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Abstract: Fermented goat milk is an artisanal beverage with excellent nutritional properties. There
are limited data on its physicochemical properties, fatty acids, phenolic acids, and on any insight on
microbiota. The aim of this research was to conduct a pilot study to compare these parameters in raw
cow and goat milk before and after spontaneous fermentation in a clay pot and glass container at
37 ◦C for 24 h. Both types of milk and fermentation containers significantly affected the pH, acidity,
proximate composition, viscosity, and whiteness index of fermented milks. A total of 17 fatty acids
were identified in fermented milks, where palmitic, stearic, and myristic were the main saturated
acids, and oleic and linoleic acids were the main unsaturated ones. These profiles were primarily
influenced by the type of raw milk used. Three to five phenolic acids were identified in fermented
milks, where quinic acid was the major phenolic compound, and salviolinic acid was identified
only in raw goat milk. Preliminary metataxonomic sequencing analysis showed that the genera
Escherichia spp. and Streptococcus spp. were part of the microbiota of both fermented milks, with
the first genus being the most abundant in fermented goat milk, and Streptococcus in cow’s milk.
Moreover, Escherichia abundance was negatively correlated with the abundance of many genera,
including Lactobacillus. Overall, the results of this pilot study showed significant variations between
the physicochemical properties, the fatty and phenolic acids, and the microbial communities of goat
and cow fermented milk, showing the opportunity to further investigate the tested parameters in
fermented goat milk to promote its production.

Keywords: goat milk; cow milk; spontaneous fermentation; microbiota; fatty acids; phenolic acids;
physicochemical properties

1. Introduction

Traditional fermented dairy products are essential for the human diet in North Africa
and Mediterranean regions. Spontaneously fermented dairy products contain essential
nutrients such as vitamins, minerals, proteins, bioactive peptides, fatty acids, and beneficial
bacteria that ensure a stable gut microbiota [1]. The comparative composition of goat
and cow milk have been previously reviewed in other studies [2,3]. When compared
to cow milk, goat milk has a higher β-casein to αs-casein ratio, more short-chain fatty
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acid, medium-chain triacylglycerols (TAGs), and a higher oligosaccharide content [4]. The
nutritional composition of goat milk is considered similar to that of human milk, with
therapeutic values including digestibility, anticarcinogenic, antimicrobial, and immune
boosting properties [5].

During the spontaneous fermentation of milk, indigenous microbiota—mainly lactic
acid bacteria (LAB)—and those from the surrounding production environment enter into
competition and symbiotic interactions to grow, survive, and even become dominant in
the final dairy products, contributing to their composition, texture, appearance, taste,
and flavor attributes [6,7]. Traditional fermented dairy products are biologically and
biochemically dynamic matrices that are affected by milk type and processing conditions,
according to know-how and specific gastronomic heritage, leading to the regional typicity
of the developed product [8,9]. Thus, it has been proven in previous studies that both the
vessels used for milk processing and fermentation temperature contribute to microbial and
nutritional specificities of the final products [10,11]. Traditional handling practices of milk
and milk products are based on the use of containers made from locally available materials,
including skin bags, calabash from gourds, and clay pot.

Clay containers have been used to ferment cow milk in African countries and are still
used in rural areas to produce products with a sour taste, an acidic flavor, and a thicker
texture than yogurt [11,12]. Fermentation vessels made with clay pot have been proven
to contribute better to flavor development than other materials [13]. Unpasteurized fresh
raw milk was left in clay containers to obtain a typical product with an unsweetened
taste and smooth texture. Furthermore, fermented dairy products contain functional
compounds, including vitamins, fatty acids, and oligosaccharides [14]. Milk fermentation
involves the growth of mixed microorganisms. Some bacteria participate in symbiotic
interactions, whereas others have altered dominance during fermentation [15,16]. The most
common microorganisms involved in fermented dairy products are lactic acid bacteria
and yeast. These microorganisms contribute to the technological process and production
of metabolites such as enzymes, micronutrients, and acids [17]. However, the use of
unsterilized traditional containers to ferment or store milk greatly affects the shelf life of
dairy products and the load of pathogenic bacteria in samples that are potentially hazardous
to consumer health [18].

Studies describing the physiochemical properties, micronutrient profiles, and the
microbial diversity of fermented milk and their variations according to the type of milk
and container used for fermentation are limited. Clay pots provide the widest variety of
yeasts and lactic bacteria, making them the best option for producing traditional fermented
milk [19].

Therefore, this study aimed to investigate the physicochemical properties, fatty acids,
and phenolic acids of fermented cow and goat milk in glass and clay containers. Micro-
bial community composition of raw and fermented milks was also assessed using 16S
metataxonomic sequencing analysis.

2. Materials and Methods
2.1. Raw Milk Samples and Fermented Milk Preparation

Raw cow milk samples were collected from a local producer (Medenine, Tunisia), at a
10-min walk distance to the laboratory, transported in sterile bottles, stored at 5 ◦C, and
immediately transferred for analysis and processing. Raw goat milk samples were collected
from an experimental farm belonging to the Arid Land Institute (IRA Medenine, Tunisia).

Clay containers made from dried clay with a volume capacity of 250 mL were used
(Graphical abstract). Glass containers having the same volume capacity were also used.
The clay pots were pre-washed under running hot water (60 ◦C/5 min) while the glass
containers were sterilized before experimentation.

For each type of milk, two different fermentation vessels were used: clay pots and
glass containers. Spontaneous fermented goat and cow milk were prepared in each con-
tainer and were monitored simultaneously at 37 ◦C in a laboratory incubator (Labtech
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Daihan, Labtech, Seoul, Republic of Korea). The same starting time of fermentation was
applied until milk coagulation (a final pH value of ~4.6–4.4 was achieved between 14 and
20 h for different samples). Milk samples (~20 mL) were aseptically withdrawn during
fermentation at different intervals for analysis. Two batches were performed for goat or
cow milk fermentation in different.All following physicochemical and microbial analyses
were conducted in triplicate.

2.2. Acidification and Lactic Acid Bacteria Growth Kinetics

The pH and titratable acidity of milk samples were determined at intervals of 2 h
during the 24 h of fermentation. pH measurement was performed using a pH meter
(Jenway, Staffordshire, United Kingdom) after calibration by pH 7.0 and 4.0 standard
buffer solutions before each test with a selected resolution of 0.01 pH and an accuracy of
±0.003 pH. Acidity was conducted by NaOH titration. Briefly, 10 mL of milk sample was
added to the phenolphthalein solution, and the mixture was titrated by NaOH 0.1 N until
the color changed to pink for 30 s. Lactic acid was expressed as g lactic acid/L [20]. LAB
were enumerated on MRS agar (Biolife Italiana Srl, Milan, Italy) every 3 h, according to the
official methods of ISO 7889:2003 [21].

2.3. Proximate Composition and Apparent Viscosity

Fermented milk samples were analyzed for proximate composition. Protein content
was determined according to the Kjeldahl method and calculated by multiplying N (the
total nitrogen) with the conversion factor 6.38. The total solids content was determined by
drying the samples at 105 ◦C in a hot air oven (Memmert, Germany) until a constant weight
was achieved. The total ash was determined using a furnace (Nabertherm controller B 170,
Nabertherm GmbH, Lilienthal, Germany) at 600 ◦C for 6 h. The total fat was determined by
the Gerber method using a Gerber Centrifuge (Funke Dr. N. Gerber, Berlin, Germany), and
lactose was measured by Lactoscan MCCW (Milkotronic Ltd., Nova Zagora, Bulgaria) [22].

The water activity of the fermented milk samples was determined using a LabMaster-
aw neo water activity meter (Novasina AG, Lachen, Switzerland), and the apparent viscos-
ity was evaluated using a Brookfield viscometer (DV-E, Brookfield Engineering Laborato-
ries, Middleborough, MA, USA) [23].

2.4. Whiteness Index (WI)

The color parameters CIE L* a* b* of the fermented milk samples were determined using
a Chroma Meter CR-400/410 (Konica Minolta, Osaka, Japan) and were used to calculate
the whiteness index (WI) based on Equation (1) according to Kamal-Eldin et al. [24].

WI = 100 − ((100 − L*)2 + a*2 + b*2)1/2 (1)

where L* is lightness to darkness (100 to 0), a* is reddish (+)/greenish (−), and b* is
yellowish (+)/bluish (−) color components.

2.5. Fatty Acid Methyl Esters (FAME) Analysis

Fat fractions of the raw and fermented milk samples obtained by centrifugation
(5000× g, 20 min, 4 ◦C) using a Sorvall LYNX 6000 centrifuge (Thermo Fisher, Waltham,
MA, USA) were dissolved in a methanolic potassium hydroxide solution (KOH, 2 mol/L)
and mixed thoroughly with hexane to extract fatty acid methyl esters (FAMEs). FAMEs were
analyzed using a gas chromatograph (Shimadzu model QP2010; Shimadzu, Tokyo, Japan)
coupled with a mass spectrometry detector. The fatty acid composition was determined by
comparing the obtained peaks to the chemical standards of the GC-MS and Wiley 275 mass
spectra library database (Software, D.03.00, Palo Alto, CA, USA).

2.6. Phenolic Compounds Analysis by LC-ESI-MS

Milk extracts were prepared according to Vázquez et al. [25], and were subjected to
quantitative phenolic compounds analysis using an LC-MS-2020 quadrupole mass spec-
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trometer (Shimadzu, Kyoto, Japan) equipped with an electrospray ionization source (ESI)
in the negative mode, as previously described by Jrad et al. [26]. The mass spectrometer
was set to the negative ion mode, with a capillary voltage of 3.5 V, nebulizer gas flow of
1.5 L/min, dry gas flow of 12 L/min, and DL temperature (dissolution line) of 250 ◦C. The
temperature of the block source was 400 ◦C, the voltage detector was 1.2 V, and the complete
scan spectra ranged from 50 to 2000 m/z (Bedford, MA, USA). The phenolic compounds
were identified by matching the obtained retention times and mass spectra to chemical
standards of >98% purity obtained from Sigma Chemical Co. (St Louis, MO, USA).

2.7. Statistical Analysis

Results were expressed as the mean ± standard deviation (SD). A two-way analysis
of variance (ANOVA) was conducted based on the presence of two factors: type of milk,
container used for milk fermentation, and interaction level. The type III sum of squares de-
scribed the significance of each factor. Tukey’s post hoc test was used to analyze differences
with a 0.05 significance level. Statistical analysis was performed using XLSTA software
version 2019 (Addinsoft, Paris, France).

2.8. Microbial Community Composition
2.8.1. DNA Extraction

The genomic DNA of raw cow and goat milk and the corresponding fermented milk
(after 24 h) in the glass container and clay pot were extracted using the DNeasy Power
Food Microbial Kit (Qiagen, Hilden, Germany), as previously described [27]. Additionally,
a sample of an artisanal commercial fermented cow milk “Lben” from a local producer was
also analyzed as a control for microbial diversity analysis. Briefly, 50 mL of samples were
centrifuged at 4300× g for 20 min at 4 ◦C. Then, 1 g of pellet was centrifuged at 13,000× g
for 1 min at room temperature. The supernatant was discarded, and the 250 mg of the
second pellet were used for DNA extraction.

2.8.2. NGS, Bioinformatic and Statistical Analysis

The Illumina 16S Library preparation protocol was adopted to generate the libraries
by amplifying the V3 and V4 regions of the 16S rRNA. Sequencing was performed on the
Illumina MiSeq platform using the MiSeq Reagent kit v2 500 cycles.

The bioinformatic analysis was performed using a pipeline based on QIIME2 (http:
//qiime.org/ (accessed on 13th January 2022)). First, the dada2 algorithm was applied in
order to denoise, merge forward, and reverse sequences per each pair. Then, the taxonomic
classification was performed by applying the Sklearn classifier implemented in QIIME and
adopting the Greengenes 13_8 97% OTU dataset as a reference.

3. Results
3.1. Effect of the Fermentation Container on Acidification and Lactic Acid Bacteria Growth

Changes in pH and acidity are shown in Figure 1a and in Figure 1b. During fermenta-
tion, milk acidification kinetics in the clay pot and glass container were statistically different
(p < 0.05). The pH ranged from 6.61 ± 0.02 to 4.44 ± 0.01 for goat milk using clay pot and
from 6.61 ± 0.02 to 4.35 ± 0.01 during fermentation in glass container. For cow milk, pH
varied from 6.72 ± 0.02 to 4.45 ± 0.01 for fermentation in clay pot and from 6.72 ± 0.02
to 4.37 ± 0.01 for fermentation in glass container (Figure 1a). The use of a glass container
for milk fermentation decreased the pH below compared to that achieved using a clay pot
(Supplementary Table S1). Furthermore, milk acidification rate was greater when using a
glass container for cow and goat milk (Figure 1b).

http://qiime.org/
http://qiime.org/
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fermentation at 37 ◦C during 24 h using clay pots or glass containers. Groupwise summary statistics
result for pH, acidity, and lactic bacteria count for the different fermentation times were given in
Supplementary Tables S1 and S2.

Statistical analysis based on the type III sum of squares applied to the explanatory
variables: type of milk, the container used, and their interaction term showed that all
variable terms had a significant effect on pH and acidity variations depending on the
fermentation time (Supplementary Table S1). In the first 6 h of milk fermentation, the term
type of milk is significant (p < 0.05) for pH and acidity. Afterwards, a significant effect was
also found for container type and interaction term (container × milk). Both milk type and
container significantly influenced the pH and variation between samples within 6 and 24 h
of milk fermentation. The mutual interaction term “type of milk × container” was found
significant (p < 0.05) for all measurements from 8 h to 22 h (Supplementary Table S1).

The total LAB count increased slightly during milk fermentation (Figure 1c). During
the first 3 h of fermentation, the variation in LAB count was attributed to the difference
in the type of milk (Supplementary Table S2). Initial LAB count for cow milk was slightly
higher (6.8 log10 CFU/mL) compared to that of goat milk (6.3 log10 CFU/mL). From 6 to
9 h of fermentation, a significant effect of the container was noted; cow milk in a glass
container recorded a maximal LAB count of approximately 8.1–8.2 log10 CFU/mL. At 12 h
of fermentation, only the variable type of milk explained the significant difference among
different samples (p < 0.05) (Supplementary Table S2).

From 15 to 18 h, both factors and the interaction type of milk × container significantly
affected LAB count, and after that, only the variable container explained the significant
difference (Supplementary Table S2). At 24 h, fermented milk samples in glass containers
(9.9 log10 CFU/mL) showed higher final LAB count if compared to those fermented in clay
pots (9.6 log10 CFU/mL).

3.2. Effect of Fermentation Container on Apparent Viscosity and Whiteness Index

Figure 2 depicts the variations in the viscosity and whiteness index of cow milk and
goat milk during fermentation. There were no significant differences (p > 0.05) in apparent
viscosity values during the first 8 h of fermentation (Figure 2a). The viscosity increased
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depending on the type of milk and container used. The apparent viscosity was higher in
clay pot for goat milk, with a mean value of 845 ± 7.1 cP reached within 24 h.
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Figure 2b shows the whiteness index variation according to the type of milk and
container used. Fermented milk obtained using clay pots showed high whiteness index
values for both goat and cow milk samples, and higher values were noted for goat milk at
different sampling times. After 8 h of milk fermentation, the difference between samples
was mainly attributed to the milk container, and from 8 to 24 h, the interaction term milk ×
container was found significant for apparent viscosity (Figure 2a).

3.3. Effect of Type of Milk and Container on Nutritional Profile

Table 1 illustrates the proximate composition of raw and fermented milk samples.
Compared to the composition of cow milk, goat milk was characterized by higher fat
(3.5 ± 0.2 g/100 g), total solids (13.1 ± 0.9 g/100 g), and ash (0.878 ± 0.002 g/100 g)
contents. Protein, fat, total solids, ash, and lactose contents decreased significantly (p < 0.05)
after fermentation for goat milk. Higher values of ash (0.798 ± 0.003 g/100 g) and lactose
(3.7 ± 0.1 g/100 g) were obtained in fermented goat milk in the clay pot. A significant
decrease (p < 0.05) was also recorded for protein, total solids, and lactose contents in
fermented cow milk. Compared to FCM_Glass container, FCM_Clay pot corresponds to
higher protein (3.1 ± 0.1 g/100 g), total solids (11.5 ± 0.4 g/100 g), ash (0.79 ± 0.02 g/100 g),
and lactose (3.4 ± 0.1 g/100 g) contents.

Table 1. Proximate analysis of raw and fermented milk samples.

Aw (-) Lactose (g/100 g) Ash (g/100 g) Total Solids
(g/100 g) Fat (g/100 g) Protein (g/100 g) Milk Samples

0.986 ± 0.001 a 4.5 ± 0.1 a 0.878 ± 0.002 a 13.1 ± 0.9 a 3.5 ± 0.2 a 3.3 ± 0.1 a Raw goat milk
0.980 ± 0.004 b 3.7 ± 0.1 b 0.798 ± 0.003 b 12.0 ± 0.8 ab 3.3 ± 0.3 ab 3.1 ± 0.2 ab FGM_Clay pot
0.985 ± 0.001 a 3.3 ± 0.1 cd 0.700 ± 0.001 c 11.5 ± 0.3 ab 2.8 ± 0.3 b 3.1 ± 0.1 ab FGM_Glass container

0.980 ± 0.004 b 4.2 ± 0.1 a 0.82 ± 0.01 b 12.8 ± 0.6 ab 3.3 ± 0.2 ab 3.2 ± 0.2 a Raw cow milk
0.973 ± 0.001 c 3.4 ± 0.1 bc 0.79 ± 0.02 b 11.5 ± 0.4 ab 3.1 ± 0.2 ab 3.1 ± 0.1 ab FCM_Clay pot
0.980 ± 0.003 b 3.1 ± 0.1 d 0.71 ± 0.02 c 11.4 ± 0.3 b 3.1 ± 0.2 ab 2.8 ± 0.1 b FCM_Glass container

FGM: Fermented Goat Milk; FCM: Fermented Cow Milk; S: significant; NS: not significant; Mean values with
different letters in the same column are significantly different p < 0.05.
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3.4. Influence of Type of Milk and Container Used for Milk Fermentation on Fatty Acids and
Phenolic Compounds

Table 2 summarizes the fatty acid composition of the different fermented milk samples.
In total, 17 fatty acids were identified in raw and fermented cow and goat milk, whereas
myristoleic acid was detected only in raw and fermented cow milk. The obtained results
showed that palmitic, capric, stearic, and oleic acids were the main detected fatty acids.
Higher percentages of caproic, caprylic, and capric acid were found in raw and fermented
goat milk than those measured in cow milk. Oleic acid was found to be higher in cow milk
than in goat milk.

Table 2. Fatty acids composition (% of total fatty acids) of raw and fermented milk in clay pot and
glass container.

Fatty Acids (%) RGM FGM_Clay Pot FGM_Glass
Container RCM FCM_Clay Pot FCM_Glass

Container

Saturated fatty acids

Butanoic acid (C4:0) 2.40 ± 0.03 1.92 ± 0.2 ab 2.4 ± 0.1 a 2.3 ± 0.2 1.45 ± 0.02 b 2.1 ± 0.1 a

Caproic acid (C6:0) 2.72 ± 0.02 2.05 ± 0.1 ab 2.9 ± 0.1 a 1.4 ± 0.1 1.3 ± 0.1 b 1.2 ± 0.1 b

Caprylic acid (C8:0) 3.17 ± 0.01 2.4 ± 0.1 b 3.5 ± 0.2 a 0.864 ± 0.005 0.78 ± 0.01 c 0.81 ± 0.02 c

Capric acid (C10:0) 11.97 ± 0.03 7.5 ± 0.4 b 11.8 ± 0.2 a 2.14 ± 0.01 2.002 ± 0.004 c 2.01 ± 0.01 c

Lauric acid (C12:0) 4.3 ± 0.7 3.47 ± 0.03 b 4.33 ± 0.03 a 2.85 ± 0.03 2.71 ± 0.02 c 2.68 ± 0.01 c

Myristic acid (C14:0) 9.2 ± 0.1 10.2 ± 0.2 a 10.20 ± 0.01 a 10.40 ± 0.01 10.4 ± 0.2 a 10.3 ± 0.2 a

Pentadecanoic acid
(C15:0) 1.01 ± 0.02 1.13 ± 0.01 a 0.9 ± 0.1 a 1.41 ± 0.04 1.3 ± 0.1 a 1.34 ± 0.04 a

Palmitic acid (C16:0) 26.9 ± 0.8 29.15 ± 0.05 a 30.7 ± 0.2 a 29.03 ± 0.3 30.31 ± 0.03 a 30.3 ± 1.2 a

Heptadecanoic acid
(C17:0) 0.66 ± 0.01 0.92 ± 0.04 a 0.5 ± 0.1 a 0.73 ± 0.01 0.6 ± 0.1 a 0.62 ± 0.04

Stearic acid (C18:0) 11.9 ± 0.1 14.1 ± 0.3 a 11.4 ± 0.2 b 9.7 ± 0.2 9.4 ± 0.2 b 9.5 ± 0.1 b

Arachidic acid
(C20:0) 0.70 ± 0.01 0.3 ± 0.1 a 0.27 ± 0.03 a 2.23 ± 0.01 0.15 ± 0.01 a 0.13 ± 0.01

Mono-saturated fatty acids

Cis-9-hexadecenoic acid
(C16:1) 0.5 ± 0.01 0.6 ± 0.04 b 0.30 ± 0.01 c 2.33 ± 0.01 1.94 ± 0.04 a 1.7 ± 0.2 a

Cis-10- heptadecenoic
acid (C17:1) 0.2 ± 0.04 0.3 ± 0.04 a nd 0.3 ± 0.1 0.29 ± 0.03 a 0.34 ± 0.03 a

Oleic acid (C18:1) 18.97 ± 0.1 25.2 ± 0.1 b 20.7 ± 0.01 c 30.0 ± 0.1 31.3 ± 0.3 a 31.2 ± 0.9 a

Myristoleic acid
(C14:1) nd nd nd 1.30 ± 0.02 1.20 ± 0.04 a 1.22 ± 0.02 a

Polyunsaturated fatty acids

Linoleic acid (C18:2) 2.14 ± 0.01 3.4 ± 0.2 a 1.8 ± 0.1 b 4.6 ± 0.1 4.3 ± 0.04 a 4.2 ± 0.1 a

Cis-9,12,15-
octadecatrienoic

(α-linolenic) (C18:3)
0.21 ± 0.03 0.62 ± 0.02 a 0.22 ± 0.01 b 0.25 ± 0.02 0.25 ± 0.01 b 0.21 ± 0.01 b

RGM: Raw Goat Milk; RCM: Raw Cow Milk; FGM: Fermented Goat Milk; FCM: Fermented Cow Milk; nd: not
detected; Mean values with different letters in the same column are significantly different p < 0.05.

The pairwise comparison revealed significant differences in butanoic, caprylic, capric,
lauric, stearic, oleic, linoleic, and α-linolenic acid contents according to the container
type. Higher contents of butanoic, caprylic, capric, and lauric acids were recorded in the
glass container whereas higher amounts of linoleic, and α-linolenic were recorded in the
clay container.

Among the principal phenolic compounds in raw and fermented milks, eight com-
pounds were identified, with quinic acid being the major compound in raw and fer-
mented milk (Table 3). Fermented goat milk recovered higher values of quinic acid if
compared to cow milk (42.67 ± 0.1 mg/L extract for fermented goat milk in a clay pot
and 42.89 ± 0.1 mg/L extract for fermented goat milk in a glass container). Apigenin and
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cirsiliol were also identified in raw and fermented milk samples at lower concentrations.
Salviolinic acid was present only in raw goat milk. Rutin and quercetin were detected in
goat milk fermented in the clay pot, whereas luteolin was found in goat milk fermented in
the glass container.

Table 3. LC-MS analysis of phenolic compounds identified in raw and fermented milk.

Peak
Retention

Time
(min)

Compound Chemical
Formula

[M-H]
m/z

Concentration (mg/Lextract)

RGM FGM_Clay
Pot

FGM_
Glass

Container
RCM FCM_

Clay Pot

FCM_
Glass

Container

1 2.269 quinic acid C7H12O6 191 29.59 ± 0.10 42.67 ± 0.10 42.89 ± 0.10 25.2 ± 0.1 34.03 ± 0.1 26.2 ± 0.1
2 27.734 Rutin C27H30O16 609 nd 0.003 ± 0.003 nd nd nd nd

3 33.292 Salviolinic
acid C36H30O1 717 1.184 ± 0.001 nd nd nd nd nd

4 35.502 quercetin C15H10O7 301 nd 0.012 ± 0.002 nd nd nd nd
5 36.915 Naringenin C15H12O5 271 0.007 ± 0.003 nd nd nd nd nd
6 38.107 Luteolin C21H20O11 285 nd nd 0.038 ± 0.001 nd nd nd
7 38.816 Apigenin C15H10O5 269 0.018 ± 0.001 0.035 ± 0.001 0.003 ± 0.001 0.058 ± 0.001 0.043 ± 0.001 0.029 ± 0.001
8 39.015 Cirsiliol C17H14O7 329 0.010 ± 0.003 0.012 ± 0.003 0.018 ± 0.003 0.015 ± 0.003 0.017 ± 0.003 0.009 ± 0.003

RGM: Raw Goat Milk; RCM: Raw Cow Milk; FGM: Fermented Goat Milk; FCM: Fermented Cow Milk;
nd: not detected.

3.5. Microbial Profiles of Goat and Cow Milk Fermented in Glass and Clay Containers

The analysis of 16s rRNA by NGS produced an average of 68.4 × 103 read pairs per
sample (min: 47.1 × 103; max:129.7 × 103) that were reduced uniformly to about 64–71%
after the denoising procedure (Supplementary Table S3), indicating no differences in terms
of sequencing yield among the samples. Analysis of the taxonomic profiles revealed a
significant variation between the samples.

The distribution of phyla and genera in fermented goat and cow samples is shown
in Figure 3. Proteobacteria was found to be the most prevalent phylum in the goat milk
samples according to the sequencing results, whereas Firmicutes dominated the fermented
cow milk and commercial milk (Figure 3a). At the genus level, Streptococcus spp., Escherichia
spp., Lactococcus spp., Enterococcus spp., and Lactobacillus spp. were identified as the
most abundant taxa, with a low abundance of other genera such as Enterococcus and
Aeromonadaceae (Figure 3b).

Raw goat milk was the richest of the Enterobacteriaceae family, whereas raw cow milk
had more varied microbiota. The genera Escherichia spp. and Streptococcus spp. were found
in fermented milk; in particular, the first genus was most prevalent in fermented goat milk,
whereas the latter was mostly present in cow products (Figure 3b). Commercial artisanal
Lben has a more diverse bacterial microbiota, with Lactococcus spp. and Streptococcus spp.
being the two most prevalent families.

Correlation analysis among the major genera in Figure 4 illustrates the inter-genera
competition. Interestingly, our data revealed that Escherichia spp. abundance negatively
correlated with many genera, including Lactobacillus spp. and Lactococcus spp. Streptococcus
spp., Lactococcus spp., and Lactobacillus spp. were positively correlated.
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4. Discussion

This study investigated the effects of milk type (goat and cow) and fermentation
vessels (glass and clay pot) on the microbiota diversity, fatty acids, phenolic profiles, and
the main nutritional and physicochemical properties of spontaneously fermented milk.

The fermentation vessels significantly influenced the microbial and nutrient compo-
sition of fermented dairy products. For some traditional products, the use of artisanal
material for processing or storage is mandatory and protected by local regulations for prod-
ucts with protected denomination of origin (PDO) [28]. Clay pot is used to store or prepare
cultured milk in rural areas [29,30]. It is preferred because it absorbs the excess of whey
and allows specific sensory properties, mainly in terms of flavor and texture. Moreover,
clay pots are characterized as permeable materials to moisture and gases, and do not react
with foods compared to plastic containers which are still used in many countries [31].

In this study, statistical results for milk acidification tendency represented by pH and
acidity curves provided insight into the significant effects of milk type and fermentation
container. As expected, for milk acidification, there was a significant difference depending
on the type of milk in the first 3 h of fermentation, while the influence of the container was
noticed later, after a lag time of 2 to 6 h. The use of a glass container resulted in higher
acidification rates for both types of milk, which could be attributed to the variations in
temperature transfer depending on the composition and physical characteristics of the
vessel material. This result is in agreement with the reported literature considering the
clay pot as cooling devices for food preservation in hot and dry climates according to
Date [32]. Additionally, the interaction term type of milk × container has a significant
effect on pH and acidity kinetics (p < 0.05). Groenenboom et al. [33] reported similar trends
for buckets and calabashes containers used in Mabisia traditional fermented cow milk in
Zambia. They found that the fermentation activity had a lag time depending on the re-use
of cleaned containers and the back-slopping method, with a final pH below 5 within 24 h
of fermentation similarly to our results.

The total LAB count found in this study is in the similar range reported in previous
studies dealing with growth trends in traditional fermented milk [22]. The use of clay
pot resulted in a lower LAB count than the glass container due to the cooling material’s
characteristics, as mentioned above. This also might be a result of the adherence activity of
lactic bacteria from raw milk naturally to the container’s inner surface [11]. The re-use of the
same container for milk fermentation can speed up the growth due to the development of
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LAB biofilm on the surface [28], while the re-use of the same container for milk fermentation
can affect the quality and the safety of the obtained product.

Viscosity and color are among main organoleptic characteristics that distinguish
fermented milk beverages [23]. Few studies have investigated the effect of fermentation
vessels on the variation of apparent viscosity and color parameters of fermented goat
milk. A study conducted by Priyashantha et al. [31] on Meekiri, a traditional dairy product
made in clay pot, showed that the fermented milk was characterized by a high viscosity
and creamy and thick mouthfeel attributes. Moonga et al. [11] for Mabisi also reported
similar results, describing that higher viscosity was also correlated to the fermenting
bacteria consortia [33]. The color of fermented dairy products changes from light yellow
to white depending on the milk’s composition and the fermentation environment [34].
The whiteness indices of goat and cow milk samples decreased during the fermentation
process. Goat milk fermented in a clay pot showed higher whiteness index values than the
other samples. Similar to our findings, Vargas et al. [35] found that goat milk yogurt had a
higher whiteness index than cow milk yogurt. This difference was attributed to the formed
gel’s opacity, which was caused by the casein ratio and protein aggregation, the absence
of β-carotene in goat milk, and the presence of small fat globules [36]. On the other hand,
acidification rate may promote the variation of the color index due to substances produced
by proteolysis and lipolysis reactions, which are accelerated or slowed during fermentation
according to used vessels [37]. The combination mixture of microorganisms influenced the
color profile of fermented milk, mainly lactic bacteria [38]. Organic compounds derived
from lactic bacteria, such as reuterin produced by Lb. reuteri, could also influence the color
of fermented milk. It was reported that fermented milk products without reuterin had
higher L* values than fermented milk products with reuterin. However, fermented milk
products with reuterin displayed higher a* and b* values [39].

The nutritional composition of fermented milk is dependent on the type of milk
and fermentation container. Overall, the obtained results are in agreement with those of
Chileshe et al. [10], Samet-Bali et al. [40], and Agyei et al. [41].

Milk and fermented dairy products contain bioactive molecules, with proteins and
fatty acids being the most prevalent and having nutritional and technological interest [42].
The fatty acid profiles of raw and fermented milk samples significantly varied, but overall,
the type of milk was the main determining factor. Fermented goat milk contained large
amounts of short-chain fatty acids, which can be explained by the fact that goat milk
contains more capric acid than cow milk. On the other hand, cow fermented milk contained
more long-chain fatty acids, primarily oleic acid. Lucatto et al. [43] reported that the
polyunsaturated and short-chain fatty acids were higher in goat milk yoghurt than those in
cow milk yoghurt.

The majority of phenolic compounds in ruminant milk come from animal feed, al-
though some may be produced through the catabolism of amino acids [44]. As previ-
ously reported by Jordán et al. [45], two classes of phenolic compounds, lipophilic and
hydrophilic, are transferred to milk depending on their molecular weight to cross lipid
membranes. This study identified both lipophilic and hydrophilic compounds in raw and
fermented milk, with quinic acid being the most prevalent chlorogenic acid derivative.
Previous research suggested that higher concentrations of chlorogenic acids result from the
metabolism of tannic acid and other polyphenolic compounds [46]. Phenolic compounds
in milk and fermented foods are crucial for auto-bio-preservation and sensory qualities,
particularly food flavor and human nutrition [46]. Additionally, phenolic compounds
are bio-transformed into derivatives, and may have prebiotic properties that promote the
growth of LAB [47].

Significant variations in microbial communities were identified among samples. Es-
cherichia spp. was the subdominant genera from the Enterobacteriaceae family. No other food
spoilage organisms such as Staphylococcus spp. and Listeria spp. were detected. Previous
studies on traditional dairy products made from unpasteurized milk [46] reported the
presence of pathogenic bacteria due to the quality of raw milk and uncontrolled condi-
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tions of milk fermentation, such as handling procedures and hygiene deficiencies in the
equipment [48]. Fermented cow milk samples showed a lower level of Escherichia spp.
and a greater diversity of microbiota with Streptococcus spp. genera predominating. A
higher distribution of Escherichia spp. was found when clay pot was used for both goat
and cow milks compared to the glass container. This may be explained by the interactions
between biotic and abiotic factors. Indeed, the fermenting substrate is supported by the
dominance of Enterobacteriaceae in raw goat milk and the acidification progression using
clay pot. According to Groenenboom et al. [33], the use of fermentation vessels with a larger
opening, such as the clay pot used in this study, resulted in the transfer of environmental
bacteria into the fermentation media both before and during fermentation. Furthermore,
pathogenic bacteria may replace LAB due to the clay pot interior’s rough surface and to its
low heat conductivity.

In this work dealing with goat and cow fermented milk, the main LAB genera identi-
fied were Lactobacillus spp., Lactococcus spp., and Streptococcus spp. The latter is the most
prevalent, with an increasing trend during fermentation as reported for the Chhurpi and
Churkam products [49]. The increase in Streptococcus levels from raw to fermented milk
could be correlated to the total LAB growth (Figure 1c) in cow milk fermented in the glass
container, showing a higher rate of growth.

A comparison of the microbial community in fermented cow and goat milk made at
a laboratory scale, and that of traditional commercial fermented milk Lben, allows us to
underline potential environmental contamination factors. The presence of Streptococcus
spp., Lactococcus spp. and Lactobacillus spp. was reported by sequencing for the first
time in fermented milk. According to the microbiota composition, Streptococcus spp. and
Lactococcus spp. were the most abundant, and were also detected in all samples with low
abundance. Enterobacteria were found in low abundance compared to the other fermented
milk samples. This variability among the analyzed samples could be attributed to the
variability in microbial diversity in raw milk and the impact of process conditions as
previously reported for similar dairy products [33].

An interesting strong negative correlation was found between spoilage and lactic acid
bacteria, specifically for Escherichia spp. The pathogenic bacterial species showed a weak
correlation between them, while the LAB showed the strongest positive correlation among
the identified bacteria. Similar correlations were found by Secchi et al. [50] and can be
attributed to the greater diversity of the entire bacterial community.

It is interesting to note that the use of clay pot produced fermented milk with a par-
ticular fatty acid profile, thick viscosity, and a higher whiteness index. However, the final
bacterial composition showed that the clay container developed more spoilage bacteria
that were already present in raw milk than when using glass containers. Escherichia spp.
were most abundant in fermented milks using the clay pot compared to the glass con-
tainer. Previous works [19,51] recommended the use of raw milk with high microbiological
quality and clay containers with inner boards laced with lactic bacteria biofilms to inhibit
pathogenic bacteria and to ensure the particular sensory properties of products. Safety
precautions such as the use of pasteurized milk, starter cultures, and a safe and controlled
environment are recommended. Good practices and safety control measurements remain
more appropriate for ensuring the safety of specific traditional fermented dairy products
with protected denominations.

5. Conclusions

Our findings demonstrated a significant influence of the fermentation container and
type of milk on pH, acidity, proximate composition, and viscosity of fermented milk.
The whiteness index, fatty acids, and phenolic compounds were mainly affected by milk
type. Microbial communities of fermented milk and their variations depending on the
type of milk (goat and cow) and used container for fermentation (glass and clay) were
also investigated. Both type of milk and container had a significant effect on bacterial
predominance in microbial communities. These findings showed that metataxonomic
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sequencing analysis is an effective tool that allows determination of microbial diversity in
traditional fermented dairy products and could be used to control their quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12091836/s1, Table S1: Groupwise summary statistics for
pH and acidity; Table S2: Groupwise summary statistics for lactic bacteria count; Table S3: Paired
ends data of sequences for metataxonomic analysis.
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