggests a careful planning phase,
during which the student decided all the steps needed to reach the
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Figure 7: Two different trajectories that solved theNavigation
exercise at the second attempt

Figure 8: Two different trajectories that did not solve the
Loop exercise

solution. The connection between planning and successful problem
solving in coding is discussed in the literature, for examples see
[1, 2, 19].

Figure 7 presents the strategies of two students who solved the
Navigation exercise in two attempts. We see two very different pro-
cesses and overall approaches. Student A: 1) produced a program
that contained an erroneous turn right block; 2) spent a long time,
∼30 seconds, without further edits after executing the program and
seeing it did not solve the exercise; 3) quickly reached a correct
solution after this long interval. This suggests a second planning
phase, started after having received the execution feedback. Stu-
dent B, instead, composed a solution very quickly, and apparently
executed it halfway, while still incomplete. This could be due to
lack of impulse control on the part of the student or it could have
been caused by mistakenly pressing the "Execute" button.

Finally, Figure 8 presents the trajectories of two students who
failed to solve the Loop exercise at the pretest. We avoid showing
the block representation of each snapshot, because the trajectories
are long and noisy. Student A’s trajectory shows an effort towards
solving the exercise, hindered by mistaking relative for absolute
movement. It is quite apparent that the student actually attempted
to solve the problem: the trajectory shows considerable time with-
out code edits after each erroneous execution. This probably reflects
time spent planning the next steps. Student B, conversely, quickly
produced a long sequence of semi-random blocks. The inactive
intervals after the first two erroneous executions are slightly longer
than the other intervals in Student B’s trajectory, but not compa-
rable to those of Student A. It looks like this student either was
very confused about the exercise or simply "gave up" on trying to

solve it. Student A was ultimately able to solve the exercise at the
posttest, student B was not.

5 CONCLUSIONS
We presented and analyzed data consisting of fine-grained, edit-
level snapshots collected during programming processes. To con-
clude this work, we now discuss how this information could be of
value both to educators and learners in real-life learning contexts.

We recognize that one limitation of this work is the fact that our
results reflect the programming strategies of only 2 class groups.
This is caused by the experimental nature of our analysis and this
work can be the foundation for larger future studies.

We analyzed the most frequent snapshots produced by students
during their problem-solving processes (cf. Tables 2 and 3). These
showed how certain apparent misconceptions, such as mistaking
relative "turn-left" instructions for absolute "move-left" instructions,
tend to disappear after learners gain experience by interacting with
programming tasks in similar contexts. Arguably, embarking on a
programming trajectory consisting of "misconception snapshots"
after a training could represent a warning sign. Detecting it could
trigger an automated response from the system, e.g. a review of the
functions of the available code blocks. Feedback presented "just-in-
time" is generally more useful, as it helps learners carry in their
working memory the information they need to solve a problem
while dealing with it [24]. This early warning could also be relayed
to educators and satisfy requirement number 3 discussed in [23].

The graph representations of the programming trajectories of
the students, presented in Section 4.3, capture interesting pictures
of the general programming proficiency of groups of learners. The
most frequently traversed edges highlight common actions per-
formed by the learners. Loops in the graphs represent debugging
processes. The size of nodes reflects the average time spent on par-
ticular snapshots, possibly indicating moments of doubt. In general,
these visualization address requirement number 4 discussed in [23].
Educators could benefit from them: knowing that some snapshots
make learners pause longer than average could single out over-
complex aspects of exercises or difficulties shared by the whole
class group. Moreover, the rate of edges entering and exiting areas
of the graph characterized by misconceptions shows "warning"
nodes and how learners are able to debug erroneous programs.

Finally, we analyzed some individual learners’ trajectories, with
a focus on how they highlight differences in approaches that other
metrics would equate. Effenberger and Pelánek, in [7], discuss
which metrics show more potential in assessing students’ perfor-
mance in programming tasks similar to those used in this work.
Their interest, and ours, is not in grading the students but in assess-
ing competencies in order to adapt learning activities to students.
They find that number of executions and time spent on task are
two automatically computable metrics that tend to correlate with
human evaluations. In Section 4.4 we showed how analyzing in-
dividual trajectories highlights differences between students who
required the same number of attempts to solve an exercise, in one
case even requiring a very similar time. This added information
could help in reaching finer levels of tuning learning activities to
student competencies and learning goals.
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