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Abstract
We prove that the hydrodynamic pressure p associated to the velocity u ∈ Cθ (�), θ ∈ (0, 1),
of an inviscid incompressible fluid in a bounded and simply connected domain � ⊂ R

d with
C2+ boundary satisfies p ∈ Cθ (�) for θ ≤ 1

2 and p ∈ C1,2θ−1(�) for θ > 1
2 . Moreover,

when ∂� ∈ C3+, we prove that an almost double Hölder regularity p ∈ C2θ−(�) holds
even for θ < 1

2 . This extends and improves the recent result of Bardos and Titi (Philos Trans
R Soc A, 2022) obtained in the planar case to every dimension d ≥ 2 and it also doubles
the pressure regularity. Differently from Bardos and Titi (2022), we do not introduce a new
boundary condition for the pressure, but instead work with the natural one. In the boundary-
free case of the d-dimensional torus, we show that the double regularity of the pressure
can be actually achieved under the weaker assumption that the divergence of the velocity is
sufficiently regular, thus not necessarily zero.

Mathematics Subject Classification 76B03 · 35D30 · 35J15 · 35J25

1 Introduction

Let d ≥ 2 and let � ⊂ R
d be a bounded and simply connected domain of class C2. The time

evolution in � of an incompressible inviscid fluid is described by the Euler equations
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⎧
⎪⎨

⎪⎩

∂t u + div(u ⊗ u) + ∇ p = 0 in � × (0, T )

div u = 0 in � × (0, T )

u · n = 0 on ∂� × (0, T )

(1.1)

where u : � × (0, T ) → R
d and p : � × (0, T ) → R are the velocity of the fluid and its

hydrodynamic pressure respectively and n : ∂� → R
d the outward unit normal to ∂�. The

boundary condition u(·, t) · n = 0 on ∂� is the usual no-flow condition, which prohibits the
fluid to escape from the spatial domain �, being it always tangential to the boundary.

1.1 The pressure equation

In this article, we focus on the pressure p. Taking the divergence of the first equation in (1.1),
we get

− �p(·, t) = div div(u(·, t) ⊗ u(·, t)) in � (1.2)

for all t ∈ (0, T ). Being interested in the spatial regularity of p, from now on we will fix a
time slice t and consider the vector field u(·, t). Thus, for simplicity, we will drop the explicit
time dependence and we will just write u = u(x). In particular, our results can be applied
for every fixed t-time slice.

In a bounded domain�, we clearly need to complement the (interior) elliptic equation (1.2)
with an appropriate boundary condition, which in the case of tangential boundary condition
takes the form

∂n p = u ⊗ u : ∇n on ∂�, (1.3)

where we implicitly assumed the normal n to be extended to a C1 vector field in a neighbor-
hood of ∂� in order to compute its gradient. Note that this makes sense if the domain is of
class C2.

The Neumann-type boundary condition (1.3) can be obtained if we scalar multiply by n
the first equation in (1.1). Indeed, since u is divergence-free and tangential to the boundary,
at least in the case in which the velocity is regular enough, we can compute

∂n p = ∇ p · n = − div(u ⊗ u) · n = −∂i (uiu j )n j = −ui∂i (u j )n j

= −ui∂i (u jn j ) + uiu j∂i n j = −u · ∇(u · n) + u ⊗ u : ∇n

= u ⊗ u : ∇n.

(1.4)

Here and in the rest of the paper, we adopt the Einstein summation convention with repeated
indexes. In the last equality in the above chain, we used that ∂� is a level set of the scalar
function u · n, and thus ∇(u · n)|∂� is parallel to n. Thus, at least in the regular setting, the
pressure p solves

{−�p = div div(u ⊗ u) in �

∂n p = u ⊗ u : ∇n on ∂�.
(1.5)

In order to deal with u ∈ Cθ (�), we need to interpret (1.5) in the weak sense, that is, we
consider a scalar function p ∈ C0(�) such that

−
∫

�

p�ϕ dx +
∫

∂�

p ∂nϕ dx =
∫

�

u ⊗ u : Hϕ dx, for all ϕ ∈ C2(�), (1.6)
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where we denoted by Hϕ the Hessian matrix of the scalar function ϕ. Relation (1.6) is
obtained as usual by multiplying the first equation in (1.5) by the test function ϕ and then
integrating by parts.

At this point onemaywonder if the pressure p coming from theEuler equations solves (1.5)
only if the velocity is regular enough, say u(t) ∈ C1(�). Indeed the latter regularity has
been crucially used in order to derive the boundary condition in (1.4). However, it can
be easily shown that the weak formulation of the pressure equation (1.6) can be always
derived whenever u, p ∈ C0(�). Indeed, if the uniformly continuous couple (u, p) weakly
solves (1.1), then

∫ T

0

(∫

�

(
u · ψ η′ + η u ⊗ u : ∇ψ + η p divψ

)
dx − η

∫

∂�

pψ · n dx
)

dt = 0

whenever η ∈ C∞
c ((0, T )) and ψ ∈ C1(�; R

d). In particular, choosing ψ = ∇ϕ, we get
that

∫ T

0
η

(∫

�

(u ⊗ u : Hϕ + p�ϕ) dx −
∫

∂�

p∂nϕ dx

)

dt = 0

for all ϕ ∈ C2(�), so that, for any fixed time slice t ∈ (0, T ), the couple (u(t), p(t)) must
solve (1.6).

1.2 Regularity of the pressure

From the heuristic standard elliptic regularity theory applied to the Neumann problem (1.5),
one is tempted to say that the pressure p has (at least) the same Hölder regularity of u up
to the boundary. However, as noticed in [3], this regularity property does not directly come
from any known elliptic regularity result. Moreover, it is also known [10, 23, 34] that, if �

is either the whole space R
d or the d-dimensional torus T

d (i.e., no boundary is involved),
then the pressure enjoys the following regularity properties

p ∈
{
C2θ if 0 < θ < 1

2
C1,2θ−1 if 1

2 < θ < 1.
(1.7)

Moreover, as observed in [12], in the critical case θ = 1
2 , the pressure p is log-Lipschitz,

namely

|p(x1) − p(x2)| ≤ C |x1 − x2| | log |x1 − x2||

for all x1, x2 ∈ �, with |x1 − x2| < 1
2 . Similar results can be also shown in the classes of

Besov and Sobolev solutions, see [11].
The regularity in (1.7) basically means that p is twice as regular as u. Thus, even in

a bounded domain �, by a standard localization argument, one immediately gets that the
pressure still enjoys an interior double regularity property.

On the other hand, in the recent work [3], the authors proved that, in the 2-dimensional
case, the pressure satisfies p ∈ Cθ (�), thus providing the θ -Hölder regularity of the pressure
up to the boundary.
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1.3 Main results

The aim of this work is to extend the boundary regularity of the pressure to every dimension
d ≥ 2 and to show that the 2θ -Hölder regularity known for domains without boundary, still
holds in setting considered in this work. Note that, when θ > 1

2 , in order to hope for a
regularity property p ∈ C1,2θ−1(�), we are forced to require that ∂� is of class C2,2θ−1. In
particular, this implies that ∇n ∈ C2θ−1, so that also the Neumann boundary data satisfies

u ⊗ u : ∇n ∈ Cmin{θ,2θ−1} = C2θ−1.

In a bounded domain with a C2 boundary this would clearly not be possible in general, since
in this case the Neumann boundary condition u ⊗ u : ∇n ∈ C0 is inconsistent with the fact
that p has Hölder continuous first derivatives up to the boundary.

Our main result reads as follows.

Theorem 1.1 (Regularity of the pressure) Let d ≥ 2 and let � ⊂ R
d be a bounded simply

connected open set with boundary of class C2,α , for some α > 0. Let θ ∈ (0, 1) and let
u ∈ Cθ (�) be a weakly divergence-free vector field such that u ·n|∂� = 0. Then, there exists
a unique zero-average solution p ∈ C0(�) of (1.6) with the following regularity properties.

(i) If θ ∈ (
0, 1

2

]
, then p ∈ Cθ (�) and there exists a constant C > 0 such that

‖p‖Cθ (�) ≤ C‖u‖C0(�)‖u‖Cθ (�).

(ii) If θ ∈ ( 1
2 , 1

)
, then p ∈ C1,min(α,2θ−1)(�) and there exists a constant C > 0 such that

‖p‖C1,min{α,2θ−1}(�) ≤ C‖u‖2Cθ (�)
.

In particular, if � is of class C2θ−1, then p ∈ C1,2θ−1(�).

The stability estimate in (i) clearly indicates that only one of the two vectors u in the
right-hand side is used to transfer the Cθ regularity to p. In fact, we expect that the other
vector could be exploited in a better way in order to double the regularity of the pressure.

The assumption on the C2,α smoothness of ∂� for some (arbitrary small) α > 0 is just
technical. Indeed, this regularity is only needed to provide a suitable approximation for the
vector field u and to prove the asymptotic estimates for the Green–Neumann function, see
Lemma 2.1 and Theorem C.1 below. We believe that this assumption might not be sharp,
since the C2 smoothness of the boundary of the domain (at least heuristically) seems to be
sufficient for proving (i).

Actually, as noticed in [3] in the planar case d = 2, the approximation of the velocity field
can be performed in a C2 domain by using the stream function of u, which plays the role of
a potential. In the case d > 2, we do not know how to provide an appropriate corresponding
d-dimensional version of the stream-function approach.We refer the reader to Sect. 2.3 below
for a precise discussion about the issue of the boundary regularity of the domain together
with a possible strategy to solve it.

The approach used in [3] is based on a suitable geodesic parametrization of the boundary
(together with the aforementioned regularization of u) which, in turn, strongly relies on the
2-dimensional structure.

Our approach is different and follows the main idea of [10]. Indeed, we rewrite p as a
singular integral operator applied to a suitable data of the form (u − a) ⊗ u, where a is a
d-dimensional vector needed to desingularize the kernel. More precisely, we can state the
following result.
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Proposition 1.2 (Representation formula) Let d ≥ 2 and let � ⊂ R
d be a bounded simply

connected open set of class C2. Let u ∈ C∞(�) ∩ C1(�) be such that div u = 0 and
u · n|∂� = 0. If p is a weak solution of (1.5), then

p(x) − 1

|�|
∫

�

p(y) dy =
∫

�

∂yi y j G(x, y) (ui (y) − ui (x)) u j (y) dy (1.8)

for all x ∈ �, where G = G(x, y) is the Green–Neumann function on �.

Note that the right-hand side of (1.8) makes sense since the singularity of the kernel
y 
→ ∂yi y j G(x, y) at y = x can be resolved by the term ui (y) − ui (x).

We also remark that looking at weak solutions in the sense of (1.6) plays a crucial role in
our approach, since in this way there is no need to introduce any other boundary condition
apart from the natural one as in (1.5). This is in fact different fromwhat happens in [3], where
the authors need to define and deal with a specific notion of trace of the normal derivative of
the pressure ∂n p at the boundary of �.

We apply Proposition 1.2 to the regular approximation of u ∈ Cθ (�) given by the approx-
imation Lemma 2.1. We then show that the corresponding Hölder norm of p is uniformly
bounded by the norm of u, thus getting the regularity estimates claimed in Theorem 1.1 for
the solution p of (1.6).

Moreover, despite the fact that we are not able to quadratically desingularize the kernel by
using the representation formula (1.8) above, we propose an abstract interpolation argument
which shows that an almost double regularity holds even for θ < 1

2 . However, this abstract
approach requires more regularity on the domain �.

Theorem 1.3 (Almost double regularity for ∂� ∈ C3,α) Let d ≥ 2 and let � ⊂ R
d be a

bounded simply connected open set with boundary of class C3,α , for some α > 0. Let ε > 0,
θ ∈ (

0, 1
2

)
and u ∈ Cθ (�) be a weakly divergence-free vector field such that u · n|∂� = 0.

Then, there exists a constant C > 0 such that the unique zero-average solution p of (1.6)
enjoys the estimate

‖p‖C2θ−ε(�) ≤ C‖u‖2Cθ (�)
. (1.9)

The proof of the previous theorem is based on the abstract interpolation result given in
[11, Theorem 3.5] together with the θ -Hölder regularity we obtained in Theorem 1.1 (i).
The assumption on the C3,α regularity of the domain is needed in order to apply the abstract
interpolation [11, Theorem 3.5], because we must guarantee that p ∈ C2,α(�) whenever
u ∈ C1,α(�). Note that this condition is indeed true by classical Schauder’s estimates applied
to the problem (1.5) whenever the boundary datum satisfies u ⊗ u : ∇n ∈ C1,α(∂�), which,
in turn, requires that ∇n ∈ C1,α(∂�) and thus ∂� ∈ C3,α . The general heuristic reason
behind the validity of the estimate (1.9) lies in the fact that, once the single θ -regularity
estimate given by Theorem 1.1(i) is established (and we underline that this regularity is not
a direct consequence of the classical Schauder’s estimates), the structure of the right-hand
side

div div(u ⊗ u) = div(u · ∇u) = (∂i u j )(∂ j ui )

always upgrades the regularity to a (almost) double one, if the domain is regular enough
to properly apply Schauder’s theory. The ε-loss in (1.9) is a consequence of the failure of
Schauder’s estimates in the integer spaces Ck(�).

Last but not least, we show that the quadratic desingularisation of the kernel allowing for
the double regularity result (1.7) on the d-dimensional torus T

d holds even if div u �= 0,
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provided that div u is suitably regular. In more precise terms, we can prove the following
result.

Theorem 1.4 (Double regularity on T
d for general div u) Let θ ∈ (0, 1) and u ∈ Cθ (Td).

The unique zero-average solution p ∈ Cθ (Td) of the problem

− �p = div div(u ⊗ u) in T
d (1.10)

enjoys the following regularity properties.

(a) If θ ∈ (
0, 1

2

)
and div u ∈ Lq(Td) for some q ∈

[
2d

1−2θ ,+∞
]
, then p ∈ C2θ (Td) and

there exists a constant C > 0 such that

‖p‖C2θ (Td ) ≤ C
(
‖u‖2Cθ (Td )

+ ‖ div u‖2Lq (Td )

)
.

(b) If θ ∈ ( 1
2 , 1

)
and div u ∈ C2θ−1(Td), then p ∈ C1,2θ−1(Td) and there exists a constant

C > 0 such that

‖p‖C1,2θ−1(Td ) ≤ C
(
‖u‖2Cθ (Td )

+ ‖ div u‖2C2θ−1(Td )

)
.

1.4 Hölder solutions and turbulence

Hölder-continuous weak solutions to the Euler equations have attracted a lot of interest in the
last decades, mainly because of their natural connection with the K41 Theory of Turbulence
[26] and the related Onsager’s conjecture on anomalous energy dissipation. Indeed, in 1949,
the theoretical physicist Onsager [30], while considering solutions u ∈ L∞([0, T ];Cθ (Td)),
conjectured that θ = 1

3 may be the threshold for the existence of inviscid fluid flows exhibit-
ing an anomalous dissipation of the kinetic energy. He in fact claimed—and actually even
mathematically motivated—that kinetic energy dissipation would only happen in the range
θ < 1

3 , while for θ > 1
3 the existence of such badly behaved solutions would not be possible

due to some intrinsic rigidity properties of the equations. We refer the interested reader to
[8, 9, 13, 16, 17, 20, 24] and references therein for a complete overview about the proof
of Onsager’s conjecture, and to [21] for a detailed account on the modern theory of fully
developed turbulence.

Everything that has been discussed above is known to be true in the absence of boundaries.
If a physical boundary is present, then the mathematical (and also physical) description of
turbulence becomes much more intricate, due to the non-trivial effects made by the boundary
itself [2, 4, 31, 32]. The energy conservation analogous to [13] in the case of a bounded
domain was proved in [2], where the Hölder regularity of the pressure plays a crucial role,
see [2, Proposition 2.1] for instance. However, such a regularity does not easily come as a
consequence of the usual Schauder boundary regularity theory for elliptic PDEs. For this
reason, we believe that this article gives a solid proof of the pressure regularity which, to our
knowledge, is not otherwise precisely traceable in the current mathematical literature.

1.5 Organization of the paper

The paper is organized as follows. In Sect. 2, we prove an approximation result for the
velocity, see Lemma 2.1. Section3 is dedicated to the proof of the representation formula
given in Proposition 1.2. The proof of our main result Theorem 1.1 can be found in Sect. 4.
The proof of the almost double regularity of Theorem 1.3 is the content of Sect. 5 while
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Theorem 1.4 for non-zero divergence is proved in Sect. 6. We then end the paper with three
appendices. InAppendixA,we collect all the technical resultswe need onSchauder regularity
theory. In Appendix B we recall an useful result about interpolation of bilinear operators. In
Appendix C, we provide a proof of some estimates on the Green–Neumann function.

2 Approximation of the velocity and reduction to the regular case

2.1 Hölder norms

We begin with the definition of the norms we are going to use throughout the paper. In
the following, we let N0 = N ∪ {0}, k ∈ N0, θ ∈ (0, 1) and β ∈ N

k
0 be a multi-index. Let

� ⊂ R
d and let f : � → R

m form ∈ N.We introduce the usualHölder norms as follows. The
supremum norm is denoted by ‖ f ‖C0(�) = supx∈� | f (x)|. We define the Hölder seminorms
as

[ f ]Ck (�) = max|β|=k
‖Dβ f ‖C0(�) ,

[ f ]Ck,θ (�) = max|β|=k
sup

x,y∈�, x �=y

|Dβ f (x) − Dβ f (y)|
|x − y|θ .

The Hölder norms are then given by

‖ f ‖Ck (�) =
k∑

j=0

[ f ]C j (�),

‖ f ‖Ck,θ (�) = ‖ f ‖Ck (�) + [ f ]Ck,θ (�).

In order to shorten the notation, for k = 0 we simply write Cθ (�) instead of C0,θ (�).

2.2 Approximation of the velocity

Now we provide the regular approximation of the velocity u that remains divergence-free
and tangential to the boundary. These two constraints are both important in order to get the
representation formula (1.8).

Lemma 2.1 (Approximation of the velocity) Let d ≥ 2 and let � ⊂ R
d be a bounded and

simply connected domain of class C2,α for some α > 0. Let θ ∈ (0, 1) and let u ∈ Cθ (�) be
such that div u = 0 and u ·n|∂� = 0. Then, there exists a family (uε)ε>0 ⊂ C∞(�)∩C1(�)

such that uε → u in C0(�) as ε → 0+, div uε = 0 and uε · n|∂� = 0 for all ε > 0, and

sup
ε>0

‖uε‖Cθ (�) ≤ C‖u‖Cθ (�)

for some constant C > 0.

In the proof of Lemma 2.1, we exploit the following extension result for Hölder continuous
solenoidal vector fields, see [25, Section 5].

Lemma 2.2 (Extension lemma)Let� be a bounded and simply connected domain of class C2

and let θ ∈ (0, 1). If u ∈ Cθ (�) is such that div u = 0, then there exists ũ ∈ Cθ (Rd) with
compact support such that ũ|� = u, div ũ = 0 in R

d , and

‖ũ‖Cθ (Rd ) ≤ C‖u‖Cθ (�)
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for some constant C > 0.

Proof of Lemma 2.1 Let ũ be the extension given by Lemma 2.2 and consider themollification
ũε := ũ ∗ ρε for some approximation of the unity (ρε)ε>0. Notice that ũε does not satisfy
the required boundary condition in general. Hence, we modify it by considering the solution
ϕε (unique up to constants) of the system

{
�ϕε = 0 in �

∂nϕ
ε = ũε · n on ∂�.

Notice that, since div ũε = 0, the compatibility condition

0 =
∫

∂�

ũε · n =
∫

�

div ũε

is satisfied, and thus the previous boundary value problem admits a solution.
Since � is of class C2,α , we have n ∈ C1,α and thus, by Schauder boundary regular-

ity theory (see [29]) we get ϕε ∈ C∞(�) ∩ C2,α(�) ⊂ C∞(�) ∩ C2(�). Moreover, by
Theorem A.2, we also get

‖∇ϕε‖Cθ (�) ≤ C‖ũε · n‖Cθ (∂�) ≤ C‖ũε‖Cθ (Rd ) ≤ C‖ũ‖Cθ (Rd ) ≤ C‖u‖Cθ (�), (2.1)

where in the last inequality we used the continuity of the extension operator given by
Lemma 2.2.

We now define uε := ũε − ∇ϕε for all ε > 0. Note that, by definition, uε ∈ C∞(�) ∩
C1(�), div uε = 0 in � and uε · n = 0 on ∂� for all ε > 0. It remains to check the
convergence uε → u in C0(�) as ε → 0+.

We first note that ũε → ũ in C0(Rd) as ε → 0+, which implies ũε → u in C0(�) as
ε → 0+, because ũ|� = u. We are thus to show that ∇ϕε → 0 in C0(�) as ε → 0+.
By (2.1), we know that the family (ϕε)ε>0 is bounded in C1,θ (�). Therefore, we can find
a subsequence εk → 0 and a limit function ϕ ∈ C1,θ (�) such that ϕεk → ϕ in C1(�) as
k → +∞. Finally, since ũε · n → 0 in C0(∂�) as ε → 0+, the limit function ϕ solves

{
�ϕ = 0 in �

∂nϕ = 0 on ∂�.

As a consequence, ϕ must be a constant function on � and thus ∇ϕεk → ∇ϕ ≡ 0 uniformly
on � as k → +∞. From (2.1), we also get the (uniform in ε) continuity estimate

‖uε‖Cθ (�) ≤ ‖ũε‖Cθ (�) + ‖∇ϕε‖Cθ (�) ≤ C‖u‖Cθ (�),

concluding the proof. ��
Remark 2.3 Notice that, in the previous proof, ϕε ∈ C2,α(�), which implies the stronger
conclusion uε ∈ C1,α(�)∩C∞(�). It follows that, actually, div div(uε ⊗uε) = ∂i uε

j∂ j uε
i ∈

Cα(�), and thus the Neumann boundary problem for the pressure precisely falls in the
standard Schauder’s theory with Hölder continuous data. We however preferred to formulate
Lemma 2.1 by claiming that uε ∈ C1(�) only, since this is the minimal assumption needed
to run the rest of the proof.

2.3 A possible strategy to get approximation in the C2 case

In the proof of Lemma 2.1, the regularity ∂� ∈ C2,α is only used to deduce that ϕε ∈ C2(�),
which in turn implies that uε ∈ C1(�).
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It is clear that, in order to get an approximation (uε)ε ⊂ C1(�) with the properties given
in Lemma 2.1, one is forced to ensure that ∇ϕε ∈ C1(�) which, in turn, is a consequence of
standard Schauder’s boundary regularity estimate provided that � is of class C2,α for some
α > 0, see [22, Theorem 6.30] for instance.

Thus, to prove the same approximation under the weaker assumption that� is of class C2

only, one has to follow a different approach. Below we propose a possible strategy which we
believe could be helpful for further developments in this direction.

The idea is to write u ∈ Cθ (�) in terms of a potential with some precise properties. Let
us assume the existence of a d × d matrix A such that

A ∈ C1,θ (�), AT = −A, A|∂� = 0, div A = u. (2.2)

Note that the latter condition is clearly compatible with the divergence-free constraint on u,
since div div A = 0 whenever A is skew-symmetric.

In order to regularize A, one may proceed as follows. In the interior of �, one can simply
mollify the potential A. At the boundary �, one first reduces to the case � is the half-space
{x ∈ R

d : xd > 0} through local charts, and then extend the local expression of A for xd < 0
in an odd-symmetric way. Let us now call such a local extension Ã. At least in a local chart,
one can mollify Ã with a radial smooth convolution kernel, getting a new potential Ãε. Since
Ã was odd with respect to xd = 0 (in each local system of coordinates), from A|∂� = 0
we get Ãε|xd=0 = 0. All in all, via a suitable smooth partition of the unity subordinated to
the local boundary charts and the interior, one can go back to the original coordinates in �

and just glue all those local potentials together, getting a new d × d matrix Aε in (an open
neighborhood of) � such that

Aε ∈ C2(�), (Aε)T = −Aε, Aε|∂� = 0, (2.3)

the first property being a consequence of the fact that the domain � is of class C2.
At this point, one can define

uε = div Aε ∈ C1(�)

and we claim that the family (uε)ε>0 provides the desired approximation. By construction,
we clearly have that uε → u in C0(�) as ε → 0+ and ‖uε‖Cθ (�) ≤ C‖u‖Cθ (�) for some
constant C > 0 which does not depend on ε > 0. In addition, from (2.3), one immediately
gets that div uε = 0. Finally, one also gets uε · n = 0 on ∂� thanks to the following
straightforward computation

n · div Aε = ni ∂ j A
ε
j i = niα

ε
j i n j = −niα

ε
i j n j = −n · div Aε on ∂�,

where we used that Aε is skew-symmetric and that ∂� is a level set for Aε , so that ∂ j Aε
j i =

αε
j i n j for some suitable constants αε

j i , being ∇Aε
i j |∂� parallel to n for all i, j .

At the presentmoment, we do not know how to provide a potential A as in (2.2) in a general
d-dimensional domain � of class C2. Having in mind the closely related works [6, 7], the
existence of such a potential seems quite delicate and this is why we instead decided to rely
on the the simpler argument leading to Lemma 2.1. Nonetheless, in the planar case d = 2,
one can overcome the problem and provide the suitable approximation (uε)ε>0 by simply
relying on the well-known stream function 
 ∈ C1,θ (�) vanishing on ∂�, see [3, Lemma 1]
for the details.
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3 Proof of Proposition 1.2

In this section, we prove Proposition 1.2, that is, we establish the representation formula (1.8).
To this aim, let u ∈ C∞(�) ∩ C1(�) be such that div u = 0 and u · n|∂� = 0 and let p be a
weak solution of (1.5). We start by rewriting the right-hand side of (1.5) as

div div(u ⊗ u) = ∂i j (uiu j ) = ∂ j ui ∂i u j = ∂ j (ui − ui (x)) ∂i u j = ∂i j
(
(ui − ui (x)) u j

)
,

where x ∈ � is any given point. It is well known (see [33, Theorem 3.39] for instance) that
p can be represented via the formula

p(x) − 1

|�|
∫

�

p(y) dy =
∫

�

G(x, y) ∂i j
(
(ui − ui (x)) u j

)
dy

+
∫

∂�

G(x, y) ui u j ∂ j ni dσ(y), (3.1)

where G = G(x, y) is the Green–Neumann function on � as defined in Appendix C and dσ

is the surface measure on ∂�.
Integrating by parts the first term in the above representation, we get
∫

�

G(x, y) ∂i j
(
(ui − ui (x)) u j (y)

)
dy =

∫

∂�

G(x, y) ∂ j
(
(ui − ui (x)) u j

)
ni dσ(y)

−
∫

�

∂yi G(x, y) ∂ j
(
(ui − ui (x)) u j

)
dy

=
∫

∂�

G(x, y) u j ∂ j ui ni dσ(y)

−
∫

∂�

∂yi G(x, y)
(
(ui − ui (x)) u j

)
n j dy

+
∫

�

∂yi y j G(x, y) (ui − ui (x)) u j dy

= −
∫

∂�

G(x, y) u ⊗ u : ∇n dσ(y)

+
∫

�

∂yi y j G(x, y) (ui − ui (x)) u j dy,

(3.2)

where in the last equality we used that u · n = 0 and ((u · ∇)u) · n = −u ⊗ u : ∇n on ∂�, as
already done to recover the boundary condition in (1.4). Thus, by combining (3.1) with (3.2),
we obtain

p(x) − 1

|�|
∫

�

p(y) dy =
∫

�

∂yi y j G(x, y)(ui − ui (x))u j dy

proving the desired representation formula (1.8).

4 Proof of Theorem 1.1

In this section, we prove Theorem1.1, dealingwith the two cases θ ≤ 1
2 and θ > 1

2 separately.
We remark that, since in Theorem 1.1 the pressure is assumed to have zero average, we just
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need to prove a bound on the seminorm [p]Cθ (�). This is in fact a simple consequence of the
Poincare-type inequality

‖ f ‖C0(�) ≤ C[ f ]Cθ (�)

valid for all f : � → R such that
∫

�
f (x) dx = 0, where C > 0 is a constant depending

on θ and � only.
We start by noticing that, for every fixed ε > 0, by the classical theory there exists a unique

zero average solution pε ∈ C1,α(�) to (1.5), with right-hand side given by the approximation
uε of Lemma 2.1 in place of u.

In the case θ ≤ 1
2 , as a consequence of the estimates on the Green–Neumann function

established in Appendix C, we show that such pε satisfies the estimate in (i) of Theorem 1.1
uniformly with respect to ε > 0. Therefore, since Cθ (�) is compactly embedded in C0(�),
up to subsequences as ε → 0+, we get the existence of limit function p still satisfying the
estimate in Theorem 1.1 (i) which is also a weak solution of (1.5) in the sense of (1.6).

In the case θ > 1
2 , we notice that the normal derivative of the pressure on the boundary is

a well-defined C2θ−1 function. Thus, we can just extend u to the whole space R
d and then

exploit the double regularity proved in [10, Proposition 3.1] together with some standard
Schauder regularity estimates.

4.1 Case� ≤ 1
2

In order to keep the notation short, we write u in place of the approximation uε given by
Lemma 2.1, that is, we have u ∈ C1(�) ∩ C∞(�), div u = 0 in � and u · n = 0 on ∂�.

Since we assumed that the pressure is average-free, by Proposition 1.2, we can write

p(x) =
∫

�

∂yi y j G(x, y) (ui (y) − ui (x)) u j (y) dy

for any given x ∈ �. Now let x1, x2 ∈ �, x̄ := x1+x2
2 and λ := |x1 − x2|. Since by [10] we

already know that p ∈ Cθ in the interior of �, we can just focus on the case in which one
between the two points, say x1 is close to ∂�.Without loss of generality, up to possibly enlarge
the constants appearing in the final estimate, we can assume that λ ≤ λ0 for some λ0 > 0
so small that such that B(x̄, λ0) ∩ ∂� is the graph of a C2,α function. In addition, possibly
choosing λ0 > 0 smaller, we can assume that, for all λ ≤ λ0, the intersection B(x̄, λ)∩� is a
simply connected open set with Lipschitz boundary (so that, in the following computations,
the Divergence Theorem always applies). We start by writing

p(x1) − p(x2) =
∫

�

∂yi y j G(x1, y) (ui (y) − ui (x1)) u j (y) dy

−
∫

�

∂yi y j G(x2, y) (ui (y) − ui (x2)) u j (y) dy = A + B,

where

A :=
∫

�∩B(x̄,λ)

∂yi y j G(x1, y) (ui (y) − ui (x1)) u j (y) dy

−
∫

�∩B(x̄,λ)

∂yi y j G(x2, y) (ui (y) − ui (x2)) u j (y) dy
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and

B :=
∫

�\B(x̄,λ)

∂yi y j G(x1, y) (ui (y) − ui (x1)) u j (y) dy

−
∫

�\B(x̄,λ)

∂yi y j G(x2, y) (ui (y) − ui (x2)) u j (y) dy.

We start by estimating the terms in A. We provide the detailed computations for the case
d ≥ 3, then case d = 2 being similar with minor differences due to the different expression
of the Newtonian potential and, consequently, of the Green–Neumann function.

By using the Green–Neumann function estimates in (C.2), we can bound
∣
∣
∣
∣

∫

�∩B(x̄,λ)

∂yi y j G(xk, y) (ui (y) − ui (xk)) u j (y) dy

∣
∣
∣
∣

� ‖u‖Cθ(�)‖u‖C0(�)

∫

�∩B(x̄,λ)

dy

|xk − y|d−θ

for k = 1, 2. Since
∫

�∩B(x̄,λ)

dy

|xk − y|d−θ
≤

∫

B(xk ,2λ)

dy

|xk − y|d−θ
� λθ ,

we get

|A| � λθ ‖u‖Cθ (�)‖u‖C0(�). (4.1)

To handle the terms in B, we write

B =
∫

�\B(x̄,λ)

(
∂yi y j G(x1, y) − ∂yi y j G(x2, y)

)
(ui (y) − ui (x1)) u j (y) dy

+
∫

�\B(x̄,λ)

∂yi y j G(x2, y) (ui (x2) − ui (x1)) u j (y) dy

=: B1 + B2.

Since
∣
∣∂yi y j

(
G(x1, y) − G(x2, y)

)∣
∣ � |x1 − x2|

|x̄ − y|d+1

thanks to (C.3), we can estimate B1 as

|B1| � λ ‖u‖Cθ (�)‖u‖C0(�)

∫

�\B(x̄,λ)

1

|x̄ − y|d+1−θ
dy.

Since
∫

�\B(x̄,λ)

dy

|x̄ − y|d+1−θ
dy � λθ−1,

we conclude that

|B1| � λθ ‖u‖Cθ (�)‖u‖C0(�). (4.2)

We are thus left to estimate B2. To this aim, we integrate by parts another time to further
desingularize the Green–Neumann kernel (otherwise, we would only obtain a logarithmic
Cθ regularity). By the Divergence Theorem, we can write
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B2 = −
∫

�\B(x̄,λ)

∂yi G(x2, y) (ui (x2) − ui (x1)) ∂ j u j (y) dy

+
∫

∂(�\B(x̄,λ))

∂yi G(x2, y) (ui (x2) − ui (x1)) u j (y) n j (y) dσ(y),

where σ stands for the (d − 1)-dimensional Hausdorff measure on the boundary. Now, since
u is divergence-free, the first integral in B2 vanishes. Moreover, we can decompose

∂(� \ B(x̄, λ)) = (∂� \ B(x̄, λ)) ∪ (� ∩ ∂B(x̄, λ)),

where the two sets on the right-hand side are disjoint. The integral on ∂� \ B(x̄, λ) vanishes
because u · n = 0 on ∂�. We hence have to estimate

B2 =
∫

�∩∂B(x̄,λ)

∂yi G(x2, y) (ui (x2) − ui (x1)) u j (y) n j (y) dσ(y).

By using (C.2), we get

|B2| � λθ ‖u‖Cθ (�)‖u‖C0(�)

∫

�∩∂B(x̄,λ)

dσ(y)

|x2 − y|d−1 .

Since |x2 − y| � λ whenever y ∈ ∂B(x̄, λ), we can bound
∫

�∩∂B(x̄,λ)

dσ(y)

|x2 − y|d−1 � 1

λd−1 σ(∂B(x̄, λ)) � 1,

so that

|B2| � λθ ‖u‖Cθ (�)‖u‖C0(�). (4.3)

Gathering (4.1), (4.2) and (4.3) and recalling that λ = |x1 − x2|, we finally obtain that

|p(x1) − p(x2)| � ‖u‖Cθ (�)‖u‖C0(�) |x1 − x2|θ

as soon as |x1 − x2| ≤ λ0. The proof of Theorem 1.1 (i) is thus complete.

4.2 Case� > 1
2

Let ũ ∈ Cθ (Rd) be the divergence-free and compactly supported extension of u given by
Lemma 2.2. We let p̃ be the unique potential-theoretic solution of

−� p̃ = div div(ũ ⊗ ũ) in R
d .

Then, by [10, Proposition 3.1], we get

‖ p̃‖C1,2θ−1(Rd ) ≤ C‖ũ‖2Cθ (Rd )
≤ C‖u‖2Cθ (�)

. (4.4)

In particular, the normal derivative ∂n p̃ is of class C2θ−1 on ∂�. Now, the function

q := p − p̃ +
∫

�

p̃ dx

satisfies the compatibility condition
∫

∂�
∂nq dσ = 0 by the definition and is thus the unique

(zero-average) solution of
{−�q = 0 in �

∂nq = u ⊗ u : ∇n − ∂n p̃ on ∂�.
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Note that the Neumann boundary datum satisfies

u ⊗ u : ∇n − ∂n p̃ ∈ Cmin{α,2θ−1}(∂�),

since u ∈ Cθ (�) ⊂ C2θ−1(�) and ∇n ∈ Cα(∂�), because � is of class C2,α . Thus, from
Theorem A.2, we get

‖q‖C1,min{α,2θ−1}(�) ≤ C
(‖u ⊗ u‖Cθ (∂�) + ‖∂n p̃‖C2θ−1(∂�)

) ≤ C‖u‖2Cθ (�)
, (4.5)

where in the last inequality we also used (4.4). Rewriting

p = q + p̃ −
∫

�

p̃ dx

and exploiting (4.4) and (4.5), we hence get that

‖p‖C1,min{α,2θ−1}(�) ≤ ‖q‖C1,min{α,2θ−1}(�) + ‖ p̃‖C1,2θ−1(�) ≤ C‖u‖Cθ (�),

concluding the proof of Theorem 1.1 (ii).

5 Proof of Theorem 1.3

The goal is to apply Theorem B.1. For notational convenience, we set

Cθ
σ (�) = {

u ∈ Cθ (�) : div u = 0 and u · n|∂� = 0
}

and similarlyC1,θ
σ (�).We define the bilinear operator T = T (u, v)whichmaps every couple

of vector fields u, v ∈ Cθ
σ (�) to the unique zero-average solution of
{−�T (u, v) = div div(u ⊗ v) in �

∂nT (u, v) = u ⊗ v : ∇n on ∂�,
(5.1)

which, as for (1.6), in the weak formulation reads as

−
∫

�

T (u, v)�ϕ dx +
∫

∂�

T (u, v) ∂nϕ dx =
∫

�

u ⊗ v : Hϕ dx, for all ϕ ∈ C2(�).

(5.2)

Let ε, θ and α be as in the statement of Theorem 1.3. Let β > 0 be sufficiently small such
that β < min{α, θ, ε}. By the very same proof of Theorem 1.1(i), we get

‖T (u, v)‖Cβ (�) ≤ C‖u‖C0(�)‖v‖Cβ (�) ≤ C‖u‖Cβ (�)‖v‖Cβ (�). (5.3)

Moreover, if v ∈ C1,β
σ (�), we can rewrite

div div(u ⊗ v) = div(u · ∇v),

which, together with Theorem A.2, gives

‖T (u, v)‖C1,β (�) ≤ C‖u‖Cβ (�)‖v‖C1,β (�). (5.4)

Since u ⊗ v : Hϕ = v ⊗ u : Hϕ, by looking at the weak formulation (5.2) we get that the
bilinear operator T = T (u, v) is symmetric, so that

‖T (v, u)‖C1,β (�) ≤ C‖u‖Cβ (�)‖v‖C1,β (�). (5.5)
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Now, if both u, v ∈ C1,β
σ (�), we can write

div div(u ⊗ v) = ∂i u j∂ jvi

and thus, by classical Schauder’s estimates, we can infer

‖T (u, v)‖C2,β (�) ≤ C‖u‖C1,β (�)‖v‖C1,β (�). (5.6)

Notice that, in order to obtain (5.6), we need to have β < α, from which ∇n ∈ C1,α(∂�) ⊂
C1,β(∂�) and thus the Neumann boundary datum in (5.1) enjoys

u ⊗ v : ∇n ∈ C1,β(∂�).

Consequently, by putting (5.3), (5.4), (5.5) and (5.6) all together, we can apply Theorem B.1
with X1 = Cβ

σ (�), X2 = C1,β
σ (�), Y1 = Cβ

σ (�) and Y2 = C2,β
σ (�), getting

‖T (u, u)‖(Cβ (�),C2,β (�))θ−β,∞ ≤ C‖u‖2(
Cβ

σ (�),C1,β
σ (�)

)

θ−β,∞
(5.7)

as soon as θ > β. We refer to Appendix B for the precise definition of the interpolation
spaces used above, and to the classical monographs [5, 28] for more general discussions
about linear interpolation.

Now recall that the Besov space Bγ
p,q (see for instance [5] for the precise definition)

coincides with the usual Hölder space whenever p = q = ∞ and γ is not an integer. Thus,
by [5, Theorem 6.4.5], it holds

(
Cβ(�),C2,β(�)

)
1
2 ,∞ = C1,β(�),

which in particular also shows the hypothesis (B.1) in Theorem B.1 is satisfied. Moreover,
again by [5, Theorem 6.4.5], we deduce that

(
Cβ(�),C2,β(�)

)

θ−β,∞ = C2θ−β(�). (5.8)

We underline that [5, Theorem 6.4.5] is stated in the whole spaceR
d , fromwhich (5.8) easily

follows by the existence of a linear extension operator which is also continuous between
Hölder spaces. Similarly, we have

(
Cβ

σ (�),C1,β
σ (�)

)

θ−β,∞ = Cθ
σ (�). (5.9)

Finally, by plugging (5.8) and (5.9) into (5.7), we obtain

‖T (u, u)‖C2θ−β (�) ≤ C‖u‖2Cθ (�)
,

from which (1.9) follows since β < ε.

6 Proof of Theorem 1.4

In this section, we prove Theorem 1.4. To keep the notation short, we set g = div u and we
let f be the unique zero-average solution of the problem

� f = g in T
d .

We hence set v = ∇ f . We can now deal with the two cases θ < 1
2 and θ > 1

2 separately.
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6.1 The case� < 1
2

Without loss of generality, we can assume that q < +∞. Since g ∈ Lq(Td), by the standard
Calderón–Zygmund theory we have

‖v‖W 1,q (Td ) ≤ C‖g‖Lq (Td ) (6.1)

which, in combination with the usual Sobolev embedding, being q ≥ 2d
1−2θ > d

1−θ
, gives

‖v‖Cθ (Td ) ≤ C‖v‖W 1,q (Td ) ≤ C‖g‖Lq (Td ). (6.2)

Now, rewriting

u ⊗ u = (u − v) ⊗ (u − v) + (u − v) ⊗ v + v ⊗ (u − v) + v ⊗ v,

we can decompose the pressure as

p = p1 + p2 + p3,

where the pi ’s are the unique zero-average solutions of

−�p1 = div div(w ⊗ w),

−�p2 = 2 div((w · ∇)v),

−�p3 = div div(v ⊗ v),

where we set w = u − v. Notice that, by definition of v, we have divw = 0 and, thanks
to (6.2), w ∈ Cθ (Td).

We now estimate the C2θ norm of each pi , i = 1, 2, 3, separately. First, by [10, Theo-
rem 1.1], we have

‖p1‖C2θ (Td ) ≤ C‖w‖2Cθ (Td )
≤ C

(
‖u‖2Cθ (Td )

+ ‖v‖2Cθ (Td )

)

≤ C
(
‖u‖2Cθ (Td )

+ ‖g‖2Lq (Td )

)

(6.3)

thanks to (6.2). Moreover, again by standard Calderón–Zygmund estimates, we can infer

‖p2‖W 1,q (Td ) ≤ C‖(w · ∇)v‖Lq (Td ) ≤ C‖w‖Cθ (Td )‖v‖W 1,q (Td )

≤ C
(
‖u‖2Cθ (Td )

+ ‖g‖2Lq (Td )

)

which, together with the Sobolev embedding W 1,q(Td) ⊂ C2θ (Td) valid for q ≥ d
1−2θ ,

gives

‖p2‖C2θ (Td ) ≤ C‖p2‖W 1,q (Td ) ≤ C
(
‖u‖2Cθ (Td )

+ ‖g‖2Lq (Td )

)
. (6.4)

Finally, in a similar way, we have

‖p3‖
W 1, q2 (Td )

≤ C‖v ⊗ v‖
W 1, q2 (Td )

≤ C‖v‖2W 1,q (Td )
≤ C‖g‖2Lq (Td )

which, again in combination with the Sobolev embedding W 1, q2 (Td) ⊂ C2θ (Td) valid for
q ≥ 2d

1−2θ , leads to

‖p3‖C2θ (Td ) ≤ C‖p3‖
W 1, q2 (Td )

≤ C‖g‖2Lq (Td )
. (6.5)

Combining (6.3), (6.4) and (6.5) all together, we complete the proof of Theorem 1.4 (a).
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6.2 The case� > 1
2

By standard Schauder estimates, we infer that

‖v‖C1,2θ−1(Td ) ≤ C‖g‖C2θ−1(Td ). (6.6)

We now split p = p1 + p2 + p3 exactly as in the previous case and estimate the Hölder norm
of each piece separately. First, by [10, Theorem 1.1], together with (6.6), we can bound

‖p1‖C1,2θ−1(Td ) ≤ C
(
‖u‖2Cθ (Td )

+ ‖v‖2Cθ (Td )

)
≤ C

(
‖u‖2Cθ (Td )

+ ‖g‖2C2θ−1(Td )

)
.

Moreover, again by standard Schauder estimates, we have

‖p2‖C1,2θ−1(Td ) ≤ C‖(w · ∇)v‖C2θ−1(Td ) ≤ C‖w‖C2θ−1(Td )‖v‖C1,2θ−1(Td )

≤ C
(
‖u‖2Cθ (Td )

+ ‖g‖2C2θ−1(Td )

)
,

where the last inequality follows from the embedding Cθ (Td) ⊂ C2θ−1(Td). Finally, once
again by Schauder estimates, we can write

‖p3‖C1,2θ−1(Td ) ≤ C‖v‖2C1,2θ−1(Td )
≤ C‖g‖2C2θ−1(Td )

.

The validity of Theorem 1.4 (b) then follows by combining the above estimates and the proof
is complete.
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Appendix A: Schauder regularity estimates

A.1 Elliptic regularity estimates

For the reader’s convenience, below we state some well-known elliptic regularity estimates
that are used throughout the paper.

We start with the following local regularity estimates. For the proofs, we refer the reader
to [22, Theorem 4.15 and Theorem 6.26].
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Theorem A.1 (Local estimates) Let α ∈ (0, 1), f ∈ Cα(B(0, 2)) and g ∈ C1,α(�(0, 2)),
where

�(0, 2) = ∂B+(0, 2) ∩ {xd = 0}, B+(0, 2) = B(0, 2) ∩ {xd > 0}.
(i) If �u = f in B(0, 2), then

‖u‖C2,α(B(0,1)) ≤ Cd
(‖u‖L∞(B(0,2)) + ‖ f ‖Cα(B(0,2))

)
, (A.1)

where Cd > 0 is a dimensional constant.
(ii) Let A ∈ C1,α(B(0, 2); R

d×d) be a uniformly elliptic matrix with

Aξ · ξ ≥ ν|ξ |2 ξ ∈ R
d , ν > 0,

and let b ∈ C1,α(�(0, 2); R
d) be such that b(x) · ed �= 0 for all x ∈ �(0, 2). If u ∈

C2,α(B(0, 2) ∪ �(0, 2)) is a solution of
{
div(A∇u) = f in B+(0, 2)
b · ∇u = g on �(0, 2),

then

[u]C2,α(B+(0,1)) ≤ C
(‖u‖L∞(B+(0,2)) + ‖ f ‖Cα(B+(0,2)) + ‖g‖C1,α(�(0,2))

)
, (A.2)

where the constant C > 0 depends on ν > 0 and the C1,α norms of A and b only.

The following result can be seen as a ‘one-derivative-less’ counterpart of the Schauder
estimates for the Poisson problem with Neumann boundary condition established in [29].
We also refer the reader to [27, Section 4] for more general results in this direction.

Theorem A.2 (Global estimates with Neumann boundary condition) Let α ∈ (0, 1) and
let � ⊂ R

d be a bounded simply connected open set of class C1,α . Let g ∈ Cα(∂�),
F ∈ Cα(�; R

d) be such that

−
∫

∂�

g dσ(x) =
∫

∂�

F · n dσ(x).

There exists a solution u ∈ C1,α(�) (unique up to an additive constant) of the problem
{−�u = div F in �

∂nu = g on ∂�.

Moreover, every solution of this problem verifies the estimate
∥
∥
∥
∥ u − 1

|�|
∫

�

u dx

∥
∥
∥
∥
C1,α(�)

≤ C(d, α,�)
(‖g‖Cα(∂�) + ‖F‖Cα(�)

)
.

Proof From [35, Theorem 1.2 and Corollary 1.5] we get a solution u ∈ C1,α(�) such that

‖u‖C1,α(�) ≤ C
(‖g‖Cα(∂�) + ‖F‖Cα(�) + ‖u‖C0(�)

)
.

Removing the ‖u‖C0(�) from the right-hand side of the previous estimate is a standard
contradiction argument, see for instance [29, First proof of Theorem 4.1]. ��

We also recall some local Calderón–Zygmund type estimates for Neumann elliptic prob-
lems.
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Theorem A.3 (Local L p regularity estimates) Let p ∈ (1,+∞), ρ ∈ (1, 2] and f ∈
L p(B(0, 2)).

(i) If −�u = f in B(0, 2) then

‖u‖W 2,p(B(0,1)) ≤ C(d, ρ)
(‖u‖L p(B(0,ρ)) + ‖ f ‖L p(B(0,ρ))

)
. (A.3)

(ii) Let A ∈ C1,α(B(0, 2); R
d×d) be a uniformly elliptic matrix with

Aξ · ξ ≥ ν|ξ |2 ξ ∈ R
d , ν > 0,

and let b ∈ C1,α(�(0, 2); R
d) be such that b(x) · ed �= 0 for all x ∈ �(0, 2). Let

g ∈ W 1− 1
p ,p

(�(0, 2)). If u ∈ W 2,p(B(0, 2)) is a solution of
{
div(A∇u) = f in B+(0, 2)
b · ∇u = g on �(0, 2),

then

‖u‖W 2,p(B(0,1)) ≤ C(d, ρ, ν)

(

‖u‖L p(B(0,ρ)) + ‖ f ‖L p(B(0,1)) + ‖g‖
W

1− 1
p ,p

(�(0,ρ))

)

.

(A.4)

Proof For the proof of (i), we refer to [22, Theorem 9.11]. To prove (ii) in the case g = 0,
one can first use an extension procedure as in [22, Theorem 9.13], where the same estimate
is derived for Dirichlet boundary conditions. The general case can be reduced to the case
g = 0 by considering u − G instead of u, where G ∈ W 2,p(B+(0, 2)) satisfies ∂nG = g
and ‖G‖W 2,p(B+(0,2)) ≤ C(d, p)‖g‖W 1−1/p,p(�(0,2)). ��

We will also need the following global L p regularity estimate. For the proof, we refer the
reader to [1].

Theorem A.4 (Global L p regularity estimates) Let � ⊂ R
d be a C2,α bounded domain for

some α ∈ (0, 1). Let p ∈ (1,+∞) and let f ∈ L p(�) be such that div f ∈ L1(�). If u is a
weak solution of

⎧
⎨

⎩

−�u = div f − 1

|�|
∫

�

div f dx in �

∂nu = 0 on ∂�,

(A.5)

then

‖u‖W 1,p(�) ≤ C(p,�) (‖ f ‖L p + 1) . (A.6)

The following consequence of Theorem A.4 will be of particular importance in the proof
of the pointwise estimates for the Neumann–Green function in Appendix C below. For the
proof, we refer to [19, Lemma 1].

Corollary A.5 (Global L p,∞ regularity estimates) Let � ⊂ R
d be a C2,α domain for some

α ∈ (0, 1). Let p ∈ (1,+∞) and f ∈ L p,∞(�). If u is a weak solution of
{−�u = div f − 1

|�| 〈div f , 1〉 in �

∂nu = 0 on ∂�,

then

‖∇u‖L p,∞(�) ≤ C(p,�)
(‖ f ‖L p,∞(�) + 1

)
. (A.7)
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A.2 An interpolation inequality

We close this section with the following simple interpolation inequality. Although we need
to apply Lemma A.6 only to the ball or to (a smooth regularization of) the half-ball, we state
it in the general case.

Lemma A.6 (Interpolation) Let � ⊂ R
d be a bounded connected open set of class C2,α for

some α ∈ (0, 1). There exists a constant C > 0, depending on � only, with the following
property. If f ∈ C2,α(�) and k ∈ {0, 1, 2}, then

[ f ]Ck (�) ≤ C‖ f ‖
k

2+α

C0(�)
‖ f ‖1−

k
2+α

C2,α(�)
. (A.8)

Appendix B: Abstract bilinear interpolation

Here we recall a particular case of the abstract bilinear interpolation theorem from [11,
Theorem 3.5]. We start by defining the basic notions in order to state the result, while we
refer the reader to [5, 28] for a detailed overview about Interpolation Theory.

Let (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) be two real Banach spaces. The couple (X , Y ) is said
to be an interpolation couple if both X and Y are continuously embedded in a topological
Hausdorff vector space. Moreover, we recall the definition of the K -function, by introducing
the following notation. Given x ∈ X + Y we denote �(x) = {(a, b) ∈ X × Y : a + b =
x} ⊂ X × Y , and for all t > 0 we define

K (t, x, X , Y ) = inf
{
‖a‖X + t‖b‖Y : (a, b) ∈ �(x)

}
.

Consequently, for any θ ∈ (0, 1), we set

(X , Y )θ,∞ = {
x ∈ X + Y s.t. t 
→ t−θ K (t, x) ∈ L∞([0,∞])} ,

which turns out to be a Banach space when endowed with the norm

‖x‖(X ,Y )θ,∞ = ∥
∥(·)−θ K (·, x)∥∥L∞([0,∞]) .

Theorem B.1 (Bilinear interpolation from [11, Theorem 3.5]) Let (X1, X2) and (Y1, Y2) be
two interpolation couples. Let T be a bilinear operator satisfying

‖T (a1, a2)‖Y1 ≤ C‖a1‖X1‖a2‖X1 ,

‖T (b1, b2)‖Y2 ≤ C‖b1‖X2‖b2‖X2 ,

and

‖T (a, b)‖(Y1,Y2) 1
2 ,∞ + ‖T (b, a)‖(Y1,Y2) 1

2 ,∞ ≤ C‖a‖X1‖b‖X2 , (B.1)

for some constant C > 0 independent of a, a1, a2 ∈ X1 and b, b1, b2 ∈ X2. Then, for any
θ ∈ (0, 1), there holds

‖T (x, x)‖(Y1,Y2)θ,∞ ≤ C‖x‖2(X1,X2)θ,∞

for all x ∈ (X1, X2)θ,∞.
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Appendix C: Pointwise estimates on the Green–Neumann function

In this section, we establish some estimates on theGreen–Neumann function on a sufficiently
regular domain � ⊂ R

d for d ≥ 2 we need in the paper. Basically, these estimates assert
that the behavior of Green–Neumann function is comparable to that of the corresponding
Newtonian potential

φ(x) =

⎧
⎪⎨

⎪⎩

1

ωd(d − 2)

1

|x |d−2 for d ≥ 3

− 1

2π
log |x | for d = 2

(C.1)

with x ∈ R
d , x �= 0.

On a bounded connected open set � ⊂ R
d of class C1, the Green–Neumann function

G = G(x, y) (see [18, Chapter 3]) is a solution of
{−�G(x, · ) = δx − 1

|�| in �

∂nG(x, · ) = 0 on ∂�,

whenever x ∈ �, where as usual δx denotes the Dirac measure at x . Possibly replacing
G(x, y) with G(x, y) − v(x), where

v(x) = 1

|�|
∫

�

G(x, y) dy,

it is not restrictive to assume that G is a symmetric function, see [18, Chapter 3, Lemma 7.1]
for the proof of this statement. We refer the reader to [18, Chapter 3, Section 7] for more
details on the main properties of the Green–Neumann function.

The main estimates on the Green–Neumann function G we use in this paper are gathered
in the following result.

Theorem C.1 (Pointwise estimates of the Green function) Let � ⊂ R
d , d ≥ 2, be a bounded

connected open set of class C2,α for some α ∈ (0, 1). There exists a constant C > 0,
depending on � only, with the following properties.

(i) If β ∈ N
d
0 is such that |β| ≤ 2, then

|∂β
y G(x, y)| ≤ C(�, β)

|x − y|d−2+|β| (C.2)

for all x, y ∈ �.
(ii) If x1, x2 ∈ �, x̄ := x1+x2

2 and h := |x1 − x2|, then

|∂yi y j G(x1, y) − ∂yi y j G(x2, y)| ≤ Ch

|x̄ − y|d+1 (C.3)

for all y ∈ �\B(x̄, h) and i, j = 1, . . . , d.

The proofs of (i) and (ii) are very similar and follow the simple argument outlined in
[19], which we readapt to the Neumann boundary case. To keep this article short, we prove
Theorem C.1 for d ≥ 3 only. The proof of Theorem C.1 for d = 2 follows the same strategy
with the usual minor adaptations depending on the different expression of the Newtonian
potential (C.1).
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Proof of Theorem C.1 For r0 > 0, we let

�r0 = {
x ∈ � : dist(x, ∂�) ≤ r0

}
.

By compactness, we can cover � with balls of radius r0. This yields a finite covering of the
set �r0 ,

{
B(ck, r0) : ck ∈ �, k = 1, . . . , K

}

depending on the chosen r0. Possibly choosing a smaller r0 if needed, one can ensure that,
for each k = 1, . . . , K , there exists a C2,α-diffeomorphism

�k : Uk → B(ck, 16r0) ∩ �, Uk ⊂ R
d open,

such that

�−1
k (ck) = 0, B+(0, 8r0) ⊂ Uk ⊂ B+(0, 32r0).

Without loss of generality, we can further assume that

3

4
≤ |�k(x) − �k(y)|

|x − y| ≤ 5

4

for all x, y ∈ Uk , x �= y.
Now let x, y ∈ � and set r = |x − y|. In the following, we assume that r ≤ r0/2. This

condition will be removed in the last part of the proof.
Proof of (i) for r ≤ r0/2. We distinguish two cases.
Case 1 B(y, r/34) ⊂ �. Since the function

ψx = ψ(x, ·) = G(x, ·) − φ(x − ·)
solves

�ψx = 1

|�| in B(y, r/34),

the function

ψ̃(z) := ψx (y + r z/68), for z ∈ B(0, 2),

solves

�ψ̃x = C(�) r2 in B(0, 2),

where C(�) > 0 is a constant depending on � only (that may change from line to line in
what follows). We now distinguish two subcases, β = 0 and |β| ≥ 1.

Subcase 1.1 β = 0. Let p0 > d
2 , such that W 2,p0 ↪→ L∞. Using the W 2,p regularity

estimate (A.3) applied toψx with exponent p0 and ρ ∈ (1, 2) sufficiently close to 1; followed

by the Sobolev embedding W 2,p1(B(0, ρ)) ↪→ L p0(B(0, ρ)) where 1
p1

∈
(

1
p0

+ 2
d , 1

)
to

obtain

‖ψ̃x‖W 2,p0 ((B(0,1)) ≤ C(d, p0, ρ)
(
‖ψ̃x‖L p0 (B(0,ρ)) + 1

)

≤ C(d, p0, ρ)
(
‖ψ̃x‖W 2,p1 (B(0,ρ)) + 1

)
.
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We are now in a position to iterate this application of TheoremA.3, constructing a decreasing
sequence pn > 1. One only needs to iterate theses estimates n = n(d) times so that pn ∈
(1, d

d−2 ) and therefore

‖ψ̃x‖W 2,p0 ((B(0,1)) ≤ C(d, p0, ρ)
(
‖ψ̃x‖L pn (B(0,ρn)) + 1

)
.

We choose ρ = ρ(d) such that ρn < 2. Now observe that, because pn < d
d−2 , there is ε > 0

such that Ẇ 1, d
d−1−ε(B(0, 2)) ↪→ L pn (B(0, 2)). Using this and the inequality

‖∇ψ̃x‖
L

d
d−1 −ε

(B(0,2))
≤ C(d)‖∇ψ̃x‖

L
d

d−1 ,∞
(B(0,2))

,

we arrive at

‖ψ̃x‖W 2,p0 ((B(0,1)) ≤ C(d, p0, ρ)

(

‖∇ψ̃x‖
L

d
d−1 ,∞

(B(0,2))
+ 1

)

.

Using the Sobolev embedding W 2,p0(B(0, 1)) ↪→ L∞(B(0, 1)) and undoing the scaling,
we finally have

‖ψx‖L∞(B(y,r/68)) ≤ C(d)

(
1

rd−2 ‖∇ψx‖
L

d
d−1 ,∞

(�)
+ 1

)

. (C.4)

Since ‖∇φ(x − ·)‖
L

d
d−1 ,∞

(�)
< ∞, it follows that

‖∇ψx‖
L

d
d−1 ,∞

(�)
≤ C + ‖∇G(x, ·)‖

L
d

d−1 ,∞
(�)

.

Observe that
{−�G(x, · ) = div f − 1

|�| in �

∂nG(x, · ) = 0 on ∂�,

with f (y) = (x−y)
dωd |x−y|d ∈ L

d
d−1 ,∞, so that Corollary A.5 yields

‖∇G(x, ·)‖
L

d
d−1 ,∞

(�)
≤ C(d)

(

‖ f ‖
L

d
d−1 ,∞

(�)
+ 1

)

,

hence

‖∇ψx‖
L

d
d−1 ,∞

(�)
≤ C(d) < +∞. (C.5)

Combining the above inequality with (C.4), we obtain

‖ψx‖L∞(B(y,r/68)) ≤ C(d)

rd−2 .

which ends the proof.

Subcase 1.2 |β| ≥ 1. By the elliptic regularity estimate (A.1) in Theorem A.1, it follows
that

‖ψ̃x‖C2,α(B(0,1)) ≤ Cd

(
‖ψ̃x‖L∞(B(0,2)) + C(�) r2

)
. (C.6)

Note that, by the zero-order estimates on G, that is, by (C.2) for β = 0, one has

|ψx (z)| ≤ |G(x, z)| + |φ(x − z)| ≤ C(�)

|x − z|d−2 ≤ C(�)

rd−2
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x

Y = Φ−1
k (a)

y

a

B(a, 16r/17)

B(a, r/17)

Uk

Φk

B(Y, 8r/17)
B(Y, 2r/17)

Fig. 1 Some balls appearing in the analysis. The goal is to estimate the function ψx on the shaded ball

for all z ∈ B(y, r/34), so that

‖ψ̃x‖L∞(B(0,2)) ≤ C(�)

rd−2 . (C.7)

The above inequality, combined with (C.6), gives

‖ψ̃x‖C2,α(B(0,1)) ≤ C(�)

rd−2 . (C.8)

Interpolating (C.7) and (C.8) using (A.8), one obtains [ψ̃x ]C |β|(B(0,1)) ≤ C(�)

rd−2 , that is

[ψx ]C |β|(B(y,r/68)) ≤ C(�)

rd−2+|β| ,

which is enough to conclude.
Case 2 B(y, r/34)∩ ∂� �= ∅. Let us pick any point a ∈ B(y, r/34)∩ ∂�. We observe that,
since r ≤ r0/2, there holds that y ∈ B(ck, r0) for some 1 ≤ k ≤ K that we fix. Because
|y − a| ≤ r/34, we have

B(a, r/17) ∩ � ⊂ B(ck, r0 + r/17) ⊂ B(ck, 2r0).

Note that Y := �−1
k (a) ∈ B+(0, 4r0), so that B+(Y , 8r/17) ⊂ B+(0, 8r0) ⊂ Uk . We also

note that B(y, r/34) ∩ � ⊂ B(a, r/17) ∩ � ⊂ �k(B(Y , 2r/17)). In Fig. 1 we have drawn
some balls appearing in the analysis.

We are now ready to start the proof. Since
{

�ψx = 1
|�| =: C in B(y, r/2) ∩ �

∂nψx = −∂nφ(x − ·) on B(y, r/2) ∩ ∂�,

the function θx := θ ◦ �k satisfies
{
div(A(z)∇θx (z)) = C in B+(Y , 8r/17)
b(z) · ∇θx (z) = −∂nφ(x − �k(·)) on �(Y , 8r/17),

where thematrix A and the vector b depend only on theC2,α diffeomorphism�k , in particular
A and b does not depend on r . Note that by our premiliminary remarks we can ensure
that B+(Y , 8r/17) ⊂ Uk . Let us set Ã(z) = A(Y + 4r z/17) and b̃(z) = b(Y + 4r z/17)
which are also of class C1,α uniformly in r (and y) since r ≤ r0/2, which is fixed. Letting
θ̃x = θx (Y + 4r · /17) and g̃ := −r∂nφ(x − �k(Y + 4r · /17)), we can write

{
div( Ã∇ θ̃x ) = Cr2 in B+(0, 2)
b̃ · ∇ θ̃x = g̃ on �(0, 2).
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We now again distinguish two subcases, β = 0 and |β| ≥ 1.

Subcase 2.1 β = 0.We start with an application of theW 2,p regularity estimate (A.4) applied
to θ̃x , ρ ∈ (1, 2) and p0 > d

2 , which, in turn, is such that we have the Sobolev embedding
W 2,p0(B(0, ρ)) ↪→ L∞(B(0, ρ)). This writes

‖θ̃x‖W 2,p0 (B+(0,1)) ≤ C(d, ρ)

(

‖θ̃x‖L p0 (B+(0,ρ)) + ‖g̃‖
W

1− 1
p0

,p0 (B+(0,ρ))
+ 1

)

. (C.9)

Observe that

‖g̃‖
W

1− 1
p0

,p0 (B+(0,ρ))
≤ ‖g̃‖W 1,p0 (B+(0,ρ)) ≤ ‖g̃‖L p0 (B+(0,ρ)) + ‖∇ g̃‖L p0 (B+(0,ρ)).

We have

‖∇ g̃‖L p0 (B+(0,ρ)) ≤ r2‖∇2φ(x − �k(Y + 4r · /17))‖L p0 (B+(0,2))

≤ C(�)r
2− d

p0 ‖∇2φ(x − ·)‖L p0 (B(y, 33r34 )),

where we used that

�k(B
+(Y , 8r/17)) ⊂ B(a, 16r/17) ⊂ B(y, 33r/34) ∩ � (C.10)

and the properties of �k as well as a scaling change of variable. Now since |x − z| ≥ r
34 for

any z ∈ B(y, 33r/34) and that |∇2φ(x − z)| ≤ C(d)

|x−z|d , we finally obtain that

‖∇ g̃‖L p0 (B+(0,ρ)) ≤ C(�)

rd−2 ,

and similarly the same estimate holds for ‖g̃‖L p0 (B+(0,ρ)), so that ultimately we get

‖g̃‖
W

1− 1
p0

,p0 (B+(0,ρ))
≤ C(�)

rd−2 .

Importantly our computations do not depend on the value of p0. For this reason we are in a
position to iterate (C.9) sufficiently many time just as we did in Subcase 1.1. and obtain

‖θ̃x‖W 2,p0 (B+(0,1)) ≤ C(�)

(

‖θ̃x‖L pn (B+(0,2))) + 1

rd−2 + 1

)

,

where n = n(d) is chosen so that pn ∈ (1, d
d−2 ) (note that we also need to chose ρ such

that ρn ≤ 2). Using the Sobolev embedding Ẇ 1, d
d−1−ε(B+(0, 2)) ↪→ L pn (B+(0, 2)) and

the embedding L
d

d−1 ,∞(B+(0, 2)) ↪→ L
d

d−1−ε(B+(0, 2)), one finally obtains that

‖θ̃x‖W 2,p0 (B+(0,1)) ≤ C(�)

(

‖∇ θ̃x‖
L

d
d−1 ,∞

(B+(0,2)))
+ 1

rd−2 + 1

)

.

Going back to the original variables and undoing the scaling we get

‖∇ θ̃x‖
L

d
d−1 ,∞

(B+(0,2)))
≤ C(�)

rd−2 ‖∇ψx‖
L

d
d−1 ,∞

(�)
,

and thanks to the L
d

d−1 ,∞ bound on ψx given by (C.5) we arrive at

‖θ̃x‖W 2,p0 (B+(0,1)) ≤ C(�)

rd−2 . (C.11)
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To conclude, observe that

‖ψx‖L∞(B(y,r/34)∩�) ≤ ‖ψx‖L∞(B(a,r/17)∩�)

≤ C(�)‖θx‖L∞(B+(Y ,2r/17))

≤ C(�)‖θ̃x‖L∞(B+(0,1/2)),

which combined with the Sobolev embedding W 2,p0 ↪→ L∞ and (C.11) provides us with
the desired estimate

‖ψx‖L∞(B(y,r/34)∩�) ≤ C(�)

rd−2 .

Subcase 2.2 |β| ≥ 1. An application of (A.2) to θ̃x yields

‖θ̃x‖C2,α(B+(0,1) ≤ C(�)
(
‖θ̃x‖L∞(B+(0,2)) + ‖Cr2‖Cα(B+(0,2)) + ‖g‖C1,α(�(0,2))

)
.

Note that ‖Cr2‖Cα(B+(0,2)) ≤ Cr2. Then, using that

�(B+(Y , 8r/17)) ⊂ B(a, 16r/17) ⊂ B(y, 33r/34) ∩ �

and also that �k is a C2,α diffeomorphism, it follows that

‖θ̃x‖L∞(B+(0,2)) = ‖θx‖L∞(B+(Y ,8r/17)) ≤ C(�)‖ψx‖L∞(B(y,33r/34)) ≤ C(�)

rd−2 ,

(C.12)

where in the last step we have used the zero-order estimate. Similarly, to estimate g̃, by
rescaling and using that �k is a C2,α diffeomorphism, one obtains

[g̃]C1,α(�+(0,2)) = Cr2+α[∂nφ(x − �k(·))]C1,α(�(Y ,8r/17))

≤ Cr2+α‖∂nφ(x − ·)‖C1,α(B(y,33r/34)∩∂�)

≤ Cr2+α‖φ(x − ·)‖C2,α(B(y,33r/34)∩∂�).

Now, we observe that

‖φ(x − ·)‖C2,α(B(y,33r/34)∩∂�) ≤ ‖φ(x − ·)‖L∞(B(y,33r/34)∩∂�)

+ [φ(x − ·)]C2,α(B(y,33r/34)∩∂�)

≤ C(�)

rd−2 + [φ(x − ·)]C2,α(B(y,33r/34)∩∂�).

Moreover, we have

|∂ j∂mφ(x − z1) − ∂ j∂mφ(x − z2)| ≤ C(d)

rd+α
|z1 − z2|α,

for all z1, z2 ∈ B(y, 33r/34) and all j,m ∈ {1, . . . , d}, which is obtained by explicit
computations on φ(x − z) = C(d)

|x−z|d−2 . Gathering all these estimates, it follows that

‖θ̃x‖C2,α(B+(0,1)) ≤ C

rd−2 . (C.13)

Interpolating (C.13) with (C.12) exploiting (A.8) on a smooth domain U+(0, 1) such that
B+(0, 1/2) ⊂ U+(0, 1) ⊂ B+(0, 1), we obtain

[θ̃x ]C |β|(B+(0,1/2)) ≤ [θ̃x ]C |β|(U+(0,1)) ≤ C(�)

rd−2 .
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Also, note that ‖θ̃x‖L∞(B+(0,1/2)) ≤ C(�)

rd−2 , so that we can finally write

[ψx ]C |β|(B(y,r/34)∩�) ≤ [ψx ]C |β|(B(a,r/17)∩�) ≤ C(�)‖θx‖C |β|(B+(Y ,2r/17))

≤ C(�)

r |β| [θ̃x ]C |β|(B+(0,1/2)) + C(�)‖θ̃x‖L∞(B+(0,1/2))

≤ C(�)

rd−2+|β| ,

which is sufficient to conclude the proof.
Proof of (ii) for r ≤ r0/2. Let us denote |x1 − x2| = h and r := |x̄ − y|. Let gx1,x2 :=
ψ(x1, ·)−ψ(x2, ·). Since (C.3) is true for φ in place ofG (by direct computations), the proof
of (C.3) directly follows from the inequality

[gx1,x2 ]C2(B(y,r/68)∩�) ≤ h

rd+1 , (C.14)

for some global constant c > 0. As in the proof of (i), we distinguish between the case where
y is far from the boundary or close to it.

We can assume that h ≤ r
34 . Indeed, if h > r

34 , then we can just apply the triangle
inequality and (i) to obtain

|∂i∂ j g(x1, y) − ∂i∂ j g(x2, y)| ≤ |∂i∂ j g(x1, y)| + |∂i∂ j g(x2, y)|
≤ C(�)

(
1

|x1 − y|d + 1

|x2 − y|d
)

≤ C(�)

rd
≤ C(�)

h

rd+1 .

As in the proof of (i), we distinguish two cases.
Case 1 B(y, r/34) ⊂ �. The function gx1,x2 satisfies the equation

�zgx1,x2 = 0 in B(y, r/34),

therefore the function g̃(z) := gx1,x2(y + r z/68) satisfies

�g̃ = 0 in B(0, 2),

so that, using the interior Schauder estimates (A.1) on g̃, one has

‖g̃‖C2,α(B(0,1)) ≤ C(�)‖g̃‖L∞(B(0,2)).

Assuming the estimate

‖gx1,x2‖L∞(B(y,r/34)) ≤ C(�)
h

rd−1 , (C.15)

it follows that

‖g̃‖L∞(B(0,2)) ≤ C(�)
h

rd−1 ,

so that

‖g̃‖C2,α(B(0,1)) ≤ C(�)h

rd−1 . (C.16)

Interpolating (C.15) and (C.16) using (A.8) and then undoing the scaling, one obtains the
estimate (C.14). Therefore the proof of (C.3) boils down to the proof of (C.15).
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Case 2 B(y, r/34) ∩ ∂� �= ∅. Let us fix 1 ≤ k ≤ K such that y ∈ B(ck, r0). The argument
follows the same line as in (i), so that we should only sketch the argument below. The equation
satisfied by gx1,x2 on B(y, r/2) ∩ � is

{
�zgx1,x2 = 0 in B(y, r/2) ∩ �

∂ngx1,x2 = ∂nφ(x2 − ·) − ∂nφ(x1 − ·) in B(y, r/2) ∩ ∂�.

Let a ∈ B(y, r/34) ∩ ∂� and set Y = �−1
k (a). The function θ := gx1,x2(�k(Y + 4r · /17))

satisfies the equation
{
div(A∇θ) = 0 in B+(0, 2)
b · ∇θ = G in �(0, 2),

where A is some uniformly elliptic matrix and b a vector both with C1,α norms independent
of r , and

G = r (∂nφ(x2 − �k(Y + 4r · /17)) − ∂nφ(x1 − �k(Y + 4r · /17))) .

In particular, an application of (A.2) yields

‖θ‖C2,α(B+(0,1)) ≤ C(�)
(‖θ‖L∞(B+(0,2)) + ‖G‖C1,α(�(0,2))

)
.

Observe that, by rescaling and using that �k is a C2,α diffeomorphism, one has

[G]C1,α(�(0,2)) = r2+α[∂nφ(x2 − �k(·)) − ∂nφ(x1 − �k(·))]C1,α(B+(Y ,8r/17))

≤ C(�)r2+α‖∂nφ(x2 − ·) − ∂nφ(x1 − r ·)‖C1,α(B(a,16r/17)∩∂�)

≤ C(�)r2+α‖∂nφ(x2 − ·) − ∂nφ(x1 − r ·)‖C1,α(B(y,33r/34)∩∂�).

By explicit computations on φ and by recalling that h ≤ r
34 , one has

[∂nφ(x2 − ·) − ∂nφ(x1 − ·)]C1,α(B(y,33r/34)∩∂�) ≤ C(�)
h

rd+1+α
,

so that

[G]C1,α(�(0,2)) ≤ C(�)
h

rd−1 .

Similarly, one can estimate

‖G‖L∞(�(0,2)) ≤ C(�)
h

rd−1 ,

so that we finally have

‖G‖C1,α(�(0,2)) ≤ C(�)
h

rd−1 .

Similarly, we have

‖θ‖L∞(B+(0,1)) ≤ C(�)‖gx1,x2‖L∞(B(y,33r/34)∩�).

Assuming the validity of the bound

‖gx1,x2‖L∞(B(y, 33r/34) ∩ �) ≤ C(�)
h

rd−1 , (C.17)

the above inequalities lead to the estimate

‖θ‖C2,α(B+(0,1)) ≤ C(�)
h

rd−1 . (C.18)
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X1

X2

x1 x2
Φk

Φ−1
k (B(x̄, h))

B(x̄, h)
x̄

γ(t)

(1 − t)X1 + tX2

y

Fig. 2 Construction of the path γ (t)

Interpolating the rescaled version of (C.17) with (C.18) using Lemma A.6, and following
the same arguments as in the proof of (i), one obtains (C.14), provided that (C.17) holds.
Proof of (C.15) and (C.17). We need to prove that the function ψ(x, ·) = ψx satisfies

|ψ(x1, z) − ψ(x2, z)| ≤ C(�)
h

rd−1 for all z ∈ � ∩ B(y, 33r/34). (C.19)

First, let us observe that, by the triangle inequality, one has

|ψ(x1, z) − ψ(x2, z)| ≤ |ψ(x1, z)| + |ψ(x1, z)| ≤ C(�)
1

rd−2 ≤ C(�)
h

rd−1 ,

as soon as r ≤ C(�)h. Therefore, we can assume that r ≥ 3 h. Note that, since ψ(x1, z) −
ψ(x2, z) is a difference, we can assume that x1 and x2 are either both in the same ball of
radius r0 of the chosen covering of �, or in two different but neighboring balls. Hence, we
can assume that x1, x2 ∈ B(ck, r0) for some k. We first explain how to construct a path
γ : [0, 1] → � ∩ B(x̄, h) joining x1 to x2. Recall that �k : Uk → B(ck, 16r0) ∩ � is a
diffeomorphism such that �−1

k (B(x̄, h)) is contained in the convex set B+(0, 8r0) ⊂ Uk .
Therefore, we can set X j = �−1

k (x j ) for j = 1, 2 and define the path

γ (t) = �k((1 − t)X1 + t X2),

t ∈ [0, 1], which has length less than 2|x1−x2| since�k is a diffeomorphism, see Fig. 2. Also,
again because �k is a diffeomorphism, we have that |x ′ − y| ≥ r/3 for all x ′ ∈ γ ([0, 1]),
being r ≥ 3h according to our initial assumption.

We can now start the proof by observing that, by the Mean Value Theorem,

ψ(x1, z) − ψ(x2, z) =
∫ 1

0
∇xψ(γ (t), z) · γ ′(t) dt,

and thus

|ψ(x1, z) − ψ(x2, z)| ≤ C(�)|x1 − x2|‖∇xG(·, z)‖L∞(B(x̄,h)).

Because of the symmetry G(x, z) = G(z, x) we see that ∇xG(x, z) = ∇yG(z, x), so that
by (i) we have the uniform bound

|∇xG(x ′, z)| ≤ C(�)

|x ′ − z|d−1 ≤ C(�)

rd−1

for all z ∈ B(y, 33r/34) and x ′ ∈ γ ([0, 1]), which finally gives (C.19).
To conclude the proof, we are thus left to prove (i) and (ii) for r ≥ r0/2. In this case, one

can write all the estimates in the proofs of (i) and of (ii) with r0 instead of r and end up with
bounds in terms of negative powers of r0, which are then bounded by negative powers of r
up to enlarging the constants. ��
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Remark C.2 One may wonder if the estimates on ψx = ψ(x, ·) given in the above proof are
optimal. In fact, the argument presented above should be interpreted as a scaling obstruction
for a larger growth than |x − · |−d+2−|β| for ψx . Since this bound has the same order of the
one that can be computed for the Newtonian potential, this is enough to conclude.
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