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Abstract—Traditional link adaptation (LA) schemes in cellular
network must be revised for networks beyond the fifth generation
(b5G), to guarantee the strict latency and reliability require-
ments advocated by ultra reliable low latency communications
(URLLC). In particular, a poor error rate prediction potentially
increases retransmissions, which in turn increase latency and
reduce reliability. In this paper, we present an interference
prediction method to enhance LA for URLLC. To develop
our prediction method, we propose a kernel based probability
density estimation algorithm, and provide an in depth analysis
of its statistical performance. We also provide a low complexity
version, suitable for practical scenarios. The proposed scheme is
compared with state-of-the-art LA solutions over fully compliant
3rd generation partnership project (3GPP) calibrated channels,
showing the validity of our proposal.

Index Terms—Beyond 5G, kernel distribution estimation, sta-
tistical link adaptation, ultra-reliable low-latency communica-
tions.

I. INTRODUCTION

Among the different application scenarios for networks
beyond the fifth generation (b5G), ultra reliable low latency
communications (URLLC) have drawn significant attention
from both industrial and academic research. The strict require-
ments on latency (1−10 ms) and reliability (first transmission
block error rate (FT-BER) < 10−5) will enable new use cases,
such as factory automation [1], autonomous vehicles [2], and
tactile Internet [3]. Even more stringent requirements with
latency down to 100 µs are expected to be supported by the
sixth generation (6G) [4]. In order to meet the aforementioned
requirements, different communication solutions have been
investigated. In fact, short packets [5], shorter transmission
time intervals, and grant-free access schemes [6] are enablers
of URLLC. The reader is referred to [7] for an overview of
available solutions.

In this paper, we focus on link adaptation (LA), i.e., the
choice of a proper modulation and coding scheme such that a
certain FT-BER is met. LA drastically reduces the number of
required retransmissions, as the choice of the modulation and
coding scheme (MCS) is based on the channel quality at trans-
mission time, therefore adapting transmissions to the actual
channel quality. However, in order to meet very low target FT-
BER, a poor LA may yield too conservative transmission rates,
with waste of resources. Instead, the LA algorithm should

guarantee the target FT-BER, while at the same time avoiding
too conservative behaviors.

The baseline LA algorithm is the outer loop link adaptation
(OLLA) [8], which exploits the feedback from the receiver
about the success of the previous transmissions to adapt
the MCS, reaching a target FT-BER. This solution is very
efficient in many scenarios, and has been further improved for
scenarios with very sporadic traffic [9]. However, OLLA is
not well suited for URLLC, mainly because of the latency
introduced by the feedback, and several solutions have been
proposed to address this issue. In [10] LA is performed
based on a filtered version of the signal to interference plus
noise ratio (SINR), where the interference power (IP) for the
next transmission is predicted by low-pass filtering past IPs.
Similarly, in [11], prediction is obtained by two different low-
pass filters, designed on the difference between current and
previous filtered IP. However, this approach is sensitive to
high oscillations of IPs, yielding a sub-optimal LA.

Many research papers reported the benefits of modeling the
LA problem as either a reinforcement learning or multi-arm
bandit technique. The authors in [12] provide an overview
on how machine learning can be applied to meet URLLC
requirements; however, the reviewed methodologies do not
extract statistical information from the time correlation of
the interference to optimize LA. In [13], a reinforcement
learning technique is proposed to select the MCS from a
discrete set, based on the feedback from the environment, i.e.,
the ACK/NACK and channel state information (CSI). Multi-
arm bandits have been proposed in [14]–[16], in the form of
sampling from a posterior distribution of SINRs by different
modified Thompson sampling (TS) approaches. The modified
TS method [14] further reduces the computational complexity
of the conventional TS method. As an improvement, a two-
stage TS is proposed in [15]. Lastly, the goal in [16] is to
design a tuning-free LA scheme by TS. However, none of these
works are tailored to URLLC communications. In [17], a LA
solution has been proposed to attain ultra-reliability. However,
this is obtained by means or retransmission, which increase
the overall latency. When delay constraints allow for retrans-
missions, proper schemes can achieve the desired reliability
with higher spectral efficiency [18]. When delay constraints
becomes strict, instead, the FT-BER at the first transmission
becomes the key enabler for URLLC. In [19] a conservative
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LA algorithm has been proposed, where the MCS is chosen on
the basis of the estimated strongest channel degradation at the
packet transmission time. Although retransmissions may not
be needed using a conservative MCS, this solution does not
fully exploit channel conditions at transmission time. In [20],
a joint LA and retransmission policy is obtained, based on the
average SINR value, which however cannot guarantee a small
FT-BER in the short term. In [21], LA is implemented based
on IPs statistics. In particular, the probability density function
(p.d.f.) of IP is predicted using kernel density estimator (KDE)
[22], and then used in the LA algorithm.

In this paper, following the approach in [21], we propose
an algorithm for the estimation of the IP p.d.f. and its use
for LA. To meet the requirements of URLLC, we propose a
solution wherein latency is minimized thanks to the absence
of retransmissions, while the reliability requirement is met
by minimizing the transmission failure probability. Thus, by
allowing no retransmission and targeting failure probabilities
as low as 10−5, our scheme represents a viable solution for
URLLC. The proposed solution is evaluated in a cellular
network scenario with channels following either the Rice
channel model or a 3rd generation partnership project (3GPP)
calibrated 3D Urban micro (UMi) model [23]. It turns out
that the proposed LA framework is more accurate and entails
a lower complexity than state-of-the-art solutions.

With respect to the literature, and in particular to [21], the
contribution of this paper are the following:
• we propose a novel density estimation algorithm, i.e.,

subsets-based KDE (SB-KDE), and compare its perfor-
mance with the state-of-the-art KDE;

• we propose a low-complexity version of SB-KDE, i.e.,
low-complexity SB-KDE (LC-SB);

• we show how density estimation methods can be lever-
aged for LA, and assess their performance, comparing it
with KDE (for p.d.f. prediction), OLLA and a log-normal
approximation for LA;

• we test our solution in a 3GPP calibrated 3D UMi
scenario, further assessing the validity of the proposed
framework.

The rest of the paper is organized as follows. In Section II
we introduce the system model for the considered cellular
network, and review LA. In Section III we present interfer-
ence prediction for LA, and review KDE. In Section IV we
introduce SB-KDE and its low-complexity version. Section V
describes the evaluation framework. The computational com-
plexity analysis of all algorithms is derived in Section VI. In
Section VII we assess the validity of the proposed solution,
by comparing it with state-of-the-art algorithms in both a
Rice channel model and a 3GPP calibrated 3D UMi scenario.
Lastly, in Section VIII we draw the conclusions.

II. SYSTEM MODEL

We consider a cellular network with C cells wherein, for
each cell, a single next-generation node base (gNB) equipped
with Na antennas serves Ktot single-antenna user equipments
(UEs). Each cell is populated by a random number of UEs
uniformly located in space. We denote as Uc the set of UEs

indexes in cell c. We assume that each gNB serves a single
UE in a resource block, and we denote as z(c, t) the C1×Na

channel from gNB c toward the UE served at transmission
time interval (TTI) t, in the considered resource block.

We consider two different channel models. We first consider
the Rice channel model [24, Ch. 2.4.2], where each link is a
linear combination of a line of sight (LOS) and non LOS
links. While this model is widely used in the literature for its
implementation simplicity, we also consider a more realistic
spatial 3D UMi 3GPP calibrated [23] scenario.

As in [10], in this work we assume that the gNB perfectly
tracks the channel of the scheduled UE, since it changes slowly
in the medium-to-low mobility scenarios typical of URLLC.
Moreover, the gNB does not know: a) the interference power
experienced by the scheduled UE in the actual transmission,
and b) the UEs scheduled by the other gNBs and their chan-
nels, thus preventing the usage of advanced coordinated multi-
point techniques [25]. We assume that downlink transmissions
are performed using the maximal ratio transmission (MRT)
precoder

g(c, t) =
zH(c, t)

||z(c, t)||
, (1)

where [·]H denotes the Hermitian of a vector.
The signal received by the served UE suffers from the inter-

ference caused by all gNBs with index ` = 1, · · · , C, ` 6= c,
transmitting toward their scheduled UEs. The SINR measured
at UE in cell c at TTI t is given by

ρ(c, t) =
|z(c, t)g(c, t)|2P

φ(t) + σ2
, (2)

where P is the transmitted power, σ2 is the noise power, φ(t)
is the IP due to other scheduled users at TTI t, i.e.,

φ(t) =

C∑
`=1, 6̀=c

|z(`, t)g(`, t)|2P. (3)

The system model assumes no specific scheduling policy.
Furthermore, the correlation is exploited in the design of
our proposed LA scheme. Therefore, different schedulers
will impact only in terms of periodicity of the interference
patterns. Moreover, because of the strict latency requirements
of URLLC traffic, we assume that no retransmission is al-
lowed. Therefore, packets that are successfully received at
the UEs always meet the latency constraint, whereas, when
transmission fails, the packet is dropped. Finally, we assume
that each gNB is fully loaded, i.e., in each TTI there is always
a certain UE that needs to be scheduled by each gNB.

In this paper we focus on LA, i.e., on the problem of
choosing a proper MCS, subject to a target FT-BER. Whilst for
each MCS index the values of modulation order, target code
rate, and spectral efficiency are given (see, e.g., [26]), FT-BER
values are usually obtained by simulations or data collection.
For a given FT-BER, the minimum SINR needed for each
MCS is stored in a look-up table. Since now we will focus on
the LA of a single gNB, we drop index c from the notation.
In particular, considering the set M of available MCSs and
assuming that MCSs are ordered by their increasing rates, the
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LA problem for TTI t+ 1 can be written as

M∗(t+ 1) = max
i∈M
{Mi : ρ̂(t+ 1) > ρi}, (4)

where ρi is the minimum SINR for which the target FT-BER
is achieved with MCS i, and ρ̂(t + 1) is an estimate of the
SINR at t + 1. We see that the LA problem selects, among
the MCSs which guarantee a certain target FT-BER, the one
which also maximizes the rate.

In the baseline OLLA the predicted SINR [8] is obtained
only from the last SINR ρ(t) measured at the user’s side.
The idea is that, if the last transmission was successful
with the previously selected MCS and an acknowledgment
(ACK) packet is sent back to the receiver, the estimated SINR
ρOLLA(t+1) is increased. If instead the previous transmission
failed and a non-acknowledgment (NACK) packet is sent back
to the transmitter, and then ρOLLA(t + 1) is reduced. In
particular, the SINR value used for MCS selection at TTI t+1
is

ρ̂OLLA(t+ 1) = ρ(t) + ∆(t+ 1), (5)

where the offset is computed as

∆(t+ 1) =

{
∆(t) + ∆ACK, if ACK at t;
∆(t) + ∆NACK, if NACK at t.

(6)

The values ∆ACK > 0 and ∆NACK are suitably selected, such
that the target FT-BER ε is met, with ∆NACK = − 1−ε

ε ∆ACK

[8]. Therefore, in (5) the SINR estimate is typically reduced
in order to have a more conservative approach in LA.

We notice that the basic OLLA design is not suitable for
URLLC for two reasons. First, due to the very low FT-BER
requirements of URLLC, adjusting the estimated SINR via
∆NACK would lead to a conservatively low MCS. Indeed, to
recover from a loss, OLLA needs a number of steps propor-
tional to the inverse of the required reliability, significantly
increasing latency. The second drawback of OLLA is that the
target FT-BER is guaranteed over a window of duration 1/ε,
whereas the instantaneous level may be extremely different.

III. INTERFERENCE PREDICTION FOR LA

In this paper, similarly to [21], we compute the predicted
SINR ρ̂(t+ 1) using the last Nprev measured ρ(t), i.e., given
the vector

φNprev
(t) = [φ(t), · · · , φ(t−Nprev + 1)]. (7)

The underlying assumption is that the SINR and, in turn, the
interference power in the previous transmissions are perfectly
estimated by the gNB. In a practical system, the two quantities
are estimated by the UE on pilots received from the gNB,
and their quantized versions are fed back by the UE through
the channel quality indicator (CQI). In this respect, note
that CQI feedback mechanisms of current cellular systems
already provide a precise knowledge of the SINR in previous
transmissions [27]. Moreover, it has been shown that the
variation of the measured interference power over time with
URLLC in a realistic environments are mainly due to issues
here properly modeled, as the flashlight effect, with interfering
gNBs changing their beamformer to serve different UEs in

different slots [10, Sect. III-D]. Therefore, here, we neglect
the effects of quantization in designing the LA technique.
However, in Section VII we numerically assess its impact on
the proposed technique.

Our aim is to predict the outage SINR, i.e., an SINR value
that will be exceeded with very high probability, thus reducing
the probability of transmission failures. Thus, we resort to the
maximum quantile (MQ) method proposed in [21], so that the
SINR prediction reduces to predicting the outage IP φ̂(t+ 1),
i.e., the value φ̂(t+ 1) that satisfies

P
[
φ̂(t+ 1) < φ(t+ 1)|φNprev

(t)
]
≤ ε, (8)

where ε is the target FT-BER.

In order to compute φ̂(t + 1), we estimate the conditional
p.d.f. of φ(t + 1), given the observations φNprev

(t), i.e.,
f̂φ(t+1)|φNprev (t)

(a|φ). Then, (8) becomes

P
[
φ̂(t+ 1) < φ(t+ 1)|φNprev

(t)
]

=

∫ φ(t+1)

0

fφ(t+1)|φNprev (t)
(a|φ)da

≈
∫ φ(t+1)

0

f̂φ(t+1)|φNprev (t)
(a|φ)da,

(9)

where in the last line we approximated the distribution f with
its estimate f̂ . The integral in (9) is computed via numerical
integration.

Now, we still have the problem of obtaining an estimate of
the conditional p.d.f. f̂φ(t+1)|φNprev (t)

(a|φ). To this end, we
consider

L >> Nprev (10)

samples of φ(t), i.e., φ(t − 1), . . . , φ(t − L), which are used
to estimate the conditional p.d.f.. Then, we decompose the
conditional p.d.f. into the ratio of the joint and marginal p.d.f.s
fφ(t+1),φNprev (t)

(a,φ) and fφNprev (t)
(φ), i.e.,

fφ(t+1)|φNprev (t)
(a|φ) =

fφ(t+1),φNprev (t)
(a,φ)

fφNprev (t)
(φ)

. (11)

In the following we will propose techniques to estimate the
joint p.d.f. of multiple random variables, which will be used to
estimate both the joint and marginal p.d.f.s in (11). In order to
simplify notation, we will consider a generic random vector x,
with p.d.f. f(x). The estimated p.d.f. will be obtained using
set S = {s1, · · · , sN} of observed realizations of x, where
each element sn is given by Nprev + 1 successive elements
φ(·) Note that in (11) the numerator and denominator of the
p.d.f. differ only for the first element in the training sequence.
Therefore, the numerator training set elements are computed
as sn = [φ(t − 1 − n), . . . , φ(t − 1 − n − Nprev)], whereas
the denominator elements are sn = [φ(t − 2 − n), . . . , φ(t −
2 − n − Nprev)]. Notice that, since each sn is obtained by
grouping identically distributed elements, elements in S are
identically distributed. Furthermore, notice that our proposal
envisions the offline estimation of the p.d.f., without impact
on the latency.
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A. p.d.f. Estimation by Cumulative Density Function

The simplest p.d.f. estimator is obtained by means of
histogram, i.e.,

f̂h(x) =

∑N
n=1 δ(sn − x)

N
, (12)

where δ(x) is the Dirac delta, defined as δ(x) = 0 if x 6= 0
and such that

∫
RNprev+1 δ(x)dx = 1.

Let us split the length Nprev + 1 vectors x and sn into
x = [a, x̄] and sn = [b, s̄n], such that a and b denote the first
element, whereas ·̄ denotes the remaining Nprev values. Based
on (12), we have the following

Lemma 1. The empirical conditional cumulative density func-
tion (CDF) of a given x̄ is given by

F̂ (a|x̄) =

∑N
n=1 1(b− a|x̄)∑N
n=1 δ(s̄n − x̄)

, (13)

where 1(sn(1)− x(1)|x̄) = 1 if sn(1) < x(1) given s̄n = x̄,
0 otherwise.

Proof. The result is given by substitution of (12) in (11), and
by applying the integration in (9).

A drawback of this approach is that, when L is not large
enough, the entries with lower probability will not appear in
S, and the value of their p.d.f. will be zero. This problem
becomes more prominent for URLLC, as targeting 10−5 or
lower FT-BER requires a precise p.d.f. estimate.

B. KDE

A more accurate p.d.f. estimator is KDE, firstly introduced
in [22], namely

f̂ (x) =
1

N

N∑
n=1

K

(
sn − x
h

)
, (14)

where K is the kernel function and h is the kernel bandwidth,
i.e., a parameter of the kernel function which must be suitably
selected.

We consider the multivariate Gaussian kernel with uncorre-
lated dimensions in [28], i.e.,

K

(
sn − x
h

)
=

1√
(2π)Dh

exp

(
−||sn − x||

2

2h

)
, (15)

where D is the dimension. Bandwidth h can be obtained
by minimizing the asymptotic mean integrated squared error
(AMISE) [28]. In particular, when considering a Gaussian
kernel, the AMISE can be written as [28]

AMISE(h) =
1

4
Υ(f

′′
)h4 +

1

2N
√
πh
, (16)

where f
′′

denotes the second derivative of the true p.d.f. f ,
and

Υ(f
′′
) =

∫ ∞
−∞

[f
′′
(u)]2du. (17)

The minimum AMISE value is obtained for the bandwidth

h∗ =

(
1

2N
√
πΥ(f ′′)

) 1
5

, (18)

which is the standard deviation of the Gaussian kernel. The
assumption behind (14) is that values are independent iden-
tically distributed. We already discussed the latter condition
when creating sets. However, due to the round robin (RR)
scheduler, values in S are correlated. This will be exploited
to improve the quality of the proposed estimator, as detailed
in Section IV-B.

Notice that, by exploiting Gaussian kernels, a kernel-based
estimate of the CDF can be obtained by substituting the
Gaussian function with the Gaussian Q function. However,
we here focus on p.d.f. estimation.

C. Variable-Bandwidth KDE

The choice of a single bandwidth value may not be ac-
curate enough. For instance, it could be useful to have a
larger bandwidth in intervals wherein few samples have been
collected, and a smaller bandwidth where many samples has
been collected. In order to obtain a better estimate of the IP’s
p.d.f., we consider the variable bandwidth KDE (VB-KDE),
i.e., a KDE with multiple bandiwdths. Among VB-KDEs we
find two different classes [29]: the balloon estimator and the
sample smoothing estimator.

In the balloon estimator, the bandwidth h is a function of
the target point x, i.e.,

f̂ (x) =
1

Nh(x)

N∑
n=1

K

(
sn − x
h(x)

)
. (19)

In the sample smoothing estimator, the bandwidth h is a
function of the measured sample point sn, i.e.

f̂ (x) =
1

N

N∑
n=1

1

h(sn)
K

(
sn − x
h(sn)

)
, (20)

Both estimators present drawbacks: the balloon estimator has
been showed to perform better than the fixed bandwidth KDE
only when dealing with a multidimensional p.d.f. with more
than three dimensions [29]. On the other hand, the sample
smoothing estimator has been showed to be highly dependent
on the distance between sample points.

IV. SUBSETS-BASED SAMPLE SMOOTHING ESTIMATOR

In this paper, we focus on the second class of VB-KDE
estimators and propose a new method which deals with the
drawback of sample smoothing estimators.

Let us consider the sample space (i.e., the list of possible
outcomes) X associated to the p.d.f. f(x). We split X in
B subsets, such that X i ∩ X j = ∅,

⋃B
i=1 X i = X . Subsets

are created according to a predefined rule, homogeneous in
all dimensions, i.e., denoting as X (d) = {X (d)

1 , . . . ,X (d)
B } the

group of subsets created along the dth dimension, X i is the
ith elements of the cartesian product

X (1) ×X (2) × . . .×X (D). (21)

The rule deciding how subsets are created may be based on
different factors, such as the value assumed by the elements
in the set or the number of samples with close values. Both
policies will be discussed in Section V-A.
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Then, we consider a bandwidth value hi for each subsets,
and define the SB-KDE estimator

f̃(x) =
1

B

B∑
i=1

1

|X i|hi

∑
s∈X i

K

(
s− x
hi

)
. (22)

Let P(X i) be the probability of the ith subset, and f(x|X i)
the p.d.f. of sample x in the ith subset. Assuming that the
value B is given and that sets are created according to a certain
policy, we have the following results on the SB-KDE.

Lemma 2. Given the number of subsets B, the bias of the
SB-KDE estimator is given by

Bias(f̃(x)) (23)

= ω2(K)

B∑
i=1

1

2
f

′′
(x|X i)h

2
iP(X i) + o(h2i ),

where o() is the small o Bachmann–Landau notation, and
ω2(K) is the second moment of the kernel function K, i.e.,

ω2(K) =

∫ ∞
−∞

u2K(u)du. (24)

Proof. See Appendix A.

Lemma 3. Given the number of subsets B, the variance of
the SB-KDE estimator is given by

Var(f̃(x)) = Υ(K)f(x)
1

B

B∑
i=1

1

hi
+O

(
1

N

)
,

where N is the total number of samples.

Proof. See Appendix A.

Exploiting the results in Lemma 2 and Lemma 3, we also
obtain the following two results.

Theorem 4. For a given number of subsets B, and bandwidths
h = [h1, · · · , hB ], the AMISE obtained via SB-KDE exploiting
a Gaussian kernel is given by

AMISE(h) =

1

4

B∑
i=1

(
Υ(f

′′
(x|X i))h

4P (X i)
2

+
1

2B2|X i|
√
πhi

)
.

(25)

Proof. See Appendix A.

Theorem 5. For a given number of subsets B and considering
a Gaussian kernel, the minimum AMISE is obtained via the
SB-KDE for the ith bandwidth value given by

h∗i =

(
1

2B2|X i|
√
πΥ(f ′′(x|X i))P(X i)2

) 1
5

. (26)

Proof. See Appendix A.

A. Optimal Bandwidth Computation

The computation of (26) requires the knowledge of the
true p.d.f., as for (18). Therefore, to compute the optimal
bandwidth, we resort to an iterative algorithm. The optimal
bandwidth for SB-KDE has been proven to depend on both
the probability P(X i) and the second derivative of the p.d.f.,

Algorithm 1: Bandwidth computation algorithm for
SB-KDE

Data: X , B, X i ∀ i = 1, · · · , B, ι
Result: f̂

1 initialize f̃0 = 0;
2 compute h(0)

i (18) via algorithm in [28];
3 compute f̂(x|X i) via KDE algorithm in [28];
4 compute P̂(X i) via (27) ∀i = 1, · · ·B;
5 h

(1)
i = h

(0)
i

(
N/(B2|X i|P(X i)

2)
)1/5, ∀i = 1, · · · , B;

6 compute f̃1 using h(1)
i ;

7 q = 1;
8 while DKL(f̃(q)||f̃(q−1)) > ε do
9 q = q + 1;

10 compute f̂(x|X i) via KDE using h(q−1)
i ;

11 compute P̂(X i) via (27) ∀i = 1, · · ·B;
12 h

(q)
i = h

(q−1)
i

(
N/(B2|X i|P(X i)

2)
)1/5,

∀i = 1, · · · , B;
13 compute f̃(q) using h(q)

i ;
14 end

f
′′
(x|X i). However, again, the true p.d.f. is not known.

Therefore, we propose a heuristic algorithm, splitting the SB-
KDE design into the design of one KDE for each subset
i = 1, . . . , B, obtaining a first estimate of the bandwidths
hi, then refined iteratively.

In particular, we note that (26) and (18) are similar, except
for a multiplicative factor given by

(
N/(B2|X i|P(X i)

2)
)1/5

.
Therefore, we exploit the result obtained via KDE to obtain
the optimal bandwidth for SB-KDE.

Once the ith bandwidth has been obtained from KDE, a first
estimate of the probability P̂(X i) is obtained by integration
over the ith subset, i.e.,

P̂(X i) =

∫
x∈X i

f̂(x|X i)dx. (27)

The bandwidth values are then updated according to the
estimate (27), and the procedure is repeated until convergence.
Given the p.d.f. estimates f̃q and f̃q−1 respectively at iteration
q and q− 1, the algorithm reaches convergence when the two
p.d.f.s are similar in terms of their Kullback-Leibler divergence
[30], i.e., when for a suitable parameter ι

DKL(f̃q||f̃q−1) =
∑
x∈X

f̃q(x) log2

f̃q(x)

f̃q−1(x)
≤ ι, (28)

where log2(·) represents the base-2 logarithm.
The algorithm steps are presented in Algorithm 1.

B. Low-complexity SB-KDE

The proposed SB-KDE algorithm has the drawback of a
high computational complexity than KDE, as it requires B
KDEs for each iteration. In order to reduce its complexity,
we replace the bandwidth estimation algorithms with the
estimation of a covariance matrix. In particular, since the mea-
sured IPs are correlated due to the round robin scheduler, we
compute the bandwidth as the correlation matrix of the IP, thus
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capturing time correlation. We consider the multidimensional
Gaussian kernel,

Ξ

(
sn − x
Hi

)
=

1√
(2π)DdetHi

exp

(
− (sn − x)TH−1i (sn − x)

2

)
,

(29)

where Hi = E(sns
H
n ) is the covariance matrix of the IP

sequence in ith subset and detHi its determinant. For each
subset of X , we estimate the D-dimensional sample covari-
ance matrix. We denote as A` the N`×D matrix whose rows
are given by the IP sequence of length D jointly belonging
to the `th element of X . Denoting as µd the sample mean
value of the d-th column, the (q, j) element of the ith sample
covariance matrix is given by

[Hi]q,j =
1

N` − 1

N∑̀
n=1

(A`
n,q − µq)∗(A`

n,j − µj), (30)

where A`
n,q denotes the element of row n and column q

of matrix A`. The resulting SB-KDE density estimator is
obtained as

f̃(x) =
1

B

B∑
i=1

1

|X i|det(Hi)

∑
s∈X i

Ξ

(
s− x
Hi

)
. (31)

By replacing the iterative algorithm with an estimate of
the sample covariance matrix, we reduced the computational
complexity to a linear function of the number of measured
IPs. We henceforth denote the SB-KDE with bandwidth given
by (30) as LC-SB.

V. EVALUATION FRAMEWORK

A. Link Adaptation

In this work, we assume that the LA can match the FT-
BER target if the predicted IP is larger than that experienced
at transmission time. Therefore, we assume a correct trans-
mission if the predicted IP is larger than the actual one at the
successive time instant, whereas otherwise a failure occurs.
This models a system where uncontrolled retransmissions are
to be avoided, for instance due to very strict latency constraints
in URLLC. For each IP test sequence of T TTIs, we evaluate
the reliability of the different solutions by counting the number
of events in which the predicted IP is below the actual one.
We hence define the reliability of the system (between 0 and
1) as

1− θ = 1−
∑T−1
t=1 χ(t)

T − 1
, (32)

where χ(t) is the indicator function

χ(t) =

{
1 if φ̂(t) < φ(t);

0 otherwise.
(33)

Notice that, θ represents the unreliability. Indeed, θ is the FT-
BER obtained when the error correcting code used on the
block achieves the channel capacity. Since we are interested
in high reliability, we aim at small θ values.

For each UE we assume that, if a failure happens, the experi-
enced data rate (DR) is zero, due to the packet’s transmission’s
failure. Therefore, considering short packets, the instantaneous
DR R(t) at TTI t is [31]

R(t) ≈ (1− χ(t))

(
log2(1 + ρ̂(t))−

√
V (ρ̂(t))

M
Q−1(ε)

)
,

(34)
where 1 − χ(t) accounts for the transmission success as
defined in (33), V (ρ̂(t)) = ρ̂(t)(2+ρ̂(t))

(1+ρ̂(t))2 is the channel dis-
persion [12, pag. 215], M the blocklength, Q the Gaussian
complementary CDF, Q−1 its inverse, and ρ̂(t) the predicted
SINR. Notice that we used ≈ in (34) as we neglect terms with
O(logM/M). We then denote as R̄ the average DR in time.
Computing the DR as in (34) corresponds to having an infinite
set M of available MCSs, allowing to exactly match the
desired ε with the theoretically maximal coding rate possible
in additive white Gaussian noise (AWGN) channels. The same
approach could be used with a finite set of MCSs, whose
ρi,∀i ∈M are known. The impact on performance of practi-
cal MCSs, like data channel codes in 3GPP standards [32], is
postponed to a future work.

For the MQ-based methods, we consider that prediction
exploits the conditional p.d.f. (11), where prediction is based
on the previous measured IP, i.e., Nprev = 1. We compare two
different heuristic policies for creating LC-SB subsets. The
first is based on the values assumed by the IPs in the time
series. In particular, assuming an IP sequence with minimum
value m and maximum value M , the bth subset is given by
X (b)
d = xd, s.t. xd ≥ (b − 1)M−mB + 1 andxd < bM−mB . We

denote this method by LC-SBV. The latter policy is based on
the number of different IPs in the time series. In particular, we
populate each subset with the same number of sample points.
We denote this method as LC-SBN.

B. Baseline Algorithms

In order to better assess the performance of the SB-KDE
and its low-complexity version, we compare the results with
four state-of-the-art algorithms. Two baselines are given by
the MQ method proposed in [21], based on the empirical CDF
(13) (henceforth referred to as ECDF) and on KDE. The third
method is the based on OLLA, described in Section II. Since
OLLA does not exploit any interference prediction method,
for a fair comparison, we exploit the low-pass filtering of the
IPs proposed in [10]. We will hereafter denote this method
as OLLA-LPP. In particular, given the previously predicted IP
φ̂(t) and the current measured IP φ(t), the IP to be used for
the next transmission is given by [10]

φ̂(t+ 1) = αφ(t) + (1− α)φ̂(t− 1), (35)

where α is a constant real value, which is usually small. The
predicted value is then used to compute the SINR ρ

(t+1)
OLLA.

The last baseline method assumes the IPs’ distribution to be
log-normal. Its first and second (order) moments are estimated
as a log-normal random variable [33]. We propose to set the
first and second moments of the p.d.f. as the mean µX and
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variance σ2
X of the training set given by X . The predicted IP

is hence given by

φ̂(t+ 1) = exp
(

Θ−1 (2ε− 1)
√

2σX + µX

)
, (36)

where Θ(x) represents the error function

Θ(x) =
1√
π

∫ x

−x
e−t

2

dt. (37)

VI. COMPUTATIONAL COMPLEXITY

We here consider the computational complexity in terms of
total number of addition and multiplication operations. The
implementation of the KDE and of its optimal bandwidth in
[28] requires the computation of the discrete cosine transform
(DCT) of the data in the training set. The computational
complexity of a two-dimensional DCT is given by [34]

CDCT(µ) =
7

3
µβ − 20

9
µ+

2

9
(−1)β + 2, (38)

where µ is the length of the DCT and β = log2 µ. Succes-
sively, it requires to find the root of the obtained function, with
a total number of operations given by [35, Th. 2.1]

Croot = 2 log2

η0
η
, (39)

where η0 is the difference between the maximum and mini-
mum value in the training set, and η is the error tolerance.
The overall complexity is hence given by

CKDE(µ) = CDCT(µ) + Croot. (40)

The SB-KDE algorithm requires an initial KDE estimate
for each subset. Then, it requires, for each iteration until
convergence, the computation of a summation over the number
of samples in each subset and 4 multiplications for each subset.
The overall complexity is hence given by

CSB−KDE = BCKDE(µ/B) + nit4B

B∑
i=1

|X i|, (41)

where nit denotes the number of iterations for convergence.
The LC-SB requires the estimation of the set variance for

each subset, which is linear in the cardinality of the considered
subset. Therefore, the overall complexity can be expressed as

CLC−SB =

B∑
i=1

|X i|. (42)

VII. NUMERICAL RESULTS

To assess the performance of our proposal, we focus on
the most extreme URLLC cases in Industry 4.0 (e.g., motion
control) that are characterized by deterministic periodic traffic
[36, Sect. 5.2] and assume that a) packets for a given UE

appear at periodic TTIs, and b) UEs are served by the gNBs
in a deterministic fashion, according to a RR scheduler taking
into account each packet latency constraint. This assumption
represents a snapshot of industrial control loop operations,
where semi-persistent scheduling can be performed in advance
due to the periodic nature of UE traffic [37]. The use of an

Fig. 1. AMISE vs bandwidth for KDE and SB-KDE. Notice that, being
AMISE a function of B = 2 bandwidths for SB-KDE, curves are obtained by
fixing one bandwidth value and varying the other. We assumed Smax = 100,
and true p.d.f. with h = [1.5, 2.7, 1.2].

RR scheduler implies that ρ values are correlated in time, since
each user will be periodically affected by the same subset of
interferers.

A. SB-KDE Optimality

In order to assess the performance of the SB-KDE density
estimator, we compare the AMISE obtained for both KDE
and SB-KDE for a fixed and known p.d.f. f(x) of a random
variable. In particular, we assume that the true p.d.f. is given
by (22) for B = 3 and h = [1.5, 2.7, 1.2]. This allows us
to compute the p.d.f. f(x) for each x in a predefined dataset
S. We assume that S = {0, 1, . . . , Smax}, and we randomly

create sets Xi, i = 1, . . . , B, such that
B⋃
i=1

Xi = S.

Fig. 1 shows the AMISE obtained with KDE as in (16) and
SB-KDE as in (25) with B = 2. Notice that both estimates are
approximations of the true p.d.f., which is based on 3 subsets.
Furthermore, since the AMISE for SB-KDE is a function of
two bandwidths, results are shown by fixing one bandwidth
to the optimal value, and letting the other vary. By using
multiple bandwidths, the AMISE is reduced, validating our
approach. Furthermore, we notice that the proposed solution
is less sensitive to sub-optimal bandwidth values. In fact, we
notice that near-to-optimal AMISE values are obtained for a
range of bandwidth values wider for SB-KDE than KDE.

B. Rice Channel Model

We here consider a scenario with N = 9 square cells, with
each gNB located at the center of it at a distance of 200 m
from neighboring gNBs. Each gNB is equipped with Na = 16
antennas linearly spaced by d = λ/2. The IPs are measured in
the central cell, and the number of UEs in each surrounding
cell is given by the realization of a uniform random variable in
range [2, 8]. We consider a noise power of σ2 = −101 dBm,
a transmitted power at each gNB of P = 46 dBm, Rice K
factor Ψ = 10 dB, path loss exponent ν = 3.5 and a cell edge
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(a) LC-SBV (b) LC-SBN

Fig. 2. Average DR vs θ for LC-SBV (left) and LC-SBN (right). In both figures same marker denotes the same number of subsets. Results are reported for
a training set of L = 103 samples (dashed lines) and a training set of L = 104 samples (solid lines).

Fig. 3. Average DR vs θ for the best performing policy chosen from Fig. 2
and the baseline methods. Estimation performed with L = 103 samples.

signal to noise ratio (SNR) without interference of 20 dB. This
corresponds to a typical highly interference limited scenario
in practical deployments [23].

Fig. 2 shows the average DR vs θ for the LC-SBV (left)
and LC-SBN (right). Results have been obtained by fixing
the number L of training samples used for p.d.f. estimation
and changing the parameter ε, yielding different values of θ.
The values of θ in the figures are obtained by simulations,
counting the number of outage events over all the predictions
via (32). Figures show both the impact of increasing L and the
effect of the number of subsets B. About the sensitivity with
respect to L, we denote with dashed line the results obtained
estimating the p.d.f. with L = 103 samples and with solid
line the results obtained estimating the p.d.f. with L = 104

samples. Moreover, for each curve in each figure, a higher
reliability, i.e., a smaller θ, is obtained by decreasing ε. We
notice that a larger L helps in reaching higher reliability values

with both policies, since having a larger number of training
samples yields a higher precision in the estimated p.d.f.. This
however comes at the cost of a decreased maximum rate. We
also notice that for LC-SBN a lower L leads to higher DR
for high θ. Indeed, a lower precision in the p.d.f. estimation
leads to a less conservative behavior, with higher rates and a
lower reliability. We now consider the effect of the number
of subsets. We notice that more subsets entail a lower θ and
hence a higher reliability for both policies, whereas in terms
of rate results do not show the same behavior. In fact, for LC-
SBV the best trade-off between DR and reliability is obtained
when considering B = 4 subsets, whereas for LC-SBN is
obtained with B = 2 subsets. We can hence identify the
number of subsets as a hyper-parameter, to be optimized based
on collected data. Comparing the two policies, we notice that
LC-SBV attains higher DR as the reliability increases. In the
following, we choose LC-SBV B = 4 as the policy to be
compared with baseline algorithms, as it achieves the best
performance both in terms of average DR and reliability.

Fig. 3 shows the average DR vs θ for the best policy chosen
from Fig. 2 and the baseline methods, when considering
L = 103 training samples. For KDE we show both the
performance obtained with L = 103 training samples and the
optimal results obtained by over-fitting (denoted as KDE OF),
i.e., using all samples in the dataset for training. The ECDF
method based on (13) attains a poor approximation of the
CDF, since not enough points are available to match the strict
reliability targets. The comparison with the other methods
motivates the need for kernel-based density estimators. About
OLLA-LPP we notice that, although it works well with high θ
values, the attained DR rapidly degrades for decreasing θ, due
to the highly conservative behavior of OLLA which favors
reliability to DR. Considering a URLLC scenario targeting
high reliability, and hence small θ, we notice that OLLA-LPP
is not able to guarantee both high reliability and high DR,
therefore not being a suitable solution if the load offered by
URLLC becomes relevant. A similar behavior is obtained with
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Fig. 4. Average DR vs θ for the best performing policy chosen from Fig. 2
and the baseline methods. Estimation performed with L = 104 samples.

the LogNormal approximation, where DR rapidly degrades
with increasing reliability values. However, differently from
OLLA-LPP, the DR has a slower decrease and does not tend
to zero for θ < 10−4. Furthermore, we notice that, compared
to the other p.d.f.-based methods, LogNormal reaches smaller
values of θ. Indeed, this method relies on a closed-form
equation of the IP p.d.f. and does not suffer for an insufficient
number of training data, being able to reach infinite precision.
On the other hand, we notice that the LogNormal approxima-
tion attains a higher DR than OLLA-LPP for θ < 2 · 10−4.
The DR for the proposed SB-KDE degrades as θ decreases.
However, it attains a higher DR when it’s able to match the
desired reliability when compared to LogNormal and OLLA-
LPP, whereas, when compared to KDE, it attains higher DR
only for θ ≤ 5·10−3. Furthermore, compared to KDE, it also to
attains lower θ, for θ ≤ 2·10−3, confirming that a subset-based
approach is advantageous over the plain KDE. Comparing the
low-complexity LC-SBV with all other approaches, we notice
that it attains the highest DR for all θ ≥ 2 · 10−3. However,
LC-SBV is limited by the demanding amount of data needed
to estimate the p.d.f..

Fig. 4 shows the average DR vs θ, for the best performing
policy chosen from Fig. 2 and the baseline methods, when
considering L = 104 training samples. Note that both KDE
and KDE OF have similar performance, as convergence is
already obtained with 104 training samples. For the ECDF
method, a larger training set does not improve its performance.
About SB-KDE, we notice a DR degradation smaller than
0.2 bit/s/Hz, up to θ = 0.5 · 10−4, then the DR rapidly
decreases, still being higher than that of both OLLA-LPP and
the Log-normal approximation. Furthermore, we notice that
the subset-based approaches attain smaller θ values than KDE
and LC-SBV is the best performing method down to θ = 10−4.
Therefore, LC-SBV achieves a higher DR for a given θ with
a lower computational complexity with respect to SB-KDE.

C. 3GPP Channel Model

In order to test the proposed algorithm in a more realistic
scenario, we consider in this section a three-dimensional
spatial 3D Urban Micro (UMi) channel, calibrated with the
results obtained by 3GPP [23]. In detail, we consider C = 21
cells, organized in 7 sites, each with 120 degrees subsets per
cell, inter-site distance of 200 m, and wraparound. An average
of 5 UEs is deployed per cell, which move with a speed of
3 km/h. Each gNB is equipped with 64 antennas, organized
in a uniform planar array, with 8 rows, 4 columns and with
cross-polarized antenna elements. The gNBs serve UEs at a
carrier frequency of 3.7 GHz on a system bandwidth of 10
MHz and using a transmit power of 41 dBm. We follow the
scenario in [23], where the reader can find more details.

Results have been obtained with 2 ·106 samples of which L
are used for estimating the p.d.f. and the others for evaluation.
By varying ε we obtain different θ values. As for the Rice
channel model, we show both the effect of increasing L and
varying the number B of subsets.

Fig. 5 shows the DR vs θ for the two considered policies for
the LC-SB algorithm. Dashed lines refer to training sequences
of L = 102 samples, while solid lines to training sequences
of 104 samples. We notice that, if the training set does not
have enough samples, both methods are unable to attain small
θ values with a poor reliability. About LC-SBV, we notice
the trade-off between DR and reliability when considering
the number of subsets B needed to estimate the p.d.f.. In
fact, on one hand a larger number of subsets yields higher
DR values, on the other hand a smaller number of subsets
means we reach smaller θ values. Hence, this parameter will
be set according to the specific users’ need. About LC-SBN,
we instead notice that increasing the number of subsets does
not improve performance. However, the LC-SBN with B = 2
is the best performing method among all policies and number
of subsets, and is hence compared with the baseline methods.

Fig. 6 shows the average DR vs θ for all the baseline
methods, the proposed SB-KDE, and LC-SBN with B = 2
subsets. Results are obtained with L = 105 training samples.
As for Fig. 4, for both OLLA-LP and the LogNormal approx-
imations the DR increases with θ. About KDE, it converges
to its optimal performance already with 105 training samples.
Although this is the best result obtainable with KDE, it does
not represent the overall optimum, as the estimated p.d.f.
may be inaccurate. In fact, with ECDF we attain a higher
DRs at high θ values. However, KDE can reach θ = 10−5,
showing that kernel methods provide good performance at
low reliability target. About the proposed SB-KDE and LC-
SBN methods, they achieve higher DR values than KDE.
Note also that, with L = 105 training samples, the order
of magnitude of attained θ values is not lower than 10−5,
while our proposed methods achieve this tight reliability
value required by URLLC. Therefore, although LC-SBN has
a reduced computational complexity and obtains higher DR
values for a given θ, it requires a larger number of training
samples to attain smaller θ values.

We have assessed the robustness against quantization errors
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(a) LC-SBV (b) LC-SBN

Fig. 5. DR vs θ for LC-SBV (left) and LC-SBN (right) obtained with the 3GPP channel model. In both figures same marker shape denotes the same number
of subsets. Results are reported for a training set of L = 102 samples (dashed lines) and a training set of L = 104 samples (solid lines).

Fig. 6. Average DR vs θ for the best performing policy chosen from Fig. 5
and the baseline methods. Results obtained with L = 105 training samples.

Fig. 7. Average DR vs θ for LC-SBV, B =. Comparison of the results
obtain with quantization error (dashed lines) and without quantization error
(solid lines) for L = 102 and L = 104.

on the channel estimates of LC-SBV with B = 2. In particular,
given the CDF of the interference to noise ratio (INR), we
designed a 5-bit a non-uniform quantizer where all quantized
values are taken with the same probability. Fig. 7 shows the
DR vs θ, for training set sizes L = 102 and L = 104, with
and without the quantization error. We observe that the LC-
SBV scheme is robust against quantization errors, showing a
negligible impact on the DR. Note also that results considering
the quantization error show a higher DR for some extreme
values of θ. This is due to the fact that the LC-SBV scheme is
sub-optimal, and indeed it shows slightly worse performance
at these θ values. Indeed, we conclude that the quantization
error unbalances the prediction, making it more conservative,
and thus improving the performance.

Fig. 8 shows the computational complexity in terms of
number of additions and multiplications vs the number of
training samples L for the KDE and the two policies for the
low-complexity LC-SB. The best performing method is the
LC-SBN, due to the fact that it linearly depends on the number
of samples per subset, which decreases as the number of subset
increases.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we considered the problem of predicting
interference power to enable efficient LA for URLLC. We first
derived the optimal bandwidth for the SB-KDE, and based
on the optimal solution for KDE, we proposed a heuristic
algorithm to estimate a p.d.f. based on the optimal bandwidths.
Motivated by the considerable computational complexity of
the proposed solution, we then proposed a low-complexity
version of the SB-KDE, namely the LC-SB. By means of ex-
tensive simulations in cellular networks, considering realistic
3GPP 3D UMi channel models, we showed through numerical
evaluations that the proposed solutions attain at the same time
higher DR and a better matching of the reliability targets than
state-of-the-art solutions. By jointly looking at results in Fig.s
4, 6 and 8, we can conclude that the proposed LC-SB method
attains the best DR with the lower computational complexity
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Fig. 8. Computational complexity vs number of training data for the kernel
based density estimators. Dashed curves show results for LC-SBV, whereas
dotted curves show results for LC-SBN.

and achieves extremely high reliability targets. Therefore, it is
an effective algorithm for LA with URLLC in the considered
low mobility scenario.

Future study will include potential enhancements targeting
URLLC in high mobility scenarios, for instance with an online
learning p.d.f. update in order to keep up with the non-ergodic
nature of the channel in such scenarios: a simple approach can
use a data buffer where parts of the older data, i.e., outdated
information, is periodically replaced with more recent ones to
keep the p.d.f. up-to-date in a dynamic environment.

APPENDIX A
DERIVATION OF THE OPTIMAL BANDWIDTH FOR SB-KDE

We henceforth consider operations between vector and
scalar as element-wise. We also recall that the kernel function
of a vector is a scalar value. We assume that K(·) is a kernel
function as defined in [22], therefore

∫
K(u)du = 1 and that∫

uK(u)du = 0.

A. Bias

Define the local KDE as

f̂(x) =
1

B

B∑
i=1

1

|X i|
∑
z∈X i

1

hi
K

(
z − x
hi

)
. (43)

The mean value of the kernel function can be computed as

E

[
1

hi
K

(
z − x
hi

)]
=

∫ ∞
−∞

1

hi
K

(
ζ − x
hi

)
f(ζ)dζ. (44)

From the total probability law we have

f(ζ) =

B∑
`=1

f(ζ|X `)P(X `), (45)

and by substitution in (44) we obtain

E

[
1

hi
K

(
z − x
hi

)]
=∫ ∞

−∞

1

hi
K

(
ζ − x
hi

) B∑
`=1

f(ζ|X `)P(X `)dζ.

(46)

By performing the change of variables u = (z − x)/hi we
obtain

E

[
1

hi
K

(
z − x
hi

)]
=

∫ ∞
−∞

K (u)

B∑
`=1

f(uhi + x|X `)P(X `)du.

(47)

Let us consider the second order Taylor series expansion of
f(uhi + x|X i), obtaining

f(uhi + x|X i) ≈ f(x|X i) + f (1)(x|X i)hiu+

1

2
f

′′
(x|X i)h

2
iu

2 + o(h2i ).
(48)

By substitution of (48) in (47) we obtain
B∑
`=1

∫ ∞
−∞

K (u) f(uhi + x|X i)P(X `)du = (49)

B∑
`=1

∫ ∞
−∞

K (u)
(
f(x|X `) + f (1)(x|X `)h`u+ (50)

1

2
f

′′
(x|X `)h

2
`u

2
)
P(X `)du =

B∑
`=1

(
f(x|X `) +

1

2
f

′′
(x|X `)h

2
`ω2(K)

)
P(X `),

where the second term involving the first derivative is zero as
the mean of K(u) is zero and where ω2(K) is defined in (24).

Therefore

E[f̂(x)] = E

[
1

B

B∑
i=1

1

|X i|
∑
z∈X i

1

hi
K

(
z − x
hi

)]

=
1

B

B∑
i=1

1

|X i|
∑
z∈X i

E

[
1

hi
K

(
z − x
hi

)]

=
1

B

B∑
i=1

1

|X i|

B∑
z∈X i,`=1

(
f(x|X `) +

1

2
f

′′
(x|X `)h

2
`ω2(k)

)
P(X `)

= f(x) +
1

B

B∑
i=1

(
B∑
`=1

1

2
f

′′
(x|X `)h

2
`ω2(k)P(X `)

)

= f(x) +

B∑
`=1

1

2
f

′′
(x|X `)h

2
`ω2(k)P(X `).

Therefore, the bias is

Bias(f̂(x)) = E[f̂(x)]− f(x) (51)

= ω2(k)

B∑
`=1

1

2
f

′′
(x|X `)h

2
`P(X `) + o(h2i ).
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B. Variance

From the bias analysis we saw how the kernel function of
a vector can be treated as a random variable. The variance of
a random variable (r.v.) x can be computed as

Var(x) = E[x2]− E[x]2. (52)

From the bias analysis, focusing on the first order Taylor
approximation we have

E[f̂(x)] ≈ f(x) + o(1), (53)

where the second term is O
(

1
N

)
, being N the number of

samples used for density estimation. Then, following the
approach used for the bias computation we have

E

[
1

hi
K

(
z − x
hi

)2
]

= (54)

1

hi

∫ ∞
−∞

K (u)
2
B∑
`=1

f(uhi + x|X `)P(X `)du (55)

=

∫ ∞
−∞

K (u)
2
f(uhi + x)du,

where the second equality comes from the fact that we
considered a first order Taylor series and the total probability
law. Therefore, recalling that the kernel estimator is a linear
estimator and that K

(
z−x
hi

)
is independent identically dis-

tributed (i.i.d)

Var(f̂(x)) (56)

=
1

B2

B∑
i=1

1

|X i|2
∑
z∈X i

1

hi
Υ(K)f(x) +O

(
1

N

)
,

= Υ(K)f(x)
1

B2

B∑
i=1

1

|X i|hi
+O

(
1

N

)
,

where Υ(K) is defined in (17).

C. AMISE

The MSE can be expressed as

MSE = Bias(f̂(x))2 + Var(f̂(x)). (57)

The asymptotic mean squared error (AMSE) is obtained by
the asymptotic derivation of bias and variance (51) and (56)
as

AMSE =

(
1

2
ω2(K)

B∑
i=1

f
′′
(x|X i)h

2
iP(X i)

)2

+ Υ(K)f(x)
1

B2

B∑
i=1

1

|X i|hi
.

By integrating the AMSE we obtain the AMISE

AMISE

=

∫ ∞
−∞

(1

2
ω2(K)

B∑
i=1

f
′′
(x|X i)h

2
iP(X i)

)2

+

Υ(K)f(x)
1

B2

B∑
i=1

1

|X i|hi

]
dx.

(58)

Since f(x|X i) = 0∀x /∈ X i we obtain

AMISE

=

∫ ∞
−∞

(
1

4
ω2(k)2

B∑
i=1

f
′′
(x|X i)

2h4iP(X i)
2

+Υ(K)f(x)
1

B2

B∑
i=1

1

|X i|hi

)
dx

=

B∑
i=1

(
1

4
Υ(f

′′
(x|X i))h

4
iP(X i)

2ω2(k)2 +
Υ(K)

B2|X i|hi

)
.

D. Optimal bandwidth
The optimal value h∗i can be computed as

∂AMISE

∂hi
= Υ(f

′′
(x|X i))h

3
iP(X i)

2ω2(K)2 − Υ(K)

B2|X i|h2i
= 0,

from which the AMISE optimal bandwidth value is given by

h∗i =

(
Υ(K)

B2|X i|Υ(f ′′(x|X i))P(X i)2ρ2(k)2

) 1
5

. (59)

Considering a Gaussian kernel we have

AMISE =
1

4

B∑
i=1

(
Υ(f

′′
(x|X i))h

4
iP(X i)

2 +
1

B2|X i|2
√
πhi

)
,

and therefore

h∗i =

(
1

2B2|X i|
√
πΥ(f ′′(x|X i))P(X i)2

) 1
5

. (60)
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