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ABSTRACT
Over the last decade, deep learning applications in biomedical research have exploded, demon-
strating their ability to often outperform previous machine learning approaches in various tasks.
However, training deep learning models for biomedical applications requires large amounts of
data annotated by experts, whose collection is often time- and cost- prohibitive. Self-Supervised
Learning (SSL) has emerged as a prominent solution for such problem, as it allows to learn powerful
representations from vast unlabeled data by producing supervisory signals directly from the data.
The high amount of recent works employing the self-supervised learning paradigm for the analysis
of biomedical signals (biosignals) can make it difficult for researchers to have a complete picture of
the current research state. Therefore, this paper aims at outlining and clarifying the state-of-the-art
in the domain. The article: briefly summarizes the nature and acquisition modality of the main
biosignals; introduces the self-supervised learning method, focusing on the different pretraining
strategies; provides a concise overview of the works employing SSL for the analysis of different
types of biosignals; provides an overall analysis of critical aspects to consider when employing SSL
to biosignals, also highlighting current open challenges. The analysis of the scientific literature
highlights the importance of SSL, confirming its potential to improve models’ performance and
robustness, and to promote the integration of deep learning into clinical tasks.

INDEX TERMS Biosignals, Contrastive Learning (CL), Deep Learning (DL), electrocardiography
(ECG), electroencephalography (EEG), electromyography (EMG), multimodal, Self-Supervised
Learning (SSL)

I. INTRODUCTION

IN the last decade deep learning has emerged as a
powerful and versatile tool capable of achieving state-

of-the-art performance in various fields. Starting from
AlexNet [1], winner of the 2012 Imagenet Large Scale
Visual Recognition Challenge (ILSVRC) [2], many of the
biggest companies have invested lots of resources to pro-
mote and introduce deep learning applications in their
products and software. Notorious examples are Google
DeepMind’s AlphaZero [3], a reinforcement learning
algorithm capable of winning against the strongest hu-
mans and computer engines on various board games
(e.g., chess, go, shoji), Google DeepMind’s AlphaFold
[4], winner of the 13th and 14th Critical Assessment of
Techniques for Protein Structure Prediction (CASP),

and the novel OpenAI’s ChatGPT1, considered a funda-
mental step in Natural Language Processing (NLP). The
mentioned examples demonstrate how deep learning can
be successfully applied in various research area; there-
fore, medicine was not excluded by the “golden fever” of
Artificial Intelligence (AI). Looking at PubMed2, one of
the most used search engines for biomedical literature
[5], it is possible to see that the number of yearly
published works involving deep learning has increased
from less than 300 in 2016 to approximately 17 000 in
2022 (a remarkable increase of approximately 5 700%).
However, despite the rocketing number of applications,
the use of deep learning is still limited in common clinical

1[Online]. Available: https://openai.com/blog/chatgpt/
2[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/
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practice [6]. Deep neural networks are usually trained in
a supervised way, where a manually labeled dataset is
fed to train, optimize and test the model. At first, given
the novelty of the field, this approach was able to often
outperform previous state-of-the-art algorithms based
on more naive approaches [7]. More recently, considering
the increasing complexity of models and tasks where
deep learning can be involved, limitations have started
to be highlighted [8]. Training large neural networks that
can generalize well in the biomedical domain requires a
huge amount of highly heterogeneous annotated data,
which is difficult to collect in medical research [9]. In
fact, manually labeling medical data is a time-consuming
task that only experts in the field can do. Further-
more, their collection is often hindered by ethical (e.g.,
trial approval, anonymization) and economical aspects,
which make data provision and annotation an extremely
challenging task. In contrast, thanks to the digitization
of the healthcare sector, a large amount of unlabeled
data is generated every day, with an order of magnitude
already reaching the exa-scale [10]. Exploiting them
could greatly improve the performance and robustness
of deep learning models, which is why the research
community has started to propose novel unsupervised
solutions.

Self-Supervised Learning (SSL) has emerged as one of
the most prominent paradigms in this context. Its goal is
to learn robust general-purpose representations from the
data by exploiting an auxiliary task (pretext task); then,
transfer the acquired knowledge to a new model designed
to solve the target (medical) task. Self-supervised learn-
ing has been successfully applied in many fields, such as
natural language processing [11], computer vision [12],
speech recognition [13], and robotics [14]. In medical
research, computer vision is the most investigated area
[15]. Here, self-supervised learning is employed for clas-
sification, segmentation, registration and reconstruction
of different types of images, from 2D microscopy for
digital pathology [16] to 3D MRI (magnetic resonance
imaging) [17]. The interested reader can consult the work
of Saeed et al . [18] and that of Xu [19], who have already
reviewed SSL implementations in the medical imaging
domain.

Biomedical signals (biosignals) represent a fundamen-
tal resource in the medical domain, including many
modalities such as electroencephalography (EEG), elec-
tromyography (EMG), and electrocardiography (ECG).
Moreover, with the progress of the IoT (Internet of
Things) and the spread of wearable devices, their role
is increasingly becoming more relevant, especially in
telehealth and precision medicine [20]. As a matter
of fact, several researchers have already proposed SSL
strategies for the analysis of biosignals. However, con-
sidering the large and constantly growing number of
publications, it is difficult to keep up with the progress
of the state of the art. A review targeting SSL appli-

cations to biosignals is not available according to the
best of our knowledge. In fact, previously cited works
focus on different types of data (medical imaging) [19],
[20], specific biomedical signals (EEG) [21], or specific
self-supervised learning paradigms (contrastive learning)
[15]. Moreover, they often tend to extensively describe
SSL pretraining strategies and the surveyed works but
do not put the same effort into discussing special aspects
to consider when employing existing SSL techniques for
a specific biosignal analysis task (the work of Rafiei et al .
[21] for EEG data is an exception), which are crucial
for effectively designing novel strategies. Therefore, this
paper aims at solving these limitations by providing a
resource where readers can receive an outline of the
main principles behind the most commonly used SSL
frameworks for the analysis of biomedical signals and
have a overview of the current state-of-the-art of the
domain, regardless of the nature of the signal or of the
investigated self-supervised paradigm.

The rest of the work is organized as follows. Section
II provides a brief description of the most important
types of biosignals, with a focus on the ones encountered
during the survey. Sections III and IV introduce the
self-supervised learning paradigm, describing its main
concepts and different pretext task strategies. In Section
V, a brief description of the survey methodology is
provided to the reader. Section VI reports and analyzes
SSL applications for the analysis of different types of
biosignals (e.g., ECG, EEG, and EMG), also considering
multimodal approaches. Section VII aims to answer to
different questions related to the application of SSL for
biosignals analysis, while also providing a description of
critical issues and open challenges. Finally, Section VIII
summarizes the most important outcomes of the work.

II. BIOSIGNALS
As per Bansal’s Real-Time Data Acquisition in Human
Physiology [25]: “Biological signals, or Biosignals, are
space, time, or space–time records of a biological event
such as a beating heart or a contracting muscle. The
electrical, chemical, and mechanical activity that occurs
during these biological events often produces signals
that can be measured and analyzed. Biosignals, there-
fore, contain useful information that can be used to
understand the underlying physiological mechanisms of
a specific biological event or system, and which may be
useful for medical diagnosis”.

Most of the biosignals are of the electrical type, col-
lected by electrodes placed in specific parts of the body
(e.g., head for electroencephalography, chest and limbs
for electrocardiography, eyes’ region for electrooculogra-
phy), generally in a noninvasive way. Moreover, with the
spread of wearable devices, the acquisition and collection
of various types of biological signals has become much
easier, hence their exploitation for clinical tasks [26].
For example, Continuous Glucose Monitoring (CGM)
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FIGURE 1. Example of four seconds of three different biosignals (ECG, EEG, and EMG) with normal (top) and abnormal (bottom) conditions. Left: lead II
ECGs selected from the PTB-XL dataset [22]. Healthy subject is subject 18, and pathological subject (atrial flutter) is subject 33. Middle: single-channel
EEGs selected from the BONN EEG dataset [23]. Healthy subject is subject 2 from set B, while pathological (epileptic) subject is subject 6 from set E. Right:
single channel EMGs selected from the NinaPro dataset [24]. Intact right-handed subject is subject 16 from dataset 2, while amputated right-handed
subject is subject 4 from dataset 3. Note how, regardless of their type, it is possible to spot some differences in amplitude and/or waveforms between
normal and abnormal biosignals.

devices can help diabetic people manage their disease
by detecting real-time variations of the blood glucose
concentration at intervals of usually one, three, or five
minutes [27]. Moreover, other devices like smart wrist-
bands (e.g., Empatica© E4) can simultaneously record
different types of biosignals by means of multiple sensors,
introducing the possibility to combine their acquisitions
with other types of data to improve the diagnosis and
prognosis of several pathology. Biosignals collected by
wearable devices may include blood volume pressure,
electrodermal activity (i.e., variation in the electrical
properties of the skin), temperature readings, motion-
based activity data, and many more. Give a complete
description of all the biosignals is beyond the scope
of this work. Nevertheless, it is important to at least
introduce the main ones encountered during the survey:

• Electrocardiography (ECG): these types of sig-
nals record the electrical activity of the heart. ECGs
are generally recorded with the 12-lead method,
which consists of placing ten electrodes, six on the
chest and the remaining on the limbs, to calculate
a set of electric potentials. The combination of
the measurements from all the electrodes gives a
unique quantitative and spatial information about
the heart’s electrical activity, called lead. An ECG
machine processes the information coming from
all 12 leads to produce a graphical representation.
ECGs possess a particular structure (P wave, QRS
complex, ST segment, T wave, and U wave) given
by the sequential repolarization and depolarization
of the heart’s atria and ventricles. Unusual varia-
tions in the amplitude, time, or frequency of these
structures provide information about the normal
or abnormal activity of the heart, thus leading to

the diagnosis of a particular pathology [28] (see
exemplary ECGs provided in the left part of figure
1);

• Electroencephalography (EEG): these types of
signals record the electrical activity of the brain
cells generated by the exchange of ions between the
inside and outside of the neurons. EEGs are usually
recorded by placing several electrodes around the
subject’s scalp in specific configurations, which can
vary depending on the number of electrodes and the
study objective. EEG signals are really complex and
are usually analyzed both in the time and frequency
domains. In fact, clinically relevant information for
diagnostic and prognostic purposes can be retrieved
by looking at specific bandwidths of the signal,
namely: delta (0.3–4 Hz), theta (4–8 Hz), alpha
(8–14 Hz), beta (14–30 Hz), and gamma (>30 Hz).
EEGs are widely adopted by neuroscientists for
cognitive tasks as well as for the study of several
neurological disorders such as epilepsy (exemplary
EEGs provided in the middle part of figure 1),
dyslexia, and mental diseases [29];

• Electromyography (EMG): these types of sig-
nals record the electric currents that are gener-
ated during muscle contraction. EMGs are usually
recorded by surface electrodes, but more invasive
types like needle electrodes can be adopted to im-
prove the signal-to-noise ratio and to get access to
single motor unit action potentials (MUAP). EMGs
are generally used to detect anomalies in the activ-
ity of the muscles (e.g., myopathy, neuropathy) as
well as in biomechanics for the development of body
prosthetics [30] (see exemplary EMGs provided in
the right part of figure 1);
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• Other types of biosignal: other biosignals used
for various clinical tasks and therefore worthy of
being mentioned are the magnetoencephalography
(MEG), which measures the magnetic field gen-
erated by the activity of brain cells and has
many applications such as brain connectivity,
cognitive studies on newborns, and epilepsy re-
search; the phonocardiography (PCG), which mea-
sures the sound produced by the heart’s beat
and is used for the detection of heart diseases;
the electroretinography (ERG), which measures the
electrical activity of various cell types in the retina
and is mainly used for diagnostic reasons; the
electrooculography (EOG), which measures the elec-
tric potential that is generated by the cornea and
the retinal activity during eye movement; eye track-
ing data, which measures the orientation of the eye
in space or the position of the eye with respect to
the subject’s head [31]. Unfortunately, researchers
have not yet used most of these signals to train deep
learning models in a self-supervised way. However,
future works may include them, especially in mul-
timodal approaches.

III. SELF-SUPERVISED LEARNING
Training deep neural networks with fully supervised
methods requires large amounts of data. In medical
research, however, it is usually difficult to assemble very
large datasets. The acquisition of medical data is in fact
expensive in terms of time, costs and administrative pro-
cedures (e.g., ethics). It also requires specific instrumen-
tation and human volunteers. Moreover, data annotation
can be performed only by medical experts in a laborious
and time-consuming process. Ultimately, medical data
are highly heterogeneous (e.g., instrumentation, acqui-
sition protocols and settings, subject-variability), and
the model’s robustness and generalization capability are
inherently affected by that [32].

In contrast, the amount of unlabeled data is enormous.
For this reason, researchers have started to investigate
new methodologies to exploit unlabeled data [33] such as
semi-supervised learning [34], weakly-supervised learn-
ing [35], or self-supervised learning, as described in this
section.

Self-supervised learning attempts to address the issue
of having limited annotated data by extracting general-
purpose features from vast unlabeled data [36]; hence,
it is usually referred to as an unsupervised technique.
Despite that, self-supervised learning differs from com-
mon unsupervised methods like clustering [37] or Prin-
cipal Component Analysis (PCA) [38]. In particular,
clustering techniques aim at finding groups of similar
objects by agglomerating or separating samples based on
specific metrics (distance functions) designed to evaluate
the grade of dissimilarity between the investigated data.
PCA is instead used to reduce the dimensionality of a

dataset by finding new variables that are linear functions
of the original ones, that successively maximize variance,
and that are uncorrelated with each other [39]. Both
techniques are mainly used as exploratory tools for data
analysis with the goal of inferring statistical properties
of the investigated feature set. Moreover, they don’t
include any type of label, nor they are used to predict
some outcome from unobserved data, like in supervised
approaches. On the contrary, SSL aims at predicting
part of its input from other parts of its input, converting
the unsupervised problem into a supervised one (hence
its name). As it will be clarified in the next section,
self-supervised learning can in fact generate its own
form of supervision directly from the data; hence, it can
use way more supervisory signals than standard fully
supervised approaches. That’s why it is more proper and
less misleading to allocate SSL algorithms in a separate
category rather than trying to associate them with other
unsupervised methods.

Figure 2 summarizes how the self-supervised learn-
ing paradigm works. First, a deep neural network is
trained to solve an auxiliary task, also called pretext
task , upstream task , or simply pretask , whose primary
goal is to learn general-purpose features of the given
data without having access to any sort of external
supervision. During this phase, no information about
the target (medical) task or the real (physiological)
meaning of the given data is explicitly used. Moreover,
no interest is given to the model’s performance, as the
pretext task has (often) no connection to the target one,
and it is designed with the assumption that solving it
requires the network to learn useful information intrinsic
to the data; in other words, model them. Although
pretraining strategies can highly differ from each other,
this phase usually includes the generation of artificially
created pseudo-labels from the unlabeled dataset, here
used as the target variable. Training samples are then
fed to the model in order to predict the constructed
target. Finally, model predictions are used to calculate
the value of a given objective function, which is then
used to update the model weights with backpropagation.
Once the model is pretrained, the weights of its feature
extractor (encoder) are transferred to a new model,
which will be trained to solve the target task, usually
called downstream task . The new model shares the same
backbone structure, while its head (final set of hidden
layers) is slightly modified to make it compatible for the
downstream task, for example by adding a softmax or
a regression layer in case of classification or regression
problems, respectively. Model transfer is performed by
applying transfer learning, a method that consists of
employing the knowledge that has been learnt in a source
task (here upstream task) to another target task (here
downstream task) in order to improve the performance
and generalization capability of the new model [40].

The final step, which is performed after the encoder’s
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FIGURE 2. A simple schematic representation of the self-supervised Learning paradigm. First, a model is pretrained with only unlabeled data to solve an
auxiliary task (pretext task). Then, the backbone’s weights are transferred to the downstream model, which is then fine-tuned with the limited amount of
labeled data.

weights are transferred to the new downstream model,
consists of learning more task-specific features using the
limited amount of labeled data in a process called fine-
tuning. The fine-tuning phase shares many similarities
with a standard fully supervised training procedure;
the main difference resides in the fact that the model
weights, instead of being randomly initialized, originated
from the solved pretext task. Another important differ-
ence is that, as described in [21], it is common practice
to divide the fine-tuning process into two steps. The
first consists of freezing all the backbone weights and
updating only the modified final hidden layers; then,
conclude the training process with the whole network
unfrozen.

In conclusion, self-supervised learning, although more
complex than a standard fully supervised approach,
is supposed to help improve accuracy and mitigate
overfitting in contexts where the amount of labeled data
is limited or where multiple heterogeneous datasets can
be aggregated, which is likely the biomedical context.

IV. PRETEXT TASKS
Pretext tasks are the core of the self-supervised learning
paradigm. Although they are designed for the same
scope, which is learn general-purpose feature without
having access to manual annotated data, pretext tasks
can accomplish their goal in different ways. Some of
them have been developed for specific types of data,
such as the Rubik’s cube method for 3D images (e.g.,
magnetic resonance imaging) [41]. Others are more ver-
satile and allow researchers to work with different types
of data. This section focuses on approaches that are
compatible with biosignals and that were encountered
during the survey. Various classification schemes have
been proposed to organize the pretext tasks, depending
on the domain of application [42]. Here, methodologies
will be grouped into the following three categories:
predictive, generative, and contrastive learning pretext

tasks.

A. PREDICTIVE PRETEXT

Predictive pretext is a family of supervised pretraining
methods characterized by the construction of classifica-
tion or regression problems as an auxiliary task. This
approach makes use of artificially created pseudo-labels,
which are assigned to the unlabeled data, to pretrain the
model in a supervised way. The generation of the pseudo-
labels, which needs to be automatic and knowledge-
free, is what really differentiates one approach from the
other. For example, one can simply construct a trans-
formation recognition problem, where single or multiple
transformations (e.g., scaling, permutation, time shift,
noise addition) are applied to the original sample with
the goal of predicting or classifying them. Others can
exploit specific (biological) properties of the signal and
construct more complex targets to predict [43]. An
example of such a strategy can be found in [44]. Here, the
authors have applied two different sets of transforma-
tions to EEG data with the goal of producing abnormal
samples. The first transformation amplifies portions of
the signal in the time domain, while the second alters the
original sample in the frequency domain. Both original
and transformed samples were fed to the pretraining
model in order to predict the type of transformation,
thus building a 3-class classification problem. The model
was pretrained to optimize the cross-entropy loss, and
its head (the final softmax layer) was discarded during
model transfer. Similar protocols can be applied to other
biosignals or to build regression predictive pretext tasks.
For example, authors in [45] have built a regression
task based on the prediction of features extracted di-
rectly from the ECG signal (characteristic intervals and
amplitudes). Predictive pretext tasks are fairly easy
to implement and do not require many computational
resources compared to other methods. However, the
specificity of the task has a strong impact in the quality
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of representations. Therefore, careful consideration must
be given to its design, as wrong choices could degrade
model performance.

B. GENERATIVE PRETEXT
Generative pretext [46] is a family of unsupervised
methods widely used in natural language processing (like
BERT [47]) which is living a new life in other domains
like computer vision and signal processing [48]. Its goal
is to train general-purpose features by learning either to
regenerate an augmented version of the input data or to
generate new samples from the same distribution of the
training repository. Since the pretext task is treated as
a generative problem, architectures like auto-encoders
[49] or Generative Adversarial Networks (GAN) [50] are
utilized in this category. In the signal domain, the most
adopted generative pretext task is masked modeling,
whose goal is to learn robust representations by recon-
structing a portion of the signal that was previously
cropped or masked. Masked modeling is widely adopted
for other types of data as well. Two examples are the
masked autoencoders for imaging data [51] and the work
presented in [52] for audio data. Another example of
such a strategy can be found in [53]. Here, authors have
applied a set of transformations to EEG data in order to
generate new corrupted samples. Such transformations
not only include the cited masking operation but also
other ones typically employed in predictive pretext task
such as the noise addition, the moving average filtering,
or the EEG channel dropout. However, in contrast to
predictive pretraining strategies, no artificial pseudo-
labels were generated, and the original samples were
used directly as the predictive target. In this setting,
the Mean Square Error (MSE) between the output of the
model and the original sample was used as the objective
function to evaluate the quality of the reconstructed
samples and update the model weights. Practical chal-
lenges associated with generative pretext, such as the
higher computational costs and repository size required
to efficiently pretrain the model, make this approach
rarely adopted compared to other supervised pretext
tasks. In fact, GAN-based approaches like the one pro-
posed in [54] require learning two different neural blocks:
a generator, responsible for creating new samples, and
a discriminator, responsible for distinguishing between
the original and the generated sample, which is the only
block that is kept after pretraining. The presence of two
different neural blocks, usually with numerous param-
eters, inevitably increases the computational demand
and, consequently, the training time and the needed
GPU memory.

C. CONTRASTIVE LEARNING PRETEXT
Contrastive Learning (CL) is a family of methods that
aims at learning robust general-purpose representations
from the data by embedding augmented versions of

the same sample close to each other while trying to
push away representations from different samples [55].
This goal is achieved either by learning to discriminate
between similar (positives) and dissimilar (negative)
samples, or by maximizing only the agreement between
pairs of similar views. Data augmentation is the core
of contrastive learning. Positive and negative samples
are generated by applying a set of transformations
to the original sample (e.g., noise addition, scaling,
permutation, horizontal or vertical flip), which aim at
introducing some differences while at the same time
preserving the data global features. Contrastive learning
has gained enormous attention due to its simplicity and
effectiveness in training general-purpose encoders. For
this reason, a large variety of approaches can be found in
the literature, usually employing siamese architectures
(weight-sharing neural networks applied on two or more
inputs) [56] to compare the augmented samples. Here
are reported only those baseline methodologies that have
been applied in works selected during the survey, whose
schematic views are collected in Figure 3:

(a) CPC (2019): Contrastive Predictive Coding
(CPC) is a modality-agnostic framework designed
to suit any type of data (e.g., images, text, speech,
signals) [57]. Its goal is to predict high-level in-
formation of future time steps of a sample given
a series of past ones. However, instead of simply
trying to predict future observations, CPC aims to
learn the underlying shared information between
different parts of the (high-dimensional) signal.
Figure 3(a) summarizes how CPC works. First,
sequences of observations xt+k, k ∈ Z, are passed
to a non linear encoder to produce a set of latent
representations zt+k; then, latent representations
of the past portion of the signal are fed into an
autoregressive model, which is used to summarize
all the encoded information and produce a context
latent representation ct. Finally, the context latent
representation is used to predict the latent repre-
sentation of future portions of the signal (target).
The encoder and the autoregressive model are
trained to jointly optimize a loss based on noise-
contrastive estimation (NCE) [58], which is called
InfoNCE loss.

(b) SimCLR (2020): A simple framework for Con-
trastive Learning Visual Representation (Sim-
CLR) is an end-to-end framework designed to
learn high-quality representations by maximiz-
ing the agreement between differently augmented
views of the same data example via a contrastive
loss in the latent space [59]. SimCLR relies on two
simple key ideas. The first is to use heavy random
data augmentation; the second is to adopt large
batch sizes rich of negative examples. Figure 3(b)
illustrates how SimCLR works. Each sample x is
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FIGURE 3. Schematic view of some contrastive learning frameworks. (a) Contrastive Predictive Coding (CPC); (b) Simple Contrastive Learning (SimCLR); (c)
Momentum Contrast (MoCo); (d) Bootstrap Your Own Latency (BYOL); (e) Simple Siamese (SimSiam); (f) Swapping assignment between views (SwAV). x
denote the original sample, x̂ its augmented version, h the encoder output, z the latent representation, k the new enqueued keys in MoCo, p the
prediction of the online network in BYOL, ct the context latent representation in CPC. Momentum network modules are represented with a lighter color
compared to their online counterparts in order to highlight their little difference in weight values. Also note that all methods are similar between to other
but have a clearly distinct peculiarities.

augmented twice with randomly selected transfor-
mation functions. Then, each of the augmented
samples is fed to a backbone encoder to produce a
set of representations h; after that, representations
are passed to a small neural block called projector
head, which will output a set of projections z
in a new latent space. Finally, projections are
used to maximize the agreement between positive
pairs, i.e., pairs of augmented samples of the same
original data. The encoder and projector head
are trained to jointly optimize the normalized
temperature-scaled cross entropy loss (NT-Xent),

defined as:

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k̸=i]exp(sim(zi, zk)/τ)
(1)

with sim(zi, zj) the cosine similarity between two
projections, and τ the temperature parameter.

(c) MoCo (2020): Momentum Contrast (MoCo) [60]
is a method that, in its updated version (MoCo
V2 [61]), outperformed end-to-end frameworks like
SimCLR. MoCo took the problem of learning good
representations by performing look-up operations
on a large dictionary rich of negative examples,
which is continuously updated to keep it consistent
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during training. The dictionary, which can be
considered an improvement of the memory bank
introduced in [62], allows for lessening the memory
burden while keeping the number of negative pairs
sufficiently high. In fact, the dictionary size can
be much larger than a typical batch size and is
treated as a queue, where newer keys from the cur-
rent mini-batch are enqueued while the oldest are
removed. Unlike SimCLR, where the two branches
of the siamese architecture share the same param-
eters, MoCo adopts two different networks iden-
tical in structure (encoder plus projection head)
but different in weight values (see Figure 3(c)).
The first is the online network (parametrized by
θ), which is responsible for generating a set of
projections z (as in SimCLR). The second is the
momentum network (parametrized by ξ), which is
responsible for encoding the new dictionary keys k
to be enqueued. The online network is trained to
optimize the InfoNCE loss and is updated through
stochastic gradient descent. On the contrary, since
the dictionary does not allow back-propagation
on the momentum network, the latter is updated
with an exponential moving average of the online
network weights, defined as:

ξ = mξ + (1− m)θ (2)

with m ∈ [0, 1) momentum coefficient, usually
bigger than 0.995.

(d) BYOL (2020): Bootstrap Your Own Latent
(BYOL) is a method that, unlike SimCLR or
MoCo, uses neither negative pairs nor contrastive
losses [63]. In particular, BYOL sets up a re-
gression task as the learning problem, where the
embedding of one augmented version of a sam-
ple is used to predict the embedding of another
augmented version of the same data. It is impor-
tant to note that using only positive pairs could
potentially lead to a collapsing solution [64], i.e.,
the trend of siamese architectures to "collapse" to
a constant output. However, authors empirically
demonstrated that an asymmetrical architecture
and the momentum encoder could avoid this prob-
lem. In fact, as can be seen in Figure 3(d), BYOL
adopts two different networks to learn. The first
is the online network (parametrized by θ), which
added a predictor block qθ after the usual en-
coder and projector blocks, and is used to make
the predictions. The second is the target network
(parametrized by ξ), which is used to provide the
regression target to be predicted by the online
network. During training, two augmented versions
of a sample are fed into the networks. Then, out-
puts are ℓ2-normalized and the mean square error
(MSE) is calculated. Finally, the online network is
updated through stochastic gradient descent, while

momentum updates are used to change the target
network weights.

(e) SimSiam (2020): Simple Siamese Representa-
tion Learning can be considered a simplified ver-
sion of BYOL without the momentum encoder
[65]. The key element of this minimalist approach
is the stop-grad operation. The authors empirically
showed that this operation is sufficient to avoid
the collapsing solution and no momentum encoder,
like in BYOL, is necessary. However, the gain in
simplicity is counterbalanced by a slight drop in
performance.

(f) SwAV (2020): Swapping Assignments Between
Views (SwAV) is a cluster-discrimination-based
framework [66]. SwAV does not directly compare
features extracted from different transformations
of the same sample, like in previous approaches. In-
stead, it combines online clustering with a swapped
prediction mechanism to enforce consistency map-
ping between augmentations of the same origi-
nal data. Figure 3(f) illustrates the structure of
SwAV. In particular, each augmented sample is
fed into an encoder to produce a vector representa-
tion. Representations are then ℓ2-normalized and
mapped to a set of trainable normal vectors, i.e.,
prototypes, thus computing a “code” Qi. In other
words, prototypes can be considered as the clusters
where the data are being partitioned and codes the
results of the online clustering. Finally, with the
assumption that different views of the same image
should maintain similar information, the model is
trained to predict the cluster assignment of a view
from the representation of another view (swapping
prediction).

Aside from the ones already listed, other contrastive
learning methods can be employed with time-series data.
Such methods mainly differ from the structure of the
network, the formulation of the contrastive loss, and the
way negative samples are exploited. Few examples are
PIRL [67], Barlow Twins [68], VICReg [69], W-MSE
[70], TNC [71], MoCo V3 [72], and DINO [73]. The
interested reader can consult the work of Balestriero et
al. [74], which provides a more detailed analysis of the
self-supervised learning paradigm, with lots of insights
on critical aspects of its implementation.

D. NOVEL METHODS FOR TIME-SERIES DATA
The previously cited baseline methods were used as
a reference for the development of novel approaches
for time-series data that were not specifically designed
for medical applications, but still tested on medical
repositories. For example, Cheng et al . [75] proposed
a subject-aware contrastive learning method for biosig-
nals whose core element was the addition of an ad-
versarial subject identifier module to promote subject-
invariance during pretraining and mitigate the nega-
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tive effects of inter-subject variability. Gorade et al .
[76] proposed a BYOL-based approach based on the
combination of two different sets of projector plus pre-
dictor designed to extract, respectively, low- and high-
frequency characteristic features from the embedding.
Zhang et al . [77] developed a contrastive pretraining
method which promoted the alignment of time- and
frequency-based representations projected in a shared
latent space. Ultimately, Wickstrøm et al . [78] proposed
a novel contrastive learning approach that combined a
custom contrastive loss with a new data augmentation
scheme designed to generate new data by mixing two
training samples. All methods listed in this subsection
demonstrate that ideas from other research areas can be
successfully imported into the medical domain. However,
as it will be discussed in section VII, special considera-
tions about the physiological nature of the signal and the
target clinical task must be taken into account in order
to avoid failures in the application of SSL strategies.

V. SURVEY METHODOLOGY
This section summarizes the methodology followed to
search and identify relevant literature on self-supervised
learning for the analysis of biosignals. To summarize,
it consists of a first selection of papers from vari-
ous literature sources, followed by multiple exclusions,
if necessary, using specific criteria. For the literature
search, the following bibliographic databases were used
as primary references:

• PubMed3

• IEEE Xplore4,
• Springer Link5,
• ScienceDirect6,
In addition, the research was extended to other

sources of literature, namely:
• Google Scholar7
• ArXiv Preprints8

Google scholar allows researchers to automatically
gather articles from the previously listed literature
databases. However, we preferred to investigate directly
all the single sources and use scholar only to double-
check and refine the research in case of possible missing
works. Moreover, we carefully checked arXiv preprints
before considering their inclusion, as they did not un-
dergo a full peer-review process.

Each source was queried by combining a set of selected
keywords, using at first only general terms (e.g., self-
supervised learning, contrastive learning, time-series,
biosignal); then, research was refined by adding more

3[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/
4[Online]. Available: https://ieeexplore.ieee.org/
5[Online]. Available: https://link.springer.com/
6[Online]. Available: https://www.sciencedirect.com/
7[Online]. Available: https://scholar.google.com/
8[Online]. Available: https://arxiv.org/

specific terms related to each type of biosignal (e.g.,
ECG, EEG, EMG, EOG). An example of such an
approach, using the Google Scholar query format for
simplicity, is reported below:

1) “Self-Supervised Learning” AND “time-series”;
2) “Self-Supervised Learning” AND “biomedical”;
3) “Self-Supervised Learning” AND “biosignals”;
4) “Self-Supervised Learning” AND

“wearable sensors”;
5) “Self-Supervised|Contrastive Learning” AND

“Electrocardiogram|ECG”;
6) “Self-Supervised|Contrastive Learning” AND

“Electroencephalography|EEG”;
7) “Self-Supervised|Contrastive Learning” AND

“Electromyography|EMG”;
8) “Self-Supervised|Contrastive Learning” AND

“Electrooculogram|EOG”.
Self-supervised learning is a novel technique that has

only recently made its way into medical research. In
addition, this field is very mutable and the state of the
art can rapidly change. For this reason, only works pub-
lished no earlier than 2016 were considered, focusing on
the period 2019 - 2023, when their number has increased
considerably. In particular, we included only those pa-
pers that adopted self-supervised learning on biosignals
to solve medical tasks. We also considered publications
that present novel SSL methods not specifically designed
for medical tasks but still tested on biomedical datasets,
gathered for organizational reasons in the subsection
IV-D. From the selected list, we excluded works that
adopted the same SSL methodology to solve a particular
task or works that have been updated by another one.
In those cases, we kept the one that we considered the
most relevant by weighting several factors such as the
number of citations, the impact factor of the journal or
conference, and the type of work. Finally, we considered
research works cited in the bibliography or in the related
works sections of the selected papers.

VI. SELF-SUPERVISED LEARNING ON BIOSIGNALS
The survey resulted in a selection of 61 works describing
SSL applications for the analysis of biosignals. As can be
seen in Figure 4, there is a high imbalance between appli-
cations on ECG or EEG signals and other types of data,
probably associated with the higher availability of public
datasets. Taking this into account, the results were
grouped into four categories, namely: SSL on ECG, SSL
on EEG, SSL on other types of biosignals, multimodal
SSL with biosignals. Each category will present the
investigated medical tasks and the adopted pretraining
strategies, delving into those works that present novel
SSL approaches. At the end of each section, a summary
table reports a synthesis of the main information for
each of the presented works, namely: upstream task,
downstream task, datasets used, year of release, and, if
necessary, the type of data. Tables were sorted by year

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3344531

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Del Pup et al.: Applications of Self-Supervised Learning to Biomedical Signals: a Survey

FIGURE 4. Number of works per SSL strategy grouped by the type of
biosignal (ECG: electrocardiography, EEG: electroencephalography, EMG:
electromyography, PCG: phonocardiography) adopted and the type of
upstream task. The "other" category refers to those works that have tested
multiple SSL pretraining strategies or have proposed hybrid approaches,
i.e., a combination of the previous three.

and author names. Moreover, works sharing the same
downstream task were grouped together to improve the
organization and consultation of big tables.

A. SELF-SUPERVISED LEARNING ON ECG
ECG is one of the two major categories of biosignals
where self-supervised learning has been adopted until
now. Out of all the investigated tasks, classification of
cardiac pathology (e.g., arrhythmia) plays a central role
in SSL ECG-based analysis, with 19 out of 23 works
evaluating such a medical task. This aspect reflects
the high demand for integrating deep learning models
into decision support systems to be used in real-world
scenarios, which still suffer from the great variability
associated with such data. In fact, most of the datasets
listed in table 1 are open repositories released by large
hospitals or collected for highly competitive challenges
(CinC datasets) organized to improve ECG medical
analysis.

In contrast to the identified trend in the investigated
downstream tasks, the choice of the pretraining strat-
egy is highly variable but reveals an overall preference
for contrastive learning pretext tasks (see table 1).
Moreover, the provided survey reveals that works often
attempted to exploit biological properties of the ECG
signal during pretraining, for example by exploiting its
peculiar waveform [45], its periodicity [81], [84], or its
associated variability [90].

1) Cardiac Pathology
Concerning single- or multi-class pathology classification
tasks, contrastive learning was the primary choice in
most of the studies. Nakamoto et al . [110] adapted the
baseline MoCo for left ventricular systolic dysfunction
detection, while Lai et al . [115] improved the loss of
the same algorithm to recognize 60 diagnostic terms
on a large scale private Dataset. Mehari et al . [109]
compared baseline contrastive learning approaches (e.g.,

SimCLR, BYOL, SwAV, CPC) to assess their ability to
extract good representations from the ECG signal, while
Soltanieh et al . [111] provides an extensive analysis on
the efficacy of different data augmentations. Lee et al .
[108] proposed a variant of the contrastive learning
algorithm VICReg (VIbCReg) which slightly modified
the loss function and included, after the projector of
the siamese network, an additional iterative normal-
ization layer. Gopal et al . [107] leveraged the unique
spatiotemporal properties of the ECG signal by adopting
a physiologically 3D augmentation technique to generate
the positive pairs for the contrastive learning pretraining
phase. Liu et al . [113] proposed a joint cross-dimensional
contrastive learning method that consist of pretraining
the model to maximize the similarity between positive
pairs of ECG signals as well as between the ECG and
its 2-D image representation. It is important to note
that contrastive learning was not a unilateral choice,
and other pretext tasks were investigated this type of
problem. In particular, Yang et al . [112] and Gedon et
al. [105] adopted masked modeling for the representation
learning part of the model, both achieving comparable
or slightly superior results to fully supervised training.

Given the large amount of supervision that can be
provided from some of the available free open datasets
(e.g., PTB-XL [22]), results were not always superior
to fully supervised state-of-the-art methods but still
comparable. For example, Liu et al . [113] reported an
absolute drop in accuracy and F1-macro score of re-
spectively 0.012 and 0.033 on the PTB-XL dataset,
with similar results on the CPSC2018 dataset [79].
However, comparable performances were achieved using
only half the available labels, showing the robustness
of SSL strategies against drops in the label ratio. This
demonstrated that self-supervision has the potential
to improve the learning process but requires further
advances before becoming the new golden standard for
those challenging problems.

2) Arrhythmia classification
Upon the pathology investigated, arrhythmia seems to
be the most common use case. In contrast to the previous
subsection, the investigated pretraining strategies were
really heterogeneous, with at least one work for each cat-
egory (predictive, generative, and contrastive) selected
during the survey. Kyasseh et al . [84] proposed CLOCS,
a family of patient-specific contrastive learning methods
that they showed were able to outperform other baseline
contrastive learning techniques, thus becoming the com-
parison element for other works. In particular, they pre-
sented three different approaches: the first, Contrastive
Multi-Segment Coding (CMSC), exploits the temporal
invariances in the ECG; the second, Contrastive Multi-
Lead Coding (CMLC), exploits the spatial invariances
in the ECG; and the latter, Contrastive Multi-Segment
Multi-lead Coding (CMSMLC) combines the two previ-
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TABLE 1. Self-Supervised Learning on ECG

# Author Year Upstream Task Downstream Task Dataset

1 Lee et al . [45] 2021 Predictive Arrhythmia detection CPSC2018 [79], PTB-XL [22], Chapman
[80]

2 Luo et al . [81] 2021 Predictive Arrhythmia classification CinC 2017 [82]
3 Chen et al . [83] 2021 Contrastive Arrhythmia classification PTB-XL, CPSC2018, CinC 2017
4 Kiyasseh et al . [84] 2021 Contrastive (CLOCS) Arrhythmia classification CinC 2018 [85], CinC 2020 [86], Chapman,

Cardiology [87]
5 Wei et al . [88] 2022 Contrastive Arrhythmia classification MIT-BIH [89], Chapman, private
6 Lan et al . [90] 2022 Contrastive (ISL) Arrhythmia classification Chapman, CPSC2018, PTB-XL
7 Phan et al . [91] 2022 Contrastive Arrhythmia classification CinC 2020
8 Grabowski et al .

[92]
2022 Masking Arrhythmia multiple MIT-BIH

9 Oh et al . [93] 2022 Other Arrhythmia classification CinC 2021 [94], PTB-XL
10 Zhang et al . [95] 2023 Predictive Atrial fibrillation detection CinC 2017
11 Sarkar et al . [96] 2020 Predictive (multi-task) Emotion recognition SWELL [97], AMIGOS [98]
12 Sarkar et al . [99] 2021 Predictive Stress multiple FELICITy, AMIGOS, DREAMER [100],

SWELL, WESAD [101]
13 Vazquez-Rodriguez

et al . [102]
2022 Masking Emotion recognition ASCERTAIN [103], DREAMER, AMI-

GOS, PsPMa

14 Rabbani et al .
[104]

2022 Contrastive Stress classification WESAD, RML

15 Gedon et al . [105] 2021 Masking Pathology classification CPSC2018, CODE [106], PTB-XL
16 Gopal et al . [107] 2021 Contrastive (3KG) Pathology classification CinC 2020
17 Lee et al . [108] 2021 Contrastive (VIbCReg) Pathology classification PTB-XL
18 Mehari et al . [109] 2022 Contrastive Pathology classification CinC 2020, CODE, Chapman, PTB-XL
19 Nakamoto et al .

[110]
2022 Contrastive Systolic dysfunction UTokyo Private Dataset

20 Soltanieh et al .
[111]

2022 Contrastive (SimCLR) Pathology classification PTB-XL

21 Yang et al . [112] 2022 Masking Pathology classification PTB-XL, CPSC2018, Chapman
22 Liu et al . [113] 2023 Contrastive Pathology classification Ningbo [114], PTB-XL, CPSC2018
23 Lai et al . [115] 2023 Contrastive Pathology classification Private
a [Online]. Available: https://bachlab.github.io/PsPM/opendata/

ous methods. Oh et al . [93] combined Kyasseh’s CMSC
with a transformer based self-supervised method (based
on Wav2Vec 2.0 [116]), achieving performances superior
to CLOCS. Moreover, they added a random lead mask-
ing module, which improves the model’s robustness in
the case of downstream tasks that accept an arbitrary
number of ECG-leads. CLOCS was also considered as a
comparison element by Chen et al . [83], which exported
MoCo V2 to the ECG domain and used a combination of
wavelet transform and random crop to generate the pos-
itive and negative pairs for the pretraining. Ultimately,
Phan et al . [91] combined representations coming from
both time and time-frequency modalities managed by
two different backbone encoders pretrained with DINO
[73]. In contrast with previous works, Lan et al . [90]
designed an Intra- Inter-subject Self-supervised Learn-
ing (ISL) method for multivariate cardiac signals that
tries to learn good representations of the ECG signal by
learning distinct representations both at the heartbeat
level (intra-subject) and at the subject level (inter-
subject). The last selected contrastive learning proposal
for arrhythmia classification is that of Wei et al . [88]
with their "Contrastive HeartBeat", a novel method
designed to learn patient-specific representations at the
heartbeat level by considering as positive pairs all heart-

beats of the same subject and as negative the others.

Again, contrastive learning was not the only approach
investigated. Grabowski et al . [92] tested masked mod-
eling on both classification and regression downstream
problems. Furthermore, Zhang et al . [95] applied spatial
and temporal signal manipulation to generate pseudo-
labels for their predictive pretext task (transformation
prediction). A predictive pretask was also chosen by Lee
et al . [45] and Luo et al . [81] for arrhythmia detection
and classification. The first constructed a pretraining
based on the prediction of specific critical features
extracted from the heartbeat with ECG delineation
algorithms, while the second pretrained the model to
assess if randomly selected pairs of ECG segments were
adjacent or not.

As in the previous subsection, the large amount of
supervision that can be provided from some of the
available free open datasets resulted in model perfor-
mances that were not always superior to their fully
supervised counterparts. For example, Kyasseh et al .
[84] reported an absolute drop in AUC ranging from
0.02 to 0.04 on different fine-tuning datasets, while Chen
et al . [83] achieved an AUC improvement of 0.03 with
a similar experimental setting. However, as reported
in [84], [90], self-supervised learning was able to pro-
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duce similar results even when the fraction of labeled
data used for fine-tuning was halved, thus mitigating
the performance drop compared to other strategies.
Ultimately, it is worth noting that it is possible to
identify a positive progression in the achieved results
(see the use of CLOCS in many other works as a baseline
comparison), guided by the proposal of novel methods
being able to include both physiological and subject-
related information during pretraining.

3) emotion classification
Stress detection and emotion classification (e.g., predic-
tion of the affective score) were the other two investi-
gated downstream tasks. In particular, stress detection
was studied by Rabbani et al . [104] and Sarkar et al .
[99]. The first adopted the baseline SimCLR, while the
second tried to assess maternal and fetal stress during
pregnancy using a predictive multitask pretraining (e.g.,
prediction of different signal transformations). The same
author extended this method to the emotion recognition
problem [96], which was also studied by Rodriguez et al .
[102], who chose masking modeling as the pretraining
strategy.

Overall, selected works achieved performances supe-
rior to their fully supervised baseline. For example,
Rodriguez et al . [102] achieved a mean absolute im-
provement of 0.03 over both accuracy and F1-score
calculated on the AMIGOS dataset [98]. However, given
the differences in the datasets used for the evaluation,
it is impossible to compare results overall in order to
extract a possible hierarchy in the pretraining strategy.

B. SELF-SUPERVISED LEARNING ON EEG
EEG is the other major type of biosignal where self-
supervised learning has been applied. Here, SSL was em-
ployed for different downstream tasks such as sleep stag-
ing, seizure analysis, emotion classification, and motor
imagery classification. The high number of downstream
tasks, which were investigated using datasets provided
by medical facilities, large clinical studies, or specific
competitions, demonstrate how self-supervised learning
could impact many real-world applications. For example,
SSL-based sleep analysis can promote the development
of novel deep learning-based automatic sleep scoring
algorithms, which can eliminate some drawbacks of
manual protocols [117], while SSL-based seizure analysis
can improve the performance of automated detection
systems, which allow an objective assessment of seizure
frequency and a treatment tailored to the individual
patient [118].

Differently from the results presented on ECG data,
the choice of the pretext task depends on the study ob-
jective, with contrastive learning being slightly preferred
overall. However, despite the chosen pretext task, works
often attempt to include domain knowledge information
about the EEG signal during pretraining, for example

by considering the importance of frequency-based EEG
analysis [119] or the similarity between resting state
brain hemisphere activity [120].

1) sleep staging
Sleep staging, i.e., the problem of determining the pa-
tients’ status (wake, light sleep, deep sleep, REM) during
their sleep, was highly investigated, with 6 out of 23
EEG works selected during the survey. It is interesting
to note that contrastive learning is predominant, with all
works employing it to pretrain their models. Ren et al .
[121] applied a modified version of contrastive predictive
coding, while Jiang et al . [122] chose SimCLR. Yang
et al . [123] proposed ContraWR, a novel approach that
aims at solving the problem of negative sampling by
using the average representation over the dataset as the
only contrastive information. Another novel approach
called SleepDPC was presented in Xiao et al . [124].
SleepDPC combines two different learning objectives
during the pretraining: one, called predictive contrastive
learning, uses the CPC-based Dense Predictive Coding
(DPC) [125] as a reference; the other, called discrim-
inative contrastive learning, tries to discern between
temporary nearer or farther portions of the signal. Dense
Predictive Coding was also part of the CoSleep method
described in Ye et al . [119], which exploits multiple
views of the EEG signal. In particular, DPC was first
used to train from scratch two encoders, one for the time
view and the other for the frequency view; then, con-
trastive multiview [126] was used to refine the weights
of the two encoders. Finally, Lee et al . [127] presented
SSLAPP, a hybrid approach based on the combination
of a GAN-based generative pretext task and contrastive
learning, achieving performances superior to CoSleep,
SleepDPC, and other fully supervised strategies.

Based on the results presented on the SleepEDF
dataset [128] which, as can be seen in 2, was used for
the evaluation of all the proposed methods, most of
the works achieved an accuracy and F1-score superior
to fully supervised baselines, with only CoSleep and
SleepDPC being left behind. For example, SSLAPP
reported an absolute improvement on the F1-score of
0.03 but, more importantly, the achievement of similar
results using only 10% of the labeled data. However,
despite the overall improvement, no real superiority can
be found among the various selected strategies.

2) seizure analysis
Unlike sleep staging, where contrastive learning was the
primary choice, studies dealing with seizure analysis
usually adopted predictive pretext tasks. Xu et al . [129]
generated the pseudo-labels by applying a set of scaling
transformations to only the EEGs of healthy subjects
and pretrained the model to detect them. Tang et al .
[130] use forecasting (future 12 seconds on a clip of 12
or 60 seconds) as the predictive pretext task, combining
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SSL and graph neural networks for seizure analysis
(detection and classification) for the first time. Das
et al . [53] pretrained the model to reconstruct the orig-
inal signal by its own corrupted version using different
modification protocols, including masked modeling, thus
exploiting a generative pretext task. Finally, Yang et al .
[131] combined self-supervision with online learning and
weak-supervision for patient-specific seizure forecasting.

Seizure analysis is really heterogeneous in the in-
vestigated types of learning problems and performance
achieved. When it comes to seizure detection, for ex-
ample, all the proposed methods were able to surpass
fully supervised baselines. On the contrary, seizure clas-
sification (identification of seizure type) and forecasting
pose more challenges. Hopefully, advancements in the
research will reveal the potentiality of SSL for those
problems as well.

3) motor imagery
Thanks to the BCI Competition IV [157], self-supervised
learning was also extended to motor imagery, i.e., the
mental execution of a movement without any overt
movement or without any peripheral (muscle) activa-
tion [158]. Out of the three selected works, two used
predictive pretext tasks. In particular, He et al . [147]
pretrained their model to forecast a slice of the EEG
signal given a set of past ones, while Ou et al . [149] ran-
domly shuffled portions of the EEG signal and defined
a binary classification task (signal segments in order or
not). In contrast, Lotey et al . [145] assessed the impact
of contrastive learning for cross-session motor imagery
using the baseline SimCLR. However, they achieved a
lower overall accuracy on the BCI Dataset 2a [150]
compared to the forecasting proposal in He’s work.

BCI competition datasets remain an important source
of open datasets in the relative domain. They offer a
common place to share and compare results achieved
with different learning strategies, facilitating the ad-
vance of the research in this prominent field. Although
SSL strategies were not able to achieve state-of-the-
art results, which are still based on fully supervised
methods [159], it is likely that their role will increase
in future years, especially when the pretraining will be
performed on multiple datasets to enhance the quality
of the representations.

4) emotion recognition
Works employing self-supervised learning for emotion
recognition varied in the choice of the pretext task.
Xie et al . [140] applied six different transformations to
EEG data and pretrained a multi-branch neural network
to predict them. Zhang et al . [54] proposed GANSER,
a generative self-supervised framework based on ad-
versarial training. In particular, adversarial training is
promoted through a masking operation and regulated by
an augmentation factor designed to restrict the feature

distribution difference between real EEG samples and
the generated ones. Finally, Shen et al . [143] and Kan
et al . [141] proposed two novel contrastive learning
approaches. The first, Contrastive Learning for Inter-
Subject Alignment (CLISA), tries to maximize the sim-
ilarity in EEG signal representations across subjects who
received the same emotional stimuli, hence without re-
sorting to standard data augmentation procedures. The
other, Group Meiosis Contrastive Learning (SGMC),
adopted a genetically inspired data augmentation tech-
nique where positive and negative pairs are generated
by grouping EEG samples sharing the same stimuli and
then cross-exchanging (mixing) parts of their signal.

Overall, results on the widely used SEED [133] and
DEAP [142] open datasets were superior to their fully su-
pervised counterparts but comparable with each other.
However, although minimal, it is worth noting that
Xie’s predictive pretext and Zhang’s GANSER achieved
state-of-the-art performances in the SEED and DEAP,
respectively. This aspect highlights how, in emotion
recognition, there is no clear superiority of one pretrain-
ing strategy over the others.

5) other or multiple classification tasks
Six other works adopted self-supervised learning on
other downstream tasks or simply provided results on
multiple applications. Mohsenvald et al . [132] provide
an extensive analysis of the SimCLR contrastive learning
framework on several downstream tasks. In particular,
their analysis of the influence of the EEG sequence
length, the applied data augmentation and the number
of latent dimensions, as well as the role of the aggre-
gation of heterogeneous datasets, is of great interest
and provides a good insights on those aspects that are
crucial for the efficient development of SSL strategies in
the EEG domain. Banville et al . [135] evaluated three
different pretext tasks (CPC and two predictive) on
sleep staging and pathology classification. Wagh et al .
[120] highlighted the importance of exploiting domain
knowledge information from the EEG signal during
pretraining and proposed an SSL method based on the
combination of three different domain-guided pretext
tasks (hemispheric symmetry, behavioral state estima-
tion, and age contrastive). Zheng et al . [44] investigated
the efficacy of SSL for anomaly detection on EEG data
by designing a predictive pretask (3-class classification)
where pseudo-labels were generated by locally increas-
ing/decreasing the amplitude of the signal in the time
domain or specific components in the frequency domain.
Instead, Kostas et al . [136] designed BENDR, a novel
method that combines a transformer-based framework
with contrastive learning. Ultimately, Zygierewicz et al .
[151] applied MoCo to memory-related neurofeedback
data with the goal of identifying brain regions and fre-
quency bands consistent with current neurophysiological
knowledge of the processes critical to attention and
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TABLE 2. Self-Supervised Learning works on EEG signal

# Author Year Upstream Task Downstream Task Dataset

1 Mohsenvald et al . [132] 2020 Contrastive Multiple SEED [133], TUH [134], Sleep-
EDF [128]

2 Banville et al . [135] 2021 Multiple Multiple CinC 2018 [85], TUH [134]
3 Kostas et al . [136] 2021 Other (BENDR) Multiple TUH
4 Wagh et al . [120] 2021 Other (CL + predictive) Multiple TUH, MPI LEMON [137]
5 Zheng et al . [44] 2022 Predictive Anomaly detection Private, CHB-MIT [138], UPMC

[139]
6 Xie et al . [140] 2021 Predictive Emotion classification SEED
7 Kan et al . [141] 2022 Contrastive (SGMC) Emotion classification SEED, DEAP [142]
8 Shen et al . [143] 2022 Contrastive (CLISA) Emotion classification THU-EP [144], SEED
9 Zhang et al . [54] 2022 Generative (GANSER) Emotion classification DEAP, DREAMER [100], SEED
10 Lotey et al . [145] 2022 Contrastive Motor Imagery classification BCI-IV-2A [146]
11 He et al . [147] 2022 Predictive (forecasting) Motor Imagery classification MI-2 [148], BCI-IV-2A
12 Ou et al . [149] 2022 Predictive Motor Imagery classification BCI-IV-2A, BCI-IV-2B [150]
13 Zygierewicz et al . [151] 2022 Contrastive Neurofeedback (memory) Private
14 Xu et al . [129] 2020 Predictive Seizure detection UPMC
15 Tang et al . [130] 2021 Predictive (forecasting) Seizure multiple TUH
16 Das et al . [53] 2022 Generative Seizure detection TUH
17 Yang et al . [131] 2022 Predictive (forecasting) Seizure forecasting TUH, EPILEPSIAE [152], private
18 Jiang et al . [122] 2021 Contrastive Sleep staging Sleep-EDF, DOD [153]
19 Yang et al . [123] 2021 Contrastive (ContraWR) Sleep staging Sleep-EDF, SHHS [154], MGH

[155]
20 Ye et al . [119] 2021 Contrastive (CoSleep) Sleep staging Sleep-EDF, ISRUC [156]
21 Xiao et al . [124] 2021 Contrastive (SleepDPC) Sleep staging Sleep-EDF, ISRUC
22 Ren et al . [121] 2022 Contrastive Sleep staging Sleep-EDF
23 Lee et al . [127] 2022 Other (SSLAPP) Sleep staging Sleep-EDF, ISRUC

working memory.

C. SELF-SUPERVISED LEARNING ON OTHER TYPES OF
BIOSIGNAL
This section presents self-supervised learning applica-
tions on other types of biosignals such as EMG, eye
tracking and other sensor data. Given the low number
of selected works and the various biosignals included, it
is difficult to identify a trend in the choice of the pretext
task (see Table 3).

However, it is worth noting that works presented here
are no less important than others from the previous
sections, as the analysis of the biosignals included in this
subsection is essential for many real-world applications,
from the development of myoelectric prostheses to the
support of older people’s daily lives.

EMG certainly deserves a proper category because
of its wide range of applications. However, only two
studies adopting self-supervised learning on such data
were found. In particular, Liu et al . [160] use contrastive
learning (NeuroPose) to predict finger joint angles for 3D
hand pose estimation from wearable EMG sensor data
(8-channel armband), achieving good performances and
demonstrating robustness to natural variation in sensor
mounting positions or changes in the wrist position. Wu
et al . [161] designed a novel self-supervised learning ap-
proach (Neuro2vec) for neurophysiological data based on
masking pretext task applied to both the spatiotemporal
and the frequency domains. They tested their approach
on classification and regression tasks using EEG data

and the NinaPro dataset [24], which is one of the biggest
collections of open source datasets with EMG data. In
the NinaPro dataset 5, they were able to achieve an
absolute improvement of 0.03 both in accuracy and F1-
score on the investigated classification task and a relative
drop of 10% in the Mean Square Error on the regression
task.

Regarding other modalities, Saeed et al . [162] ex-
ported self-supervised learning on accelerometer data
for human activity recognition [163], a promising assis-
tive field that can support older people’s daily lives.
In their work, they designed a multitask predictive
approach based on the recognition of eight different
signal transformations.

Considering eye tracking data, Mengoudi et al . [164]
presented a predictive pretext task for their study. In
particular, they tried to classify subjects with dementia,
transferring the features learned during the pretraining
to a support vector machine majority voting scheme.

Ultimately, Ballas et al . [165] designed Lis-
ten2YourHeart, a contrastive learning approach for
Heart Murmur detection based on the baseline method
SimCLR using Phonocardiography (PCG) data.

Overall, the investigated works demonstrated that
SSL can be successfully applied to other types of biosig-
nals, even when the amount of data available is not
extremely high.
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TABLE 3. Self-Supervised Learning works on other types of Biosignals

# Author Year Data type Upstream Task Downstream Task Dataset

1 Saeed et al . [162] 2019 Activity data Predictive Activity classification HHAR [166], UniMib [167],
UCI HAR [168], MobiAct [169],
WISDM [170], MotionSense [171]

2 Mengoudi et al . [164] 2020 Eye-tracking Predictive Dementia classification Private
3 Ballas et al . [165] 2022 PCG Contrastive murmur prediction CinC 2016 [172], CinC 2022 [173]
4 Liu et al . [160] 2022 EMG Contrastive 3D hand pose estimation Private
5 Wu et al . [161] 2022 EEG, EMG Generative Multiple Sleep-EDF [128], Bonn EEG [23],

NinaPro [24]

D. MULTIMODAL SELF-SUPERVISED LEARNING WITH
BIOSIGNALS
Multimodal self-supervised learning with biosignals is
the final category presented in this section. The number
of works in this context is still limited (see Table 4),
which highlights how efficiently combining information
from different types of data is a difficult task. The
modalities mainly analysed with self-supervised learning
include combinations of EEG, ECG, EMG, and other
data coming from wearable devices. Differently from the
trend of single-modality SSL, most of the works chose
predictive pretext tasks instead of contrastive learn-
ing. Furthermore, multimodal data are often treated
simultaneously via multichannel architectures, with each
modality having its own encoder and representations
combined only on the network head.

SSL applications that employ data from wearable
devices for medical tasks are still limited in number (de-
spite the fact that many studies have been released for
more industrial applications). Spathis et al . [174] inves-
tigated health and lifestyle monitoring with multimodal
wearable data, designing a particular pretext task whose
goal was to assess the subject’s heart rate from other
wearable data. Deldari et al . [175] presented COCOA, a
contrastive learning approach designed to learn quality
representations from multisensor data by computing the
cross-correlation between different data modalities and
minimizing the similarity between irrelevant instances.
Their approach was tested on several downstream tasks
(e.g., emotion recognition, sleep staging, human activity
recognition) combining different biosignals such as EEG,
ECG, EMG, EOG, and activity data from wearable
devices, achieving overall results always superior to fully
supervised strategies (absolute accuracy improvements
range from 0.03 to more than 0.1). Saeed et al . [176] pre-
sented "sense and learn", a novel framework designed to
learn general-purpose representations from multisensor
data produced by omnipresent sensing systems. In their
work, they compared several pretext tasks on multiple
downstream tasks such as activity recognition, sleep
scoring, and stress detection.

Three of the identified works applied self-supervised
learning strategies to Intensive Care Unit (ICU) data. In
particular, Chen et al . [177] proposed a novel method for

the prediction of adverse surgical events. To accomplish
that, they combined a set of static (e.g., covariates)
and dynamic (e.g., biosignals) variables, pretraining the
backbone module of the latter with a forecasting pre-
dictive pretext task. Weatherhead et al . [191] improved
the baseline contrastive learning method TNC [71],
pretraining the model on high-time resolution ICU data
and evaluating it on several tasks such as the predic-
tion of 12-hour in-hospital mortality, circulatory failure,
and cardiopulmonary arrest. Ultimately, Tipirneni et al .
[193] pretrained the model with a forecasting pretext
task.

Considering works employing other combinations of
biosignals, Lemkhenter et al . [188] investigated self-
supervised learning for sleep scoring with polysomnog-
raphy data (collection of EEG, EOG, EMG, and ECG
acquired during sleep), adopting a predictive pretask
task built on top of the model-agnostic meta-learning
framework [196]. The learning problem was to detect
if a training sample came or not from PhaseSwap [43],
an operator that takes two signals as input and then
combines the amplitude of the first with the phase of
the second.

Thiam et al . [182] were the only one to propose a gen-
erative pretask on multimodal data. Using a multimodal
deep denoising convolutional auto-encoder, they tested
the pretrained model for the pain intensity classification,
achieving state-of-the-art performances on the BioVid
Heat Pain Database [183].

The last two selected multimodal approaches combine
biosignals with video recordings. Leveraging a combi-
nation of EEG and facial activity data extracted from
video, Das et al . [185] trained an explainable AI model
to predict upcoming speech stuttering, while Martini
et al . [178] showed the potentiality of multimodal self-
supervised learning by combining stereoencephalogra-
phy (SEEG) and video data to forecast seizure events
in drug resistant epileptic subjects.

Overall, the listed works achieved performance com-
parable or superior to fully supervised baselines. More-
over, works like [188] (sleep staging) show how some
downstream tasks can be treated both with single and
multimodal approaches. In this regard, multimodality
seems to help extract complementary representations,
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TABLE 4. Multimodal Self-Supervised Learning with Biosignals

# Author Year Upstream Task Downstream Task Dataset

1 Chen et al . [177] 2021 Predictive (forecasting) Surgical adverse events Private
2 Martini et al . [178] 2021 Predictive Seizure Forecasting Private
3 Saeed et al . [176] 2021 Multiple Multiple HHAR [166], MobiAct [169], Motion-

Sense [171], UCI HAR [168], HAPT
[179], Sleep-EDF [128], MIT Driver DB
[180], WiFi CSI [181]

4 Spathis et al . [174] 2021 Predictive Subject Health Private
5 Thiam et al . [182] 2021 Generative Pain Classification BioVid heat pain [183], SenseEmotion

[184]
6 Das et al . [185] 2022 Predictive Stuttering prediction Private
7 Deldari et al . [175] 2022 Contrastive (COCOA) Multiple UCI HAR [168], SLEEP-EDF,

PAMAP2 [186], WESAD [101],
Opportunity [187]

8 Lemkhenter et al . [188] 2022 Predictive (PhaseSwap) Sleep Scoring SLEEP-EDF, ISRUC, UCD [189],
CAP [190]

9 Weatherhead et al . [191] 2022 Contrastive Multiple HiRID [192]
10 Tipirneni et al . [193] 2022 Predictive In-hospital mortality MIMIC-III [194], CinC 2012 [195]

enhancing the quality of representations compared to
single-modality SSL strategies.

VII. DISCUSSION AND OPEN CHALLENGES
This section aims at answering important questions
that may arise from the analysis of the selected works:
when self-supervised learning might be preferred to a
standard fully supervised strategy; how data aggregation
can improve the model’s robustness; what is the role of
the fine-tuning phase; what is the best pretext task to
choose; what is the role of data augmentation during
the pretraining; and how multimodality can benefit from
this paradigm. Although some of these topics can be pre-
sented in general terms, particular focus will be given to
the analysis of special aspects to consider when applying
existing SSL techniques (which have succeeded in other
time-series analysis tasks) to a specific biosignal analysis
task. To make the narrative clearer and easier to follow,
each topic will be presented concisely in a separate
subsection, providing examples from the previous listed
works whenever possible.

A. SUPERVISED VS SELF-SUPERVISED LEARNING
Overall, the analysis of the selected works has shown
that self-supervised learning may improve the perfor-
mance of the trained model and mitigate overfitting in
most of the listed downstream tasks. Hence, it seems
likely that this strategy can be useful when performing
deep learning-based biosignal analysis. However, one
must be cautious and consider some important aspects
that may guide the researcher towards the choice of the
most suitable training strategy.

First, it is important to address the amount of super-
vision which can be provided for the downstream task. If
the amount of labeled data is sufficiently high, it is un-
likely that SSL will boost performances in a statistically
significant manner, especially when pretraining and fine-

tuning is performed on the same single repository. How-
ever, it is difficult to find such datasets in the domain of
biosignals. Few exceptions worth to be mentioned are the
Temple University Hospital (TUH) dataset for EEG or
the Computing in Cardiology (CinC) datasets for ECG.
In fact, works employing such datasets (for example
[113], [135]) were not always able to improve their
performances with respect to fully supervised baselines.
However, although results can be comparable, SSL has
proven to lead to a better generalization of the problem,
as a drastic decrease in the amount of supervision is
translated into only a slight drop in performance, the
opposite of fully supervised methods.

The second aspect to consider is the amount of ex-
ternal data that can be exploited during pretraining.
Self-supervised learning’s main goal is to provide a way
to learn general-purpose features by exploiting large
amounts of unlabeled data. The more data that can be
fed into the network during pretraining, the more robust
the learned features will be, as they come from a larger
and more heterogeneous parterre of data. This has the
potential to boost the performance on the downstream
task, as reported in many of the selected works. A more
in-depth analysis regarding the role of data aggregation
in self-supervision will be done in the next subsection.

B. THE POWER OF DATA AGGREGATION
Regardless of the specific type of biosignal or the inves-
tigated clinical task, self-supervised learning pretrain-
ing has demonstrated that it can reach state-of-the-art
performances when more datasets are simultaneously
employed. However, although SSL approaches facilitate
the aggregation of multiple repositories not acquired in
the same experimental setting, this procedure is still
not a common practice in biosignal analysis. There
are indeed many studies that combine more than one
dataset during pretraining, but their number is generally
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limited to two or three repositories, usually acquired
for the same medical purpose. On the contrary, works
like [132] demonstrated how data aggregation might
improve model performance even when records came
from completely different experimental settings.

Practical limitations like the inability to standardize
multiple datasets in an automatic and easy way certainly
play a key role in the hindrance of such practice. In
fact, biosignals are not only really complex to interpret
but also suffer from great variability, which may come
from experimental settings, acquisition protocols, stor-
age modalities, and intra- and inter-subject variability.
For example, EEG preprocessing includes not only data
imputation, resampling, and filtering as for any other
biosignals, but also the re-referencing to a common (or
average) channel, the alignment to a unique template,
and the interpolation of missing channels. Manually per-
forming all these steps is an extremely time-consuming
and discouraging task. However, as of now, no tools are
designed to simultaneously preprocess and align multiple
datasets of the same modality. Therefore, it could be
of great interest for the research community to develop
novel tools that are able to both perform consistent
preprocessing on multiple datasets and integrate their
functionalities with preexisting ones, such as EEGlab
[197] for EEG or ECG-kit [198] for ECG, allowing to
aggregate heterogeneous datasets for SSL applications.

Moreover, although there is already evidence that
the aggregation of multiple datasets can improve the
accuracy of downstream models [188], [199], it could
be useful to further investigate the effect of massive
data aggregation during pretraining and how the quality
of the general-purpose features learned is affected by
that. It could also be of great interest to understand
whether this strategy could be exploited in advancing
the problem of domain adaptation [200], i.e., the prob-
lem of avoiding significant performance degradation due
to changes in the marginal distribution of the feature
space (domain shift), which still remains a critical aspect
in the biomedical domain.

C. THE CHOICE OF THE FINE-TUNING DATASET
When defining a self-supervised experimental pipeline,
it is important to not only select the right pretraining
datasets to aggregate but also the fine-tuning one. Un-
fortunately, considering the way self-supervised learning
strategies are usually presented, fine-tuning seems to
often take a back seat. However, this phase is no less
important than the pretraining one, since model evalua-
tion will be based on the performance metrics estimated
from the test set of the fine-tuning dataset. Moreover,
choosing the right fine-tuning dataset is important not
only for model evaluation, but also to promote results
replicability and facilitate the comparison between dif-
ferent approaches.

Regarding results replicability, one should opt as much

as possible for free open repositories, or at least ones
accessible up to a filled-out request form. While the use
of private datasets is certainly not forbidden, especially
during pretraining, it is also true that the community
could benefit more from the introduction of novel strate-
gies tested with only open datasets. The use of open data
can, in fact, make results not only reproducible but also
more reliable since nothing is hidden from the reader.
Moreover, it encourages the use of the same dataset as
well as the production and release of tools designed to
preprocess and split it in a standardized way, which is a
crucial step in the creation of useful benchmarks.

Regarding the comparison between different ap-
proaches, while in other fields such as computer vision
the research community has adopted well-defined proto-
cols (e.g., use of datasets with predefined test sets, use
of the same combination of data augmentations, use of
standard model architectures) to promote fair and ro-
bust comparison between the proposed strategies, in the
biosignal domain this aspect remains an open challenge.
In fact, given a specific downstream task, several factors,
such as the choice of different fine-tuning datasets, the
use of a different splitting strategy (subject-, session-
or trial-based), or the way performance variability was
assessed (repeated fine-tuning, leave one subject out
cross-validation, pretraining with different subsets of
data), often make it impossible to compare the presented
results. While the splitting strategy and the perfor-
mance variability assessment can change according to
the experimental study, the choice of the specific fine-
tuning dataset can be at least uniformed based on the
investigated downstream task. To help readers choose
the right fine-tuning repository, the following list of
datasets often used for different downstream tasks is
provided:

• PTB−XL : A large open dataset comprised of
21799 clinical 12-lead ECG records of 10 seconds
length from 18869 patients. Each ECG was assigned
a diagnostic label based on the evaluation of ex-
pert cardiologists. The number of labels can vary
depending on the chosen experimental setting. Data
can be directly downloaded.

• CinC 2017 : another ECG dataset released for
the Computing in Cardiology 2017 challenge. It
includes 8528 single-lead ECGs with various types
of arrhythmias diagnosed by expert cardiologists. It
can be used in studies focused on the diagnosis of
arrhythmias. Data can be directly downloaded.

• TUH : the largest EEG repository to date. It
includes EEG records from 10874 subjects recorded
at a minimum of 250 Hz with a 24- to 36-channel
system. The dataset was also divided into several
subsets annotated for specific case studies (e.g.,
TUAB for normal/abnormal classification, TUEP
for epilepsy). Data can be accessed only after filling
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out a request form.
• DEAP : an EEG dataset for emotion studies. It

comprises EEG records from 32 subjects, with the
possibility to download already processed samples.
Data can be accessed only after filling out a request
form, which must come from researchers with a
permanent position at an academic or research
institute.

• BCI competition : a set of datasets released for
the BCI Competition IV. Widely used datasets
include the datasets 2a and 2b for motor imagery
with EEG data. Data can be directly downloaded.

• NinaPro : a large multimodal database aimed
at fostering machine learning research on human,
robotic and prosthetic hands. It comprises 10
datasets with EMG and other kinematic or inertial
data acquired from subjects with intact or ampu-
tated hands. Data can be directly downloaded.

• MIMIC : a large multimodal dataset that in-
cluded multimodal recordings from ICU patients.
The datasets often employed are the MIMIC-II and
MIMIC-III datasets, which can be accessed only
after filling out a request form.

• WESAD : a multimodal dataset for wearable
stress and affect detection comprised of physiolog-
ical and motion data recorded from 15 subjects.
Data can be directly downloaded.

• Sleep−EDF : a widely used dataset comprised of
197 polysomnographic sleep recordings. Despite its
multimodality nature, this dataset is often em-
ployed in single-modality EEG sleep studies (see
table 2). Data can be directly downloaded.

• CinC 2018 : Another large sleep staging dataset
composed of various physiological signals (ECG,
EEG, EOG, and EMG) recorded from 1985 sub-
jects. Data can be directly downloaded.

D. THE CHOICE OF THE PRETEXT TASK
Looking at the pure numbers, contrastive learning was
the most chosen pretext task, outnumbering the sum
of works adopting other methodologies. This aspect cer-
tainly reflects not only the ability of contrastive learning
pretext to learn better general-purpose representations
from the data compared to other approaches but also
its easiness of adaption to the medical domain. In fact,
self-supervised contrastive learning baseline approaches
are fairly easy to implement and have lots of alterna-
tives that, although similar, can fit specific experimen-
tal needs. Moreover, they can also be easily modified
without actually changing their core parts. Many of
the presented works, rather than designing completely
novel approaches, slightly change baseline methods in
order to incorporate specific medical domain knowledge.
For example, some works proposed more biologically in-
spired data augmentation techniques [141], while others
focused on the way similarity between pairs is evaluated,

for example by modifying the objective learning function
or the structure of the siamese network [108]. Specific
examples of the incorporation of medical domain knowl-
edge during pretraining can be found in the surveyed
works. In particular, authors in [120] have presented an
EEG-based multitask pretraining strategy which takes
into account both similarities and dissimilarities in the
activity of the left and right brain hemispheres but also
considers the known effect on the EEG dynamic of both
the age and behavioural state of the subject. In addition,
although not classified as a contrastive learning pretext
task, the method presented in [45] represents another
example of domain knowledge incorporation since it
is based on the prediction of characteristic features
automatically extracted from the ECG signal (with
standard procedures) and typically used by cardiologists
for diagnostic purposes.

Although contrastive learning seems to generally per-
form well, discarding other pretraining strategies can
be counterproductive. For example, predictive pretext
tasks can lead to better results on some downstream
tasks if properly designed, like motor imagery classifica-
tion [147]. Moreover, they are still largely employed in
multimodal approaches, where finding effective ways to
assess similarities and dissimilarities in representations
of different modalities for contrastive approaches is still
an open challenge. Masked modeling was also success-
fully applied for several downstream tasks, although its
paradigm is less open to novel implementation. However,
when combined with other SSL strategies, especially
when transformer architectures are involved [93], it
could improve the model’s performance and robustness.

Each pretraining technique has its own peculiarity;
hence, it is reasonable to assume that the quality of
the representations will be affected as well. In this con-
text, it could be more valuable to investigate "hybrid"
approaches, which incorporate the qualities of different
methods, rather than trying to assess the best strategy
among the categories. The combination of multiple pre-
text tasks might lead to more robust features, as they
can instill in the feature extractor knowledge learned
from very different tasks. An example of such a strategy
can be found in [127], where contrastive (SimSiam) and
generative (GAN-based) pretext tasks were combined to
improve the quality of the representations.

In conclusion, it is probably still too early to under-
stand what the best SSL pretext task category is for
the analysis of biosignals, especially considering that
the field is evolving quickly and some methods (e.g.,
generative pretext tasks) have such a limited number
of applications. Future works and advancements in this
domain will have the possibility of revealing which
directions will be more effective.
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E. THE ROLE OF DATA AUGMENTATION
Data augmentations play a central role in affecting the
quality of the representations learned during pretrain-
ing. They guide the network during the general-purpose
feature learning process, consequently influencing its
performance on the target task after fine-tuning. This
fact is true not only in contrastive pretext tasks, where
data augmentation is an essential part of the general
workflow, but also in generative (e.g., reconstructive)
and predictive strategies. Therefore, particular attention
must be given to the design of augmentation methods,
as wrong choices could deeply degrade the model’s
performance. Considering the field of application, it is
extremely important to consider both the physiological
nature of the signal and the prior medical knowledge
about the target clinical task.

As for the signal’s physiological nature, a data aug-
mentation must generate a new version of the same data
that not only preserves its physiological information
but also does not diverge too much from the original
dataset distribution. For example, a common employed
data augmentation is the addition of generated noise or
artifacts. In the biosignal domain, there are many known
physiological sources of artifacts that could be exploited,
such as the line noise, the drift artifact caused by changes
in the electrodes’ impedance, or the ocular and muscle
artifacts typical of EEG data.

As for the medical knowledge of the target clinical
task, while it is true that pretext tasks can produce
robust features without any knowledge about the subse-
quent clinical task, it is also true that indirectly includ-
ing such information in the model could be beneficial,
even at the cost of reaching a worse loss minima during
pretraining. For example, if the medical literature has al-
ready identified specific patterns which can be exploited
to distinguish between normal (healthy) and abnormal
(pathological) signals, it is important and reasonable to
design data augmentations that will force the network
to focus on such aspects. This, for example, applies to
variations of the PQRST complex in ECG analysis or
variations of the signal spectrum in specific bands in
EEG applications.

Another key point to assess is how data augmentations
are combined. While a single data augmentation chosen
at random from a wide list could be a good initial
strategy, compositions of multiple transformations can
increase the sample’s heterogeneity and produce more
complex patterns, enhancing the learning process. In
fact, as reported in [59], the composition makes the pre-
text task harder, but the quality of the representations
improves dramatically. In the same work, the authors
proposed a good pipeline to systematically study the
impact of data augmentation, which was also used in
[122] on EEG data. The results of both works demon-
strated the superiority of data augmentation composi-
tion. However, it is also important not to stack too many

augmentations, as the new transformed sample will be
too noisy; hence, the trade-off between task complexity
and quality or representation will probably be lost. A
good compromise could be to apply a sequence of 2
augmentations, preceded by another physiologically in-
variant transformation, designed to increase the amount
of training samples without actually changing the bi-
ological information of the original data. An example
of such augmentation could be the EEG re-referencing
to another channel, as suggested in [18], or the signal
polarity inversion.

Despite the central role of data augmentation, the
literature still lacks an extensive analysis of its role in
SSL-based biosignal analysis. Aside from the previously
mentioned work on EEG data, a similar analysis on ECG
data is provided in [111]. However, no extensive study
about their composition was performed.

F. THE CHALLENGE OF MULTIMODALITY
In the biomedical domain, multimodal data are often
complementary with each other, meaning that each type
of data (e.g., signals, images, text reports) can be used
to extract unique latent representations to allow a better
understanding of a pathology, even at the subject level.
However, the analysis of the methods presented in the
selected works certainly reveals how difficult it is to
exploit the SSL paradigm in a multimodal environment.
Two main reasons can explain this difficulty: the lim-
ited availability of multimodal datasets acquired for a
specific task, and the challenging problem of effectively
combining different modalities during pretraining.

As for the availability of multimodal datasets, there
is no doubt that their collection within a unique ex-
perimental setting is extremely hard and costly. How-
ever, as reported in section VI-D, a common adopted
strategy is to train a specific feature extractor for each
data modality. This allows to overcome the problem of
data availability by performing a two-step pretraining
strategy. In the first step, each encoder can be trained
separately by aggregating several unimodal repositories;
then, multimodal data should be used to simultaneously
optimize and align representations of all the feature
extractors.

While this strategy allows for lessening the needs of
multimodal repositories, the second problem, which is
how to effective combine multiple data types, remains
open. As of now, predictive pretext is the most chosen
approach, given its lower computational requirement
and easiness of implementation. However, predictive
pretexts rely on the concatenation of the different
embeddings only at the network head level (usually
discarded during the model transfer phase) without
actually promoting the alignment of different modalities
at the backbone level. On the contrary, contrastive
learning could be the most suitable type of pretext task
in this context, as it allows improving the agreement
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between representations of different modalities by pro-
jecting them in a common latent space used to calculate
the contrastive loss (see COCOA [175]). The alignment
of different modalities in a single space could have great
potential in knowledge discovery scenarios, for example,
by connecting the aligned embeddings to a common
ontology. It could also open new possibilities in deep
phenotyping and precision medicine [201], [202].

One medical area that could benefit most from mul-
timodal applications is neuroscience. Neuroscience is
extremely multimodal, with biosignals like EEG or EMG
collected together with different types of images (e.g.,
positron emission tomography, optical coherence tomog-
raphy, structural and functional magnetic resonance
imaging) and tabular data. However, limited effort has
been made to align images, signals, and clinical data,
a procedure that could greatly improve the study of
different neurological disorders and the understanding
of the mechanisms behind their onset and progression.

Another application which could benefit from the use
of multimodal self-supervised strategies is the manage-
ment of chronic diseases through multimodal wearable
data. As previously stated in section I, the role of
wearable devices is constantly growing, and nowadays,
people affected by chronic diseases like diabetes, coro-
nary heart disease, or chronic obstructive pulmonary
disease can heavily rely on them [203]. However, while
different wearable devices can facilitate the monitoring
of several physiological information, the introduction of
deep learning-based decision support systems that can
exploit them in real-world scenarios is still hindered by
the high sources of variability (e.g., subject variability,
sensor variability) associated with such data. In this
context, the ability of self-supervised learning to improve
model generalizability, as reported in other surveyed
works, could help solve this problem. However, further
investigations need to be performed, as the number of
SSL-based works in this area is still limited.

VIII. CONCLUSIONS
Self-supervised learning represents a relatively recent
and extremely powerful resource in the context of deep
learning and, more generally, machine learning appli-
cations to different data modalities. In particular, the
potential impact of self-supervised learning in biomedi-
cal sciences, where it’s difficult to get large amounts of
annotated data, is extremely high. While previous works
reviewed SSL applications to biomedical images, this is
the first review paper targeting SSL applications for the
analysis of biosignals. The survey highlights how self-
supervised learning has been widely adopted for various
types of biosignals, including multimodal approaches. It
also highlights how, despite its relatively young age, SSL
can potentially solve the problem of learning robust rep-
resentations from biosignals in situations where there is a
limited amount of labeled data. However, several factors

remain unclear and require further investigations, such
as the choice of the pretext task, the data aggregation
procedure, and the exploitation of biological information
from biosignals during the pretraining phase. Despite
these limitations, self-supervised learning has opened the
path to a more robust and performant deep learning,
which could finally bridge the gap between research and
clinical applications. It also has the potential to make
applications of deep learning in the biomedical domain
(where it’s more difficult to get data and annotations
by experts) more substantial and to help face some
open challenges (e.g., accountability, distribution shifts,
robustness), which still hinder the reliability of AI for
healthcare [204], [205].
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