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On the orthogonality of generalized eigenspaces for the
Ornstein–Uhlenbeck operator
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Abstract. We study the orthogonality of the generalized eigenspaces of
an Ornstein–Uhlenbeck operator L in R

N , with drift given by a real
matrix B whose eigenvalues have negative real parts. If B has only one
eigenvalue, we prove that any two distinct generalized eigenspaces of L
are orthogonal with respect to the invariant Gaussian measure. Then we
show by means of two examples that if B admits distinct eigenvalues, the
generalized eigenspaces of L may or may not be orthogonal.
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1. Introduction. In this note, we discuss the orthogonality of the generalized
eigenspaces associated to a general Ornstein–Uhlenbeck operator L in R

N .
Recently, the authors started studying some harmonic analysis issues in a

nonsymmetric Gaussian context [1–3]. In particular, the Ornstein–Uhlenbeck
semigroup

(
Ht

)
t>0

generated by L is not assumed to be self-adjoint in L2(γ∞);
here γ∞ denotes the unique invariant probability measure under the action of
the semigroup, and will be specified later.

In this general framework, the Ornstein–Uhlenbeck operator L admits
a complete system of generalized eigenfunctions; see [8]. But without self-
adjointness, the orthogonality of distinct eigenspaces of L is not guaranteed.
In fact, while the kernel of L is always orthogonal to the other generalized
eigenspaces of L in L2(γ∞), the question of orthogonality between generalized
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eigenspaces associated to nonzero eigenvalues is more delicate. As expected,
the spectral properties of B play a prominent role here. Indeed, we prove in
Section 3 that if B has a unique eigenvalue, then any two generalized eigenfunc-
tions of L corresponding to different eigenvalues are orthogonal in L2(γ∞).

Then in Sections 4 and 5, we exhibit two examples showing, respectively,
that if B admits two distinct eigenvalues, the generalized eigenspaces associ-
ated to L may or may not be orthogonal. The last section also contains a
result which relates the orthogonality of the eigenspaces of L to that of the
eigenspaces of the drift matrix, under some restrictions.

In the following, the symbol Ik will denote the identity matrix of size k,
and we omit the subscript when the size is obvious. We will write 〈·, ·〉 for
scalar products both in R

N and in L2(γ∞). By N we mean {0, 1, . . . }.

2. The Ornstein–Uhlenbeck operator. In this section, we specify the definition
of the Ornstein–Uhlenbeck operator L and recall some known facts concerning
its spectrum.

We consider the Ornstein–Uhlenbeck semigroup
(
H Q,B

t

)
t>0

, given for all
bounded continuous functions f in R

N , N ≥ 1, and all t > 0 by the Kol-
mogorov formula

H Q,B
t f(x) =

∫
f(etBx − y) dγt(y) , x ∈ R

N ,

(see [6] and [7, Theorem 9.1.1]). Here B is a real N ×N matrix whose eigenval-
ues have negative real parts, and Q is a real, symmetric, and positive-definite
N × N matrix. Then we introduce the covariance matrices

Qt =

t∫

0

esB Q esB∗
ds , t ∈ (0,+∞],

all symmetric and positive definite. Finally, the normalized Gaussian measures
γt are defined for t ∈ (0,+∞] by

dγt(x) = (2π)− N
2 (det Qt)− 1

2 e− 1
2 〈Q−1

t x,x〉 dx.

As mentioned above, γ∞ is the unique invariant probability measure of the
Ornstein–Uhlenbeck semigroup.

The Ornstein–Uhlenbeck operator is the infinitesimal generator of the semi-
group

(
H Q,B

t

)
t>0

, and it is explicitly given by

L Q,Bf(x) =
1
2

tr
(
Q∇2f

)
(x) + 〈Bx,∇f(x)〉 , f ∈ S (RN ),

where ∇ is the gradient and ∇2 the Hessian.
By convention, we abbreviate H Q,B

t and L Q,B to Ht and L , respectively.
We can thus write Ht = etL .

In [8, Theorem 3.1], it is verified that the spectrum of L is the set
⎧
⎨

⎩

r∑

j=1

njλj : nj ∈ N

⎫
⎬

⎭
, (1)
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where λ1, . . . , λr are the eigenvalues of the drift matrix B. In particular, 0 is an
eigenvalue of L , and the corresponding eigenspace kerL is one-dimensional
and consists of all constant functions, as proved in [8, Section 3].

We also recall that, given a linear operator T on some L2 space, a number
λ ∈ C is a generalized eigenvalue of T if there exists a nonzero u ∈ L2 such
that (T −λI)k u = 0 for some positive integer k. Then u is called a generalized
eigenfunction, and those u span the generalized eigenspace corresponding to
λ. As already recalled, it is known from [8, Section 3] that the Ornstein–
Uhlenbeck operator L admits a complete system of generalized eigenfunctions,
that is, the linear span of the generalized eigenfunctions is dense in L2(γ∞).
It is also known that all generalized eigenfunctions of L are polynomials, see
[7, Theorem 9.3.20].

2.1. Use of Hermite polynomials. As proved in [9], a suitable linear change of
coordinates in R

N makes Q = I and Q∞ diagonal. When applying this, we
adhere to the notation introduced in [4, Lemma 1], where also the following
facts can be found. Let Hn denote the space of Hermite polynomials of degree
n in these coordinates, adapted by means of a dilation to γ∞ in the sense that
the Hn are mutually orthogonal in L2(γ∞) (they are called Hλ,k in [4]). The
classical Hermite expansion (called the Itô-Wiener decomposition in [4]) says
that L2(γ∞) is the closure of the direct sum of the Hn; we refer to [10, p. 64]
for a proof in dimension one and note that the extension to higher dimension
is trivial. In other words, we can decompose any function u ∈ L2(γ∞) as

u =
∑

j

uj (2)

with uj ∈ Hj and convergence in L2(γ∞). Further, each Hn is invariant under
L ; see [4, Proposition 1].

The Hermite decomposition implies, in particular, that each generalized
eigenfunction of L with a nonzero eigenvalue is orthogonal to the space of
constant functions, that is, to the kernel of L . Anyway, we provide here a
proof of this fact which is independent of Hermite polynomials.

Lemma 2.1. Let λ �= 0. If u ∈ L2(γ∞) and (L − λ)k u = 0 for some k ∈
{1, 2, . . . }, then

∫
u dγ∞ = 0.

Proof. The implication is trivial if we set k = 0, so assume it holds for some
k ≥ 0 and that (L − λ)k+1 u = 0.

Then

L (L − λ)k u = λ(L − λ)k u,

and thus for any t > 0,

etL (L − λ)k u = etλ(L − λ)k u.

These operators commute, so

(L − λ)k etL u = (L − λ)k etλu,

that is,

(L − λ)k (etL u − etλu) = 0.
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The induction assumption now implies that
∫

(etL u − etλu) dγ∞ = 0.

Since γ∞ is invariant under the semigroup, this means that
∫

u dγ∞ = etλ

∫
u dγ∞

for all t > 0. Thus the integral vanishes. �

3. The case when B has only one eigenvalue.

Proposition 3.1. If the drift matrix B has only one eigenvalue, then any two
generalized eigenfunctions of L with different eigenvalues are orthogonal with
respect to γ∞.

Let λ be the unique eigenvalue of B, which is necessarily real and negative.
We first state a lemma and use it to prove the proposition. Recall that any
generalized eigenfunction of L is a polynomial.

Lemma 3.2. Let u be a generalized eigenfunction of L which is a polynomial
of degree n ≥ 0. Then the corresponding eigenvalue is nλ.

Proof of Proposition 3.1. Let u be a generalized eigenfunction of L , thus sat-
isfying (L − μ)k u = 0 for some μ ∈ C and k ∈ N. Applying the coordinates
from Subsection 2.1, we can decompose u as in (2), where the sum is now
finite. Since then

∑

j

(L − μ)kuj = 0

and each term here is in the corresponding Hj , all the terms are 0. But this
is compatible with Lemma 3.2 only if there is only one nonzero term in the
decomposition of u. Thus u ∈ Hn, where n is the polynomial degree of u.

Lemma 3.2 then implies that two generalized eigenfunctions with different
eigenvalues are of different degrees and thus belong to different Hn. The desired
orthogonality now follows from that of the Hn. �

Proof of Lemma 3.2. Let u be a generalized eigenfunction of L of polynomial
degree n. We denote the corresponding eigenvalue by μ. Decomposing u as in
(2), we see that this sum is for j ≤ n and that the term un is nonzero and a
generalized eigenfunction of L with eigenvalue μ. For some m, the function
(L − μ)mun will then be an eigenfunction with the same eigenvalue. This
function is in Hn and thus a polynomial of degree n. As a result, we can
assume that u is actually an eigenfunction of L when proving the lemma.

We now choose coordinates in R
N that give a Jordan decomposition of B.

This means that B = λI+R, where R = (Ri,j) is a matrix with nonzero entries
only in the first subdiagonal. More precisely, Ri,i−1 = 1 for i ∈ P , where P is
a subset of {2, . . . , N}, and all other entries of R vanish.

We write L = S + B, where

Bf(x) = 〈Bx,∇f(x)〉,
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and S is the remaining, second-degree part of L . Notice that, when applied
to polynomials, B preserves the degree whereas S decreases it by 2. So if v
is the nth-degree part of u, we must have Bv = μv.

We let B act on a monomial xα, where α ∈ N
N is a multiindex of length

|α| = n, getting

Bxα =
∑

j

λxj
∂xα

∂xj
+

∑

i∈P

xi−1
∂xα

∂xi

= λ
∑

j

αj xα +
∑

i∈P

αi
xi−1

xi
xα = λnxα +

∑

i∈P

αi xα(i)
,

where α(i) = α + ei−1 − ei for i ∈ P . Here {ej}n
j=1 denotes the standard basis

in R
N . Thus the restriction of B to the space of homogeneous polynomials of

degree n is given as λnI +R, where R is the linear operator that maps xα to∑
i∈P αi xα(i)

.
We claim that the only eigenvalue of R is 0. If so, the only eigenvalue of the

restriction of B mentioned above is λn, which would prove the lemma since
Bv = μv.

In order to prove this claim, we define for any α ∈ N
N with |α| = n,

V (α) =
N∑

1

jαj .

Clearly V (α(i)) = V (α) − 1. We select a basis in the linear space of all homo-
geneous polynomials of degree n consisting of all monomials xα with |α| = n,
enumerated in such a way that V is nondecreasing. The definition of R now
shows that its matrix with respect to this basis is upper triangular with zeros
on the diagonal. The claim follows, and so does the lemma. �

4. B has two distinct eigenvalues: a first example. The following example
shows that the generalized eigenspaces of the Ornstein–Uhlenbeck operator
may be orthogonal even in the case when B has more than one eigenvalue. We
show that L , while not being self-adjoint, is normal; then the orthogonality
of its eigenspaces follows from the spectral theorem.
In two dimensions, we let

Q = I2 and B =
(−1 1

−1 −1

)
(3)

whose eigenvalues are −1 ± i.
One finds that

esB = e−s

(
cos s sin s

− sin s cos s

)

and
esB esB∗

= e−2s I2,

so that

Q∞ =
1
2

I2, Q−1
∞ = 2 I2.
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We write

B = −I2 + R, where R =
(

0 1
−1 0

)
.

Since R = −R∗, [8, Proposition 2.1] implies that L is normal (observe that
I2 = 1

2 D1/λ in the notation of [8]).
However, we give below a brief, direct proof of this fact, independent of the
change of variables adopted in [8,9]. In the following, we write

L = L 0 + R,

where

L 0 =
1
2

Δ − 〈x,∇〉
is the standard Ornstein–Uhlenbeck operator and so self-adjoint in L2(γ∞).
Further,

R = 〈Rx,∇〉
is seen to be an antisymmetric operator in L2(γ∞). This leads to

[L ,L ∗] = [L 0 + R,L 0 − R] = −L 0R + RL 0 − L 0R + RL 0 = 2[R,L 0].

If we write ∂i for ∂xi
, i = 1, 2, this amounts to

2
[
x2 ∂1 − x1 ∂2 ,

1
2

Δ − x1 ∂1 − x2 ∂2

]
.

A straightforward computation shows that this vanishes, and so L is normal.
The spectral theorem for normal operators now implies the following result.

Proposition 4.1. With N = 2, let Q and B be as in (3). Then each generalized
eigenfunction of L is an eigenfunction. Moreover, any two eigenfunctions of
L with different eigenvalues are orthogonal with respect to γ∞.

5. B has two distinct eigenvalues: a second example. In this section, we ex-
hibit a class of drift matrices B with two different eigenvalues (which, in con-
trast to those in the example in Section 4, are real), but such that the general-
ized eigenspaces associated to the corresponding Ornstein–Uhlenbeck operator
L are not orthogonal.

In R
2, we consider Q = I2 and

B =
(−a + d 0

c −a − d

)
, (4)

with a > d > 0 and c �= 0. To compute the exponential of sB, we write
B = −aI + M , where

M =
(

d 0
c −d

)
.

Since MM = d2I, we get for s > 0,

exp(sB) = e−as
(
cosh(sd) I + d−1 sinh(sd)M

)
.
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This leads to

exp(sB) exp(sB∗) = e−2as

(
e2sd c

d esd sinh(sd)
c
d esd sinh(sd) c2

d2 sinh2(sd) + e−2sd

)
.

Integrating this matrix over 0 < s < ∞, we obtain

Q∞ =

(
1

2(a−d)
c

4a(a−d)
c

4a(a−d)
c2

4a(a−d)(a+d) + 1
2(a+d)

)

,

and so

1
2

Q−1
∞ =

1
c2 + 4a2

⎛

⎝
2a[c2 + 2a(a − d)] −2ac(a + d)

−2ac(a + d) 4a2(a + d)

⎞

⎠ .

The invariant measure γ∞ is thus proportional to

exp
(

−2a[c2 + 2a(a − d)]
c2 + 4a2

x2
1 +

4ac(a + d)
c2 + 4a2

x1x2 − 4a2(a + d)
c2 + 4a2

x2
2

)
dx

= exp
( − (a − d) x2

1

)
exp

(
− a + d

c2 + 4a2
(cx1 − 2ax2)

2

)
dx.

Writing z1 =
√

a − d x1 and z2 =
√

a+d
c2+4a2

(
2ax2 − cx1

)
and recalling that

γ∞ is a probability measure, we see that

dγ∞ = π−1 exp
( − z21 − z22

)
dz.

To find some eigenfunctions of L , we consider polynomials in x1, x2 of
degree 2. One finds that

v1 = x2
1 − 1

2(a − d)
,

v2 = x2
1 − 2d

c
x1x2 − 1

2a
,

v3 = x2
1 − 4d

c
x1x2 +

4d2

c2
x2
2 − c2 + 4d2

2c2(a + d)

are eigenfunctions, with eigenvalues −2(a−d), −2a, and −2(a+d), respectively.
Any two of these polynomials turn out not to be orthogonal with respect to

the invariant measure, as follows by straightforward computations. We sketch
one example.

One simply multiplies v1 and v3 and rewrites the product in terms of z1
and z2. Doing so, one can neglect all terms of odd order in z1 or z3, when
integrating with respect to γ∞. Writing ”odd” for such terms, we find that the
product is

1
a2

z41 +
d2(c2 + 4a2)
a2c2(a2 − d2)

z21z
2
2 −

[ c2 + 4d2

2c2(a2 − d2)
+

1
2a2

]
z21

− d2(c2 + 4a2)
2a2c2(a2 − d2)

z22 +
c2 + 4d2

4c2(a2 − d2)
+ odd.
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Integrating and simplifying, we get

∫
v1v3 dγ∞ =

1
2a2

> 0,

so v1 and v3 are not orthogonal.

Remark 5.1. Let now d = a/2 in this example. Then the fourth-degree poly-
nomial

v4 = x4
1 − 6

a
x2
1 +

3
a2

is an eigenfunction of L with eigenvalue −2a, like v2. Thus eigenfunctions of
different polynomial degrees can have the same eigenvalue. This shows that
for an eigenfunction u, the sum in (2) may consist of more than one term, and
a (generalized) eigenspace need not be contained in one Hn.

The eigenvalues of the matrix B defined in (4) are −a ± d, and it is easily
seen that the corresponding eigenspaces are not orthogonal in R

2. This turns
out to be related to the non-orthogonality of the eigenspaces of L , at least in
two dimensions, in the following way.

Proposition 5.2. Let N = 2 and Q = I, and assume that B has two
different, real eigenvalues. Then the generalized eigenspaces of L are orthog-
onal in L2(γ∞) if and only if the two eigenspaces of B are orthogonal in R

2.

Proof. To begin with, we consider a coordinate change x̃ = Hx, where H is
an orthogonal matrix. Simple computations show that the operator L Q,B is
transformed to L Q̃,B̃ in the new coordinates, with Q̃ = HQH∗ and B̃ =
HBH∗; cf. [9, p. 474]. In our case, Q̃ = Q = I. The eigenvalues of B and the
angle between its eigenvectors will not change.

To prove the proposition, assume first that the (real) eigenvectors of B
are orthogonal in R

2. Then B is symmetric since it can be diagonalized by
means of an orthogonal change of coordinates as just described. This implies
that L is symmetric ([7, Proposition 9.3.10]), so that the orthogonality of its
eigenspaces is trivial.

Next, we assume that the eigenvectors of B are not orthogonal in R
2.

By Schur’s decomposition theorem (see [5, Theorem 2.3.1]), there exists an
orthogonal change of coordinates which makes B lower triangular, though not
diagonal. We are thus in the situation described in (4). As we have seen,
some eigenspaces of L are then not orthogonal with respect to the invariant
measure. �

We finally remark that the “if” part of this proposition easily extends
to arbitrary dimension N . Then it is assumed that B has N different, real
eigenvalues with mutually orthogonal eigenspaces.
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Università degli Studi di Padova
Via Marzolo 9
35100 Padua
Italy
e-mail: paolo.ciatti@unipd.it

Peter Sjögren
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