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Abstract
In his seminal 1934 paper on Brownian motion and the theory of gases Kolmogorov
introduced a second order evolution equation which displays some challenging fea-
tures. In the opening of his 1967 hypoellipticity paper Hörmander discussed a general
class of degenerate Ornstein–Uhlenbeck operators that includes Kolmogorov’s as a
special case. In this note we combine semigroup theory with a nonlocal calculus
for these hypoelliptic operators to establish new inequalities of Hardy–Littlewood–
Sobolev type in the situation when the drift matrix has nonnegative trace. Our work
has been influenced by ideas of E. Stein and Varopoulos in the framework of sym-
metric semigroups. One of our objectives is to show that such ideas can be pushed to
successfully handle the present degenerate non-symmetric setting.
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1 Introduction

Sobolev inequalities occupy a central position in analysis, geometry and physics. Typ-
ically, in such a priori estimates one is able to control a certain Lq norm of a derivative
of a function in terms of a L p norm of derivatives of higher order. One distinctive
aspect of these inequalities is that there is gain in the exponent of integrability, i.e.,
q > p. For instance, the prototypical Sobolev inequality in R

N states that for any
1 ≤ p < N , there exists a constant SN ,p such that for any function f in the Schwartz
classS , one has

(�) || f ||q ≤ SN ,p ||∇ f ||p ⇐⇒ 1

p
− 1

q
= 1

N
.

In such framework, (�) is referred to as the embedding theorem W 1,p(RN ) ↪→
Lq(RN ). The relation between the exponents p and q in (�) is the well-known
Hardy–Littlewood–Sobolev condition, and the if and only if character is connected
with the interplay between the differential operator ∇ and the homogeneous structure
(Euclidean dilations) of the ambient space.

In this paper we are concerned with a scale of global inequalities such as the one
above for the following class of second-order partial differential equations in R

N+1,

K u = A u − ∂t u
de f= tr(Q∇2u) + 〈B X ,∇u〉 − ∂t u = 0, (1.1)

where the N × N matrices Q and B have real, constant coefficients, and Q = Q� ≥ 0.
We assume throughout that N ≥ 2, and we indicate with X the generic point in R

N ,
with (X , t) the one in R

N+1. Such class has been intensely studied during the past
thirty years by several schoolsworldwide. Presently,manymathematicians are actively
involved in developing a De Giorgi–Nash–Moser theory for such equations, i.e., a
theory which includes the treatment of rough variable coefficients. It is well-known
that at the very foundations of such theory are Sobolev and Poincaré inequalities. No
global sharp results of this kind are presently available for the time-independent part
A = tr(Q∇2u)+〈B X ,∇u〉 of the operator in (1.1), and to the best of our knowledge
our Sobolev embedding theorems are the first in this respect.

It is worth noting here that when Q = IN and B = ON , then (1.1) becomes the
standard heat operator � − ∂t in R

N+1, and we are back into the well-developed
framework of (�). Our interest is exclusively in the degenerate case when Q ≥ 0 and
B 
= ON . Then, the evolution of equations such as (1.1) is driven by semigroups
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Hardy–Littlewood–Sobolev inequalities…

Pt = e−tA which, in general, are non-symmetric and non-doubling. Furthermore,
there is no global homogeneous structure associated with them, and they lack an
obvious notion of “gradient”. For instance, a tool like the P.A. Meyer carré du champ
�( f ) = 1

2 [A ( f 2)−2 f A f ] is not directly effective here since�( f ) = 〈Q∇ f ,∇ f 〉.
This misses all directions of non-ellipticity in the degenerate case, and also does not
provide control on the drift.

The class (1.1) first appeared in the 1967 work of Hörmander [35], in which he
proved his celebrated hypoellipticity theorem asserting that if smooth vector fields
Y0, Y1, . . . , Ym in R

N+1 verify the finite rank condition on the Lie algebra, then the
operator

∑m
i=1 Y 2

i + Y0 is hypoelliptic. To motivate this result, in the opening of his
paper he discussed (1.1) and showed thatK is hypoelliptic if and only if Ker Q does
not contain any non-trivial subspace which is invariant for B�. This condition can
be equivalently expressed in terms of the strict positivity, hence invertibility, of the
covariance matrix

K (t) = 1

t

∫ t

0
es B Qes B�

ds (1.2)

for every t > 0. We note that, in the degenerate case when Q fails to be elliptic, this
property becomes void at t = 0, since K (0) = Q. Also, it is easy to see that K (t) > 0
for every t > 0 if and only if K (t0) > 0 for one t0 > 0. Under the hypoellipticity
assumption Hörmander constructed a fundamental solution p(X , Y , t) > 0 for (1.1),
and proved that, given f ∈ S , the Cauchy problemK u = 0, u(X , 0) = f (X) admits
a unique bounded solution given by Pt f (X) = ∫

RN p(X , Y , t) f (Y )dY . This defines
a non-symmetric semigroup {Pt }t>0 which is strongly continuous in L p, 1 ≤ p < ∞,
satisfies Pt1 = 1, but which, however, is not contractive in general.

Our primary interest in this paper is on the subclass of (1.1) which, besides Hör-
mander’s hypoellipticity condition K (t) > 0, also satisfy the assumption

tr B ≥ 0. (1.3)

This serves to guarantee that the semigroup {Pt }t>0 be contractive in L p for 1 ≤ p <

∞, a fact that plays a pervasive role in our work. Although to an unfamiliar reader
(1.3) might seem restrictive, we emphasise that this subclass is sufficiently wide to
include many examples of considerable physical relevance for which, prior to the
present work, the development of sharp global results has resisted the efforts of many
groups of mathematicians. For instance, a prototypical example to keep in mind is the
operator

K0u = �vu + 〈v,∇x u〉 − ∂t u,

introduced by Kolmogorov in his seminal 1934 note [38] on Brownian motion and the
theory of gases. Here, we have let N = 2n, and X = (v, x), with v, x ∈ R

n . SuchK0
fails to be parabolic since it is missing the diffusive term �x u, but it is easily seen to
satisfy Hörmander’s finite rank condition for the hypoellipticity. Equivalently, one can

verify that K (t) =
(

In t/2 In

t/2 In t2/3 In

)

> 0 for every t > 0. Remarkably, Kolmogorov

himself had already produced the following explicit fundamental solution
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p0(X , Y , t) = cn

t2n
exp

{− 1

t

(|v − w|2 + 3

t
〈v − w, y − x − tv〉

+ 3

t2
|x − y + tv|2)},

where Y = (w, y). Since such function is smooth off the diagonal, it follows that
he had proved that K0 is hypoelliptic more than thirty years before [35]. We note
that the hypothesis (1.3) trivially includes Kolmogorov’s operator K0 since for the
latter we have tr B = 0, but also encompasses several different examples of interest
in mathematics and physics. For a short list the reader can see the items in bold in the
table in Fig. 1 in Sect. 3. For the items in black (see [12,25,52,64]) we have tr B < 0,
thus they are not covered by our results. Such subclass of (1.1) will be analysed in a
future study.

To provide the reader with some perspective we mention that during the last
three decades there has been considerable progress in the study of the equations
(1.1). The existing approaches are essentially of two types: (a) far reaching adap-
tations of direct methods from partial differential equations combined with Lie
group theory and analysis in spaces with homogeneous and non-homogeneous
structures; or (b) powerful combinations of ideas from probability and semigroup
theory. For the existing literature covering either (a) or (b), the reader should see
[1,3,8,10,11,16,19,22,26,28,32,39,41,42,46–48,50,51,53–57], but such list is by no
means exhaustive. One should also consult the survey papers [9,40], and the books
[17,18,34,45,69]. Despite such large body of works, some aspects presently remain
elusive, such as: (i) a systematic development of a sharp intrinsic Hardy–Littlewood–
Sobolev theory; (ii) the analysis of local and nonlocal isoperimetric inequalities. The
aim of the present paper is to take a first step in the program (i). In our sequel paper
[30] we address (ii).

Our approach combines semigroup theory with the nonlocal calculus for (1.1)
recently developed in [29], and it has been influenced by the ideas of Stein in [60] and
Varopoulos in [67] in the setting of positive symmetric semigroups. In fact, one of the
objectives of the present paper is to show that their powerful ideas can be pushed to
successfully handle the degenerate non-symmetric setting of (1.1).

Adiscussionof themain results and techniques seems in order at this point. Section 2
is devoted to collecting the known background results on the semigroup {Pt }t>0. We
introduce the intertwined non-symmetric pseudo-distance mt (X , Y ), and the time-
dependent pseudo-balls Bt (X , r). The volume function V (t) = VolN (Bt (X ,

√
t))

is defined in (2.5). The relevance of such function is demonstrated by its place in
Hörmander’s probability transition density (2.6). We also recall for completeness an
important result from [41] stating that as t → 0+ the small-time behaviour of V (t) is
governed by a suitable infinitesimal homogeneous structure. Using such information
one can show that there exists D0 ≥ N ≥ 2 such that V (t) ∼= t D0/2 as t → 0+. We
call the number D0 the intrinsic dimension of the semigroup at zero.

As it became evident from the work [67] (see also [65,66,68]), in Varopoulos’
semigroup approach to the Hardy–Littlewood theory the evolution is driven by the
large time behaviour of the semigroup. It should thus come as no surprise that the
functional inequalities in this paper hinge on the behaviour of the volume function
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V (t) as t → ∞. Section 3 is dedicated to the analysis of this aspect. The first key
result is Proposition 3.1 inwhichwe show that, under the hypothesis (1.3), the function
V (t) must blow-up at least linearly as t → ∞ (note that for the Ornstein–Uhlenbeck
operator �X − 〈X ,∇X 〉 − ∂t , for which tr(B) < 0, one has instead V (t) → cN > 0
as t → ∞). Furthermore, if the drift matrix B has at least one eigenvalue with strictly
positive real part, then V (t) blows up exponentially and is not doubling. In other
words, in such situation the drift induces a negative “curvature” in the ambient space
R

N . In Definition 3.4 we introduce the key notion of intrinsic dimension at infinity
of the semigroup, and we indicate such number with D∞. We note that the above
mentioned minimal linear growth of V (t) at infinity, provides the basic information
that D∞ ≥ 2. The reader should see the table in Fig. 1 where the quantities D0 and D∞
are compared for several differential operators of interest in mathematics and physics.
The second result of the section is Proposition 3.6 which establishes the L p − L∞
ultracontractivity of the semigroup {Pt }t>0 for 1 ≤ p < ∞. As the reader can surmise
from the seminal work [67, Theorem 1] in the symmetric case, such property plays a
central role in our work as well.

In Sect. 4 we introduce the relevant Sobolev spaces. One of the difficulties in the
analysis of (1.1), already hinted at above, is that a “gradient” is not readily available.
This problem is circumvented using the nonlocal operator (−A )1/2 as a gradient
since it intrinsically contains the appropriate fractional order of differentiation along
the drift, which is insteadmissing in the abovementioned carré du champ. Bymeans of
Balakrishnan’s formula (4.1), we can precisely identify the nonlocal operators (−A )s

by means of the semigroup {Pt }t>0. This allows to introduce spaces of Sobolev type
as follows. Given 0 < s < 1 and 1 ≤ p < ∞, we define the Banach space

L 2s,p = S
|| ||L 2s,p

,

where for a function in Schwartz classS we have denoted by || f ||L 2s,p
de f= || f ||L p +

||(−A )s f ||L p . We stress that, when A = �, s = 1/2 and 1 < p < ∞, the classical
Calderón–Zygmund theory guarantees that the spaceL 1,p coincideswith the standard
Sobolev space W 1,p = { f ∈ L p | ∇ f ∈ L p}.

In Sect. 5, under the hypothesis (1.3), we establish a Littlewood-Paley estimate
that has been so far missing in the analysis of the class (1.1). To achieve this we have
combined a far reaching idea of Stein in [60]with the kernel associatedwith thePoisson
semigroupPz = ez(−A )1/2 in [29]. Combining such tools with the powerful abstract
Hopf–Dunford–Schwartz ergodic theorem in [20] we obtain the main weak − L1

estimate in Theorem 5.5.
In Sect. 6 we introduce, for any 0 < α < D∞, the Riesz potential operators Iα .

Our central result is Theorem 6.3 that shows that for any 0 < α < 2 and f ∈ S , one
has

f = Iα ◦ (−A )α/2 f = (−A )α/2 ◦ Iα f . (1.4)

This proves thatIα = (−A )−α/2. Again, the hypothesis (1.3) is essential. The reader
should pay attention here to the fact noted above that, under such assumption, we have
D∞ ≥ 2, and thus (1.4) covers the whole range 0 < α < 2. We note that, once again,
the semigroup Pz = ez(−A )1/2 , z > 0, is in the background here.
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In Sect. 7 we establish our main Hardy–Littlewood–Sobolev embedding, Theo-
rem 7.4. Suppose that there exist D, γD > 0 such that

V (t) ≥ γD t D/2, ∀t > 0. (1.5)

Then, for every 0 < α < D the operator Iα maps L1 into L
D

D−α
,∞. If instead

1 < p < D/α, then Iα maps L p to Lq , with 1
p − 1

q = α
D . Combining this result

with (1.4) we finally obtain the Sobolev embedding Theorem 7.5. We mention that
in the “negative curvature” situation when D∞ = ∞, see in this respect the operator
of Kolmogorov with friction in ex.6+ in Fig. 1, given any 1 ≤ p < ∞ we are
free to chose D > max{D0, 2sp} such that (1.5) hold. For such D we thus obtain
L 2s,p ↪→ L pD/(D−2sp). The reader should note that (1.5) implies that 2 ≤ D0 ≤
D ≤ D∞, and thus Theorems 7.4 and 7.5 do not cover the possibility D0 > D∞.
In the degenerate setting this case can occur, see the Ex. 4 of the Kramers’ operator
in Fig. 1. When D0 > D∞ the estimate (1.5) must be replaced by (7.9) below and,
under such hypothesis, we obtain appropriate versions of the above described results,
see Theorems 7.6 and 7.7.

In closing, we compare our results with the available literature. We first recall the
deep developments, which began with the works of E. Stein and collaborators, for the
class ofHörmander operators

∑
i X�

i Xi and
∑

i X�
i Xi −∂t , where Xi are smooth vector

fields in R
N satisfying Hörmander’s finite rank condition. These operators, which are

seemingly close relatives of (1.1), have a well-understood underlying geometry which
stands in stark contrast with the one discussed in the present paper. In fact, there
is a well-defined metric structure attached to the vector fields given by the Carnot–
Carathéodory distance. In this respect, three groundbreaking results in the field were
the Rothschild–Stein’s lifting theorem in [59] and its consequences, the Nagel–Stein–
Wainger’s local doubling properties for the metric balls in [49], and Jerison’s local
Poincaré inequality in [37]. Because of the drift, the class of operators we study has
infinitely many pseudometrics driving the evolution, there is in general no doubling
condition for the volume function, and there is no natural “gradient” associated.

Let us mention the few Sobolev-type estimates related to the class of degenerate
operators (1.1) present in the literature we are aware of. In [16,53] the authors prove
some interesting local results for nonnegative solutions to equationsmodelled on (1.1).
They use tools from potential theory and representation formulas. The restriction to
solutions, however, does not allow to obtain a priori information for arbitrary functions.
For kinetic Fokker-Planck equations (where in particular we have X = (v, x), with v

indicating velocity and x position), we mention the recent papers [3,32]. In the former
the authors prove a local gain of integrability for nonnegative sub-solutions via a non-
trivial adaptation of the so-called velocity averaging method. In the latter the authors
obtain a Poincaré inequality in a weighted L2 space by means of a ad-hoc variational
space. Our results differ from either one of these works since our Sobolev spaces
L 2s,p are defined with the aid of the nonlocal operators (−A )s . Similarly to the
classical potential estimate | f (X)| ≤ cN I1(|∇ f |)(X), our formula (1.4), combined
with Theorem 7.5, provides the sharp a priori control of the Lq norm of a function, in
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terms of the appropriate fractional order of differentiation. Both, along the directions
of ellipticity, and of the drift.

We also mention [10], in which the author obtained L2 a priori estimates for the
above discussed homogeneous Kolmogorov’s operatorK0, and the work [11], where
the authors prove some Calderón-Zygmund type estimates (both in L p and weak-L1)
for the operator A . The interesting analysis in [11] combines local singular integral
estimates with suitable coverings that exploit the homogeneous structure discovered in
[41] (see also Sect. 2.4 below). Our approach, based on the semigroupPz = ez

√−A ,
is different and allows to obtain results of a global nature, both in space and time.

1.1 Notation

The notation tr A indicates the trace of a matrix A, A� is the transpose of A, and ∇2u
denotes the Hessian matrix of a function u. All the function spaces in this paper are
based on R

N , thus we will routinely avoid reference to the ambient space throughout
this work. For instance, the Schwartz space of rapidly decreasing functions in R

N will
be denoted byS , and for 1 ≤ p ≤ ∞ we let L p = L p(RN ). The norm in L p will be
denoted by || · ||p, instead of || · ||L p . We will indicate with L∞

0 the Banach space of the
f ∈ C(RN ) such that lim|X |→∞ | f (X)| = 0 with the norm || · ||∞. The reader should
keep in mind the following simple facts: (1) Pt : L∞

0 → L∞
0 for every t > 0; (2) S

is dense in L∞
0 . The notation |E | will indicate the N -dimensional Lebesgue measure

of a set E . If T : L p → Lq is a bounded linear map, we will indicate with ||T ||p→q

its operator norm. If q = p, the spectrum of T on L p will be denoted by σp(T ), the
resolvent set by ρp(T ), the resolvent operator by R(λ, T ) = (λI − T )−1. For x > 0
we will indicate with �(x) = ∫∞

0 t x−1e−t dt Euler’s gamma function. For any N ∈ N

we will use the standard notation σN−1 = 2π N/2

�(N/2) , ωN = σN−1
N , respectively for the

(N − 1)-dimensional measure of the unit sphere S
N−1 ⊂ R

N , and N -dimensional
measure of the unit ball. We adopt the convention that a/∞ = 0 for any a ∈ R.

2 Preliminaries

In this section we collect, mostly without proofs, various properties of the semigroup
associated with (1.1) which will be used throughout the rest of the paper. One should
see [29, Section 2], where some of the results in this section are discussed in detail.
We also refer to the same paper for all proofs which are omitted in this section.

2.1 One-parameter intertwined pseudo-distances

Givenmatrices Q and B as in (1.1) we introduce a one-parameter family of intertwined
pseudo-distances which plays a key role in the analysis of the relevant operators K .
For X , Y ∈ R

N we define

mt (X , Y ) =
√〈

K (t)−1(Y − et B X), Y − et B X
〉
, t > 0. (2.1)
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It is obvious that, when B 
= ON , we have mt (X , Y ) 
= mt (Y , X) for every t > 0.
Given X ∈ R

N and r > 0, we consider the set

Bt (X , r) = {Y ∈ R
N | mt (X , Y ) < r},

and call it the time-varying pseudo-ball. We will need the following simple result.

Lemma 2.1 Let g ∈ L1(0,∞). Then, for every X ∈ R
N and t > 0 one has

∫

RN
g(mt (X , Y ))dY = σN−1(det K (t))1/2

∫ ∞

0
g(r)r N−1dr , (2.2)

and
∫

RN
g(mt (X , Y ))d X = σN−1e−t tr B(det K (t))1/2

∫ ∞

0
g(r)r N−1dr . (2.3)

In particular, we have

VolN (Bt (X , r)) = ωN r N (det K (t))1/2. (2.4)

Proof Formula (2.2) easily follows from (2.1) by the change of variable Z =
K (t)−1/2(Y − et B X). The latter gives

∫

RN
g(mt (X , Y ))dY = (det K (t))1/2

∫

RN
g(|Z |)d Z

= σN−1(det K (t))1/2
∫ ∞

0
g(r)r N−1dr .

The proof of (2.3) is similar and we leave it to the reader. To obtain (2.4) it suffices to
apply (2.2) with g = 1(0,r). ��

We stress that the quantity in the right-hand side of (2.4) is independent of X ∈
R

N , a reflection of the underlying Lie group structure induced by the matrix B, see
Remark 2.3. As a consequence, we will hereafter drop the dependence in such variable
and indicate VolN (Bt (X , r)) = Vt (r). When r = √

t , we will simply write V (t),
instead of Vt (

√
t), i.e.,

V (t) = VolN (Bt (X ,
√

t)) = ωN (det(t K (t)))1/2. (2.5)

2.2 The Cauchy problem

We next recall the theorem in the opening of [35] which constitutes the starting point
of the present work. We warn the unfamiliar reader that our presentation of the funda-
mental solution (2.6) of (1.1) differs from that in [35]. This is done to emphasise the
role of the one-parameter intertwined pseudo-distances (2.1) and of the corresponding
volume function V (t) defined by (2.5). In (2.6) belowwe have let cN = (4π)−N/2ωN .
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Theorem 2.2 (Hörmander) Given Q and B as in (1.1), for every t > 0 consider the
covariance matrix (1.2). Then, the operator K is hypoelliptic if and only if det K (t) >

0 for every t > 0. In such case, given f ∈ S , the unique solution to the Cauchy prob-
lem K u = 0 in R

N+1+ , u(X , 0) = f , is given by Pt f (X) = ∫
RN p(X , Y , t) f (Y )dY ,

where

p(X , Y , t) = cN

V (t)
exp

(

−mt (X , Y )2

4t

)

. (2.6)

For a small list of differential operators of interest in mathematics and physics that
are encompassed by Theorem 2.2 the reader should see the table in Fig. 1 at the end
of this section.

Remark 2.3 We mention that it was noted in [41] that the class (1.1) is invariant with
respect to the following non commutative group law (X , s)◦(Y , t) = (Y +e−t B X , s+
t). Endowed with the latter, the space (RN+1, ◦) becomes a non-Abelian Lie group.
This aspect is reflected in the expression (2.6), as well as in the invariance with respect
to ◦ of the volume of the intertwined pseudoballs, see (2.4) in Lemma 2.1. Except for
this, such Lie group structure will play no role in our work.

2.3 Semigroup aspects

In the following lemmaswe collect themain (well-known) properties of the semigroup
{Pt }t>0 defined by Theorem 2.2.

Lemma 2.4 For any t > 0 we have:

(a) A (S ) ⊂ S and Pt (S ) ⊂ S ;
(b) For any f ∈ S and X ∈ R

N one has ∂
∂t Pt f (X) = A Pt f (X);

(c) For every f ∈ S , X ∈ R
N and t > 0, the commutation property is true

A Pt f (X) = PtA f (X).

Lemma 2.5 The following properties hold:

(i) For every X ∈ R
N and t > 0 we have Pt1(X) = ∫

RN p(X , Y , t)dY = 1;
(ii) Pt : L∞ → L∞ with ||Pt ||L∞→L∞ ≤ 1;
(iii) For every Y ∈ R

N and t > 0 one has
∫
RN p(X , Y , t)d X = e−t tr B.

(iv) Let 1 ≤ p < ∞, then Pt : L p → L p with ||Pt ||L p→L p ≤ e− t tr B
p . If tr B ≥ 0,

Pt is a contraction on L p for every t > 0;
(v) [Chapman–Kolmogorov equation] for every X , Y ∈ R

N and t > 0 one has
p(X , Y , s + t) = ∫

RN p(X , Z , s)p(Z , Y , t)d Z. Equivalently, one has Pt+s =
Pt ◦ Ps for every s, t > 0.

Lemma 2.6 Let 1 ≤ p ≤ ∞. Given any f ∈ S for any t ∈ [0, 1] we have

||Pt f − f ||p ≤ ||A f ||p max{1, e− tr B
p } t .

Corollary 2.7 Let 1 ≤ p < ∞. For every f ∈ L p, we have ||Pt f − f ||p → 0 as
t → 0+. Consequently, {Pt }t>0 is a strongly continuous semigroup on L p. The same
is true when p = ∞, if we replace L∞ by the space L∞

0 .
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Remark 2.8 The reader should keep in mind that from this point on when we consider
{Pt }t>0 as a strongly continuous semigroup in L p, we always intend to use L∞

0 when
p = ∞.

Denote by (Ap, Dp) the infinitesimal generator of the semigroup {Pt }t>0 on L p

with domain

Dp = { f ∈ L p | Ap f
de f= lim

t→0+
Pt f − f

t
exists in L p}.

One knows that (Ap, Dp) is closed and densely defined (see [21, Theorem 1.4]).

Corollary 2.9 We have S ⊂ Dp. Furthermore, Ap f = A f for any f ∈ S , and S
is a core for (Ap, Dp).

Remark 2.10 From now on for a given p ∈ [1,∞] with a slight abuse of notation
we write A : Dp → L p instead of Ap. In so doing, we must keep in mind that A
actually indicates the closed operatorAp that, thanks to Corollary 2.9, coincides with
the differential operatorA onS . Using this identification we will henceforth say that
(A , Dp) is the infinitesimal generator of the semigroup {Pt }t>0 on L p.

Lemma 2.11 Assume that (1.3) be in force, and let 1 ≤ p ≤ ∞. Then:

(1) For any λ ∈ C such that �λ > 0, we have λ ∈ ρp(A );
(2) If λ ∈ C such that �λ > 0, then R(λ,A ) exists and for any f ∈ L p it is given by

the formula R(λ,A ) f = ∫∞
0 e−λt Pt f dt;

(3) For any �λ > 0 we have ||R(λ,A )||p→p ≤ 1
�λ

.

2.4 Small-time behaviour of the volume function

The small-time behaviour of the function V (t) was studied in the paper [41], where
it was shown that the class of operators (1.1) possesses an infinitesimal osculating
structure. For completeness of presentation we recall it in this subsection. We begin
with the following known result, see [35,41,45,46].

Proposition 2.12 The following are equivalent:

(i) condition K (t) > 0 for every t > 0;
(ii) Ker Q does not contain any non-trivial subspace which is invariant for B�;
(iii) Rank[Q, B Q, . . . , B N−1Q] = N. (Kalman rank condition)
(iv) the vector fields defined by Y0u = 〈B X ,∇u〉, Yi u = ∑N

i, j=1 ai j∂X j u, i =
1, . . . , N, where A = [ai j ] = Q1/2, satisfy the finite rank condition

Rank Lie[Y0, Y1, . . . , YN ](X) = N , ∀ X ∈ R
N .
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(v) in a suitable basis of R
N the matrices Q and B assume the following form

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

� � · · · � �

B1 � · · · � �

0 B2 � · · � �

· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 · · · Br �

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Q0 is a p0× p0 non-singular matrix, and B j is a p j × p j−1 matrix having
rank p j , j = 1, . . . , r , with p0 ≥ p1 ≥ · · · ≥ pr ≥ 1, and p0+ p1+· · ·+ pr =
N. The � blocks in the canonical form of B can be arbitrary matrices.

Let us now suppose that in a given basis of R
N the matrices Q and B are given as

in (v) of Proposition 2.12. Recall that Q0 is a p0 × p0 positive matrix. We form a new
matrix B̄ by replacing all the elements with a � in B with a zero matrix of the same
dimensions, i.e.,

B̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 0
B1 0 · · · 0 0
0 B2 · · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 · · · Br 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We recall that B j is a p j × p j−1 matrix having rank p j . If we denote by X =(
x (p0), x (p1), . . . , x (pr )

)
the generic point of R

N = R
p0 × R

p1 × · · · × R
pr , then the

differential operator associated to the matrices Q and B̄ is given by

¯K = tr
(

Q0D2
x (p0)

)
+

r∑

j=1

〈
B j x (p j−1),∇

x (p j )

〉
− ∂t . (2.7)

The fact that the blocks B j have maximal rank allows to easily check the condition
(iv) in Proposition 2.12, therefore also ¯K verifies the Hörmander’s condition (i)
in Proposition 2.12, with a matrix K̄ (t) defined as in (1.2) with B̄ in place of B.
Furthermore, ¯K is left-invariant with respect to the group law ◦ in Remark 2.3, in
which B has been replaced by B̄. We remark that tr B̄ = 0, and that B̄ is nilpotent,
therefore es B̄ is in fact a finite sum. One important aspect of the operator ¯K is that,
unlikeK , it possesses a homogeneous structure: it is invariant of degree 2with respect
to the group of anisotropic dilations δλ : R

N+1 −→ R
N+1 defined by

δλ(X , t) =
(
λx (p0), λ3x (p1), . . . , λ2r+1x (pr ), λ2t

)
. (2.8)
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We mention that it was proved in [41, Proposition 2.2] that a necessary and sufficient
condition for the existence of a family of non-isotropic dilations δλ associated with
the operator K in (1.1) is that B in (v) takes precisely the special form B̄. The
homogeneous dimension of (RN+1, ◦, δλ) is given by

D0 + 2 = p0 + 3p1 + · · · + (2r + 1)pr + 2. (2.9)

Returning to the general discussion, we consider the one-parameter group of
anisotropic dilations Dλ : R

N −→ R
N associated with the matrix B̄

Dλ(X) =
(
λx (p0), λ3x (p1), . . . , λ2r+1x (pr )

)
. (2.10)

The fact that δλ are group automorphisms with respect to ◦ is a consequence of the
following commutation property valid for any λ > 0 and τ ∈ R,

e−λ2τ B̄ = Dλe−τ B̄ Dλ−1 ,

(see [41, eq. (2.20)] and also [39]). From this, and the fact that tr B̄ = 0, one can see
that the positive definite matrix K̄ (t), defined in (1.2) with B̄ instead of B, satisfies

det(t K̄ (t)) = t D0 det(K̄ (1)).

Denoting with V̄ (t) the volume of the pseudoballs B̄t (X ,
√

t) associated with K̄ , we
thus conclude that we must have for every t > 0,

V̄ (t) = cN det(K̄ (1))1/2 t D0/2 = γ t D0/2. (2.11)

The result in [41, eq. (3.14) and Remark 3.1] gives us the following asymptotic.

Proposition 2.13 One has lim
t→0+

V (t)
V̄ (t)

= 1.

Proposition 2.13 and (2.11) motivate the following.

Definition 2.14 We call the number D0 in (2.9) the intrinsic dimension at zero of
the Hörmander semigroup {Pt }t>0. Note that it follows from (2.9) that it must be
D0 ≥ N ≥ 2.

3 Large time behaviour of the volume function and ultracontractivity

The analysis of the semigroup {Pt }t>0 revolves on the large time behaviour of the
volume function V (t). In this section we analyse this behaviour under the assumption
(1.3). Our main result, Proposition 3.1, plays a pervasive role in the rest of the paper
since: (1) it shows that V (t) grows at infinity at least linearly; and, (2) it says that
when at least one of the eigenvalues of the drift matrix B has a strictly positive real
part, then V (t) must blow up exponentially. In what follows we will make use of the
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equivalence (i)⇐⇒ (ii) in Proposition 2.12. The notation σ(B) indicates the spectrum
of B.

Proposition 3.1 Suppose that (1.3) hold. Then:

(i) there exists a constant c1 > 0 such that V (t) ≥ c1t for all t ≥ 1;
(ii) moreover, if max{�(λ) | λ ∈ σ(B)} = L0 > 0, there exists a constant c0 such

that V (t) ≥ c0eL0t for all t ≥ 1.

Proof As it will be evident from the proof, we first establish (ii) and then (i). Up to a
change of variables in R

N , we can assume that B∗ is in the following block-diagonal
real Jordan canonical form (see, e.g., [36, Theorem 3.4.5])

B� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Jn1(λ1)

. . . 0
Jnq (λq)

Cm1(a1, b1)

0
. . .

Cm p (ap, bp)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where σ(B) = σ(B�) = {λ1, . . . , λq , a1 ± ib1, . . . , ap ± ibp} with λk, a�, b� ∈ R

(b� 
= 0), n1 + · · · + nq + 2m1 + · · · + 2m p = N with nk, m� ∈ N, and the nk × nk

matrix Jnk (λk) and the 2m� × 2m� matrix Cm�
(a�, b�) are respectively in the form

Jnk (λk) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λk 1 0 . . . 0
0 λk 1 . . . 0

0 0
. . .

. . . 0
0 . . . 0 λk 1
0 0 . . . 0 λk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Cm� (a�, b�) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a� −b� 1 0 0 . . . . . . 0
b� a� 0 1 0 . . . . . . 0
0 0 a� −b� 1 0 . . . 0
0 0 b� a� 0 1 . . . 0
...

... 0 0
. . .

. . . 1 0
...

... 0 0
. . .

. . . 0 1
0 0 . . . . . . 0 0 a� −b�

0 0 . . . . . . 0 0 b� a�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since tr B =∑q
k=1 nkλk + 2

∑p
�=1 m�a� ≥ 0, we have two cases:

either L0 = max{λk, a�} > 0

or λk = 0 = a� ∀k ∈ {1, . . . , q}, � ∈ {1, . . . , p}.

Suppose L0 > 0. We are going to show that, for some C0 > 0, we have

det (t K (t)) ≥ C0e2L0t for all t ≥ 1. (3.1)

To do this, it is enough to show that

λM (t) ≥ Ce2L0t for all t ≥ 1, (3.2)
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where λM (t) is the largest eigenvalue of t K (t). In fact, since t �→ t K (t) is monotone
increasing in the sense ofmatrices, for t ≥ 1 all the eigenvalues of t K (t) are larger than
the minimum eigenvalue of K (1), which is strictly positive by Hörmander condition:
this tells us that (3.2) implies (3.1). To prove (3.2), we notice that at least one of the
following two possibilities occurs:

(a) there is k0 ∈ {1, . . . , q} such that λk0 = L0;
(b) there is �0 ∈ {1, . . . , p} such that a�0 = L0.

Suppose case (a) occurs. It is not restrictive to assume k0 = 1. Then, v0 =
(1, 0, . . . , 0) ∈ R

N is an eigenvector for B∗ with relative eigenvalue L0. Thus
es B�

v0 = eL0sv0, for all s ∈ R. From (ii) in Proposition 2.12we know that v0 /∈ Ker Q,
i.e. 〈Qv0, v0〉 > 0. Therefore, we have

λM (t) ≥ 〈t K (t)v0, v0〉 =
∫ t

0

〈
Qes B�

v0, es B�

v0

〉
ds

= 〈Qv0, v0〉
∫ t

0
e2L0s ds = e2L0t − 1

2L0
〈Qv0, v0〉 ,

which proves (3.2) in case (a). Suppose now case (b) occurs. As before, let us
assume also �0 = 1 (that is a1 = L0). If e1, e2 ∈ R

2m1 are the vectors e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), we denote the correspondent vectors in R

N by
v1 = (0, . . . , 0, e1, 0, . . . , 0), v2 = (0, . . . , 0, e2, 0, . . . , 0). With these notations, we
have that span{v1, v2} is an invariant subspace for B�. From (ii) in Proposition 2.12
we know that span{v1, v2} is not contained in Ker Q. Moreover, denoting by J the
simplectic matrix restricted to span{v1, v2} such that Jv1 = v2 and Jv2 = −v1, we
have

es B�

v = eL0s (cos(b1s)v + sin(b1s)Jv) for all s ∈ R and for any v ∈ span{v1, v2}.
(3.3)

Hence, for v ∈ span{v1, v2} with unit norm, we have

λM (t) ≥ 〈t K (t)v, v〉 =
∫ t

0

〈
Qes B�

v, es B�

v
〉

ds

=
∫ t

0
e2L0s (cos2(b1s) 〈Qv, v〉 + sin2(b1s) 〈Q Jv, Jv〉 + sin(2b1s) 〈Qv, Jv〉) ds

= e2L0t

4L0

(

〈Q (cos(b1t)v + sin(b1t)Jv) , (cos(b1t)v + sin(b1t)Jv)〉 + 1

L2
0 + b21

〈Qvt , vt 〉
)

− 1

4L0
(〈Qv, v〉 + 〈Q Jv, Jv〉) − L0

4(L2
0 + b21)

(〈Qv, v〉 − 〈Q Jv, Jv〉)

+ b1
2(L2

0 + b21)
〈Qv, Jv〉 ,

where we have denoted vt = (L0 cos(b1t) + b1 sin(b1t))v − (b1 cos(b1t) −
L0 sin(b1t))Jv. The fact that v and Jv cannot belong both to Ker Q implies that,
for any t > 0, also vt and cos(b1t)v + sin(b1t)Jv cannot be in Ker Q at the same
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time. From this, using also Q ≥ 0 and b1 
= 0, we can deduce the existence of c̄ > 0
such that

〈Q (cos(b1t)v + sin(b1t)Jv) , (cos(b1t)v + sin(b1t)Jv)〉 + 1

L2
0 + b21

〈Qvt , vt 〉 ≥ c̄,

from which we infer

λM (t) ≥ c̄

8L0
e2L0t for large t.

This proves (3.2) and concludes case (b). This establishes (ii) in the statement of the
proposition.
We next turn to proving (i). Suppose that

λk = 0 = a� ∀k ∈ {1, . . . , q}, � ∈ {1, . . . , p}.

Since N ≥ 2, at least one of the following possibilities must occur:

(1) there are two linearly independent eigenvectors of B∗ with eigenvalue 0;
(2) there exists k0 ∈ {1, . . . , q} such that nk0 ≥ 2;
(3) there exists �0 ∈ {1, . . . , p} such that m�0 ≥ 1.

In each of these three cases we are going to show that, for some C1 > 0, we have

det (t K (t)) ≥ C1t2 for all t ≥ 1. (3.4)

The case (1) is the easiest since we have two linearly independent eigenvectors
v0,1, v0,2 such that es B�

v0, j = v0, j for all s ∈ R and j ∈ {1, 2}. Furthermore,
for any v ∈ span{v0,1, v0,2}, 〈Qv, v〉 > 0 since the eigenvectors cannot belong to
Ker Q by (ii). Hence,

〈t K (t)v, v〉 =
∫ t

0

〈
Qes B�

v, es B�

v
〉

ds = t 〈Qv, v〉

for all t > 0 and v ∈ span{v0,1, v0,2}. Then, the symmetric matrix t K (t) has at least
two eigenvalues growing as t . By monotonicity the other eigenvalues are bounded
below by a positive constant for t ≥ 1. This yields (3.4).

Suppose case (2) occurs. Again, it is not restrictive to assume k0 = 1. Then, we
have n1 ≥ 2 and we know that

es Jn1 (0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 s s2
2 . . . sn1−1

(n1−1)!
0 1 s

. . . sn1−2

(n1−2)!
0 0

. . .
. . .

. . .

0 . . . 0 1 s
0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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From this we infer that es B�
en1 = sn1−1

(n1−1)!e1 + o(sn1−1) as s → +∞, where we have

denoted by e j the canonical basis of R
N . We recall that, being e1 an eigenvector for

B�, we have 〈Qe1, e1〉 > 0. Therefore, we obtain

〈
Qes B�

en1 , es B�

en1

〉
= 〈Qe1, e1〉 s2n1−2

(n1 − 1)!2 + o(s2n1−2)

as s → +∞. In particular, for s ≥ s0, we deduce

〈
Qes B�

en1 , es B�

en1

〉
≥ cs2n1−2,

for some positive constant c. This implies

〈
t K (t)en1, en1

〉 ≥
∫ t

s0

〈
Qes B�

en1 , es B�

en1

〉
ds ≥ c

∫ t

s0
s2n1−2 ds ≥ c̃t2n1−1

for large t . This tells us that λM (t) ≥ c̃t2n1−1, from which (3.4) follows since n1 ≥ 2.
We are left with case (3). As before, assume �0 = 1 and denote by v1 =
(0, . . . , 0, e1, 0, . . . , 0), v2 = (0, . . . , 0, e2, 0, . . . , 0) the vectors in R

N which corre-
spond to the canonical vectors e1, e2 ∈ R

2m1 . We have that span{v1, v2} is an invariant
subspace for B�. From (ii) in Proposition 2.12 we know that span{v1, v2} is not con-
tained in Ker Q. Thus, at least one of 〈Qv1, v1〉 and 〈Qv2, v2〉 is strictly positive. With
the same notations as in (3.3), for v ∈ span{v1, v2} we find

es B�

v = cos(b1s)v + sin(b1s)Jv.

Hence, for all t > 0 we have

〈t K (t)v, v〉 =
∫ t

0

〈
Qes B�

v, es B�

v
〉

ds

= 〈Qv, v〉
∫ t

0
cos2(b1s) ds + 〈Q Jv, Jv〉

∫ t

0
sin2(b1s) ds

+ 2 〈Qv, Jv〉
∫ t

0
cos(b1s) sin(b1s) ds

=
(

t

2
+ sin(2b1t)

4b1

)

〈Qv, v〉 +
(

t

2
− sin(2b1t)

4b1

)

〈Q Jv, Jv〉

+ 1 − cos(2b1t)

2b1
〈Qv, Jv〉 .

Exploiting the fact that 〈Qv, v〉 + 〈Q Jv, Jv〉 = 〈Qv1, v1〉 + 〈Qv2, v2〉 > 0, we can
make the quantity 〈t K (t)v, v〉 ≥ ct for large t and for any unit vector v ∈ span{v1, v2}.
This shows the validity of (3.4), thus completing the proof. ��
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Remark 3.2 Wemention explicitly that, while (i) of Proposition 3.1 failswhen tr B < 0
(see e.g. the Ex. 2 in Fig. 1 below), part (ii) instead continues to be true under such
assumption. We refer the reader to [13, Section 2] for the study of the behaviour of
V (t) for large t regardless on the sign assumption of tr B.

Proposition 3.1 has the following basic consequence.

Corollary 3.3 Suppose that (1.3) hold. Then, limt→∞ V (t) = ∞.

Proof Recalling that t → t K (t) is monotone increasing in the sense of matrices, we
have that t → V (t) is also a monotone function. Then, the conclusion immediately
follows from Proposition 3.1. ��

3.1 Intrinsic dimension at infinity

In dealing with the general class (1.1) the first question that comes to mind is: what
number occupies the role of the dimension N in the analysis of the semigroup {Pt }t>0?
This question is central since, as one can see in Fig. 1, the behaviour for large times
of the volume function V (t) = VolN (Bt (X ,

√
t)) can be quite diverse, depending on

the structure of the matrix B, and in fact non-doubling in general. The next definition
introduces a notion which allows to successfully handle this matter.

Definition 3.4 Consider the set �∞
de f= {

α > 0
∣
∣
∫∞
1

tα/2−1

V (t) dt < ∞}. We call the
number D∞ = sup�∞ the intrinsic dimension at infinity of the semigroup {Pt }t>0.

When �∞ = ∅ we set D∞ = 0. If �∞ 
= ∅ we clearly have 0 < D∞ ≤ ∞.

Remark 3.5 Some comments are in order:

(1) when A = �, the standard Laplacian in R
N , then V (t) = ωN t N/2. In such case,

α ∈ �∞ if and only if 0 < α < N , and thus D∞ = N ;
(2) if the operator K in (1.1) admits a homogeneous structure (as ¯K in Sect. 2.4),

we have V (t) = γN t D0/2, where D0 is the intrinsic dimension at zero of the
semigroup. In such case, we have D∞ = D0;

(3) more in general, if there exist constants T , γ, D > 0 such that V (t) ≥ γD t D/2

for every t ≥ T , then we must have (0, D) ⊂ �∞, and therefore D∞ ≥ D; from
this observation and (i) in Proposition 3.1 we infer D∞ ≥ 2;

(4) the reader should note that the assumption �∞ 
= ∅ hides a condition on the
matrix B in (1.1). For instance, when Q = IN and B = −IN , then K u =
�u−〈X ,∇u〉−∂t u is theOrnstein–Uhlenbeckoperator, seeEx.2 inFig. 1 below. In
such case we have V (t) = cN (1−e−2t )N , and therefore in particular lim

t→∞ V (t) =
cN > 0. It follows that �∞ = ∅ and thus D∞ = 0. The same happens with
the Smoluchowski-Kramers’ operator in Ex.5 below. In both cases the theory
developed in this paper does not apply (we will return to this aspect in a future
study);

(5) it can happen that D∞ < D0, see Ex.4;
(6) finally, one can have D∞ = ∞, see Ex.6+.
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Ex. K V (t) tr(B) N D0 D∞

(1) Δ − ∂t
Heat

ωN t
N
2 0 N N N

(2) Δ X, ∂t
Ornstein-Uhlenbeck

ωN2−N
2 (1 − e−2t)

N
2 −N N N 0

(3) Δv + v,∇x ∂t
Kolmogorov

ω2n12−n
2 t2n 0 2n 4n 4n

(4) ∂vv − x∂v + v∂x − ∂t

Kramers
π t2

4 + 1
8 (cos(2t) − 1)

1
2 0 2 4 2

(5) ∂vv − 2(v + x)∂v + v∂x − ∂t

Smoluchowski-Kramers

π
4
√
2

e−4t + 1 − 2e−2t(2 − cos(2t))
1
2 −2 2 4 0

(6+) Δv + v,∇v + v,∇x ∂t
Kolmogorov with friction

ω2n 2et − t
2 − 1 + t

2e
2t − e2t

n
n 2n 4n ∞

(6−) Δv v, ∇v + v,∇x ∂t
degenerate Ornstein-Uhlenbeck

ω2n 2e−t + t
2 − 1 − t

2e
−2t − e−2t n −n 2n 4n 2n

Fig. 1 Some significant examples

In the above table we illustrate the different behaviours of the volume function V (t)
on a significant sample of operators. The items in red refer to situations in which the
drift matrix satisfies tr(B) ≥ 0. This is the situation covered by this paper.

3.2 Ultracontractivity

We next establish a crucial geometric property of the Hörmander semigroup that plays
a pervasive role in the remainder of our work. The reader should note that we do not
assume (1.3) in Proposition 3.6. As a consequence, such result alone does not imply
a decay of the semigroup. In this respect, see Corollary 3.7.

Proposition 3.6 (L p → L∞ Ultracontractivity) Let 1 ≤ p < ∞ and f ∈ L p. For
every X ∈ R

N and t > 0 we have

|Pt f (X)| ≤ cN ,p

V (t)1/p
|| f ||p,

for a certain constant cN ,p > 0.

Proof Applying Hölder’s inequality to Pt f (X) = ∫
RN p(X , Y , t) f (Y )dY , we find

|Pt f (X)| ≤ || f ||p

(∫

RN
p(X , Y , t)p′

dY

) 1
p′

,

with 1/p + 1/p′ = 1. Using (2.1), (2.6) and the change of variable Z =
(t K (t))−1/2(Y − et B X), it is now easy to recognise that for any 1 ≤ r < ∞, one has

(∫

RN
p(X , Y , t)r dY

) 1
r = cN

V (t)

(∫

RN
exp

(

−rmt (X , Y )2

4t

)

dY

) 1
r

= cN

V (t)
(det t K (t))

1
2r

(∫

RN
exp

(

−r |Z |2
4

)

d Z

) 1
r

.
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In view of (2.4) we infer that there exists a universal constant cN ,r > 0 such that

(∫

RN
p(X , Y , t)r dY

) 1
r = cN ,r

V (t)1− 1
r

. (3.5)

The desired conclusion now follows taking r = p′ in (3.5). ��
For later use, we also record the following formula, dual to (3.5), which easily

follows by (2.3)

(∫

RN
p(X , Y , t)r d X

) 1
r = cN ,r e−t tr B

r

V (t)1− 1
r

.

Corollary 3.7 Assume (1.3) and let 1 ≤ p < ∞. For every f ∈ L p and X ∈ R
N , we

have

lim
t→∞ |Pt f (X)| = 0.

Proof By Proposition 3.6 we have for every X ∈ R
N and t > 0

|Pt f (X)| ≤ cN

V (t)1/p
|| f ||p.

Combining this estimate with Corollary 3.3 we find

lim
t→∞ |Pt f (X)| ≤ cN || f ||p lim

t→∞
1

V (t)1/p
= 0.

��

4 Sobolev spaces

In the recent work [29] we developed a fractional calculus for the operatorsK in (1.1)
and solved the so-called extension problem. This is a generalisation of the famous
work by Caffarelli and Silvestre for the fractional Laplacian (−�)s , see [14]. As a
by-product of our work, we obtained a nonlocal calculus for the “time-independent”
part of the operators K , namely the second order partial differential operator

A u = tr(Q∇2u) + 〈B X ,∇u〉 .

It is worth mentioning here that boundary value problems for these elliptic-parabolic
operators were studied by Fichera in his pioneering works [23,24].

Since the nonlocal operators (−A )s play a central role in the present work we
now recall their definition from [29, Definition 3.1]. Hereafter, when considering the
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action of the operators A or (−A )s on a given L p, the reader should keep in mind
Remark 2.10.

Definition 4.1 Let 0 < s < 1. For any f ∈ S we define the nonlocal operator (−A )s

by the following pointwise formula

(−A )s f (X) = − s

�(1 − s)

∫ ∞

0
t−(1+s) [Pt f (X) − f (X)] dt, X ∈ R

N . (4.1)

Wemention that it was shown in [29] that the right-hand side of (4.1) is a convergent
integral (in the sense of Bochner) in L∞, and also in L p for any p ∈ [1,∞] when
(1.3) holds. We note that, when A = �, it is easy to see that formula (4.1) allows to
recover M. Riesz’ definition in [58] of the fractional powers of the Laplacian

(−�)s f (X) = s22s−1�
( N+2s

2

)

π
N
2 �(1 − s)

∫

RN

2u(X) − u(X + Y ) − u(X − Y )

|Y |N+2s
dY .

Definition (4.1) comes from Balakrishnan’s seminal work [5]. The nonlocal operators
(4.1) enjoy the following semigroup property (see [5]; [31, Section 2]).

Proposition 4.2 Let s, s′ ∈ (0, 1) and suppose that s + s′ ∈ (0, 1]. Then, for every
f ∈ S we have

(−A )s+s′
f = (−A )s ◦ (A )s′

f .

For any given 1 ≤ p < ∞, and any 0 < s < 1, we denote by

Dp,s = { f ∈ L p | (−A )s f ∈ L p},

the domain of (−A )s in L p. The operator (−A )s can be extended to a closed operator
on its domain, see [5, Lemma 2.1]. Therefore, endowed with the graph norm

|| f ||Dp,s

de f= || f ||p + ||(−A )s f ||p,

Dp,s becomes a Banach space. The next lemma shows that, when (1.3) holds, then
S ⊂ Dp,s .

Lemma 4.3 Assume (1.3), and let 0 < s < 1. Given 1 ≤ p ≤ ∞, one has

(−A )s(S ) ⊂ L p.

Proof In view of (4.1) we have

||(−A )s f ||p ≤ s

�(1 − s)

∫ ∞
0

t−(1+s)||Pt f − f ||pdt

= s

�(1 − s)

{∫ 1

0
t−(1+s)||Pt f − f ||pdt +

∫ ∞
1

t−(1+s)||Pt f − f ||pdt

}

.
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Thanks to Lemma 2.6 we now have for some universal constant C > 0,

∫ 1

0
t−(1+s)||Pt f − f ||pdt ≤ C ||A f ||p

∫ 1

0

dt

ts
< ∞.

On the other hand, by (iv) in Lemma 2.5 we know that, under the hypothesis (1.3), Pt

is a contraction in L p. We thus obtain
∫ ∞

1
t−(1+s)||Pt f − f ||pdt ≤ 2|| f ||p

∫ ∞

1

dt

t1+s
< ∞.

This proves the desired conclusion. ��
We now use the nonlocal operators (−A )s to introduce the functional spaces

naturally attached to the operator A . These spaces involve a fractional order of dif-
ferentiation that is intrinsically calibrated both on the directions of ellipticity of the
second order part of (1.1), as well as on the drift.

Definition 4.4 ( Sobolev spaces) Assume (1.3), and let 1 ≤ p < ∞ and 0 < s < 1.

We define the Sobolev space as L 2s,p = S
|| ||Dp,s .

Remark 4.5 Some comments are in order:

(i) When Q = IN and B = ON , and thus A = �, the space L 2s,p coincides, for
1 < p < ∞ and s = 1/2, with the classical Sobolev space W 1,p = { f ∈ L p |
∇ f ∈ L p}, endowedwith the usual norm || f ||W 1,p = || f ||L p +||∇ f ||L p . In other
words, one hasL 1,p = W 1,p, for 1 < p < ∞. This follows from the well-known

fact that W 1,p = S
|| ||W1,p (Friedrich’s mollifiers, see [27]), combined with the

L p continuity of the singular integrals (Riesz transforms) in the range 1 < p < ∞,
see [61, Ch. 3]. This implies the double inequality

Ap‖�1/2 f ‖p ≤ ‖∇ f ‖p ≤ Bp‖�1/2 f ‖p, f ∈ S .

(ii) Wemention that such inequality, and therefore the identityL 1,p = W 1,p, continue
to be valid on any complete Riemannian manifold with Ricci lower bound Ric ≥
−κ , where κ ≥ 0. This was proved by Bakry in [4]. A generalisation to the larger
class of sub-Riemannian manifolds with transverse symmetries was subsequently
obtained in [6].

(iii) As a final comment we note that, when p = 2, and again A = �, then the space
L 2s,p coincides with the classical Sobolev space of fractional order H2s , see e.g.
[44] or [2].

ByLemma4.3 andDefinition4.4weknow thatL 2s,p ⊆ Dp,s . Thenext proposition
says that also the reverse inclusion holds true (we refer to [30, Proposition 2.13] for
the proof).

Proposition 4.6 Assume (1.3). Let 0 < s < 1 and p ≥ 1. We have

Dp,s = L 2s,p.
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We close this section by recalling the result from [29] that will be needed in the
next one. Given 0 < s < 1, let a = 1−2s. The extension problem for (−A )s consists
in the following degenerate Dirichlet problem in the variables (X , z) ∈ R

N+1+ , where
X ∈ R

N and z > 0:

{
AaU

def= A U + ∂zzU + a
z ∂zU = 0, in R

N+1+ ,

U (X , 0) = f (X) X ∈ R
N ,

(4.2)

where f ∈ S . We note that, since s ∈ (0, 1), the relation a = 1 − 2s gives a ∈
(−1, 1), and that, in particular, a = 0 when s = 1/2. For the following Poisson
kernel for the problem (4.2), and for the subsequent Theorem 4.7, one should see [29,
Def. 5.1 and Theor. 5.5],

P(a)(X , Y , z) = 1

21−a�( 1−a
2 )

∫ ∞

0

z1−a

t
3−a
2

e− z2
4t p(X , Y , t)dt, X , Y ∈ R

N , z > 0.

(4.3)
The next result generalises the famous one by Caffarelli and Silvestre in [14] for

the nonlocal operator (−�)s .

Theorem 4.7 The function U (X , z) = ∫
RN P(a)(X , Y , z) f (Y )dY , belongs to

C∞(RN × (0,∞)) and solves the extension problem (4.2). By this we mean that
AaU = 0 in R

N+1+ , and we have in L∞

lim
z→0+U (·; z) = f . (4.4)

Moreover, we also have in L∞

− 2−a�
( 1−a

2

)

�
( 1+a

2

) lim
z→0+za∂zU (·, z) = (−A )s f . (4.5)

If furthermore one has tr B ≥ 0, then the convergence in (4.4), (4.5) is also in L p for
any 1 ≤ p ≤ ∞.

5 The key Littlewood–Paley estimate

In the Hardy–Littlewood theory the weak L1 continuity of the maximal function
occupies a central position. It is natural to expect that such result play a similar role
for the operators in the general class (1.1), but because of the intertwining of the X and
t variables it is not obvious how to select a “good” maximal function. At first it seems
natural to consider M f (X) = sup

t>0
|Pt f (X)|. But when B 
= ON in (1.1), because

of the lack of symmetry of the semigroup Pt , estimatingM f presents an obstruction
connected with the mapping properties of the Littlewood–Paley function that controls
it. We have been able to circumvent this difficulty by combining a far-reaching idea of
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Stein in [60] with our work in [29]. In this respect, the case s = 1/2 of Theorem 4.7
provides the main technical tool to bypass the above mentioned difficulties connected
with Pt . It will lead us to Theorem 5.5, which is the main result of this section.

Since in what follows we are primarily interested in the nonlocal operator (−A )1/2

(the case a = 0 in Theorem 4.7), we will focus our attention on the corresponding

Poisson kernel, which for ease of notation we henceforth denote by P(X , Y , z)
de f=

P(0)(X , Y , z). In such case, formula (4.3) reads

P(X , Y , z) = 1√
4π

∫ ∞

0

z

t3/2
e− z2

4t p(X , Y , t)dt, X , Y ∈ R
N , z > 0. (5.1)

Definition 5.1 We define the Poisson semigroup as follows

Pz f (X) =
∫

RN
P(X , Y , z) f (Y )dY , f ∈ S .

Using (5.1) and exchanging the order of integration in the above definition, we obtain
the following useful representation of the semigroup Pz in terms of the Hörmander
semigroup Pt

Pz f (X) = 1√
4π

∫ ∞

0

z

t3/2
e− z2

4t Pt f (X)dt . (5.2)

This is of course an instance of Bochner’s subordination, see [7]. We note in passing
that, when the operator A = �, from (5.2) we recover the classical Poisson kernel
for the half-space R

N+1+ , see [61, (15), p.61],

P(X , Y , z) = �( N+1
2 )

π
N+1
2

z

(z2 + |X − Y |2) N+1
2

.

Some basic facts that we need about {Pz}z>0 are contained in the next result.

Lemma 5.2 The following properties hold:

(i) For every X ∈ R
N and z > 0 we have Pz1(X) = 1;

(ii) Pz : L∞ → L∞ with ||Pz||∞→∞ ≤ 1;
(iii) let 1 ≤ p < ∞. If (1.3) holds, then Pz : L p → L p with ||Pz||p→p ≤ 1;

(iv) let f ∈ S . Then, limz→0+ Pz f (X)− f (X)
z = (−A )1/2 f (X);

(v) The function U (X , z) = Pz f (X) belongs to C∞(RN+1+ ) and it satisfies the
partial differential equation ∂zzU + A U = 0. Moreover, lim

z→0+ U (·, z) = f in

L∞ and in L p for every 1 ≤ p < ∞, when (1.3) holds.

Proof The proof of (i) follows by taking a = 0 in [29, Proposition 5.2]. (ii) is a direct
consequence of (i). To establish (iii) we use (5.2), that gives

||Pz f ||p ≤ 1√
4π

∫ ∞

0

z

t3/2
e− z2

4t ||Pt f ||pdt ≤ || f ||p√
4π

∫ ∞

0

z

t3/2
e− z2

4t dt = || f ||p,
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where in second inequality we have used (iv) in Lemma 2.5, and in the last equality
the fact that

1√
4π

∫ ∞

0

z

t3/2
e− z2

4t dt = 1.

The properties (iv) and (v) follow from the case a = 0 of Theorem 4.7. ��
Remark 5.3 We note explicitly that (iv) in Lemma 5.2 says, in particular, that the
infinitesimal generator of Pz is the nonlocal operator (−A )1/2, i.e., Pz = ez

√−A .
In the case when A = � one should see the seminal work [62], where an extensive
use of the Poisson semigroup was made in connection with smoothness properties of
functions.

Given a reasonable function f (for instance, f ∈ S ) we now introduce its Poisson
radial maximal function as follows

M � f (X)
de f= sup

z>0
|Pz f (X)|, X ∈ R

N . (5.3)

Lemma 5.4 There exists a universal constant A > 0 such that

M � f (X) ≤ A sup
t>0

∣
∣
∣
∣
1

t

∫ t

0
Ps f (X)ds

∣
∣
∣
∣ . (5.4)

Proof Adapting an idea in [60, p. 49], we can write (5.2) as

Pz f (X) =
∫ ∞

0
g(z, t)

d

dt
(t F(t))dt, (5.5)

where g(z, t) = zt−3/2√
4π

e− z2
4t , and we have let F(t) = 1

t

∫ t
0 Ps f (X)ds. Notice that by

(ii) in Lemma 2.5, we can bound |F(t)| ≤ || f ||∞. Also observe that tg(z, t) → 0 as
t → ∞, and that t → t

∣
∣ ∂g

∂t (z, t)
∣
∣ ∈ L1(0,∞). We can thus integrate by parts in (5.5),

obtaining

|Pz f (X)| =
∣
∣
∣
∣

∫ ∞

0
t
∂g

∂t
(z, t)F(t)dt

∣
∣
∣
∣ ≤ A(z) sup

t>0

∣
∣
∣
∣
1

t

∫ t

0
Ps f (X)ds

∣
∣
∣
∣ ,

with

A(z) =
∫ ∞

0
t
∣
∣∂g

∂t
(z, t)

∣
∣dt < ∞.

To complete the proof it suffices to observe that A(z) ≤ A = 7/2 for every z > 0.
This follows from the fact that t ∂g

∂t (z, t) = ( z2
t − 3

2

)
g(z, t), and that

∫∞
0 g(z, t)dt = 1,

and
∫∞
0

z2
t g(z, t)dt = 2. ��
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The next is the main result in this section. It provides the key maximal theorem for
the class (1.1). As far as we know, such tool has so far been missing in the existing
literature.

Theorem 5.5 Assume (1.3). Then, the Poisson maximal function (5.3) enjoys the fol-
lowing properties: (a) there exists a universal constant A > 0 such that, given f ∈ L1,
for every λ > 0 one has

|{X ∈ R
N | M � f (X) > λ}| ≤ 2A

λ
|| f ||L1;

(b) let 1 < p ≤ ∞, then there exists a universal constant Ap > 0 such that for any
f ∈ L p one has

||M � f ||L p ≤ Ap|| f ||L p .

Proof (a) In view of (iv) in Lemma 2.5, we know that {Pt }t>0 is contractive in L1 and
in L∞. Furthermore, by Corollary 2.7 it is a strongly continuous semigroup in L p, for
every 1 ≤ p < ∞. We can thus apply the powerful Hopf–Dunford–Schwartz ergodic
theorem, see [20, Lemma 6, p. 153], and infer that, if f ∈ L1, then for every λ > 0
one has

|{X ∈ R
N | f �(X) > λ}| ≤ 2

λ

∫

{X∈RN || f (X)|>λ/2}
| f (X)|d X ≤ 2

λ
|| f ||1, (5.6)

where we have let

f �(X)
de f= sup

t>0

∣
∣
∣
∣
1

t

∫ t

0
Ps f (X)ds

∣
∣
∣
∣ .

On the other hand, (5.4) in Lemma 5.4 gives

|{X ∈ R
N | M � f (X) > λ}| ≤ |{X ∈ R

N | f �(X) > λ/A}| ≤ 2A

λ
|| f ||1,

where in the second inequality we have used (5.6).
(b) We observe that from (ii) in Lemma 5.2 we trivially have

M � : L∞ −→ L∞, with ||M �||L∞→L∞ ≤ 1.

By (a) and the theorem of real interpolation of Marcinckiewicz (see
[61, Chap. 1, Theor. 5]), we conclude that (b) is true for some Ap > 0. ��

6 The fractional integration operatorI˛

In the classical theory of Hardy–Littlewood–Sobolev the M. Riesz’ operator of frac-
tional integration plays a pivotal role. We recall, see [58] and also [61, Chap. 5], that
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given a number 0 < α < N , the latter is defined by the formula

Iα f (X) = �( N−α
2 )

2απ
N
2 �(α

2 )

∫

RN

f (Y )

|X − Y |N−α
dY . (6.1)

The essential feature of such operator is that it provides the inverse of the fractional
powers of the Laplacian, in the sense that for any f ∈ S one has f = Iα ◦(−�)α/2 f .
Its role in the Hardy–Littlewood theory is perhaps best highlighted by the following
interpolating inequality which goes back to [61, Chapter 5], see also [33]. Suppose
1 ≤ p < n/α and that f ∈ L p. Then, one has for any ε > 0,

|Iα f (x)| ≤ C(n, α, p)
(

M f (x)εα + || f ||p ε
−( n

p −α)
)

. (6.2)

The usefulness of the inequality (6.2) is multi-faceted. One the one hand, when p >

1, combined with the strong L p continuity of the maximal operator, it shows that
Iα : L p → Lq , provided that 1/p − 1/q = α/n. On the other hand, (6.2) allows to
immediately establish the geometric weak end-point result W 1,1 ↪→ L

n
n−1 ,∞. This

implies, in turn, the isoperimetric inequality P(E) ≥ Cn|E | n
n−1 and, equivalently,

the strong geometric Sobolev embedding, BV ↪→ L
n

n−1 , where P(E) denotes De
Giorgi’s perimeter and BV the subspace of L1 of functions with bounded variation
(for these aspects we refer to [15], where these ideas were developed in the general
framework of Carnot–Carthéodory spaces).

In this section, we use the Poisson semigroup {Pz}z>0 in Definition 5.1 to intro-
duce, in our setting, the counterpart of the potential operators (6.1), see Lemma 6.2.
Theorem 6.3 is the first main result of the section. It shows that the operatorI2s inverts
the nonlocal operator (−A )s . In the next definition the reader needs to keep in mind
the number D∞ in Definition 3.4.

Definition 6.1 Let 0 < α < D∞. Given f ∈ S , we define the Riesz potential of
order α as follows

Iα f (X) = 1

�(α/2)

∫ ∞

0
tα/2−1Pt f (X)dt .

Let us observe that for every X ∈ R
N the integral in Definition 6.1 converges

absolutely. To see this we write

∫ ∞

0
tα/2−1Pt f (X)dt =

∫ 1

0
tα/2−1Pt f (X)dt +

∫ ∞

1
tα/2−1Pt f (X)dt .

The integral on [0, 1] is absolutely convergent for any α > 0 since, using (ii) in
Lemma 2.5, we can bound |Pt f (X)| ≤ ||Pt f ||∞ ≤ || f ||∞. For the integral on [1,∞)

we use the ultracontractivity of Pt in Proposition 3.6, which gives for any X ∈ R
N

and t > 0,
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∫ ∞

1
tα/2−1|Pt f (X)|dt ≤ cN || f ||1

∫ ∞

1

tα/2−1

V (t)
< ∞,

since 0 < α < D∞. In the next lemma, using Bochner’s subordination, we recall
a useful alternative expression of the potential operators Iα based on the Poisson
semigroup {Pz}z>0.

Lemma 6.2 Let 0 < α < D∞. For any f ∈ S one has

Iα f (X) = 1

�(α)

∫ ∞

0
zα−1Pz f (X)dz.

Proof We have from (5.2)

∫ ∞

0
zα−1Pz f (X)dz = 1√

4π

∫ ∞

0
zα−1

∫ ∞

0

z

t3/2
e− z2

4t Pt f (X)dtdz

= 1√
4π

∫ ∞

0

1

t3/2

(∫ ∞

0
zα+1e− z2

4t
dz

z

)

Pt f (X)dt

= 2α−1�(α+1
2 )√

π

∫ ∞

0
tα/2−1Pt f (X)dt = 2α−1�(α+1

2 )�(α/2)√
π

Iα f (X)

= �(α)Iα f (X),

where in the last equality we have used, with x = α/2, the well-known duplication
formula for the gamma function 22x−1�(x)�(x + 1/2) = √

π�(2x), see e.g. [43,
formula (1.2.3)]. ��

The next basic result plays a central role for the remainder of this paper. It shows
that the integral operator Iα is the inverse of the nonlocal operator (−A )α/2.

Theorem 6.3 Suppose that (1.3) hold, and let 0 < s < 1. Then, for any f ∈ S we
have

f = I2s ◦ (−A )s f = (−A )s ◦ I2s f .

Proof We only prove the first equality, the second is established similarly. It will be
useful in what follows to adopt the following alternative expression, see [5], of the
nonlocal operator (4.1)

(−A )s f (X) = sin(πs)

π

∫ ∞

0
λs−1R(λ,A )(−A ) f (X)dλ

= sin(πs)

π

∫ ∞

0
λs−1(I − λR(λ,A )) f (X)dλ, (6.3)

where we have denoted by R(λ,A ) = (λI − A )−1 the resolvent of A in L∞
0

(we are now identifying A with A∞, the infinitesimal generator of {Pt }t>0 in L∞
0 ,

see Remarks 2.8, 2.10 and Lemma 2.11). We remark that either one of the integrals
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in the right-hand side of (6.3) converge in L∞. For instance, in the first integral
there is no issue near λ = 0 since s > 0, whereas (3) in Lemma 2.11 gives
λs−1||R(λ,A )(−A ) f ||∞ ≤ λs−2||A f ||∞, which is convergent near ∞. Keeping
in mind that by (2) in Lemma 2.11 we have R(λ,A ) f = ∫∞

0 e−λt Pt f dt , we can
alternatively express (6.3) as follows

(−A )s f (X) = sin(πs)

π

∫ ∞

0

∫ ∞

0
λs−1e−λτ Pτ (−A ) f (X)dλdτ. (6.4)

If we now combine Definition 6.1 with (6.4), we find

I2s
(
(−A )s f

)
(X) = sin(πs)

π�(s)

∫ ∞

0

(∫ ∞

0
λse−λτ

(∫ ∞

0
t s Pt+τ (−A ) f (X)

dt

t

)
dλ

λ

)

dτ

= sin(πs)

π�(s)

∫ ∞

0

∫ ∞

0
us Pτ(1+u)(−A ) f (X)

(∫ ∞

0
λse−λτ τ s dλ

λ

)
du

u
dτ

= sin(πs)

π

∫ ∞

0
us
∫ ∞

0
Pτ(1+u)(−A ) f (X) dτ

du

u

= − sin(πs)

π

∫ ∞

0

us−1

1 + u
du
∫ ∞

0
PρA f (X)dρ,

where in the innermost integral we have made the change of variables ρ = τ(1 + u).
We notice that one can justify the above chain of equalities by a standard application of
Fubini and Tonelli theorems once we recognize that, for large t , the ultracontractivity
and the fact that D∞ ≥ 2 > 2s ensure the right summability properties. We nowmake
the key observation that (b) and (c) in Lemma 2.4 and the assumption (1.3) imply, in
view of Corollary 3.7,

∫ ∞

0
A Pρ f (X)dρ =

∫ ∞

0

d

dρ
Pρ f (X)dρ = − f (X).

In order to reach the desired conclusion we are only left with observing, see e.g. [63,
3.123 on p.105], that

∫∞
0

us−1

1+u du = �(s)�(1 − s) = π
sin(πs) . ��

7 An intrinsic embedding theorem of Sobolev type

In this section we prove our main embedding of Sobolev type, Theorem 7.5. Our
strategy follows the classical approach to the subject.We first establish the key Hardy–
Littlewood–Sobolev type result, Theorem 7.4. With such tool in hands, we are easily
able to obtain the Sobolev embedding, Theorem 7.5. We note that these results do not
tell the whole story since, as noted in Remark 7.2, their main assumption (7.1) implies
necessarily that D0 ≤ D∞. But we have seen in Ex.4 in Fig. 1 that there exist operators
of interest in physics for which we have instead D0 > D∞. These cases are handled
by Theorems 7.6 and 7.7. Since we will need to have in place all the results from the
previous sections, hereafter we assume without further mention that the assumption
(1.3) be in force. Our first result shows a basic property of the Poisson semigroup.
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Lemma 7.1 (Ultracontractivity of Pz = ez
√−A ) Suppose that there exist numbers

D, γD > 0 such that for every t > 0 one has

V (t) ≥ γD t D/2. (7.1)

If 1 ≤ p < ∞ one has for f ∈ L p, X ∈ R
N and any z > 0,

|Pz f (X)| ≤ C1

zD/p
|| f ||p,

where C1 = C1(N , D, p) > 0.

Proof From (5.2), Proposition 3.6 and (7.1) we find

|Pz f (X)| ≤ cN ,p√
4π

|| f ||p

∫ ∞

0

z

t1/2V (t)1/p
e− z2

4t
dt

t

≤ C || f ||p

∫ ∞

0

z

t
1
2 ( D

p +1)
e− z2

4t
dt

t
= C1 || f ||p z−D/p,

where C1 = C1(N , D, γD, p) > 0. ��
Remark 7.2 Keeping Definitions 2.14 and 3.4 in mind, the reader should note that the
assumption (7.1) implies necessarily that D0 ≤ D ≤ D∞. Thus, the case D0 > D∞
is left out, but it will be addressed in Theorems 7.6 and 7.7.

The next proposition contains an essential interpolation estimate which generalises
to the degenerate non-symmetric setting of (1.1) the one in [67], see also [68]. Such
tool represents the semigroup replacement of the Stein-Hedberg estimate (6.2).

Proposition 7.3 Assume (7.1), and let 0 < α < D. Given 1 ≤ p < D/α there exist a
constant C2 = C2(N , D, α, γD, p) > 0, such that for every f ∈ S and ε > 0

|Iα f (X)| ≤ 1

�(α + 1)
M � f (X) εα + C2 || f ||p ε

α− D
p , (7.2)

where M � is as in (5.3).

Proof We begin by noting that we know from (3) in Remark 3.5 that D∞ ≥ D, and
thusIα is well defined for all 0 < α < D. Now, for a given f ∈ S using Lemma 6.2
we write for every ε > 0

|Iα f (X)| ≤ 1

�(α)

∫ ε

0
zα−1|Pz f (X)|dz + 1

�(α)

∫ ∞

ε

zα−1|Pz f (X)|dz. (7.3)

The first term is easily controlled by the estimate

1

�(α)

∫ ε

0
zα−1|Pz f (X)|dz ≤ 1

�(α + 1)
M � f (X)εα. (7.4)
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Let now 1 ≤ p < D/α. To control the second term we use Lemma 7.1 to obtain

1

�(α)

∫ ∞

ε

zα−1|Pz f (X)|dz ≤ C1

�(α)
|| f ||p

∫ ∞

ε

zα−D/p−1dz = C2 || f ||p ε
α− D

p ,

where C2 = C2(N , D, α, γD, p) > 0. Combining this estimate with (7.4) and (7.3),
we conclude that (7.2) holds. ��

With Proposition 7.3 in hands, we can now establish the first main result of this
section.

Theorem 7.4 (of Hardy–Littlewood–Sobolev type) Assume that (7.1) be valid. Then,

we have: (i) for every0 < α < D the operatorIα maps L1 into L
D

D−α
,∞. Furthermore,

there exists S1 = S1(N , D, α, γD) > 0 such that for any f ∈ L1 one has

sup
λ>0

λ |{X ∈ R
N | |Iα f (X)| > λ}| D−α

D ≤ S1|| f ||1; (7.5)

(ii) for every 1 < p < D/α the operator Iα maps L p to Lq , with 1
p − 1

q = α
D .

Moreover, there exists Sp = Sp(N , D, α, γD, p) > 0 such that one has for any
f ∈ L p

||Iα f ||q ≤ Sp|| f ||p. (7.6)

Proof (i) Suppose f ∈ L1, with || f ||1 
= 0 (otherwise, there is nothing to prove). The
estimate (7.2) reads in this case

|Iα f (X)| ≤ 1

�(α + 1)
M � f (X) εα + C2 || f ||1 εα−D . (7.7)

Given λ > 0 we choose ε > 0 such that C2|| f ||1εα−D = λ. With such choice we see
from (7.7) that

|{X ∈ R
N | |Iα f (X)| > 2λ}| ≤ |{X ∈ R

N | 1

�(α + 1)
M � f (X) εα > λ}|

≤ 2Aεα

λ�(α + 1)
|| f ||1,

where in the last inequality we have used (a) in Theorem 5.5. Keeping in mind that

from our choice of ε we have εα = (C2|| f ||1)
α

D−α

λ
α

D−α
, we conclude that (7.5) holds.

To prove (ii), we suppose now that 1 < p < D/α. Minimising with respect to ε in
(7.2) we easily find for some constant C3 = C3(N , D, α, γD, p) > 0

|Iα f (X)| ≤ C3M
� f (X)1−

α p
D || f ||

α p
D

p . (7.8)

The desired conclusion (7.6) now follows from (7.8) and from (b) in Theorem 5.5. ��

123



Hardy–Littlewood–Sobolev inequalities…

Theorem 7.4 is the keystone on which the second main result of this section leans.
Before stating it, we emphasise that in view of (iii) in Remark 3.5 we know that
D∞ ≥ 2. Therefore, if 0 < s < 1 then 2s < 2 ≤ D∞.

Theorem 7.5 (of Sobolev type) Suppose that (7.1) hold. Let 0 < s < 1. Given 1 ≤
p < D/2s let q > p be such that 1

p − 1
q = 2s

D .

(a) If p > 1 we have L 2s,p ↪→ L
pD

D−2sp . More precisely, there exists a constant
Sp,s > 0, depending on N , D, s, γD, p, such that for any f ∈ S one has

|| f ||q ≤ Sp,s ||(−A )s f ||p.

(b) When p = 1 we have L 2s,1 ↪→ L
D

D−2s ,∞. More precisely, there exists a constant
S1,s > 0, depending on N , D, s, γD, such that for any f ∈ S one has

sup
λ>0

λ|{X ∈ R
N | | f (X)| > λ}|1/q ≤ S1,s ||(−A )s f ||1.

Proof We observe that (3) in Remark 3.5 guarantees that D ≤ D∞, and thereforeI2s

is well-defined. At this point, the proof is easily obtained by combining Theorem 6.3,
which allows to write for every X ∈ R

N

| f (X)| = |I2s(−A )s f (X)|,

with Theorem 7.4. We leave the routine details to the interested reader. ��
From Remark 7.2 we know that Theorem 7.4 does not cover situations, such as the

Kramers’ operator in Ex.4 in Fig. 1, in which D0 > D∞. When this happens we have
the following substitute result. In the sequel, when we write Lq1 + Lq2 we mean the
Banach space of functions f which can be written as f = f1 + f2 with f1 ∈ Lq1 and
f2 ∈ Lq2 , endowed with the norm

|| f ||Lq1+Lq2 = inf
f = f1+ f2, f1∈Lq1 , f2∈Lq2

|| f1||Lq1 + || f2||Lq2 .

Theorem 7.6 Suppose there exist γ > 0 such that for every t > 0 one has

V (t) ≥ γ min{t D0/2, t D∞/2}. (7.9)

Then, we have: (i) for every 0 < α < D∞ < D0 the operator Iα maps L1 into

L
D0

D0−α
,∞ + L

D∞
D∞−α

,∞. Furthermore, there exists S1 = S1(N , D0, D∞, α, γ ) > 0
such that for any f ∈ L1 one has

min{sup
λ>0

λ |{X | |Iα f (X)| > λ}|
D0−α

D0 , sup
λ>0

λ |{X | |Iα f (X)| > λ}| D∞−α
D∞ } ≤ S1|| f ||L1 ;

(7.10)
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(ii) for every 1 < p < D∞/α < D0/α the operator Iα maps L p to Lq0 +
Lq∞ , with 1

p − 1
q 0

= α
D 0 and 1

p − 1
q ∞ = α

D ∞. Moreover, there exists Sp =
Sp(N , D0, D∞, α, γ, p) > 0 such that one has for any f ∈ L p(RN )

||Iα f ||Lq0+Lq∞ ≤ Sp|| f ||L p . (7.11)

Proof It suffices to prove the statements for f ∈ S . Let 1 ≤ p < +∞ and X ∈ R
N .

From the ultracontractive estimate in Propositions 3.6 and (7.9), we obtain from (5.2),

|Pz f (X)| ≤ cN ,p√
4π

|| f ||p

∫ ∞

0

z

t1/2V (t)1/p
e− z2

4t
dt

t

≤ cN ,p

γ
1
p
√
4π

|| f ||p

∫ ∞

0

z

t1/2 min
{
t D0/2p, t D∞/2p

}e− z2
4t

dt

t

= C(N , p, γ )|| f ||p

∫ ∞

0

√
ue−u max

{
(
4u

z2

)D0/2p

,

(
4u

z2

)D∞/2p }du

u

≤ C(N , p, γ )|| f ||p max{z−D0/p, z−D∞/p}
∫ ∞

0

√
ue−u max

{
(4u)D0/2p , (4u)D∞/2p

} du

u
.

For any X ∈ R
N and z > 0 we have thus proved

|Pz f (X)| ≤ C̄ || f ||p max{z−D0/p, z−D∞/p}, (7.12)

where C̄ = C(N , p, γ, D0, D∞) > 0. Next, let 0 < α < D∞ < D0 and 1 ≤ p <

D∞/α < D0/α. As in (7.3) and (7.4), for any X ∈ R
N we have

|Iα f (X)| ≤ 1

�(α + 1)
M � f (X)εα + 1

�(α)

∫ ∞

ε

zα−1|Pz f (X)|dz. (7.13)

To bound the second integral we use (7.12) to find

∫ ∞

ε

zα−1|Pz f (X)|dz ≤ C̄ || f ||p g(ε),

where

g(ε) =
∫ ∞

ε

h(z) dz =
∫ ∞

ε

zα−1 max{z−D0/p, z−D∞/p}dz.

To see that g(ε) < ∞ for all ε > 0, it suffices to look at g(1):

g(1) =
∫ ∞

1
zα−1 max{z−D0/p, z−D∞/p}dz =

∫ ∞

1
zα−1−D∞/p dz < ∞
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since we have assumed p < D∞
α
. Therefore, g(ε) is well-defined, g ∈ C1(0,∞), and

g′(ε) = −εα−1 max{ε−D0/p, ε−D∞/p} < 0,

which shows that g is strictly decreasing. We also know that limε→+∞ g(ε) = 0.
Furthermore, if 0 < ε < 1, then

g(ε) =
∫ 1

ε

h(z) dz +
∫ ∞

1
h(z) dz =

∫ 1

ε

zα−1− D0
p dz + g(1)

= ε
−
(

D0
p −α

)

D0
p − α

− 1
D0
p − α

+ g(1).

We infer that limε→0+ g(ε) = +∞. Thus g : (0,∞) → (0,∞) is invertible.
Going back to (7.13) we conclude

|Iα f (X)| ≤ 1

�(α + 1)

M � f (X)εα + C̄

�(α)
|| f ||pg(ε) =: G(ε) ∀ε > 0. (7.14)

To prove (ii) we look for the minimum of G which is attained at some ε such that

min{εD0/p, εD∞/p} = C̄
|| f ||p

M � f (X)
=: A f (X).

In other words

εmin = max{A f (X)p/D0 , A f (X)p/D∞}.

Going back to (7.14) we conclude

|Iα f (X)| ≤ 1

�(α + 1)
M � f (X)

max

⎧
⎨

⎩

(
C̄ || f ||p

M � f (X)

) α p
D0

,

(
C̄ || f ||p

M � f (X)

) α p
D∞
⎫
⎬

⎭
+ C̄

�(α)
|| f ||p g(εmin).

In the case 0 < A f (X) < 1, then we have
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max

⎧
⎨

⎩

(
C̄ || f ||p

M � f (X)

)α p/D0

,

(
C̄ || f ||p

M � f (X)

)α p/D∞
⎫
⎬

⎭
=
(

C̄ || f ||p

M � f (X)

)α p/D0

, and

g(εmin) = 1
D∞

p − α
− 1

D0
p − α

+ 1
D0
p − α

(
C̄ || f ||p

M � f (X)

)− p
D0

(
D0
p −α)

≤ 1
D∞

p − α

(
C̄ || f ||p

M � f (X)

)− p
D0

(
D0
p −α)

.

We conclude that, if A f (X) < 1, then

|Iα f (X)| ≤ C1M
� f (X)

1− α p
D0 || f ||

α p
D 0

p .

If instead A f (X) ≥ 1, we can show in a similar way that

|Iα f (X)| ≤ C2M
� f (X)

1− α p
D∞ || f ||

α p
D ∞

p .

If we write

Iα f = Iα f · χ{A f <1} + Iα f · χ{A f ≥1},

we deduce from (b) in Theorem 5.5 thatIα f χ{A f <1} ∈ Lq0 andIα f χ{A f ≥1} ∈ Lq∞

with the relative bounds

||Iα f χ{A f <1}||q0 ≤ c′|| f ||p, ||Iα f χ{A f ≥1}||q∞ ≤ c′′|| f ||p.

This proves (7.11).
Let us turn to the proof of (i). Let p = 1, 0 < α < D∞ < D0, and suppose

|| f ||1 
= 0. Recalling (7.14) and the invertibility of g, for every positive λ we can pick
ε > 0 such that C̄

�(α)
|| f ||1g(ε) = λ. From (a) in Theorem 5.5, we then get

|{X ∈ R
N | |Iα f (X)| > 2λ}| ≤

∣
∣
∣
∣

{

X ∈ R
N | 1

�(α + 1)
M � f (X) εα > λ

}∣
∣
∣
∣

≤ 2Aεα

λ�(α + 1)
|| f ||1. (7.15)

We can compute explicitly the inverse of g and find an expression for ε. In fact, if

y belongs to the interval (0, (D∞ − α)−1) we have g−1(y) = ((D∞ − α)y)
1

α−D∞ ,

otherwise we have g−1(y) =
(
1 − D0−α

D∞−α
+ (D0 − α)y

) 1
α−D0 . Hence, if λ�(α)

C̄|| f ||1 <

(D∞ − α)−1, we deduce from (7.15) that
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|{X ∈ R
N | |Iα f (X)| > 2λ}| ≤ 2A

λ�(α + 1)
|| f ||1

(
λ(D∞ − α)�(α)

C̄ || f ||1

) α
α−D∞

= Cm

( || f ||1
λ

) D∞
D∞−α

.

On the other hand, if λ�(α)

C̄ || f ||1 ≥ (D∞ − α)−1, we have

|{X ∈ R
N | |Iα f (X)| > 2λ}|

≤ 2A

λ�(α + 1)
|| f ||1

(

1 − D0 − α

D∞ − α
+ λ(D0 − α)�(α)

C̄ || f ||1

) α
α−D0

= 2AC̄
α

D0−α

�(α + 1) ((D0 − α)�(α))
α

D0−α

( || f ||1
λ

) D0
D0−α

(

1 − C̄ || f ||1
λ�(α)

(
1

D∞ − α
− 1

D0 − α

))− α
D0−α

≤ 2AC̄
α

D0−α

�(α + 1) ((D0 − α)�(α))
α

D0−α

(
D∞ − α

D0 − α

)− α
D0−α

( || f ||1
λ

) D0
D0−α = CM

( || f ||1
λ

) D0
D0−α

.

In any case, for any λ > 0, we get

min

{

λ |{X | |Iα f (X)| > 2λ}|
D0−α

D0 , λ |{X | |Iα f (X)| > 2λ}| D∞−α
D∞

}

≤ S|| f ||L1,

where S1 = S1(D0, D∞, α, A, C̄) > 0. This proves (7.10). ��
Using Theorem 7.6, we obtain the following substitute result for Theorem 7.5. We

leave it to the interested reader to fill the necessary details.

Theorem 7.7 Suppose that (7.9) hold. Let 0 < s < 1. Given 1 ≤ p < D∞/2s <

D0/2s, let q∞ > q0 > p be such that 1
p − 1

q∞ = 2s
D∞ , 1

p − 1
q0

= 2s
D0

.

(a) If p > 1 we have L 2s,p ↪→ L
pD∞

D∞−2sp + L
pD0

D0−2sp . More precisely, there exists a
constant Sp,s > 0, depending on N , D∞, D0, s, γ, p, such that for any f ∈ S
one has

|| f ||Lq0+Lq∞ ≤ Sp,s ||(−A )s f ||p.

(b) If instead p = 1, we have L 2s,1 ↪→ L
D0

D0−2s ,∞ + L
D∞

D∞−2s ,∞
. More precisely,

there exists a constant S1,s > 0, depending on N , D∞, D0, s, γ , such that for
any f ∈ S one has

min

{

sup
λ>0

λ |{X | | f (X)| > λ}| 1
q0 , sup

λ>0
λ |{X | | f (X)| > λ}| 1

q∞
}

≤ S1,s ||(−A )s f ||1.
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