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ABSTRACT
Soft skills (SS) are important for Human Resource Management
when recruiting suitable candidates for a job. Nowadays, enterprises
aim to automatically extract such information from documents,
curriculum vitae (CVs) and job descriptions, to speed up their re-
cruitment process. State-of-the-art Large Language Models (LLMs)
have been successful in Natural Language Processing (NLP) by fine-
tuning them to the domain-specific task. However, annotated data
for the task is very limited and costly to obtain, since it requires do-
main experts. Moreover, SS consists of complex long entities which
are difficult to extract given few annotated examples. As a conse-
quence, the performance of the LLMs on soft skill detection still
needs improvement before being used in a real-world context. In
this paper, we introduce data augmentation based entity extraction
approach which shows promising performance when the entity
length is long (i.e more than three tokens). Moreover, we explore
the performance of pre-trained LLMs to generate synthetic data for
training. The pre-trained models are used to generate contextual
augmentation of the baseline dataset. We further analyse the em-
beddings generated by these models in aiding the extraction process
of entities. We develop an Embedding Manipulation (EM) approach
to further improve the performance of baseline models. We eval-
uated our approach on the only publicly available dataset for soft
skills (SKILLSPAN), and on three Entity Extraction datasets (GUM,
WNUT-2017 and CoNLL-2003) to assess the proposed approach.
Empirical evidence shows that the proposed approach allows us to
get 6.52% increased F1 over the baseline model for the soft skills.
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1 INTRODUCTION
In recent years, there has been a paradigm shift toward online job
posting and recruitment portals. With the help of these platforms,
candidates can effortlessly upload their data and documents, such
as resumes and curriculum vitae (CV), for the chosen vacancies.
On the positive side, these systems have made the job application
process smoother for candidates, but on the other hand, it has made
the screening process a time-consuming and labor-intensive task
for recruiters—for a single job advertisement, the Human Resources
(HR) department may receive a huge number of applications. Ma-
chine learning tools supporting the recruiters could potentially save
a significant amount of HR resources [2, 24, 29]. Specifically, auto-
matic information extraction from text data could greatly speed up
a recruiter’s job [19]. In this context, the data extraction primarily
focuses on recognizing applicants’ personal data, work experience,
and education. Soft Skills (SS) are also one of the constructs that re-
cruiters try to assess when screening candidates given a job profile.
The job profile consists of features (e.g. education, background, hard
and soft skills, past covered positions, . . . ) that an ideal candidate
should possess to get the respective position.

However, extracting the soft skills from text data can be tedious
as SS do not possess any distinctive definition or rule. To help re-
cruiters, a tool for automatic soft skill extraction from CVs is needed.
The current state-of-the-art in soft skill extraction is insufficient to
cover this need. Moreover, it is difficult to improve the performance
of the current state-of-the-art using conventional techniques due
to the scarcity of available datasets, with the notable exception of
the SKILLSPAN dataset [31].
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SS could consist of a single token (communication, manage-
ment, . . . ), multiple tokens (team player, critical thinker, . . . ), or
even a sentence (manage and develop a competitive service product
portfolio strategy . . . ). Recently, researchers have tackled the task
of extracting SS from resumes and job postings as a classification
task at sentence level [28], and at token level [31]. However, the
quality of the output of these models is severely limited by the
scarcity of available annotated data. Moreover, due to the complex
nature of the human language, the interpretation of a word largely
depends on the context. For instance, head in “head of management”
contributes towards SS, while it does not in “head of human body”.

State-of-the-art Large LanguageModels (LLMs) have been shown
to be successful in understanding word meaning in context. These
models can be fine-tuned to domain-specific tasks, yet to do so
an annotated dataset is required. However, manually annotating
large corpora at the token level is time-consuming and tedious.
Additionally, SS detection requires the knowledge of domain experts
to do quality annotations.

In this scenario, data augmentation (DA) [15] is a viable approach
to generate more synthetic data, given a limited amount of golden
annotations. However, the current DA approaches performs well
when the length of the entities in the dataset is short. The quality
of generated data via DA degrades when the length of the entities
becomes longer.

In this paper, we address the problem of SS extraction especially
when the length of the entities is long, i.e., more than three tokens
(more details in Section 3.4). Starting from baseline DA techniques,
we develop new DA approaches based on LLMs to improve the
results. Moreover, we introduce the Embedding Manipulation (EM)
approach to further improve the performance of LLMs.

2 RELATEDWORKS
Since resumes usually follow a standard structure, keyword-matching
algorithms can be leveraged to search and extract specific data in
the relevant sections, such as personal details and experiences [1].
Challenges arise when detecting hard and soft skills due to their
ambiguity, the need for annotated text, and domain experts.

The skill extraction task has been framed as a binary classifica-
tion problem by [21], where they implemented a phrase-matching
based approach to differentiate between SS phrases and something
else. After comparing different neural network models such as
CNNs, LSTMs, and Hierarchical Attention Model, it was found that
using an input representation with tagged skills in combination
with an LSTM achieved the best performance.

The SkillNER system [7] is a tool based on a support vector ma-
chine model. The training for this system was based on a collection
of 5000 scientific papers, and it utilizes a classification system for
SS from the O*NET database. The system is divided into two parts:
clue extraction and skill extraction. Clue extraction involves identi-
fying patterns that suggest the presence of a specific SS, and these
clues are then used to identify relevant sentences in the corpus.
In the skill extraction stage, these sentences are labeled, and the
resulting data is used to train a support vector machine and an
MLP. However, the evaluation of the system has shown that there
is room for improvement.

The models proposed by [28] use BERT [5] word embedding
representations in combination with POS tags (Part of Speech Tags)
and DEP tags (Dependency Parsing Tags). These features were used
to train various machine learning classifiers, which were then evalu-
ated on publicly available datasets. Results showed that using these
techniques improved accuracy compared to traditional methods,
although the limited size of the datasets hampered further progress.

Zhang et al. [31] released a novel dataset for skill extraction on
English job postings called SKILLSPAN, while also outlining the an-
notation guidelines created by domain experts to annotate hard and
soft skills. Additionally, this research introduces two BERT models
(jobBERT and jobSpanBERT) that are optimized with continuous
pre-training on the job posting domain and multi-task learning
techniques. Experimental results obtained with these models show
that single-tasking and multitasking can improve performance sig-
nificantly over non-adapted counterparts. The authors point out the
need to enrich the taxonomy with unseen skills, and they addressed
this issue using weak supervision in a subsequent work [32].

Finally, Imane et al. [12] provide a systematic review and classi-
fication of skills extraction techniques.

3 DATA AUGMENTATION
Data Augmentation (DA) is a well-known technique in machine
learning to automatically generate more training data without an
extensive annotation exercise [15]. DA has recently become popular
in Natural Language Processing (NLP) due to the availability of large
language models and increased interest in low-resource domains.
There are various DA techniques in NLP, including random swap
[27], random insertion [27], word deletion [27], back-translation,
and text generation (see [8] for a survey on the topic).

Most techniques described above are only suitable when the
entity (to extract) length is short, i.e., one or two tokens. The cur-
rent approaches do not show promising results for longer entities
(length greater than three tokens). Also, such techniques can only be
used for text classification tasks where the annotation is only at the
sentence level. These tasks are annotated via binary or multi-label
schema. For instance, in a binary classification task, each sentence is
annotated either Positive or Negative. Hence, preserving the golden
annotation is straightforward. Such tasks can easily leverage the
aforementioned DA techniques since token-label correspondence
is unnecessary. However, the problem arises when it comes to fine-
grained analysis tasks such as Named Entity Recognition (NER). In
the NER task, each token of a document or sentence is tagged. Any
manipulation of the input sequence might misalign the correspond-
ing label. Therefore, preserving the gold labels becomes a critical
task in NER problems. More details are explained in Section 3.5. In
the remaining part of this section, descriptions and limitations of
some of these techniques are provided.

3.1 Word Replacement
Various methods of word replacement have been proposed in the
past. The approach proposed in [27] replaces words with one of
their synonyms (WordNet [18]) or random word insertion, swap, or
deletion. An alternative solution using word replacement based on
context predicted by a bi-directional LSTM-RNN based language
model has been suggested in [14]. Another approach presented
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in [9] replaces a randomly chosen word in a sequence with a soft
word which is a probabilistic distribution over the vocabulary of
a language model. The author leveraged the use of Transformer
architecture [26] for the languagemodel. However, these techniques
are suitable for short entity lengths (less than three tokens). Also,
these techniques are limited in annotation-sensitive tasks such as
token classification due to the token-label misalignment problem,
as explained in Section 3.5.

3.2 Back-Translation
Back-translation is a popular approach in NLP where a sequence is
translated into another language and then translated back to the
original [22]. This approach preserves the overall semantics of the
original sentences but does not guarantee to preserve token-label
correspondence in token-level tasks.

3.3 Masked Language-Modelling
There have been few efforts to address the token-label misalign-
ment problem. For instance, Ding et al. [6] proposed using DA as a
conditional generation task, generating new sentences while pre-
serving the original targets and labels. Their approach relies upon
linearized labeled sequences. During linearization, the entity labels
are explicitly inserted in the sequence. This approach is controllable
and allows for more diversified sentence generation. Zhou et al. [33]
suggest the use of Masked Entity Language Modelling (MELM) as
a DA framework for low-resource NER, which addresses the token-
label misalignment issue by injecting NER labels explicitly into a
sentence [6]. This enables the fine-tuned MELM to predict masked
entity tokens while explicitly conditioning on their labels [3]. Such
techniques solve the token-label misalignment problem by inject-
ing the label information explicitly into the model. However, the
performance degrades when the lengths of entities are longer. Also,
these methods require post-processing to remove noisy samples
from the augmented data.

3.4 Entity Length
In this paper, we consider entities with a length of less than three
tokens as short entities, whereas entities with a length greater
than three tokens as long entities. In this research, we find that
the length of the entities affects the data augmentation process.
The current state-of-the-art approaches are viable for the token
classification task when the entity length is short. Unfortunately, for
longer entities the literature is limited [23]. Moreover, most datasets
for token classification tasks consist of named entities, such as the
name of a person, organization, or location, which usually consist
of one or two tokens. However, the entity length could be much
longer for niche tasks such as SS extraction.

To assess our approaches, in addition to a SS dataset, we selected
one dataset with similar entity length statistics as the SS dataset, and
two other datasets that represent the usual entity extraction tasks
where the average length is shorter. Experimental evaluation shows
that traditional DAs perform well with short entities but not well
with long entities; conversely, our proposed DAs are able to perform
well with long entities while being comparable to traditional DAs
on short ones.

Figure 1: Annotation scheme, data (top) is annotated using
BIO-tags (bottom).

In Table 1, we report the average entity length of the datasets we
used in our experimental assessment. We see that, on average, a SS
consists of 5 tokens, whereas on average entities in GUM datasets
consist of 3 tokens. The average entity length in WNUT-2017 and
CoNLL-2003 datasets is 1.5

3.5 Token-Label Misalignment
In a token-level classification task, each token in a document is
assigned a corresponding label, as shown in Figure 1. One of the
hard conditions for DA on such a task is to preserve the token-label
correspondence in the output. The token-label misalignment is a
critical problem limiting the use of DA techniques. For instance, in
back-translation or text generation, the augmented output sequence
is not guaranteed to be aligned with the input sequence length. By
using the back translation augmentation from [17] the following
generated output sequence consists of 8 tokens, whereas the input
sequence is of 12 tokens:

Original Text: Support and mentor other engineers
through code reviews and pair programming sessions.

Augmented Text: Support mentor other through code
reviews programming sessions.

The above example limits us to only using the DA techniques
where the token-label correspondence is retained. Therefore, we
explore contextual augmentation as explained in Section 4.

4 OUR METHODS
The proposed SS extraction workflows are shown in Figure 2. We
propose contextual and keyword DA by a pre-trained LLM [26]. The
LLM is used to generate synthetic data. Moreover, using Embedding
Manipulation (EM) we better exploit the information from the
annotated dataset. As shown in Figure 1, the input sentence is
composed of two parts referred to as context (highlighted in light
red) and keywords (highlighted in light green). Here, the keyword
is defined as a SS in the sentence. As can be seen from Figure 1,
the gold standard data is annotated using BIO (Beginning-Inside-
Outside) tags.

Notice that the SS labeled by domain experts consists of unique
tokens that are largely dependent on the context. To learn the repre-
sentation of such soft skills given one specific context is not enough.
The LLM requires more examples to discriminate between different
contexts. To address this problem, we propose two types of aug-
mentation techniques, namely context augmentation and keyword
augmentation, and to further enhance the performance, we use
Embedding Manipulation.
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Table 1: Statistics of the datasets used in the proposed work are presented. The average entity length refers to the average
number of tokens for each entity.

Dataset Sentences Tokens Avg. Entity Length
Train Validation Test Train Validation Test

SKILLSPAN 3074 1396 1522 92621 39923 42541 4.72
GUM 1435 615 805 29392 12688 17437 3.15
WNUT-2017 3394 1008 1287 62730 15734 23394 1.73
CoNLL-2003 3000 1000 1000 44429 14511 12538 1.60

(a) Contextual DA (b) Keyword DA

Figure 2: Pipeline of the proposed Data Augmentation flow. The tokens comprising of SS are referred to as keywords (marked
in light green), whereas the rest of the tokens are referred to as context (marked in light red). A pre-trained Language Model is
used to replace either the context or SS tokens. (a) refers to Contextual Augmentation, (b) refers to Keyword Augmentation.

4.1 Context Augmentation
As shown in Figure 2a, an input sentence of the training set is di-
vided into keywords (light green) and context (light red), according
to the gold labels provided by the annotators. In contextual aug-
mentation, we leverage the pre-trained contextual embedding of
the language model. Given an input sentence 𝑆 containing context
tokens 𝐶𝑡 and Keyword tokens as 𝐾𝑡 , we mask the 𝐶𝑡 with𝑀 , and
the model task is to predict the𝑀 given 𝐾𝑡 . The new substitutes for
tokens𝐶𝑡 can be sampled from a given probability distribution over
the vocabulary of the language model. We choose the top 5 tokens
to generate 5 different augmentations of the same sentence 𝑆 . We
generate similar sentences with the pre-trained model, constraining
it to replace only tokens of the input sentence. The original token-
label correspondence is maintained since we perform augmentation
by substituting the tokens instead of random insertion or deletion.
The generated augmented sentence is shown at the top of Figure 2a,
where the pre-trained model predicts masked tokens 𝑀 . In this
way, we generate more contexts given a single 𝐾𝑡 . Additionally, the
sequence length for all the augmentations is the same as the input
sequence, so the token-label correspondence is preserved.

4.2 Keyword Augmentation
In keyword augmentation, using the same approach mentioned in
Section 4.1, given an input sentence 𝑆 containing context tokens𝐶𝑡
and Keyword tokens as 𝐾𝑡 , we mask the 𝐾𝑡 with𝑀 , and the model
task is to predict the 𝑀 given 𝐶𝑡 . The new substitutes for tokens

𝐾𝑡 are sampled similarly as mentioned in Section 4.1. This setting
allows us to generate more sentences with different keywords given
the one specific context 𝐶𝑡 . The keyword augmentation is shown
in Figure 2b.

4.3 Embedding Manipulation
In this paper, we propose a simple yet effective approach to ex-
plore the embeddings of a pre-trained language model. Given an
annotated dataset, the gold label for each token 𝑇 is known be-
forehand. For instance, the Skillspan dataset 𝐷 is annotated with
soft skills using BIO tagging. With this information, we can ex-
tract all the soft skills (where a single soft skill is referred to as
𝑆𝑆𝑖 , 𝑖 = 1, . . . , 𝑛) in the training set. Each 𝑆𝑆𝑖 in the training set
consists of a different number of tokens |𝑆𝑆𝑖 |. All the extracted 𝑆𝑆s
are padded to the maximum length𝑚 of soft skills in the training
set. The padded 𝑆𝑆𝑖 is then passed through a LLM [26] to generate
the sequence of𝑚 embedding vectors 𝐸𝑖1, . . . , 𝐸

𝑖
𝑚 corresponding to

each token 𝑇𝑗 , 𝑗 = 1, . . . ,𝑚, in 𝑆𝑆𝑖 . All the generated embedding
vectors are then averaged out to produce a single embedding vector
𝐸𝑖 representing 𝑆𝑆𝑖 . Likewise, for each 𝑆𝑆𝑖 in the training set 𝐸𝑖
is calculated. Finally, all the calculated embedding vectors 𝐸𝑖 are
averaged out to produce a single global embedding vector 𝐸𝑎𝑣𝑔 ,
which supposedly contains the average representation in vector
space of all 𝑆𝑆s in the training set.

During fine-tuning of LLM, given a sentence 𝑆 with 𝑘 input to-
kens {𝑇𝑗 | 𝑗 = 1, . . . , 𝑘}, we obtain the embedding representation
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Figure 3: Proposed methodology for fine-tuning LLM via
Embedding Manipulation (EM). 𝑇𝑖 are input tokens to the
pre-trained LM. 𝐸𝑖 refers to the embedding representation
of each token generated by the pre-trained LM. Embedding
(highlighted in orange) is the average representation of enti-
ties, calculated by extracting entities in the training set. 𝐸𝑆

𝑖
is the average embedding representation of each token.

of each token 𝑇𝑗
𝐿𝐿𝑀↦−→ 𝐸𝑆

𝑗
. We use the pre-calculated 𝐸𝑎𝑣𝑔 and av-

erage with each 𝐸𝑆
𝑗
, 𝑗 = 1, . . . , 𝑘 , obtaining the resulting vector

corresponding to each token 𝑗 as 𝐸𝑆
𝑗
= (𝐸𝑆

𝑗
+ 𝐸𝑎𝑣𝑔)/2 (see Figure 3).

Then, the resulting embedding vectors 𝐸𝑆
𝑗
, 𝑗 = 1, . . . , 𝑘 , are passed

through the classifier for final prediction. Since 𝐸𝑎𝑣𝑔 contains the
average representation of entities, performing a simple averaging
operation on each 𝐸𝑆

𝑗
with 𝐸𝑎𝑣𝑔 raises the score of 𝐸𝑆

𝑗
which are

closer to 𝐸𝑎𝑣𝑔 . This allows the LLM to be driven toward entities of
interest in the dataset.

Likewise, during testing we use the EMmodule (refer to Figure 3).
As we do not have the information of golden annotation, we use the
same 𝐸𝑎𝑣𝑔 as calculated from the training set. For each sentence 𝑆
with 𝑘 input tokens {𝑇𝑗 | 𝑗 = 1, . . . , 𝑘}, we pass all the embeddings
of tokens 𝐸𝑖1, . . . , 𝐸

𝑖
𝑚 through EM module which allows us to obtain

𝐸𝑆
𝑗
, 𝑗 = 1, . . . , 𝑘 (explained in above paragraph), which is then

passed through classifier for final predictions. The proposed setting
allows the increase in the score of 𝐸𝑆

𝑗
close to 𝐸𝑎𝑣𝑔 in the embedding

space.

5 DATASETS AND EXPERIMENTAL SETUP
This section describes our empirical assessment of the proposed
DA techniques. Due to the scarcity of SS datasets, in addition to
SKILLSPAN, we tested our approach on three datasets, i.e., GUM,
WNUT-2017, and CoNLL-2003. For CoNLL-2003, we used a subset
of comparable size to the other two datasets to “simulate” a training
regime involving a relatively small number of labeled examples. For
all the datasets used in this work, we compare our DA approach

versus the baselines obtained by using BERT and RoBERTa. For
SKILLSPAN, we also report the performance of jobBERT, jobSpan-
BERT [31], and GPT-4 [20].

5.1 Datasets
In the following, we provide details of the SKILLSPAN dataset and
three additional entity extraction datasets used in our experimental
assessment. Table 1 presents the statistics of the datasets we used
in our experimental assessment. As explained in Section 4.1, when
considering our two DA techniques, the training set for the datasets
reported in Table 1 is augmented with 𝑁 more samples via an LLM,
increasing its size by 𝑁+1 times.

SKILLSPAN dataset, described in [31], is collected from job
postings and labeled by domain experts. The authors of the dataset
divided the data into three categories BIG, HOUSE, and TECH. The
BIG dataset has not been released, whereas the HOUSE and TECH
datasets are publicly available. The HOUSE dataset contains the
various categories of job ads from 2012 to 2020, whereas the TECH
dataset is restricted to only technical job postings. In this paper, the
HOUSE and TECH datasets are merged to increase baseline data.

GUM dataset [30] is an open-source dataset of distinct anno-
tated texts from twelve different text types. GUM comprises diverse
text sources, such as interviews, news stories, academic writing,
biographies, Wikipedia articles, political speeches, . . . . The dataset
contains nine different entities.

WNUT-2017 dataset [4] focuses on identifying unusual, previ-
ously unseen entities in the context of emerging discussions. It eval-
uates the ability to detect and classify novel, emerging, singleton-
named entities in noisy text.

CoNLL-2003 dataset [25] is a token classification dataset with 4
classes of entities extracted from a news corpus. To better simulate
the low resource settings, we choose a subset of CoNLL-2003 to
match best the token statistics of the other two datasets.

5.2 Experimental Setup
All the experiments are conducted in the same Python environment.
We used the [10] transformers repository for the model implementa-
tion. Each experiment is executed with early stopping with patience
of 3 and a cut-off of 0.3. The batch size is 32; the initial learning rate
is set to 2 × 10−5 with AdamW optimizer [13], and weight decay
of 0.2. All experiments are conducted on NVIDIA RTX 𝐴6000 GPU.

NER-MODEL For fine-tuning, we use the approach described in
the original work by Vaswani et al. [26]. We utilize the base [5] and
RoBERTa [16] model for our experiments with the linear classifier
[10] on top.

MLM-MODEL For augmentation, we use the baseline RoBERTa
[16] model and replace the linear classification head with the Lan-
guage Modeling Head (LMH) [10] on top.

GPT-4 We used prompting to extract SS using the GPT-4 [20]
model. Using the whole test set to extract SS using GPT-4 is ex-
pensive. Therefore, we sampled 50 examples from the test set by
randomly shuffling data with three different seeds (42, 3143, and
4314). The experiments are performed by varying the temperature
value from 0.3 to 0.7 with a 0.2 increment. The best temperature
value was found to be 0.7. To better estimate the quality of the
model three different prompts were used, as presented below:
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Table 2: Number of generated augmented sentences 𝑁 and 𝐹1
score on the validation set for each dataset and each consid-
ered model/augmentation technique. The baseline value is
for 𝑁 = 0, i.e. no augmentation. Best performance for each
model/data augmentation is in bold.

SKILLSPAN

Model 𝑁

0 1 2 3 4 5

BERT 45.85 51.82 53.03 52.09 52.49 52.85
jobBERT 48.01 55.47 56.13 55.14 53.41 54.49
jobSpanBERT 47.80 56.13 56.67 55.53 56.07 54.07
RoBERTa 49.20 56.56 57.69 57.34 57.20 57.03

WNUT-2017

Model 𝑁

0 1 2 3 4 5

BERT 46.87 53.78 51.25 49.45 48.98 49.14
RoBERTa 63.85 65.37 65.18 63.81 59.66 56.42

CONLL-2003

Model 𝑁

0 1 2 3 4 5

BERT 91.93 91.68 91.70 91.95 90.60 90.54
RoBERTa 94.51 94.53 93.75 9290 92.31 92.25

GUM

Model 𝑁

0 1 2 3 4 5

BERT 48.85 54.48 57.24 55.95 55.33 55.02
RoBERTa 55.27 57.61 59.85 61.94 59.35 59.40

(1) Extract list of tokens corresponding to soft skills in the given
input sentence.

(2) Extract soft skills from the input sentence. Return tokens
corresponding to soft skills in a list.

(3) Extract a list of skills from the input sentence.
The prompts were engineered to cast the output of the model as a
token classification task. The best prompt is chosen which returns
the best 𝐹1 score on the test samples. The proposed prompting
approach reduces the post-processing work of the output generated
by GPT-4 model and also allows us to make better comparisons
with the other approaches presented in Table 3. The results using
the best prompt are presented in Table 3, whereas some examples
can be visualized in Table 5.

Hyperparameter Tuning and Model Selection To determine
the optimal setting for augmentation rate 𝑁 , we conduct a grid
search on hyperparameters in the range [1, 2, 3, 4, 5]1. We used the

1Please, recall that we choose the top 5 tokens to generate five different augmentations
of the same sentence.

pre-trained baseline models and generated the augmented data on
the dataset following our methods described in Section 4. The aug-
mented data was used to fine-tune the model, and its performance
on the validation set was recorded. The best model was chosen
based on the best 𝐹1 score on the validation set. The number of aug-
mentations for each dataset is presented in Table 2. It can be noted
that for datasets with longer entities—SKILLSPAN and GUM—the
performance degrades after 3 rounds of augmentation, whereas
for datasets with short entities, i.e., WNUT-17 and CoNLL-2003, a
similar trend is observed after 2 rounds of augmentation.

6 RESULTS
As already stated, due to the scarcity of datasets for SS extraction, we
decided first to assess our DA techniques proposed in Section 4 on
three entity extraction tasks. For these three datasets, we considered
two LLMs, BERT [5] and RoBERTa [16]. In contrast, for improving
the performance of SS in job postings and CVs (SKILLSPAN dataset)
we also considered jobBERT [31] and jobSpanBert [31]. The perfor-
mance of the GPT-4 model [20] is also evaluated for SS extraction
using the methodology mentioned in Section 5.2.

6.1 Soft Skills
To show the effectiveness of the proposed DA approaches, we per-
form an extensive comparison with traditional DA approaches such
as (word deletion, synonym replacement, word swap, and spelling
augmentation [27]) and recently introduced DA approaches for to-
ken classification tasks (MELM [33] and DAGA [6]). From Table 3,
we observe that the proposed DA approaches (keyword and context
augmentation) used in the experiments achieve a higher 𝐹1 score
than the baseline counterpart. The improvement is significant for
all the models used in experimental assessment. It can be observed
from empirical evidence that the performance of context augmen-
tation surpasses keyword augmentation. We hypothesize that this
increase in performance is because when the entity length is long,
LLM requires more contextually diverse examples to learn better
representations of entities. From Table 3, we notice the previous
state-of-the-art models jobBERT and jobSpanBERT for SS extraction
can perform better than the BERT model. However, the RoBERTa
model achieves the highest performance in the SS extraction task
overall.

Moreover, we notice that EM plays a significant role in further
enhancing the performance of LLMs. To test whether the EM leads
to a higher 𝐹1 score without assuming normality and homoscedas-
ticity, we resorted to the Wilcoxon signed-ranks test [11]. It gives
𝑊 = 224 and 𝑝-value= 0.017, revealing statistical evidence from the
experiments that using EM improves the performance over baseline
models. The RoBERTa model with EM fine-tuned on contextual
augmented dataset achieves the highest 𝐹1 score of 54.46, which
leads to a 6.52% improvement over the baseline counterpart. We
also evaluate our approach against the off-the-shelf GPT-4 model
using the prompting approach (described in Section 5.2). The GPT-4
model achieves 48.01% in absolute 𝐹1, which is 6.41% less than our
proposed approach.
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Table 3: The F1 along with standard deviation, precision, and recall are reported on the test set of SKILLSPAN dataset. The values
are averaged over three different random initializations. The results are reported with and without EM. The bold highlight
shows the highest 𝐹1 score.

Model Technique Without EM With EM

Precision Recall F1 Precision Recall F1

GPT-4 Prompt 39.61±2.00 60.95±3.00 48.01±2.35 - - -

BERT

Baseline 39.12±0.70 51.16±3.19 44.29±1.05 41.92±0.87 46.29±3.89 43.74±2.64
Word Deletion 43.92±2.70 54.48±2.88 48.23±2.47 42.04±4.84 59.37±3.02 49.00±2.26
Synonym Replacement 47.97±0.72 45.61±3.43 46.71±1.53 45.62±2.83 47.28±3.19 45.06±1.98
Word Swap 40.93±4.48 57.71±4.03 47.71±0.94 45.46±0.89 55.82±4.08 50.06±1.85
Spelling Augmentation 43.97±3.91 53.39±2.18 47.69±2.31 48.05±1.15 50.76±4.54 49.26±1.54
MELM et al. [33] 44.75±2.31 57.59±1.49 50.31±0.92 43.23±0.44 56.82±0.15 49.10±0.23
DAGA et al. [6] 40.93±0.37 60.48±0.16 48.82±0.31 41.01±2.28 59.58±0.88 48.55±1.30
Keyword Augmentation 42.15±2.80 57.55±3.39 48.54±1.06 41.47±1.18 59.12±0.35 48.73±0.75
Context Augmentation 47.24±2.27 57.18±1.31 51.71±1.26 46.70±2.14 55.59±0.18 50.74±1.20

jobBERT

Baseline 42.18±0.61 53.26±0.66 47.07±0.14 44.46±2.27 52.31±2.52 48.00±0.48
Word Deletion 45.34±3.66 60.90±1.94 51.87±1.80 42.87±0.47 62.65±1.46 50.90±0.18
Synonym Replacement 44.97±2.63 58.40±4.07 50.68±0.35 44.36±1.16 62.76±2.70 52.04±0.64
Word Swap 46.44±1.04 60.30±0.98 51.92±0.31 42.74±1.81 62.33±1.02 50.68±0.93
Spelling Augmentation 45.61±0.76 54.25±6.58 49.76±2.84 44.36±1.02 62.76±1.34 51.97±0.60
MELM et al. [33] 48.16±3.34 56.96±4.26 52.06±0.18 47.81±1.77 57.34±1.87 52.12±0.28
DAGA et al. [6] 46.63±2.62 58.38±2.05 51.78±0.82 47.51±0.61 59.33±0.83 52.76±0.65
Keyword Augmentation 44.76±0.68 58.31±1.89 50.63±0.74 45.02±0.81 60.57±0.63 51.64±0.31
Context Augmentation 49.05±1.74 58.03±0.63 53.15±0.78 48.46±1.37 59.35±0.50 53.34±0.65

jobSpanBERT

Baseline 43.26±1.88 50.32±4.64 46.18±3.26 45.22±2.78 55.03±4.25 49.49±0.03
Word Deletion 45.99±4.60 58.29±4.3 51.17±1.34 46.68±1.70 59.12±1.40 52.14±0.82
Synonym Replacement 45.66±3.23 59.37±1.64 51.54±1.39 46.64±1.34 59.23±3.63 52.13±1.23
Word Swap 48.44±0.50 57.20±1.63 52.44±0.40 47.12±2.26 57.94±2.63 51.89±0.27
Spelling Augmentation 45.50±3.10 58.52±4.29 51.03±0.60 46.10±2.32 61.61±1.28 52.70±1.20
MELM et al. [33] 49.45±1.29 56.79±1.75 52.84±0.49 50.25±0.65 58.10±1.37 53.89±0.96
DAGA et al. [6] 48.03±1.26 56.58±0.9 51.94±0.34 48.98±1.81 57.64±2.29 52.93±1.44
Keyword Augmentation 48.16±1.02 59.35±0.42 53.16±0.49 49.87±1.54 58.94±0.2 53.68±0.92
Context Augmentation 46.20±1.91 60.80±1.57 52.48±1.01 49.87±2.36 58.94±2.57 53.95±0.33

RoBERTa

Baseline 43.64±3.53 53.38±3.47 47.94±2.64 46.75±1.24 56.52±1.34 51.16±0.83
Word Deletion 48.10±2.24 53.00±4.19 50.09±2.56 48.57±2.87 57.66±3.94 52.55±0.71
Synonym Replacement 50.31±4.69 55.95±4.84 52.70±0.75 52.43±2.46 54.04±4.2 53.02±2.11
Word Swap 48.71±0.40 56.61±5.71 52.26±2.64 45.94±2.65 61.98±1.65 52.74±2.05
Spelling Augmentation 51.98±1.47 49.50±2.85 50.67±1.51 53.21±2.71 52.10±2.56 52.56±0.17
MELM et al. [33] 49.92±5.56 57.67±1.69 53.45±0.79 51.95±1.72 54.86±2.19 53.33±0.75
DAGA et al. [6] 47.04±3.69 59.83±2.59 52.54±1.43 50.37±0.91 58.69±0.48 54.20±0.33
Keyword Augmentation 46.73±0.91 59.47±1.32 52.33±0.59 45.16±3.96 60.42±2.49 51.55±1.93
Context Augmentation 49.42±0.23 59.09±1.44 53.82±0.47 49.15±0.49 61.06±0.40 54.46±0.39
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Table 4: The 𝐹1 along with standard deviation, precision, and recall are reported on the test set of the NER dataset. The values
are averaged over three different random initializations. The results are reported with and without EM. The bold highlight
shows the highest 𝐹1 score.

Model Technique WNUT-2017 CoNLL2003 GUM

Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT

Baseline 49.84±4.38 29.54±0.89 37.06±2.04 86.99±0.86 90.18±0.67 88.56±0.55 44.55±1.14 53.37±1.09 48.56±1.11
Word Deletion 56.88±1.38 31.09±0.16 40.20±0.46 88.17±0.74 90.62±0.36 89.38±0.55 48.89±0.99 57.70±1.22 52.93±1.08
Synonym Replacement 57.04±4.59 29.44±0.88 38.77±0.75 87.81±0.43 90.02±0.40 88.90±0.08 49.03±4.06 57.17±3.24 52.78±3.73
Word Swap 54.29±0.80 31.52±1.79 39.85±1.21 87.49±2.05 89.91±0.78 88.68±1.42 49.62±2.62 58.72±1.48 53.78±2.17
Spelling Augmentation 58.84±0.93 30.10±0.93 39.82±0.65 88.29±1.45 90.18±0.31 89.22±0.64 47.87±3.39 56.01±3.65 51.62±3.51
MELM et al. [33] 56.96±4.02 33.84±0.26 42.42±1.10 87.06±0.50 89.40±0.39 88.21±0.31 51.13±0.85 58.35±0.37 54.51±0.64
DAGA et al. [6] 56.86±4.30 30.58±1.88 39.61±1.13 86.89±0.65 89.26±0.65 88.06±0.65 49.05±2.31 56.71±2.43 52.60±2.37
Keyword Augmentation 63.06±2.05 30.98±1.33 41.52±0.98 85.42±0.33 89.98±0.55 87.64±0.20 51.40±1.40 59.44±0.42 55.12±0.96
Context Augmentation 59.18±3.26 29.41±2.18 39.19±1.34 88.91±0.84 89.45±0.61 89.17±0.32 52.99±0.50 60.43±0.43 56.47±0.44

Baseline + EM 48.22±3.33 29.33±2.50 36.45±2.66 87.60±1.49 90.46±0.67 89.01±1.08 47.22±0.50 54.37±0.50 50.55±0.50
Word Deletion + EM 55.78±3.13 32.61±2.46 41.10±2.11 88.24±0.67 91.14±0.66 89.67±0.66 52.12±1.21 59.93±1.41 55.75±1.28
Synonym Replacement + EM 56.28±2.89 28.87±3.13 38.15±3.40 88.26±0.43 90.42±0.20 89.33±0.23 52.76±0.39 60.25±0.45 56.26±0.41
Word Swap + EM 55.70±2.59 29.91±1.93 38.88±1.72 87.67±0.47 90.48±0.12 89.06±0.28 51.22±0.65 58.69±0.69 54.70±0.12
Spelling Augmentation + EM 58.84±1.92 31.14±3.04 40.63±2.23 88.18±0.12 90.33±0.08 89.24±0.06 53.07±1.85 59.72±1.09 56.20±1.52
MELM et al. [33] + EM 57.38±4.83 33.28±1.25 42.04±0.96 86.46±0.51 90.51±0.09 88.43±0.29 53.32±0.50 60.46±0.77 56.67±0.55
DAGA et al. [6] + EM 58.09±2.34 31.44±2.8 40.71±2.02 86.67±0.51 88.85±0.51 87.74±0.51 49.94±2.92 57.4±3.18 53.41±3.05
Keyword Augmentation + EM 49.65±4.36 34.21±1.16 40.49±2.17 84.26±0.51 89.37±0.50 86.74±0.47 52.38±0.64 59.88±0.66 55.88±0.65
Context Augmentation + EM 60.84±2.00 28.21±1.79 38.52±1.86 88.07±0.53 89.22±0.09 88.64±0.26 53.98±0.16 60.35±0.25 57.01±0.20

RoBERTa

Baseline 56.57±4.35 46.38±5.08 50.74±2.54 90.22±0.63 92.47±0.26 91.33±0.45 50.10±2.06 58.68±1.80 54.05±1.97
Word Deletion 63.98±4.72 47.21±0.19 54.29±1.87 90.28±0.35 93.00±0.11 91.62±0.14 56.00±0.64 62.49±0.41 59.06±0.53
Synonym Replacement 62.03±1.15 44.78±0.71 52.01±0.28 89.84±0.39 91.88±0.74 90.85±0.55 53.83±2.25 60.18±2.47 56.83±2.35
Word Swap 68.55±1.16 45.77±0.99 54.88±0.42 89.92±0.45 92.84±0.24 91.35±0.21 55.90±0.55 62.82±0.80 59.16±0.11
Spelling Augmentation 62.56±2.47 45.91±0.27 53.89±1.07 90.31±0.35 92.27±0.25 91.28±0.30 53.55±1.81 60.21±1.99 56.68±1.87
MELM et al. [33] 64.84±1.22 46.22±0.57 53.96±0.72 89.17±0.30 91.85±0.21 90.49±0.10 56.12±0.32 61.97±0.97 58.89±0.55
DAGA et al. [6] 66.57±1.92 46.33±3.5 54.55±2.07 89.27±0.1 91.9±0.1 90.57±0.1 54.86±1.23 60.97±1.14 57.75±1.16
Keyword Augmentation 66.80±1.69 44.79±1.73 53.59±0.77 87.18±0.64 91.60±0.45 89.51±0.52 55.24±1.09 61.56±0.99 58.22±0.92
Context Augmentation 65.97±2.18 45.91±2.62 54.08±1.28 90.10±0.14 92.12±0.45 91.10±0.19 58.12±0.41 64.09±0.43 60.96±0.42

Baseline + EM 57.72±0.65 46.13±0.59 51.28±0.31 90.36±0.48 92.97±0.21 91.65±0.34 54.81±0.65 60.08±0.50 57.33±0.54
Word Deletion + EM 66.51±1.91 45.28±1.53 53.85±0.57 90.23±0.20 93.33±0.31 91.75±0.25 57.93±0.82 63.35±0.91 60.52±0.79
Synonym Replacement + EM 66.21±0.95 41.87±1.31 51.28±0.75 89.96±0.03 92.32±0.35 91.12±0.16 58.16±0.21 63.90±0.96 60.89±0.36
Word Swap + EM 65.85±1.86 47.70±0.99 55.31±0.27 89.96±0.81 93.00±0.31 91.46±0.57 56.64±0.16 62.35±0.69 59.36±0.28
Spelling Augmentation + EM 63.41±2.80 46.35±2.20 53.49±0.50 90.38±0.21 92.92±0.51 91.64±0.36 58.59±0.42 64.23±0.75 61.28±0.52
MELM et al. [33] + EM 65.96±0.28 44.54±0.90 53.17±0.74 88.91±0.18 91.53±0.51 90.20±0.17 56.76±0.29 62.44±0.78 59.47±0.40
DAGA et al. [6] + EM 62.03±4.26 47.54±3.88 53.64±1.58 89.68±0.48 91.69±0.48 90.67±0.48 58.42±0.65 63.64±0.85 60.92±0.73
Keyword Augmentation + EM 61.07±4.34 46.33±0.50 52.64±1.55 86.79±0.46 91.26±0.23 88.97±0.31 54.67±0.65 60.85±0.93 57.59±0.73
Context Augmentation + EM 66.38±1.46 44.62±1.12 53.37±1.27 90.61±0.39 92.12±0.06 91.36±0.17 58.80±0.87 64.15±0.29 61.35±0.55

6.2 Entity Extraction Datasets
We report the results on three entity extraction datasets to better
evaluate the proposed approach. As explained in Section 3.4, the
GUM dataset consists of long entities with an average entity length
of 3.15, whereas WNUT-17 and CoNLL-2003 datasets consist of
short entities where the average entity length is 1.73 and 1.60
respectively.

In the GUM dataset, the proposed contextual augmentation tech-
nique with embedding manipulation produces the overall best
𝐹1 score compared to baselines for both models, i.e., BERT and
RoBERTa. The RoBERTa model with EM fine-tuned on contextual
augmented dataset achieves the highest 𝐹1 score of 61.35 with a
performance improvement of 7.30% over the baseline counterpart.
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Table 5: Comparison of soft skills predictions on examples randomly sampled from the test set. We choose the best-performing
model from Table 3, i.e. RoBERTa. The Baseline Model column shows predictions of the RoBERTa model fine-tuned with the
baseline dataset, GPT-4 column shows the predictions of GPT-4 on test examples. The Data-Augmented Model shows the results
of the RoBERTa model fine-tuned with augmented-dataset and EM. Highlighted texts stand for gold labels in the first column,
and the corresponding predictions by the models.

№ Gold Labels Baseline Model GPT-4 Data-Augmented Model

1. Share your knowledge and
keep up the high level of qual-
ity in our team through reviews
pairing and mentoring

Share your knowledge and
keep up the high level of qual-
ity in our team through reviews
pairing and mentoring

Share your knowledge and
keep up the high level of qual-
ity in our team through reviews
pairing and mentoring

Share your knowledge and
keep up the high level of qual-
ity in our team through reviews
pairing and mentoring

2. Continuously improve and
maintain components and sys-
tems to ensure its functionality
scalability uptime and security

Continuously improve and
maintain components and sys-
tems to ensure its functionality
scalability uptime and security

Continuously improve and
maintain components and sys-
tems to ensure its functionality
scalability uptime and security

Continuously improve and
maintain components and sys-
tems to ensure its functionality
scalability uptime and security

3. That means defining and imple-
menting services that make up
a vital sub-system in your area

That means defining and imple-
menting services that make up
a vital sub-system in your area

That means defining and imple-
menting services that make up
a vital sub-system in your area

That means defining and imple-
menting services that make up
a vital sub-system in your area

4. NET services and APIs ac-
cording to product specifi-
cations; Ensure to maintain
strong Backend code quality
with good practices

NET services and APIs ac-
cording to product specifi-
cations; Ensure to maintain
strong Backend code quality
with good practices

NET services and APIs ac-
cording to product specifi-
cations; Ensure to maintain
strong Backend code quality
with good practices

NET services and APIs ac-
cording to product specifi-
cations; Ensure to maintain
strong Backend code quality
with good practices

5. supervision and other relevant
management functions.

supervision and other relevant
management functions.

supervision and other relevant
management functions.

supervision and other relevant
management functions.

The performance of the proposed DA techniques on the entity
extraction WNUT-2017 dataset is reported in Table 4. We can ob-
serve that contextual augmentation can achieve better performance
over the baseline. However, the performance of contextual DA is
marginally less than the baseline augmentation approaches. The
RoBERTa model finetuned on augmentation generated by swapping
random words and using EM achieves the highest 𝐹1 score of 55.31,
which is a 1.2% improvement over the contextual DA.

On the other entity extraction dataset (CoNNL-2003), the aug-
mentation is not as effective as in the previous case of (GUM and
SKILLSPAN). We notice a similar trend as in the WNUT-17 dataset.
From Table 4, we observe that all augmentation techniques show
marginal improvement over the baseline model. The RoBERTa
model fine-tuned on a dataset augmented with word deletion and
using EM gains 0.42% performance over the baseline.

We remark that the performance of data augmentation ismarginally
effective (WNUT-17) and, in some cases, degrades (CoNLL-2003).
However, the performance gain is significant for SKILLSPAN and
GUM datasets.

It can be observed that, for both datasets, themodel/augmentation
technique that reaches the best 𝐹1 score in the validation set returns
the best results on the test set as well. This fact supports the con-
clusion that the assessment of the NER datasets can be considered
positive overall.

7 INFERENCE
Table 5 shows the inference on the test set. We compare the pre-
dictions of the RoBERTa model fine-tuned on the baseline and

augmented dataset against the gold labels. Both models correctly
predict Example 1. In Examples 2 and 3, the baseline model predicts
some extra tokens not annotated in the gold labels, whereas the
augmented model predicts the tokens correctly. Likewise, in Exam-
ple 4, both models fail to predict the tokens “NET services and APIs
...”; however, the second part of the sentence is predicted correctly
by the augmented model, showing superior performance over the
baseline. Example 5 reveals interesting outcomes: the input phrase
“supervision and other relevant management functions” would be
considered a soft skill in general. However, due to human mistakes,
it is not labeled as such in the gold dataset. The augmented model
is still able to denote it as a SS. The GPT-4 model can extract a few
tokens corresponding to SS in Examples 1, 2, and 5, whereas it fails
to identify any SS in Examples 3 and 5.

8 CONCLUSIONS AND FUTUREWORK
We have presented a simple yet effective approach for improving
the performance of Large Language Models when the entity length
is long and gold annotations are limited. We demonstrate our ap-
proach on four different token classification datasets. By using DA
techniques, we generated synthetic data that improved the perfor-
mance of the baseline models. We also exploit the gold-annotated
datasets to extract additional information via EM. We demonstrate
that the proposed approach can effectively improve the SS extrac-
tion from job descriptions and CVs. This approach can help to speed
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up the recruitment process by automatically extracting informa-
tion about soft skills from candidate documents without requiring
expensive and time-consuming manual annotations. However, it is
worth noting that more research is needed to improve these mod-
els’ performance further and test their effectiveness in a real-world
scenario. Additionally, in future work, we plan to investigate how
to use these models fairly and ethically to ensure that they do not
perpetuate existing biases in the recruitment process.
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