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Abstract

The recent ground-breaking detection of gravitational waves (GW) from the merger of two neu-
tron stars (NS), known as the GW170817 event, along with the observations of electromagnetic
counterparts across the entire spectrum including a short gamma-ray burst (SGRB) and a ra-
dioactively powered kilonova, has given birth to the era of multimessenger astrophysics with
GW sources. In order to probe the underlying physical mechanisms at play in such systems, it
is necessary to employ fully general relativistic magnetohydrodynamic (GRMHD) simulations,
including efects of magnetic felds and neutrino emission/reabsorption for a more realistic de-
scription. In the frst part of this Thesis, we introduce our newly-developed GRMHD code
Spritz, that solves the GRMHD equations in 3D Cartesian coordinates and on a dynamical
spacetime. We present its salient features including the staggered formulation of the vector
potential as well as support for any arbitrary equation of state (EOS), followed by a series of
tests for code validation. We then describe the implementation of an approximate neutrino
leakage scheme in Spritz, shedding some light on the involved equations, physical assump-
tions, and implemented numerical methods including higher order schemes, along with a large
battery of general relativistic tests performed with and without magnetic felds and/or neutrino
leakage. Since fux-conserving GRMHD codes like Spritz depend upon a technical algorithm
to recover the fundamental ‘primitive’ variables from the evolved ‘conserved’ ones, which is
often error-prone, we propose a new robust, accurate and efcient conservative-to-primitive
variable recovery scheme named ‘RePrimAnd’, along with the proof of existence of a solution
and its uniqueness. As a next natural step, we implemented this scheme in Spritz and per-
formed a number of demanding GRMHD tests, including critical cases like a NS collapse to a
black hole (BH) as well as the evolution of a BH-accretion disk system. The second part of
the thesis focusses instead on the application of GRMHD codes to perform magnetized BNS
merger simulations. In particular, using the WhiskyMHD code, we present a detailed study of
BNS merger simulations forming a long-lived NS remnant and including long post-merger evo-
lution. Exploring this ‘magnetar scenario’ allows us to address some of the open questions in
the context of the SGRB and accompanying kilonova of the GW170817 event. Finally, we also
discuss the results of the frst magnetized BNS merger simulation performed with Spritz and
the RePrimAnd scheme, concluding with an outlook on the next steps.
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Chapter 1

Introduction

About 130 million years ago, in a far away galaxy, two merging neutron stars (NS) performed a
complex dance of whirling spirals around one another, generating cosmic quakes that shook the
fabric of spacetime itself, and soon after merging, produced one of the most powerful bursts in
the Universe. On August 17th, 2017, near the end of their second observing run, the Advanced
LIGO and Virgo observatories detected, for the frst time ever, the gravitational wave (GW)
signal from such a binary neutron star (BNS) merger event, named ‘GW170817’ [1]. This break-
through detection was also accompanied by rich variety of electromagnetic (EM) counterparts
including a short gamma-ray burst (SGRB) [2] and an ultraviolet/optical/infrared transient
consistent with a radioactively powered kilonova [3] (named GRB170817A and AT2017gfo,
respectively), drenching the entire EM spectrum from gamma-rays to radio [4]. Followed by
the most extensive world-wide campaign that led to these observations, the GW170817 event
kick-started the era of multi-messenger astrophysics with GW sources, opening a new window
to look at our Universe.

BNS merger events present a rich phenomenology with the potential to answer some long
standing puzzles in physics and astrophysics. For instance, the GW170817 observations ofered
crucial insights on the behaviour of matter at supranuclear densities by placing new constraints
on the NS equation of state (EOS) [5–8]. Morever, this event provided the smoking-gun evidence
revealing that BNS mergers constitute at least a fraction of the progenitors of SGRBs [2, 9–11]
(see also [12] for a review) and also serve as ideal sites for r-process nucleosynthesis [3, 13, 14].
GW170817 also allowed to independently estimate the Hubble constant [15], and aided as a
testbed for general relativity [16]. Most certainly, the plethora of science extracted from this
event has been unprecedented.

Along with a number of key discoveries, the GW170817 event also left behind some open
questions regarding the merger process as well as the mechanisms that produced the SGRB
and the accompanying kilonova. For example, the GW170817 merger most likely resulted in a
metastable (hypermassive or supramassive) NS which ultimately collapsed to a BH. However,
the survival time of the massive NS remnant before collapse, remains poorly constrained. This
further casts uncertainty on the nature of the central engine that powered the tightly collimated,
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relativistic jet responsible for the SGRB, which could have been either the rapidly rotating
strongly magnetized massive NS remnant (‘magnetar scenario’) or a spinning BH surrounded
by a magnetized accretion disk (‘BH-disk scenario’; see e.g., [17] for a review). Moreover, the
question of how such remnants can launch jets is an unsolved problem.

Another enduring mystery concerns the proper interpretation of the accompanying kilonova.
The AT2017gfo lightcurve strongly suggested that its source consisted of at least two distinct
ejecta components, an early ‘blue kilonova’, peaking � 1 day after merger at ultraviolet/blue
wavelengths, and a following ‘red kilonova’, peaking �1week after merger in the infrared band
(e.g., [3, 14, 18, 19]). However, the physical origin and properties of these two components are
still a matter of debate (see e.g., [20–24], and also [25, 26] for reviews).

In order to address such open questions, general relativistic magnetohydrodynamic (GRMHD)
simulations represent a key tool, including magnetic feld efects as a fundamental element (e.g.,
[27, 28] and refs. therein). In the past decade, various numerical relativity groups have success-
fully performed stable BNS simulations using state-of-the-art GRMHD codes currently available
in the market such as GRHydro [29], IllinoisGRMHD [30] and WhiskyMHD [31, 32], covering a
growing range of the parameter space, and adding more and more key physical ingredients
including temperature and composition dependent tabulated EOS, neutrino radiation, and/or
NS spin (e.g., [28, 33–40] and refs. therein). Following this trend, we have developed Spritz,
a new numerical code that solves the GRMHD equations in three spatial dimensions and on a
dynamical spacetime. Inheriting a number of basic features from its parent code WhiskyMHD,
Spritz is designed to serve as an astrophysical laboratory to study the physics of compact
objects.

This Thesis is composed of two parts. In the frst, we focus on the development of Spritz,
and a new technical scheme for GRMHD codes. In Chapter 2, we give a brief overview of
the ‘3+1’ formalisms describing the equations for the evolution of spacetime as well as the
conservative formulation of the GRMHD equations. We also outline state-of-the-art numerical
techniques including the high resolution shock capturing methods which are commonly adopted
to solve the aforementioned equations on a numerical grid. In Chapter 3, we introduce our
new numerical code Spritz. The code has been extensively tested against a number of 1D,
2D and 3D tests including the study of magnetized NSs. The results of these tests are also
described. This frst version of Spritz did not include any neutrino treatment. Inclusion
of neutrino efects is crucial, for instance, to accurately model the BNS merger ejecta and
their composition, which are in turn responsible for the kilonova emission. In Chapter 4, we
present details of the implementation of an approximate neutrino leakage scheme in Spritz,
based on the ZelmaniLeak code [41] which follows a ray-by-ray approach. This second Spritz
version also includes support for microphysical tabulated EOS, as well as incorporation of
higher order schemes. We also report the full set of tests that were performed in order to
check the implementation of the new infrastructure for the neutrino leakage scheme as well
as higher order methods. Modern fux-conservative GRMHD codes like Spritz, numerically
evolve a set of conservative equations based on ‘conserved’ variables which then need to be
converted back into the fundamental (‘primitive’) variables. The corresponding conservative-
to-primitive variable recovery procedure, based on root-fnding algorithms, constitutes one of
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the core elements of such GRMHD codes. In Chapter 5, we introduce a new robust, accurate
and efcient recovery scheme called RePrimAnd, and demonstrate its ability to always converge
to a unique solution via a mathematical proof. We also talk about the fne-grained error policies
provided by the scheme, derive analytical bounds for the error of primitive variables, and also
present the results of the testsuite performed on the stand-alone version of the scheme. Later,
we focus on the technical aspects of implementing the RePrimAnd scheme into Spritz, and
report a number of GRMHD tests in 3D, including critical cases such as a NS collapse to a
BH as the evolution of a BH-accrection disk system, which were performed to validate our
implementation.

The second part of the Thesis concentrates on the application of GRMHD codes WhiskyMHD
and Spritz to perform magnetized BNS merger simulations in order to address some of the
aforementioned open problems. For instance, the ‘BH-disk’ scenario is predominantly explored
in present magnetohydrodynamics simulations supporting magnetic felds as the main driver
behind jet formation (e.g., [42–44]), whereas the ‘magnetar scenario’ remains poorly studied.
In the frst part of Chapter 6, we extend the frst systematic investigations of [35] to explore the
latter case through magnetized BNS merger simulations with long post-merger evolution. Here,
we describe our fndings on the evolution of magnetic felds and their topology, NS remnant
structure and its rotation profle, GW signal, and implications on jet formation by such systems.
The second half of the Chapter is devoted to address the origin of the blue component of the
GW170817 kilonova. This component is associated with ejecta properties which constitute
low opacities ' 0:5 cm2/g, relatively high mass ' 0:015−0:025M� and velocities as high as
' 0:2−0:3 c (e.g., [3, 14, 18, 19]). Source candidates such as shock-driven dynamical ejecta
typically have relatively low mass (e.g., [45–47], but see also [23]), whereas, post-merger baryon
winds launched by the accretion disk surrounding a BH remnant have limited velocities �0:1 c

(e.g., [21]). Here, we explore a third promising candidate, which considers the magnetically
driven baryon winds arising from the massive NS remnant prior to its eventual collapse to a
BH (if any). Chapter 7 presents the frst magnetized BNS merger simulation performed using
the Spritz code along with RePrimAnd C2P. Here, we study instead the standard ‘BH-disk’
scenario, focussing on the prospects of jet formation by this system. Finally, in Chapter 8, we
collect our conclusions and the directions for future work.

Contribution

Below, I briefy summarize my contribution to the research work which led to the diferent
publications mentioned in this Thesis:

JVK1 In this work, I analyzed the data generated by the binary neutron star merger simulation
reported in the paper, produced some of the fgures, and contributed to the interpretation
of results and paper writing.

JVK2 My main contribution was in extensively testing of the Spritz code. For this, I added
code to setup the tests and performed the respective simulations. I also wrote part of the
paper and produced some of the fgures.
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JVK3 Here, I focussed on the data analysis of the binary neutron star merger simulation and
produced some of the fgures reported in the manuscript. I also contributed to the inter-
pretation of results and paper writing.

JVK4 I developed code for testing the new numerical scheme reported in the paper and per-
formed the corresponding simulations. I also produced some of the fgures and wrote
parts of the manuscript text.

JVK5 I gave a substantial contribution to the various tests presented in the paper, including
setup, running the respective simulations, analysing the results, and producing the fgures.
I was in particular responsible for all tests involving magnetic felds. I also contributed
to paper writing.

JVK6 The binary neutron star merger simulation performed by me using the WhiskyMHD code
was used as the initial data for performing the jet simulations with PLUTO code. I also
helped in the critical/novel step of importing data between the two codes.

JVK7 I led the work, developing the code necessary for implementing the scheme introduced
in JVK4 into the Spritz code, and setting up and performing all the test simulations
mentioned in the paper. I also led the paper-writing and produced all the plots.

JVK8 I generated the initial data which was used to perform the binary neutron star merger
simulations reported in the paper. I also contributed to the interpretation of results.

JVK9 This is an upcoming work led by me, for which I already performed the frst binary
neutron star merger simulation using the Spritz code along with the newly implemented
scheme of JVK4 and JVK7. Additional simulation and analysis to complete the work will
also be performed by me. Finally, I will lead the paper-writing.

Notation

We adopt the spacelike signature as (−;+;+;+), and use a system of units in which c = G =

M� = 1. Greek indices run from 0 to 3, whereas Latin indices from 1 to 3, and we adopt
the standard Einstein’s convention for the summation over repeated indices. The 3-vectors are
indicated with an arrow, while we use bold letters to denote 4-vectors and tensors.

Computational resources

All the numerical simulations discussed in this Thesis were performed on the clusters GALILEO
and MARCONI at CINECA (Bologna, Italy). We acknowledge the CINECA awards under
ISCRA and MoU INAF-CINECA initiatives, for the access to high performance computing
resources and various support grants. Part of the numerical computations have been made
possible through a CINECA-INFN agreement, by means of the allocations for TEONGRAV
and VIRGO groups.



Chapter 2

Mathematical and numerical
background

The non-linear nature of the coupled Einstein’s feld equations render them difcult to solve
analytically for systems such as compact binary mergers. Numerical relativity represents a
fundamental approach to recast these equations along with magnetohydrodynamical ones in
order to solve them on a numerical grid. In this chapter, we frst describe the 3+1 decom-
position approach adopted to arrive at numerical solutions of the Einstein’s equations. For
this, the equations are treated as an initial value problem (also called as a Cauchy problem),
and require evolving spatial hypersurfaces forward in time, starting from the initial data in
hand. Later, we describe the 3+1 formulation of general relativistic magnetohydrodynamics
(GRMHD) equations adopted for matter evolution. The fnal section of this chapter focuses
on various state-of-the-art numerical techniques required to solve both spacetime and matter
equations on a computer.

2.1 3+1 foliation of spacetime

The geometry of the 4-dimensional spacetime manifoldM is governed by the Einstein’s equa-
tions,

Gµν � Rµν −
1

2
gµνR = 8�Tµν ; (2.1)

where Gµν is the Einstein tensor, Rµν � Rρµρν is the Ricci tensor, R � Rµµ is the Ricci scalar,
Tµν is the stress-energy tensor, and gµν is the metric tensor. In order to solve these equations
numerically, the 3+1 decomposition formalism involves foliating the 4-dimensional spacetime
into 3-dimensional spacelike hypersurfaces, which are then evolved forward in time with a fxed
timestep. Particularly, the spatial feld quantities are frst defned on an initial time-slice which
is a spatial hypersurface. The coupled spatial and matter equations are then evolved from one
time-slice to another.
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Considering the 4-dimensional spacetime manifold M to be globally hyperbolic in nature,
we foliate it into a family of non-intersecting, 3-dimensional spacelike hypersurfaces Σt param-
eterized by the global time function t 2 R : M = R � Σt. We then defne n as the unit
4-vector orthonormal to the hypersurfaces Σt such that it is proportional to the gradient of
t as n = −�rt, where � is set following the normalization n � n = −1. Now, considering a
coordinate basis eµ = fe0; eig of 4-vectors, with the timelike coordinate basis e0 chosen such
that e0 �rt = 1 and other three spacelike basis 4-vectors tangent to the hypersurfaces such that
n � ei = 0, then n can be decomposed as

n =
e0

�
+
β

�
; (2.2)

where � and β = �iei are called the lapse function and shift vector respectively. The lapse
function � represents the rate of advancement of the physical proper time (�∆t) between two
neighbouring spatial hypersurfaces Σt and Σt+�t along the timelike unit normal vector n.
Whereas, the shift vector β is purely spatial and determines the change in the coordinates of
a spatial point when transporting from hypersurface Σt to Σt+�t. We can also defne a time
vector as

tµ = �nµ + �µ : (2.3)

The geometrical representation of the lapse function and the shift vector are shown in Figure
2.1. The spatial part of the spacetime 4-metric gµν can be defned as 
µν � gµν + nµnν where

Figure 2.1: Foliation of spacetime in 3+1 formalism. Between the two neighboring hypersurfaces Σt
and Σt+∆t, the proper time (�∆t) is computed using the lapse function along the normal from point
O to A, while the shift or the diference in the spatial coordinates is determined using the shift vector,
which is the diference between the vectors OA and OB.

γ is the projector orthogonal to n, satisfying γ ·n = 0. Using 
ij as the spatial 3-metric of the
hypersurface, the line element can then be decomposed into the 3+1 form as

ds2 = gµνdxµdxν

= −�2dt2 + 
ij(dx
i + �idt)(dxj + �jdt)

; (2.4)
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where � = 1=
p
−g00, �j = g0j , �i = 
ij�

j and �µ =
(
0; �i

�
. The spacetime metric components

can then be written in the matrix form as

gµν =

� −�2 + k�k2 �j
�i 
ij

�
; (2.5)

and the determinant of gµν , i.e. g, can be written in terms of the determinant of 
µν , i.e. 
 as

det(g) = det(−�2
): (2.6)

For developing a covariant formulation with respect to the spatial metric 
µν , which is a dy-
namical variable, we require a 3-dimensional covariant derivative associated with 
µν . To do
so, all the indices of the 4-dimensional covariant derivative rσ is projected onto Σt as

DµT
ν
ρ � 
σµ
νλ
δρrσTλδ ; (2.7)

where Tλδ is considered as an arbitrary tensor on the spatial hypersurface Σt. One can show
that the covariant derivative of spatial metric vanishes as Dµ
νρ = 0. Using this property, the
spatial connection coefcients (or the so called Christofel symbols) can be computed as

Γτµν =
1

2

τσ(−
µν,σ + 
σµ,ν + 
νσ,µ) : (2.8)

And the spatial Riemann tensor associated with spatial metric 
µν can then be written as

Rσµνρ�σ = (DµDν −DνDµ)�ρ ; (2.9)

where �µ is defned as a spatial vector feld on hypersurfaces Σt. In order to compute the spatial
components of the Riemann tensor, we use the Christofel symbols as

Rσµνρ = Γσµρ,ν − Γσνρ,µ + ΓδµρΓ
σ
νδ − ΓδνρΓ

σ
µδ ; (2.10)

and the spatial Ricci tensor can be computed by the contraction of this Riemann tensor as
Rµρ = Rνµνρ = Rµνρσ


νσ and the 3-dimensional scalar curvature as R = Rµµ. The 3-dimensional
Riemann tensor Rσµνρ represents the intrinsic curvature of the hypersurface Σt.

To understand the embedding of the 3-dimensional hypersurface Σt in the 4D spacetime
manifold M, we introduce the concept of the extrinsic curvature. Extrinsic curvature is the
covariant ‘time-derivative’ of the spatial 3-metric, and is given by the Lie derivative Ln of the
3-metric with respect to the normal vector nµ as

Kµν � −
τµrτnν = −1

2
Ln
µν ; (2.11)

where 
τµ is the projection operator defned as 
τµ � �τµ+nτnµ. After a few steps of calculations,
the following expression can be deduced

Ln
µν � nτrτ
µν + 
µτrνnτ + 
ντrµnτ = 2
τµrτnν : (2.12)
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By construction, the extrinsic curvature tensor is a symmetric spatial tensor which fulfls the
relations Kµν = Kνµ and Kµνn

ν = 0, and gives a measure of bending of the hypersurface Σt.
Kµν can also be expressed in terms of ‘acceleration’ as

Kµν = −nµaν −rµnν ; (2.13)

where aν � nτrτ = Dν ln�.
This gives us all the necessary ingredients required to derive the equations for the dynamic

variables 
µν and Kµν in terms of the spacetime Ricci tensor. Using its symmetry properties,
one can project Rµνρσ in three diferent ways. The Gauss equation is obtained when all its four
indices are projected into Σt, yielding

Rµνρσ +KµρKνσ −KµσKνρ = 
αµ

β
ν 


γ
ρ


δ
σ Rαβγδ : (2.14)

The Codazzi equation can be derived with three spatial projections and a contraction with nµ,
giving

DµKνρ −DνKµρ = 
γν 

α
µ


β
ρ n

δ Rγαβδ : (2.15)

And fnally, one can arrive at the the Ricci equation with two spatial projections and two
contractions as

LKµν = nσρ
βµ

γ
ν Rγσβρ −

1

�
DµDν�−Kρ

νKµρ : (2.16)

The above equations can then be used to derive the Arnowitt-Deser-Misner (ADM) formulation
after a few steps of calculation.

2.1.1 Arnowitt-Deser-Misner formulation

The ADM formulation introduced by R. Arnowitt, S. Deser, and C. W. Misner [48] was the
frst successful attempt towards the 3+1 decomposition, linking the 3D curvature quantities
with projections of the stress-energy tensor. To arrive at the ADM equations, we frst begin
with the following useful relation

DµV
ν = 
ρµrρV µ +KµρV

ρnν ; (2.17)

where V µ represents any spatial vector. Contracting (2.14) twice with the spatial metric, we
get

2nµnν Gµν = R+K2 −KµνK
µν : (2.18)

Considering the total energy density measured by a normal observer defned as � � nµnνTµν
and using (2.1), we can arrive at the equation for the Hamiltonian constraint after a few steps
of computation as

R+K2 −KijK
ij = 16�� : (2.19)

Similarly, the equations for the momentum constraint can be derived by contracting (2.15),
giving

DjK
j
i −DiK = 8�ji ; (2.20)
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where jµ � −
νµnρTνρ is called momentum density measured by a normal observer nµ. Then,
the evolution equation for the spatial metric can be simplifed as

@t
ij = −2�Kij +Di�j +Dj�i ; (2.21)

and the simplifed evolution equation for the extrinsic curvature can be written as

@tKij = −DiDj�+ �(Rij − 2KikK
k
j +KKij)− 8��(Sij −

1

2

ij(S − �)

+�kDkKij +KikDj�
k +KkjDi�

k) ;
(2.22)

where Sµν � 
µρ
νσT ρσ is the momemtum density as measured by an observer moving normal
to the spacelike hypersurfaces, and its trace is given as S � 
µνSµν . Equations (2.19), (2.20),
(2.21), (2.22) are collectively known as the ADM equations. The four constraint equations (2.19)
and (2.20) defne the conditions to be satisfed on each hypersurface Σt, and along with the six
evolution Equations (2.21) and (2.22), they make a set of ten equations for the components of
gµν . Due to the lack of robustness and stability properties needed for long-term simulations, this
formalism is not generally used in the state-of-the-art numerical codes. However, it provided
the frst fundamental stepping stone towards the development of modern day algorithms like
the BSSN formulation, which we discuss below.

2.1.2 BSSNOK formulation

In recent years, there had been a considerable efort by several groups in developing a new
formulation of the Einstein’s equations as a extension to the ADM formulation in order to
achieve long-term stability. In late 1980s, a conformal traceless reformulation of the ADM
equations was proposed, which was subsequently shown to be promising in terms of robustness
and stability for long-term numerical simulations incorporating diferent classes of spacetime
including NSs and BHs. The most commonly used version of this formulation is known as the
BSSNOK (or BSSN) formulation [49–51], coined using the initials of its authors (Baumgarte,
Shapiro, Shibata, Nakamura, Oohara and Kojima). Unlike the weakly hyperbolic1 nature of
the ADM equations, the BSSN formulation is strongly hyperbolic, which introduces auxiliary
variables to construct a well-posed system of equations. To briefy provide an outline of this
formulation (but more information on how it is implemented in numerical codes can be found
in [55, 56]), we frst consider the conformal transverse-traceless decomposition of the ADM
equations with conformal three-metric given as


̃ij = �2
ij and 
̃ij = �−2
ij ; (2.23)

where 
̃ � det (
̃ij) = 1 and the conformal factor � is defned as

� � [det (
ij)]
−1/6

= 
−1/6 : (2.24)
1Hyperbolicity is related to the concept of ‘well-posedness’ for a set of partial diferential equations. Well-

posed system of equations have solutions which depend continuously on the initial data, such that any small
change in the initial data leads to only small variation in the solutions. For further details on hyperbolicity, see
[52–54].
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Similarly, using the same conformal decomposition technique, the trace-free conformal extrinsic
curvature tensor can be written as Ãij = �2Aij where

Aij � Kij −
1

3

ijK : (2.25)

We now introduce Γ̃ such that the conformal coefcients (or conformal connection functions)
Γ̃i are defned as

Γ̃i � 
̃jkΓ̃ijk = 
̃ij 
̃kl@l
̃
jk ; (2.26)

wherethe Christofel symbols Γ̃ijk of conformal three-metric can be written as

Γ̃ijk = Γijk −
1

3

(
�ijΓ

n
kn + �ikΓnjn − 
jk
ilΓnln

�

= Γijk + 2
(
�ij@k ln�+ �ik@j ln�− 
jk
il@l ln�

�
:

(2.27)

This is computed using the relation @i ln� = − 1
6@i ln 
 = − 1

3Γnin. The three dimensional Ricci
tensor can be conformally decomposed in a similar way as Rij = R̃ij + R̃φij , such that

R̃ij � −
1

2

̃ln@l@n
̃ij + 
̃k(@j)Γ̃

k + Γ̃kΓ̃(ij)k + 
̃ln
�

2Γ̃kl(iΓ̃j)kn + Γ̃kinΓ̃kjl

�
; (2.28)

R̃φij �
1

�2

h
�
�
D̃iD̃j�+ 
̃ijD̃

kD̃k�
�
− 2
̃ijD̃

k�D̃k�
i
; (2.29)

where D̃i is the covariant derivative related to the conformal metric 
̃. Having defned all the
necessary ingredients, we can now recast the ADM equations using the conformal decomposition
for the evolution of variables such as Γ̃i, � and K, in order to obtain the following formulation
after a few steps of computation

@t
̃ij = −2�Ãij + 2
̃k(i@j)�
k − 2

3

̃ij@k�

k + �k@k
̃ij (2.30)

@tÃij = �2 [−DiDj�+ � (Rij − 8�Sij)]
TF

+ �k@kÃij + 2Ãk(i@j)�
k+

�
�
ÃijK − 2ÃikÃ

k
j

�
− 2

3
Ãij@k�

k

(2.31)

@t� =
1

3
��K − 1

3
�@i�

i + �k@k� (2.32)

@tK = −DiDi�+ �

�
ÃijÃ

ij +
1

3
K2 + 4� (�+ S)

�
+ �i@iK (2.33)

@tΓ̃
i = 
̃jk@j@k�

i +
1

3

̃ik@k@j�

j +
2

3
Γ̃i@j�

j − Γ̃j@j�
i − 2Ãij@j�+ �j@jΓ̃

i+

2�

�
Γ̃ijkÃ

jk − 3Ãij@j ln�− 2

3

̃ij@jK

�
− 16��
̃ijSj ;

(2.34)

where TTF
ij is the trace-free part of the 3-dimensional second rank tensor Tij , i.e. TTF

ij �
Tij − 
ijT kk =3. In addition to the constraint equations (2.19) and (2.20), the Equations (2.30
-2.34) together make the standard BSSN formulation. Note that we have moved from evolving
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12 variables (i.e., 
ij , Kij) in the ADM formulation to frst-order-in-time, second-order-in-space
system for 17 evolved variables (i.e., 
̃ij , Ãij , �, K, Γ̃i) in this formulation which is equivalent to
a hyperbolic system [57–59], guaranteeing the robustness and stability in numerical simulations.

The improved properties of this conformal traceless formulation of the Einstein equations
were discussed and compared to the ADM system in [55, 60]. Particularly, [60] reported
numerical tests of a number of strongly gravitating systems with convergent high-resolution
shock-capturing (HRSC) methods with total-variation-diminishing (TVD) schemes using the
equations from [61]. These tests included relativistic stars, black holes, boson stars, along with
analysis for gravitational waves. The results showed no numerical instabilities for sufciently
long times when using this formulation for the evolution of the various strongly gravitating
systems. However, it was also reported that this formulation requires higher grid resolution
than the ones needed in the ADM formulation in order to achieve the same accuracy. Since the
most desirable property in any long simulation is a small error growth-rate and error accumu-
lation, the BSSN equations based on the conformal traceless formulation is widely adopted as
the state-of-the-art form for the evolution of the feld equations.

2.1.3 Gauge conditions

In 3+1 decomposition formalisms, we can decide how to slice the 4-dimensional spacetime and
choose the coordinate system that fts best for our simulations in order to sustain stability and at
the same time, reduce the computational costs. Particularly, we can have diferent gauge choices
for the lapse function � and the shift vector �i, implying gauge freedom. For each hypersurface
Σt, we use a slicing condition for the lapse function and a spatial shift condition for the shift
vector. One should set the gauge conditions optimally so that (i) singularities in spacetime
could avoided, (ii) coordinate distortions taking place on the spatial grid are counteracted, and
(iii) computational costs are minimal. Below, we describe the possible choices for � and �i.

2.1.3.1 Slicing conditions

For the simplest choice, the geodesic slicing condition sets the lapse function to be unity, that
is:

� = 1 (2.35)

which implies that for the Eulerian observers, the worldlines are timelike geodesics with accel-
eration a = 0, and the proper time along the worldlines is equal to the coordinate time. In such
a case, the spacetime metric takes the form

gµνdxµdxν = −dt2 + 
ijdx
idxj : (2.36)

One major drawback of using this condition is that in non-uniform gravitational felds, it al-
lows the worldlines to converge and cross, leading to a coordinate singularity, which could be
undesirable for numerical simulations. Alternatively, we can foliate spacetime in such a way
that

K = 0; @tK = 0 ; (2.37)
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where the trace of the extrinsic curvature is set to zero and also does not change with time,
giving a vanishing mean curvature for the hypersurfaces Σt. This condition is called as the
maximal slicing condition since in such a case, the volume of any bounded portion defned
on the hypersurface tends to maximum [62]. For this condition, even if the extrinsic curvature
grows, the free-falling Eulerian observers do not focus, thus avoiding singular points. Therefore,
this condition is also called as the singularity-avoiding slicing condition. Utilizing the evolution
equations (2.21), (2.22) and the Hamiltonian constraint (2.19), in combination with the maximal
slicing condition, we get an elliptic equation

DiDi� = �
�
KijK

ij + 4�(�+ S)
�
; (2.38)

where D2 � 
ij@i@j is the three-metric Laplacian. However, solving this elliptic equation for
each hypersurface makes it computationally demanding, and thus deems this gauge condition as
an impractical choice. Current numerical codes implement rather a hyperbolic K-driver slicing
condition called as the Bona-Masso slicing [63], which has a generic form given as

@t�− �k@k� = −f(�)�2(K −K0) ; (2.39)

where K0 � K(t = 0) and f(�) > 0. This form is a generalization of many well-known slicing
conditions. Keeping f = 1, we get the harmonic slicing condition, while by setting f = q=�,
we recover the generic ‘1+log’ slicing condition where q is an integer (with value +2 as a usual
choice for most simulations discussed in this thesis) and � = h(xi) + ln 
q/2 with h(xi) defned
as a positive arbitrary time-independent function.

2.1.3.2 Shift conditions

For the simplest condition, the shift vector can be set to zero, i.e.,

�i = 0 : (2.40)

This setting might work for simple confgurations but could encounter difculties when dealing
with rotation leading to large values of the metric coefcients 
ij , or be inefcient when evolving
blackhole spacetimes.

Using a similar approach for defning the slicing conditions, we can defne elliptical, parabolic
and hyperbolic shift-conditions. The most commonly adopted are the Gamma driver shift con-
ditions which essentially act in order to drive Γ̃i to be constant. For example, the Gamma-
freezing prescription suggests to keep Γ̃i constant in time, imposing @tΓ̃i = 0, leading to an
elliptic equation for the shift vector. Whereas, the parabolic Gamma driver proposed by Alcu-
bierre and Brügmann [64] is given as

@t�
i = k@tΓ̃

i ; (2.41)

where k is a positive term. As the name suggestions, this condition leads to parabolic equation
for the shift vector. The hyperbolic Gamma driver introduced by Alcubierre et al [56], is given
as

@2
t �

i = k@tΓ̃
i − (� − @tk)@t�

i ; (2.42)
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where � is a dissipation term which helps to avoid strong oscillations in the shift vector due
to rapid and large gauge variations. This condition gives a hyperbolic equation for the shift
vector.

The ‘1+log’ slicing condition (2.39) together with the ‘hyperbolic Gamma-driver’ shift condi-
tion (2.42) are the most commonly used settings in modern-day numerical relativity simulations.

2.2 Relativistic hydrodynamics

Analogous to the 3+1 decomposition of 4D spacetime, we require a 3+1 formulation to evolve
the matter feld equations involving magnetic felds. In this Section, we frst discuss the basic
relativistic hydrodynamic (RHD) equations, followed by the GRMHD formulation implemented
in the numerical codes such as WhiskyMHD and Spritz.

2.2.1 General equations

Considering a perfect fuid, we frst defne the 4-dimensional rest-mass density current and the
energy-momentum tensor as

Jµ = �uµ (2.43)

Tµν = (�+ ��+ p)uµuν + pgµν = h�uµuν + pgµν ; (2.44)

where p stands for gas pressure, � for rest-mass density, uµ the four velocity of the fuid, � for
specifc internal energyand h = 1 + �+p=� is specifc relativistic enthalpy. The equation for the
conservation of matter current density i.e., the continuity equation, and for the conservation of
energy-momentum can be written respectively as

rµJµ = rµ (�uµ) = 0 (2.45)

rµTµν = rµ [h�uµuν + pgµν ] = 0 : (2.46)

In the past years, the numerical solutions of the RHD equations have been derived through
diferent approaches such as the non-conservative formulation from 1970s to the most recent
robust (conservative) formulation implemented in current numerical codes, which is discussed
in the following section.

2.2.2 Conservative formulation

In a generic frst order form, a system of partial diferential equations for relativistic hydrody-
namics can be written as

@tU + A � rU = S ; (2.47)

where U � (uµ; �; s) with s as specifc entropy, A = A(U) and S as the source term. The
equation yields a hyperbolic system if the matrix of coefcients of A is diagonalisable to con-
struct an eigen-value equation. If the matrix A(U) is the Jacobian of the fux vector F(U) with
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respect to the state vector U, i.e. A(U) � @F=@U, the homogeneous version of (2.47) can be
written in a conservative form, giving

@tU +rF(U) = 0 ; (2.48)

with U as the vector of conserved variables.
A quasi-linear system of equations is be said to be hyperbolic if the matrix A has N real

eigenvalues (where the dimension of the matrix is N �N) and admits a complete set of eigen-
vectors. If all the eigenvalues are real and distinct, the system is said to be strictly hyperbolic.

In order to better appreciate the importance of a quasi-linear hyperbolic system, we start
with the one-dimensional linear advection equation, which can be considered as the simplest
conservative and hyperbolic equation:

@tU + a@xU = 0 ; (2.49)

with initial conditions
U(x; t = 0) = U0(x) : (2.50)

The solution of this equation can be easily computed and is given as

U(x; t) = U0(x− at) (2.51)

for t � 0. Here, the initial data moves unaltered with velocity a either to the left (if a < 0) or
to the right (if a > 0), and the solution U(x; t) remains constant along the line x − at = x0,
which is called as the characteristics of the equation. When diferentiating U(x; t) along one of
the curves x0(t) = dx=dt to get

dU(x(t); t)

dt
=
@U

@t
+
@U

@x
x0(t)

=
@U

@t
+ a

@U

@x

= 0 ;

(2.52)

showing that U is constant along the characteristics. We could extend this notation to a
system of equations like, for e.g., (2.47) with S = 0. For a hyperbolic system with a full set of
eigenvectors Rl where l = (1; :::; N), and representing the N � N matrix (having columns as
Rl) with Q, we have

Λ = Q−1AQ (2.53)

where Λ = diag(�1; :::; �N ). Defning the characteristic variables as

V = Q−1U ; (2.54)

Equation (2.47) in 1-dimension with S = 0 becomes

@V

@t
+ Λ

@V

@x
= 0 : (2.55)
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This equation can be split into N independent scalar equations since Λ is diagonal,

@Vl
@t

+ �l
@Vl
@x

= 0 ; l = 1; :::; N : (2.56)

having the solutions given as
Vl(x; t) = Vl(x− �lt; 0) : (2.57)

By inverting Equation (2.54) as U = QV, we have the solution of original Equation (2.47) in
1-dimension (with S = 0), which can be broken down into components as

U(x; t) =

NX

l−1

Vl(x− �lt; 0)Al : (2.58)

This solution can be viewed as the superposition of N waves, each propagating without any
distortions with a speed given by its corresponding eigenvalue.

Another approach in integral form which admits non-smooth solutions for the partial difer-
ential equation such as (2.48) considers multiplying (2.48) with a smooth function � providing
compact support in space. For one spatial dimension case of (2.48), the integral form can be
written as Z 1

0

Z +1

−1
[�@tU + �@xF ] dxdt = 0 ; (2.59)

which, after integration by parts, gives
Z 1

0

Z +1

−1
[U@t�+ F@x�] dxdt = −

Z +1

−1
�(x; 0)U(x; 0)dx ; (2.60)

which is known as the weak formulation with U as a weak solution for all �. This allows the
solutions for discontinuities to be admitted as weak solutions for the conservation equations.

The Lax-Wendrof theorem (1960) highlights the need for the conservative formalism, stat-
ing: numerical schemes based on conservative formalism, if convergent, do converge to the
weak solution of the problem [65]. Whereas, the Hou-LeFloch theorem (1994) states that: non-
conservative schemes do not converge to the correct solution if a shock-wave is present in the
fow [66]. These statements strongly support implementation of fux-conservative formulations
for hydrodynamic equations in numerical simulations for obtaining convergence to correct so-
lutions. We emphasize more on the concept of convergence in Section 2.3.2.

2.2.3 General relativistic hydrodynamics

In the conservative form, the set of Equations (2.43)-(2.44) can be written in the following
hyperbolic, frst-order and fux-conservative form

1p−g f@t[
p

F 0(U)] + @i[

p−gF (i)(U)]g = S(U) ; (2.61)

where F(i)(U) stands for the fux-vector in the i-direction, S(U) are the source terms [67], andp−g = �
p

. Except for the dependence on stress-energy tensor, the source terms depend only
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on the metric and its derivatives. In order to recast Equations (2.43)-(2.44) into a conservative
form, the primitive hydrodynamical variables U � (�; vi; �) are mapped into a set of conserved
variables F0(U) � (D;Si; �) which are defned in the following way:

D � �W ; (2.62)

Si � �hW 2vi ; (2.63)

� � �hW 2 − p−D ; (2.64)

where vi is the fuid 3-velocity as measured by an Eulerian observer, W � (1− 
ijvivj)−1/2 is
the Lorentz factor, and � is the specifc internal energy. And the fux vectors and the source
terms in the fnal form are written as

F (i) = [D(vi − �i=�); Sj(v
i − �i=�) + p�ij ; �(vi − �i=�) + pvi]T ; (2.65)

S = [0; Tµν(@µgνj + Γδµνgδj); �(Tµ0@µ ln�− TµνΓ0
νµ)]T : (2.66)

Along with Equations (2.62)-(2.66), we require an equation of state (EOS) which relates the
pressure to the rest-mass density � and to the specifc internal energy �, in order to close the
system of equations for hydrodynamics. In Section 2.2.6, we describe in detail the diferent EOS
adopted in numerical codes. For more details on this formulation, we refer to [67, 68]. In order
to solve these equations on a computer, one needs to employ powerful numerical methods, in
particular high resolution shock-capturing (HRSC) schemes based on Riemann solvers. Such
methods are a fundamental tool for correctly representing shocks which are expected in various
astrophysical scenarios. We also need to employ a root-fnding algorithm in order to recover
the primitive variables from the evolved conserved ones, which is not a trivial step as it may be
subjected to numerical inaccuracies and could be computationally expensive. We discuss such
schemes in detail in Sections 3.1.3 and 4.2.3. However, the Valencia formulation proves to be
one of the favorable ones in terms of robustness and stability, and is widely used in modern
numerical codes.

2.2.4 General relativistic magnetohydrodynamics

In order to include the efect of electric and magnetic felds in the GRHD formalism, we start
with the Faraday electromagnetic tensor Fµν and its dual �Fµν = (1=2)�µνσδFσδ, which are
written as

Fµν = UµEν − UνEµ − �µνλδUλBδ ; (2.67)

�Fµν =
1

2
�µνλδFλδ = UµBν − UνBµ − �µνλδUλEδ ; (2.68)

where Eµ stands for the electric feld, Bµ is the magnetic feld, Uµ a generic observer’s four–
velocity, and �µνλδ = 1p−g [����] is the Levi-Civita pseudo-tensor which represents the vol-
ume element. Equations governing the evolution of electromagnetic felds are the well-known
Maxwell’s equations, given as

rν�Fµν = 0 ; (2.69)
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rνFµν = 4�J µ ; (2.70)

where J µ is the charge-current four-vector which is expressed using Ohm’s law as

J µ = quµ + �Fµνuν ; (2.71)

where q is the proper charge density and � represents the electrical conductivity. Under the
assumption of ideal MHD which considers a perfectly conducting fuid such that � ! 1 and
Fµνuν = 0 (implying that the comoving observer measures no electric feld), the electromagnetic
tensor and the Maxwell equations can be re-written solely in terms of the magnetic feld b

measured in the comoving frame, as

Fλδ = �µνλδbµuν ;
�Fµν = bµuν − bνuµ =

uµBν − uνBµ
W

; (2.72)

rν�Fµν =
1p−g @ν

�p−g (bµuν − bνuµ)
�

= 0 ; (2.73)

where b is the magnetic feld measured by a comoving observer, which can be written in terms
of the magnetic feld measured by an Eulerian observer B in the following way:

b0 =
WBivi
�

; bi =
Bi + �b0ui

W
; b2 � bµbµ =

B2 + �2(b0)2

W 2
; (2.74)

with B2 � BiBi. Considering B̃i � p
Bi where 
 is the determinant of 
ij , and ṽi � �vi−�i,
Equation (2.73) can be separated into time and spatial components, with the time component
giving the divergence-free condition as

@iB̃
i = 0 ; (2.75)

while the spatial component giving the magnetic-feld induction equations as

@tB̃
i = @j(ṽ

iB̃j − ṽjB̃i) ; (2.76)

Including the magnetic feld contribution, the stress-energy tensor can be redefned as

Tµν =
(
�h+ b2

�
uµuν + (p+ pmag) gµν − bµbν ; (2.77)

where p represents the gas pressure, pmag � b2

2 is the magnetic pressure, and h = 1 + � + p=�

stands for the relativistic specifc enthalpy.
The fnal expressions of the GRMHD equations in the fux-conservative form as described

by Equation (2.61) can be written as

F 0 =

0
BB@

D

Sj
�

Bk

1
CCA ; F i =

0
BB@

Dṽi=�

Sj ṽ
i=�+ (p+ b2=2)�ij − bjBi=W

�ṽi=�+ (p+ b2=2)vi − �b0Bi=W
Bkṽi=�−Biṽk=�

1
CCA ; (2.78)
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S =

0
BB@

0

Tµν(@µgνj − Γδνµgδj)

�(Tµ0@µ ln�− TµνΓ0
νµ)

0k

1
CCA ; (2.79)

where 0k = (0; 0; 0)T and

D � �W (2.80)

Sj � (�h+ b2)W 2vj − �b0bj (2.81)

� � (�h+ b2)W 2 − (p+ b2=2)− �2(b0)2 −D : (2.82)

As mentioned earlier, to complete this set of equations, we also need to add the EOS encoding
the behavior of matter at microphysical level.

2.2.5 Electromagnetic gauge conditions

In order to ensure the divergence-free constaint (2.75), one common approach is to evolve the
electromagnetic vector potential in a numerical code instead of magnetic feld variables. To do
so, we frst express magnetic feld B in terms of the vector potential A Considering r as a
purely spatial operator, we can write

B = r�A : (2.83)

Taking the divergence of B, we get

r �B = r � (r�A) = 0 : (2.84)

Therefore, by construction, evolving the vector potential A automatically satisfes (2.75).
We now introduce the four-vector potential as

Aν = nνΦ +Aν ; (2.85)

where Aν is the purely spatial vector potential, whereas Φ stands for the scalar potential. The
magnetic feld as measured by an Eulerian observer, can then be written as

Bi = �ijk@jAk ; (2.86)

and the induction equations (2.76) can be re-written in terms of Ai as

@tAi = −Ei − @i
(
�Φ− �jAj

�
; (2.87)

where �ijk = nν�
νijk is the 3-dimensional spatial Levi-Civita tensor.

However, the gauge freedom admitted by Maxwell’s equations renders the choice of the
four-vector potential Aν as not unique, and allows to set a suitable gauge.
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2.2.5.1 Algebraic gauge

The numerical codes that frst employed vector potential evolution equations to perform GRMHD
simulations considered using the algebraic gauge [69, 70], where the scalar potential satisfes
the following condition

Φ =
1

�

(
�jAj

�
: (2.88)

This choice leads to a much simplifed version of (2.87), reducing it to

@tAi = −Ei ; (2.89)

and therefore, does not necessitate the evolution of the scalar potential Φ.

2.2.5.2 Lorenz gauge

The Lorenz gauge is another choice that has been recently adopted in GRMHD simulations
[69], which is based on the constraint

rνAν = 0 ; (2.90)

which serves as an advection equation for A. In order to impose this constaint, this gauge
condition also requires to solve the following evolution equation for the scalar potential

@t (
p

Φ) + @i

(
�
p

Ai −p
�iΦ

�
= 0: (2.91)

The Lorenz gauge has proven to be advantageous over the algebraic gauge in GRMHD
simulations which utilize adaptive mesh refnement (AMR), for e.g., BNS and NSBH merger
simulations [69]. The use of algebraic gauge in such simulations with AMR leads to genera-
tion of static gauge modes which then cause interpolation errors at the refnement boundaries,
producing spurious magnetic felds near the boundary regions (see [69] for more details), ren-
dering this gauge choice completely unsuitable for BNS or NSMH merger simulations, and more
generally, for all simulations which involve magnetised matter crossing refnement boundaries.
A more robust gauge choice has been introduced in [71] with the name of generalized Lorenz
gauge, which considers

rνAν = �nνAν ; (2.92)

where �nνAν acts like a damping term in the advection equation for A. When employing this
gauge choice, the evolution equation for the scalar potential becomes

@t (
p

Φ) + @i

(
�
p

Ai −p
�iΦ

�
= −��p
Φ : (2.93)

2.2.6 Equation of state

To close the set of GRMHD equations, we require an equation of state (EOS) which provides
the relation between the gas pressure p, the rest-mass density � and the specifc internal energy
�. In numerical codes, depending on the (astro)physical problem in hand, various types of
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EOS are employed, such as analytical ones which describe the behaviour of an ‘ideal fuid’ or a
‘polytropic’ gas [72], to more complex ones which include fnite-temperature and composition
dependence which come in tabulated forms [73].

One of the major challenges in the feld of astrophysics is to understand the behavior of
matter in extremely high densities (�1015 g cm−3 or higher), such as in the core of NSs, which
are not reproducible in Earth laboratories. But NSs themselves serve as excellent laboratories
for studying the behaviour of high-density nuclear matter. The EOS of nuclear matter in the
outer and inner crust of NSs below saturation density �0, is well-constrained as described in
the models suggested by Baym, Pethick and Sutherland (1971) [74] and Negele and Vautherin
(1975) [75], which are also tested and verfed by the terrestrial experiments. Conversely, the
theoretical EOS models for supranuclear densities in the core are only partially constrained by
the empirical data, as currently the experiments cannot probe the the extreme conditions of the
NS core (see [76–78] for a review). Astrophysical measurements of NS radii, masses, tidal efects
and moments of inertia have the potential to provide information about the EOS properties,
and the distribution of pressure with respect to the nuclear density. Therefore, it is essential for
any GRMHD code to be able to handle various types of EOS with distinct compositions as well
as diferent treatments of nucleon interactions, in order to probe various theoretical models,
and support comparison studies between theoretical models and observations.

2.2.6.1 Polytropic EOS

The NS EOS models can be divided into soft, moderate and stif, depending on the pressure at a
given density. Usually, stifer EOS are characterized by higher pressure for a given density, while
the opposite are deemed as softer. As the pressure is higher in the case of a stifer EOS model,
it results in a NS with larger radius and lower central density as compared to the one derived
from a soft EOS having the same mass. A parametrized EOS based on specifying the stifness
of the star at diferent density intervals measured by the adiabatic index Γ = d logP=d log �, can
accurately represent many realistic EOS tables [79]. When Γ is taken as a constant, the EOS
is called as a polytrope, and consequently, the parametrized EOS becomes piecewise-polytropic.

A parameterized piecewise polytropic EOS has a generic form

p(�) = Ki�
Γi
i for �i � � � �i+1 ; (2.94)

where Γ = 1 + 1=N is the adiabatic exponent with N as the adiabatic index, and K is the
polytropic constant. Depending on the prescribed composition in the NS model, we defne each
threshold density �i and accordingly set the parameters of the EOS, i.e., Γi and Ki. By the
frst law of thermodynamics, the energy density e = �(1 + �) satisfes the relation

d
e

�
= −pd1

�
: (2.95)

Thus, for Γ 6= 1, and after a few steps of algebra, we have

e(�) = (1 + wi)�+
Ki

Γi − 1
�Γi ; (2.96)
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where
wi =

e(�i − 1)

�i − 1
− 1− Ki

Γi − 1
�Γi
ρi−1 : (2.97)

For each density interval with �i−1 being the dividing density between zones i − 1 and i, the
expression for the specifc enthalpy h is given by

h(�) =
e+ p

�
= 1 + wi +

Γi
Γi − 1

Ki�
Γi−1 ; (2.98)

and the internal energy eint is given by

eint(�) =
e

�
− 1 = wi +

Ki

Γi − 1
�Γi−1 ; (2.99)

and fnally, the sound velocity vs is written as

vs(�) =

r
dp

de
=

s
Γip

e+ p
: (2.100)

Such an EOS allows the treatment of NS matter as relativistic, degenerate, quantum Fermi
gases at zero temperature, and thus, is often referred to as a cold NS EOS. Also, due to its
isentropic nature, the evolution equation for � need not be solved when adopting this EOS for
numerical evolution.

2.2.6.2 Ideal gas EOS

Another standard EOS adopted in numerical simulations is the classical ideal gas EOS which
derives its name from the assumption that matter behaves like a classical (non-quantum), ideal
(considering only elastic, contact interactions, while long-range interactions are neglected) fuid,
which is given by the equation

p(�; �) = (Γ− 1) �� ; (2.101)

which is also alternatively referred to as the gamma-law EOS. This is a two-parameter EOS
since it depends on both � and �. Also, this EOS allows non-isentropic changes to occur, and
thus, one needs to solve the evolution equation for � when considering this EOS for numerical
evolution.

2.2.6.3 Hybrid EOS

It is also a common practice to hybridize an EOS, which consists of a cold part and a simple
thermal part, given as

p(�; �) = pcold(�) + (Γth − 1) �(�− �cold(�) ; (2.102)

�min = �cold(�) : (2.103)

This hybridized type of EOS, which includes a thermal component to describe matter evolution,
is often used in numerical relativity simulations.

Apart from the above, there also exist fnite-temperature composition dependent 3-parameter
EOS which we describe in detail in Section 4.1.2.
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2.3 Numerical methods

The non-linear nature of the relativistic hydrodynamic equations make them very difcult
to solve in an analytical way except for very few (simple) special cases. In particular, the
entire set of GRMHD equations consists of more than twenty frst-order coupled non-linear
equations, for which deriving a general, analytical solution is almost unfeasible. Therefore, we
turn to the numerical approaches to fnd their approximate solutions instead. In this section,
we discuss a few important numerical techniques, focusing on grid-based methods and schemes.
We begin with a basic introduction of the discretization method, and importance of stability
and convergence, followed by a brief description of the fnite diference scheme. Furthermore,
we discuss the high-resolution shock capturing (HRSC) methods, which have proven to be
accurate and efcient when dealing with shocks and discontinuities, and are most employed in
state-of-the-art GRMHD codes.

2.3.1 Discretization

For grid-based methods, we require a transition from the continuum initial-value problem to
the discrete one. Thus, in this case, we discretize the spacetime along with the hydrodynamical
variables, as well as the operators that act on them. In Figure 2.2, we show a schematic repre-
sentation of such a discretization method. The discretization for spacetime is done separately

Figure 2.2: Schematic representation of the discretization of spacetime for a initial value problem with
solutions Ωh with boundaries defned by @Ωh.
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for space and for time after foliation, in the following way:

tn � t0 + n∆t; n = 0; 1; : : : ; Nt (2.104)

xj � x0 + j∆x; j = 0; 1; : : : ; J ; (2.105)

where ∆t is the separation between two spacelike slices, ∆x is the grid mesh width while xj
represents the gridpoints. Similarly, a continuous function U(x; t) can be discretized into a set
of approximated values Unj as

U(x; t) � U(xnj ) = U(xj ; t
n) � Unj : (2.106)

For the continuous diferential operator, say L, we discretize as

L(U)! Lh(Unj ) : (2.107)

2.3.2 Stability, consistency and convergence

In order to achieve convergence to a solution, the numerical scheme must frst satisfy the
consistency and stability criteria. For a partial diferential equation (PDE) of a generic form

L(U) = F ; (2.108)

where F is a function of U alone, such that it could be discretized to the form

Lh(Unj ) = Fh ; (2.109)

a numerical scheme is considered to be consistent [80] if it satisfes

lim
h!0

�
(h)
j �

�
Lh(Unj )− Fh

�
− [L(U)− F ]! 0 ; (2.110)

where �(h)
j is called as the truncation error (or residual error). Therefore, in the limit of

vanishing grid-spacing, if the truncation error goes to zero, the scheme is said to be consistent,
and solutions computed by the scheme will approach the true PDE’s solutions. For the scheme
considering Lh(Unj ) = 0 with a discretized two-norm given by

kU(tn)k2 =

0
@ 1

J

JX

j=0

(Unj )2

1
A

1/2

; (2.111)

the stability criteria is given as

kUnk2 � C


U0




2
; for 0 � n∆t � T ; ∆x;∆t! 0 : (2.112)

Stability ensures that the errors decay with subsequent increase in time-steps. Finally, Lh is
said to satisfy the global convergence criterion if

lim
h!0

Chp = 0 ; (2.113)

where p is the global convergence order. In summary, the solutions obtained through the
discretization process should pass the consistency and stability conditions in order to obtain
convergence.
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2.3.3 Finite diference schemes

In order to fnd the solutions of non-trivial PDEs in GRMHD, we have a variety of approximate
approaches in the market, amongst which the fnite diference (FD) schemes play an important
role and are most commonly adopted. After discretization, consider a diferential equation for
the function u(xj ; t

n) defned at position xj and time tn. We can then express the solution of
this equation as a Taylor expansion around (xj ; t

n) such that the derivatives in the expansion are
computed from the diference equations that evaluate diferences in the neighboring grid-points.
This is the basic concept followed in the grid-based FD methods.

2.3.3.1 Courant-Friedrichs-Lewy condition

Before describing the diferent approaches in FD schemes, let us frst shed some light on an
important criterion required to ensure the convergence of an FD scheme. In particular, to have
stabilitiy, we must choose an appropriate time-step interval ∆t for evolution. To understand
the physical perspective, imagine a wave moving across the spatial grid and say we need to
compute its amplitude after each time step. In this case, the computation speed, or in other
words, propagation speed of the solutions to the PDE, should be less than the characteristive
wave speed defned by the grid spacing ∆x=∆t. The Courant-Friedrichs-Lewy (CFL) condition
[81] defnes this constraint as

�
∆t

∆x
� CCFL ; (2.114)

where CCFL is a constant factor usually set to a value less than 1, and � is the characteristic
speed of the equations. In Figure 2.3, we show a comparison between the CFL-stable and
CFL-unstable schemes.

Figure 2.3: Schematic representation of the CFL criterion. Left: Stable time integration is enabled as
∆t=∆x is small enough. Right: ∆t=∆x is too large for stable time integration performed for points
j− 1, j and j+ 1, but is small enough for stable time integration performed for points j− 2 upto j+ 2

(with unit step increase). Figure taken from [68].
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2.3.3.2 Forward, backward and centered diference schemes

Consider the spatial and temporal grid spacings represented as ∆x � xj+1 − xj and ∆t �
tn+1 = tn respectively. The Taylor expansion (in frst order) along the spatial direction can
then be written as

u(xj+1; t
n) = u(xj ; t

n) + @xu(xj ; t
n) +O(∆x2) ; (2.115)

u(xj−1; t
n) = u(xj ; t

n)− @xu(xj ; t
n) +O(∆x2) ; (2.116)

Using these equations, we can defne the forward and backward Euler schemes respectively as

@xu(xj ; t
n) =

u(xj+1; t
n)− u(xj ; t

n)

∆x
+O(∆x) ; (2.117)

@xu(xj ; t
n) =

u(xj ; t
n)− u(xj−1; t

n)

∆x
+O(∆x) ; (2.118)

Considering Equations (2.115) and (2.116) up to second order expansion, we have

u(xj+1; t
n) = u(xj ; t

n) + ∆x @xu(xj ; t
n) +

∆x2

2
@2
xu(xj ; t

n) +O(∆x3) ; (2.119)

u(xj−1; t
n) = u(xj ; t

n)−∆x @xu(xj ; t
n) +

∆x2

2
@2
xu(xj ; t

n) +O(∆x3) ; (2.120)

and subtracting (2.120) from (2.119), we get

@xu(xj ; t
n) =

u(xj+1; t
n)− u(xj−1; t

n)

2∆x
+O(∆x2) ; (2.121)

which represents a centered diference scheme. Similarly, in this way, one can compute the
higher-order approximation of such derivatives.

2.3.3.3 Upwind scheme

Another frst order scheme for computations in the temporal direction from which the char-
acteristic information propagates, is called upstream or upwind scheme. Consider again a
one-dimensional scalar advection equation of the form similar to (2.49)

@tu+ �@xu = 0 ; (2.122)

with � as the advection velocity and u = u0(x−�t) as the general solution, the Taylor expansion
of this solution around (xj ; t

n) can be written as

u(xj ; t
n + ∆t) = u(xj ; t

n) + @tu(xj ; t
n)∆t+O(∆t2) ; (2.123)

which after discretization, becomes

u(xj ; tn+1) = u(xj ; tn) + @tu(xj ; tn)∆t+O(∆t2) : (2.124)



2.3 Numerical methods 26

One can isolate the time and spatial derivative of this equation, obtaining the frst-order FD
approximation of the time derivative as

@tu(xj ; tn) =
u(xj ; tn+1)− u(xj ; tn)

∆t
+O(∆t) ; (2.125)

while the spatial derivative can be written using either Equation (2.117) or (2.118). While the
approximation for the spatial derivative encounters slight ambiguity, the time derivative, which
can be resolved thinking that the each point in the initial solution translates to a new one
x+�∆t with time interval ∆t. Then, depending on the direction, and the sign of the advection
velocity �, we can consequently write (2.122) as

u(xj ; tn+1)− u(xj ; tn)

∆t
= −�

�
u(xj ; tn)− u(xj−1; tn)

∆x

�
+O(∆t;∆x) for � > 0 ; (2.126)

u(xj ; tn+1)− u(xj ; tn)

∆t
= −�

�
u(xj+1; tn)− u(xj ; tn)

∆x

�
+O(∆t;∆x) for � < 0 : (2.127)

For the new timelevel, this scheme would then lead to the solution given as

u(xj ; tn+1) = u(xj ; tn)− �(u(xj ; tn)− u(xj−1; tn)) +O(∆t2;∆x∆t) if� > 0 ; (2.128)

u(xj ; tn+1) = u(xj ; tn)− �(u(xj+1; tn)− u(xj ; tn)) +O(∆t2;∆x∆t) if� > 0 ; (2.129)

where � � �(∆t=∆x). Figure 2.4 provides a brief schematic of the upwind scheme.

Figure 2.4: Schematic representation of the upwind scheme. Here, the dashed line represent the time
step, while the flled grid-points are used by the discrete diferential operator. Figure taken from [54].

2.3.3.4 Explicit and implicit schemes

Using the upwind scheme as an example, we can now defne implicit and explicit schemes. An
explicit scheme is a scheme for which the quantities at the n + 1 time step can be computed
directly from combinations of the quantities at n or previous time steps. In particular

u(xj ; tn+1) = F
(
u(xj ; tn); u(xj�1; tn); ::::; u(xj ; tn−1); u(xj�1; tn−1); :::

�
: (2.130)
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Whereas, an implicit scheme depends on quantites defned at the same time step or on successive
time steps, for e.g.,

u(xj ; tn+1) = F
(
u(xj ; tn); u(xj�1; tn); ::::; u(xj ; tn+1); u(xj�1; tn+1); :::

�
: (2.131)

Implicit schemes prove to be advantageous since they are not necessarily required to satify the
CFL stability criterion. However, they do need a general solution for evolution, which makes
them computationally more expensive than explicit schemes. From defnition, one can see that
the upwind scheme is an explicit scheme.

2.3.3.5 Forward-time centered-space scheme (FTCS)

Starting again with the advection equation (2.122), and using Equations (2.121) and (2.126),
we can arrive at the algorithm

u(xj ; tn+1) = u(xj ; tn)− �

2
(u(xj+1; tn)− u(xj−1; tn)) +O(∆x2) ; (2.132)

which is called as the Forward-time centered-space (FTCS) scheme. It can be shown that this
scheme turns out to be unstable [54]. In particular, after performing a Von Neumann stability
check by considering the time evolution of the eigenmode of u with the maximum amplitude,
it can be noticed that this eigenmode increases exponentially in amplitude with time, resulting
the numerical solution to blow up, rendering this scheme to be unft for numerical simulations.

2.3.3.6 Leap-Frog, Lax-Friedrichs, and Lax-Wendrof schemes

The Leap-Frog scheme is a stable second order scheme, both in time and spatial derivatives, in
which, after following the similar approach to the advection equation, we get

u(xj ; tn+1) = u(xj ; tn−1)− �(u(xj+1; tn)− u(xj−1; tn)) +O(∆x2) : (2.133)

The Lax Friedrichs scheme is a frst order scheme, which is an improvised version of the FTCS
scheme where the term unj in the solution is substituted by its spatial average, so that the
expression to represent the advection equation (2.122) is given as

u(xj ; tn+1) =
1

2
(u(xj+1; tn) + u(xj−1; tn))− �

2
(u(xj+1; tn)− u(xj−1; tn)) (2.134)

+O(∆t2;∆2x∆t)

This scheme is known to be conditionally stable which satisfes the CFL condition.
A second-order extension of the Lax-Friedrichs, the Lax-Wendrof scheme is an accurate

two-level scheme derived by combining the Leap-Frog and the Lax-Friedrichs scheme, which
can be realised in terms of two ‘half-steps’. The frst half-step is the Lax-Friedrichs one, for
xj� 1

2
spatial positions and tn+ 1

2
half time-level

u(xj� 1
2
; tn+ 1

2
) =

1

2
(u(xj ; tn) + u(xj�1; tn))� �

2
(u(xj�1; tn)− u(xj ; tn)) (2.135)

+O(∆x2) :
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The second half-step is the leapfrog one, such that for the new time level tn+1, we obtain the
following solution, also using (2.135)

u(xj ; tn+1) = u(xj ; tn)− �(u(xj+ 1
2
; tn+ 1

2
)− u(xj− 1

2
; tn+ 1

2
)) +O(∆x2) (2.136)

= u(xj ; tn)− �

2
(u(xj+1; tn)− u(xj−1; tn)) +

�

2
(u(xj+ 1

2
; tn) (2.137)

− 2u(xj ; tn) + u(xj− 1
2
; tn)) +O(∆x2) :

Therefore, the Lax-Wendrof scheme can be written as a one-level scheme as shown in the above
equation, upholding the stability by successfully implementing the CFL criterion.

In Figure 2.5, we provide a schematic comparing FTCS, leap frog, Lax-Friedrichs and Lax-
Wendrof schemes.

Figure 2.5: Comparison between leap-frog (top-left), Lax-Wendrof (top-right), FTCS (bottom-left)
and Lax-Friedrichs (botton-right) schemes. Here, the dashed line represent the time evolution, while
the flled grid-points are the ones used by the discrete diferential operator. Figure adopted from [54].

2.3.4 Godunov methods

In order to deal with discontinuities efciently, another class of methods were introduced, frst by
Godunov in 1959 [82]. The original approach considered approximating the continuous solutions
with piece-wise constant functions, creating a series of Riemann problems (see Section 2.3.4.1
for more details) at the grid interfaces, followed by evaluating the numerical fuxes.
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Let us start with considering a single computational cell of discretized spacetime and let Ω

be a region of spacetime bounded by six time-like surfaces Σxj−�x/2 and Σxj+�x/2 and two
space-like hypersurfaces Σt and Σt+�t. Expressing the integral form of Equation (2.61) as

Z
@t(
p

F 0)dΩ =

Z
@i(
p−gF i)dΩ +

Z p−gSdΩ ; (2.138)

where dΩ � dtdxdydz, this equation can be recast into the following form:

(∆V F̄ 0)jt+�t − (∆V F̄ 0)jt =−
Z

�xj+∆x/2

(
p−gF x)dtdydz +

Z

�xj−∆x/2

(
p−gF x)dtdydz

−
Z

�yj+∆y/2

(
p−gF y)dtdxdz +

Z

�yj−∆y/2

(
p−gF y)dtdxdz

−
Z

�zj+∆z/2

(
p−gF z)dtdxdy +

Z

�zj−∆z/2

(
p−gF z)dtdxdy

+

Z p−gSdΩ ; (2.139)

where F̄ 0 is defned as
F̄ 0 � 1

∆V

Z

�V

p

F 0dxdydz ; (2.140)

along with

∆V �
Z xj+�x/2

xj−�x/2

Z yj+�y/2

yj−�y/2

Z zj+�z/2

zj−�z/2

p

dxdydz : (2.141)

Once the solutions to Riemann problems are derived, the numerical fuxes at the cell-interface
can be computed as the time averages of the fuxes, written as

F̄ i � 1

∆t

Z t+�t

t

p−gF idt : (2.142)

Dividing Equation (2.139) by ∆V and ignoring the source term, we get

(F̄ 0)jt+�t − (F̄ 0)jt
∆t

=
X

i=1,3

(F̄ i)jxj−�x/2 − (F̄ i)jxj+�x/2

∆x
: (2.143)

Based on Godunov’s method, the spatial fuxes can be re-written as

(F̄ i)jxj+�x/2 �
1

∆t
F̂ i(ũ(xj+1; tn); ũ(xj ; tn)) (2.144)

(F̄ i)jxj−�x/2 �
1

∆t
F̂ i(ũ(xj ; tn); ũ(xj−1; tn)) ; (2.145)

where ũ denotes the piecewise constant function, and the solutions to the Riemann problem
are represented by F̂ (ũ(xj+1; tn); ũ(xj ; tn)) and F̂ (ũ(xj ; tn); ũ(xj−1; tn)), computed at the in-
terfaces between the cells xj , xj+1 and xj−1, xj , respectively.
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2.3.4.1 Riemann problems

A Riemann problem consists of a specifc intial value problem related to a conservative equa-
tion along with a piecewise constant initial data having a single discontinuity in the domain of
interest. Discontinuities are a natural result of shocks encountered in many physical scenarios,
and are expected to arise when solving nonlinear evolution equations. Furthermore, when sub-
stituting the hydrodynamical functions and spacetime terms with piecewise constant functions,
we can form a series of discontinuities due to discretization. Therefore, we end up with a set of
Riemann problems with discontinuous initial data. For example, for a discontinuity present at
x = 0, the initial data for a variable U(x; t) can be written as

U0 =

�
UL if x < 0

UR if x > 0
: (2.146)

The solution to Riemann problems can be derived [83, 84] but even then, simplifying the evo-
lution procedure might be non-trivial. Typically, in hydrodynamics, the solution of a Riemann
problem consists of three elements: a single contact discontinuity (CD) and two waves moving
away from this discontinuity. Depending on the initial conditions, the two waves moving away
can either be rarefaction waves (RW) or shock waves. Figure 2.6 shows a schematic view of the
solution of Riemann problem.

Figure 2.6: Schematic representation of a Riemann problem along with its solution. Figure taken from
[85].

2.3.5 High-resolution shock capturing methods

High-Resolution Shock Capturing (HRSC) schemes are conservative numerical methods that
converge to a weak solution in presence of a discontinuity, which can accurately reproduce
the discontinuous features of the solution, guaranteeing the conservation of the set of conserved
variables (considering sources as zero). These methods can be further divided into fnite-volume
conservative methods and fnite diference methods, with the latter consisting of upwind and
central schemes, which have been discussed in previously.
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The HRSC methods used in the modern numerical codes usually follow a three step algo-
rithm:

• implementation of a reconstruction method to interpolate the values to the left and right
of the cell boundaries;

• employing an approximate Riemann solver ;

• using a time-update algorithm, usually a second or higher order Runge-Kutta method.

2.3.5.1 Reconstruction methods

The simplest reconstruction technique is based on the Godunov scheme which replaces the
function u with its spatial average inside each grid cell. However, this rough approximation
leads to less accurate results, thus demanding more sophisticated methods.

Linear reconstruction

The frst improvisation uses a linear function to approximate u within each cell j, such that

u(xj ; tn) � unLIN(x) � ūnj +mn
j (x− xj) ; (2.147)

where the slope mn
j could be computed using, for example, a forward, backward or a centered

diference scheme as

mn
j =

ūnj+1 − ūnj
∆x

Forward; (2.148)

mn
j =

ūnj − ūnj−1

∆x
Backward; (2.149)

mn
j =

ūnj+1 − ūnj−1

2∆x
Centered : (2.150)

The computed values of unLIN at cell interfaces then serve as piecewise constant initial data
for Riemann problems which could then be solved using an exact or an approximate Riemann
solver. However, the presence of large gradients in u may lead to large values of the computed
slope mn

j , causing unphysical oscillations in the reconstructed function at cell boundaries. To
deal with this difculty, a slope limiting fx is often introduced. A common approach is to frst
defne the total variation of unLIN as

TV (unLIN) �
X

i

junLIN(xj)− unLIN(xj−1)j ; (2.151)

which should not increase with time, following the condition

TV (un+1
LIN ) � TV (unLIN) ; (2.152)

Techniques that satisfy the above equation are commonly known as total-variation-diminishing
(TVD). In order to fulfll this condition, the following choices for the slopemn

j are often adopted:
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� mn
j = MINMOD

 
�unj −�unj−1

�x ;
�unj+1−�unj

�x

!
;where

MINMOD(a; b) =

8
<
:

a if jaj < jbj and ab > 0

b if jaj > jbj and ab > 0

0 if ab < 0

: (2.153)

Here, MINMOD chooses the minimum between the forward and backward slopes ((2.148)
and (2.149)) in case both have the same signs, whereas in case of opposite signs, it recovers
the default Godunov scheme.

� mn
j = MINMOD

 
�unj+1−�unj−1

�x ; 2
�unj −�unj−1

�x ; 2
�unj+1−�unj

�x

!
;

where MINMOD is extended to return the quantity whose absolute value is minimum
in case all the three quantities have the same sign, while it returns zero for any other
case. This technique is also called as the monotonised central diference method or MC
limiter.

Piecewise-parabolic reconstruction

The piecewise-parabolic method (PPM) is a high-order reconstruction method which, as the
name suggests, adopts a parabolic interpolation of the quantities inside a cell. Figure 2.7 shows
how the values are interpolated at the boundaries (depicted in solid red boxes) via PPM, yielding
the left and right states of the Riemann problem. First, we start with the spatial average of a
general quantity U for ∆x = xj+ 1

2
− xj− 1

2
, given as

Unj =
1

∆x

Z x
j+ 1

2

x
j− 1

2

U(x; tn)dx : (2.154)

Then, introducing an interpolating parabola equation P(�), a function of the variable �,

P(�) = a�2 + b�+ c ; (2.155)

where � = (x−xj−1/2)=∆x and a,b,c are vector coefcients. In order to ensure the conservative
character of the reconstruction, the above equation is accompanied by a constraint equation
given as

Unj =

Z 1

0

P(�)d� : (2.156)

These equations provide two degrees of freedom, namely U−j and U+
j , which are the values

of P(�) at the left and right boundaries of the cell, which are then used in determining the
vector coefcients a, b and c. Consequently, to derive these vector coefcients, we impose the
condition such that they remain within the range of two adjacent values Unj and Unj+1, and for
the smooth parts, we have the condition U−j+1 = U+

j = Unj+1/2 for a continuous interpolation
function at xj+1/2, with P(�) as a monotone in each cell.
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Figure 2.7: Schematic diagram representing the PPM reconstruction method. Here, the values repre-
sented by the red solid box, are extrapolated at each cell boundary, providing the left and right states
of the Riemann problem. Figure taken from [54].

2.3.5.2 Approximate Riemann solvers

The Riemann problem can be numerically solved to any required accuracy, however, for very
accurate or exact solutions, the computations turn out to be numerically expensive. Therefore,
in modern day simulations, computationally less expensive and reasonably accurate approximate
Riemann solvers are adopted. These solvers can be further classifed into complete Riemann
solvers consisting of all characteristic felds of the exact solution and incomplete Riemann
solvers, which contain only a subset of the characteristic felds. Here, we discuss a particular
incomplete Riemann solver called the HLLE solver, which is commonly used in state-of-the-art
GRMHD codes.

HLLE

Initially introduced by Harten, Lax and van Leer (1983) [86] and later revised by Einfeldt (1988)
[87], the HLLE formulation assumes a two wave-structure for the Riemann problem and after
the dissolution of this local Riemann discontinuity, considers that the two waves that propagate
in opposite directions with velocities vL and vR, with a single, constant state UHLLE in between
as

U(x; t) =

8
<
:

UL if x=t < vL
UHLLE if vL < x=t < vR

UR if x=t > vR

; (2.157)
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Figure 2.5 provides a better intuition of this framework. Starting with the homogeneous con-
servation equation @tU +rF (U) = 0, and setting FL = F (UL) and FR = F (UR), after a few
steps of algebra, we get

UHLLE =
vRUR − vLUL + FL − FR

vR − vL
: (2.158)

By enforcing that the intial conditions propagate with a fnite speed at the cell-boundaries, we
can defne

F̃L = FL + vL(UHLLE − UL) ; (2.159)

F̃R = FR + vR(UHLLE − UR) ; (2.160)

(2.161)

Subsequently, by substituting one of the above two conditions into the UHLLE expression, we
get

FHLLE =
vRFL − vLFR + vRvL(UR − UL)

vR − vL
; (2.162)

where FHLLE is the defned HLLE fux, which can be further used into a Godunov method as

F (x; t) =

8
<
:

FL if x=t < vL
FHLLE if vL < x=t < vR

FR if x=t > vR

; (2.163)

The HLLE solver is a standard solver used in modern simulations, which is efective both for its
simplistic nature and for the structure of its implementation. It has shown to work well when
dealing critical sonic rarefactions, but can fall short while encountering contact discontinuities
as it neglects the middle waves in the solution. Thus, it needs to be coupled with an algorithm
to accurately calculate the wave speeds vL and vR in order to get the solution for the fux.

Lax-Friedrichs

If we assume the left and right wave speeds to be equal, i.e., vL = vR = v, the HLLE fux given
by Equation (2.162) can be reduced to

FLxF =
FR − FL + v(UR − UL)

2
; (2.164)

which is called as the Lax-Friedrichs fux [88]. This second-order scheme is considered to be
more dissipative than HLLE, however, it can be useful when dealing with very strong shocks
and pressure jumps.

2.3.5.3 Time update: method of lines

The reconstruction methods ensure that a prescribed order of accuracy holds when employing
the discretized representation of the spatial diferential operator. However, when evolving from
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one time level to another, retaining the high-order accuracy might not be trivial. To do so
efciently, the method of lines (MoL) technique [88, 89] is usually adopted. In this approach,
discretization of the continuum equations is considered only in space, and the resulting set
of ordinary diferential equations (ODEs) are then solved numerically. This allows minimal
coupling between the hydrodynamics and spacetime solvers, allowing for more independence
during the implementation of diferent schemes.

In order to evolve the system in time, we frst consider the values of conserved variables in
each numerical grid point F 0

i,j,k to be represented as the cell average F̄ 0
i,j,k defned in Equation

(2.140). The time evolution of this cell-averaged quantity can be written using Equation (2.143)
as

dF 0
i,j,k

dt
=

dF̄ 0
i,j,k

dt
=
X

l=1,3

(F̂ l)jxli,j,k−�x/2 − (F̂ l)jxli,j,k+�x/2

∆xl
+ Si,j,k ; (2.165)

which now also includes the source terms Si,j,k to be computed from the primitive variables
Ui,j,k. This gives a system of ODEs which can now be solved with standard ODE solvers such
as fourth order Runge-Kutta. For computing the right hand of the above equation, a generic
algorithm followed by a GRMHD code is to separately compute the source terms S(U) from the
primitives at all grid points, and side-by-side compute for each direction xl, (i) the reconstructed
quantites UL and UR at boudary interfaces, (ii) then derive solutions at cell interfaces using the
approximate Riemann solver for Riemann problems having intial data as UL,R, (iii) and fnally,
compute the fux F̂ l accross these interfaces. Once the conserved variables F 0(U) are derived
for the new time step, the primitive variable recovery procedure is executed to compute the
primitives for this new time step, and then the stress-energy tensor is determined for use in the
Einstein equations.



Chapter 3

The Spritz code

GRMHD codes provide the essential framework to study the physics of compact objects and
explore the various astrophysical phenomenona related to them. In most cases, the GRMHD
equations are to be evolved along with dynamical spacetimes, and a number of GRMHD codes
such as WhiskyMHD [90], GRHydro [91] and IllinoisGRMHD [92] which work in tandem with the
publicly available numerical infracture Einstein Toolkit [93, 94], have been developed over the
years for this purpose. These codes have also been employed, in particular, to study compact
binary mergers (e.g., [32, 95–97], JVK1) and accretion onto supermassive BHs (e.g., [71, 98–
103]). In the case of compact binary mergers, GRMHD codes have been used to simulate binary
neutron star (BNS) and neutron star - black hole (NSBH) mergers in order to study the efects
of magnetic felds on the merger dynamics, matter ejection, jet formation, gravitational wave
(GW) and electromagnetic (EM) emission (e.g., [28, 34, 35, 37, 43, 104, 105], JVK1).

In this Chapter, based on the work done in JVK2, we present our new fully GRMHD
numerical code, named Spritz, that solves the GRMHD equations in 3D and on dynamical
spacetimes. The code inherits a number of basic features from its parent code WhiskyMHD
[90], and also takes advantage of schemes implemented and tested in the publicly available
state-of-the-art codes GRHydro [91] and IllinoisGRMHD [92]. WhiskyMHD has already been used
successfully to simulate BNS mergers [32, 34, 106–111], JVK1 and accretion onto supermassive
black hole binaries [112]. However, its application has been limited to the use of simple piecewise
polytropic EOS, and it also does not take into account neutrino efects (emission or absorption).
Moreover, WhiskyMHD evolves the vector potential (instead of the magnetic feld) on a non-
staggered grid, resulting in undesired efects on the evolution.

The Spritz code can instead handle any equation of state for which the pressure is a
function of rest-mass density, temperature and electron fraction, and therefore, can also use
modern tabulated equations of state. This has been possible by following a similar approach
used in the GRHydro code, which can use fnite temperature tabulated EOS. However, GRHydro
still lacks a magnetic feld implementation able to handle correctly the use of mesh refnement
techniques unless proper remedies (like dissipation) are applied. Whereas, Spritz implements
a staggered version of the vector potential formulation in a formalism that recovers the original

36
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conservative fux-CT approach implemented in the original version of WhiskyMHD. The use of
a new equation of state driver also provides the platform to implement neutrino radiation in
Spritz via a leakage scheme (see Chapter 4 for more details).

Here, we frst start with the brief mention of the formalisms and numerical schemes used with
Spritz. We then present a number of extensive 1D, 2D, and 3D tests, including a comparison
between staggered and non-staggered schemes for the vector potential evolution, and a rather
demanding 3D spherical explosion test, which Spritz passes successfully.

The latest version of the Spritz code is publicly available on Zenodo [113].

3.1 Numerical implementation

In this Section, we summarize the theoretical background and the numerical methods imple-
mented in Spritz. For an extensive theoretical introduction to numerical relativity as well as
relativistic hydrodynamics, we point the reader to references [54, 68, 114].

Various numerical implementations in Spritz are largely based on the ones employed in
WhiskyMHD [32, 90], where the 3+1 formulation of the Einstein’s equations is adopted. In this
framework, the form of the line element used is given by Equation (6.3), and the coordinate
setting considers x0 � t. Spritz is based on the conservative formulation described by Equa-
tions (2.61), (2.78)-(2.82), which is presented in [115] and is the GRMHD version of the original
Valencia formulation [116, 117]. In order to maintain the divergence free constraint for the
magnetic feld (see Equation (2.75)), Spritz considers the evolution of the vector potential in-
stead of the magnetic feld such that the divergence free character is automatically satisfed (see
Equation (2.84)) by construction. For the electromagnetic gauge (see Section 2.2.5 for more
details), we have implemented both the algebraic gauge and the generalized Lorenz gauge.

Spritz is based on the Einstein Toolkit numerical infrastructure [93, 94] which presents a
framework to automatically parallelize the code for its use on supercomputers and also provides
a number of open-source code modules related to evolution of the spacetime, adaptive mesh
refnement, input and output of data, checkpointing, and many others (see Section 3.1.6 for
more information).

3.1.1 High resolution shock capturing schemes

In order to solve Equation (2.61), Spritz adopts state-of-the-art HRSC methods for efcient
treatment of shocks and discontinuities. As described in Section 2.3.5, these methods are based
on the choice of reconstruction algorithms which compute the values of primitive variables at
the numerical cell interfaces, and of approximate Riemann solvers to fnally compute the fuxes.

Our default approximate Riemann solver is based on the third-order HLLE scheme, where
the computation of numerical fuxes at cell interfaces is given by Equation (2.163). As an al-
ternative choice, we have also implemented a second-order solver based on the Lax-Friedrichs
(LxF) scheme, where the fuxes instead are computed by Equation (2.164). Similarly, as for
the reconstruction technique, we adopt the third-order piece-wise parabolic method (see Sec-
tion 2.3.5.1 for more details) as the default one. In addition, we have also implemented the
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second-order total variation diminishing (TVD) minmod method (for further details, see Section
2.3.5.1), which allows Spritz to deal with those cases that require more dissipative methods,
for example presence of strong shocks.

3.1.2 Electromagnetic feld evolution

As mentioned earlier, in Spritz, we evolve the vector potential A instead of the magnetic
feld variable B, and then compute the magnetic feld as the curl of the vector potential given
by Equation (2.86). For the electromagnetic gauge, we can choose between algebraic and
generalized Lorenz gauge, however we usually adopt the latter for our simulations unless stated
otherwise.

When considering the numerical grid, within a single grid-cell, we have the fuid’s state
variables (e.g., �, p, v) stored in the grid-cell’s centers, whereas the electric and magnetic feld
variables (E and B) are instead computed on cell’s edges and faces respectively. Therefore, we
again stress the fact that the electric and magnetic feld components are not evolved variables.
For storage, the staggered magnetic feld variables are frst linearly interpolated to cell-centers
using the respective adjacent cell-face values, and then stored as grid-functions at the cell-
center. The components of the vector potential are also staggered in the same fashion as the
electric feld, thus stored at the cell-vertices. In Figure 3.1, we show the storage location of the
magnetic feld variables in a grid-cell. The precise storage locations of various quantities in a
grid-cell is reported in Table 3.1. When adopting the generalized Lorenz gauge, we typically

Table 3.1: Location of various quantities within an elementary grid-cell. Symbols in the left column
should be considered at the code’s array position (i; j; k) while the right column indicates the actual
location over the grid that depends on whether the diferent quantities present a particular specifcation
for the prolongation (for the components of the four-vector potential) or how they are computed within
the code (for the components of the magnetic feld).

Symbol Defnition Location

� Lapse (i; j; k)

�m m–component of the shift vector (i; j; k)


mn mn–component of the spatial metric (i; j; k)


 Determinant of the spatial metric (i; j; k)

� Rest-mass density (i; j; k)

p Pressure (i; j; k)

� Specifc internal energy (i; j; k)

vm m–component of fuid velocity (i; j; k)

B1 x–component of magnetic feld (i+ 1
2
; j; k)

B2 y–component of magnetic feld (i; j + 1
2
; k)

B3 z–component of magnetic feld (i; j; k + 1
2

)

A1 x–component of vector potential (i; j + 1
2
; k + 1

2
)

A2 y–component of vector potential (i+ 1
2
; j; k + 1

2
)

A3 z–component of vector potential (i+ 1
2
; j + 1

2
; k)

Ψmhd Scalar potential (i+ 1
2
; j + 1

2
; k + 1

2
)
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Figure 3.1: Representation of locations for magnetic feld and vector potential components in our
numerical code. Point Pi,j,k represents the cell’s center. Note that the magnetic feld variables are
eventually interpolated linearly using the two adjacent (staggered) face values of B and then stored at
grid centers along with other hydro variables. Figure taken from JVK2.

set the damping term � in Equation (2.92) to 1:5=∆tmax, where ∆tmax is the time step of
the coarsest refnement level [92]. Moreover, for simplicity, we use the following defnition for
densitised scalar potential:

Ψmhd �
p

Φ ; (3.1)

which lives at cell’s vectices. Thus, when evolving with the generalized Lorenz gauge, the scalar
potential Ψmhd should also be computed. Following [92] and using Equation (2.87), we can
write the update terms for the vector potential components as well as for the scalar potential
under the ideal MHD limit as follows:

@tAi = −Ei − @i
�
�

Ψmhdp


− �jAj

�

= −�ijkṽjBk + @i

�
�jAj − �

Ψmhdp



�
; (3.2)

and

@tΨmhd = −@j
(
F	

j
�
− ��Ψmhd

= −@j
(
�
p

Aj − �jΨmhd

�
− ��Ψmhd : (3.3)
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One can deduce from Equations (3.2), (3.3), and Table 3.1 that the terms on the right-hand side
in general have diferent storage locations, and in order to perform computations correctly, we
need to interpolate some of the quantities at a common point. To do so, we now implemented a
new scheme briefy described below, that has shown to be numerically more accurate than the
one reported in JVK2 which was prone to numerical instabilities when performing BNS merger
simulations.

3.1.2.1 Evolution of the vector potential

To numerically compute the frst term in the right-hand side (RHS) of Equation 3.2, i.e.
−�ijkṽjBk, we employ the upwind constraint transport HRSC scheme (see Section 3.1.2.3 for
more details). The second term in the RHS of Equation 3.2, i.e. @i

(
�jAj − �'

�
, consists of

three spatial-derivative terms along the three directions x (i = 1) ; y (i = 2) ; z (i = 3). These
terms are located at the edges of each numerical cell, and are thus required to be evalutated at
the vertices of each numerical cell via a centred fnite diferences scheme. Consider ∆x;∆y;∆z

as the edge-lengths each grid-cell along the three directions x; y; z, respectively. Now, for ex-
ample, along x, we can compute

@x

�
�jAj − �

 MHDp



�
j(i, j+ 1

2 , k+ 1
2 )

'

�
�jAj − � ψMHDp

γ

�
j(i+ 1

2 , j+
1
2 , k+ 1

2 ) −
�
�jAj − � ψMHDp

γ

�
j(i− 1

2 , j+
1
2 , k+ 1

2 )

∆x
:

(3.4)

which can similarly be derived along y and z directions. Furthermore, in order to evaluate
the terms �jAj − � ψMHDp

γ at vertices, the vector potential components Ax; Ay; Az should be
interpolated from cell edges to cell vertices, whereas shift components �x; �y; �z, lapse � and
square-root of the 3-metric determinant p
 should be interpolated from cell centers to cell
vertices.

Interpolation from cell-centers to vertex

In order to interpolate a quantity from cell centers to cell vertex, we take the arithmetic mean
of eight neibouring cell-centered values sharing a common vertex. interpolating some quantity
from the centres of eight cells sharing one vertex to that same vertex amounts to taking a simple
arithmetic mean. For example, the interpolation of the lapse function � from centers to vertex
is given as

�j(i+ 1
2 , j+

1
2 , k+ 1

2 ) =
1

8

(
�j(i, j, k) + �j(i, j+1, k) + �j(i, j, k+1) + �j(i, j+1, k+1) +

+ �j(i+1, j, k) + �j(i+1, j+1, k) + �j(i+1, j, k+1) + �j(i+1, j+1, k+1)

�
:

(3.5)

Interpolation from cell-edges to vertex

For interpolating from cell edges to a common vertex, we again take a simple arithmetic mean.
For example, the component of the vector potential along x direction, i.e., Ax can be interpo-
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lated from edges to a vertex as

Axj(i+ 1
2 , j+

1
2 , k+ 1

2 ) =
1

2

�
Axj(i, j+ 1

2 , k+ 1
2 ) +Axj(i+1, j+ 1

2 , k+ 1
2 )

�
: (3.6)

Similarly, we can compute Ay and Az at the same vertex.

3.1.2.2 Evolution of the scalar potential

Starting with the evolution equation of the scalar potential (3.3)

@t MHD = − @i
(p

 �Ai

�
| {z }

i

+ @i
(
 MHD�

i
�

| {z }
ii

− �� MHD| {z }
iii

; (3.7)

we need to evaluate the three RHS terms i; ii; i at the vertices of each grid-cell.

i. This term can be expanded as

@i
(p

 �Ai

�
= @x (

p

 �Ax) + @y (

p

 �Ay) + @z (

p

 �Az) ; (3.8)

and for each of the above three RHS terms, we apply centred fnite diferences to evalute
them at cell-edges. For example, along x direction, we compute

@x (
p

�Ax) j(i+ 1

2 , j+
1
2 , k+ 1

2 ) '(p

�Ax

�
j(i+1, j+ 1

2 , k+ 1
2 ) −

(p

�Ax

�
j(i, j+ 1

2 , k+ 1
2 )

∆x
;

(3.9)

and follow the same procedure along y and z directions. Now, for computing the termsp

�Ai at cell-edges, we follow the steps summarized below:

(a) Firstly, p
 and � are interpolated from cell centers to edges.

(b) Then, we interpolate the covariant components of the vector potential. For ex-
ample, components Ay located at edge

(
i+ 1

2 ; j; k + 1
2

�
and Az located at edge(

i+ 1
2 ; j + 1

2 ; k
�
are both interpolated to edge

(
i; j + 1

2 ; k + 1
2

�
where Ax is situated.

Similar interpolations are performed at respective locations of Ay and Az.

(c) We also interpolate the components of the inverse spatial metric. Particulaly,

� 
xx; 
xy; 
xz are interpolated from cell-center to edge
(
i; j + 1

2 ; k + 1
2

�
where Ax

is located.
� 
xy; 
yy; 
yz are interpolated from cell-center to edge

(
i+ 1

2 ; j; k + 1
2

�
where Ay

lives.
� 
xz; 
yz; 
zz are interpolated from cell-center to edge

(
i+ 1

2 ; j + 1
2 ; k
�
where Az

is located.

(d) Finally, we then compute the contravariant components of the vector potential. For
example, the Ax component is derived as

Axj(i, j+ 1
2 , k+ 1

2 ) = (
xxAx + 
xyAy + 
xzAz) j(i, j+ 1
2 , k+ 1

2 ) : (3.10)

Ay and Az are also calculated in the same fashion.
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Interpolation from cell-centers to edge

For interpolating a quantity at an edge, we simply take the average of four adjacent
cell-centers. For example, the interpolation of � at the edge

(
i; j + 1

2 ; k + 1
2

�
is given as

�j(i, j+ 1
2 , k+ 1

2 ) =
1

4

(
�j(i, j, k) + �j(i, j+1, k) + �j(i, j, k+1) + �j(i, j+1, k+1)

�
(3.11)

Interpolation from cell-edges to other edges

In order to interpolate Ay and Az to edge
(
i; j + 1

2 ; k + 1
2

�
, where Ax is situated, we do

Ayj(i,j+ 1
2 ,k+ 1

2 ) =
1

4

�
Ayj(i+ 1

2 ,j,k+ 1
2 ) +Ayj(i− 1

2 ,j,k+ 1
2 ) +Ayj(i+ 1

2 ,j+1,k+ 1
2 )

+Ayj(i− 1
2 ,j+1,k+ 1

2 )
�
;

(3.12)

Azj(i,j+ 1
2 ,k+ 1

2 ) =
1

4

�
Azj(i+ 1

2 ,j+
1
2 ,k)

+Azj(i− 1
2 ,j+

1
2 ,k)

+Azj(i+ 1
2 ,j+

1
2 ,k+1)

+Azj(i− 1
2 ,j+

1
2 ,k+1)

�
:

(3.13)

Interpolation of Ax and Az to edge
(
i+ 1

2 ; j; k + 1
2

�
where Ay lives, and of Ax and Ay to

edge
(
i+ 1

2 ; j + 1
2 ; k
�
where Az lives, is performed following the same procedure.

ii. This term can be expanded as

@i
(
 MHD�

i
�

= @x ( MHD�
x) + @y ( MHD�

y) + @z ( MHD�
z) (3.14)

where each of the three RHS terms can be considered as a shift advection term for  MHD.
Following [92], in order to evaluate these terms at cell vertices, we employ the forward
fnite diferences scheme. For example, to compute  MHD�

x, we have

@x( MHD�
x) '

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1
2�x

h
( MHD�

x) j(i− 3
2 , j+

1
2 , k+ 1

2 ) +

−4 ( MHD�
x) j(i− 1

2 , j+
1
2 , k+ 1

2 ) +

+3 ( MHD�
x) j(i+ 1

2 , j+
1
2 , k+ 1

2 )

i
if �x < 0

1
2�x

h
− ( MHD�

x) j(i+ 5
2 , j+

1
2 , k+ 1

2 ) +

+4 ( MHD�
x) j(i+ 3

2 , j+
1
2 , k+ 1

2 ) +

−3 ( MHD�
x) j(i+ 1

2 , j+
1
2 , k+ 1

2 )

i
if �x � 0

: (3.15)

Similarly, we can calculate  MHD�
y and  MHD�

z as well. Note that for computing
 MHD�

i at cell vertices, �i should frst be interpolated from cell centers to vertices.
This computation is already done when solving the time evolution equation for the vector
potential.

iii. This consists of the damping term and does not involve any derivatives. To evaluate this
term at the cell vertice, � should frst be interpolated to the vertice from cell centers. This
too is already done when solving the time evolution equation for the vector potential.
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3.1.2.3 Computing electric feld

For the frst Spritz version as described in JVK2, the electric feld is computed at cell edges
using the fux-constrained transport approach as presented in the original WhiskyMHD paper [90].
However, we found that this implementation could lead to generation of numerical instabilities
in magnetic feld evolution when performing BNS merger simulations. These instabilities can
be curbed by adding an appropriate amount of Kreiss-Oliger dissipation to the magnetic feld
variables.

In the latest development version of Spritz, we now compute the electric feld at cell edges
using the upwind constrained transport (UCT) scheme as described in [118, 119]. To compute,
for example, the Ez component of the electric feld on the edge

(
i+ 1

2 ; j + 1
2 ; k
�
, we follow the

steps summarized below:

(a) Using Equation (57) of [118], we frst compute the upwind transverse transport averaged
velocities, for example, on cell-face along x direction, i.e.

(
i+ 1

2 ; j; k
�
as

v̄j =
ax+ṽ

jL + ax−ṽ
jR

ax+ + ax−
; j = y; z : (3.16)

where L and R stand for left and right upwind states of ṽi along an interface, ṽi � �vi−�i,
ax� is defned as

ax� = maxf0;��x
�(UL);��x

�(UR)g : (3.17)

where �x� are the characteristic wave speeds calculated at both left and right states.

(b) Then, we reconstruct the quantities ṽx, ṽy, Bx, By from faces
(
i+ 1

2 ; j; k
�
and

(
i; j + 1

2 ; k
�

to the edge
(
i+ 1

2 ; j + 1
2 ; k
�
using the PPM reconstruction method, following Equations

(59) and (60) of [118] as

v̄xL,Rj(i+ 1
2 ,j+

1
2 ,k)

= RL,Rx
�
v̄xj(i,j+ 1

2 ,k)

�
;

ByL,Rj(i+ 1
2 ,j+

1
2 ,k)

= RL,Rx
�
Byj(i,j+ 1

2 ,k)

�
;

(3.18)

v̄yL,Rj(i+ 1
2 ,j+

1
2 ,k)

= RL,Ry
�
v̄yj(i+ 1

2 ,j,k)

�
;

BxL,Rj(i+ 1
2 ,j+

1
2 ,k)

= RL,Ry
�
Bxj(i+ 1

2 ,j,k)

�
;

(3.19)

(c) Finally, using the above expressions, the Ez component of the electric feld on the edge(
i+ 1

2 ; j + 1
2 ; k
�
can be written using Equation (61) of [118], as

Ez =− ax+v̄
xLByL + ax−v̄

xRByR − ax+ax−
(
ByR −ByL

�

ax+ + ax−

+
ay+v̄

yLBxL + ay−v̄
yRBxR − ay+ay−

(
BxR −BxL

�

ay+ + ay−
:

(3.20)



3.1 Numerical implementation 44

In the same way, the components Ex and Ey are also derived.
As an alternative, one could use a non-staggered approach for electromagnetic feld evolution

where both A and B are stored at the cell centers (e.g., as done in the WhiskyMHD code [32]). In
Figure 3.2, we provide a comparison between the staggered and non-staggered schemes through
an example of a 1-dimensional shock-tube test. In this case, the staggered scheme proves to be
advantageous, devoid of any post-shock oscillations.
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Figure 3.2: Comparing results of Balsara 1 test (from [120]), obtained via staggered (red diamonds)
and non-staggered (blue dots) vector potential. The blue curve clearly shows post-shock oscillations.
Note that the non-staggered scheme is still stable since the maximum amplitude of these oscillations
does not grow indefnitely during the evolution. However, in order to remove such oscillation efects,
Kreiss-Oliger dissipation can be applied to the vector potential, as successfully done so in WhiskyMHD
[32]. Figure taken from JVK2.

3.1.3 Primitive variables recovery

As previously mentioned in Section 2.2.3, fux-conservative formulation evolves a set ‘conserved’
variables F0(U) = (D;Si; �) which then need to be converted back into the fundamental ‘prim-
itive’ variables U = (�; vi; �). These primitive variables are not only necessary for data analysis
but are also required at each time step in order to compute the fuxes Fi(U) in Equation (2.61).
In GRMHD, due to the complexity of the system, there exists no analytical solution to calculate
back these primitive variables. Thus, one needs to rely on root-fnding algorithms to numeri-
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cally retrieve these primitive variables. Such recovery procedures, also called as Con2Prim or
C2P schemes, are a crucial aspect at the core of any GRMHD code. C2P is often an error-prone
part of evolutionary codes, and existing state-of-the-art C2P schemes for GRMHD can possibly
fail in certain regimes, for example in high magnetizations and low density regimes as shown in
[21] which give a good comparative study on diferent C2P schemes. Most of these C2P schemes
fall into two categories: (i) the frst kind are based on the Newton Raphson (NR) root fnding
algorithms, which start from an unbounded region for computing the root but depend on ini-
tial guess as well as on EOS derivatives, and (ii) the second type are based on root-bracketing
schemes which start from a bounded region known to contain the root, and might not depend
on the initial guess and on EOS derivatives. In principle, the recovery problem in GRMHD
is fve-dimensional (5D) since obtaining the primitives U involves root-fnding in a 5D space,
assuming that magnetic feld components can be recovered trivially1. One can also scale down
this system to a smaller set of equations, i.e., reducing the dimensionality of the problem to 1D
or 2D with the help of some scalar quantities proved more efcient and robust.

In the frst version of the Spritz code as presented in JVK2, we implemented the 2D NR
method presented in [115] and used in WhiskyMHD [90], as well as the 2D NR scheme of [121]

3.1.3.1 Noble C2P scheme

Introduced by Noble et al in 2006 [121], this scheme is based on the NR technique, and uses
certain scalar quantities to reduce the dimensionality of the problem to 2D. In particular, it
is based on Equations (27) and (29) of [121], which are two equations expressed in terms of
unknowns v2 and z � �hW 2. Explicitly, they are written as

v2(B2 + z)2 − (BiSi)
2(B2 + 2z)

z2
− S2 = 0 ; (3.21)

� +D − B2

2
(1 + v2) +

(BiSi)
2

2z2
− z + p(z; v2) = 0 : (3.22)

Here, we defne S2 using Equation (2.81) as

S2 � SiSi
= (�h+ b2)2W 4v2 + �2(b0)2

�
b2(1− 2W 2)− 2�hW 2 + �2(b0)2

�
: (3.23)

Moreover, one can directly compute the fuid pressure p(z; v2) in terms of z and v2 when using
a simple analytical EOS such as classical ideal-gas EOS. Once the scheme converges to the
required roots, the fnal primitives can be obtained from the relations � = D

p
1− v2,

vi =

ijSj
z +B2

+
(BjSj)B

i

z(z +B2)
; (3.24)

and using, for example, the analytical EOS, we can derive � = �(�).

1Since B̃i =
p

Bi is the evolved variable, the primitive magnetic feld components can simply be retrieved

at each time step using Bi = B̃i=
p

.
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3.1.3.2 ‘3eqs’ C2P scheme

This NR scheme is presented in [115], which also reduces the dimensionality of the recovery
problem to 2D, using scalar quantities � (see Equation (2.82)) and S2. Again using z = �hW 2,
and defning the identity

BiSi = �hW�b0 ; (3.25)

we can recast Equations (2.82) and (3.23) as
�
� +D − z −B2 +

(BiSi)
2

2z2
+ p

�
W 2 − B2

2
= 0 ; (3.26)

�
(z +B2)2 − S2 − 2z +B2

z2
(BiSi)

2

�
W 2 − (z +B2)2 = 0 : (3.27)

One can employ, for example, an analytical EOS again to compute p from �. The unknowns
here are W and z. First, the root of W is found, and then roots of � = D=W , z and p are
computed. Once the algorithm converges, the fnal primitives are obtained from Equations
(2.80)), (3.24)) and again, using the EOS, � = �(�).

3.1.4 Atmosphere treatment

As any GRMHD grid-based code, Spritz cannot handle zero values for the rest-mass density.
Therefore, we need to set a minimum density foor or so called atmosphere density value �atm. In
case, at any grid-point, the rest-mass density � is computed by our C2P such that � < �atm, then
the � value is reset to �atm, whereas the pressure and specifc internal energy are recomputed
using a polytropic EOS. Moreover, the fuid’s three–velocity is set to zero. For example, in the
tests presented in JVK2, unless stated otherwise, we typically set �atm = 10−7�0,max, where
�0,max is the initial maximum value of the rest-mass density.

3.1.5 Equation of state

Spritz supports both analytic and fnite-temperature composition dependent tabulated EOS.
The frst version of Spritz as reported in JVK2, provides support for only the analytic type of
EOS. This was done via the EOS_Omni thorn provided by the Einstein Toolkit, which supports
analytic EOS such as ideal fuid and piecewise polytropic ones as well as cold tabulated EOS.
Moreover, a hybrid EOS can be used with Spritz through the EOS_Omni module. For more
details on diferent types of EOS, we refer to Sections 2.2.6 and 4.1.2.

3.1.6 Einstein Toolkit infrastructure

The Einstein Toolkit [93, 94] is a community driven computational platform which provides tools
to be used in research felds such as relativistic astrophysics, numerical relativity, and more.
Its modular infrastructure provides basic functionality to create, run and manage numerical
simulations. In particular, key components include
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• the Cactus framework, which makes the foundation for the development of portable,
independent, modular simulation codes and applications;

• the Carpet driver [122, 123], which is responsible for the mesh refnement, time evolution,
parallelization as well as memory management operations;

• the Simulation Factory or SimFactory, a tool that incorporates a set of abstractions for
tasks, related to synchronizing, confguring, building and managing simulations.

3.1.6.1 Cactus

The Cactus framework comprises modules which provide interpolators, boundary conditions,
parallel drivers, coordinates, operators and efcient I/O in diferent data formats. Its structure
consists of a core of basic pieces of code named fesh connected to independently developed
programs, which can be split into modules called thorns, that can interact with one another via
a common interface, both at compile- and run-time. An executable is needed to run the Cactus
simulations, along with a parameter fle, which provides the parameter names and desired
settings within the simulation.

3.1.6.2 Carpet

The Carpet driver provides the adaptive mesh refnement (AMR) based on the Berger-Oliger
algorithm [124]. AMR serves as an important feature in full 3D BNS merger simulations
because it allows for the optimization of the number of grid points by implementing dynamic
resolution, such that fner grids are used for regions requiring higher resolution, and resolution
requirements are re-evaluated and updated at regular intervals during the simulations, which is
called as regridding. While it still allows to maintain a sufciently large computational domain
to reduce any efects of external boundaries, and to allow for the extraction of gravitational
wave signals far away from the source.

When using AMR with Spritz, special care must be taken for staggered variables, like A
and Ψmhd. Particularly, one needs to employ separate restriction and prolongation operators
for such staggered variables with respect to variables located at the cell centers. Such operators
are already provided by the Carpet driver. In Section 3.2.2, we present some tests which use
AMR.

Carpet also supports MPI and OpenMP which are for multi-process and multi-threaded
parallelisation schemes.

3.1.6.3 Thorns

Thorns performing a common task or having a common origin, are usually grouped under an
arrangement. Here, we discuss a few important thorns that are defned in the various domains
of the Einstein Toolkit:

• CactusNumerical : includes infrastructural thorns for interpolation, artifcial dissipation,
time integration, symmetry boundary conditions, and many others.



3.1 Numerical implementation 48

• ADMBase : provides grid-functions for spacetime variables based on the ADM formulation,
defning the 3-metric 
ij , extrinsic curvature Kij , the lapse function �, the shift vector
�i, etc.

• HydroBase : defnes the basic variables and grid functions for hydrodynamic equations,
such as the rest mass density �, pressure P , specifc internal energy �, contravariant fuid
three velocity vi, contravariant magnetic feld vector Bi, and temperature T .

• TmunuBase : provides the stress-energy tensor components, i.e., time component T00,
mixed components T0i and spatial components Tij .

• TOVsolver : solves the standard TOV equations for a spherically symmetric star in hy-
drostatic equilibrium, and provides the initial data.

• McLachlan : uses accurate fnite diferencing schemes up to eighth order for discretization
of spacetime variables in the BSSNOK formulation (see Section 2.1.2 for more details
on this formulation), and inter-operates between the ADMBase and the TmunuBase inter-
faces. Unless specifed otherwise, we generally use this thorn for spacetime evolution when
performing simulations with Spritz.

• AHFinderDirect : fnds the apparent horizon of a black hole, given the three-metric and
extrinsic curvature.

• WeylScal4 : used to extract the Weyl scalar Ψ4 (defned in the Newman-Penrose formal-
ism), in order to obtain the outgoing gravitational wave radiation.

3.1.7 Boundary conditions

Since the computational domain is of fnite size, there are grid points reserved at the boundaries
of the grid where the boundary conditions (BC) can be applied. These outer boundary points
are generally referred to as ghost zones. The generic Boundary thorn [94] from the Einstein
Toolkit provides the diferent treatments of BCs. For example, Spritz works with both ‘fat’
and ‘none’ BCs. The ‘fat’ BC simply copies the value of each variable in the outermost grid
point to the ghost zones, whereas the ‘none’ BC does not update the ghost zones, and keeps
the value of the variables in the ghost zones constant and equal to the ones set by the initial
data.

In Spritz, we added an additional option for treating the vector and scalar potential at
the external boundary of the computational domain for the in order to compute B with better
accuracy.

Following the work presented in [92], we implemented the numerical extrapolation of A and
Ψmhd at the outer boundary using following linear extrapolation formula

F ji =

(
2F ji−1 − F ji−2 for i = N j − 2; N j − 1; N j

2F ji+1 − F ji+2 for i = 3; 2; 1
; (3.28)
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where F 2 fA;Ψmhdg, j 2 f1; 2; 3g and N is the number of grid-points in the j-direction.
Typically, we use three points in the ghost zones for each direction.

Spritz also supports periodic BC provided by the thorn Periodic [94]. We show its working
through the loop-advection test described in Section 3.2.2, performed using both uniform and
AMR grids.

3.1.8 Spritz workfow

Here, we briefy summarize the step-by-step process followed by Spritz for solving the system
of GRMHD equations based on the conservative formulation desribed by Equations (2.61),
(2.78)-(2.82).

(i) Initilization: At the start of the simulation, the primitive variables U = (�; vi; p; �) are
defned at each grid point. This is done using the initial data provided by the user along
with the EOS.

(ii) Prim2Con: After the initialization step, a Prim2Con or P2C routine is launched, which
converts the primitive variables to the evolved (conserved) variables using analytic equa-
tions (2.80)-(2.82).

(iii) Computing source terms: Then, the sources terms S(U) in Equation (2.61) are eval-
uated using standard FD schemes.

(iv) Computing fux terms: Following that, we compute the fuxes F i(U) in Equation
(2.61) using HRSC methods. Particularly, frst the reconstruction scheme (such as PPM)
is implemented to compute the primitives at each cell interface, followed by a P2C routine
to calculate the conserved variables at each cell interface. Finally, the fuxes are evalu-
ated with an approximate Riemann solver (such as HLLE) using the computed values of
conserved variables.

(v) Update in time: The fux terms F i(U) are then subtracted from the source terms
S(U). This results in time evolution equations for the conserved variables F 0(U) which
are treated as ODEs and solved following the method of lines technique (provided by
the MoL thorn of Einstein Toolkit) which uses a time integrator (such as a fourth order
Runge-Kutta integrator). Thus, this computes the conserved variables for the next time
step.

(vi) Con2Prim: Once the conserved variables are evaluated for the next time step, the
Con2Prim routine is execute in order to compute the primitive variables since they would
be required for computation of fuxes at this new time step.

Coupled to the above algorithm, for electromagnetic feld evolution, the vector and scalar
potential variables are evolved side-by-side using the schemes described in Section 3.1.2.
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3.2 Test results

As already stressed earlier, the primary goal of the Spritz code is to perform simulations of
BNS and NSBH mergers. In order to address such complex astrophysical scenarios with the
necessary confdence, we frst need to assess the reliability of our code in a variety of physical
conditions. In this Section, we report on the results of our extensive tests performed in 1D,
2D as well as 3D, as presented in JVK2. Some of these critical tests that have been already
considered in the literature in several previous studies (see, e.g., [91, 92, 120, 125] and references
therein), allowing for a direct comparison with other numerical codes.

3.2.1 1D tests

Test: 1 2 3 4 5

L R L R L R L R L R
� 1.0 0.125 1.0 1.0 1.0 1.0 1.0 1.0 1.08 1.0
p 1.0 0.1 30.0 1.0 1000.0 0.1 0.1 0.1 0.95 1.0
vx 0.0 0.0 0.0 0.0 0.0 0.0 0.999 -0.999 0.4 -0.45
vy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 -0.2
vz 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2
Bx 0.5 0.5 5.0 5.0 10.0 10.0 10.0 10.0 2.0 2.0
By 1.0 -1.0 6.0 0.7 7.0 0.7 7.0 -7.0 0.3 -0.7
Bz 0.0 0.0 6.0 0.7 7.0 0.7 7.0 -7.0 0.3 0.5

Table 3.2: Initial data for Balsara relativistic shock tube tests.

In order to check the correctness of the approximate Riemann solvers and other numeri-
cal schemes implemented in the code, the frst round of tests we performed with Spritz are
those involving Riemann problems. In Figure 3.3, we show the results for 1-dimensional (1D)
relativistic shock-tube problems based on the testsuite of [120]. Here, our numerical results of
these tests are directly compared with the exact solutions computed via the code presented in
[31]. Initial data for such tests are described in Table 3.2. For all tests, we employ an ideal
fuid EOS, with Γ = 2:0 for test Balsara 1 and Γ = 5=3 for the others. The fnal evolution
time is considered as t = 0:55 for test Balsara 5 and t = 0:4 for the others. We note that all
tests show an excellent agreement between the numerical results and the exact solutions.

For a comparitive study, we also performed the same testsuite with the already published
numerical code GRHydro [91], and found perfectly matching results. In Figure 3.4, we show an
example of such a comparison for the Balsara 1 shock-tube test.

Finally, in Figure 3.5, we show the results of the most demanding Balsara 3 test using
diferent resolutions (200, 800, and 1600 grid points). Higher resolution leads to a signifcant
increase in accuracy, which is particularly evident at the shock front (when comparing also with
the exact solution in Figure 3.3).
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Figure 3.3: Comparison of numerical results (red dots) and exact solutions (continuous black lines) for
diferent [120] shock-tube tests. Left and right columns show the rest-mass density � and the magnetic
feld component By along the direction of propogation of the shocks, i.e. x-direction, at the fnal time
of the evolution. Here, the Balsara 1, 2, 4 and 5 tests are performed with the third order PPM method,
whereas the Balsara 3 test is performed using the second order MINMOD method, since this test is most
demanding one due to the very high jump (four orders in magnitude) in the initial pressure, thus
requiring a slightly more dissipative method in order to succeed. Figure taken from JVK2.

3.2.1.1 Convergence study

To estimate the convergence order of our code, we performed the so-called Alfvén wave test, and
compared our results with GRHydro (see [91] for details). This test considers a low-amplitude,
circularly-polarized Alfvén wave advecting across the grid domain. For setting the initial condi-
tions, we use the values provided in [91]. In particular, we set the wave amplitude to A0 = 1:0,
the fuid rest-mass density to � = 1:0, the fuid pressure as p = 1:0, the x-component of velocity
as vx = 0:0, and the x–component of the magnetic feld to Bx = 1:0. For evolution, we employ
a Γ = 5

3 ideal fuid EOS, and evolve the system for 1 period.
We look for convergence considering several diferent resolutions along the x-axis, having

number of grid points as Nx = 8, 16, 32, 64, 128, and 256, and using x 2 [−0:5; 2:5]. In Figure
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Figure 3.4: Comparison of the Balsara 1 test results obtained with the Spritz code (red dots) and
the GRHydro code (green diamonds) [91]. Figure taken from JVK2.
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Figure 3.5: Balsara 3 test performed with the Spritz code using three diferent resolutions: low
resolution (200 points - green diamonds), medium resolution (800 points - blue triangles) and high
resolution (1600 points - red dots). Figure taken from JVK2.

3.6, we present the results for the L2-norm of the diference between the initial and fnal values
of the y-component of the magnetic feld, By. The initial wave is centered at x = 0, and the
fnal values of By are compared with the initial profle. Here, we observe an overall 2nd order
convergence.
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Figure 3.6: Estimating the convergence order through the 1D Alfvén wave test. The L2–norm of the
error is plotted for both the Spritz code (blue–dashed line) and the GRHydro code (red–dot–dashed
line), along with reference curves for 1st (black-dotted line) and 2nd (black-solid line) order convergence.
Figure taken from JVK2.

3.2.2 2D tests

In this section, we discuss the 2D tests performed with the Spritz code. In particular, we
consider three magnetized 2D tests, namely the cylindrical explosion, the magnetic rotor and
the magnetic loop advection.

The cylindrical explosion test helps to check if the code can correctly follow a shock front
on the equatorial plane (such as ones that are generated in BNS mergers during the very last
orbit prior to merger). The magnetic rotor is a special relativistic test that examines the
evolution of the magnetic feld in the presence of rotation, whereas the loop advection test
allows for a comparison with an exact solution as well as for checking the diferences between
our reconstruction schemes.

3.2.2.1 Cylindrical explosion

The cylindrical explosion (also known as the cylindrical blast wave) is a demanding multidimen-
sional shock test, frst introduced by [126], and later modifed and implemented in [70, 91, 118,
125]. This test considers a uniformly magnetized domain consisting of a dense, over-pressured
cylinder in the central region, expanding in a surrounding ambient medium. For the initial
data, we use the parameters from the setup described in [91]. For the cylinder, we set

rin = 0:8; rout = 1:0; �in = 10−2; pin = 1:0; (3.29)
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while for the surrounding ambient medium, we consider

�out = 10−4; pout = 3� 10−5: (3.30)

Here, rin and rout are the radial parameters used for smoothing the density profle (and similarly
for the smoothening of the pressure profle) considered in [91], such that

�(r) =

8
>><
>>:

�in for r � rin

exp
h

(rout−r) ln ρin+(r−rin) ln ρout

rout−rin

i
for rin < r < rout

�out for r � rout

(3.31)

The fuid 3-velocity is initially set to zero, while the initial magnetic feld is uniformly with
Bx = 0:1 and By = Bz = 0. For the numerical domain, we consider a 200 � 200 grid with x-
and y-coordinates spanning over the range [−6; 6]. For evolution, we set the CFL factor to 0.25
and use an ideal fuid EOS with adiabatic index Γ = 4=3. For solving the numerics, second
order MINMOD reconstruction method is adopted along with the HLLE fux solver and the
RK4 method for time-step evolution.

The resulting structure of the blast wave is depicted in Figure 3.7 at the fnal time t = 4:0.
In particular, we show the two-dimensional distribution of gas pressure p, Lorentz factor W
(together with magnetic feld lines), and the x– and y–components of the magnetic feld, Bx and
By. This fgure shows a very similar behavior when compared to the results already presented
in the literature [70, 91, 118].

In Figure 3.8, we provide instead a quantitative indication of the accuracy of our code. In
this case, we depict a one-dimensional slice along y = 0 of the fnal blast wave confguration
at time t = 4:0, in terms of rest-mass density and Bx. Particularly, two cases are considered:
on the left, we compare the results obtained with low (200 grid-points) and high resolution
(400 grid–points); while on the right, we compare the high resolution test results obtained with
Spritz with those obtained with GRHydro [91]. The frst comparison shows slight diferences in
the peaks of � due to the fact that the ability to capture the peak sharpness depends signifcantly
on resolution. The Bx values show a much smaller deviation, due to a smoother variation in
this quantity. For the second comparison, the agreement between Spritz and GRHydro appears
excellent, further verifying the robustness of our code.

To validate the implementation of AMR, we carried out another simulation including an
inner refned grid covering the x- and y-coordinates in the range [-3,3] with grid-spacing ∆x =

∆y = 0:03 (while the rest of the domain has double grid spacing). In Figure 3.9, we show
the comparison with the uniform grid test in terms of fnal pressure distribution. We fnd no
signifcant diferences (much less than 1% in most of the region), nor specifc efects at the inner
grid separation boundary, demonstrating a correct implementation of the AMR infrastructure.

3.2.2.2 Magnetic rotor

Another 2D test we consider is the magnetic cylindrical rotor, originally introduced for classic
MHD in [127, 128] and later employed also for relativistic MHD in [70, 129]. This test consists of
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Figure 3.7: Snapshots of the cylindrical explosion test at the fnal evolution time t = 4, showing the
distribution of gas pressure p (top-left), Lorentz factorW together with magnetic feld lines (top-right),
and x- and y-components of the magnetic feld, Bx (bottom-left) and By (bottom-right). Adopted
resolution is ∆x = ∆y = 0:06. Figure taken from JVK2.

a dense, rapidly spinning fuid at the center, surrounded by a static ambient medium, starting
with a uniform magnetic feld and pressure in the entire domain. For initial data, we set
the radius of the inner rotating fuid as r = 0:1, with inner rest-mass density �in = 10:0,
uniform angular velocity Ω = 9:95, and therefore the maximum value of the fuid 3-velocity is
vmax = 0:995. In the outer static ambient medium, we set the rest-mass density as �out = 1:0.
The initial the magnetic feld and gas pressure are set to Bi = (1:0; 0; 0) and pin = pout = 1:0

respectively. The numerical domain is 400� 400 grid with x- and y-coordinates lying in range
[0; 1]. Here too, we use the CFL factor to 0.25, and consider ideal fuid EOS with Γ = 5=3 for
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with GRHydro (red solid line). Figure taken from JVK2.
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Figure 3.9: Cylindrical blast wave test with adaptive mesh refnement (AMR). Here, we compare the
pressure at the fnal time t = 4 between the low resolution test (left panel) performed with uniform
grid and spacing ∆x = ∆y = 0:06 and the AMR test (center panel) including a refned inner grid (red
box) with double resolution (i.e., grid-spacing ∆x = ∆y = 0:03). Right panel shows the logarithmic
relative diferences between the two results, which are much less than 1% in most of the region, and no
spurious efects are observed at the inner grid boundary. Figure adapted from JVK2.
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evolution. For numerics, we use the MINMOD reconstruction, the HLLE fux solver, and the
RK4 method for time-update.

Figure 3.10 depicts the 2D profles of density �, gas pressure p, magnetic pressure pmag =

b2=2, and Lorentz factor W along with magnetic feld lines at the fnal time t = 0:4. The
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Figure 3.10: Magnetic rotor test with the following parameters shown for fnal evolved time t = 0:4:
density � (top-left), gas pressure p (top-right), magnetic pressure pmag (bottom-left),and Lorentz factor
W together with magnetic feld lines (bottom-right). The resolution considered here is ∆x = ∆y =

0:0025. Figure taken from JVK2.

rotation of the cylinder causes magnetic winding. This can be seen in the bottom-right panel
of Figure 3.10, where in the central region, the feld lines are twisted roughly by � 90�. This
twisting of feld lines could eventually slow down the rotation of the cylinder. There is also a
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decrease in �, p, and pmag in the central region, observed along with the formation of an oblate
shell of higher density. Also for this test, the results are in good agreement with the ones in
the literature [70, 91, 129].

Here too, we do a quantitative check by taking a 1D slice along y = 0 of the fnal rotor
confguration at t = 0:4. And again, two cases are considered: (i) results comparison for the low
and high resolution runs having 250 and 400 grid-points, respectively; (ii) results comparison
for our high resolution test with the corresponding one preformed with GRHydro [91]. Figure
3.11 shows this comparison made for the two quantities � and Bx. For (i), as the resolution
is increased, the peaks in � as well as Bx are better captured, showing signs of convergence
towards the expected solution. For (ii), except for a minor diference in the peak values which
are better captured for the Spritz case, the curves are comparable.
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Figure 3.11: 1D cut along the x-axis for the magnetic rotor test at the fnal evolution time t = 0:4. A
comparison between a low resolution test with 250 grid-points (green solid line) and a high resolution
test with 400 grid-points (blue dashed line) is shown for the rest-mass density � and the x-component
of the magnetic feld Bx in the top and bottom left panels, respectively. In the top and bottom right
panels, the same quantities are compared for the analogous high resolution test performed with Spritz
(blue dashed line) and with GRHydro [91] (red solid line). Figure taken from JVK2.

3.2.2.3 Loop advection

The fnal 2D test we performed is the advection of a magnetic feld loop, which was frst
described in [130] and later appeared in a slightly modifed version (the one we consider) in
[91, 125, 131, 132]. This test considers a magnetized circular feld loop propagating with a
constant velocity in surrounding non-magnetized ambient medium within a 2D periodic grid.
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The analytical prescription for the initial magnetic feld (taken from [91]) is computed as

Bx; By =

(
−Aloopy=r; Aloopx=r for r < Rloop

0 for r � Rloop

(3.32)

where r =
p
x2 + y2 is the radial coordinate, Rloop is the loop radius, Aloop is the amplitude of

the magnetic feld, and Bz is set to zero. The corresponding vector potential prescription from
which Equation (3.32) can be obtained is given by A(r) = (0; 0;max[0; Aloop(Rloop− r)]) [131].

The initial data for the density and pressure is set as � = 1:0 and p = 3:0 respectively
throughout the computational domain. For the loop, we set Aloop = 0:001 and Rloop = 0:3.
The fuid 3-velocity is taken as vi = (1=12; 1=24; 0) for the case with vz = 0, and vi =

(1=12; 1=24; 1=24) for a more generic case with a non-zero the vertical velocity, i.e., vz 6= 0.
We performed the test in both low resolution with a 128� 128 grid and high resolution with a
256� 256 grid, where the x- and y-components span the range [-0.5,0.5]. The CFL factor is 0.4
and the adiabatic index for the ideal EOS is set to Γ = 5=3. Like the previous 2D tests, we use
the MINMOD reconstruction method along with the HLLE fux solver and the RK4 method
for time-udpate.

In Figure 3.12, we show the outcome of the vz 6= 0 test case. Here, the top row illustrates the
initial confguration of the magnetic loop for the quantities Bx and pmag = b2=2 at t = 0. After
one entire cycle of the loop across the domain at t = 24, the same quantities are depicted in the
middle row for low resolution run and in the bottom row for high resolution run. We notice a
signifcant loss of magnetic pressure due to numerical dissipation for the low resolution test after
one evolution cycle as also reported in [91], which is however smaller for higher resolution. Our
results are comparable with the ones presented in [91]. We also point out that the expression
for magnetic pressure used for Figure 3.12 is pmag = b2=2, which difers from the expression
used for Figure 10 of [91] by a factor of 1=2 (in [91] the authors actually plotted b2).

To consider a less dissipative numerical scheme, we also perform another simulation in low
resolution employing the PPM reconstruction and compare the results with those obtained
with MINMOD reconstruction. This is shown in Figure 3.13, where the top and bottom panels
represent the outcome of the runs with MINMOD reconstruction and PPM reconstruction,
respectively. The frst column depicts the initial data at t = 0, the second shows the loop at
fnal time t = 24, while the third one shows the logarithmic values of the absolute diferences
between the initial and fnal times. As expected, we fnd signifcantly lower dissipation in the
PPM case.

3.2.3 3D tests

Finally, we present the results of our 3D tests. The frst test is the 3D generalisation of the
cylindrical explosion test. While the second test follows the evolution of non-rotating NS in full
GR, thus assessing the correctness of our code in a curved and dynamical background.
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3.2.3.1 Spherical explosion

Spherical explosion is a very demanding GRMHD test, commonly performed with GRMHD
codes working in spherical coordinates [133–135]. This test becomes challenging in Cartesian
coordinates with the potential limitations in regions where the shock front is not parallel to the
orientation of grid-cells’ faces.

The test settings are an extension in spherical symmetry of the cylindrical explosion test
presented in Section 3.2.2.1. Here, we consider an inner dense spherical core of radius Rin = 0:8

centered in the origin with �in = 10−2 and pin = 1:0, surrounded by a spherical shell ranging
as Rin < r < Rout = 1:0, where pressure and density are characterized by an exponential decay
analogous to the prescription given by Equation (3.31).

For r > Rout, a low-pressure uniform fuid exists with �out = 10−4 and pout = 3:0 � 10−5.
Additionally, following [133, 134], a uniform magnetic feld parallel to the z-axis is employed in
the entire domain. The numerical grid extends as [−6:0; 6:0] and is covered by 160 grid-cells in
all directions. We evolve the system for a total time of t�nal = 6:0 using a CFL factor of 0:25.
Also, we set a lower atmosphere density foor in this test, equivalent to �atm = 10−12. As for the
numerical schemes employed, we use MINMOD reconstruction along with the Lax-Friedrichs
fux solver.

Figure 3.14 shows the snapshot on the meridional plane of gas pressure and Lorentz factor
W at the fnal time t = 4 for tests performed with magnetic feld strength Bz = 0:0; 0:1 and 1:0.
At the top-right panel (Lorentz factor in the non–magnetized case), we see small deviations from
spherical symmetry exactly aligned with the Cartesian axes, giving a hint of the geometrical
issues brought by such a demanding test. However, despite the accumulation of errors along
the diagonals due to the non-perpendicularity of the fuxes, the spherical shape of the shock
front seems to be well preserved in this case, even at a relatively low resolution. In presence
of a dynamically important magnetic feld oriented along the z axis, the shock front deviates
naturally from spherical symmetry (see middle row of Figure 3.14). Finally, when the magnetic
feld strength is very high (see bottom row), the central region gets completely evacuated. Even
in this extreme scenario, the evolution proceeds without any problem.

3.2.3.2 TOV star

Static, spherically symmetric stars in general relativity are best described by the Tolman-
Oppenheimer-Volkof (TOV) equations [136, 137]. To further assess the stability and accuracy of
our code, the next test we considered is the evolution of a non-rotating stable TOV confguration
for both non-magnetised and magnetised cases. The test setup adopts the model described in
[138] built using the TOVSolver thorn [94].The initial TOV confguration is produced using a
polytropic EOS with adiabatic index Γ = 2:0, polytropic constant K = 100, and initial central
rest-mass density � = 1:28� 10−3. We evolve this initial confguration adopting an ideal fuid
EOS with the same value for Γ. For the magnetised version, we add the magnetic feld to the
computed TOV confguration using the analytical prescription of the vector potential Aφ given
by

Aφ � Ab$
2max (p− pcut; 0)

ns ; (3.33)
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where $ is the cylindrical radius, Ab is a constant, pcut = 0:04pmax determines the cutof when
the magnetic feld goes to zero inside the NS, with pmax corresponding to the initial maximum
gas pressure, and ns = 2 sets the degree of diferentiability of the magnetic feld strength [32].
The value of Ab is chosen such that the maximum value of the initial magnetic feld strength
is set to � 1 � 1016 G. This generates a dipole-like magnetic feld confned inside the NS and
zero magnetic feld outside.

The non-magnetised tests are run on a uniform grid with x-, y- and z-coordinates spanning
over the range [0, 20] with low, medium and high resolution having (32)3, (64)3 and (128)3

grid–cells respectively, and considering refection symmetry with respect to every direction, i.e.,
the so-called octant symmetry. Furthermore, we perform two more tests for non-magnetised
TOV NS in high resolution (i) employing the Cowling approximation (i.e. considering a fxed
space-time) [139–141] to check the accuracy of our code by evolving just the hydrodynamical
equations on a static spacetime background, and (ii) implementing a mesh refnement composed
by two nested boxes centered at the origin and extending up to x; y; z =20 and 40, respectively,
both having (128)3 grid-cells in each direction (therefore, the inner box corresponds to the
domain evolved in the unigrid run at high resolution while the outer box allows for a further
out external boundary). Since Einstein Toolkit does not provide support to handle refection
symmetry for staggered variables, we perform the magnetised TOV tests in low, medium and
high resolution covering the entire domain with x-, y- and z-coordinates lying in the range
[-20, 20] (considering no refection symmetries) having the same respective grid-spacing as that
of the non-magnetised simulations. All test cases are simulated for 10 ms using the PPM
reconstruction method, the HLLE fux solver, and the RK4 method for time stepping with a
CFL factor of 0:25.

The top panel of Figure 3.15 shows the central rest-mass density �c evolution for three
resolutions, the high-resolution in Cowling approximation and the high-resolution with AMR,
all for the non-magnetised TOV case. We note that the AMR case (orange curve) perfectly
reproduces the result in high-resolution (green curve), supporting the correctness of AMR im-
plementation within the Spritz code. Here, the periodic oscillations are initiated as a result
of the truncation errors generated in the initial data, while the cause of dissipation is primarily
due to the numerical viscosity of the fnite diferencing (FD) scheme [138, 142]. The results
converge well after increasing the resolution, and the additional tests for the cases with Cowling
approximation and AMR are also fully satisfactory. In order to further investigate the accuracy
of our code, we compare the low, medium, and high resolution test results of �c evolution with
those obtained with GRHydro. As shown in the bottom panel of Figure 3.15, we observe an
exact match.

The initial magnetic feld confguration for the magnetised TOV test is illustrated in Fig-
ure 3.16. Here, the magnetic feld strength is shown along with representative magnetic feld
lines. The top panel of Figure 3.17 shows the maximum rest-mass density �c evolution for the
magnetised TOV case, which matches almost exactly with the one for the non-magnetised case
(see the top panel of Figure 3.15). This should be expected, since the imposed magnetic feld
represents only a small perturbation compared to the gravitational binding energy of the sys-
tem. In addition, the time evolution of the maximum value of the magnetic feld strength Bmax
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is depicted in the bottom panel of Figure 3.17. While Bmax is highly damped for the lowest
resolution test with a decrease by a factor of roughly 14:75 in 10 ms, its value stabilizes with
increasing resolution, as observed for �c. We note again that here the damping is a numerical
viscosity efect of the FD scheme.

To conclude this section, we report in Figure 3.18 the oscillation frequencies of TOV star
simulations in order to validate our models with literature results. In particular, we show the
results of the high-resolution simulations in pure hydrodynamics with dynamical space-time
adopting both uniform grid and AMR, with the Cowling approximation (see Figure 3.18 left-
panel), as well as of the high-resolution run with magnetic feld (see Figure 3.18 right-panel).
The power spectrum of each simulation is computed via fast Fourier transform (FFT) in order
to extract the amplitudes and frequencies of the oscillations of the central rest mass density,
and then the amplitudes are normalized to the maximum one for each simulation. Figure 3.18
also shows the peak frequencies of the oscillations from the literature taken from [143], which
were obtained with an independent 2D code for fxed space-time and with a perturbative code
in the case of hydrodynamics coupled to space-time evolution. An interesting point to note is
that although the results of [143] were obtained with a polytropic EOS, our simulations with
ideal gas EOS show a perfect match for the peak frequencies. The ideal gas EOS is expected
to produce diferent results from a polytropic one only in presence of shocks, which in this case
appears only on the low-density surface and therefore does not afect the oscillations at the
core. Finally, we see that the peak frequencies of our non-magnetised and magnetised models
are also in perfect agreement as shown by the left panel of Figure 3.18.

3.3 Summary

In this Chapter, we presented the work of JVK2, introducing a new fully general relativistic
code called Spritz, which evolves GRMHD equations in three spatial dimensions on cartesian
coordinates, and on dynamical backgrounds. This code is a considerable improvement of its
parent code WhiskyMHD code [32, 90, 108], now providing support for handling diferent types
of EOS (also tabulated and fnite temperature), as in the GRHydro code [29], as well as imple-
menting the vector potential evolution on a staggered grid, as in the IllinoisGRMHD code [30].
We also note that GRHydro does not support a vector potential formulation of the GRMHD
equations, while IllinoisGRMHD cannot handle fnite temperature tabulated EOS (at least at
the time of Thesis writing).

After describing the diferent features and workfow of Spritz, we then reported on a series
of tests in 1D, 2D and 3D. We started by showing the code capability of accurately solving
1D Riemann problems by comparing the numerical results with exact solutions [31]. We then
described a series of special relativistic MHD tests in 2D, including the cylindrical explosion, the
magnetic rotor, and the loop advection tests. All tests showed very good agreement with the
exact solution (loop advection) or with the other GRMHD code GRHydro (cylindrical explosion
and magnetic rotor). In particular, for the cylindrical explosion case, when comparing the 1D
results, we found Spritz to capture certain features with slightly better accuracy than GRHydro.
The same test was also used to validate the code’s capability of dealing with AMR grid, and
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demonstrated that using AMR has no efect in the correct evolution of MHD quantities. We
then performed a demanding 3D spherical explosion test with diferent levels of magnetization,
which produced good results as expected. We concluded our series of tests with a standard
3D evolution of a stable TOV confguration (both with and without magnetic feld) in order to
show the code ability to handle fully general relativistic regimes.

In the following Chapter, we describe the second version of Spritz, which includes support
for fnite temperature tabulated 3-parameter EOS, as well as the implementation of a neutrino
radiation scheme.
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Figure 3.12: Loop advection test with vz = 1=24. Left and right columns represent the x-component of
the magnetic feld Bx and the magnetic pressure pmag = b2=2, respectively. The initial data for Bx and
its corresponding pmag at t = 0 are depicted in the top row, while middle and bottom rows represent
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in [91]. Figure taken from JVK2.
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Chapter 4

Spritz with neutrinos

As mentioned before, one of the main goals of the Spritz code is to perform compact binary
mergers simulations taking into account all key ingredients in order to study the diferent
astrophysical mechanisms involved in such scenarios as accurately as possible. These ingredients
not only include general relativistic efects and magnetic felds but also a temperature and
composition dependent equation of state describing the behaviour of matter, and neutrino
emission/re-absorption. For example, both magnetic felds and neutrino efects are critical
(i) for accurate modelling of the BNS merger ejecta and their composition, which then afect
the kilonova emission and the associated heavy element nucleosynthesis (e.g., [27, 144, 145],
JVK3 and refs. therein), and (ii) for SGRB jet formation, where magnetic felds are most likely
the primary driver (e.g., [42, 43, 146, 147]) whereas neutrino radiation might play a role in
clearing the material along the spin axis of the merger remnant, which in turn could assist the
successful propagation of the corresponding outfow (e.g., [38]). However, including all of the
above elements in one code is rather challenging and only very few magnetized BNS merger
simulations with neutrino treatment have been presented so far [36, 148].

In this Chapter, we describe the second version of the Spritz code as presented in JVK5,
which now features support for fnite temperature composition dependent tabulated EOS and
implementation of a neutrino cooling/heating scheme. Morever, we added another C2P scheme
that supports such tabulated 3-parameter EOS, and also implemented higher-order methods
for hydrodynamic variables. Lastly, here we also present a large set of tests through which we
validate the latest implementions in Spritz.

4.1 Theoretical background

We remind the reader that Spritz is based on the fux-conservative formalism as described in
Section 2.2. Here, we focus mainly on the new additions to the code and refer to the previous
chapters for more details on the equations and methods used to solve the GRMHD equations
given by (2.61), (2.78-2.82). As one can see, these equations do not include the contribution
of neutrino emission and reabsorption. We therefore adopt an operator-split approach such

69
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that the GRMHD evolution step is frst performed without such contribution and then the
neutrino problem is solved via the leakage scheme. Finally, the variables Ye and � are updated
accordingly, thus including the efects of neutrino radiation on the GRMHD evolution itself (see
Sections 4.1.3 and 4.2.4 for more details).

4.1.1 Electron fraction advection

In order to incorporate the efects of neutrino emission/absorption on nuclear matter, we need
to take into account the crucial role of electron fraction which can be defned as

Ye �
ne
nb

=
ne

np + nn
; (4.1)

where ne, np, and nn the electron, proton, and neutron number densities respectively whereas
nb � np + nn stands for the baryon density. The rest-mass density can be written in terms of
baryon density as � = mnnb, where mn is the nucleon mass considered equal for neutrons and
protons (while contribution of electron masses is neglected for computing �). Now, for a system
without weak interactions (thus, no neutrinos), there is a local conservation of the number of
protons and of neutrons, therefore, guaranteeing local conservation of baryon number. In this
case, the continuity equation (2.45) can be written as

rµ(nbu
µ) = 0 : (4.2)

Due to charge neutrality, this in turn assures local electron number conservation, and using the
relation ne = Yenb = Ye�=mb, we can write

rµ(Ye�u
µ) = 0 : (4.3)

The above local electron number conservation together with local baryon conservation compels
the local electron density Ye� to be advected along the fuid lines, and is thus called as electron
fraction advection equation. This equation can then be expanded as

1p−g @µ
(p−gYe�uµ

�
=

1p−g
�
@t
(
�
p

Ye�u

t
�

+ @i
(
�
p

Ye�u

i
��

= 0 : (4.4)

Using the defnition D = �W = ��ut and the relation between co-moving and Eulerian 3-
velocities, we can recast Equation (4.4) into the hyberbolic conservative form as

@t (
p

DYe) + @i

�
�
p

DYe

�
vi − �i

�

��
= 0 : (4.5)

When considering the reactions involving neutrinos, the local electron number conservation
equation is no longer satisfed, and a source term is added to Equation (4.5) which modifes the
local electron fraction as per Equation (4.34) (see Section 4.1.3).
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4.1.2 Finite temperature tabulated EOS

For accurate description of matter behavior including microphysical efects, it becomes crucial
to include a proper description of matter composition as well as associated nuclear reactions to
account for the precise efects on the hydrodynamic system in hand. For instance, incorporating
the temperature efects on the composition becomes necessary for estimating the emission and
absorption rates associated with the diferent processes involving neutrinos. Morever, such
processes can then alter Ye which must be estimated accurately when dealing with dynamical
scenarios.

Moreover, as stated earlier in Section 2.2.6, the exact matter composition and the respective
EOS for the NS core still remains unknown. Based on nuclear physics calculations, a large
number of diferent tabulated EOS for NSs have been proposed in literature (see, for example,
[41] and [73] databases for variety of such EOS). These tabulated EOS, in their standard form,
are usually three-dimensional where every thermodynamic quantity is represented as a function
of three variables: the rest-mass density �, the temperature T , and electron fraction Ye. In
particular, these tables contain quantities like the specifc internal energy �, gas pressure p
(or P ), entropy per baryon, derivatives of quantities such as d�=dT , dp=d�, dp=d�, speed of
sound squared c2s, chemical potentials �e; �p; �n, mass fractions, mass and atomic numbers.
The temperature values usually start from 0.01 MeV (for setting the atmosphere) going up to
200 MeV (allowing high temperatures during collapse to a BH or strong shocks during merger).
Similarly, the rest-mass density ranges from around 103 g/cm3 (for atmosphere density foor)
to 1016 g/cm3 (here too, for instance, allowing for high density values during collapse to a BH).
Range in Ye is typically set from 0 to 0.5. Also, note that such microphysical nuclear EOS are
generally constructed considering Nuclear Statistical Equilibrium (NSE) which assumes that
matter is in equilibrium with respect to strong and electromagnetic interations.

In the second version of the Spritz code, we now provide support for handling tabulated
fnite-temperature and composition dependent EOS via the EOS_Omni thorn provided in the
Einstein Toolkit.

When generating the initial data for a NS, we usually require a one-dimensional (i.e.,
barotropic) EOS, where P and � are a function of � alone. Therefore, one needs to reduce the
three-dimensional table having P = P (�; T; Ye) and � = �(�; T; Ye) to a simpler one-dimensional
relation P = P (�) and � = �(�). This is done by considering two constraints on the NS matter,
which we describe below.

4.1.2.1 Beta-equilibrium condition

The frst constraint assumes the NS matter to be initially in �-equilibrium, which is given as

�p + �e − �n − �νe = 0 ; (4.6)

where �p, �n, �e and �νe are the proton, neutron, electron and electron-neutrino chemical po-
tentials. Considering that neutrinos are not trapped in the system, thus ignoring the contribu-
tions from the neutrino chemical potentials, i.e. �νe � 0, we can reformulate the (neutrinoless)
beta-equilibrium constraint as a constraint on the lepton chemical potential as �l = 0. Now, for
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a given temperature T and a baryon number density �=mb, it can be shown that there exists
only one charge fraction of strongly interacting particles [73] such that

�l(Ye)jT,ρ = 0 : (4.7)

Using this relation along with Equation (4.6), the condition on the choice of the electron fraction,
which is used for slicing the EOS table, becomes

(Ye)jT,ρ = Ye : (�p + �e − �n)jT,ρ = 0 : (4.8)

This allows the number of independent parameters to be reduced by one such that thermody-
namic quantities like �(�; T; Ye) can then be expressed as � = �(�; T; Ye(�; T )) = �(�; T ).

The �-equilibrium condition is a reasonable assumption for old NSs, such as those encoun-
tered in BNS or NSBH binary systems prior to merger.

4.1.2.2 Temperature or entropy slicing

For the second constraint, in order to reduce the independent parameters to one, we can decide
to fx a constant value either for the temperature (T-slicing condition) or for the entropy (S-
slicing condition).

T-slicing allows to set the an initial temperature to the lowest possible one provided by the
EOS table (closest to the initial zero-temperature state for a ‘cold’ NS). This value is typically
0.01 MeV or 0.1 MeV. This type of slicing is typically used in BNS or NSBH merger simulations
since it is reasonable to expect NSs to be cold prior to merger.

Instead of T-slicing, another possibility is to impose an isentropic constraint to obtain the
1D slice at constant specifc entropy. This condition produces a temperature gradient in the
NS initial data, thus allowing us to test the ability of our code in dealing with “hot” NSs.

All the simulations presented in JVK5 are performed adopting the LS220 EOS [149], which
has already been employed in literature dealing with the evolution of BNS systems (e.g., [144,
150, 151]).

4.1.3 Neutrino emission and absorption

Mergers of BNS/NSBH systems can produce temperatures as high as T � 10 MeV � 1011 K,
thus also afecting the electron fraction Ye to a great extent. In such events, in order to
precisely understand the mechanisms behind the r-process nucleosynthesis taking place in the
ejected matter and the subsequent production of heavy elements, one must take into account
the efect of neutrinos, which play a fundamental role in both the transport of energyas well as
in determining the evolution of Ye and temperature. To do so, we need a proper estimation of
the rates of the diferent reactions involving neutrinos for computing the nucleosythesis yields
and for modelling the radiactively-powered kilonova signals accompanying such merger events
(as the one already observed after GW170817; e.g., [3, 152]).

Typical timescale for weak processes involving neutrinos can be estimated from the changing
electron fraction as

tWP �
����
Ye

Ẏe

����� tdyn ; (4.9)
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where tdyn represents the dynamical timescale of the simulated astrophysical event [153].
Neutrino emission can take place in a variety of ways, ranging from difusion to free emission.

Since their emission cross-sections depend directly on temperature (� 100 MeV in BNS mergers),
copious amounts of neutrinos in all favors are emitted by the hot regions, covering the whole
energy spectrum. Thus, by carrying away energy, neutrinos can signifcantly cool down the
(meta)stable NS remnant of a BNS merger or the accretion disk around the spinning BH
resulting from either a BNS or an NSBH merger (e.g., [144]). After emission, neutrino transport
is further afected by diferent interations, scattering and absorptions, their mean free path
determined by various cross-sections. For instance, a fraction of the emitted neutrinos can
undergo reabsorption by the surrounding material, inducing heating and leptonization of the
material itself.

The neutrino mean free path is strongly dependent on rest-mass density. Particularly, for
densities higher than 1012 g/cm3 (relating to high-density interiors of the NS), neutrinos ther-
malize with the surrounding matter within the so-called neutrinosphere1 and difuse out (see, for
e.g., [155]), thus characterizing the difusive regime. For densities much lower than 1012 g/cm3,
the neutrinos stream freely with no or minimal interaction with matter, thus carrying away
energy and momentum. The intermediate regime, where neutrinos are neither free to escape
nor fully trapped, is governed by the optical depth.

The neutrino opacity k can be defned as the inverse of its mean free path. When integrated
along a path �, it yields the optical depth � . The energy averaged optical depth along each
path � followed by neutrinos can be defned as [156]

�ξ =

Z

ξ

�(x)k(x)
q

ijdxidxj ; (4.10)

where �(x) is the energy averaged opacity at position x. For a given location, the pointwise
optical depth is defned by the path giving the minimum optical depth favouring neutrino
escape, as

�(x) = min
ξ2�

�ξ = min
ξ2�

Z

ξ

�(x)�(x)
q

ijdxidxj ; (4.11)

where Ξ is the set of all possible paths starting from position x.
The complexity coupled with the extremely high computational cost of solving the full neu-

trino transport problem via the Boltzmann radiation transport equations have been the driving
factors behind the introduction of approximate schemes and simplifed assumptions in modern-
day codes (e.g., [157] and refs. therein). Here, we adopt a neutrino leakage scheme, already
employed successfully in BNS and NSBH simulations (e.g., [148, 153, 158–160]). Particularly,
we consider the leakage method presented in [156, 161], which has been implemented in the
publicly available ZelmaniLeak code [41]. In what follows, we introduce this leakage scheme
along with the basic physical assumptions. Its numerical implementation is instead discussed
in Section 4.2.4.

1The neutrinosphere is conventionally defned as the surface of constant neutrino optical depth � = 2=3 (see
e.g., [154]). This decoupling surface defnes the boundary outside of which neutrinos stream freely with no or
minimal interactions.
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In this neutrino leakage scheme, we deal with three neutrino species: electron neutrino �e,
electron antineutrino �̄e, and heavy-lepton neutrinos �x (including �ν , �̄µ, �τ , �̄τ ). For the given
cross-section �νi , we can frst defne opacities for the neutrino species �i as

�νi = NA��νi ; (4.12)

where NA is the Avogadro number. Then, the non-energy dependent opacity can be defned as

�νi � �νi=E2
νi ; (4.13)

where E2
νi is the squared of the neutrino energy. Using this, non-energy dependent optical

depth can be written as

�ξ =

Z

ξ

�(x)
q

ijdxidxj ; (4.14)

The main driver behind neutrino opacities are the weak processes taking place in matter,
which in turn depend on matter composition, rest-mass density, temperature, neutrino favor
and energy. For neutrino energies, the following isotropic Fermi-Dirac distribution is considered
2

fνi(Eνi) =
1

e(Eνi−µνi)/kbT + 1
: (4.15)

ZelmaniLeak employs the standard ansatz [162] of approximating the difusive and free-streaming
regimes, and interpolates between the two in other cases. In these regimes, two main quantities
are evaluated, i.e. (i) the rate of number emission Rνi , which stands for the average number of
neutrinos emitted per unit volume per unit time, and (ii) the rate of enery emission Qνi , defned
as the average energy emitted (in ergs) through neutrinos per unit volume per unit time. In
the following sections, we describe these quantites for the diferent regimes in more detail.

4.1.3.1 Difusive regime

The neutrino optical depths, which are important to determine the difusive rates, are derived
under the assumption that neutrinos escape along radial paths from the center, based on the
ray-by-ray approach. Before describing theses difusive rates, we frst highlight the details of
the opacity sources and the respective cross-sections below.

� Neutrino-nucleon/nuclei scattering: The frst source of opacity is provided by the
scattering of each neutrino species on nucleons (i.e., protons or neutrons). For the scat-
tering reaction, �i + fn; pg ! �i + fn; pg, the interaction cross-section is given by [163]

�νi,nuc =
1

4
�0

�
Eνi
mec2

�2

; (4.16)

where �0 =
4G2

F (mec2)
2

π(~c4) � 1:705� 10−44 cm2, and the corresponding opacity is written as

�νi,fp,ng = Xfp,ngNA��νi,nuc ; (4.17)
2We remark that this approximation on energy distribution is made in order to avoid large computational

costs, and schemes that adopt this approximation are often referred to as gray schemes.
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where Xfp,ng is the nucleon mass fraction. Similarly, neutrinos are also scattered by nuclei
with the process, �i + fA;Zg ! �i + fA;Zg, having the cross section

�νi,fA,Zg =
1

16
�0

�
Eνi
mec2

�2

A2(1− Z

A
)2 ; (4.18)

where A and Z are the average heavy nucleus mass and atomic numbers respectively.

� Neutrino-nucleon absorption: Instead of scattering, electron and anti-electron neutri-
nos can get captured by the nucleons via processes, �e+n! p+ e− and �̄e+n! p+ e+,
thus generating more electrons and positrons respectively. Their absorption cross-sections
are given as

�νe,n =
1 + 3�2

4
�0

�
Eνi
mec2

�2

h1− fe−i ; (4.19)

��νe,p =
1 + 3�2

4
�0

�
Eνi
mec2

�2

h1− fe+i ; (4.20)

where h1−fe�i � [exp (��e − F5(��νe)=F4(��νe)) + 1]
−1, are the so called fermion block-

ing factors, which take into account the availability of energy levels of the fnal states.
Here, F4 and F5 are the Fermi integrals, defned in [164] as function of the neutrino
chemical potential �, given by the general expression Fn(�) �

R
xn

1+exp(x−η)dx, which are
usually computed numerically.

Using the above cross-sections, we can then compute the local spectral averaged opacity for
each neutrino species as the sum of the opacities due to the scattering of nucleons, neutrino-
nucleus scattering, and neutrino absorption by free nucleons (see [163] for more details). Using
these mean opacities, the optical depths along each radial path are then derived. The averaged
number and energy rates can then be written as [163]

hRdi�
νi i =

4�cgνi
(hc)3

�νi
3�2

νi

TF0(�νi) ; (4.21)

hQdi�
νi i =

4�cgνi
(hc)3

�νi
3�2

νi

T 2F1(�νi) ; (4.22)

where i = 1; 2; 3 and �1 = �e, �2 = �̄e, �3 = �x, and the statistical weights are gν1 = gν2 = 1 and
gν3 = 4. Moreover, �νi and � are the non-energy dependent opacities and optical depth defned
in Equations (4.13) and (4.14) respectively, with E the average neutrino energy (computed
assuming a Fermi-Dirac distribution at the local temperature T ). F0(�) and F1(�) are the
Fermi integrals mentioned earlier.

4.1.3.2 Free-streaming regime

As mentioned earlier, in this regime, the produced neutrinos stream away freely, with no or
minimal interations with the surrounding medium, thus carrying away their energy. Below we
describe the implemented emission rates for the various processes in this regime.
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� Electron/positron capture: This process produces only electron favour neutrinos
via the charged current capture reactions on nucleons. Particularly, these reactions are
electron capture (EC), e− + p ! n + �e and positron capture (PC), p + e+ ! n + �̄e.
Their emission rates are given as [163]

REC = ��pnT
5F4(�νe) ; QEC = ��pnT

6F5(�νe) ; (4.23)

RPC = ��npT
5F4(�−νe) ; QPC = ��npT

6F5(�−νe) ; (4.24)

where � = π
h3c2

1+3α2

mec2
�0, �pn =

nn−np
exp(µ̂/T )−1 , �np = −�pn, � � 1:25, and nfn,pg are neutron

and proton number densities.

� Pair annihilation and plasmon decay: This neutrino production channel which in-
volving electron-positron annihilation, e−+ e+ ! �i + �̄i and plasmon decay, 
 ! �i + �̄i,
generates a pair of neutrino/antineutrino of every favour. The detailed expressions of
emission rates for these processes can be found in [162]. Here, we just highlight their
dependence on temperature, which is given as

Ree(�i; �̄i) / T 8 ; Qee(�i; �̄i) / T 9 : (4.25)

The plasmon decay process also show the same above dependency on temperature.

� Nucleon-nucleon Bremsstrahlung: Through this channel, neutrinos are produced due
to the interaction between two nucleons, N +N ! N +N + �i + �̄i. Further details can
be found in [165]. Again, here we just point out the dependency on temperature,

RBr / T 5.5 ; QBr / T 6.5 : (4.26)

Note that both nucleon-nucleon Bremsstrahlung rates and plasmon decay rates do not
depend on the favour of the produced neutrinos.

Finally, the actual efective emission rates are computed by combining the free emission and
difusive ones as follows

Re�
νi = Rfree

νi

 
1 +

Rfree
νi

Rdi�
νi

!−1

; (4.27)

Qe�
νi = Qfree

νi

 
1 +

Qfree
νi

Qdi�
νi

!−1

: (4.28)

Using the above relations, the average neutrino energy is expressed as

Ee�
νi =

Qe�
νi

Re�
νi

: (4.29)
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For each of the three neutrino species, we can then evaluate the integrated luminosity.
In particular, for a given radial direction (�; �), the isotropic-equivalent neutrino luminosity
incoming from below at a distance r can be computed in the coordinate frame as

Liso
νi (r; �; �) = 4�

Z r

0

�
�(r0; �; �)

�(r; �; �)

�
Qe�
νi (r0; �; �)�(r0; �; �)W (r0; �; �)

� [1 + vr(r0; �; �)]
p
grr(r0; �; �)r0

2
dr0 ; (4.30)

where vr is the radial velocity 3. Here, we can also defne a fuid rest frame (FRF) luminosity
as

Liso,FRF
νi (r) =

Liso
νi (r)

�(r)W (r) [1 + vr(r)]
: (4.31)

4.1.3.3 Neutrino re-absorption

A fraction of neutrinos can undergo reabsorption by matter they encounter along their path
(i.e. �e and �̄e reabsorption on neutrons and protons, respectively) which eventually leads to
heating as well as leptonization. This can be characterized via the local heating rate [161],
given as

Qheat
(νe,�νe)

= fheat

Liso,FRF
(νe,�νe)

4�r2
�heat

(νe,�νe)

�

m(n,p)
X(n,p)

(
4:275�(νe,�νe) + 1:15

�
e−2τ(νe,ν̄e) ; (4.32)

where fheat is a scaling factor of order one (we typically set fheat = 1), �heat
(νe,�νe)

is the reabsorption
cross-section (see below),m(n,p) andX(n,p) are the neutron or proton masses and mass fractions,
and the factor e−2τ(νe,ν̄e) is added to suppress heating at very large optical depths. And the
following expression is adopted for the reabsorption cross-section [156]

�heat
(νe,�νe)

=
1 + 3�2

EC

4
�0

hE2iNS(νe,�νe)

(mec2)2
h1− f(e−,e+)i ; (4.33)

where �EC = −1:25, �0 = 1:76 � 10−44 cm2, hE2iNS is the mean squared neutrino energy at
the neutrinosphere, and h1− f(e−,e+)i are the blocking factors defned in [166].

At a given time, the full neutrino emission and reabsorption problem is solved along each
radial direction by moving outwards from the center, and at each radius, we subtract the
heating rates from the emission rates, i.e. Qe�

νi ! Qe�
νi −Qheat

νi and Re�
νi ! Re�

νi −Qheat
νi =hEiNSνi ,

considering Eνi as the average neutrino energy at the neutrinosphere and Qheat
νx = 0.4

These results are then coupled with the GRMHD evolution, where the electron fraction Ye
and specifc internal energy � are updated as follows:

Ye ! Ye + ∆t
@Ye
@t

; (4.34)

3We remark that in this expression, the time-of-fight of neutrinos is neglected. Here, neutrinos emitted at
a given time and at diferent radial locations are collected together. However, this is only used in the region
where neutrino reabsorption is relevant, and for instance, in the BNS or NSBH post-merger phase, the light
travel time in such regions is much shorter than the timescale for a signifcant change in neutrino luminosities.

4As mentioned in [156], a self-consistent radiation transport treatment is necessary to have a perfect balance
between emission and absorption. This is not provided by the present gray heating scheme.
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where ∆t the local time step, and the contribution of the aforementioned efective emission
rates are included in the source term as

@Ye
@t

=
Re�

�νe −Re�
νe

�
mn ; (4.35)

where mn the rest-mass of the neutron. Similarly, for �, we have

�! �+ ∆t
@�

@t
; (4.36)

and here too, we include the efective emission rates as

@�

@t
= −ΣiQ

e�
νi

�
: (4.37)

4.2 Numerical implementation

We recall that the Spritz code works with the Einstein Toolkit infrastructure. In Chapter
2, we described the numerical methods employed to solve the GRMHD equations. Here, we
instead focus on the new additions to Spritz as presented in JVK5, which allow us to support
the use of tabulated EOS, neutrino transport as well as higher order methods.

4.2.1 EOS driver

As already stated in Section 3.1.5, Spritz utilizes the EOS_Omni thorn provided in the Einstein
Toolkit, which enables it to handle a large variety of EOS, including ideal fuid, polytropic, as
well as tabulated 3-parameter ones.

Our frst tests with EOS_Omni and tabulated EOS presented some limitations in dealing with
such EOS. In particular, we noticed that for computing the temperature T from the specifc
internal energy �, the thorn adopts a Newton-Raphson routine with a fall-back to a bisection
routine in case of too many iterations, after the root is bracketed. This was not robust enough
in cases when T weakly depends on �, which may cause T to go out of the bounds (see [167]).
We found this problem to occur especially when dealing with NS initial data which uses the
lowest T available in the EOS table. Based on our suggestions, the EOS_Omni thorn was updated
[168], now considering the fall-back to the more robust bisection scheme in such cases. In this
way, we make sure that T is always contained in the range available in the EOS table. All our
simulations presented in Section 4.3 use this new version of the EOS_Omni thorn.

4.2.2 Initial data

For computing the initial data of the NSs, the three-dimensional EOS tables should be reduced
to one-dimension, which then provides pressure P is only a function of the rest-mass density
�. To do this, we employ two constraints: (i) frst, we assume matter to be in �-equilibrium
(see Section 4.1.2.1), and (ii) we then apply the S-slicing or T-slicing condition (for details, see
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Section 4.1.2.2. For this implementation, we wrote an algorithm which generates a 1D tabulated
EOS starting from 3D ones in .h5 format, like the ones provided in [41]. The produced 1D
EOS can then be saved both in the CompOSE format [73] or in the LORENE format, both of which
could be easily used with LORENE [169] library. The initial data used in JVK5 considers a single
non-rotating NS (TOV), which was generated using the code Nrotstar of the LORENE library
which can compute equilibrium solutions for non-rotating or uniformly rotating NSs. These
solutions are non-magnetized, but a magnetic feld can be easily added to the initial data. To
read this initial data with Spritz, a new thorn was developed called ID_Nrotstar thorn to
read initial data produced with Nrotstar, and import them in the Cartesian grid. To ensure
the correct setting of �-equilibrium, an additional thorn was developed called Spritz_SetBeta,
that performs a check at the frst C2P routine execution to make sure that the code uses the
same 1D EOS used to compute the initial data. After the initial data are correctly imported
and conserved variables computed, the evolution starts and the full 3D EOS table is used.

Both ID_Nrotstar and Spritz_SetBeta thorns have been made publicly available as a part
of the second Spritz code version [170].

4.2.3 1D Palenzuela C2P

The implementation of the conservative to primitive variable recovery schemes provided in the
frst version of the Spritz code (see Section 3.1.3) did not provide support when dealing with
3D tabulated EOS. In order to work with such EOS, we frst implemented the 1D method C2P
method presented in Palenzuela et al. [148], which is a modifed version of the one already used
in GRHD [167]. It consists of rewriting the conserved variables in the following way

q � �̃

D
; r � S2

D2
; s � B2

D
; t � BiS

i

D
3
2

; (4.38)

and proposes a master function f(x) where x � hW is the independent variable. One then looks
for the root of the equation f(x) = 0, where the master function is f(x) = x− hW . We do not
go into the details of this algorithm and point the reader to [148] for more information. Here,
we just point out that the Brent’s method [171] is used for the root fnding procedure, where the
independent variable x should be properly bracketed, thus x 2 ]xL; xR[, with f (xL) �f (xR) < 0.
The left and right bounds can be defned in the following way (see [172]):

xL =1 + q − s ; (4.39)

xR =2 + 2q − s : (4.40)

If no consistent bound is found, then the point is set to atmosphere (see Section 3.1.4). Addi-
tionally, the temperature is set to the minimum value in the table, whereas Ye is set to 0.5.

However, in order to perform simulations where the initial temperature T is forced to be
constant, the aforementioned 1D C2P scheme could not be used in such cases. Constraining
the initial temperature could be useful to avoid spurious neutrino production in particular
scenarios, e.g. during BNS inspiral (for some examples, see [173–175]) or when evolving a single
cold NS (that may undergo a sharp initial rise of temperature due to numerical readjustment
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of the initial data given by the solution of the TOV equations). Therefore, we implemented
a modifed version of the 3eqs method (see Section 3.1.3.2 and [90] for details), where the �̃
variable is not used in computing the primitive variables. Particularly, we refer to Equation
(45) of [90], defning the function

f (Wguess) � S2 −
"�
Ẑ +B2

�2 W 2
guess − 1

W 2
guess

− 2Ẑ +B2

Ẑ2

(
BiSi

�2
#
; (4.41)

where we have
Ẑ = W 2

guess

�
�̂+ �̂�̂+ P̂

�
; (4.42)

and �̂ = D
Wguess

, while P̂ and �̂ can be computed via the EOS using �̂ and the constrained value
of T . The algorithm workfow can be described as follows:

(i) the initial guess for the solution is assumed to be Wguess 2 [1:0; 1:5], which corresponds
to assuming v 2 [0:0; 0:75c]

(ii) �̂, P̂ , �̂, and Ẑ are computed using the EOS with the constrained value of T and the
conserved variables

(iii) if, when using Equation (4.41), f(1)�f(1:5) > 0, the point is actually set to the atmosphere

(iv) fnally, the Brent’s method [171] is applied to the function f defned in Equation (4.41).

The above steps are iterated until convergence. After fnding the fnal root for W , recovery
of the other primitive variables is straightforward. Note that we use Equation (45) and not
Equation (46) of [90] when forcing the temperature to be constant. Therefore, we also need to
update the value of �̃ after each C2P step in order to guarantee consistency between primitive
and conservative variables. This is similar to what is done in other codes when using a cold
EOS during the evolution.

4.2.4 Neutrino leakage

As mentioned earlier, our implementation of the neutrino leakage scheme described in Section
4.1.3 is based on the thorn ZelmaniLeak available on the stellarcollapse website [41], and
frstly presented in [156]. In particular, we employ version 20161117 of this thorn. This partic-
ular version of ZelmaniLeak uses all the cross-sections, emission and heating rates described in
Section 4.1.3. These cannot be modifed by the user unless the code itself is changed. However,
one can choose whether to activate neutrino emission or not. There is also a possibility to
activate neutrino emission during the evolution, if not since the beginning. Moreover, one can
also choose whether to activate the efect of neutrino heating (reabsorption) or not. Also, the
user can freely set the number of radii across which the optical depth is to be computed.

4.2.5 Higher order methods

In the second version of Spritz as presented in JVK5, we also implemented high-order (HO)
schemes in order to further improvise on the accuracy of the code.
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4.2.5.1 Reconstruction step: WENOZ method

In order to implement a high-order scheme, we frst need to choose the right reconstruction
method. Here, we consider the ffth-order WENOZ algorithm [176]. In what follows, we will
consider only one dimension without loss of generality: the multi-dimensional scheme is simply
retrieved by considering the fuxes in each direction separately.

The ffth-order WENO scheme works with a 5-points stencil, represented by S5, which is
subdivided into three 3-points substencils, fS0; S1; S2g. The polynomial approximation fi+1/2,
which is the reconstruction of the grid function fi on the left side of the cell-interface5, is
computed via the following convex combination of the interpolated values fki+1/2, that are third
degree polynomials defned on each substencil Sk, k = 0; 1; 2:

fi+1/2 =

2X

k=0

!kf
k
i+1/2 : (4.43)

The polynomial on each substencil is given by the quadratic interpolations

f0
i+1/2 =

1

8
(3fi−2 − 10fi−1 + 15fi) ; (4.44)

f1
i+1/2 =

1

8
(−fi−1 + 6fi + 3fi+1) ; (4.45)

f2
i+1/2 =

1

8
(3fi + 6fi+1 − fi+2) : (4.46)

The weights !k are defned as
!k =

�kP2
j=0 �j

: (4.47)

For WENOZ, the unnormalized weights �k are given by

�k = dk

�
1 +
j�0 − �2j
�k + �

�
; (4.48)

with � = 10−26 (to avoid a possible division by zero), and dk = (1=16; 10=16; 5=16) are the
optimal weights corresponding to the weights obtained for smooth felds along with smoothness
indicators, which are

�0 =
13

12
(fi−2 − 2fi−1 + fi)

2
+

1

4
(fi−2 − 4fi−1 + 3fi)

2
; (4.49)

�1 =
13

12
(fi−1 − 2fi + fi+1)

2
+

1

4
(fi−1 − fi+1)

2
; (4.50)

�2 =
13

12
(fi − 2fi+1 + fi+2)

2
+

1

4
(3fi − 4fi+1 + fi+2)

2
; (4.51)

that measure the regularity of the k-th polynomial approximation fki at the stencil Sk.
5fi−1/2 is simply given by swapping the indices of the stencil: (i−2; i−1; i; i+1; i+2)! (i+2; i+1; i; i−1; i−2)
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Table 4.1: Coefcients of the fux function approximation f̂j+1/2.

n d0 d2 d4

2 1 0 0
4 13/12 -1/24 0
6 1067/960 -29/480 3/640

We remark that the coefcients in Equations (4.44)-(4.46) and the optimal weights dk are
taken from [177], which difer from the ones in the original work [176], because we noticed that
they are better-suited for this high order scheme in combination with the derivation operation
which we describe next.

4.2.5.2 Derivation operation

The derivation operation is a high-order procedure applied to obtain a high order approximation
from the point value quantities calculated at the intercell location. This step is performed right
after the fux computations via an approximate Riemann solver. And when employing this
method, one needs to ensure that the accuracy of the spatial derivative calculations is preserved
for schemes with order n > 2. Here too, we restrict the discussion to one dimension. The steps
described below follow the one outlined in the ECHO paper [177]. Using these steps, we will
compute the numerical fux function f̂i+1/2, given a stencil of intercell fuxes ffi+1/2g.

The fnite diference approximation of the frst derivative at the point xi can be written as

hf 0(xi) � f̂i+1/2 − f̂i−1/2

= a(fi+1/2 − fi−1/2) + b(fi+3/2 − fi−3/2) + c(fi+5/2 − fi−5/2) ; (4.52)

where the approximation has been truncated at sixth-order, and h denotes the constant grid-
spacing. Expanding both sides of the equation in Taylor series around xi, we get

hf
(1)
i =

+1X

k=0

f
(k)
i

hk

k!2k
�
1− (−1)k

� �
a+ 3kb+ 5kc

�
; (4.53)

where the corresponding order of derivation is indicated by the exponents, and the frst deriva-
tive has been rewritten as f (1)

i � f 0(xi). Here, all terms with even k vanish. For n = 2, where
b = c = 0, we get a = 1. For n = 4, where c = 0, we fnd a = 9=8 and b = −1=24. Finally, for
n = 6, the solution is a = 75=64, b = −25=384, c = 3=640. The next step is to write

f̂i+1/2 = d0fi+1/2 + d2(fi−1/2 + fi+3/2) + d4(fi−3/2 + fi+5/2) : (4.54)

Comparing this with Equation (4.53) yields the relations d0 = a + b + c, d2 = b + c, d4 = c.
The numerical values of d0, d2, and d4 for the diferent order of approximation are given in
Table 4.1. Note that for n = 2, one recovers f̂i+1/2 = fi+1/2 as expected.
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This procedure essentially acts as a correction for higher than second order approximation,
and in this sense, we can rewrite Equation (4.54) as

f̂i+1/2 = fi+1/2 −
1

24
∆(2)fi+1/2 +

3

640
∆(4)fi+1/2 ; (4.55)

where only the frst term is used in the case n = 2, the second is added for n = 4, and the
entire expression is used for n = 6. For a generic index i, the second and fourth order numerical
derivatives are given by

∆(2)fi = fi−1 − 2fi + fi+1 ; (4.56)

and

∆(4)fi = ∆(2)fi−1 − 2∆(2)fi + ∆(2)fi+1

= fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2 ; (4.57)

respectively.

4.3 Test results

Here, we report a number of tests (presented in JVK5) that were performed for validating
the new additions to Spritz, focussing mainly on testing the neutrino leakage scheme and
the higher-order methods. For almost all the tests presented, our reference physical system
is a stable non-rotating NS (TOV). In particular, we consider a NS with mass 1:68M� and
LS220 EOS [178], which corresponds to a coordinate radius of about 9:7 km (and the corre-
sponding circumferential radius slightly above 12 km). Its initial data is produced using the
Lorene/Nrotstar code, as discussed previously in Section 4.2.2. For tests involving NSs, we
consider both magnetized and non-magnetized cases. For the latter, we initially add a purely
poloidal magnetic feld using the vector potential prescription for Aφ given by Equation (3.33),
and the magnetic feld remains initially confned within the NS because of our use of the ideal
MHD approximation. The value of Ab is set such that the initial maximum magnetic feld
strength is set to 1016 G. This corresponds to the largest order of magnitude for a magnetic
feld that can be added to a TOV solution without introducing signifcant violations in the
constraints of Einstein’s equations. Signifcantly larger magnetic felds would indeed afect the
structure of the star and therefore, TOV equations would not be applicable [179]. The initial
and fnal magnetic feld distribution imposed in our NS tests is depicted in Figure 4.1. All
NS simulations employ AMR, utilizing 5 refnement levels. The outermost domain boundary
extends to � 193 km in every direction, while the innermost refnement level goes up to 13 km.
The fnest grid resolution used is dx � 177m and the grid spacing is increased by a factor of
two going from a refnement level to the next. The entire NS is contained within the most
refned region and the NS radius is covered with about 60 points. Magnetized simulations are
performed in full 3D domain, while non-magnetized simulations employ octant symmetry with
refection symmetry conditions across the x = 0, y = 0, and z = 0 planes. In all NS simu-
lations, the outer boundary condition is set to ‘none’ for the hydro variables (i.e., values are
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Figure 4.1: Left panel: initial magnetic feld setup for simulations 13 and 14 (see Table 4.3). Black lines
represent isocontours of the �-component of the vector potential, while the red line is a density contour
corresponding to � ' 3� 1012 g/cm3. Right panel: as in the left panel but at the end of simulation 16.
Figure taken from JVK5.

Table 4.2: Initial Data used for the unmagnetised (B = 0) tests.

ID Test Name �-eq. Initial Data � Leakage T evolution

01 Spr_S_NL_NB_3D S-slice 1kb/bar Disabled Yes
02 GRH_S_NL_NB S-slice 1kb/bar Disabled Yes
03 Spr_S_NL_NB S-slice 1kb/bar Disabled Yes
04 Spr_S_YL_NB_3D S-slice 1kb/bar Enabled Yes
05 GRH_S_YL_NB S-slice 1kb/bar Enabled Yes
06 Spr_S_YL_NB S-slice 1kb/bar Enabled Yes
07 GRH_T_NL_NB T-slice 0:01 MeV Disabled Yes
08 Spr_T_NL_NB T-slice 0:01 MeV Disabled Yes
09 Spr_T1_NL_NB T-slice 0:01 MeV Disabled Yes (after t = 2ms)
10 GRH_T_YL_NB T-slice 0:01 MeV Enabled Yes
11 Spr_T_YL_NB T-slice 0:01 MeV Enabled Yes
12 Spr_T1_YL_NB T-slice 0:01 MeV Enabled (at t = 3ms) Yes (after t = 2ms)

kept fxed to their initial one), linear extrapolation for the vector and scalar potential JVK2,
and radiative boundary conditions are applied for the metric variables [93]. For the ray-by-ray
calculations of the neutrino leakage scheme, we use 9 independent directions in � and 16 in
� for full 3D simulations, while for cases using octant symmetry, these numbers are rescaled
accordingly (i.e. 5 independent directions in both � and �).

Tables 4.2 and 4.3 summarize the number of NS tests performed, referring to non-magnetized
and magnetized cases, respectively. All the simulations use MacLachlan thorn to evolve the
spacetime in the BSSNOK formalism, and cover about 6ms of evolution. This timescale cor-
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Table 4.3: Initial Data used for the magnetized (B � 1016G) tests.

ID Test Name �-eq. Initial Data � Leakage T evolution

13 Spr_S_NL_YB S-slice 1kb/bar Disabled Yes
14 Spr_S_YL_YB S-slice 1kb/bar Enabled Yes
15 Spr_T1_NL_YB T-slice 0:01 MeV Disabled Yes (after t = 2ms)
16 Spr_T1_YL_YB T-slice 0:01 MeV Enabled (at t = 3ms) Yes (after t = 2ms)

responds to � 14 dynamical timescales, and therefore allows us to study these systems for a
sufciently long time without requiring too much computational resources. We stop these sim-
ulations manually after � 6 ms, and no sign of instability or numerical problem were present at
the fnal time. In the following, we frst discuss the results without neutrino leakage, testing the
implementation of the tabulated EOS handling, and then those with neutrino leakage, with and
without neutrino heating. Then, we also present a few tests using the higher-order schemes.

For the NS tests, we also compute the total neutrino luminosity of each neutrino species in
cartesian coordinates as

L1νi =

Z 1

0

Z 1

0

Z 1

0

Qe�
νi (x0; y0; z0)

�
�2(x0; y0; z0)W (x0; y0; z0)

� (1 + vr(x0; y0; z0))]
p

dx0dy0dz0 ; (4.58)

where vr = (xvx + yvy + zvz)=
p
x2 + y2 + z2.

4.3.1 Testing tabulated EOS without neutrino leakage

In order to check the implementation of the tabulated EOS handling, we here report the results
of all NS simulations performed without enabling the leakage scheme, starting from either
S-slicing or T-slicing initial data.

Figure 4.2 shows the results for the evolution of the maximum of � and T when using the
S-slicing initial condition. In these models, the maximum initial temperature is located at the
NS centre which does not increase more than 1% by the end of the simulation. Also, the fgure
shows exact matching curves for simulations 01, 02, 03, and 13, as expected (see Table 4.2 and
4.3). For a comparison study, pure-hydro simulations 02 and 03 which employ octant symmetry
and are performed with the GRHydro and the Spritz codes respectively, produce the same
results as adopting full-3D in simulations 01 and 13. Furthermore, the magnetic feld evolution
in simulation 13 is correctly handled and does not signifcant impact on the hydrodynamic
quantities as expected (we remind that, even if large, a magnetic feld of � 1016 G provides a
magnetic energy which is still � 2 orders of magnitude below equipartition). Figures 4.3 and 4.4
show similar comparison for tests starting with T-slicing initial condition. Here, the maximum
of T is located near the NS surface. Simulations 09 and 15 are the most delicate to handle, since
the temperature T is fxed to be constant for the frst � 2ms and only then allowed to evolve.
When temperature evolution begins, an artifcial shock is generated at the NS surface in the
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Figure 4.2: Evolution of TOV with the S-slicing condition and without neutrinos. The left panel depicts
the evolution of the maximum rest-mass density normalized to its initial value, whereas the right panel
is the equivalent for the maximum temperature (which is located at the NS centre). Figure taken from
JVK5.

initial transient phase, however later on, the temperature evolution tends to a constant value,
whereas the evolution of maximum of � follows closely the results given by the simulations 07
and 08, where T is evolved since the beginning. Additionally, Figure 4.4 provides perfect match
between the pure-hydro simulation 09 and the magnetized simulation 15. The above results
give us the confdence that the handling of the tabulated EOS has been correctly implemented,
and allows us to proceed further with testing of the neutrino leakage scheme implementation.

4.3.2 Testing neutrino leakage

In this section, we discuss the results of simulations starting with either constant S or T initial
data and involving neutrino leakage, reporting also the total neutrino luminosity evolution for
each neutrino species, computed using Equation (4.58). We frst present the results of tests
performed without the heating (reabsorption), and then also including its contribution based
on Equation (4.32).

4.3.2.1 Tests without neutrino heating

In Figure 4.5, we compare the tests evolving S-slicing initial data with neutrino leakage, but
without neutrino reabsorption. Top panels show the usual evolution of the maxima of � and
T normalized to their initial values, whereas the bottom panels show the evolution of neutrino
luminosity of each species (electron neutrinos, electron antineutrinos, and the combined contri-
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Figure 4.3: Same as Figure 4.2 but for T-slicing condition. For simulation 09, temperature evolution
is activated only after 2ms. Figure taken from JVK5.
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Figure 4.4: Comparison of non-magnetized and magnetized test results for T-slicing condition. In both
cases, the temperature evolution is activated only after 2ms. Figure taken from JVK5.

bution of � and � neutrinos and antineutrinos). Particularly, the luminosity plots demonstrate
that the scenario is clearly dominated by electron capture. Here too, the maximum temperature
(located at the NS center), shows an increase of less than 1%. Neutrino cooling is not efective
near the stellar center which are high density regions (and thus associated with high optical
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depths), and therefore, temperature evolution in such regions remains unafected. Similarly, we
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Figure 4.5: Top panels: Same as Figure 4.2 for S-slicing simulations now considering neutrino leakage
but no heating. Bottom panels: Evolution of neutrino luminosities for the diferent neutrino species
(from left to right: �e, �̄e indicated here as �a, and �x). Figure taken from JVK5.

compare the results for tests starting with T-slicing initial data as shown in Figure 4.6. In this
case, the maximum of the temperature is located on the NS surface and thus gets afected by
any artifcial shocks that develop in that region. Despite minor diferences due to the diferent
implementations in the GRHydro and Spritz codes, the results appear in good agreement.
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Figure 4.6: Same as Figure 4.5 but for T-slicing simulations 10 and 11, performed with GRHydro and
Spritz respectively. Figure taken from JVK5.

4.3.2.2 Tests including neutrino heating

Here, we investigate how the heating contribution could alter the results of simulations. Fig-
ures 4.7 and 4.8 show the comparison between simulations with and without neutrino heating,
starting with S-slicing and T-slicing initial conditions respectively. As already seen in Fig-
ure 4.3, here too, a sharp transient for the maximum of T is produced when starting with a
cold initial data in the frst few time steps (likely located at the NS surface for the T-slicing
condition), where the NS internal temperature undergoes a re-adjustment (likely due to the
production of shocks at the NS surface). This transition can afect neutrino leakage since it
may produce luminosities much larger than expected. Furthermore, we recall that the heating
rate given by Equation 4.32 is not self-consistent in terms of energy balance (see also Section
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4.1.3.3). Therefore, when considering the heating contribution (Figure 4.8), we activated the
leakage 1ms later in order to avoid the initial transient. Figure 4.9 ilustrates results for
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Figure 4.7: Same as Figure 4.5 but for the simulation 06 including leakage, with and without the
heating contribution. Figure taken from JVK5.

S-slicing initial condition and neutrino leakage including heating. In this case, since there is
no initial temperature readjustment, the heating contribution can already be activated since
the beginning and not after some time. Furthermore, in Figure 4.10, we show the evolution of
the maximum of magnetic feld strength for the magnetized cases 13 (without leakage) and 14
(with leakage and the heating contribution), fnding exactly matching curves, which suggests
that neutrino leakage and heating has negligible impact on the magnetic feld (and vice versa)



4.3 Test results 91

0 2 4 6
t [ms]

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

1.0100

1.0125

1.0150

ρ c
/ρ

c,
0

11_Spr_T_YL_NB - leak at 1 ms
11_Spr_T_YL_NB - no heat

0 2 4 6
t [ms]

100

101

102

103

T m
ax
/T

m
ax
,0

11_Spr_T_YL_NB - leak at 1 ms
11_Spr_T_YL_NB - no heat

0 2 4 6
t [ms]

0

1

2

3

4

5

6

7

8

L∞
[1
05
1 e
rg
/s
]

11_Spr_T_YL_NB - Leak at 1 ms νe
11_Spr_T_YL_NB - no heat νe

0 2 4 6
t [ms]

11_Spr_T_YL_NB - Leak at 1 ms νa
11_Spr_T_YL_NB - no heat νa

0 2 4 6
t [ms]

11_Spr_T_YL_NB - Leak at 1 ms νx
11_Spr_T_YL_NB - no heat νx

Figure 4.8: Same as Figure 4.5 but for the simulation 10 including leakage, with and without the
heating contribution. When heating is considered (blue solid curve), neutrino leakage is switched on at
t = 1ms to avoid spurious efects due to the sharp initial jump in the maximum temperature. Figure
taken from JVK5.

in such scenarios. Figure 4.11 compares the tests with cold NS initial data (T-slicing) and
neutrino leakage including heating. For simulation 11, which considers temperature evolution
since the beginning, the leakage is enabled only after 1ms. Whereas, for simulations 12 and 16,
where the temperature evolution starts only after 2ms, we enable the leakage at 3ms. Despite
the diferences in the activation times of temperature evolution and leakage, and in the pres-
ence or absence of magnetic felds, all the results show a very good agreement in the maximum
rest-mass density and the late-time electron neutrino luminosities. Finally, in Figure 4.12, we
look again at the maximum magnetic feld evolution for simulations 15 and 16, fnding per-
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Figure 4.9: Same as Figure 4.5 but considering the neutrino heating contribution. Figure taken from
JVK5.

fectly matching curves. In conclusion, all the 16 TOV simulations provide reasonable results,
validating the numerical implementation of the neutrino leakage scheme, and that the code is
ready to be used in more complex astrophysical scenarios, e.g., BNS/NSBH merger simulations
including tabulated EOS, magnetic felds, and neutrino emission and absorption.

4.3.3 Testing higher-order schemes

After validating our implementation of the neutrino leakage scheme, we now focus on testing
the implementation of higher-order methods.



4.3 Test results 93

0 2 4 6
t [ms]

0.96

0.97

0.98

0.99

1.00

1.01

||B
|| m

ax
/||
B|
| m

ax
,0

13_Spr_S_NL_YB 14_Spr_S_YL_YB

Figure 4.10: Comparison of evolution of Bmax for tests performed with the S-slicing condition, with
and without neutrino leakage and heating. Figure taken from JVK5.

4.3.3.1 Simple wave test

As a convergence test, we frst consider the evolution of a relativistic simple wave [180, 181].
Particularly, we perform this test using WENOZ as the reconstruction method along with
n = 2; 4; 6 correction to the HLLE Riemann solver (in the following, they are addressed as
HLLE2, HLLE4, and HLLE6, respectively).

We set the initial data using the following conditions [182]: we choose a right-propagating
simple wave with �0 = 1 and v0 = 0. Assuming a polytropic EOS with Γ = 5=3 and K = 100,
we can compute the sound speed in the reference frame through

c20 =
KΓ(Γ− 1)�Γ

0

(Γ− 1)�0 +KΓ�Γ
0

; (4.59)

obtaining c0 � 0:815 for this specifc case. Then, we perturb the velocity with a sin-like function,
getting its profle as (see left panel of Figure 4.13, dashed line)

v = aΘ(X − jxj) sin6
h�

2

� x
X
− 1
�i

; (4.60)

where Θ(x) is the Heaviside function, a = 0:5, and X = 0:3. Finally, the new sound speed is
calculated according to the Riemann invariant [181]

cs =
p

Γ− 1

p
Γ−1+c0p
Γ−1−c0

�
1+v
1−v

�pΓ−1/2

− 1

p
Γ−1+c0p
Γ−1−c0

�
1+v
1−v

�pΓ−1/2

+ 1

; (4.61)

such that cs = c0 at v = 0, and cs !
p

Γ− 1 as v ! 1. The other quantities can be computed
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Figure 4.11: Same as Figure 4.5 but considering T-slicing cases with neutrino leakage and heating
contribution, where leakage is activated 1ms after temperature evolution is enabled (at t = 0 for model
11, at t = 2ms for model 12, 16). Figure taken from JVK5.

from the EOS as follows:

�̂ =
c2s

Γ(Γ− 1− c2s)
; (4.62)

�̂ = �1/(Γ−1) ; (4.63)

p̂ = �Γ/(Γ−1) ; (4.64)

where �̂, �̂, and p̂ stand for the specifc internal energy, the density, and the pressure respectively.
The tests are performed within a 1-dimensional domain [−1:5; 1:5], employing RK4 integrator
for HLLE2 and HLLE4, and RK65 for HLLE66, with a CFL factor of 0:125.

6We consider this choice to avoid a possible limitation on the order of convergence due to the Runge-Kutta
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Figure 4.13: Left: Velocity solution in x-direction for the simple wave test using 400 points. Right:
Self-convergence factor (see Equation 4.65), computed from three diferent resolutions which use 400,
800, 1600 points. Figure taken from JVK5.

During the evolution, the wave profle begins to steepen until a shock is formed at t � 0:6

(see [180]). For quantifying the convergence properties of the various schemes, we compute the
self convergence factor given as

p � log2

� jjf(4∆x)− f(2∆x)jj
jjf(2∆x)− f(∆x)jj

�
: (4.65)

The functions f(∆x), f(2∆x), and f(4∆x) represent the numerical solutions calculated on

integrator.
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uniform grids with corresponding grid spacing, and the norm computed is the L2-norm. We
perform this test using three diferent resolutions ∆x = 0:0075; 0:00375; 0:001875, corresponding
to 400, 800, 1600 points respectively. As it can be seen from the right panel of Figure 4.13, the
nominal convergence order is reached until the shock appears.

For both WENOZ+HLLE2 and WENOZ+HLLE4, the convergence is dominated by the
order of the derivation operation, whereas for WENOZ+HLLE6, the convergence is dominated
by the order of the reconstruction method, which does not allow us to reach an order of conver-
gence beyond ffth. As expected, the convergence order goes down for all cases when the shock
is formed.

4.3.3.2 Non-magnetized TOV

Next, we consider the evolution of a non-magnetized TOV star. The setup considered here is
the same one adopted in JVK2. Particularly, the initial data is generated using a polytropic
EOS with Γ = 2:0 and K = 100, and initial central rest-mass density � = 1:28 � 10−3,
however no magnetic feld is added. The system is then evolved using an ideal fuid EOS with
Γ = 2. The physical domain is [−20; 20] for x-, y-, and z-coordinates, with low, medium, and
high resolution having 323, 643, and 1283 cells, respectively. All tests are performed for 5 ms
using the WENOZ reconstruction method and the three approximate Riemann solvers (HLLE2,
HLLE4, and HLLE6). In the cases of HLLE2 and HLLE4, RK4 method is employed for time
stepping, while RK65 is used along with HLLE6, and all cases use a CFL factor of 0:25. Here
too, we see the oscillatory behavior, for example, in the central rest-mass density (see Figure
4.14), similar to the results reported in JVK2. The amplitude of these oscillations decrease
with increasing resolution. In the right panels of Figure 4.14, we also notice that the density
evolution shows a peculiar behavior for low and medium resolution at late times. This result
can be traced back to the choice of the ideal fuid EOS in the evolution of the system. This
type of evolution EOS can results in very large truncation errors, because signifcant unphysical
shock-heating is observed at low densities [182].

To verify the convergence of the high-order methods, we compute the self-convergence fac-
tor (based on deviations of central rest-mass density with respect to the initial value), which
oscillates around the value p = 3 for both HLLE4 and HLLE6. Such order of convergence is
maintained until the aforementioned truncation errors become signifcant, i.e., until � 4 ms. Fi-
nally, Figure 4.15 reports the power spectrum of the rest-mass density evolution for the diferent
runs, plotted in the same fashion as Figure 3.18. Here too, all simulations show a good agree-
ment with each other as well as with the independent results. Particularly, we point out that
the high-order reconstruction coupled to high-order Riemann solvers (black-dotted and green-
dashed curves) is evidently capable of better resolving the overtones (i.e. the higher frequency
peaks in the spectrum) with respect to the lower-order methods (red-solid and blue-dash-dotted
curves).
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Figure 4.14: Left: Evolution of j�c(t)−�c(0)j. Right: Self-convergence factor p (top panels), computed
from 3 diferent resolutions (323, 643, 1283 points), and �max=�max,0 (bottom panels). From JVK5.
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Figure 4.15: Power spectrum of the central rest-mass density evolution, normalized to the maximum
amplitude of the oscillation frequency peaks. Figure taken from JVK5.

4.3.3.3 Magnetized TOV with tabulated EOS

For the last test, we perform a simulation evolving a magnetized TOV star using a tabu-
lated EOS (LS220), with S-slicing initial condition, employing WENOZ as the reconstrunction
method and the fourth order approximation for the HLLE Riemann solver (referred to as
WENOZ+HLLE4). We then compare this test with the one performed using PPM recon-
struction method and the 2nd order approximation to HLLE (i.e. simulation 13 of Table 4.3),
denoted with PPM+HLLE2.

In the upper panels of Figure 4.16, we show the evolution of the central rest-mass density
�c and of the maximum of the temperature Tmax, both normalized over their initial values.
We note that the results obtained with the use of the high-order scheme, in particular the
WENOZ+HLLE4 case, are more precise than the ones obtained with PPM+HLLE2, showing
that high-order schemes can help to reduce the oscillations around the real value. Moreover, en-
abling WENOZ and the fourth-order correction to HLLE softens the slight increasing behaviour
of maximum of T, as shown in the upper right panel of Figure 4.16.

The gain in accuracy is also evident in the power spectrum of the evolution of the central
rest-mass density, illustrated in the lower panel of Figure 4.16. Particularly, the PPM+HLLE2
case shows a noticeable peak only for the fundamental frequency whereas the high-order upgrade
is also able to resolve the frst overtone with good accuracy.

4.4 Concluding remarks

In this Chapter, we described the new implementations made to our fully GRMHD Spritz
(available on Zenodo as version 1.1.0 [170]) which now includes neutrino cooling and heating
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Figure 4.16: Comparison between the results obtained with and without high-order methods for a
magnetized TOV evolved with the LS220 EOS. Upper panels show the evolution of the central rest-
mass density (left) and the maximum of the temperature (right), both normalized to their initial values.
The bottom panel depicts the normalized power spectrum of the maximum of the central rest-mass
density. Figure taken from JVK5.

via the ZelmaniLeak code. We performed a series of TOV tests to show the robustness of the
code in handling a variety of diferent physical scenarios, including the evolution of both “cold"
and “hot" NSs with and without magnetic felds or neutrino leakage. For the cases with neutrino
leakage, we also considered the efects of having neutrino heating activated or deactivated.

The Spritz code is currently being used to perform magnetized BNS mergers employing
fnite temperature tabulated EOS and including neutrino emission and reabsorption. The code
has indeed all the necessary routines to evolve BNS systems during inspiral, merger and post-
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merger phases. We note that the neutrino leakage scheme implemented here, which represents
the frst step towards a more advanced neutrino treatment, presents some limitations. First, the
method adopts a ray-by-ray approach, which is well-suited for problems involving geometries
that are, at frst approximation, spherically symmetric (for instance, in the context of core
collapse supernovae; see, e.g., [183] and references therein). For this reason, it should work
reasonably well in a post-merger remnant NS phase where the latter has already achieved an
approximately spherical confguration [38], but in the early post-merger or after the collapse
into a BH surrounded by an accretion disk, when signifcant deviations from spherical symmetry
are present, it would in part over-estimate the neutrino opacities used in the leakage scheme. To
overcome such limitation, various groups implemented a local opacity calculation [184], which
better accounts for non-spherical geometries. This diferent opacity calculation has been already
employed in magnetized BNS mergers with neutrino leakage [36, 148], but without accounting
for neutrino heating/reabsorption. These simulations represent the current state-of-the-art in
the context of magnetized BNS mergers with neutrinos. A second and more general limitation,
that is shared among all leakage schemes, is that neutrino energy estimates are not precise
enough to provide an accurate estimate of the electron fraction in the ejecta and thus in the
computation of the r-process nucleosynthesis and consequent kilonova emission (e.g., see [144]).
The above limitations can be overcome by adopting more accurate neutrino transport schemes,
such as the Monte-Carlo-based scheme recently adopted for the frst time in (nonmagnetized)
BNS merger simulations [157] or even the (much more computationally expensive) full solution
of Boltzmann transport equations [185]. Future work will be devoted to improve on our current
neutrino treatment, possibly following the direction suggested by [157].

We have also implemented high-order methods for the evolution of hydrodynamical quan-
tities (see Sections 4.3.3 and 4.2.5 for details) which will allow our code to provide a better
description of matter dynamics and produce also more accurate GW signals. We plan to ex-
tend the implementation of these methods also to the equations describing the evolution of
magnetic felds, following an approach similar to the one discussed in [36].



Chapter 5

A new primitive variable recovery
scheme for GRMHD

As discussed earlier in Sections 3.1.3 and 4.2.3, modern GRMHD codes like Spritz, which are
based on fux-conservative formlism, require a numerical scheme based on root-fnding tech-
niques to retrieve the physical (primitive) variables from the evolved (conserved) ones. Such
conservative-to-primitive variable recovery schemes, which are a critical part of any GRMHD
code, are commonly referred to as Con2Prim or C2P schemes. Almost all the state-of-the-art
C2P schemes investigated in [186] were shown to fail in certain problematic regimes. These
schemes work well enough in most of the regimes encountered, for example, during a merger
simulation, however they can still be prone to primitive variable recovery failures in astrophysi-
cally important regime of high magnetizations at moderate Lorentz factors. Additionally, some
of the schemes or the evolutionary code itself could entertain evolution of invalid conserved vari-
ables due to presence of numerical errors leading to unphysical states, which needs monitoring
as well as error-fxing, if required.

In order to overcome such limitations, we recently designed a new C2P scheme introduced
in JVK4, and made a reference implementation publicly available [187] in form of a stand-
alone C++ library named RePrimAnd (hereby referring to the scheme too as RePrimAnd, or
RPA). In this Chapter, we frst describe the salient features of this novel scheme, focussing
on its formulation, performance and error-handling, and discuss some of the test results of the
stand-alone numerical implementation. Since these stand-alone tests demonstrate robustness,
efciency, and precision, we then implemented the RePrimAnd scheme in our evolutionary
code Spritz. A part of this Chapter is dedicated on describing this implementation along with
a series of demanding 3-dimensional simulations performed in GRMHD considering diferent
astrophysical scenarios, for validating our implementation, based on the work presented in
JVK7.

101
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5.1 Formulation of the scheme

5.1.1 Primitive variables

Here, we recap some of the defnitions of the primitive variables. Using the 3-velocity vi defned
in the Eulerian frame, and the corresponding Lorentz factor W , we defne a new quantity
z � Wv. We have the baryonic mass density given as � = nBmB, where nB is the baryon
number density in the fuid restframe and mB is an arbitrary mass constant. Denoting the fuid
contribution to the total energy density in the fuid restframe as e, we have the specifc internal
energy, given as

� =
e

�
− 1 : (5.1)

Furthermore, we defne a = P=e where P denotes fuid pressure, and the relativistic enthalpy
is written as

h = 1 + �+
P

�
= (1 + �) (1 + a) ; (5.2)

In terms of the Maxwell tensor, Eulerian electric and magnetic felds are Eµ = nνF
µν and

Bµ = nν
�Fµν respectively, where n is the normal to the hypersurfaces of the foliation, and

the star denotes the Hodge dual. As Eµ; Bµ are tangential to the hypersurface, they can be
considered equivalent to 3-vectors Ei; Bi.

5.1.2 Equation of state

The scheme works with an EOS of the generic form P = P (�; �). As previously mentioned in
Section 4.1.2, the EOS could also depend on further variables, such as the electron fraction. Such
variables, which can be evolved or computed in a trivial way, are treated as fxed parameters
in the primitive recovery algorithm.

However, each EOS comes with its own specifc validity range, subject to both physical and
technical constraints. One such important physical constraint is the zero temperature limit for
the internal energy. For a tabulated EOS, an example of a technical constraint is the limited
range of values available in the table. Currently, our scheme works within an EOS-dependent
validity region constrained by

�min � � � �max ; (5.3)

�min(�) � � � �max(�) ; (5.4)

but can easily be adapted to a more general shape in �; � parameter space. Here, the lower
validity bound �min(�) is assumed to be the zero-temperature value at the given density. Other
physical constraints like causality and thermodynamic stability require

0 � c2s < 1 ; (5.5)
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where cs is the adiabatic speed of sound, given by

c2s =
d ln(h)

d ln(�)

����
s=const

: (5.6)

Baryon number density and specifc internal energy are restricted to the limits

0 � �min � � ; −1 < �min(�) � � (5.7)

Pressure is always considered as positive1 and further bounded by the specifc internal energy,
which gives

0 � a � 1 (5.8)

For a given EOS, we also require a positive lower bound h0 for the relativistic enthalpy h, such
that 0 < h0 � h(�; �) over the entire validity region of the EOS, and usually, h0 is of order
unity.

By design, the RePrimAnd scheme is EOS agnostic, using the information defned above,
and does not make any other kind of EOS-specifc distinctions or adjustments. For the purpose
of testing our scheme, we use two specifc EOS as examples, i.e. a hybrid EOS (see Section
2.2.6.3 for details) and a classical ideal gas EOS with �min(�) = 0 (see Section 2.2.6.2 for details).
For the former, we consider the MS1 EOS from [79] (based on [188]) for the cold part and use
Γth = 1:8, while for the latter case, we set Γ = 2. Note that when considering the ideal gas
EOS, pressure and internal energy are zero at zero temperature. Therefore, pressure is only
given by thermal efects and degeneracy pressure is ignored.

5.1.3 Evolved variables

Here, we recap our defnitions of the conserved variables evolved in evolutionary codes. Con-
sidering only the fuid contribution, we have

D̄ = �W ; (5.9)

�̄ = D̄ (hW − 1)− P ; (5.10)

S̄i = D̄Whvi : (5.11)

Including also electromagnetic contributions, the evolved variables are given as

D = D̄ ; (5.12)

� = �̄ +
1

2

(
E2 +B2

�
; (5.13)

Si = S̄i + �ijkE
jBk : (5.14)

1Note that in NSs, close to saturation density, the baryonic pressure can also be negative. The EOS framework
provided by the RePrimAnd library currently enforces a > 0, thus allowing only positive pressure values for
now.
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In the above equations for the evolved variables, we have left out the volume element of the
spatial metric, which can be easily retrieved from spacetime evolution. Also, the magnetic feld
B in the Eulerian frame is considered as either an evolved variable or is reconstructed from
evolved variables, such that B is known when our primitive reconstruction scheme is run. Note
that our scheme works only with evolution codes that assume the ideal MHD limit, which allows
computation of the electric feld as

El = −�ljkvjBk : (5.15)

An additional variable Y ce = DYe is evolved using a conservation-law formulation corresponding
to advection of the electron fraction Ye along fuid trajectories, with additional source terms in
case neutrino transport is activated.

Note that our scheme is inept for use in resistive MHD simulations. To include, for instance,
the efects of resistivity, fundamentally changes the C2P problem and requires completely dif-
ferent C2P schemes. For further discussion, we refer to [189–192].

Furthermore, we defne the following rescaled variables

q̄ =
�̄

D̄
; r̄i =

S̄i
D̄

; (5.16)

q =
�

D̄
; ri =

Si
D̄

; (5.17)

bi =
Bip
D̄

; b =
p
bibi : (5.18)

Here, note that b is the magnetic scale factor, and O(b) = 1 corresponds to a very large
magnetization (since pressure is typically orders of magnitude below the mass energy density).
Moreover, momentum can be decomposed in to parts parallel and normal to the magnetic feld

rik =
blrl
b2

bi ; ri? = ri − rik : (5.19)

5.1.4 Other useful relations

Let’s now collect some defnitions and analytic relations for later use. First two important
quantities we defne are

� � 1

Wh
; x � 1

1 + �b2
; (5.20)

and they are bounded by the limits 0 < � � 1=h0 and 0 < x � 1 respectively. For the
electromagnetic part of the conserved variables, using Equation (5.15), we defne

E2 = x2�2B2r2
? ; (5.21)

ri = xri? + rik : (5.22)
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Other relevant quantites are defned as

r̄2 = x2r2
? + r2

k ; (5.23)

q̄ = q − 1

2
b2 − 1

2
�2x2b2r2

? : (5.24)

The velocity can then be expressed as v = �r̄. However, this expression does not guarantee
that v < 1 for any �. To avoid this, we use the quantity z, as

v(z) =
zp

1 + z2
< 1 : (5.25)

and arrive at an expression for the upper limit of velocity as

z =
r̄

h
� r

h
� r

h0
� z0; v � v0 � v(z0) : (5.26)

Once we have the velocity and Lorentz factor, rest mass density and specifc internal energy
can then be computed using the expressions

� = D̄=W ; (5.27)

� = W
(
q̄ − �r̄2

�
+W − 1 : (5.28)

If � and � are in the validity range of the EOS, we can then compute pressure P = P (�; �) and
the enthalpy h(�; �). Finally, we have another useful expression for �, given as

� =
1

hW
=

1

hW (W−2 + v2)
=

1
h
W + v2

µ

=
1

h
W + r̄2�

: (5.29)

5.1.5 The master function

Since our recovery algorithm is based on a root-fnding problem, we need a suitable master
function of which we need to fnd the root. For constructing such a function, we require the
function to be one-dimensional, continuous and having exactly one root, even for unphysical
values of the conserved variables. It should be well-behaved in the Newtonian limit as well as
for zero magnetic feld. Moreover, its root should be contained in within a known interval, and
the root-fnding process should not depend on any EOS derivatives.

Our scheme uses � as the independent variable to solve for, and we construct a function
f = f(�) starting with Equations (5.23) and (5.24), defning

r̄2(�) = r2x2(�) + �x(�) (1 + x(�))
(
rlbl
�2

; (5.30)

q̄(�) = q − 1

2
b2 − 1

2
�2x2(�)b2r2

? : (5.31)

Functions for velocity and Lorentz factor can then be defned as

v̂(�) = min(�r̄(�); v0) ; Ŵ (�) =
1p

1− v̂2(�)
; (5.32)
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where v0 sets the upper velocity limit from Equation (5.26). Similarly, rest mass density and
specifc internal energy can be written according to Equations (5.27) and (5.28) as

�̂(�) =
D̄

Ŵ (�)
; (5.33)

�̂(�) = Ŵ (�)
(
q̄(�)− �r̄2(�)

�
+ v̂2(�)

Ŵ (�)2

1 + Ŵ (�)
; (5.34)

defned within the validity range of the EOS. Otherwise, the density �̂ is adjusted to the closest
value within the validity range for �, and �̂ to the closest value within the validity range for �
at adjusted density �̂.

Now, we can also write the expression for pressure using the EOS, as

P̂ (�) = P (�̂(�); �̂(�)) ;

â(�) =
P̂ (�)

�̂(�)(1 + �̂(�))
;

ĥ(�) = h(�̂(�); �̂(�)) :

(5.35)

Finally, by trial and error, using Equation (5.29), we get the master function f(�) that is well
suited to our design goals, given by

f(�) = �− �̂(�) ; (5.36)

�̂(�) =
1

�̂(�) + r̄2(�)�
: (5.37)

Moreover, the variable � � h=W is computed in two diferent ways based on Equations (5.2)
and (5.8), given as

�A(�) =
ĥ(�)

Ŵ (�)
= (1 + â(�))

1 + �̂(�)

Ŵ (�)
; (5.38)

�B(�) = (1 + â(�))
(
1 + q̄(�)− �r̄2(�)

�
; (5.39)

�̂(�) = max(�A(�); �B(�)) : (5.40)

The second form �B helps to reduce the kink introduced by limiting ĥ, while only limiting â
instead, and allowing � to change further.

In Figure 5.1, we show examples for the resulting master function for diferent regimes.
Here, we see that the master function shows almost linear behavior unless for large Lorentz
factors or magnetic scale factors b, but remains well behaved even then. Note that these results
are presented only within the root bracketing interval beyond which the function could have
strong kinks.

5.1.6 Existence of solution

In what follows, we prove that the master function always has a root, even in the case of invalid
evolved variables. We start by constructing an interval over which the master function changes
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Figure 5.1: Master function f for diferent regimes, with cases: velocities v = 0 and v = 0:99 (vlarge),
magnetic feld scale b = 0 and b = 2 (blarge), specifc internal energy �th = 0 (cold) and 10 (hot), where
�th denotes the diference to the zero temperature case. Here, velocities are considered orthogonal to
the magnetic feld, which is the most difcult case. Top panel shows the independent variable �, which
is scaled to the initial root bracket �+, and the function to the maximum value over the interval is
shown. Lower panel illustrates the behavior near the root �̃0. Figure taken from JVK4.

sign. First, we defne a smooth auxiliary function

fa(�) = �
q
h2

0 + r̄2(�)− 1 : (5.41)
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This function fa is strictly increasing, and has only one root �+ in the interval (0; h−1
0 ]. In the

following, we show that �+ provides an upper bound for the root of the master function f . For
fa(�+) = 0, we get

�+r̄(�+) =
r̄(�+)p

h2
0 + r̄2(�+)

� rp
h2

0 + r2
= v0 ;

(5.42)

using the relation r � r̄ and the monotonicity of the above expression with respect to r̄. For
velocity, using Equation (5.32), we get v̂(�+) = �+r̄(�+) � v0 < 1. Further, fa(�+) = 0 yields

�+h0 =
p

1− v̂2(�+) = Ŵ−1(�+) : (5.43)

Morever, using the expression for �̂, which gives �̂ � �A, we can write

�+�̂(�+) � �+
ĥ(�+)

Ŵ (�+)
� �+

h0

Ŵ (�+)
(5.44)

= Ŵ−2(�+) = 1− �2
+r̄

2(�+) : (5.45)

Finally, we get

1 � �+

(
�̂(�+) + r̄2(�+)�+

�
= �+=�̂(�+) : (5.46)

For the master function, we fnd f(�+) � 0, and, trivially, f(0) < 0. Since f is continuous, it
has at least one root in the interval (0; �+]. Using Equation (5.44), we also get that the root
is strictly below �+ unless ĥ(�+) = h0. This interval provides a useful initial bracketing for
the root fnding algorithm. Although fnding �+ requires another numerical root solving, its
computation is inexpensive, and moreover, determining �+ is not required if r < h0. In this
case, v̂(1=h0) < 1 and fa(1=h0) > 0, the interval (0; 1=h0] can be used safely to bracket the
root.

5.1.7 Uniqueness of solution

One of the desirable traits of the recovery scheme is to provide a unique solution. In that
regard, we additionally require the following conditions: (i) for the valid evolved variables, the
master function should not have any additional roots corresponding to invalid solutions, and
(ii) the master function should still have exactly one root even for invalid evolved variables. In
the following, we prove that the above conditions are satisfed.

In order to compute the derivative of the master function, we frst perform diferentiation
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and a few straightforward algebraic computations, yielding

dx

d�
= −x2b2 ; (5.47)

dr̄

d�
= − (1− x)x2

�r̄
r2
? ; (5.48)

dq̄

d�
= −(1− x)x2r2

? ; (5.49)

d

d�
(�r̄(�)) =

1

r̄

�
x3r2
? + r2

k

�
� 0 : (5.50)

As �r̄(�) increases monotonically increasing and since, in Section 5.1.6, we show that �+r̄(�+) �
v0, we fnd that for � � �+, Equation (5.32) reduces to v̂(�) = �r̄(�). This further leads to the
expression

d

d�
ln(Ŵ ) = Ŵ 2�

�
x3r2
? + r2

k

�
: (5.51)

Assuming that the density D̄=Ŵ is constrained within the allowed range of the EOS, we then
get

d

d�
ln(�̂) = − d

d�
ln(Ŵ ) : (5.52)

For computing the derivative of �̂, we use Equation (5.34) considering � is in the valid range,
and fnd

d

d�
�̂ =

�
1 + �̂− 1

Ŵ�

�
d

d�
ln(Ŵ ) : (5.53)

At a solution, �Ŵ ĥ = 1, and we get

d

d�
�̂ = − P̂

�̂

d

d�
ln(Ŵ ) =

P̂

�̂2

d

d�
�̂ : (5.54)

This shows that when we vary � near a solution, changes in density �̂ and specifc energy �̂ are
adiabatic in nature, giving the derivative of specifc entropy ŝ as zero. For the case when � goes
below the valid range of the EOS, �̂ is set to the lower bound of the validity range, �min(�̂),
corresponding to the zero temperature limit as required. Consequently, �̂(�) and �̂(�) follow a
curve of constant s. We can now compute the derivative of ĥ using the adiabatic soundspeed
given by Equation (5.6) and the derivative of density given by Equation (5.52), giving

d

d�
ln ĥ = −ĉ2s

d

d�
ln Ŵ (5.55)

where ĉs = cs(�̂; �̂). Morever, in both cases, we have �̂ = �̂A = ĥ=Ŵ , and we then fnd

d

d�
ln �̂ = −

(
1 + ĉ2s

� d

d�
ln Ŵ ; (5.56)
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Finally, at a solution, the derivative of the master function becomes

d

d�
f(�) = 1− v̂2 + v̂2

(
1− c2s

� x3r2
? + r2

k
r̄2

:

� 1− v̂2 > 0

: (5.57)

For more details on this derivation, we refer to Appendix A of JVK4. The constraint cs < 1

guarantees the uniqueness of the root for all velocities and magnetic felds.
Now, for the corner case where the specifc energy goes above the valid range of the EOS, we

compute �̂ from Equation (5.39). We fnd that the uniqueness is always guaranteed (referring
again to Appendix A of JVK4) under the condition that

A(�)

1 + â

@a

@�
� 1− c2s ; (5.58)

where A is a function A given by the expression

A(�)

�
=

d

d�
�max(�)− P

�2
; (5.59)

related to the change of specifc entropy along the upper validity range �max of the EOS. When
A = 0, the above equation reduces to the thermodynamic condition for adiabatic change.

5.1.8 Accuracy

As the solution of the master function is numerically determined, we need to defne a criterion
in order to stop the iteration once the required accuracy of the root is reached. Here, we discuss
this criterion based on the error propagation of the root fnding accuracy in order to quantify
the accuracy of the recovered primitives.

Before doing so, frst we need to decide how to compute the fnal result based on the root
found in the last iteration. The available variables �; �̂; �̂; r̄; q̄; v̂; Ŵ ; �̂; �̂; ĥ; P̂ can be used in
diferent ways to compute the primitives, which lead to diferent error propagation. We found
that computing Ŵ ; �̂; �̂; P̂ directly, seems to be a good choice in terms of error propagation.
Then, we can reconstruct the velocity vector using

v̂i = �r̄i = �x
(
ri + �

(
blrl
�
bi
�
; (5.60)

which avoids degeneracy for the case b = 0. Using the above expression, we fnd the Lorentz
factor W (v̂2) corresponding to be exactly W (v̂2) = Ŵ . Since �̂ = D=Ŵ , the conserved density
D̂ = �̂W (v̂2) computed from the recovered primitive variables �̂; v̂i agrees exactly with the
original one.

For detemining the accuracy, we now consider only the case when the solution is in the
validity region of the EOS. For invalid solutions, the accuracy is less relevant since the results
might either be corrected to the valid range or the simulation aborted.

We now defne the accuracy parameter ��, a value up to which the root of f(�) is numericall
determined. Then, we estimate the resulting accuracy of the primitive variables to linear order,
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computing, e.g., �Ŵ = ��dŴ=d�. Using the frst derivatives at a root of f , as defned in
Section 5.1.7, we fnd the following expressions

�Ŵ

Ŵ
� v̂2∆ ; ∆ � Ŵ 2 ��

�
; (5.61)

�ẑ

ẑ
� ∆ ;

�v̂

v̂
� j�v̂

ij
v̂
� ∆

Ŵ 2
; (5.62)

��̂

�̂
� v̂2∆ ;

�ĥ

ĥ
� v̂2∆ ; (5.63)

��̂

1 + �̂
� âv̂2∆ ;

��̂

�̂
� (1 + �̂)

â

�̂
v̂2∆ ; (5.64)

��̂E
�̂E
� 2∆ ;

�P̂

P̂
� v̂2 (1 + â)

ĉ2s
â

∆ ; (5.65)

where j�v̂ij represents the norm given by the 3-metric of the vector �vi. The error in the
recovered primitive variables relate to errors �q; �Si of conserved variables. In order to estimate
these errors to linear order, we then insert �̂; ĥ; P̂ ; v̂i into Equations (5.9, 5.14) and (5.15), and
compute the frst derivatives with respect to � at the root. This gives us the following scaling

j�Sij
jSij

� ∆ ;
�(1 + q)

1 + q
� 4v2∆ : (5.66)

We fnd that the accuracy in � required for a fxed relative error of the primitives increases
with increasingly relativistic velocities, while varying the magnetic scale b has no impact on the
error bounds. Note that the above error bounds do not include numerical rounding errors.

5.2 Validity

It is not uncommon to encounter invalid states at some points for evolved magnetohydrodynamic
variables in numerical simulations. This could be a result of typical numerical errors but also
external infuences such as gauge pathologies near the center of newly formed black holes. Such
errors are often harmless, to which point-wise corrections can be applied. Below we point out
a few efects causing typical harmless violations:

1. Small evolution errors could drive evolved variables that correspond to a fuid energy
density below the zero-temperature limit, when evolving zero-temperature initial data.

2. Mass and energy densities defned in the numerical grid points at the NS surface can drop
by orders of magnitude or even become negative at a single timestep, leading to a local
error which results to an invalid state for specifc internal energy and velocity. Such errors
lead to heating of the outermost layer of the NS surface, forming a hot atmosphere.

3. During collapse to a BH, mass density and/or temperature values might exceed the range
covered by the given EOS (particularly, fnite-temperature tabulated EOS), reaching a
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state that is not necessarily unphysical but cannot be evolved further due to the limited
range of the EOS. This could typically occur, for e.g., in region within the apparent
horizon.

4. The stretching of coordinates near BH centers for gauges like the puncture gauge, cou-
pled with under-resolved surroundings can cause numerical intabilities for the combined
magnetohydrodynamical and spacetime evolution system.

5.3 Error handling

The RePrimAnd scheme, by construction, is able to deal with invalid input. As mentioned
earlier in Section 5.1.5, the scheme always yields a pair �̂; �̂ such that �̂ is within the validity
range of the EOS at �̂.

Now, the frst important case we consider is when the raw value of � goes below the valid
range. In this case, only the recomputed conserved energy � changes, while S and D stay the
same. The adjustment of � to the valid range impacts only the variable �̂. For this particular
case, Equation (5.40) gives �̂ = �A. Also, the conserved energy � is exclusively related via
Equation (5.34). So if � is adjusted such that Equation (5.34) returns the range-limited value
for �̂, we arrive at the same primitive variables without adjustment.

Now, in case the energy goes above the validity range of the EOS, all recomputed conserved
variables can change. This can be prevented by always using �̂ = �A, but not without changing
the behaviorof the master function away from the solution. However, for such a case, corrections
should only be allowed in specifc scenarios, for example, at low-density fuid-vacuum boundaries
(NS surfaces) or inside horizons.

For the treatment within BH interiors, we consider employing a more lenient error policy.
Development of runaway instabilities within such regions, likely due to violations of constraint
equations and gauge efects, can possibly impact the exterior. To avoid this, the energy can
be limited by applying the aforementioned correction to the EOS range inside horizons even at
high densities. While for momentum, one can put an upper limit to the velocities, and rescale
them to stay within a given limit, as done so, for e.g., in [193].

Another correction often applied is to enforce a minimum mass density, also called artifcial
atmosphere. This is a common practice in order to evolve hydrodynamic evolution equations
which otherwise break down in vacuum. This also allows the usage of tabulated EOS which
provide only a fnite range in density. Moreover, the atmosphere velocities are also usually set
to zero.

5.4 Performance

Here, we subject the RePrimAnd scheme to exhaustive stand-alone numerical tests, exploring
a parameter space expected to cover all scenarios arising in BNS merger simulations. Through
these tests, we also aim to validate that errors produced by the RePrimAnd scheme is insignif-
icant compared to the ones caused by modern evolution schemes.
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Variables that primarily govern the behavior of the recovery scheme are Lorentz factor W ,
magnetic scale b, and specifc energy �. In our tests, we demand robustness for these variables
up to values W = 103, b � 100 and � � 10 (see JVK4 for more details on these parameter
choices).

In order to understand fnite precision efects, we compare the accuracy provided by our
stand-alone implementation to the expected accuracy derived in Section 5.1.8, using a value
∆ = 10−8. We assume this choice in accuracy is negligible compared to the evolution error.

5.4.1 Code design

As mentioned earlier, for the recovery algorithm described in Section 5.1, we created a reference
implementation in form of a C++ library named RePrimAnd which also contains an EOS
framework. Figure 5.2 provides a schematic summary of the algorithm. The library provides
diferent EOS types (not yet including fully tabulated ones) including a hybrid EOS based on
a tabulated cold part. For our tests, although the MS1 variant from [79] is given analytically
in form of piecewise polytropic expressions, we evaluate it as a tabulated cold part, in order to
test the general purpose code intended for production runs. We set the allowed range of the
EOS to �max = 3� 1015 g/cm3, �max = 51.

For root fnding, our implementation uses the TOM748 algorithm [194] provided by the BOOST
library. This algorithm is similar to the well known Brent-Dekker schemes, but uses inverse
cubic instead quadratic interpolation whenever possible, improving convergence speed near the
solution. It brackets the root within a bounded region, converging in a limited amount of
steps, and does not make use of function derivatives. Since tabulated EOS tend to contain very
inaccurate partial derivatives which can be problematic when using a derivative-based root
solver such as Newton-Raphson, our implementation therefore does not make use of the sound
speed or other derivatives. The root is determined to an accuracy based on the ∆ parameter
defned in Equation (5.61), where the error �� is taken as the size of the current tightest bracket
of the root.

In case r � h0, we compute �+ from the root of the auxiliary function fa, for which we use
a standard Newton-Raphson root solver, since fa is a smooth, monotonic, analytic function.

5.4.2 Robustness and accuracy

We check for robustness and expected accuracy via our main test through sampling the primitive
variable parameter space given by density, temperature/specifc energy, magnetic scale b, and
velocity. Particularly, we choose the following ranges: z = Wv between 0 and 1000, magnetic
scale b from 0 to 5, and the specifc thermal energy from �th = 10−4 up to 50. For the MS1
EOS, we consider the mass density from 106 to 1015 g/cm3, while for the ideal gas EOS, the
mass density is irrelevant due to the scaling behavior of the EOS. For velocity, we consider two
diferent orientations, i.e., parallel and orthogonal to the magnetic feld. We perform the tests
with both ideal gas and hybrid EOS, demanding the root fnding accuracy of ∆ = 10−8.

We fnd that the algorithm always recovers the correct solution for the valid input described
above. To evaluate the accuracy, we frst compute the conserved variables from the primitives,
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Figure 5.2: Flow diagram of the recovery algorithm along with the list of required equations. Arrows
represent dependencies, double arrows are computations that require information about the EOS va-
lidity bounds, while the double arrow labeled “EOS” refers to evaluation of the EOS. Results obtained
in the last root fnding iteration are denoted as “Last call”. Square brackets refer to fxed parameters
(independent of �) during root solving. Density �bnd stands for either the upper and lower EOS validity
bounds. Figure taken from JVK4.

then apply the primitive recovery algorithm, and fnally compare the result to the original
primitives. Furthermore, we compute the conservatives from the recovered primitives and
compare to the original conservatives. Our testsuite compares the observed accuracy for each
individual primitive variable to the one expected from Equation (5.61) to (5.65), and also the
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accuracy of the corresponding conserved variables to Equation (5.66). In Figure 5.3, we show
the recovered accuracy for the pressure as well as the boundary where the errors caused by
rounding errors start exceeding those caused by root fnding. In general, we fnd that the
RePrimAnd scheme is robust in diferent regimes including the extreme cases, and is able to
deliver the results with expected accuracy.
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Figure 5.3: Relative error of reconstructed pressure, as a function of specifc thermal energy and velocity
(the latter in terms of z = Wv). The results were obtained for the case of the hybrid EOS, at fxed
mass density 6 � 1012 g/cm3, demanding an accuracy ∆ = 10−8.The upper panel shows results for
zero magnetic feld, the lower panel for magnetically dominated case b = 10. The solid lines mark the
regions where expected errors related to rounding start to exceed those related to root solving. Figure
taken from JVK4.

5.4.3 Efciency

In what follows, we evaluate the efciency of our scheme on the algorithm level, while bench-
marks of the execution speed of the implementation within Spritz is discussed in Section 5.7.1.
Here, we measure the computational efciency of our algorithm in terms of calls to the EOS.
The motivation is that for a tabulated EOS including thermal and composition degrees of free-
dom, a single EOS call is likely more expensive than the evaluation of the analytic expressions
within our recovery scheme. The worst scenario is when the EOS is tabulated with temperature
as one independent variable. Each EOS call then requires an inversion step to convert from �

to T .
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In Figure 5.4, we illustrate how the efciency varies with specifc energy and velocity, for
two cases, i.e., one with zero magnetic feld, and another with magnetic scale fxed to a large
value of b = 10. These results show that the efciency does not degrade even for Lorentz factors
up 1000 and magnetic scale b = 10. At the density shown, b = 10 corresponds to extremely
high magnetizations of order 104 (for W = 1) to 107 (for W = 1000).
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Figure 5.4: Number of calls to the EOS required to reconstruct the primitives to accuracy ∆ = 10−8,
as a function of specifc thermal energy and velocity (in terms of z = Wv). This case uses the hybrid
EOS at a mass density � = 6 � 1012 g/cm3. The upper panel shows results for magnetic scale b = 0,
and the lower panel for magnetically dominated case b = 10. Figure taken from JVK4.

When considering the whole parameter space used in the unit tests (not just the cuts shown
in the plots) and both EOS types, we fnd a maximum number 23 of calls to the EOS required
to achieve an accuracy ∆ = 10−8. The maximum occurs for the ideal gas and only when both
� > 40 and b > 2, i.e. thermal energies much larger and magnetic energies larger than the rest
mass density.

Figure 5.5 shows the efciency with respect to velocity and magnetic scale b, the latter going
up to extreme values b = 104, far beyond any reasonable use case. We fnd that beyond b = 10,
the efciency gradually starts to decrease. At b = 104;W = 103, we require around 40 steps for
∆ = 10−8 (which implies ��=� � 10−14). At this point, the root solving convergence speed has
decreased roughly to that of bisection. Still, we encountered no failures to converge even in this
range. Note that the extremes reached in our tests are rather pathological scenarios which are
rarely encountered in simulations and therefore not relevant for numerical costs of simulations.
In practice, we expect an average number of required calls below 10.
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Figure 5.5: Number of calls to the EOS required to reconstruct the primitives to accuracy ∆ = 10−8,
as a function of magnetic scale b and velocity (in terms of z = Wv). This case stands for the hybrid
EOS at a mass density � = 6� 1012 g/cm3. The upper panel shows results for cold matter �th = 10−4,
and the lower panel for very hot matter �th = 10. For comparison, we also show the magnetization as
contour lines of log10(B2=P ). The red line marks a magnetic feld strength B = 1016 G. Figure taken
from JVK4.

5.4.4 Comparison with other schemes

Next, we turn to the comparison of our scheme to existing ones. In particular, we refer to [21]
for a comprehensive review and numerical tests of previous state-of-the-art C2P schemes. The
main characteristics are listed in Table 5.1. In the following, we shed light on some of the most
relevant points for comparison, while for a more detailed discussion, we point the reader to
JVK4.

When comparing diferent C2P schemes, one important diference lies in the number of
independent variables. Most of the existing schemes need to solve an equation in two or three
unknowns. This is a severe drawback as in such cases, it is difcult to ensure that the solution
is found, and schemes based on Newton-Raphson (NR) methods might not converge. Moreover,
robust but fast schemes that guarantee fnding the solution in a limited number of steps only
exist for one-dimensional root fnding. Also, the recovery schemes based on NR require an
initial guess, which is typically taken from the previous timestep during numerical evolution.
This makes the methods more unpredictable and more difcult to test, as they do not depend
on the conserved variables in a deterministic way. As two of the existing schemes, our scheme
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Table 5.1: Main characteristics of diferent C2P recovery schemes. We list the independent variables
used in the root fnding (translated to our notation), the variables for which the EOS needs to be
evaluated, whether the scheme requires derivatives of the EOS, whether the formulation allows a bound
on the number of iterations needed for fnding the solution, and whether the scheme requires to provide
an initial guess for the solution.

Scheme Independent EOS EOS Steps Guess
variables form der. bounded needed

This work � P (�; �) No Yes No
Noble [195] (D=�; v2) P (�; h) Yes No Yes
Siegel [186] (D=�; T ) P (�; T ) Yes No Yes
Duran [196] (W;D=�; T ) �(�; T ) Yes No Yes

Neilsen [197, 198] D=� P (�; �) No Yes No
Newman [199] P P (�; h) No Yes No

is using one-dimensional root fnding. Further, it also makes use of a tight initial bracketing
interval proven to contain exactly one solution, as shown in previous sections.

In [21], it is shown that all existing C2P schemes can fail for Lorentz factors 10–1000,
depending on the magnetization. Figure 3 of [21] shows the number of iterations or failure to
converge as function of magnetization and Lorentz factor, at fxed density 1011 g/cm3 and T = 5

MeV (thus, � < 1). For our scheme, magnetic scalre factor b is the most relevant measure for
the magnetic feld (but not necessarily for the other schemes). Particularly, the magnetization
1010 covered in the fgure corresponds to values up to b � 104. Such high values are outside
the parameter space relevant for merger simulations. So in practice, failures at low velocity,
but magnetization around 109 shown in Figure 3 of [21] are not necessarily problematic. The
fact that the RePrimAnd scheme showed no failure at b = 104 for the test shown in Figure
5.5 is however reassuring regarding the numerical robustness. Failures at relativistic velocities
for lower magnetization shown in Figure 3 of [21] should however be regarded as problematic.
Instead, for our algorithm, the existence and uniqueness of the solution are proven analytically,
and we have successfully tested our numerical implementation up Lorentz factors W = 1000

in the whole parameter space without encountering failures, as described in Section 5.4.2.
Strong magnetization is important for studying the engine of short gamma-ray bursts (SGRBs),
where ideally a very low density matter is subject to very strong magnetic felds. Moreover,
such magnetized matter is expected to reach at least mildly relativistic velocities in case a
magnetically powered incipient jet emerges in the post-merger phase. Such regimes are also
problematic for the numerical time evolution itself. The ability of our scheme to distinguish
reliably between valid and invalid evolved variables gives an important advantage.

When considering the efciency, the diferent tolerance measures allow only a rough com-
parison, using the number of root fnding iterations shown in Figures 1 and 3 of [21]. In regions
where no failure occurs, we see that only the Newman scheme appears to be consistently re-
quiring less than around 10 steps also for relativistic velocities. Other schemes need at least 30
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iterations or more in certain regions of parameter space. RePrimAnd is guaranteed to converge
in a fnite number of steps because the root fnding algorithm performs bisection steps if needed.
Our stand-alone tests have shown that the efciency does not degrade for large Lorentz factors
(W < 1000) or strong magnetization (b < 100), in contrast to most other schemes. The worst
case scenario for our scheme seems to be extreme values of �. Even for essentially photonic
states (� = 50), it does not require more than 23 EOS calls in the regime b < 5;W < 1000.

5.5 Numerical error in evolved variables

In this Section, we investigate consequences of numerical errors in the evolved variables in
conjunction with the corrections applied to invalid states described in Section 5.2. Further, we
identify regions in parameter space where the primitive variables are particularly sensitive to
errors of the evolved ones.

5.5.1 Newtonian limit

First, we consider the the relation between evolved and primitive variables in the Newtonian
limit. In this non-relativistic scenario, considering v � 1; � � 1; a � 1; h � 1 and h0 = 1, we
obtain the following expressions to leading order in v2 and �

x! xN =
1

1 + b2
; (5.67)

r̄i ! xNr
i
? + rik ; (5.68)

vi ! r̄i ; (5.69)

�! q − 1

2

(
b2
(
1 + v2

?
�

+ v2
�
: (5.70)

Even in the Newtonian limit, b can have relatively large values, which could result in magnetic
feld energies that are comparable the rest mass density, which could further lead to non-
relativistic velocities during the course of the evolution. Thus, in such cases, one can assume
that the density of kinetic energy is not much smaller than the magnetic energy density. Setting
O(b2) � O(v2), we fnd xN � 1. Since O(E) = O(vB), we can also neglect the electric
contribution b2v2

? to �.
Also, in the Newtonian limit, we can easily show that the master function, given by Equation

(5.36), becomes a linear function (with b2 � 1). As x(�) � 1, r̄(�) and q̄(�) are independent
of � and equal to the correct values. The same holds in turn for �̂, �̂, P̂ . Further, �̂ � ĥ � h0.
Since r̄2 � 1, the master function becomes f(�) � �− 1.

Now we consider the propagation of the evolution error of the variables q; r;D. We notice
that both v2 and b2 contributions can dominate q if � is even smaller. Since v is essentially
computed from r, computation of � from the evolved variables undergoes cancellations which
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amplify evolution errors. In particular,
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�
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(5.71)

If ��=� becomes more than unity, reconstructing � from the evolved variables might lead to
larger errors than simply setting it to the zero-temperature value.

5.5.2 Magnetically dominated regime

By our defnition, magnetically dominated regime refers to a regime where the magnetic pressure
exceeds the fuid pressure. In such regimes, where the magnetic feld dominates, the movement
of matter can become constrained along the feld lines. This efect can also be noticed in
the equations used for primitive recovery. Considering the relation between total and fuid
momentum S? components perpendicular to the magnetic feld as S̄? = xS?, where x depends
only on �b2, we fnd x � 1 in the limit �b2 � 1. In this case, the perpendicular part of the
evolved momentum is dominated by the electromagnetic part, which in turn is proportional
to v? in ideal MHD, and also points in the same direction. So, the evolution error of the
perpendicular part of momentum is not amplifed by cancellations when recovering the fuid
velocity orthogonal to the feld. Also, since the parallel part of the evolved momentum has no
electromagnetic contribution, it is also not problematic in terms of evolution errors.

Similar to the Newtonian limit case, here too, strong magnetic felds can have a detrimental
impact on the accuracy of � since evolution errors in B are amplifed by cancellation. From
Equation (5.31), we conclude that the magnetic feld contribution to the energy causes strong
cancellation error if q̄ � b2(1− v2

?).

5.5.3 General case

In general, to evaluate the error amplifcation, we compute the partial derivatives of the prim-
itive variables with respect to the conserved ones by means of fnite diferences. We fnd the
specifc internal energy and pressure exhibiting large error amplifcation in some regimes as
expected, while the fuid momentum is well behaved.

For quantifcation of error amplifcation, we defne certain amplication factors of specifc
energy error in relation to errors in the evolution of q, b, and r, as follows

Aq =
� log(�)

� log(q)

����
D,r,b

; (5.72)

Ab =
� log(�)

� log(b)

����
D,q,r

; (5.73)

Ar =
� log(�)

� log(r)

����
D,q,b

; (5.74)
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Figure 5.6: Amplifcation factors Aq, Ar, and Ab for the relative error of � (see text for defnitions), for
the case considering cold matter obeying the MS1 EOS. Top panel shows the amplifcation as function
of density, for fxed magnetic feld and velocity. Bottom panel represents amplifcation versus velocity,
for fxed density and no magnetic feld. Figure taken from JVK4.

and show their behavior in Figure 5.6. We fnd the error in pressure to show the same qualitative
behavior.

For a magnetar-strength feld B = 1015 G, a relative evolution error of �b=b = 10−4 can
start dominating the evolution of � at densities of magnitude 108 g/cm3. A similar behavior
can be noticed for a relative error �q=q = 10−4, since q is dominated by the b2 contribution.
Such regimes can be encountered, for example, in the engine of SGRBs, where a popular BH-
disk model consists of a low-density funnel formed along the rotation axis of the BH immersed



5.6 Implementation in Spritz 122

in a strong magnetic feld which is anchored in a surrounding disk. Similarly, the material
surrounding a supramassive (i.e., long-lived) neutron star merger remnant could be afected.

5.5.4 Interaction with recovery corrections

Since the evolved variables are enforced to stay in the physically valid regime, applied harmless
corrections close to the validity boundary can result in a drift along the boundary itself, in the
worst case with a preferred direction. This can be the case when applying frequent corrections
in order to limit the specifc energy above the zero temperature value. For our scheme, only
the specifc internal energy is corrected in such cases, and the evolved momentum density in
untouched.

However, limiting � above the zero temperature value may result in spurious heating. The
reason is that cutting the evolution error distribution from below creates a positive bias until
the error distribution has little support below the cut. For the case in which the evolution errors
follow a zero-mean normal distribution around the correct result, we expect the temperature to
increase until the thermal energy reaches a level comparable to the width of the error distribution
for total energy.

To assess the actual numerical behavior, we then employed a random walk model for diferent
initial states, representing an evolution error, instead of performing a full evolution. After each
“evolution” step, we call our recovery scheme which limited the conserved variables to the
allowed regime. And we monitor the cumulative corrections applied to energy and momentum.

This allowed us to prescribe the error distribution. As a worst case example, we use a
normal distribution with negative mean for the error in energy. Starting at a zero temperature
state, this causes frequent corrections to the energy. For the root fnding accuracy, we use four
diferent values ∆ = 10−7; 10−8; 10−9; 10−10.

Our fndings show that the average momentum error is orders of magnitude smaller than
the limit Equation 5.66. For an initial state v = 0:99; b = 2; � = 6�1012 g/cm3, the momentum
errors of individual correction steps approached machine precision levels around ∆ = 10−9. The
reason behind this result is likely due to the fact that accuracy increases drastically during the
fnal root fnding step, such that the average root error is smaller than the prescribed maximum.
We conclude that cumulative efects of the corrections can likely be neglected.

We also applied the random walk model to states with diferent combinations of b = f0; 2g,
v = f0; 0:99g, �th = f0; 10g, perturbing the evolved variables separately with normally dis-
tributed relative errors of order 10−4. This test confrms that the implementation of the zero-
temperature energy correction works as intended. We monitored the behavior of vi;W; �; P; �
for the above cases and did not encounter any problematic behavior.

5.6 Implementation in Spritz

In this Section, we describe the aspects that are relevant for the integration of the RePri-
mAnd scheme into the Spritz code, and the following Section focuses rather on testing this
implementation with a number of demanding GRMHD tests.
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As the RePrimAnd scheme is implemented as a stand-alone C++ library, in order to employ
the scheme with Spritz, we created a module for the Einstein Toolkit that integrates this
library, and added code to Spritz that makes use of the RePrimAnd C2P functionality. The
library also includes an EOS framework that provides a fully generic interface to diferent
types of EOS. Currently, it implements the classical ideal gas EOS and the hybrid EOS (which
combines an arbitrary cold EOS with a gamma-law thermal component). The extension of this
EOS framework within RePrimAnd library to support fully tabulated EOS mainly entails the
handling of quality issues often encountered with nuclear physics tables, has been left for future
work. In practice, the RePrimAnd scheme requires an EOS of the form P (�; �; Ye), where EOS
that do not consider the electron fraction are emulated by treating it as a dummy variable.
Furthermore, the scheme also requires a well defned validity region for the EOS in order to
judge if a given combination of conserved variables is physically valid.

We also note that this new EOS framework is only used by RePrimAnd, while Spritz
itself still uses the EOS framework provided by the EOS_Omni thorn of Einstein Toolkit. One
reason for this is that the evolution code does not take into account any EOS validity bounds
during the reconstruction step, while the RePrimAnd EOS framework strictly forbids invalid
arguments. Making the reconstruction code of Spritz to work with the validity ranges would
be a development task involving design decisions and tests, which is also left for future work.

As discussed in previous sections, the RePrimAnd scheme is able to distinguish reliably
between valid and invalid input, and even provides more fne-grained information about which
constraints on the primitives are violated, and we take advantage of this feature in our imple-
mentation in Spritz. Moreover, the scheme ofers various corrections that map invalid input
back onto valid input. These are optional and governed by a user-provided error policy. It
should be pointed out that the error policy and corrections are completely agnostic regarding
the type of EOS. Spritz makes use of those optional corrections when using the RePrimAnd
scheme. The most frequent but harmless type of invalid input is given by specifc internal
energy that would have to be below the one for zero temperature. This could happen when
evolving zero-temperature initial data. In Spritz, the policy we adopt for this case when using
RePrimAnd, is to change the evolved energy to the zero-temperature value.

Another correction concerns the NS surface. When the surface is moving, e.g. during NS
oscillations, the density in a numerical cell at the surface can change drastically during a single
timestep, leading in rare cases to extreme velocitiesand/or internal specifc energy at densities
near the atmosphere cutof. To alleviate this problem, we employ a policy that limits the
velocity by means of rescaling the momentum and also limits the specifc internal energy (in
the NS tests using RePrimAnd presented in the next Section, we use limits W � 100 and
� � 50). Since the problem should only occur near the surface of NSs but not in the interior,
our policy is to treat larger values as an error if the density is above a threshold �strict (in
our tests, �strict = 3:95 � 1013 g/cm3, a few percent of the maximum density). We emphasize
that the above corrections are not required to prevent C2P failures, in particular the velocity
rescaling is employed after the C2P solution is found.

RePrimAnd allows to specify hard limits for the magnetic scale variable b = B=
p
W�,

which are treated as error when exceeded (we stress that the magnetic feld is never adjusted
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in any way). This merely serves as a safeguard to catch potential evolution errors that might
otherwise go unnoticed, given the robustness of the C2P scheme. In our tests, we set this limit
to bmax = 100:0, since such a large value would be unexpected. The limit was indeed never
reached in any of our tests.

Another optional correction is to enforce the electron fraction to stay within the EOS validity
range. This option is irrelevant for our tests since we do not include neutrino reactions and use
EOS for which Ye is an unused dummy parameter.

In the following Section, we also perform tests using the already available state-of-the-art
Noble scheme in Spritz. When using the Noble scheme instead of the RePrimAnd scheme, the
above corrections are not applied. For example, the formulas defning the hybrid gamma-law
or ideal gas EOS are applied to any value of specifc energy when using the Noble scheme,
whereas the EOS interface from the RePrimAnd library which is used in the new C2P enforces
strict physical bounds even for analytic EOS. This implies that our comparisons between the
two cases do not just compare the C2P scheme, but also the error policies.

A special case for corrections concerns the interior of BHs. Since the center is always severely
underresolved, the numerical discretization errors can become much larger, but at the same time,
their impact is limited by the presence of the horizon. When using the RePrimAnd scheme,
Spritz is therefore employing a diferent, more lenient error policy near the center of BHs.
In particular, if the lapse function is below a given threshold, we enforce the aforementioned
speed limit at any density (and also allow efectively unlimited values for b, although we have
no indication that is necessary).

An important point concerns the artifcial atmosphere that is required because the evolution
scheme cannot handle vacuum. We employ the standard method of forcing the density to stay
above a foor density �atmo, and set the fuid velocity to zero when the density became smaller.
Further, we chose to set the temperature to zero in the atmosphere. We note that a zero-velocity
artifcial atmosphere also has consequences for the magnetic feld evolution because of the ideal
MHD condition. Taking into account the evolution equations used in Spritz, one can see that
both vector potential and magnetic felds remain frozen in regions covered by the atmosphere.
The atmosphere is enforced by the C2P schemes in essentially the same way.

Another useful feature of the RePrimAnd recovery scheme is the availability of errors bounds
for all primitive variables based on a single accuracy parameter ∆, which can be prescribed by
the user. The accuracy of individual primitive variables is derived by means of error propagation,
given explicitly by Equations (5.61)-(5.65). However, this does not cover evolution errors. In
our tests, we adopt a value ∆ = 10−8.

5.7 Tests

In this Section, we study the interplay between the novel C2P scheme and the numerical time
evolution scheme, and ascertain the correct implementation of the interface between evolution
code and the RePrimAnd library. To this end, we perform a series of demanding 3D tests in
GRMHD, including physical conditions encountered in highly magnetized dynamical systems
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involving NSs and BHs. Those tests should be representative for BNS and NS-BH merger
simulations, but are computationally less expensive.

Our tests are employing simple analytic EOS, but we stress that the RePrimAnd scheme is
completely agnostic to the type of EOS, provided that it respects thermodynamic and causality
constraints. This is not true for the implementation of the Noble scheme in Spritz, which
contains diferent code path depending on the type of EOS. The comparisons between the two
schemes will therefore not necessarily generalize to any EOS. For all tests, we employ PPM
reconstruction method, HLLE fux solver, and RK4 method for time-stepping with a Courant
factor of 0.25. Unless stated otherwise, we evolve the vector potential using the algebraic gauge
and no dissipation, and adopt BSSNOK formulation for spacetime evolution.

5.7.1 Neutron star with internal magnetic feld

Our frst test consists of evolving a nonrotating NS endowed with initial magnetic feld confned
to the NS interior. The test setup is the same as the one adopted in JVK2. To obtain initial
data, we frst solve the Tolman-Oppenheimer-Volkof (TOV) equations [136, 137] which describe
the structure of a non-magnetized, static and spherically symmetric compact star in general
relativity. As EOS, we use a polytrope P (�) = K�Γ, with adiabatic index Γ = 2 and polytropic
constant K = 100 (in geometric units). We consider a model with a central rest-mass density
of � = 8:06�1014 g/cm3. This corresponds to a star with circumferential radius of about 12 km
and a gravitational mass of about 1:4M�.

The magnetic feld is then imposed onto the TOV confguration using the analytical pre-
scription for the vector potential, given by Equation (3.33), which corresponds to a feld with
dipolar structure confned inside the star. We chose Ab such that the maximum magnetic feld
strength is 1016 G. While this feld is rather strong compared to known magnetars, it is still not
strong enough to signifcantly deform the star, as the magnetic energy is much smaller than the
NS binding energy. We therefore leave matter distribution and spacetime metric unchanged.

We perform simulations for three diferent grid resolutions, i.e. low (LR), medium (MR)
and high resolution (HR) using (64)3, (128)3 and (256)3 grid-cells with grid spacing dx=922m,
dx=461m and dx=230:5m respectively, in a uniform domain with x-, y- and z-coordinates
lying in the range [−29:5; 29:5] km. Each simulation covers 10ms of evolution employing the
RePrimAnd primitive recovery scheme, and an atmosphere density foor set to 6:3�106 g/cm3.

For the evolution, we employ two EOS implementations compatible with the initial data.
One is the classical ideal gas given by Equation (2.101) with Γ = 2. The other is the hybrid
gamma-law EOS given by Equation (2.102)-(2.103), where we use the initial data polytropic
EOS for the zero-temperature curves of pressure, pgas,cold(�), and specifc energy, �cold(�), and
further set Γth = Γ = 2.

Evaluating the two expressions yields exactly the same EOS function P (�; �), but there is a
subtle diference regarding the defnition of temperature and the validity range. When specifying
an EOS as P (�; �), there is an ambiguity about the defnitions of entropy and temperature. We
recall that for the classical ideal gas, the pressure and specifc internal energy are proportional
to the temperature, and the lower validity bound given by zero temperature is � � 0. For
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the hybrid EOS, the zero temperature curve is the polytrope and the lower validity bound is
� � �c(�). The RePrimAnd C2P scheme enforces those validity ranges for ideal gas and hybrid
EOS, which might introduce small diferences between simulations using the two. The Noble
scheme on the other hand does not enforce EOS validity ranges.

To assess the consequences, we perform simulations of the same initial data using either
the ideal gas or the equivalent hybrid EOS. As long as the C2P functions correctly, we expect
identical results for the Noble scheme and RePrimAnd in conjunction with the classical ideal
gas EOS (assuming that the specifc energy might drop below the polytrope but still remains
positive). This point is relevant because not all types of EOS can be evaluated outside the
physically meaningful range, most notably fully tabulated EOS. Without an EOS-agnostic
policy regarding validity ranges, C2P schemes might behave diferently for diferent types of
EOS.

Figure 5.7 shows snapshots of initial and fnal magnetic feld strength and density contours,
for the HR run with the RePrimAnd scheme.
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Figure 5.7: Meridional snapshots of the evolution of a magnetized nonrotating NS, where the ReP-
rimAnd C2P scheme with ideal gas EOS is adopted. Black lines correspond to Aφ isocontours and
reveal the geometry of the poloidal component of the magnetic feld. The red line is the iso-density
contour corresponding to 1% of the initial maximum density, whereas orange and yellow lines are the
iso-density contours corresponding 100, and 5 times the artifcial atmosphere density, respectively. The
color scale indicates the magnetic feld strength. Figure taken from JVK7.

The low-density region at the surface is undergoing an expansion due to spurious heating,
which is a typical behavior for evolution schemes near NS surfaces. In 10ms, the magnetic feld
confguration also shows some variations, in particular in the outer portion of the NS (radii
above '6 km). We note that the simulation time span is of the order of the Alfvén timescale at
these feld strengths and thus feld readjustments can occur, possibly triggered by the known
instability of purely poloidal felds (e.g., [200] and refs. therein). The evolution of the normalized
maximum rest-mass density �max and maximum magnetic feld strength Bmax is reported in
the top and bottom panels of Figure 5.8, respectively, for all three resolutions. The maximum
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Figure 5.8: Evolution of normalized maximum rest-mass density (top) and magnetic feld strength (bot-
tom) for low (LR), medium (MR), and high resolution (HR) simulations, comparing also between the
Noble C2P (dashed lines) scheme and the RePrimAnd (RPA) scheme, the latter either in conjunction
with the ideal gas EOS (solid lines) or the hybrid EOS (dotted lines). Figure taken from JVK7.

density �max shows oscillations which are decaying while the system settles toward a numerical
equilibrium, similar to the behaviour noticed also, for e.g., in Figure 3.15. With increasing
resolution, the initial excitation amplitude decreases. In addition, �max and Bmax exhibit a
continuous drift, which we attribute to numerical evolution errors (compare also [138]). With
increasing resolution, such a drift clearly decreases.

To assess the overall convergence behavior, we consider the time evolution of maximum
density, maximum magnetic feld strength, and minimum lapse function. Using the L2 norms
over time of the diferences between high and medium resolution and between medium and low
resolution, we fnd an average convergence order around 2.5 for the density, 2.7 for the magnetic
feld, and 3.1 for the lapse. At the fnite resolutions used here, this is typical behavior for such
simulations, which employ numerical schemes with diferent convergence orders for spacetime
and magnetohydrodynamic parts.

Comparing the results obtained with the Noble scheme and the RePrimAnd scheme in
conjunction with the ideal gas evolution EOS, we observe an exact match. Both schemes are
equally capable to handle this test case.
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Comparing between the RePrimAnd scheme with ideal gas and equivalent hybrid EOS, we
fnd a somewhat larger drift for the latter. The only diference in the evolution is that for
the hybrid EOS, the specifc energy is mapped back to the value given by the polytropic cold
EOS when evolution errors cause it to fall below. Hence, the correction only increases the
internal energy. We conclude that on average, enforcing the validity range slightly increases
the spurious heating. Enforcing the validity range might seem like a drawback, but should be
weighted against consistent behavior for any type of EOS.

Since the artifcial atmosphere is also handled by the C2P implementations, it is impor-
tant to validate the conservation of total baryonic mass. Figure 5.9 shows the total baryonic
mass, comparing the diferent resolutions for the RePrimAnd case, the RePrimAnd and No-
ble schemes at high resolution, and the RePrimAnd case with ideal gas and hybrid EOS. For
completeness, we compare two diferent measures for the mass, including and excluding the
artifcial atmosphere contribution. Both the Noble and RePrimAnd implementations meet the
expectations for mass conservation, and agree exactly for the case of ideal gas (for all resolu-
tions). The enforcing of validity bounds for the hybrid EOS does not have an impact on mass
conservation, as expected. Similar to Figure 3.18, here too, in Figure 5.10, we plot the power
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Figure 5.9: Relative change in total baryonic mass for the diferent tests with Noble and RePrimAnd
schemes. Figure taken from JVK7.

spectrum of the maximum rest-mass density evolution. As one can see, the spectra obtained
with the RePrimAnd and Noble schemes are identical. Further, the spectrum shows clear peaks
that are located at frequencies of the radial NS oscillation modes, predicted in [142] using a 2D
perturbative code. The oscillations of maximum density visible in Figure 5.8 thus correspond
to NS oscillations excited by the deviation of initial data from equilibrium.
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Figure 5.10: Fourier transform of the maximum rest-mass density evolution normalised to the amplitude
of frst frequency peak, for both the RePrimAnd and Noble schemes. The dash-dotted vertical lines
represent the normal mode frequencies computed independently via a perturbative code as reported in
[142]. Figure taken from JVK7.

Finally, we assess the computational costs of the two C2P implementations. Using the
timing functionality available in the Einstein Toolkit, we fnd that both schemes use about
2:5% of the total computational time. For the test at hand, the C2P is not a computational
bottleneck of the Spritz code, and the computational efciency of both schemes is similar. We
note that the fraction spent in the C2P might increase signifcantly when using a much slower
type of EOS, for example an interpolation table using temperature as one independent variable.

5.7.2 Neutron star with extended dipolar magnetic feld

A critical aspect for any primitive variable recovery scheme for MHD is the ability to handle
high magnetizations in low density regimes. While the RePrimAnd scheme has proven to be
robust and reliable when dealing with extremely high magnetisations in pointwise (i.e. single
fuid element) tests, more delicate dynamical tests involving high magnetizations together with
a nontrivial global evolution represent the next necessary step for a full validation in view of
future BNS merger simulations.

Here, we simulate the same nonrotating NS model as reported in Section 5.7.1, but now
endowed with a dipole magnetic feld also extending outside its surface. In detail, the initial
magnetic feld is set up employing a vector potential of the form (also used in [38])

Ar = Aθ = 0;

Aφ = B0
r3
0

r3 + r3
0

r sin �;
(5.75)



5.7 Tests 130

where B0 = 1015 G (corresponding to a maximum magnetic feld strength of ' 6:6 � 1015 G),
and we assume r0 = 12 km.

We perform a simulation using the RePrimAnd scheme together with the ideal gas EOS. The
grid domain extends up to 44.3 km in all cartesian directions, with grid spacing of dx ' 231m
(corresponding to the high resolution introduced in the previous Section). In order to make the
test more demanding, we chose a very low artifcial atmosphere density of 6:3� 105 g/cm3.

We evolved the system up to 10ms without encountering any problems. Most importantly,
the RePrimAnd C2P scheme worked robustly even in the low-density regions outside the NS,
where the magnetic-to-fuid pressure ratio � reaches large values up to � 104. Figure 5.11
shows three snapshots of the magnetic feld strength in the meridional plane, along with vector
potential and rest-mass density contours. Apart from some small drift due to normal evolution
errors, the feld structure remains stable. When evolving the same confguration using the Noble

40 30 20 10 0 10 20 30 40
x [km]

40

30

20

10

0

10

20

30

40

z[
km

]

t = 0.0 ms

40 30 20 10 0 10 20 30 40
x [km]

t = 0.1 ms

40 30 20 10 0 10 20 30 40
x [km]

t = 10.0 ms

12.4

12.8

13.2

13.6

14.0

14.4

14.8

15.2

15.6

lo
g 1

0(
B

[G
])

Figure 5.11: Results for the test case of a nonrotating NS endowed with an external dipolar magnetic
feld, evolved with the RePrimAnd C2P scheme and using a low artifcial atmosphere density of 6:3�
105 g/cm3. The black lines are isocontours of the vector potential component Aφ. Rest mass density
contours in red, orange and yellow are illustrated in the same fashion as done in Figure 5.7. Figure
taken from JVK7.

scheme, the simulation develops strong instabilities after only ' 0:1ms. These instabilities frst
appear shortly outside the NS surface in the polar region, where the magnetic feld strength
is largest. Subsequently, they spread around the rest of the star. As shown in the left panel
of Figure 5.12, the magnetic feld in the outer layers of the NS becomes highly disordered and
even the density isocontours reveal a very complex, unexpected dynamics that ultimately leads
to failures in spacetime evolution. The exact mechanism behind the instability is unknown.
One possible explanation is that the inaccuracies of the Noble C2P solution might be larger in
the parameter space of the afected regime and then interact with the evolution scheme in an
unstable manner. Since the Noble scheme depends on initial guesses from the evolution, such
efects would be difcult to reproduce in standalone tests such as [172].

When the atmosphere foor density is increased by a factor of 100, the simulation performs
well also with the Noble scheme, as shown in the right panel of Figure 5.12. Further tests
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Figure 5.12: Results for the external dipole test obtained with the Noble C2P scheme. Left: Same
as the middle panel of Figure 5.11, but showing the instability developing when adopting the Noble
scheme. Right: Snapshot after 10 ms evolution with the Noble C2P scheme when using an artifcial
atmosphere density of 6:3�107 g/cm3, enlarged by a factor 100 compared to the RePrimAnd simulation
results shown in the right panel of Figure 5.11. Figure taken from JVK7.

show that increasing the atmosphere density by an intermediate factor 10 is not sufcient and
still leads to an early failure. We therefore attribute the failure to the magnetization, which is
maximal at lowest density and hence reduced by increasing the atmosphere density.

When using the Noble scheme with 100 times larger atmosphere, the overall results (NS
surface aside) are very similar to the RePrimAnd case with the original low density atmosphere.
Figure 5.13 compares the evolution of maximum rest-mass density �max (top panel), central
magnetic feld strength Bc (middle panel), and total magnetic energy (bottom panel) for the
two cases. The tests clearly show that the RePrimAnd C2P scheme increases the robustness
of the Spritz code when dealing with magnetic-to-fuid pressure ratios at least up to ��104,
compared to the Noble scheme used previously. We stress that our study is not testing the
accuracy of the numerical evolution in highly magnetized low-density regions, and point out that
evolving such regions more accurately might require specialized evolution schemes incorporating
the force-free approximation and/or resistive MHD. However, it is already a big advantage that
the presence of such regimes is not causing a failure of the whole simulation.

5.7.3 Rotating magnetized neutron star

Moving to a more demanding test, we now consider a uniformly rotating NS with magnetic
feld extending outside the star. The initial data are generated using the Hydro_RNSID module
of the Einstein Toolkit. Our model employs a Γ = 2 polytropic EOS with K = 100 (in units
c = G = M� = 1), a central density �c ' 6:87 � 1014 g/cm3 and a polar-to-equatorial radius
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Figure 5.13: Evolution of normalized maximum rest-mass density (top), normalized magnetic feld
strength at the center (middle), & magnetic energy (bottom) for the case of a nonrotating NS endowed
with extended dipolar magnetic feld, evolved with the RePrimAnd scheme & artifcial atmosphere
density of �atm = 6:3� 105 g/cm3 or with the Noble scheme and �atm = 6:3� 107 g/cm3. From JVK7.

ratio of 0.8744. This produces a uniformly rotating NS on the stable branch with a gravitational
mass of 1.4M�, an equatorial radius of 15.65 km, and a rotation rate of 500Hz.

We add an extended dipolar magnetic feld on the NS in the same way as done in Section
5.7.2. The magnetic dipole axis coincides with the rotational axis. Diferent to Section 5.7.2,
we do not add the magnetic feld to the initial data, but evolve the non-magnetized initial data
for 10ms before imposing the magnetic feld. The motivation for this choice is to obtain a test
case that is representative for the application to binary neutron star mergers using an approach
similar to, e.g., [43], where the extended magnetic feld is added to the NSs during the last
orbits before merger.

After 10ms of evolution without magnetic feld, the NS is surrounded by a hot, low-density
cloud of matter. Such difuse halos are a typical efect of perturbations near the NS surface
initially triggered by numerical evolution errors. This expansion of the outer layers, along with
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the interaction with the artifcial atmosphere, also leads to strong diferential rotation in the
corresponding regions. For the actual test, we then evolve the magnetized system for another
10 ms. The atmosphere foor density is again set to a low value of 6:3� 105 g/cm3.

For this test, we also use ‘box-in-box’ mesh refnement with four refnement levels. The
coarsest(fnest) computational grid extends up to ' 591(74) km in all Cartesian directions, and
the fnest grid spacing is dx = 461m, which is twice as large as the grid spacing used in the
previous test. This setting gives about 26 grid points along the NS radius. The test allows us
to validate the correct interplay between the implementation of the new C2P scheme in Spritz
and the mesh refnement.

Figure 5.14 shows the magnetic feld strength on the meridional plane along with selected
isocontours of rest-mass density, both at 10ms (time at which the feld is added) and 20ms
(fnal simulation time). Right after the feld is imposed, it starts to get distorted by the motion
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Figure 5.14: Meridional view of a magnetized rotating NS, evolved using the RePrimAnd C2P scheme.
Color scale indicates the magnetic feld strength and the iso-density contours are the same as in Figure
5.7. Left panel shows the time at which an extended dipolar magnetic feld is imposed (10ms), while
the right panel shows the system towards the end of the simulation. Figure taken from JVK7.

of the low density material surrounding the NS bulk. Diferential rotation leads to magnetic
winding and the appearance of a toroidal component. The resulting magnetic pressure gradients
contribute to the expansion of the outer layers of the NS and of the surrounding matter.

In Figure 5.15, we plot the feld line structure close to the star towards the end of the
simulation, using the visualization method developed in [34] but focusing more on the regions
near the NS and rotation axis. Along the spin axis and up to about 100 km from the center, we
observe the twisting of magnetic feld lines2. At large distances, within the artifcial atmosphere,

2Such an helical structure is also slightly bent, hinting towards the development of a kink instability (e.g.,
[201]). In-depth analysis of this efect is however beyond the scope of this work.
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Figure 5.15: Three dimensional magnetic feld structure of the system shown in right panel of Figure
5.14. A sphere of radius 10 km is added in the center to give a spatial scale reference. From JVK7.

the original dipolar structure remains frozen. We stress that a proper treatment of those outer
regions would require a force-free evolution, which is not currently implemented in Spritz.

During the whole simulation, the RePrimAnd C2P scheme experienced no difculties while
handling the high magnetizations present in the low density regions, where the magnetic-to-fuid
pressure ratio reaches �104.

5.7.4 Rotating magnetized neutron star collapse

Our next test case consists of evolving the collapse of a magnetized diferentially rotating
hypermassive NS to a BH. Even though the gauge conditions avoid the physical singularity, the
center of BHs is challenging for numerical evolution schemes. The purpose of the test is not
just to demonstrate the robustness of the C2P scheme under the conditions encountered during
BH formation, but also to validate that the interplay between our policy for corrections and
the time evolution scheme results in a stable evolution of a BH with matter. As described in
Section 5.6, we evolve the BH interior without excision, but employ a C2P policy near the center
that efectively limits the velocity and specifc energy. For this test, we adopt the dynamically
unstable axisymmetric model A2 of [202], which consists of a hypermassive NS close to collapse.
It employs a polytropic EOS with Γ = 2 and K = 100. The model has a gravitational mass of
M ' 2:228M� and a central rest-mass density of �c ' 1:892� 1015 g/cm3. The model follows
the “j-constant law" of diferential rotation, with diferential rotation parameter Â = 1 (see



5.7 Tests 135

15 10 5 0 5 10 15
x [km]

15

10

5

0

5

10

15

z[
km

]

t = 0.0 ms

15 10 5 0 5 10 15
x [km]

t = 1.0 ms

15 10 5 0 5 10 15
x [km]

t = 1.5 ms

12.4

12.8

13.2

13.6

14.0

14.4

14.8

15.2

15.6

lo
g 1

0(
B

[G
])

Figure 5.16: Meridional snapshots of magnetic feld strength for the magnetized rotating NS collapse
simulation, evolved using the RePrimAnd C2P scheme. The iso-density contours in red, orange, and
yellow correspond to 5, 3 and 1.5 times the artifcial atmosphere density, respectively. The left panel,
referring to the initial setup, shows also the magnetic feld geometry as Aφ isocontours (black). The
middle and right panels refer to 1 and 1.5ms of evolution, respectively. The Aφ isocontours are not
shown in the last two panels as their disordered structure overcrowds the regions of interest we want
to show. The black area marks the apparent horizon of the BH. Figure taken from JVK7.
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Figure 5.17: Evolution of maximum rest-mass density normalized to the initial value (top-left), total
magnetic energy (bottom-left), minimum of lapse (top-right), and L2 norm of the Hamiltonian con-
straint (bottom-right). Once the BH is formed, the interior of the apparent horizon is excluded for the
computation of these quantities. The vertical black (dashed) line in all panels marks the time at which
the apparent horizon is found in the simulation, while the horizontal yellow line in the top-left panel
represents the foor density. Figure taken from JVK7.

[202] for details) and central angular velocity Ωc ' 44 Rad=ms. The resulting ratio of the polar
to the equatorial coordinate radii is rp=re = 0:33.
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The non-magnetized model is constructed using the Hydro_RNSID module of the Einstein
Toolkit. On top of this initial confguration, we add an extended dipolar magnetic feld in
the same fashion as done in Section 5.7.2, with B0 = 1015 G. However, in this case we choose
r0 = 4 km.

The computational grid setup is the one described in Section 5.7.3, supplemented with an
additional inner refnement level that has a grid spacing of dx ' 230:5m and which extends
up to [−37;+37] km in all three directions. The system is evolved with Spritz, employing the
RePrimAnd C2P scheme together with an ideal gas EOS with Γ = 2. The atmosphere foor
density is again set to 6:3� 105 g/cm3.

We evolve the system for around 1.5 ms, which is sufcient to capture the collapse of the
hypermassive star and the formation of the BH. Prior to collapse (occurring at '0:84ms), the
outer layers of the NS tend to expand due to spurious heating, while the central core is slightly
contracting. The initially ordered and purely poloidal magnetic feld is wound up by diferential
rotation, which creates a toroidal component and amplifes the overall feld strength. At the
same time, the feld becomes more disordered within the expanding outer layers of the NS, due
to the irregular fuid motion. After BH formation, matter is rapidly absorbed and the magnetic
feld is also dragged along by the in-falling material. Figure 5.16 illustrates the magnetic
feld strength at the initial, intermediate, and fnal times of the simulation. Throughout the
simulation, we do not fnd any signifcant artifacts in magnetic feld at the refnement level
jumps.

The above dynamics is refected in the time evolution of maximum rest-mass density �max,
total magnetic energy Emag, minimum lapse �min, and L2-norm of the Hamiltonian constraint
H, which are shown in Figure 5.17. Note that once the BH has formed, the interior of the
apparent horizon is excluded from those measures.

We conclude that the RePrimAnd scheme can be used for scenarios involving BH formation,
most notably BNS and NS-BH mergers. Moreover, the robustness and fexibility in applying
corrections allows to evolve BHs in GRMHD schemes without applying any form of excision in
the center of the BH.

5.7.5 Fishbone-Moncrief BH-accretion disk

For our fnal test of the RePrimAnd scheme, we simulate a magnetized accretion disk surround-
ing a Kerr BH, based on the equilibrium torus solutions proposed by [203]. A BH-disk system
is one of the typical outcomes of BNS/NS-BH mergers (e.g., [25, 35, 104, 105, 151, 204–206])
and model investigations of such systems probe the underlying mechanisms that govern the
dynamics of the plasma accretion, post-merger disk winds that contribute to kilonova emission,
as well as launching of relativistic jets. Such a system has also been widely used as a standard
test case for diferent evolution codes and schemes [121, 191, 207–211]. In our case, evolving
such a confguration allows another crucial check on the robustness of the RePrimAnd scheme
when dealing with accretion onto a BH and MHD turbulence.

The initial data for spacetime and hydrodynamic variables is built using the Einstein Toolkit
thorn FishboneMoncriefID, which has been adapted to work with Spritz. The public version
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of thorn was also used, e.g., to setup the IllinoisGRMHD [92] simulations in the code comparison
reported in [103]. For the initial data, we use a polytropic EOS with Γ = 4=3 and K ' 0:156,
while for the evolution we use an ideal gas EOS with Γ = 4=3. We set the initial Kerr BH
mass to 2:7M� and its dimensionless spin parameter to a = 0:9. This results in an equatorial
BH horizon radius of about 7.8 km in simulation coordinates. The inner edge of the torus is
located at a coordinate radius rin � 24 km, and the maximum density (9.76�1011 g/cm3) is
reached at coordinate radius rmax � 48 km. This matter confguration is then complemented by
a purely poloidal magnetic feld confned inside the torus, using Equation (3.33), and choosing
an initial maximum magnetic feld strength of 1014 G, which corresponds to an initial magnetic-
to-fuid pressure ratio � of about 2 � 10−4. As before, the atmosphere foor density is set to
6:3� 105 g/cm3 for the entire domain.

For this test, we use a fxed spacetime metric that is not evolved in time. The metric we use
has a coordinate singularity at the origin. Nevertheless, we evolve the magnetohydrodynamic
equations in the full domain. In order to avoid singular values, we place the numerical grid such
that the origin is located at the corners of the adjacent cells on the fnest refnement level, and
never at a cell center. Still, the large gradients that spacetime-related variables exhibit near
the origin pose a challenging test for the robustness of the code.

We employ fxed ‘box-in-box’ mesh refnement, using a computational grid hierarchy with
fve cubical refnement levels. The coarsest level extends up to 528 km and the fnest one up
to 33 km, with a resolution of � 531:6m. For the chosen grid hierarchy, some mesh refnement
boundaries are crossing the disk. This could be avoided in a production setting, but as test
case facilitates the observation of potential artifacts.

Related to the potentially problematic mesh refnement boundaries and BH center, we test
several evolution options. One is to employ the algebraic gauge condition [69, 70] for the vector
potential, but no dissipation. Next, we use the generalized Lorenz gauge still without dissi-
pation. Finally, we use the generalized Lorenz gauge while applying Kreiss-Oliger dissipation
[212] to the evolved vector and scalar potentials3. In particular, we use the Dissipation mod-
ule of the Einstein Toolkit, with dissipation order p = 5 and dissipation strength parameter
�diss = 0:1, which is a typical value used in other works (see, for e.g., [34, 35], JVK1).

For the test case at hand, the use of the algebraic gauge leads to numerical instabilities
at the mesh refnement boundaries inside the disk. This seems related solely to the evolution,
whereas the C2P algorithm was not causing any problems. As an additional cross-check, we
verifed that the same behavior arises when using the Noble C2P scheme. The evolution using
Lorenz gauge without dissipation shows high-frequency noise at the refnement boundaries, as
well as numerical instabilities near the origin4. Again, the C2P algorithm was not causing
problems.

3Note that this simulation was performed using the previous implementation for the evolution of electric feld
as described in JVK2. The latest version of Spritz evolves the electic feld based on the upwind constrained
transport scheme as described in Section 3.1.2.3, which might not require application of dissipation on magnetic
feld variables for such simulations.

4The instability near the origin is most likely caused by the particular metric used for this test. It is worth
noting that it difers signifcantly from the one adopted in numerical merger simulations that are using the
puncture gauge.
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When using the Lorenz gauge with dissipation, we obtain a stable evolution without artifacts
near the mesh refnement boundaries. We evolve this case for about 50ms. The rest-mass
density distribution at initial and fnal time is shown in Figure 5.18.

Within the frst few ms, disk matter starts to fall into the BH, in part channeled along
the BH spin axis, while the inner edge of the disk moves closer and closer to the horizon on
the equatorial plane. At the same time, the outer layers of the disk begin to expand and the
initial sharp outer edge of the disk is lost in favor of a layer of low density material gradually
spreading up to larger and larger distances. At the end of the simulation (� 50ms), after the
initial transient phase, it looks as if the system is starting to adjust towards a quasi-stationary
confguration. The latter condition would however be fully achieved only via longer simulations,
as reported in the literature (see, e.g., [103]).

Figure 5.19 illustrates the magnetic feld strength at the initial and fnal time frames. For
comparison, we draw the locations of the mesh refnement boundaries in one panel, illustrating
that there are no signifcant artifacts present until the end of simulation. During the evolution,
magnetic felds get dragged along with the fuid into the BH horizon as shown in the right-panels
of Figure 5.19. Moreover, the magnetic feld within the disk undergoes a strong amplifcation,
particularly in the toroidal component, induced by the diferential rotation and shear in the disk.
The maximum magnetic feld strength grows by about two orders of magnitude in 50ms, aided
by magnetic winding, and potentially the development of the magneto-rotational instability
(MRI). Using �MRI � (2�=Ω) � B=

p
4�� as an estimate for the wavelength of the fastest

growing mode, we fnd that at 50ms it is resolved by 10–100 grid points in most of the disk,
with local growth timescales of order 1–10ms. Overall, magnetic energy grows by around three
orders of magnitude as shown in Figure 5.20, and � increases more than the maximum feld
strength, reaching values up to 100. The reason is that the regions of low density above and
below the disk become increasingly permeated by strong felds. The top panel of Figure
5.20 shows the mass accretion rate, computed from the mass fux penetrating the horizon (in
detail, we consider the mass fow rate through a spherical surface of radius � 7:83 km that is
slightly larger than the BH). We fnd that after 10–12ms, the accretion rate starts to rapidly
grow and the increase continues up to a maximum reached around 45ms. Towards the end of
the simulation, we observe frst hints of saturation and what appears to be the beginning of a
decreasing trend.

We note that on longer timescales, a jet might form as well. The current test should not be
regarded as representative for this scenario, since it would involve magnetizations, temperatures,
and velocities that exceed those reached here.

For comparison, we repeated the test with the same setup, but employing the Noble C2P
implementation of the Spritz code. We observed instabilities similarly to the results shown
in Section 5.7.2, as well as outright C2P failures, which occur within 1ms. Those problems
occur in a region extending outside the horizon, including the inner edge of the disk. When
increasing the atmosphere density to 10 (100) times the one used for RePrimAnd test, similar
failures occur within 5(11)ms.

In conclusion, our RePrimAnd scheme implementation functions well in the regimes en-
countered within the frst 50ms of evolution of the chosen magnetized Fishbone-Moncrief BH-
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Figure 5.18: Initial and fnal time snapshots of the rest-mass density in the meridional (top-row) and
equatorial (bottom-row) planes for the magnetized Fishbone-Moncrief BH-accretion disk test. The
apparent horizon is depicted in black. Figure taken from JVK7.

Figure 5.19: Initial and fnal time snapshots of the magnetic feld strength within the meridional (top-
row) and equatorial (bottom-row) planes, for the magnetized Fishbone-Moncrief BH-accretion disk test.
The apparent horizon is depicted in black. In the lower left panel, we also highlight the mesh-refnement
boundaries (red). Figure taken from JVK7.
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Figure 5.20: Time evolution of the mass accretion rate (top-panel) and total magnetic energy (bottom-
panel) for the magnetized Fishbone-Moncrief BH-accretion disk test. Figure taken from JVK7.

accretion disk setup, for a foor density as low as 6:3 � 105 g/cm3 and a (rather low) fnest
resolution of � 530m. It is more reliable than the old C2P implementation, which failed such
a test. The RePrimAnd scheme is also functioning robustly in the presence of numerical in-
stabilities in the evolution itself, caused by other efects such as coordinate singularities. The
physical setup in this test is representative for science runs involving long-term evolution of
post-merger accretion disks around BHs before (or without) jet formation.

5.8 Conclusion

In this Chapter, we summarized our work presented in papers JVK4 and JVK7, introducing a
new fully reliable primitive variable recovery scheme called RePrimAnd, designed for relativistic
ideal magnetohydrodynamic codes, and then described its implementation in our GRMHD code
Spritz.

For the stand-alone scheme, we frst derived a mathematical proof that the algorithm always
fnds a valid solution, and that the solution is unique. Moreover, we derived expressions that
allow us to prescribe the accuracy of the individual primitive variables. We then focussed on
the describing the diferent features of the scheme, such as its ability to identify unphysical
evolved variables, as well as the nature of the invalidity, adoption of relevant error policies and
selective application of harmless corrections based on the nature of the problem.

Our reference implementation of the scheme has been made publicly available in form of a
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well-documented library named RePrimAnd [187], which can be used by any evolution code.
This library also comes with a generic EOS framework for using arbitrary EOS, however the
C2P implementation itself is formulated in an completely EOS-agnostic manner.

We frst subjected the stand-alone code to a comprehensive suite of tests, demonstrating
that both the algorithm and the actual implementation are robust up to Lorentz factors and
values of magnetization much larger than those relevant forBNS mergers. We also showed that
the scheme is computationally efcient regarding the number of EOS evaluations (efciency of
EOS implementations aside).

As a next natural step, we added code into Spritz in order to import the RePrimAnd
library and make use of its C2P functionality. We then performed a number of demanding 3D
GRMHD tests representative for astrophysical scenarios, including binary neutron star mergers
and BH formation. These tests validated the correctness of the implementation as well as the
stability of the interplay of the evolution scheme with the recovery scheme. We also discuss
important technical details regarding the treatment of invalid states, validity bounds of the
EOS, and the evolution inside BHs without use of excision.

Through these tests, which included critical cases such as a NS collapse to a BH as well as
the early evolution (�50ms) of a Fishbone-Moncrief BH-accrection disk system, we were able
to show that the RePrimAnd scheme is able to handle magnetized, low density environments
with magnetic-to-fuid pressure ratios reaching � 104, in situations where the previously used
recovery scheme fails.

After the extensive testing, we started performing magnetized BNS merger simulations using
the RePrimAnd scheme with Spritz. Results of these latest simulations will be presented in
the upcoming work JVK9. The outcome of the frst of these simulations, already completed,
is discussed in Chapter 7. In the meantime, the RePrimAnd scheme has been successfully
employed in BNS merger simulations using a diferent code, presented in the paper JVK8.

Building on the proven robustness of the RePrimAnd scheme, we are currently working on
providing support for using the new scheme in Spritz also with a fully-tabulated, composition
and temperature dependent EOS. In the near future, we plan to use this additional upgrade of
the scheme to perform magnetized BNS or NS-BH merger simulations as well as long-term BH-
disk simulations with microphysical EOS and including an approximate treatment of neutrino
radiation.



Chapter 6

Binary neutron star mergers with
WhiskyMHD

As discussed in the frst introductory Chapter of this Thesis, binary neutron star (BNS) merger
events provide a very rich phenomenology involving gravitational waves, electromagnetic ra-
diation as well as microphysical efects, with the potential to answer key open questions in
astrophysics and fundamental physics. BNS merger events can also be used as a laboratory to
investigate the properties of nuclear matter in extreme conditions and provide constraints on
the neutron star equation of state (EOS). Moreover, BNS mergers have long been considered
as a very promising progenitor for short gamma-ray bursts (SGRBs). The coincident detection
of GWs from the BNS merger GW170817 and the accompanying electromagnetic counterparts
including an SGRB and an optical/infrared kilonova (named GRB170817A and AT2017gfo,
respectively) [2, 4, 213] confrmed the connection of BNS mergers with SGRBs and radioac-
tively powered kilonovae and, at the same time, led to the frst GW-based constraints on the
NS equation of state (EOS) and the Hubble constant (e.g.,[2, 3, 9–11, 14, 15, 214, 215]; see
also, e.g., [216, 217] and refs. therein). Nevertheless, this event also left behind open questions
regarding the mechanisms that produced the relativisitic jet powering the SGRB, as well as the
accompanying kilonova.

As mentioned in the Introduction, GRMHD simulations ofer the essential infrastructure
necessary to address such questions, including magnetic feld efects. In this Chapter, we frst
start with a brief astrophysical background on NSs and BNS systems. Then, we discuss the
work presented in JVK1 and JVK3, involving GRMHD simulations of BNS mergers performed
using the numerical relativity code WhiskyMHD. In particular, JVK1 addresses, among various
aspects, the question of whether a long-lived NS remnant1 or a so-called magnetar can act as
a central engine to power a SGRB jet, as an alternative to the standard accreting BH-disk
central engine scenario (see Section 6.1.2.4, and for e.g., [17] for a recent review on diferent
viable central engines of SGRB jets). JVK3 focusses instead on explaining the origin of the

1Hereafter, long-lived refers to remnants with lifetime �100ms.
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early “blue” component of the kilonova that accompanied the GW170817 event, in terms of
magnetically enhanced mass ejection occurring after merger and prior to the eventual collapse
to a BH.

Note that refs. JVK1 and JVK3 are among the latest publications on BNS mergers based
on the WhiskyMHD code. The corresponding work was conducted in parallel to the development
of the new code Spritz (discussed in the previous Chapters 3, 4, and 5). The frst BNS merger
simulation results obtained with Spritz will be the subject of Chapter 7.

6.1 Physical background

6.1.1 Neutron stars

The theoretical prediction of the existence of neutron stars was frst made by Landau in 1932
[218], and by Baade and Zwicky in 1934 [219], suggesting their origin from supernova explosions.
NSs are compact stellar remnants formed by the gravitational core-collapse of high mass stars
within the mass range of roughly 8−30M�, having masses in the range of about 1:3M� .M <

3M�, radii of about 10− 13 km, and are associated with densities as high as � 1015 g/cm3.
NSs can be observed as pulsars, i.e., rapidly rotating radio emitters with very precise period-

icity (with observed spins up to 716 Hz [220]), the frst pulsar having been observed by Bell and
Hewish in 1967 [221]. They are known to have strong dipolar magnetic felds (B � 108−1015 G),
emitting beamed EM radiation from their magnetic poles.

The frst theoretical calculation of NS models was proposed by Tolman [137] and by Op-
penheimer and Volkof in 1939 [136], considering the NS matter to be composed of a very high
density ideal gas of free neutrons, having its structure supported against the gravitational col-
lapse by neutron degeneracy pressure. The EOS and the interior structure of a NS is still not
well understood, making NSs extremely interesting astrophysical objects of study.

6.1.1.1 Internal structure

The internal structure of a NS can be modelled as a series of layers with diferent composition
and thickness. Starting from the exterior, the anatomy of a NS can be described as:

• Outer crust: Below the atmosphere (or the ocean) which may be only a few cm thick
plasma layer of ions and electrons, there is an outer crust where the matter density
ranges from � 107 g/cm3 to the neutron drip density �d � 4 � 1011 g/cm3 as we move
inward. This crust is considered to be made up of a heavy nuclei lattice surrounded by an
electron gas, supported by the electron degeneracy pressure. At �d, the neutrons occupy
all the available bound states in the nuclei, and for densities higher than �d, they start to
leak out (neutron drip).

• Inner crust: For densities between �d and nuclear saturation density �0 � 2:67�1014 g/cm3,
the matter is proton rich, immersed in neutron gas, and supported by the neutron degen-
eracy pressure. Further in, the nuclei start to deform and connect along certain directions
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to form bubbles, extended tubes (spaghetti) and sheets (lasagne) of nuclear matter, also
referred together as nuclear pasta.

• Core: For �0 > 2:67 � 1014 g/cm3, the outer core is made of a homogeneous fuid of
protons, electrons and neutrons. The physics of the inner core (densities � 1015 g/cm3)
is however still unclear, as those extremely high densities may lead to the formation of
hyperons (e.g., Σ), boson condensates (e.g., of � or K mesons), and/or deconfned quark
matter.

For such highly dense objects, we need a general relativistic treatment to describe its struc-
ture. As mentioned in previous Chapters, Tolman, Oppenheimer and Volkof introduced a set
of hydrostatic equilibrium equations for a neutron star, using the Einstein feld equations for
a homogeneous, spherically symmetric static star, which together with an equation of state
p = p(�; �), are known as the Tolman-Oppenheimer-Volkof (TOV) equations [136, 137]. The
TOV equations are given as

dm(r)

dr
= 4�r2e (6.1)

dp

dr
= − (e+ p)[m(r) + 4�r3p]

r[r − 2m(r)]
; (6.2)

where m(r) and r are the enclosed mass and radius of the star respectively, having e and p as
the relativistic energy density and pressure respectively, as measured by an observer in a locally
inertial rest frame with respect to the fuid.

An important theorem based on the Schwarzschild solution for a homogeneous star was
introduced by Buchdahl in 1959 [222], establishing a constraint between the mass and the
radius such that

m

r
<

4

9
; (6.3)

for a static star of constant positive energy-density, where the energy density is a monotonically
decreasing function of the radial coordinate, .i.e., (de=dr) � 0. This theorem is commonly known
as the Buchdahl’s theorem.

6.1.1.2 Neutron star EOS

As discussed in detail in Section 2.2.6, NSs are excellent laboratories for studying the behaviour
of high-density nuclear matter. However, we still do not have a complete picture of matter
behavior for supranuclear densities reached in NS cores and the corresponding EOS, which
is still an active feld of research. Currently, a wide collection of NS EOS candidates exists,
majorly obtained from relativistic mean feld theory (RMFT) and non-relativistic many body
theory (NMBT) with relativistic corrections. In NMBT, an efective nuclear hamiltonian is
used, which contains efective two- and three-body nucleon interaction potentials. The free
parameters in these efective nuclear interactions are obtained by ftting atomic nuclei properties
measurements and via results of scattering experiments, and then are extrapolated to higher
nuclear densities. In RMFT, the strong nuclear interactions are modeled as a meson exchange
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(in terms of scalar �, vector ! and isovector 
) between nucleons. Here, the efective lagrangian
contains the free-particle terms for each considered particle (electrons, nucleons, mesons) along
with the meson-baryon interaction terms and perturbative meson self-interactions. The free
parameters in this approach are also defned using the low-energy terrestrial experiments. EOS
models based on these two approaches could have NS cores composed of only nucleons, or
including kaon/pion condensates, hyperons, or strange quark matter.

A number of EOS candidates have been considered by [79] in their study of piece-wise poly-
tropic representations, based on the EOS descriptions in [223, 224], covering diferent methods
and approaches. For example, EOS considering only plain nuclear matter (n; p; e; �) such as
MS1-2, MS1b are based on relativistic mean feld theory [225], APR4 is based on the variational
method [226], whereas SLy is based on the potential method [227]. For EOS models considering
exotic nuclear matter (K;�;H; q), we have, for instance, H1-7 based on RMFT with hyperons
[224], GS1-2 based on RMFT with kaons, and plenty more.

6.1.2 Binary neutron star systems

A BNS system consists of two neutron stars orbiting around their common barycenter. In 1974,
Hulse and Taylor reported the frst observation of such a system [228], containing a recycled
pulsar along with a neutron star. Since then, several BNS systems have been reported in our
galaxy. In the following, we discuss the formation and evolution of such compact BNS systems.

6.1.2.1 Binary formation

In the standard scenario, the progenitors of the compact NS binaries are a pair of main sequence
stars having individual masses in the range � 8−30M�. Such progenitors undergo core-collapse
when the fusion processes are unable to support them against their own gravity, resulting in
supernova explosions. A simplistic version of the standard BNS formation channel is shown
in Figure 6.1. For an asymmetric high-mass system, the more massive (primary) star evolves
faster than its companion (secondary) star, forming a red-giant and eventually undergoing
(assumed symmetric) supernova. If the ejected mass is more than half the total pre-supernova
mass, the binary is expected to be disrupted. In practice, supernova explosions can be slightly
asymmetric, providing natal ‘kick’ velocities to the newborn NSs. For large kicks, the binary
again faces disruption, producing an isolated NS along with a runaway star. If the binary
survives, the companion may also undergo transformation to a giant, overfowing its Roche
lobe. This could lead to the common envelope phase, until the companion also explodes as a
supernova. If it is able to sustain enough mass and has low or negligible natal kick velocity, it
remains bound, forming a double NS system.

6.1.2.2 Merger dynamics

The evolution of a BNS system involves three main stages: (i) inspiral, (ii) merger, and (iii)
post-merger (ringdown). The possible evolutionary channels for a BNS merger are summarized
in Figure 6.2. For the inspiral phase, the binary evolves on a radiation-reaction time-scale, set
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Figure 6.1: A schematic representation of a standard formation channel of a binary neutron star system.
Figure taken from [68].

by the loss of energy and momentum through gravitational waves, lasting for 106 − 107 years.
When the separation reaches the order of 100 km, orbital evolution drastically increases (order
of few seconds), as the binary approaches coalescence.

Few orbits before merger, tidal interactions between the two NSs become crucial, producing
tidal waves. In particular, the tidal feld of the companion can induce a quadrupole mass-
moment, accelerating the merger process. The ratio of the quadrupole moment to the external
tidal feld is directly proportional to the tidal deformability, which is given as

Λ =
2

3
k2

�
R

M

�5

; (6.4)

where r andm are the NS radius and mass respectively, and k2 is the second Love number2. The
tidal deformability thus links the NS EOS to the gravitational wave signal produced during this
phase. The tidal interaction also produces small shocks which result in small matter ejections
in the order of � 10−6 − 10−3M�.

Depending on the initial masses of two NSs and the given EOS, the merger can result in
the following possibilities (see also Figure 6.2):

2k2 ' 0:05− 0:15 for realistic NSs . See [229] for a detailed description on tidal Love numbers.
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Figure 6.2: Schematic diagram representing various stages of a BNS merger. Depending on the initial
NS masses and NS EOS, the post-merger remnant may promptly collapse to a BH, form a metastable
NS (hypermassive or supramassive, see text for defnitions) before collapsing to a BH surrounded by
an accretion disk, or an indefnitely stable NS. Figure adapted from [217].

• Prompt collapse to a black hole (BH) surrounded by a torus over a time-scale of few ms.
The torus eventually disappears after being accreted onto the black-hole over time-scale
in the order of 1− 100 s or more.

• Formation of a hypermassive NS (HMNS), which is a NS with mass above the maximum
mass for uniformly rotating confgurations, believed to be supported by diferential rota-
tion. It ultimately collapses to a black hole surrounded by the torus on a time-scale of
1− 100 ms.

• Formation of a long-lived NS, which could be supramassive (SMNS), which is a NS with
mass above the maximum mass for non-rotating confguration, believed to be supported
by uniform rotation, that eventually collapses to a black hole on a time-scale of seconds,
minutes or more. A more extreme outcome is an indefnitely stable NS.

6.1.2.3 Gravitational waves

Gravitational waves (GWs) are an emergent property of Einstein’s theory of general relativity,
and are considered to be perturbations in spacetime caused by accelerating objects. Predicted
by Einstein in 1916 [230], the strongest of these ripples are produced by the bulk motion of
massive sources, specifcally from the quadrupolar (or higher multipolar) component. Propa-
gating at the speed of light, their amplitude decays with the inverse of the distance from the
source.
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The quest to directly detect the GWs began in 1960s with Joe Weber’s pioneering experi-
ment using resonant bars. The frst direct detection of GWs from a merger of two black holes
was fnally seen on September 14, 2015 by the Advanced LIGO interferometers [231]. This was
followed by the recent frst detection of GWs from a merger of two neutron stars by Advanced
LIGO-Virgo interferometers, accompanied by the observation of electromagnetic (EM) counter-
parts across the entire spectrum on August 17, 2017, opening the new feld of multi-messenger
astrophysics with GW sources [232, 233].

In the following, we mention some of the relevant expressions related to GW radiation
from a BNS merger. For further details on the formulation, we refer to, for instance, [234].
Considering a binary system with point masses m1 and m2, such that we have the total mass
given asM = m1 +m2, and reduced mass as � = m1m2=(m1 +m2), in the center of mass frame,
for the bodies moving in circular orbits, the amplitudes of the ‘plus’ and ‘cross’ polarizations
of the GW propagating along the direction n̂ = (cos� sin �; sin� sin �; cos �) can be written as

h+(t) =
4

r
�R2!2 (1 + cos2 �)

2
cos(2!t) (6.5)

h�(t) =
4

r
�R2!2 cos � sin(2!t) ; (6.6)

where R is the relative distance between the two masses and ! is the orbital frequency, and
the quadrupole radiation is emitted at 2!. The emission of GWs carries energy away from
the system, leading to shrinking of the orbit, i.e., a decrease in the value of R. A decrease in
the value of R leads to an increase in the value of !, ultimately leading to an increasing in
power emission. We can therefore calculate the total power emitted by the binary system by
integrating over total solid angle, which has the following expression

P =
32

5
�2R4!6 : (6.7)

The rate of change of the GW frequency is given as

ḟGW =
96

5
�8/3M5/3

C f
11/3
GW ; (6.8)

whereMC = �3/5M2/3 is the so-called chirp mass, and fGW = 2! is the GW frequency, which
is written as

fGW =
1

�

�
5

256

1

�

�3/8

M−5/8
C ; (6.9)

where � is the time to coalescence given as � = tcoal − t. Thus, we can see that fGW steadily
increases as we approach the merger. Finally, in terms of the chirp mass and fGW, h+(t) and
h�(t) can be written as

h+(t) =
4

r
M5/3

C (�fGW)2/3 (1 + cos2 �)

2
cos(2�fGWt) (6.10)

h�(t) =
4

r
M5/3

C (�fGW)2/3 cos � sin(2�fGWt) : (6.11)
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For a BNS system of two equal masses m1 = m2 = 1:4M� assumed to be located at a
distance of 100 Mpc, a rough estimation of the order of magnitude for the amplitude of the
GW signal could be

h ' 2m
5/3
1 (2�fGW)2/3

r
� 10−22

�
M

2:8M�

�5/3�
0:01 s

P

�2/3�
100 Mpc

r

�
; (6.12)

GW170817

The gravitational signal, named GW170817, detected by the LIGO-Virgo interferometers, had a
duration of approximately 100 s (calculated starting from � 23 Hz), and had the characteristic
intensity and frequency consistent with the inspiral and merger of two neutron stars. The signal
was identifed by matched-fltering the data against the post-Newtonian gravitational waveform
models, and had a combined signal-to-noise ratio of �32.4. The post-merger signal was difcult
to observe with current detector sensitivities limited by the photon shot noise. The signal lied
in one of the blind-spots of Virgo, and but the data from Virgo, combined with the LIGO
data, allowed a precise sky position localization of the source to an area of � 16 deg2 with 90%
credibility [235].

From the signal, the extracted chirp mass had the value MC = 1:186+0.001
−0.001M�, and using

diferent waveform models, the total mass of the system has been constrained between 2:73

and 2:77 M� within 90% credible intervals. Furthermore, the component masses have been
constrained as m1 2 (1:36; 1:60)M� and m2 2 (1; 1:36)M�, having a broad range due to
correlations between their uncertainties [235].

The GW signal also carries information about the neutron star EOS. More specifcally, tidal
deformation or the tidal deformability parameter Λ (see Section 6.1.2.2 for defnition), which is
an EOS-sensitive quantity, has an efect on the structure of the waveform. With an increase in
fGW, the tidal efects increasingly afect the phase, becoming signifcant above fGW ' 600 Hz.
For GW170817, the tidal deformability parameters Λ1 and Λ2 (relating to masses m1 and m2

respectively) were estimated from the detected GW signal using the post-Newtonian models as
reported in [235]. The predictions of the tidal deformability given by a set of representative
EOS (that support NSs of mass 2:01M�) are compared with Λ1 and Λ2 estimated from the
GW signal, are shown, for instance, in Figure 1 of [6]. These results deem EOS such as APR4
(predicting smaller Λ, and therefore, a more compact NS) as favourable over EOS such as H4
or MS1, which predict larger values of Λ (and therefore, a less compact NS) that lie outside
the 90% credible region. Thus, our choice of APR4 EOS for the BNS simulations (see Section
6.2.1) is consistent with these results. Using the LIGO and Virgo data, [6] also reports the
measurements of the two neutron star radii as R1 = 10:8+2.0

−1.7 km for the star with mass m1 and
R2 = 10:7+2.1

−1.5 km for the star with mass m2.

6.1.2.4 Short gamma-ray bursts

Gamma-ray bursts (GRBs) are bright, rapid fashes of radiation that peak in the gamma-ray
band, with the rate of occurrence averaged to one per day at cosmological distances. Having
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randomly distributed sky positions, these events can last for a duration of a fraction of a second
to even hundred or thousands of seconds.

They are one of the brightest known phenomenon, with luminosities that could be as high as
� 1054 erg/s, and are generally characterized by a collimated relativistic jet or an outfow drilling
through the interstellar medium, assumed to be powered by a central engine. This prompt phase
is often followed by afterglow signals, covering a broad range of the electromagnetic spectrum
(X-ray to radio waves), which could last from seconds to several months.

There exists a bimodal distribution when it comes to observing GRBs. Thus, GRBs can
be classifed as short-hard and long-soft bursts, based on their duration and spectral hardness.
The bimodal peaks are located at T90 � 0:2 s and T90 � 20 s (divided by a boundary around
T90 � 2 s) [236], where T90 is the time interval in which the cumulative counts are 90% of the
total background-excluded counts, taken from 5% till 95% of the total counts.

Long GRBs (with T90 > 2 s) are generally associated with supernovae observed only in
star-forming galaxies, indicating the core-collapse of massive stars to be the progenitors of
these events (supported by many observations). On the other hand, according to the leading
explanation, short GRBs (SGRBs) (having T90 < 2 s) are produced by the coalescence of
compact binary systems composed of two neutron stars or a neutron star and a black hole
(BH).

SGRB events have also been observed in regions with low or negligible star formation (such as
large elliptical galaxies), disfavouring the connection with core-collapse supernovae. The merger
scenario as a progenitor, has further been supported by the evidence of a possible kilonova
ejection (an expected consequence of a BNS/NS-BH merger; see Section 6.1.2.5 for further
details) linked to the observed short GRB 130603B as reported in [237, 238]. A gravitational
wave detection from a BNS merger along with a coincident SGRB observation would indeed
validate this progenitor model. The GW170817 event has proved to be a crucial episode in this
case, as along with the GW signal, an SGRB signal (GRB 170817A) emerged about 1:7 s after
merger with a mildly relativistic outfow, and was also accompanied by radioactively-powered
kilonova event [4]. There is still an ongoing debate on whether GRB 170817A was a canonical
SGRB, so we discuss a couple of possible scenarios later in this Section.

SGRB central engines

Compact binary systems (NS-NS or NS-BH) merge in dynamical timescales in the order of
� ms, generally in baryon-poor environments, thus proving to be an ideal candidate for a
central engine powering the relativistic SGRB jet. However, the nature of the central engine
and the jet-launching mechanism remain partially unknown. In the following, we discuss two
diferent SGRB central engine scenarios: (i) the standard BH-accretion disk scenario, and (ii)
the magnetar scenario (see [239] for a review on SGRB central engines).

(i) Black hole - accretion disk scenario

This is the standard SGRB scenario in which the binary merger results in an eventual collapse
of the metastable NS remnant, forming a BH surrounded by a massive accretion disk, and the
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accretion process onto the BH is thought to power the jet. In particular, the accretion disks
with masses & 0:1 M� and large accretion rates (Ṁ � 0:1− 1 M�=s) are considered favourable
candidates. Two main physical mechanisms that could act as possible energy sources to launch
the relativistic outfow are the (i) neutrino-driven mechanism and the (ii) magnetically-driven
mechanism.

In the former case, the accretion process produces highly energetic neutrinos and anti-
neutrinos copiously, especially in the inner regions of the disk. They partially annihilate above
the disk, turning into e� pairs, � + �̄ ! e− + e+, and thus, deposit thermal energy at the
poles of the BH. This cumulative annihilation energy is found to be in the order of � 1049 erg
(as shown by recent simulations [240]), which might be enough to power only relatively low
luminosity jets.

To fulfll the required energy budget, magnetic felds can play a crucial role. Amongst other
models, the Blandford-Znajek mechanism [241] seems most promising. In this mechanism, a
strong magnetic feld threads the accretion disk of the spinning BH, generating a Poynting-fux
by tapping the rotational energy of the BH, extracted via magnetic torque, which can power a
collimated relativistic outfow.

Due to the complex nature of magnetic feld evolution, general relativistic magnetohydro-
dynamic (GRMHD) simulations are necessary to explore the potential of this mechanism to
form jets in BNS as well as NS-BH mergers. Many simulations have been able to show the
formation of a structured poloidal magnetic feld along the BH spin axis (see [34, 242, 243])
but only [37, 43, 44] have reported a successful formation of an incipient jet for a BNS merger
scenario. However, one must note that for the BNS merger case, the authors have imposed the
initial felds in excess of � 1016 G, but nevertheless, it is a very promising result in support of
the magnetically-driven jet model.

(ii) Magnetar scenario

As discussed earlier in Section 6.1.2.2, the post-merger remnant can be a long-lived NS (stable or
metastable). We now consider a SGRB scenario based on this case, the so-called the magnetar
scenario, which is a popular alternative to the standard BH-disk scenario. Here, the incipient
jet is expected to be launched by a strongly magnetized NS surrounded by an accretion disk.
Specifcally, the large rotational energy of the magnetar, through an efcient channeling of
magnetic felds, can possibly generate a collimated Poynting-fux dominated outfow.

This model is of a particular interest as it can explain the plateau-shaped X-ray afterglows
or X-ray plateaus that accompany a signifcant fraction of all the observed SGRB events (as
recently reported by the Swift satellite [244]). These X-ray plateaus, lasting for timescales
& 100− 1000 s, can supposedly be produced by the electromagnetic spin-down radiation of the
magnetar, whereas in the BH-disk scenario, the accretion timescales are much shorter (. 1 s)
and thus such sustained soft X-ray emission can hardly be explained.

One major drawback of this scenario is the presence of a baryon-polluted environment
surrounding the merger site. The dynamical ejecta emitted during merger as well as the baryon-
loaded winds produced by the diferentially rotating magnetar are expected to be of higher
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density as compared to the BH-disk scenario, and thus can hinder a successful jet development.

GRB 170817A

Here, we briefy discuss the case of the gamma-ray signal GRB 170817A associated with the
BNS merger event GW170817.

As mentioned earlier, a gamma-ray burst was observed about � 1:7 s after the BNS merger
of GW170817. After constraining the initial sky position of the source within 28 deg2, an
electromagnetic follow-up campaign identifed a EM counterpart in galaxy NGC 4993, consistent
with the distance inferred from the GW data (� 40 Mpc). The duration and spectrum of GRB
170817A are (marginally) in agreement with those of SGRBs, which could lead to a possible
interpretation which establishes the connection between BNS mergers and SGRBs. However,
there were some aspects of GRB 170817A that questioned whether this event resulted in a
‘canonical’ SGRB.

For the approximately known distance and redshift, the observed event resulted in a much
lower energy (Eiso ' 3 � 1046 erg) and luminosity (Liso ' 2 � 1047 erg/s) than expected in a
canonical SGRB [232]. In addition, the X-ray and radio afterglows were observed respectively
about 9 and 16 days after merger and with an increasing luminosity, hinting that the ultra-
relativistic fow may not be pointing towards us. Further modelling of the event suggested that
the observed signal should be the outcome of a mildly relativistic outfow along the line of sight.
This led to two possible interpretations:

• GRB 170817A was a canonical SGRB pointing away from us, i.e., observed of-axis by
15–30�. The low-energy gamma-ray signal detected was not produced by the jet core
but the interaction with the surrounding baryon-polluted environment formed a mildly-
relativistic, wide-angled cocoon. The observed gamma-rays were produced by such a
cocoon moving along the line of sight, rather than by the much more energetic core of the
jet (see, e.g., [245]).

• GRB 170817A resulted from a choked jet and not from a canonical SGRB. The incipi-
ent jet from the merger was not powerful enough to pierce through the baryon-polluted
environment, resulting in a jet-less, wide-angled and mildly relativistic outfow.

Recently, late radio observations provided the smoking-gun evidence for the frst hypothesis
[246], which is now strongly favoured.

6.1.2.5 Kilonovae

Material comprising the dynamical ejecta produced during the merger as well as the post-
merger baryon-loaded winds, is very hot (T > 109 K) and neutron-rich (neutron density, nn >
1022 cm−3), providing ideal conditions for rapid neutron capture (r -process) nucleosynthesis.
This can in turn produce a copious amount of heavy elements to atomic mass numbers well
above A=140. The radioactive decay of the newly-formed unstable heavy nuclei can power
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an EM transient called as a ‘kilonova’ (less commonly known as ‘macronova’) emerging on
timescales of days to weeks.

In order to quantify the key-observables of a kilonova, i.e., its peak time-scale, efective
temperature and luminosity, we require the knowledge of three key ingredients: (i) the mass
and velocity of the ejecta, (ii) the opacity � of neutron-rich matter, (iii) the diferent sources
responsible for heating the ejecta (giving rise to diferent ‘favors’ of kilonovae; see, e.g., [26] for
a review on kilonovae).

Figure 6.3 shows the diferent components of the ejecta produced during a BNS merger.
In the equatorial plane, tidally-driven dynamical ejecta are highly-neutron rich (Ye . 0:1) and

Figure 6.3: Schematic representation of the diferent ejecta components produced after a BNS merger.
The central engine here is the BH-accretion disk, powering a relativistic jet (in purple) along the BH
spin axis. The red component denotes the dynamical ejecta, while the blue component shows the
hydrodynamic and wind ejecta. Ejecta matter heated by the jet (cocoon) is shown in yellow. The
diferent components are not represented in scale. Figure taken from [217].
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can go very far in producing heavier and heavier elements, including in particular, the group
of lanthanides. The resulting material has high opacity (� 10 − 30 cm2/g) and results in a
‘red’ kilonova emission which peaks at NIR wavelengths and on a timescale of several days. In
the polar directions, the mass ejected dynamically by shock heating is relatively neutron-poor
(Ye & 0:3), preventing lanthanide production and leading to a lower opacity (� 1 cm2/g). In
this case, a ‘blue’ kilonova emission emerges, peaking at optical wavelengths and on a timescale
of about one day. Moreover, a UV transient may be seen due to the decay of free neutrons
present in the outer layers of the polar ejecta.

A possibly dominant contribution to the ejecta comes then from the more isotropic post-
merger winds, originating from the metastable massive NS (MNS) remnant prior to collapse, and
by outfows from the accretion disk after BH formation. While the latter is likely a candidate
contributing to a red kilonova [21], the former can act as a possible source of the blue kilonova
[20]. For a longer-lived NS remnant, neutrinos emitted by the latter can increase the electron
fraction of the ejecta, disfavouring lanthanide production and resulting in a bluer kilonova.

Figure 2 of [3] shows the spectral evolution of the UV/optical/IR kilonova transient from
the source of the GW170817 event (ofcially named AT 2017gfo). It includes a blue component
that peaks about one day after the merger between UV and blue optical wavelengths, with
a maximum at 600 nm [3]. This component is characterized by a total luminosity of 3:2 �
1041 erg/s, ejecta mass of about � 10−2M�, expansion velocity of about 0:2 c, and opacity of
about 0:5 cm2/g. Therefore, this is a lanthanide-poor component which matches the properties
of the shock-driven ejecta or early post-merger winds. After a few days, a second components
emerges. The transient peaks in NIR, hinting towards a red-kilonova emission, with ejecta
having mass of about � 5 � 10−2M� and expansion velocity of 0:1 c. The opacity of the
transient increases with time to about 10 cm2/g, giving a lanthanide-rich component that can
be explained as associated with post-merger accretion disk winds.

6.2 First 100 ms of a long-lived magnetized neutron star
formed in a BNS merger

6.2.1 Initial data and setup

In JVK1, the physical and numerical setup of the simulation is analogous to the fducial APR4
equal-mass model discussed in [35]. To compute the initial confgurations of the NSs, we use a
publicly available code LORENE (which stands for Langage Objet pour la RElativité NumériquE ).
LORENE consists of a set of C++ classes to solve various problems in the feld of numerical
relativity. It provides a set of tools to solve partial diferential equations by means of multi-
domain spectral methods (briefy discussed in [247]). We use LORENE to generate the initial
data for an equal mass (i.e. mass ratio q = 1) BNS system with gravitational mass of each
NS set as 1:35M�. The initial binary system is irrotational and on a quasicircular orbit, with
an initial coordinate separation of 45 km corresponding to a proper separation of � 59 km.
The EOS employed for constructing the initial data is the piecewise-polytropic approximation
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Table 6.1: Initial data parameters: mass ratio (q = M1
g =M

2
g ), total baryonic mass of the system

(M tot
b ), baryonic and gravitational masses of each star at infnite separation (Mb andMg), compactness

(Mg=Rc, dimensionless), initial orbital frequency and proper separation (f0 and d), initial magnetic
energy (Emag), initial maximum value of magnetic feld strength (Bmax), and Ab, the scaling parameter
used in Equation (3.33) in order to fx Bmax.

Model B1e16

q 1

M tot
b [M�] 2:98

Mb [M�] 1:49 – 1:49

Mg [M�] 1:35 – 1:35

Mg=Rc 0:176 – 0:176

f0 [Hz] 283

d [km] 59

Emag [1048erg] 1:592

Bmax [1016G] 1:0

Ab 2587

of the corresponding nuclear physics (tabulated) APR4 EOS, taken from [110]. To maintain
causality, this EOS is approximated with two additional pieces at high (core) densities (see
[110] for details). During the evolution, a hybrid EOS (see Section 2.2.6.3) is employed, adding
a thermal component via an ideal-fuid EOS with adiabatic index of Γ = 1:8.

The magnetic feld is then added manually to the initial BNS model as LORENE cannot
compute equilibrium confgurations for magnetized binary systems. Since the magnetic feld
structure in actual NSs is not well-known, we use the an analytical prescription for the vector
potential Aφ given by Equation (3.33), using pcut = 0:04 max(p) and ns = 2, which yields an
initial dipolar magnetic feld confned to the interior of the stars. The value of Ab is set such that
the initial maximum magnetic feld strength is Bmax ' 1016 G, corresponding to a very large
initial magnetic energy of Emag ' 1:6 � 1048 erg. The latter is almost an order of magnitude
higher than fducial model of [35]. The reason for this choice is that our current resolution is not
sufcient to fully capture the main magnetic feld amplifcation mechanisms that act on small
scales (a common limitiation afecting all current numerical relativity simulations, e.g. [248]),
which are expected to bring the feld up to post-merger magnetic energies of order 1051 ergs.
Starting with a lower (and more realistic) initial magnetic energy would lead to post-merger
magnetic feld orders of magnitude weaker than expected. Since we want to explore more
realistic post-merger magnetization levels, we compensate by starting with a higher initial feld.
The most relevant initial parameters of our model are summarized in Table 6.1.

For the evolution, the GRMHD equations are evolved by WhiskyMHD, which solves them
using high-resolution shock-capturing schemes, i.e., HLLE approximate Riemann solver for fux
computations along with piecewise-parabolic method (PPM) for reconstruction (see Section
2.3.5 for details), and employing ‘3eqs’ C2P scheme (see Section 3.1.3.2), and 4th order Runge-
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Kutta for time-stepping. This code is coupled with Einstein Toolkit (ET), in particular
the MacLachlan code, which solves the Einstein equations using the BSSNOK formalism (see
Section 2.1.2). WhiskyMHD evolves the vector potential and then computes the magnetic feld
from it, thus preserving its divergence-free character. Moreover, to avoid the spurious magnetic
feld efects at refnement boundaries, we use the modifed Lorenz gauge (see Section 2.2.5.2).
We also impose an artifcial foor density of �atm ' 6:3� 106 g/cm3 (as in [35]).

For the grid-setup, ‘moving box’ mesh refnement is implemented via the Carpet driver,
employing 6 refnement levels. During inspiral, the two fnest levels follow the NSs, while larger
fxed grids replace moving grids shortly before merger. At merger, regridding is switched to
fxed-mesh refnement. The grid spacing in the fnest refnement is always dx = dy = dz �
220 m. Lastly, in order to save computational resources, refection symmetry across the z = 0

plane is considered.

6.2.2 Merger dynamics

We evolve the system up to � 95ms after merger. In Figure 6.4, we show the meridional and
equatorial snapshots of the rest-mass density from the merger time to the end of the simulation.
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Figure 6.4: Snapshots of rest-mass density evolution in the meridional (top panels) and equatorial
(bottom panels) planes. The yellow contours indicate unbound matter computed via the geodesic
criterioin (see text for details). Here, t = 0 corresponds to the merger time. Figure taken from JVK1.

The merger produces a diferentially rotating, long-lived supramassive NS remnant, which
reaches a quasistationary and axisymmetric confguration in frst � 50ms. For the next �
45ms of evolution, we fnd the density distribution to be fairly constant up to very large radii
(� 400 km), in particular along the remnant spin axis as shown in Figure 6.5. The matter
distribution is also roughly isotropic for radial distances between 50 and 400 km, whereas below
r � 50 km, we fnd the remnant structure to be surrounded by a torus-shaped outer envelope
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(Section 6.2.5 and Figure 6.16a). When comparing with the lower magnetization cases of
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Figure 6.5: Top panel shows the rest-mass density along the orbital axis averaged over distance ranges
30−50 km, 150−200 km, and 400−500 km (continuous, dashed, and dot-dashed lines). The horizontal
line represents the atmosphere density foor. Bottom panel depicts rest-mass density along the orbital
axis averaged in the distance range 30 − 50 km for the present simulation with and without collapse
(‘B1e16 BH’ and ‘B1e16’) and for the lower and zero magnetic feld models in [35] (‘B3e15’ and ‘B0’).
Figure taken from JVK1.

[35], we fnd the remnant to be surrounded by a much denser environment, since for example,
the rest-mass density close to the remnant and along its spin-axis is roughly � 4� 1010 g/cm3,
about one order of magnitude higher than the non-magnetized case (Figure 6.5b). The remnant
environment is thus polluted due to the post-merger baryon-loaded winds driven primarily by
magnetic pressure at this high magnetization level.

This further results in a magnetized outfow spread around larger scales, consisting of a
faster polar component (within �40� from the remnant spin axis) moving at a radial velocity
up to 0.1 c, accompanied by a slower isotropic component with radial velocity below 0.05 c, as
depicted in Figure 6.6. We estimate a cumulative mass outfow across a spherical surface of
radius r = 300 km to be around �0:1M�, which excludes the contribution from the tidal and
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Figure 6.6: Top panel illustrates large scale meridional view of the rest-mass density towards the end
of the simulation. Bottom panel shows the radial velocity of the outfowing material (positive values
indicate outwards motion). Figure taken from JVK1.

shock-driven dynamical ejecta of '0:015M�.
At larger distances, a signifcant portion of this material becomes unbound, contributing

to a very massive ejecta component. The contour lines in Figure 6.4 represent the fraction of
unbound matter, computed via the geodesic criterion3. Such magnetized post-merger outfows
can possibly contribute to the early (or “blue”) part of the radioactively-powered kilonova signal
observed in association with GW170817 (see Section 6.3 for further discussion).

3The geodesic criterion is given as ut � −1, which allows to check if the fuid element can potentially escape
to infnity. Here, ut is the covariant time component of the fuid element 4-velocity. In Newtonian limit, we have
ut � −1 − � − v2=2, where � is the gravitational potential. At large separation from the gravitational source,
one can neglect the gravitational potential, � ' 0, giving ut � −1 − v2=2 � −1. Thus, the criterion imposes
fuid element to have a fnite velocity at infnity.
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As an experiment to see how the collapse to a BH would afect the surrounding environ-
ment, we performed another simulation starting from 72ms after merger, manually inducing
the collapse by modifying the EOS parameters at supranuclear densities4. The collapse forms
a BH near the center of the domain, and we evolved this system for another � 5ms (see Fig-
ure 6.7). The fnal mass and dimensionless spin of the formed BH are MBH ' 2:5M� and
� � Jc=GM2 ' 0:5. The BH begins to accrete the surrounding matter, and starts forming
an accretion disk of Mdisk ' 0:1M�, and we notice that the material along the spin axis is
accreted too, creating a low density funnel. For instance, in Figure 6.7, the rest-mass density
at r = 30 km from the center is about one order of magnitude smaller than the non-collapsing
case.

When plotting the relative diference in rest-mass density between the collapsing and non-
collapsing cases, as shown in Figure 6.8, we fnd that only the matter within �200 km is afected
due to BH formation, while the rest of the regions show negligible to no impact.
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Figure 6.7: Meridional view of rest-mass density for the non collapsing (top) and collapsing (bottom)
cases. Red region in the bottom panel depicts the black hole horizon. Figure taken from JVK1.

4To induce the collapse, we modifed APR4 parameters to H4 [35] ones at � > 2 � 1014 g/cm3 to obtain a
less stif EOS in the NS core. This only related a portion of the NS core which ultimately gets swallowed in the
BH.
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6.2.3 Magnetic felds

Here, we focus our attention on the magnetic feld evolution for the system in hand. In Figure
6.9, we see that magnetic felds go through diferent stages of amplication, reaching a saturation
around 50ms after merger. Prior to merger, we observe about an order of magnitude increase
in magnetic energy (from � 1048 erg to � 1049 erg), which could likely be caused due to the
time-varying tidal deformations within during the late inspiral, converting part of the associated
kinetic energy into magnetic energy. However, any unphysical causes due to, for e.g., initial
data or simulation setup cannot be completely ruled out [35].

The Kelvin-Helmholtz instability (KHI) comes into play when the two NSs come into con-
tact. In this scenario, a shear interface (or a vortex sheet) is formed where the tangential
components of the velocity exhibit a discontinuity, leading to small-scale perturbations and
developing KHI. This causes curling of the interface, forming a series of vortices, and eventually
afecting the structure of the magnetic feld lines in such localized regions. Thus, an increase
in the magnetic feld strength and magnetic energy is observed right after merger. However,
the numerical resolution employed here (minimum grid spacing of dx � 220m) is insufcient to
fully capture the small-scale amplifcation due to KHI; in reality, we expect the magnetic en-
ergy to grow much faster. See [249, 250] for further discussions on the role of KHI for magnetic
feld amplifcation in BNS mergers. Later on, KHI is substituted by magnetic winding and the
magnetorotational instability (MRI) as the dominant source of amplifcation [251–253]. Once
the magnetic feld reaches the fnal saturation level, magnetic energy is Emag ' 2 � 1051 erg
and the magnetic feld strength has a maximum of Bmax ' 1017 G. To understand the possible
contribution of MRI to the observed amplifcation, we follow the evolution of its fastest growing
mode wavelength, approximately given as

�MRI �
2�

Ω

Bp
4��

; (6.13)
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Figure 6.9: Evolution of magnetic energy (top) and maximum magnetic feld strength (bottom) for the
present simulation with and without collapse (‘B1e16 BH’ and ‘B1e16’) and for the lower magnetic feld
model in [35] (‘B3e15’). Vertical line denotes the time of merger. In the top panel, we also rescaled
‘B1e16’ to match the initial value of model ‘B3e15’ for comparison. Figure taken from JVK1.

where B is the magnetic feld strength and Ω is the angular velocity. This wavelength is typically
much smaller than the system we consider, and in order to resolve it we require either very
high initial magnetic felds or better spatial resolution (so that �MRI is covered by at least 10
grid points). Figure 6.10 shows the meridional snapshots of �MRI over the grid-spacing 10 and
30ms after merger. At 30ms, we notice that �MRI is covered by 10− 1000 grid points in most
regions, except for the inner region enclosed in a 10 km radius. Since we require diferential
rotation with a negative angular velocity gradient in order to activate MRI, it does not afect
the inner regions (r < 10 km). Overall, this result supports that MRI plays an important role
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Figure 6.10: Meridional view of �MRI (see text) over the grid-spacing, 10 and 30ms after merger. Figure
taken from JVK1.

in amplifying the magnetic felds for t & 30ms (where t = 0 is the merger time).
When comparing the growth in magnetic energy (Figure 6.9) with the results of [35] with a

lower initial magnetization, we notice the initial evolution to be quite similar. However, about
30ms after merger, the present simulation starts moving towards saturation whereas the results
from [35] show no sign of saturation. Even though the latter simulation is not long enough to
determine when saturation would begin, it is likely that the onset of saturation depends mostly
on magnetic energy. We do not expect Emag to grow much larger than � 1051 erg, also in
agreement with, e.g., [249, 254], thus providing an upper limit for magnetization that realistic
BNS mergers can produce (for the given mass and EOS).

In the case where a BH is formed, it rapidly accretes a large fraction of magnetized matter,
thus removing the corresponding magnetic energy from the system. This drop in energy (nearly
�80%) can be seen for the collapsing case in the top panel of Figure 6.9. However, after collapse,
further magnetic feld amplifcation is still possible within the accretion disk surrounding the
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Figure 6.11: Magnetic feld structure 20, 60, and 93ms after merger. The sphere (in cyan) of radius
10 km is placed at the remnant center of mass, as scale reference. Field line colors indicate the magnetic
feld strength. Figure taken from JVK1.

BH.
Next, we study the structure of magnetic feld lines close to the remnant as a shown in Figure

6.11. To make the plot, we employ the same technique of [34], showing only the feld lines which
are (on average) strongest along cones of constant angle to the rotation axis. Toroidal felds in
the equatorial region get strongly amplifed between 20 to 60ms after merger, whereas along the
remnant spin axis, a narrow ordered helical structure emerges. Here, the poloidal component
seems to dominate, and the feld strength grows from � 1014 to more than 1015 G. Towards
the end of the simulation, the helical features are replaced by a more disordered feld line
distribution along the axis, and the strongest feld lines are predominantly toroidal up to 20 km
from the remnant center.

On larger scales extending to a few hundred kilometers, the feld distribution shows a mixed
toroidal-poloidal character, with feld lines of strength&1015 Gwinding around the axis, roughly
along a wide cone, as shown in Figure 6.12. This is indicative that at later times, a global
magnetic feld structure might be emerging. Since we started with the initial magnetic feld
confned completely inside the NSs, this emergence of a large scale feld is entirely due to the
dynamical and geometrical properties of the remnant. On largest scales, matter outfows shape
the overall magnetic feld distribution (Figure 6.13), having comparable toroidal and poloidal
feld components. While the toroidal component remains slightly stronger in the largest part
of the volume, along the spin axis, the poloidal feld strength is still almost as strong as 1014 G
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Figure 6.12: Same as Figure 6.11 at larger spatial scale. The vertical bar corresponds to 100 km. Figure
taken from JVK1.

up to radii above 1000 km.

6.2.4 Short gamma-ray bursts

As stated earlier, one of the main goals of this work is to investigate whether a long-lived NS
remnant could launch a jet compatible with a SGRB (and in particular GRB170817A). Till
the end of our simulation, we do not see any direct sign of jet formation. We rather observe a
non-collimated, non-relativistic, and dense magnetized outfow along the polar direction, with
magnetic-to-fuid pressure ratio � � b2=2p between 0:1 and 10 in most regions as depicted in
Figure 6.14. Here, b2 � bµbµ, and b is the magnetic feld as measured by the comoving observer
(see Section 2.2.4 for details). To launch an incipient jet, the required outfow is expected to
be much faster, more magnetically dominated, and with lower density (e.g. [43]). Moreover,
towards the end of the simulation, we fnd the baryon-loaded wind to be too heavy to be
accelerated up to Lorentz factors Γ > 10, as necessary for SGRB jets, and rather present as a
potential obstacle for any jet launched by the remnant at later times, requiring additional energy
to drill through it. In particular, the density remains too high (& 108 g/cm3) for distances up
to �400 km (Figure 6.5), implying the jet formation timescale to be �100ms (if any).

In order to assess the overall energy budget of the system, we compute the rotational energy
(main energy reservoir in this particular scenario) according to [255, 256]

Erot =
1

2

Z
d3x�

p

 ΩT 0

φ ; (6.14)
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Figure 6.13: Snapshots of poloidal magnetic feld strength (top) and the toroidal-to-poloidal feld
strength ratio (bottom) on large scales. For visualization purposes, we set the latter to zero where the
rest-mass density is close to the artifcial foor value (< 1:5� �atm). Figure taken from JVK1.

where �, 
, Ω, Tµν are lapse, 3-metric determinant, angular velocity, and stress-energy tensor.
In Figure 6.15, we plot evolution of Erot, which shows a linear decrease by ∆Erot ' 6�1052 erg '
0:03M� over the last 50ms. This decrease is likely governed by the consumption of diferential
rotation over viscous timescales. Note that such timescales can be resolution dependent (see
Section 6.2.5 for details). Overall, we fnd that > 99% of Erot is always contained within the
region defned by defned by z < 10 km and cylindrical radius rcyl < 20 km. Most of the above
∆Erot is consumed for rearranging and heating up the remnant, and only a small fraction
is transferred to the surrounding matter. And at the end of our simulation, the remaining
rotational energy (' 2� 1053 erg) would still be sufcient to power a SGRB jet. However, the
question remains whether any mechanism would get activated at later times to convert this
energy efciently into jet energy.
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Figure 6.14: Magnetic-to-fuid pressure ratio � on the meridional plane. Figure taken from JVK1.
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Figure 6.15: Rotational energy evolution (dots) along with a linear ft (continuous line). Merger time
is t = 0. Figure taken from JVK1.

Moreover, assessing the system conditions, we neither have an accretion disk around the
central remnant (Section 6.2.5) nor a strongly magnetized, low density funnel along the remnant
axis. Therefore, even though we cannot conclusively rule out that the NS remnant could
launch a jet at later times energetically compatible with GRB170817A, our current fndings
point in disfavour of such a scenario. Note that our simulation neglects neutrino-radiation
and its associated efects. Including such efects could possibly clean up the baryon polluted
environment along the remnant spin axis, creating the right conditions to launch an incipient
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jet [38]. We leave this study for future work.
We now turn to the case in which the remnant instead collapses to a BH at 72ms after

merger. Since enough matter remains outside the BH, which could form an accretion disk of
� 0:1M� (see also Section 6.2.5), an incipient jet could possibly by launched by the resulting
BH-disk system via the Blandford-Znajek mechanism [241], with power [257]

LBZ � 1052
� �

0:5

�2� MBH

2:5M�

�2� BBH

1016 G

�2

erg=s :

In the above expression, we use the reference values from our simulation for the dimensionless
BH spin �, mass MBH, and magnetic feld strength at the poles BBH.

The formed jet would still have to drill through a massive ejecta layer (�0:1 M�), especially
the regions from and above z = 200 km along the spin axis. This would likely result in a jet
head with nonrelativistic velocities (e.g. [258]), assuming a jet half opening angle �j & 5�. Using
Equations 3 and 4a of [258], we roughly estimate the jet breakout time as 0.01, 0.03, and 0.14 s
for a constant �j of 5�, 10�, and 20�, respectively, while for �j & 30�, the jet head would not be
fast enough to ever reach the ejecta front. Therefore, one can expect a successful jet despite
the heavy ejecta for a collimation of �j . 20� and an engine duration ∆tengine & 0:15 s.

Factors related to remnant life-time, initial magnetization level, NS masses and EOS, can
possibly alter the above results. We leave the exploration of systems with such diferent prop-
erties for future work.

6.2.5 Remnant structure and rotation profle

Next, we turn our attention to the remnant properties at smaller scales. In Figure 6.16, we show
the density distribution of the remnant 10 and 72ms after merger. At 10ms after merger, the
remnant’s inner core is surrounded by a torus-shaped outer envelope, a typical structure for BNS
merger remnants (e.g. Figure 16 in [173]). In time, this envelope undergoes a general expansion,
occupying an increasing volume while attaining a more spherical confguration. Towards the
core, the change in radius becomes gradually smaller. This can be seen in Figure 6.16. However,
note that our simulations do not take into account neutrino cooling efects, which might aid in
maintaing a less dense environment along the remnant spin axis (see, for instance, [38]).

Following the approach of [174], we compute baryonic mass and proper volume enclosed
in the surfaces of constant mass density, obtaining a gauge independent mass-inside-volume
relation. We express proper volume by the radius of an Euclidian sphere of same volume.
Using this technique, at the end of the simulation, we fnd a plateau in the mass-inside-radius
relation which allows us to defne a fducial remnant baryon mass of 2:75M�.

In Figure 6.17, we plot the remnant’s rotational profle along the equator. In general, the
remnant is characterized by a slowly rotating central core (circumferential radius rc . 5 km)
surrounded by a rapidly rotating outer layer. Further out, the profle becomes nearly Keplerian
since the centrifugal force starts dominating over the pressure. Such diferential rotation curves
have already been reported in literature [35, 110, 173, 174, 259–261]. For the present simulation,
we fnd the maximum spin frequency to be around 1:7 kHz, and the maximum is located at
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Figure 6.16: Rest-mass density distribution on small scales at 10 and 72ms after merger. Plots are
averaged over 4ms around the given times in order to remove contributions from oscillations. Isodensity
contours shown in blue, red, and yellow (visible only in top panel) contain the fducial remnant baryon
mass, 93% of the total baryon mass (red), and 98% of the total baryon mass respectively. Figure taken
from JVK1.

rc � 12 km. For comparison, we computed the properties of uniformly rotating NS obeying
the same zero-temperature EOS as the initial data. In Figure 6.17, we show rotation rate and
radius for a model with the baryonic mass of the fducial remnant and its angular momentum
at the end of the simulation. We fnd the fnal rotation rate for uniform rotation to be quite
similar to the maximum rotation rate 80ms after merger. Moreover, comparing to the sequence
of constant baryonic mass shown in the same fgure, the central rotation rate is much lower
than the minimum allowed uniform rotation rate for the given mass. At the same time, the
remnant extends to larger radii than possible for a uniformly rotating star.

In time, the inner core gains angular momentum at the expense of the outer envelope
(top panel of Figure 6.17), moving towards uniform rotation (a fat rotation profle). The
diference between maximum and central rotation frequencies, ∆� = �max − �core, decreases
from a maximum of 849 Hz at t = 19 ms after merger down to 340 Hz at t = 91 ms.

One of the reasons behind this decrease could be numerical dissipation which acts as viscos-
ity. Other causes could be physical in nature, for instance, efective viscosity caused by strong
small scale magnetic felds or turbulent motion, as well as magnetic winding (see also [261–263]).
In the bottom panel of Figure 6.17, we evaluate the efect of diferent levels of magnetization
on the same system. We fnd mild infuence of magnetic feld on the initial rotation profle, and
the decrease in ∆� is comparable for the three cases, implying that non-magnetic efects are
the major contributor towards the removal of diferential rotation. However, due to insufcient
resolution, our simulation does not fully capture small-scale magnetic feld efects which could
have a non-negligible contribution for the corresponding efective viscosity. We refer to [250] for
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Figure 6.17: Top panel depicts the evolution of the rotation profle in the equatorial plane. Here,
rotation rates averaged in �-direction and over 2 ms in time versus proper circumferential radius, at
diferent times (values relative to merger time). For comparison, we show rotation rate and circum-
ferential radius of the uniformly rotating fducial model (see text), the uniformly rotating sequence
of constant baryon mass (blue line), and the mass shedding sequence with baryonic masses between
fducial remnant mass and total binary mass (red line). Bottom panel illustrates curves for models
starting with diferent initial maximum magnetic feld strengths at 20 and 40ms after merger. Lower
and zero magnetic feld cases are taken from [35]. Figure taken from JVK1.

a detailed discussion based on simulations with much higher resolutions. However, magnetic
efects do have a non-negligible impact on the outer envelope as for the present simulation,
we see up to � 20% decrease in rotation frequency from 20 to 40ms after merger. But note
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Figure 6.18: Specifc angular momentum with respect to the remnant spin axis, on meridional plane,
72ms after merger. The given values are in units of the specifc angular momentum of a test particle
on the innermost stable circular orbit around the BH formed in the collapsing case (jISCO). The black
contour corresponds to j = jISCO. Figure taken from JVK1.

that simulations with weaker and zero magnetic felds show almost no efects. Our simulation
suggests that above Emag � 1051 erg, magnetic felds start to afect the outer layers within a
timescale below 100 ms.

Along with diferential rotation, the rotational energy also shows a decrease, as mentioned
earlier. Following the discussion in Section 6.2.4, since the energy in the surrounding matter
increases only slightly, most of the rotational energy is converted into potential energy and heat,
which plays a role on expansion of the remnant as well.

For the collapse case instead, we focus mainly on determining the mass of the accretion disk
to be formed around the BH. To do so, we use the widely adopted criterion which suggests that
only the matter which fulflls j > jISCO before the collapse, contributes to the accretion torus,
where jISCO is the specifc angular momentum of a test particle on the innermost stable circular
orbit around the newly-formed BH. Following [264], we compute jISCOc=GM ' 2:9 for the BH
formed in our simulation, and fnd that only negligible mass fraction obeys j > jISCO within
a radius of '50 km, as shown in Figure 6.18. Based on the above criterion, almost all matter
within 50 km from the remnant center should be directly swallowed by the BH. However, only
. 97% of the corresponding baryon mass is actually swallowed. This can possibly due to the
fact that part of the surrounding matter has signifcant outgoing velocities, deviating from the
conditions for which the criterion is supposed to hold. About 3% discrepancy still allows a
massive (� 0:1M�) accretion torus and thus a potentially viable SGRB central engine.

6.2.6 Gravitational waves

In this Section, we discuss the remnant oscillations and the resulting GW signal. The GW
signal from a BNS merger can be divided into inspiral, merger, and post-merger phases. In
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addition to the inspiral and early post-merger phase, the present simulation allows us to study
the late time behavior.

In Figure 6.19, we plot the evolution of the GW strain, obtaining a typical result as expected
for a BNS system in the supramassive mass range. Since our adopted system is the same as of
the equal mass APR4 model reported in [35] except for the diference in the initial magnetic
feld strength, and since magnetic felds are expected to have neglible impact on GW emission
up to merger [106] (see also the discussions in [27]), we expect similar results up to merger as of
[35]. Soon after merger, the GW amplitude decays strongly. We fnd the total radiated energy
from 10 ms after merger onward to be only 4:6�10−3M�, which is �0:5% of the binding energy
of the fducial remnant. Also, the angular momentum is carried away by GW during this period
is less than 2% of the total. Thus, the GW emission has only minor impact on the evolution of
the remnant.

Comparing the evolution of GW frequency to the evolution of maximum rotation rate in
the equatorial plane in Figure 6.19, we confrm that the GW frequency is indeed twice the
latter for the early post-merger phase (up to around 30 ms after merger), as also reported
in [35, 173, 174]. For later times, we study the numerical accuracy of oscillations with very
small amplitudes, and observe a splitting of modes around 30 to 50 ms after merger. Using the
formalism presented in [259], in Figure 6.19, we also plot the spectrogram of the average m = 2

component of the density in the equatorial plane. Here, we observe a superposition of a mode
with frequency following twice the rotation rate, and a component remaining at slightly larger
frequency. Consequently, the GW strain exhibits a beating phenomenon visible in the upper
panel of Figure 6.19.

The reason for the split and the nature of the oscillations is currently not clear. We suspect
that it might either be related to the decaying amplitude of the perturbation or to the decrease
in diferential rotation. In the early post-merger phase, it could be that the non-axisymmetric
deformation has a nonlinear quasi-stationary nature. And with decreasing amplitude, the evo-
lution of the remnant deformation might be governed more by linear perturbation theory, or
could be linked to convective instabilities [265].

After 70 ms after merger, we notice a growing low-frequency oscillation in the GW signal,
which is likely a numerical artifact since at the same frequency, we observe a growing oscillation
of the coordinate system as well.

6.3 Magnetically driven baryon winds from BNS merger
remnants

In this Section, we move on to discuss the results presented in JVK3 based on one of the
BNS simulations performed in [147], which goes up to ' 255ms after merger. In particular,
we analyse the results of the simulation model ‘B5e15’ of [147], which starts with the initial
maximum magnetic feld strength of 5 � 1015 G. This simulation presents an interesting case
since such a system launches a magnetically-driven collimated outfow emanating from a long-
lived massive neutron star (MNS) remnant. Even though this outfow does not resemble a
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Figure 6.19: Top panels shows the GW strain l = m = 2 multipole coefcient (real part). The strain
after t = 30 ms is magnifed by a factor 40. In the bottom panel, the red curve shows the phase
velocity of the GW strain. The green curves show twice the central (dotted) and twice the maximum
rotation rates (dashed). The spectrogram (colorplot) represents the m = 2 component of the density
perturbation in the equatorial plane averaged in the whole remnant. We use the logarithmic scale,
spanning over 5 orders of magnitude, and the amplitude after t = 30 ms is scaled by a factor 1000. All
phase velocities are smooth averages over 1 ms. Times shown are with respect to merger time (and
using retarded time for the GW signal). Note the oscillation at the end of the simulation is likely an
artifact. Figure taken from JVK1.

SGRB jet (see [147] for details), the associated material given out by this system can likely
explain certain aspects of the kilonova AT2017gfo that accompanied the GW170817 event. In
particular, the physical origin of the ejected material responsible for the early (blue) component
of this kilonova is still under debate (see discussion in Chapter 1). Through this BNS merger
simulation, we demonstrate that the magnetically enhanced MNS winds appear as a promising
source of this component.

In the following, we frst briefy describe the adopted model along with the numerical setup,
which is slightly diferent from the simulation described in previous sections, and then focus on
the properties of the ejecta component.
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6.3.1 BNS model and numerical setup

The ‘B5e15’ model considers the same chirp mass for the binary as inferred for the GW170817
event [214] and a mass ratio of q ' 0:9. The simulation adopts the APR4 EOS to describe
the NS matter, which results in a long-lived NS remnant that survives without collapsing to a
BH for the entire simulation. As mentioned earlier, this simulations starts with initial dipolar
magnetic felds imposed within the two NSs with maximum feld strength of 5� 1015 G and the
corresponding total magnetic energy of Emag'4� 1047 erg.

For this simulation, the mumerical codes, methods, and setup are the same as described
in Section 6.2.1, with the following exceptions. First, the computational domain is extended
up to � 3400 km in each direction. The artifcial foor density is set to �atm' 6:3 � 104 g/cm3

(two orders of magnitude lower than the previous simulation described in Section 6.2.1). This
corresponds to a mass of '2� 10−3M� within a sphere of radius 2360 km, which is the largest
distance at which we monitor matter outfows.

In addition to this simulation, for comparison study, we performed the exact same simulation
going up to � 160ms after merger, but setting the magnetic feld to zero (non-magnetized ‘B0’
model)5.

6.3.2 MNS wind component of the ejecta

As previously mentioned, the merger product is a magnetized NS remnant which is characterized
by strong diferential rotation [147]. As seen in 6.2.3, here too, the magnetic felds get strongly
amplifed at diferent stages, frst due to KHI soon after merger, and later via MRI and magnetic
winding, eventually reaching a physical saturation around 50ms after merger, corresponding to
Emag � 1051 erg [147]. During this phase, the build-up of magnetic pressure drives a baryon-
loaded wind that pollutes the environment around the MNS. Since the overall magnetic feld
structure is still quite disordered, the mass outfow is nearly isotropic (Figure 6.6). At later
times, the growing helical structure emerges along the remnant spin axis, which starts enhancing
the outward acceleration, resulting in a faster component of outfowing material that begins to
come out after �100ms post merger [147] 6.

In Figure 6.20, we can see how the faster outfow interacts with the slower and more isotropic
surrounding material, and eventually forms wide angle ejecta component with a velocity profle
that is maximum along the axis and declines at higher polar angles. Further mass ejection is
signifcantly reduced near the end of the simulation, whereas the material that remained bound
starts to slowly fall back towards the MNS.

5Results of the non-magnetized ‘B0’ BNS simulation were also used, serving as initial data, for a diferent
work JVK6 which instead focussed on the long-term and large-scale evolution (performed with the special
relativistic code PLUTO) of SGRB jets piercing through the environment material surrounding the merger remnant.
Ref. JVK6 is the frst study of its kind where the initial conditions for the surrounding environment were obtained
by directly importing data from the outcome of an actual BNS merger simulation.

6This further acceleration along the spin axis is likely caused by the same mechanism as reported in [38,
201, 266–268] which instead impose by hand a strong large-scale dipolar feld on a nonmagnetized diferentially
rotating NS. While the latter setup almost always generates a collimated outfow, the same outcome is not
ubiquitous for a more realistic magnetic feld evolution through the BNS merger (see discussion in [27, 147]).
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Figure 6.20: Snapshots of radial wind velocities on meridional plane at 130, 180, and 230ms after
merger. The magenta contour lines indicate unbound matter (according to the geodesic criterion
−ut>1, see Section 6.2.2 for details). Figure taken from JVK3.

Figure 6.21 shows the space-time diagrams of material ejected during and after merger for
the ‘B5e15’ (top-panel) and ‘B0’ models, plotted by collecting the unbound matter at regular
intervals in 1D histograms binned by radial coordinate. To defne the unbound mass, we adopt
the conservative geodesic criterion (see Section 6.2.2). In general, the matter is ejected in a
series of waves at diferent times. Until early post-merger phase, the main contribution in
both simulations comes from the dynamical ejecta, which are not afected by the presence of
magnetic feld. This constitutes material ejected by tidal forces before merger, by shock waves
produced during merger and by quasi-radial remnant oscillations soon after merger. At later
times, we can see the substantial contribution of the magnetically driven post-merger winds for
the ‘B5e15’ case, which is absent for the ‘B0’ case.

Focussing only on the magnetized ‘B5e15’ case, in Figure 6.22, we plot the time evolution
of the mass fow rate across spherical surfaces of diferent radius, along with the corresponding
cumulative mass. In particular, we report the result for 1180 km and 2360 km distance and
for both the total mass and the unbound mass. Here too, a clear separation between the
early contribution of dynamical ejecta and the MNS wind contribution can be noticed. About
'0:01M� of dynamical ejecta with high velocities (ranging up to more than 0:2 c) is expelled
within less than 10ms after merger. However, only a fraction of this material is expected to
retain low opacity (e.g., [47]), which coupled with the fact that the mass is already smaller than
the expected range (i.e. ' 0:015 − 0:025M�), acts in disfavour of dynamical ejecta being the
dominant source of the blue kilonova.

The mass fow rate (total and unbound) representing the MNS wind grows in time up to
a maximum and then starts declining (Figure 6.22). The fnal decline is quite regular and
can be reproduced very well with an exponential decay. This allows us to extrapolate in time
and compute the total and unbound cumulative masses in the late-time limit (assuming that
no collapse to a BH occurs) for a given set of distances. The result is shown in Figure 6.23.
Here, we fnd the total (bound plus unbound) mass to decrease with distance while the unbound
mass increases. At very large distances, the two are expected to coincide since all the outfowing
matter far away from the MNS is expected to be unbound. At the distance of 2360 km, the total
and unbound masses provide the range of values (Mej,wind'0:010−0:028M�) within which the
fnal ejecta mass is contained. This considers only MNS wind and excludes the dynamical ejecta
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Figure 6.21: Time evolution of the radial distribution of ejecta for the magnetized ‘B5e15’ (top) and
non-magnetized ‘B0’ (bottom) models. Color scale corresponds to the increase of unbound mass inside
spherical surfaces per increase in radius.

contribution. The above mass would be sufcient to explain the blue kilonova in AT2017gfo.
Therefore, in terms of mass, magnetically driven MNS winds represent a valid and promising
source.

In case the MNS collapses to a BH, the mass ejection process via the MNS wind is stopped.
The collapse also infuences the material surrounding the BH within �200−300 km, while the
rest is almost unafected (see, for e.g., Section 6.2.2). Monitoring the cumulative mass outfow
across the spherical surface of radius 300 km, we fnd that 90% of the mass outfow (from 5% to
95%) occurs between 54 and 189ms after merger, while after 285ms further outfow accounts for
less than 1% of the total. Thus, a collapse occuring within about 50ms would almost entirely
suppress the MNS wind ejecta component, whereas any collapse beyond � 200ms would lead
to a similar ejecta mass,

In Figure 6.20, we fnd MNS wind radial velocities to reach over 0:2 c, particularly along
polar directions within ' 15� from the the spin axis. Overall, the velocity of the unbound
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Figure 6.22: Top panel shows evolution of the mass fow rates across spherical surfaces of radius 1180
and 2360 km, considering both the total mass and the unbound mass, for the magnetized ‘B5e15’
simulation. Dashed lines correspond to the exponential profles used for the extrapolation at later
times. Bottom panel depicts the analogous plot for the cumulative mass fows. Figure taken from
JVK3.

material lies in the range ' 0:1−0:2 c, which is consistent with the lower end of the range
inferred from observational data (i.e. ' 0:2−0:3 c) for the blue kilonova component. Certain
efects, such as presence of a relativistic jet at later times and neutrino irradiation, which are
not included in our simulation, could further enhance these velocities by depositing additional
kinetic energy. In addition, the artifcial foor density of ' 6:3 � 104 g/cm3 imposed in our
simulation could be slowing down the MNS wind in a non-negligible way (e.g., [269]).

Finally, we conclude with a note on the opacity. The presence of neutrino radiation can
signifcantly raise the electron fraction of the MNS wind material (see, e.g., [270, 271]), leading
to ejecta having Ye ' 0:25−0:40. Material with such electron fraction values would produce
heavy elements with A.140 via r-process nucleosynthesis, resulting in relatively low opacities,
i.e. �0:1−1 cm2/g (e.g., [272]). This is in agreement with the blue kilonova requirement.
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Putting together the above results and considerations on mass, velocity and opacity, the
magnetically driven MNS wind is found as a viable explanation for the blue kilonova component
of the August 2017 event.

6.4 Summary

In this Chapter, we frst provided a brief astrophysical background on BNS mergers. Then,
we presented the outcomes of our BNS merger simulations performed with the GRMHD code
WhiskyMHD, which produce a long-lived NS remnant. Our simulations involved long post-merger
evolution (up to � 100ms in JVK1, and up to � 255ms in JVK3) which allowed us to gain
novel insights on the remnant properties over unexplored timescales.

In JVK1, we observed that the magnetic feld gets amplifed due to diferent mechanisms
in action (for e.g., KHI and MRI) during the course of evolution, until it reaches a physical
saturation around 50ms after merger, corresponding to magnetic energy of the order 1051 erg.
Following the evolution of magnetic feld lines, we saw that towards the end of the simulation, a
large scale magnetic feld of mixed poloidal-toroidal structure emerges, with average magnetic
strength reaching roughly 1015 G. Our result supports the idea that BNS mergers can produce
remnant NSs endowed with a global feld of magnetar-like feld strength.

Along with the dynamical ejecta, magnetically driven post-merger winds emanating from
MNS remnant lead to formation of a dense environment with a nearly isotropic and steady
rest-mass density distribution up to � 400 km. The material ejected from susch winds is slow
in nature (< 0:1 c) and correspond to a mass loss rate of up to Ṁ � 3M�=s, for a total
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mass of 0.1M� at the end of the simulation. It is also too heavy to be accelerated up to
relativistic speeds and turn into a jet. On the contrary, it acts as an obstacle for any incipient
jet possibly launched by the remnant, even at later times. In conclusion, our current results
seem to disfavour, but cannot rule out, a scenario in which a long-lived NS remnant acts as a
SGRB central engine.

By looking at the bulk of the remnant NS, we observe an early structure composed of a
nearly spherical inner core embedded in a torus-shaped outer envelope, which then evolves
towards a more spherical confguration by the end of the simulation. Studying its rotation
profle reveals that in general, it has a slowly rotating inner core attached to a faster rotation
outer envelope. At larger distances, the profle becomes nearly Keplerian, indicating that this
part of the remnant NS is centrifugally supported. In time, the core spin frequency increases
at the expense of the outer envelope. We estimate that the remnant present at the end of our
simulation could reach uniform rotation after a further rotational energy loss of � 8� 1052 erg.

We also performed an additional simulation, inducing the collapse of the remnant � 72ms
after merger. The collapse forms a � 2:5M� BH with Jc=GM2 ' 0:5 and surrounded by a
�0:1M� accretion torus. The presence of this accretion disk instead favours the conditions to
launch a powerful SGRB jet via the Blandford-Znajek mechanism.

In JVK3, we analyzed the results of the simulation presented [147], in order to provide a
viable explanation regarding the mechanism that produced the blue component of the kilonova
in AT2017gfo, in terms of the corresponding matter ejected. In particular, we considered the
possibility that this kilonova component originated from magnetically driven post-merger ejecta
given out by the massive NS remnant before its collapse to a BH. From our study, we found a
robust estimate for the ejected mass to be in the range '0:010− 0:028M�, consistent with the
blue kilonova observation of August 2017, and found radial velocities limited to a maximum of
' 0:2 c, consistent with the lower end of the range estimated from the observations. Thus, we
showed that this ejection mechanism ofers a promising explanation.



Chapter 7

Binary neutron star mergers with
Spritz

The coincident detection of GW170817 and GRB 170817A provided the smoking-gun evidence
connecting BNS mergers as one of the progenitors of SGRBs. However, the nature of the
central engine that produce this SGRB is still under active investigation (see [17]). In Chapter
6, through GRMHD simulations of BNS mergers, we explored the scenario which considers a
long-lived NS remnant or the so-called ‘magnetar’ as the central engine of SGRBs. Our results,
coupled with [147], act in disfavour of such a scenario (however, see [38]).

In this Chapter, we discuss the prelimnary results of a BNS merger simulation to be pre-
sented in the upcoming work JVK9, focussing instead on the standard ‘accreting-BH’ scenario
as SGRB central engine. Recent studies of BNS merger simulations have already shown that
such a system can power an incipient jet through the Blandford-Znajek mechanism [37, 43, 44].
Here, we employ our latest machinery in hand, with the main aim of performing the frst BNS
merger simulation with our Spritz code along with our robust RePrimAnd C2P scheme, and
also attempt to reproduce the results of [43].

7.1 BNS model and setup

We consider an equal mass BNS model (mass ratio, q = 1) with individual NS gravitational
mass of about 1:5M� (i.e. large enough to form a BH soon after merger), having an equitorial
radius of 13:6 km. The initial data is produced using the publicly available LORENE library, using
the polytropic EOS with adiabatic index Γ = 2:0, and with an initial coordinate separation of
45 km. In particular, the irrotational case listed as M=R = 0.14 vs 0.14 (Table III, row 3)
in [273] is adopted, which is also used in [43, 107]. The system is then evolved using the
ideal gas EOS with adiabatic index Γ = 2:01. After about two orbits (t = tB � 6ms), we

1Since the current EOS framework of the RePrimAnd library does not provide support for tabulated fnite-
temperature, composition dependent EOS, we consider a simple EOS for initial data as well as for evolution in
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impose a dipolar magnetic feld on the two NSs, also extending outside their surfaces, using
the vector potential prescription defned by Equation (5.75). For this expression, we set the
parameter B0 = 2:6 � 1015 G (corresponding to an intial maximum magnetic feld strength of
Bmax ' 1016 G, rather strong but still dynamically unimportant), and choose r0 = 4 km, which
results in an initial total magnetic energy of Emag ' 1047 erg. For the reason behind this choice
of high initial magnetic feld strength, we refer to the discussion in Section 6.2.1. Note that we
have already successfully tested the imposition of such an extended dipolar feld on single NS
in the tests reported in Section 5.7.

The atmosphere density foor is set to �atm'6:3� 104 g/cm3. During the frst two orbits, a
small fraction of material is ejected due to tidal efects as well as because of the spurious heating
near the NS surfaces, which spreads up to radial distances of roughly 200 km. Since Spritz
imposes zero-velocity in the artifcial atmosphere, when the dipolar magnetic felds are added,
they are expected to remain frozen in the regions beyond � 200 km, where densities correspond
to � = �atm. In order to make the initial magnetic feld co-rotate with the system at larger
distances, which would be a step closer to the realistic description of rotating magnetospheres
of NSs, we add a low density gas (of total mass < 0:001M�) at t = tB , up to the radial distance
of 950 km, which is co-rotating with the binary. Since the magnetic feld (which is dynamically
unimportant at this stage) follows the fuid motion in the atmosphere under the ideal MHD
approximation, this results in an initial co-rotating magnetic feld as well. In particular, the
density distribution of the added matter is given by the following expression

�gas =

(
a1�atm if r < r1

a1�atm

�
r
r1

�n1

if r � r1
; (7.1)

where �gas is the density of the added gas, r is the radial distance, and we set the constant
parameters to a1 = 10:0, r1 ' 74 km and n1 = −0:9 such that at 950 km, � = �atm. The
pressure of this gas is computed using the polytropic EOS with polytropic constant k = 123:6

and Γ = 2:0. In order to make the gas co-rotate with the system, we frst compute, in simulation
coordinates, the angular velocity averaged along � right before adding the gas, as shown in
Figure 7.1 (in red). The resultant curve is then ftted partly with an exponential function and
partly with a Keplerian profle, through which we obtain the angular velocity profle of the gas,
given by the following expression

Ωgas =

(
a2 exp (−b2 (r − r2)) if r < rd

a3

�
r
r3

�−n3

if r � rd
; (7.2)

where rd is set to ' 80 km. For the exponential, we set the parameters a2 = 0:0218, b2 = 0:045

and r2 = 0:2, while for the Keplerian profle, we choose a3 = r3 = 0:9, and n3 = 1:5. The fnal
rotational profle (averaged along �) of the system including the co-rotating gas is shown in
Figure 7.1 (black curve).

The grid-setup employs ‘moving box’ mesh refnement with 7 refnement levels. Two fnest
levels follow the NSs during inspiral, while shortly before merger, the moving grids are replaced

our present simulation.
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Figure 7.1: Angular velocity in the equitorial plane averaged over �. Solid red curve shows the angular
velocity of the system before the addition of gas (see text). Green (dotted) and orange (dashed) lines
represent the exponential and Keplerian curves ftted onto the red one, which provide the parameters
to defne the angular velocity of the gas to be added. Solid black line represents the resulting angular
velocity of the system after the addition of gas. Quantities are shown in Cactus units (CU), which
consider c = G = M� = 1.

by fxed grids. The coarsest (fnest) fxed-grid extends to � 2800 km (� 22 km) in all directions.
Grid-spacing in the fnest refnement level is set to dx = dy = dz = 354m. Right before BH
formation, we add a fner refnement level with spacing dx = 177m, extending to � 12 km
in all directions. In contrast, for the entire evolution (before and after BH formation), [43]
consider much higher resolution in their simulations, i.e., dx = 227m for the ‘normal’ case, and
dx = 152m for the ‘high’ resolution cases.

For the evolution, we utilize our Spritz code to solve the GRMHD equations, and use the
HLLE approximate Riemann solver along with PPM reconstruction. For spacetime evolution,
we use the MacLachlan thorn of the Einstein Toolkit infrastructure. To evolve the vector
potential, we employ the generalised Lorenz gauge based on the newly implemented technique
described in Section 3.1.2.1. However, the electric feld is still computed using the formulation
implemented in JVK1, and not according to the one presented in Section 3.1.2.32. Therefore,
we add Kreiss-Oliger dissipation to the evolved vector and scalar potentials to avoid numerical
instabilities during evolution. Furthermore, we use the RK4 method for time-stepping, and
set the Courant factor as 0.35. RePrimAnd C2P scheme is used, setting the upper limits

2Implementation of the upwind constrained transport scheme to compute the electric feld was still under
development at the time the present simulation was performed. However, we plan to use the UCT scheme for
our future simulations.
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Wmax = 100:0, �max = 106, and bmax = 100:0. Moreover, we set �strict = 3:95� 1013 g/cm3 (see
Section 5.6 for parameter defnitions). Inside the BH, we follow a rather linient error policy,
setting Wmax = 7:0, bmax = 104 and �strict = 6:17 � 1023 g/cm3. This allows us to run the
simulation till the end without applying any form of excision near the BH center.

7.2 Results

During the inspiral, the binary loses energy and angular momentum via GWs, and after about
three orbits (t = tmerge � 7:89ms), the two NSs merge to form a diferentially rotating
metastable hypermassive NS (HMNS)3. The HMNS survives against collapse, for instance,
via the redistribution of angular momentum. However, after losing further angular momen-
tum via GWs, the HMNS collapses to a BH (at t = tBH � 14:7ms), thus surviving for about
6.8ms. Whereas, in [43], the HMNS survives for about 18ms and 31.5ms for the normal and
high resolution cases respectively. The diference in the HMNS survival time is likely due to
the diferences in the grid resolution, as noted in previous studies (see, for e.g., [43] and refs.
therein).

We evolve the system up to � 49:8ms after merger (i.e, t− tmerge = 49:8ms and correspond-
ingly t− tBH = 43ms). About 2.5ms after BH formation, the BH has a mass MBH = 2:91M�
and spin J=M2 = 0:8, and it is surrounded by a hot and dense accretion disk (Figure 7.2,
left-panel) with mass Mdisk � 0:06M�. Due to accretion, a low density funnel starts to form
around the same time along the BH axis. At the end of the simulation, both the BH mass
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Figure 7.2: Meridional view of the rest-mass density (left) and radial velocity (right) at � 49:7ms after
merger.

and spin increase to MBH = 2:93M� and J=M2 = 0:82 respectively, with remaining disk mass
Mdisk � 0:03M�. At this point, the system has already reached steady state accretion with

3For the ideal gas EOS with Γ = 2:0, the maximum mass of a HMNS is � 2:1M�.
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accretion rate of roughly Ṁ = 0:11M�=s, which implies that the disk would be fully accreted
on a timescale ∆t � Mdisk=Ṁ � 0:27 s. We fnd these values to be quite similar to the ones
reported in [107].

Until the end of simulation, the funnel along the BH spin axis still remains rather low in
density (Figure 7.2, left-panel), providing favourable conditions in case a relativistic jet is to be
launched. However, we do not observe any outfow of matter along this funnel. In the right-
panel of Figure 7.2, we illustrate the radial velocities obtained at the fnal time, which shows
that the matter persistently falls back due to rapid accretion along BH poles, increasing the
ram pressure which counteracts jet formation. This result is in contrast with the one reported
in [43], where outward fuid velocities are observed along the BH spin axis starting from about
30ms after BH formation, followed by a well-developed incipient jet about 42ms after BH
formation for their normal-resolution case.

Next, we focus our attention to magnetic felds, which play a key role in driving relativistic
jets. Figure 7.3, we show the evolution of total magnetic energy for the present simulation.
After the magnetic felds are activated (at t − tmerge = −1:8ms), they undergo pre-merger
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Figure 7.3: Evolution of total magnetic energy for the present simulation. Vertical yellow line stands
for the time of merger tmerge. Black line denotes the time of collapse to BH tBH.

amplifcation, likely due to the reasons explained in Section 6.2.3. The left-panel of Figure
7.4 shows the magnetic feld line structure (plotted using the technique employed in [34]) soon
after the dipolar felds are imposed on the two NSs. As shown in this Figure, close to the
NSs, the magnetic feld gets slightly distorted due to the turbulent motion of the low density
material surrounding the binary system, while at large distances, the original dipolar geometry
is retained. Note that we would require a force-free evolution for a proper treatment of the
outer regions, which is not currently implemented in Spritz.

At merger, KHI develops in the shear layer when the two NS cores come in contact, raising
the magnetic energy at least by a factor of 5, as seen in Figure 7.3. Note that small-scale
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Figure 7.4: Magnetic feld structure soon after feld activation (left-panel) and at fnal simulation time
(right-panel). On left, the spheres (in grey) of radius 10 km are placed at the positions of the two NSs,
as scale reference. On right, the black sphere of radius 2.7 km is place at the BH center. Field line
colors indicate the magnetic feld strength.

turbulence efects due to KHI are not fully captured in our simulation due to the lack in
resolution, which are expected to amplify the magnetic felds to much higher strengths, as
also mentioned in Section 6.2.3. A few milliseconds after merger, efects of magnetic winding
and development of MRI around the HMNS remnant start taking over KHI as the dominant
amplifcation mechanism, increasing the magnetic energy to roughly 1048 erg, which is an order
of magnitude higher than the initial magnetic energy of 1047 erg. This gain in magnetic energy
is soon lost when the HMNS collapses to a BH, engulfng the surrounding matter, especially
along its rotation axis. The resultant drop in magnetic energy is clearly visible in Figure
7.3. However, in next few tens of milliseconds, we again see a rise in magnetic energy, which
is rather gradual until the end of the simulation. This growth is likely caused by efects of
magnetic winding as well as the developing MRI in action, leading to the formation of a strong
toroidal feld in the torus surrounding the BH. At fnal time, we fnd the fastest growing MRI
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mode wavelength �MRI, given by Equation (6.13), to be covered by at least 10 points in part
of regions within 50 km radius, suggesting that MRI contributes at least partially in amplifying
the magnetic felds.

Figure 7.4 (right-panel) illustrates the magnetic feld structure surrounding the BH remnant
at fnal time. The growth in the toroidal component of the magnetic feld near the equatorial
plane is evident. Along the BH spin axis, we also notice the formation of helical structures
extending up to a few hundreds of kilometers. Such a confguration looks promising as it might
eventually support jet production at later times.

The magnetic energy reaches the value of � 1:5�1048 erg towards the end of the simulation,
but is still slowly growing, implying that it has not reached its saturation limit. However, its
current value is likely insufcient to power a relativistic jet. In contrast, previous studies which
start with initial magnetic energy as high as 1049 erg report nearly saturated magnetization
levels after merger, leading to post BH-formation magnetic energies of the order 1050−1051 erg
[37], are able to successfully produce an incipient jet. Moreover, the longer surviving time of
the HMNS (roughly 20-30ms) in [37, 43] allows for additional magnetic feld amplifcation via
MRI before collapse, which does not occur in our case since the remnant collapse within 7ms
after merger.

Computing the magnetic-to-fuid pressure ratio �, we fnd its initial value to be around
1:7�10−5 at the center of the NSs at the time when magnetic feld is initialized. This is roughly
200 times lower than the initial � = 3:125� 10−3 at the stellar center used in [43]. Figure 7.5
shows the � distribution on the meridional plane at fnal time for the present simulation, with
the maximum value achieved as 0.03. Whereas [43] show that � can reach values higher than
100 within the jet funnel. Clearly, our results imply that the system in hand is fuid pressure
dominated, since by the end of the simulation we do not reach high enough magnetization levels
required to power a SGRB jet, and we would require a much longer simulation to produce a jet
at later times (if any).

7.3 Summary and outlook

In this Chapter, we described some of the prelimnary results of the upcoming work JVK9
based on the frst successful BNS merger simulation performed with our GRMHD code Spritz
employing our robust RePrimAnd C2P scheme. In our simulation, we were able to correctly
activate and evolve the dipolar magnetic felds in the two NSs, initially extending also outside
their surfaces. At larger distances, the magnetic feld was able to co-rotate along with the
system during inspiral, thanks to the low-density, co-rotating gas added to the system. The
BNS merger frst produced a HMNS which soon collapsed to a BH surrounded by an accretion
disk. We evolved this system up to 43ms after BH formation, and showed that our code can
handle evolution of such a scenario up to fnal time, rather well, without requiring any kind
of excision near the BH center. Finally, we also showed that magnetic felds can form helical
structures along the BH spin axis, creating a favourable site for jet formation at later times.

Even though these frst results are promising, our simulation was not able to reproduce the
results of [43]. At fnal time, we found the low-density funnel along the BH spin axis to be dom-
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Figure 7.5: Magnetic-to-fuid pressure ratio � on the meridional plane at � 49:7ms after merger.

inated by fuid pressure with radial velocities always pointing inward. Furthermore, our initial
magnetic energy and magnetic-to-fuid pressure � were quite too low for the given resolution as
compared to the ones used in [43], which did not allow us to reach the magnetization levels ex-
pected to produce a SGRB jet. Another caveat involves the use of Kreiss-Oliger dissipation on
magnetic feld variables which may have possibly reduced the amount of amplifcation attained.

In the near future, we plan to perform similar simulations to be included in JVK9 with
initial magnetic energies and � values comparable with those used in [43]. Moreover, we would
employ the upwind constrained transport scheme to compute electric feld, which would allow
to correctly evolve the magnetic felds without any kind of dissipation.
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Conclusions

Since the multimessenger observation of gravitational wave event GW170817 together with a
short gamma-ray burst GRB170817A and a kilonova AT2017gfo, binary neutron stars mergers
have come under the limelight in the astrophysics community. To provide a more realistic
description of such events, there is a strong ongoing efort by various numerical relativity groups
to accurately model these systems to probe the diferent physical mechanisms involved as well
as to generate gravitational waveforms.

Moving along this direction, as a part of this Thesis work, we have developed a new fully
general relativistic magnetohydrodynamic code called Spritz JVK2, based on fux-conservative
formalism of GRMHD equations and on the use of HRSC schemes. Spritz has been adopted
from its parent code WhiskyMHD which has already proven to be fundamental in performing mag-
netized BNS merger simulations in recent years. The newly implemented algorithm in Spritz
evolves the vector potential at staggered positions of the grid and then computes the magnetic
feld, ensuring its divergenceless character by construction. Moreover, we added support for
diferent types of EOS by coupling Spritz with the EOS_Omni module of the Einstein Toolkit
infrastructure. For a quantitative validation our implementation, we subjected Spritz with the
1D Balsara shock-tube testsuite, and matched the results with exact solutions provided by [31],
and also compared them with the outcome of another state-of-the-art GRMHD code GRHydro.
Spritz was also assessed with a number of 2D and 3D tests including a successful evolution of
a magnetized TOV star in full 3D.

Along with magnetic felds, incorporation of neutrino efects are crucial for accurate model-
ing of the BNS merger ejecta. For neutrino treatment, we implemented an approximate neutrino
leakage scheme in Spritz JVK5, which takes into account both neutrino emission (cooling) as
well as reabsorption (heating). Furthermore, we added support for fnite temperature, com-
position dependent tabulated EOS which would allow us to follow evolution of temperature
and electron fraction in future BNS merger simulations. Additionally, we implemented higher
order methods for the evolution of hydrodynamical quantities, further enhancing the accuracy
of our solutions JVK5. A series of tests were then performed to show the robustness of the
code in handling a variety of diferent physical scenarios, including the evolution of both “cold”
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and “hot” NSs with and without magnetic felds or neutrino leakage. For the cases with neu-
trino leakage, we also considered the efects of having neutrino heating activated or deactivated.
However, note that the present leakage scheme comes with some limitations. Since it is based
on a ray-by-ray approach, it works best for confgurations which are, at frst approximation,
spherically symmetric. In presence of any signifcant deviations from spherical symmetry, it
would in part over-estimate the neutrino opacities, for instance in the early post-merger or
after the collapse into a BH surrounded by an accretion disk. Such limitations can be overcome
by adopting more accurate neutrino transport schemes, such as the Monte-Carlo-based scheme
[157] or courageously attempt to compute the full solution of Boltzmann transport equations
which could be computationally much more expensive.

A long-standing technical problem currently faced by modern day GRMHD codes is to
reliably recover the fundamental ‘primitive’ variables from the evolved ‘conserved’ ones. We
tackled this problem by introducing a new conservative-to-primitive variable recovery scheme
JVK4, and provided the proof for the existence and uniqueness of a solution. We also derived
expressions of the analytic bounds for the accuracy of the computed primitives. Our scheme
is also able to identify unphysical evolved variables, as well as the nature of the invalidity, and
also allows to prescribe an error policy and selectively apply harmless corrections, wherever
necessary. The reference implementation of our scheme has been made publicly available in the
form of a well-documented library named ‘RePrimAnd’, which also contains a generic interface
for using arbitrary EOS. Note that our recovery algorithm is implemented in a completely EOS-
agnostic manner. We validated the stand-alone version of the scheme via a comprehensive suite
of tests, demonstrating that both the scheme and the actual implementation are robust and
accurate up to Lorentz factors and values of magnetization much larger than those relevant for
BNS mergers. We also showed that the scheme is computationally efcient based on the number
of EOS evaluations. As a matter of course, we implemented the scheme in Spritz, followed by
a number of demanding GRMHD tests in full 3D in order to assess its correct implementation
JVK7. Our tests, including the critical ones such as NS collapse to BH as well as evolution of
a BH-disk system, showed that the RePrimAnd can robustly handle magnetized, low-density
regimes with magnetic-to-fuid pressure ratio as high as � 104. The stand-alone RePrimAnd
library is now also available within the latest Einstein Toolkit ‘Johnson’ (ET_2021_11) release
[274], and has already been used successfully for magnetized BNS mergers in a diferent evolu-
tionary code [275], JVK8.

At the time when Spritz was being developed, we parallely extended the investigations of
[35] by performing a single BNS merger simulation using WhiskyMHD, going up to � 100ms
after merger (longest simulation of its kind at that time) JVK1. The merger outcome was
a diferentially rotating, metastable long-lived NS remnant expected to survive much longer
than the simulation timescale. Probing unexplored timescales, we were able to study diferent
properties of the system in hand including magnetic feld evolution and its dynamical impact,
remnant structure and its rotation profle, as well as matter ejection. Moreover, we showed
that the conditions found at the end of our simulation disfavoured the massive NS remnant
as the central engine as a SGRB central engine, and further supported the standard ‘BH-disk’
scenario instead. This result was further strengthened by the latest work of [147] which reported



189

a similar BNS merger simulation extending up to � 250ms after merger. In this Thesis work,
we also further analyzed the results of the latter simulation, showing that magnetically driven
post-merger ejecta emanating from the MNS remnant before its collapse to a BH, with mass
' 0:010 − 0:028M� and radial velocities reaching up to ' 0:2 c, can possibly act as a viable
source for the puzzling blue component of the kilonova observed in August 2017 JVK3. Finally,
the outcome of an additional non-magnetized BNS merger simulation I performed, based on a
similar setup, was used as input for the jet propagation study presented in JVK6. This was the
frst investigation of its kind based on initial data for the surrounding environment (through
which the jet is to propagate) that were directly imported form the results of an actual general
relativistic BNS merger simulation.

Our ongoing research entails performing magnetized BNS merger simulations with Spritz
along with RePrimAnd C2P scheme. In this Thesis, we reported the frst of such simulations,
where the merger product was a HMNS which eventually collapsed to a BH surrounded by an
accretion disk. We successfully followed the evolution of this system until fnal time without
facing any problems. However, in contrast to the results of [43], our system did not produce
an incipient jet until the simulation fnal time, likely due to the fact that we started with
comparatively much lower initial magnetization levels for the grid resolution employed. Our
next simulations will be based on the same setup but starting with higher initial magnetizations
JVK9.

For the future, in terms code development, we plan to extend support of fnite-temperature,
composition-dependent tabulated EOS in Spritz when using the RePrimAnd C2P scheme.
Another task which needs addressing is the extension of higher order methods for the magnetic
feld variables in Spritz. Since JVK8 delivered promising results, we also plan to adopt its sub-
grid modeling technique within Spritz. Moreover, the current version of Spritz is designed to
work efciently on CPUs alone, hence, we also aim to provide support for running it on GPU
infrastructures as well.

In terms of application to astrophysical scenarios, we plan to perform magnetized BNS as
well as NSBH merger simulations employing all the latest machinery in hand i.e., using Spritz
with RePrimAnd C2P, adopting diferent microphysical EOS, using higher order schemes, as
well as activating neutrino leakage. Moving towards a more realistic description, our goal would
be to provide better answers to some of the important open questions as well as revisit some
of the old ones, in this feld of research.

On the whole, we hope that Spritz will serve as a useful tool for the astrophysical com-
munity in the coming years, and also pave the way to unravel mysteries of some of the most
extraordinary objects in the Universe.
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