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Abstract: Microscale photobioreactors for microalgae growth represent an interesting technology for
fast data production and biomass characterization; however, the small scale poses severe monitoring
challenges, as traditional methods cannot be used. Non-invasive techniques are therefore needed to
quantify biomass concentration and other culture properties, for example, pigment composition. To
this purpose, a soft sensing approach based on multivariate image regression is proposed to exploit
RGB images and/or PAM-imaging chlorophyll fluorescence. Different PLS (Partial Least Squares)
regression models are used to estimate: (a) biomass concentration from the features extracted by RGB
indices and/or PAM-imaging chlorophyll fluorescence measurements; and (b) Chlorophyll a content
per cell from the features extracted by RGB indices and biomass concentration measurements. Every
single model is aimed at characterizing the microalgae culture at different light intensities during
batch growth. Results show that the proposed monitoring approach is as accurate as traditional
measurement approaches and may represent a promising methodology for fast and inexpensive
monitoring of microscale photobioreactors.

Keywords: Scenedesmus obliquus; microphotobioreactor; monitoring; soft sensor; multivariate im-
age analysis

1. Introduction

The development and application of microscale platforms, also called micro-photobio-
reactors (µPBR), for lab-scale microalgae cultivation has gained significant interest to
overcome some limitations of traditional cultivation techniques, which are often time-
consuming, high cost, labor-intensive and low throughput [1,2]. Microscale technologies
are characterized by very small volumes (pL, nL, µL) and represent a powerful tool to
enhance data quality and data production, because they allow for tight and rapid control
of key operating variables, being also cheaper and compatible with high-throughput
analyses. Recently proposed microscale technologies for microalgae were used for strain
selection, size characterization and cell viability assessment [2]. On the other hand, a
relevant drawback of microscale techniques is that the small cultivation volume of the
device is not compatible with traditional lab-scale measurement protocols, thus requiring
the development of ad hoc techniques. Even though lab-on-a-chip solutions may address
this issue [3], they require a significant design effort and may adopt complex methods
or expensive instrumentation. A monitoring technique suitable for a microscaled device
must be online and noninvasive to avoid perturbing the system. Literature examples for
the monitoring of µPBR typically rely on cell autofluorescence at a specific wavelength [4]
or Chlorophyll fluorescence measurements [5,6]. However, chlorophyll fluorescence may
lead to calibration problems due to significant measurement noise and self-absorbance and
saturation issues. Image analysis can also be used as a monitoring technique, typically
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by coupling a microscope with an EMCCD camera, for example, to develop a single-cell
tracking algorithm in µPBR built for single-layer cultivation [7], or to infer the growth rate
through the surface area occupied by cells [8].

Alternatively, a simpler and faster approach is to utilize digital RGB images, in which
each pixel consists of an array of red, green and blue intensity, in the range [0–255].
This monitoring method exploits the fact that color intensity is strictly linked to biomass
concentration. However, as reviewed by Liu et al. [9], RGB images are rarely used to
quantitatively describe microalgae and are mostly employed in larger-scale applications
than µPBRs. Furthermore, constant light intensity is generally assumed. Usually, RGB
images of microalgae samples are converted to grayscale and then correlated with biomass
concentration [10,11]. A similar approach was used to estimate concentration via images of
light distribution in a tubular photobioreactor [12]. It was also shown that the normalized
intensity of the green channel can be correlated with the areal biomass concentration in
the biofilm [13]. Interestingly, Su et al. [14] were able to estimate Chlorophyll a (Chl a) and
lipids by establishing a correlation with RGB brightness; the methodology was validated
in a real batch PBR.

In this work, a simple and fast soft sensing methodology based on multivariate image
analysis [15] is proposed, to estimate the biomass concentration or Chl a content in a µPBR.
A PLS (Partial Least Square) multivariate regression model was used to correlate color
indices (mean and variance of each RGB channel) and/or chlorophyll fluorescence indices
with biomass concentration in the µPBR. Adopting a similar approach, Chl a content was
also estimated. Results from the cross-validated models showed that the methods represent
a promising technique for the estimation of biomass concentration and chlorophyll content,
thus paving the way towards an efficient, easy and inexpensive online monitoring of
microalgae in microscale devices.

2. Materials and Methods

The cultivation of Scenedesmus obliquus was carried out in flat-plate batch PBRs at
different light intensities. The biomass was then characterized (see Section 2.1.1) and
transferred to a µPBR platform where images were collected. This is done to produce
enough biomass to characterize microalgal concentration via traditional protocols (which
otherwise would not be possible by using the µPBR platform only).

In the following, the cultivation methods, the assays and the mathematical models
used to process the images will be described.

2.1. Microalgae Strain and Cultivation Method and Assays

A preinoculum of Scenedesmus obliquus 276.7 (obtained from SAG-Goettingen, Ger-
many) was maintained in an Erlenmeyer flask with a BG11 medium. The preinoculum
was kept at constant illumination of 80 µmol·m−2·s−1 and at a constant temperature
of 23 ± 1 ◦C in a refrigerated incubator, in the flask was continuously injected with 5%
CO2 enriched air. The medium BG11 was modified by adding HEPES 10 mM to prevent
acidification due to continuous bubbling of 5% v/v CO2 enriched air [16]. A sample
in the exponential phase was used as preinoculum and transferred in a polycarbonate
flat-panel reactor, with a working volume of 150 mL to have an initial concentration of
5 × 106 cells·mL−1 and working batch-wise. The optical path of the culture was 1.2 cm. At
the bottom of the reactor, a sparger was placed through which 5% v/v CO2 enriched air
was bubbled. Additional mixing was provided by a magnetic stirrer placed on the opposite
side wall with respect to the illumination system. All reactors and media were previously
autoclaved for 20 min at 121 ◦C to avoid any contamination. The flat-plate reactor was
exposed to a constant continuous illumination I0 of 35 (low light, LL), 150 (medium light,
ML) and 950 µmol·m−2·s−1 (high light, HL) in biological duplicates (A and B) for each
light condition with LED lamps. Incident light intensities were measured with an HD2012.1
photoradiometer (Delta Ohm, Italy), which measures the photosynthetically active radia-
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tion (PAR, 400–700 nm). Microalgae were cultivated in such reactors for five days in two
parallel PBRs at a time.

2.1.1. Analytical Procedures

Biomass concentration was measured daily in doubles by using a Bürker chamber
(HGB, Germany) while pH was measured with the HI9124 pH meter (Hanna Instruments,
Italy) to check that the pH was between 7 and 8, the optimal range for cell viability. To
extract the pigments, the biomass was ground with quartz powder and heated at 65 ◦C for
15 min with DMSO (dimethyl sulfoxide) [16]. The absorbance of the extracts was measured
at 480, 649 and 665 nm by a UV-1900 UV-visible Spectrophotometer (Shimadzu, Japan),
and concentrations of Chl a, Chl b and carotenoids were calculated with the following
equations [17]:

Chl a = 12.19 · A665-3.45·A649 (1)

Chl b = 21.99 · A649-5.32·A665 (2)

Car = (1000 · A480-2.14 · Chl a-70.16·Chl b)/220 (3)

At the end of the batch curve, dry weight (DW) was measured by filtering a known vol-
ume of culture on pre-dried (15 min at 100 ◦C) cellulose acetate filters (0.45 µm, Whatman®,
USA). The filtered biomass was then dried in the oven for 2 h at 100 ◦C.

Growth rates were calculated as the slope of the concentration profile in the logarithmic
scale over time, during the exponential phase.

Photosynthetic efficiency is defined as the percentage of light used for microalgae growth
with respect to the total received light [18]. It was calculated using the following equation:

%PAR =
∆Cx ·V · LHV

I0 · S · t · Ep
(4)

where ∆Cx (g·L−1) is the increase in the concentration during the batch experiment, V (L)
is the reactor volume, LHV (22 KJ·g−1) is the lower heating value for S. obliquus [19], S
(m2) is the illuminated area of the reactor, t (s) is the experiment duration and Ep is the
average energy of a mole of photons. Ep was calculated from the photon spectrum of the
lamp following the method described by Norton et al. [20] and is equal to 0.2139 J·µmol−1.

2.1.2. Sample Preparation

The culture from the flat-plate PBR was transferred into the µPBR sketched in Figure 1a.
The µPBR was obtained with replica molding by curing PDMS (poly-di-methyl-siloxane) in
a stereolitography-printed mold [6]. Eventually, the cured polymer was removed from the
mold, obtaining the final µPBR device, fully compatible with biological applications [21].
Depending on the daily concentration in the flat-plate PBR, the cultivation broth (at con-
centration D0) was diluted to five different concentrations (namely D1, D2, D3, D4, D5).
Concentrations ranged between D0 and 2.5 × 106 cells·mL−1. Each concentration was
placed in four different wells of the µPBR, whose position was chosen randomly for each
experiment to increase the robustness of the model. The filled µPBR was eventually sealed
with a 2 mm PDMS layer.

2.1.3. Digital Image Acquisition

The filled µPBR was placed in a black-painted wall box with a LED stripe, thus
allowing a homogeneous illumination shading the device from environmental light noise.
A digital camera (LUMIX DMC-TZ57, Panasonic, Japan) equipped with a 16 megapixel
MOS sensor was mounted on a support to keep it in a fixed and stable position, in order to
take pictures of the µPBR inside the black box. Length and white references were placed
on the side of the µPBR and included in the image scene in such a way as to measure the
pixel dimension and calibrate the white balance. The camera parameters, kept constant
throughout all experiments, were as follows:
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• ISO: 100;
• diaphragm opening: 6.3;
• exposure: 1/50 s;
• zoom: 3.5×;
• focal length: 15.1 mm.

One image was collected for each reactor every day. A raw image captured with the
aforementioned protocol is shown in Figure 1b.
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Figure 1. (a) Representation of the scheme of sample dilution in the µPBR used for digital image
acquisition [6]. Each well has a 4 mm diameter and 2 mm height. The dilutions of the culture from the
PBR were inoculated in random positions. (b) Example of a raw image of the µPBR to be processed
to extract features for the prediction model. The image corresponds to experiment HLB, day 4.

2.1.4. Fluorescence Measurement Acquisition

The same µPBR used for digital image acquisition was then used for chlorophyll
fluorescence measurements with the PAM imaging OpenFluorCam FC 800 (Photon Systems
Instruments, Drásov, Czech Republic) provided with its software FluorCam7. A dark
adaption time of 20 min was required prior to performing the measurements to open
all reaction centers [22,23]. The PAM-imaging instrument required to set the optimal
parameters for the acquisition apparatus, which were:

• shutter = 1, corresponding to an aperture of 20 µs;
• sensitivity = 5, in a range 0–100;
• actinic light intensity (Act2) = 45, corresponding to 1150 µmol·m−2·s−1;
• pulse intensity (Super) = 35, corresponding to 1300 µmol·m−2·s−1.
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The protocol, called Quenching Act2, required about 3 min and can be summarized as
follows [24]:

• in the first 5 s of the protocol, minimum fluorescence F0 is measured five times by
using a measuring light;

• then, a saturating pulse (duration 800 ms) is used to calculate the maximum fluores-
cence Fm and the variable fluorescence Fv, where Fv = Fm − F0;

• a dark phase of 17 s is used to relax all photosystems;
• actinic light is turned on for 70 s and after this, three saturating pulses (800 ms each)

are produced at intervals of 10 s and another two pulses at an interval of 20 s. This
allows the identification of the local maxima fluorescence due to progressive light
acclimation, which is useful to describe NPQ dynamic (obtaining NPQLi at different
lights and NPQLss, which is the steady-state value);

• actinic light is then turned off and this dark phase lasts until the end of the experiment.
During this dark phase, three saturating pulses (800 ms each) are used at intervals
of 30 s, identifying local fluorescence maxima allowing to calculate the relaxation
of NPQ.

The software automatically calculates the following seven indices [23]: Fv/Fm (maxi-
mum quantum efficiency of PSII), Fm (maximum fluorescence in the dark-adapted state),
NPQL1, NPQL2, NPQL3, NPQL4 (instantaneous non-photochemical quenching during
light adaptation) and NPQLss (steady-state non-photochemical quenching in light) [24].

2.2. Mathematical Background

In this section, the mathematical methods used in this work are described.

2.2.1. PLS Regression Fundamentals

Partial Least Square (PLS) is one of the most used techniques in data analytics [25,26]
to analyze chemical data for process control, fault detection and diagnosis [27]. This
technique can also be applied to images for analysis, classification, segmentation and
prediction [15]. For example, it was successfully used in the detection of food frauds [28],
to classify inhomogeneous food matrices [29], in quality monitoring [30] and in process
control [31]. In general, if X [Nobs × Nv] is an autoscaled (i.e., each column has zero mean
and unit variance) matrix of Nobs observations of Nv predictors, and Y [Nobs × Ny] is the
response matrix, PLS aims at finding a reduced number A of latent variables, LV, that
capture the part of the X variance that best predicts Y. In particular, the two matrices can
be rewritten in the form:

X = TPT + Ex =
A

∑
a=1

tapT
a + Ex (5)

Y = UQT + Ey =
A

∑
a=1

uaqT
a + Ey (6)

T = XW (7)

where A is the number of LV, T [Nobs × A] and U [Nobs × A] are the score matrices,
P [Nv × A] and Q [Ny × A] are the loading matrices, Ex [Nobs × Nv] and Ey

[
Nobs × Ny

]
are

the residual matrices. W [Nv × A] is the weight matrix and is used to project the original
data into the new LV space. In this work, scores, loadings and weights were obtained
through the SIMPLS algorithm and the number of LV was selected in order to minimize
the cross-validation prediction error. Matlab 2018a with PLS Toolbox v. 8.6.2 (Eigenvector
Research, Inc., USA) was used as software.

2.2.2. Image Pretreatment and Available Measurements

RGB images captured with the camera had a dimension of [3456 × 4608] pixels. To
consider only pixels related to the culture and to avoid pixels at the border of the wells,
which may be affected by edge effects, an inner ROI (region of interest) with a 50-pixel
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radius was selected, for a final image size of about 7500 pixels. For each ROI, it was possible
to calculate the mean (mR, mG, mB) and variance (vR, vG, vB) of the light intensities in
each channel of the RGB image, thus characterizing each well. To summarize, for each well
the following features were extracted:

• 6 color indices (CI) obtained from the digital image mR, mG, mB, vR, vG, vB
• 7 fluorescence indices (FI) obtained from the PAM-imaging: Fv/Fm, Fm, NPQL1,

NPQL2, NPQL3, NPQL4, NPQLss;
• biomass concentration obtained with manual count at the microscope: Cx;
• Chl a content obtained with the spectrophotometric assay: Chl a.

A preliminary analysis showed that including the data from the first two days of
the batch was detrimental for model performance (in the first two days photoacclimation
phenomena strongly affect cultivation, see Section 3.1). For this reason, only the last three
days of the batch campaigns were considered, for a total number of wells (e.g., observations)
of Nobs = 72. Data from different batches were organized by rows, similar to the feature-
wise unfolding approach [32]. Since all the measurements were performed in double, this
allowed increasing the number of observations up to 144 to increase model robustness. We
can define two matrices that constitute the predictor matrix of the model: one containing
the features extracted from the RGB images, namely a color matrix XCI [144 × 6], and one
containing fluorescence indices XFI [144 × 7]. The predictive models will be indicated
as M[Xi|Xj‖Y], where M is the model ID, while in the squared brackets are listed the
concatenated matrices (hence, the features) used in the predictor matrix X and the predicted
variable Y.

2.2.3. PLS for Biomass Concentration Estimation

The models built in this section aim at estimating biomass concentration in the µPBR
wells, regardless of the incident light used in the experiment, or the day in which the image
was collected. In this case, only indices obtained from the wells at D0 were used (e.g., the
original culture sampled from the PBR as in Figure 1a). The matrix structure is represented
in Figure 2. In particular, the following models were tested:

• C[XCI‖Cx]: only color indices were used to predict biomass concentration;
• C[XCI|XFI‖Cx]: CI and FI were used in the prediction of the concentration;
• C[XCI‖ln(Cx)]: only color indices were used to predict the logarithm of the concentration;
• C[XFI‖ln(Cx)]: only fluorescence indices were used to predict the logarithm of

the concentration;
• C[XCI|XFI‖ ln(Cx)]: CI and FI were used in the prediction of the logarithm of

the concentration.

2.2.4. PLS for Chlorophyll Content Estimation

The models built in this section aim at estimating Chl a content (pg·cell−1), regardless
of the incident light used in the experiment, or the day in which the image was collected.
Only the wells at D0 were used. The matrix structure is shown in Figure 3. For this purpose,
the biomass concentration was evaluated as an additional predictor, organized in the vector
XCx [144 × 1]. In particular, the following models were tested:

• P[XCI‖Chla]: only color indices were used to predict Chl a content;
• P[XCI|XCx‖Chla]: color indices and biomass concentration were used to predict

Chl a content;
• P[XCI|XCx |XFI‖Chla]: color indices, biomass concentration and fluorescence indices

were used to predict Chl a content.
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Figure 2. Matrices used to build the PLS models to estimate biomass concentration. The predictor
matrix X was built concatenating XCI and XFI depending on the model. The response matrix
Y [144 × 1] consisted of the biomass concentration or in its logarithm, depending on the model.
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2.2.5. Assessing Model Performance

Cross-validation was performed by iterating 100 times the validation procedure in
which 90% of the observations were randomly selected for calibration, while the remaining
observations were used for validation. Model performance was assessed by calculating the
average relative and average absolute errors on validation:

Er =
1
G

G

∑
1

|y− ŷ|
y

(8)
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Ea =
1
G

G

∑
1
|y− ŷ| (9)

where y is the experimental value of the biomass concentration (or pigment content) and
ŷ the predicted value; G is the total number of validated samples. To assess the fitting
performance of the different models, the average SSR (sum of squared residuals) was
calculated.

3. Results
3.1. Batch Culture Evolution

Here, the batch cultures used to set up the models are discussed. Growth curves at
different impinging light intensities are reported in Figure 4, in which a typical batch growth
trend can be observed, with an initial lag phase, an exponential phase and eventually a
stationary phase for HL experiments only. The calculated growth rates (Table 1) were
increasing with light as expected; however, the increase of growth rate was not linear,
suggesting possible saturation under HL. This is further confirmed by the photosynthetic
efficiency, which drastically decreased under HL, confirming a less efficient conversion of
light into biomass.
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Figure 4. Growth curves in flat-plate PBR under different continuous illumination in two biological
replicates (A and B): 35 (low light, LL), 150 (medium light, ML) and 950 µmol·m−2·s−1 (high
light, HL).

Table 1. Growth rates, dry weights and photosynthetic efficiency obtained in the flat-plate PBRs.

µ DW % PAR
(d−1) (g·L−1) (%)

LLA 0.47 ± 0.04 0.72 6.18
LLB 0.46 ± 0.04 0.69 5.91

MLA 1.17 ± 0.15 2.54 5.69
MLB 1.16 ± 0.18 2.50 5.60
HLA 1.22 ± 0.23 4.38 1.55
HLB 1.20 ± 0.19 4.24 1.50

As reported in Figure 5, during the initial days of the batches, an adjustment of Chl a
was observed due to photoacclimation from the preinoculum condition to the new growth
conditions in the flat-plate PBR. Eventually, Chl a reached a pseudo-stationary condition
starting from day 2. While LL and ML experiments reached a similar value, HL experiments
had a reduced Chl a content per cell. As a consequence, HL experiments had a higher ratio
Car/Chl a, which is a common photoprotective response [33]. A similar conclusion can be
drawn by looking at the Fv/Fm trends in Figure 6: the LL and ML experiments show values
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above 0.6 for all the samples (for healthy unstressed cells this value is usually in the range
0.6–0.8 [34]), while for cultures exposed at high light intensity a lower value was measured,
suggesting possible photoinhibition. To observe variability fluorescence measurements, F0
was measured for a sample and its dilution. The sample was collected at the end of the
exponential phase and transferred to the µPBR together with its five dilutions as described
in the previous section (Figure 7). Linearity in Cx − F0 was found limited for a very small
and narrow concentration range and a certain variability was always present. The range is
strictly dependent on the specific PAM-imaging settings and protocol used [6], thus making
the usage of such measurements for concentration estimation a complex task. In addition,
at higher concentrations, self-absorbance and saturation issues may arise [5], which pose
additional challenges to correct calibration.
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Figure 5. Evolution of pigment content over time. Error bars are the standard deviations between duplicates. (a) Chl a
content per cell. The average standard deviation is about 0.06 pg·cells−1, however in some samples the error is higher, up to
0.12–0.15 pg·cells−1. (b) Carotenoids/Chl a ratio over time.
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Figure 6. Trend of Fv/Fm (e.g., maximum quantum efficiency of PSII), over time for the six
batch experiments.
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Figure 7. Dependence of F0 on biomass concentration of samples collected at the end of the exponen-
tial phase and their dilutions, for batch experiments. Error bars are the standard deviation among
four wells at the same concentration.

3.2. Results of the Biomass Concentration Estimation

The models described in Section 2.2.3 were used to predict biomass concentration.
Note that the same model is used to predict biomass concentration at three different light
intensities and at three different times (days) in the dynamic batch cultivation curve.

Detailed results are reported in Table 2. At first, it can be seen that using the logarithmic
model C[XCI‖ln(Cx)] helps reducing the average relative error with respect to C[XCI‖Cx], while
the average absolute error remains almost unchanged. Comparison between C[XCI‖ln(Cx)] and
C[XFI‖ln(Cx)] confirmed that using only fluorescence measurements as predictors may lead to
large errors in the prediction of biomass concentration. For the sake of completeness, it must
be noticed that the biomass concentration range is quite wide (10–90 × 106 cell·mL−1) with
respect to ranges usually adopted in literature for the application of fluorescence measurements,
and saturation phenomena may be present. Model C[XCI|XFI‖ ln(Cx)] allowed for the smallest
average relative error by using all the available predictors, namely CI and FI. Parity plots
for all models are reported in Figure 8. Here the effect of the logarithm transformation in
the predictions can be noticed. In fact, the logarithm slightly improves predictions at lower
concentrations, while at higher concentrations predictions are more scattered, suggesting that
a linear dependence would be preferable at these values. Both relative and absolute error
distributions for model C[XCI|XFI‖ ln(Cx)] can be observed in Figure 9. Only a small subset of
samples has a relative error larger than 20% and an absolute error larger than 15× 106 cell·mL−1,
while the average relative error is 18.74% and the average absolute error is 9.51× 106 cell·mL−1

(comparable to experimental measurements as also reported in the literature [35]). However,
the rapidity of the response that could be obtained via image analysis makes it a promising and
effective technique for fast estimation of a sample concentration.

Table 2. Performance of the models used to estimate biomass concentration. Note that, when
the logarithm is predicted, the final values were converted back into concentration and errors
were calculated.

Model ID X Dim LV Er% Ea (106 Cell·mL−1)

C[XCI‖Cx] 144 × 6 6 30.10 11.52
C[ XCI|XFI‖Cx] 144 × 13 8 20.57 8.54
C[XCI‖ln(Cx)] 144 × 6 6 22.73 11.21
C[XFI‖ln(Cx)] 144 × 7 6 35.10 16.78

C[ XCI|XFI‖ ln(Cx)] 144 × 13 8 18.74 9.51
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Figure 8. Parity plots for the models predicting the biomass concentrations. (a) C[XCI‖Cx], SSR = 30.43. (b) C[ XCI|XFI‖Cx],
SSR = 16.08. (c) C[XCI‖ln(Cx)], SSR = 22.33. (d) C[ XCI|XFI‖ ln(Cx)], SSR = 14.05.
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In view of the results above, where only wells at D0 were used for calibration and
validation, an additional model was built where the number of variables was increased
by using the features extracted from diluted wells (Figure 10). The best prediction per-
formances were obtained by using three dilutions, namely D1, D2 and D3, for example,
removing noisy dilutions. Matrix X was therefore increased to (6 + 7)·4 = 52 predictors.
The target concentration was again the logarithm of wells at D0 and the performance of
this model D[XCI|XFI‖ ln(Cx)] are summarized in Table 3. We can see in Figure 11 that
errors are significantly smaller with respect to the ones obtained with C[XCI|XFI‖ ln(Cx)]. In
addition, by looking at the parity plot in Figure 12, predictions at the highest concentrations
were improved with respect to Figure 8d. In general, this model was very effective at
characterizing biomass concentration in a wide range, although the need to provide several
dilutions of the culture makes its application on µPBR potentially problematic (although it
can represent a viable solution at a larger scale).
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Figure 10. Sketch of the new predictor matrix to improve biomass concentration prediction. The number of variables was
increased by using features extracted from wells at three additional dilutions of the original culture D0. The response Y
consisted of the logarithm of the concentration.

Table 3. Performance of the model that used dilutions to estimate biomass concentration.

Model ID X Dim LV Er% Ea (106 Cell·mL−1)

D[ XCI|XFI‖ ln(Cx)] 144 × 52 14 7.57 4.27

3.3. Results of the Chl a Estimation

In this section, the goal is predicting the Chl a content [pg·cell−1]. Also, in this case,
the model aim at predicting pigment content at 3 different light intensities and at 3 days
in the dynamic batch cultivation curve. However, it is necessary to acknowledge that the
technique based on pigments extraction and spectrophotometric measurements presents
a significant variability (Figure 5a). In fact, the standard deviation of pigment assays
performed in doubles ranges from 0.01 to 0.12 pg·cell−1 with an average of 0.05 pg·cell−1.
Model P[XCI‖Chla] with only color indices seems underperforming as its average rela-
tive error is quite high. Biomass concentration was then added to take into account the
different chlorophyll content depending on the concentration in a well. In fact, model



ChemEngineering 2021, 5, 49 13 of 17

P[XCI|XCx‖Chla] allowed decreasing the average relative error significantly. It can be
observed that model P[XCI|XCx |XFI‖Chla] in which FI were added, did not perform sig-
nificantly better. In conclusion, P[XCI|XCx‖Chla] is able to represent adequately all the
observations with a reasonable error, which is comparable to the traditional assay error
(Figure 5). By looking at the error distributions (Figure 13), we can see that most samples
are characterized by very low errors. From the parity plot (Figure 14) it is possible to
notice that the pigment duplicate measurements present a significant variability (points are
quite spread along x-axis), affecting the prediction accuracy of the model. Detailed results
concerning the model performances in estimating Chl a are reported in Table 4.
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Figure 11. Model D[ XCI|XFI‖ ln(Cx)]. (a) Relative error distribution. (b) Absolute error distribution.
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Figure 12. Parity plot for model D[ XCI|XFI‖ ln(Cx)], SSR = 1.62.
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Table 4. Performance of the models used to estimate Chl a content.

Model ID X dim LV Er% Ea (pg·cell−1)

P[XCI‖Chla] 144 × 6 6 19.13 0.10
P[ XCI|XCx‖Chla] 144 × 7 6 12.93 0.07

P[XCI|XCx |XFI‖Chla] 144 × 14 6 11.95 0.06

4. Conclusions

Multivariate image analysis has been assessed aimed at estimating biomass concentra-
tion or Chlorophyll a content in µPBRs.

Models built to predict biomass concentration led to promising results as the com-
bined exploitation of color and fluorescence indices allows one to obtain an average relative
error of about 18%, which is comparable to experimental measurements. A more complex
but accurate model was built by including data based on diluted samples of the origi-
nal culture. Although this methodology may not be suitable for a direct application on
µPBR, it may represent a promising approach to reduce the operator effort and to avoid
microscope counting.

Models built to predict Chl a also led to interesting results. In this case, however,
information on biomass concentration may have to be combined with color indices in
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order to reach acceptable accuracy in the estimates of pigment content in a µPBR. The
approach may represent a valuable substitute for traditional lab assays, which are typically
time-consuming and labor-intensive.

These preliminary results also suggest that a larger dataset of images of culture at
different illumination or conditions would be beneficial to increase model robustness
and precision. Future work will aim at exploring different color spaces, such as HSL
(Hue, Saturation, Lightness), CIELAB or RG chromaticity to assess if they may lead to an
improvement in the monitoring performance.
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List of Symbols

Abbreviations
Car Carotenoids
Chl a Chlorophyll a
Chl b Chlorophyll b
CI Color indices
D0, . . . , D5 Dilutions
DMSO Dimethyl sulfoxide
DW Dry weight
EMCCD Electron-multiplying charged-coupled device
FI Fluorescence indices
HL Experiments at high light
HSL Hue saturation lightness color space
LHV Lower heating value
LL Experiments at low light
LV Latent variables
ML Experiments at medium light
NPQ Non-photochemical quenching
PAM Pulse amplitude modulation
PAR Photosynthetically active region
PBR Photobioreactor
PDMS poly-di-methyl-siloxane
PLS Partial least squares
PSII Photosystem II
ROI Region of interest
SSR Sum of squared residuals
µPBR Micro-photobioreactor
Roman symbols
A Latent variable
Cx Biomass concentration
Ea Average absolute error

Ep Average energy of a mole of photons
Er Average relative error
F0 Minimum fluorescence
Fm Maximum fluorescence
Fv Variable fluorescence
I0 Incident light intensity
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mR, mG, mB Means of red, green and blue channels
Nobs Number of observations
Nv Number of variables
Ny Number of responses
vR, vG, vB Variances of red, green and blue channels
Greek letters
µ Growth rate
Matrices and arrays
EX, EY Residual matrices
P Loadings matrix of X
Q Loadings matrix of Y
T Scores matrix of X
U Scores matrix of Y
W Weight matrix
X Predictor matrix
XCI Color indices predictors
XCx Biomass concentration predictor
XFI Fluorescence indices predictors
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