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Summary

River networks shape the Earth landscape and promote a multitude of biogeochemi-
cal processes, such as erosion and transport of sediments and nutrients. Furthermore,
streams and rivers have always played a fundamental role for human activities, of-
ten being the primary source for freshwater, promoting the development of advanced
societies, and providing food, energy and efficient pathways for transportation. Re-
cently, the temporal dimension of river networks has been recognized as a core issue
not only over geological timescales, but also during individual years or seasons,
within which river segments may temporarily cease to flow. Empirical evidence has
shown that the flowing portion of many river networks does vary in time, owing to
seasonal and/or event-based expansion-retraction cycles that mimic the unsteady
nature of the underlying climatic forcing. Such rivers, commonly referred to as tem-
porary streams, are believed to represent more than half of the global river network,
and are observed in most climatic regions worldwide, from arid, to humid areas.
The goal of this thesis is to provide a comprehensive hydrological analysis of tempo-
rary streams, by combining empirical data from 18 study catchments spread all over
the world with theoretical analyses and stochastic models. A Bayesian framework
is developed for the statistical description of the dynamics of the active network,
linking the behaviour of the stream network to the underlying local properties of
the constituting nodes. The local persistency of the nodes is found to be a key sta-
tistical index to quantify the probability of activation of each node, and dictates the
interaction between different nodes and defines the spatial pattern of active network
at any given time. The activation of the nodes during network expansion is found
to follow a fixed order of decreasing persistency, while the deactivation of nodes
during network contraction occurs in reverse order. This general behaviour, called
hierarchical, is defined in a mathematically rigorous way within the Bayesian frame-
work, and used to derive analytical expressions for the main statistics of the active
length as function of the mean network persistency. The latter is then linked to the
mean effective precipitation, thus providing a direct connection between climate and
network dynamics. The Stream Length Duration Curve links each possible length
of the active network to the duration for which that length is exceeded, and allows
a quantitative description of the dynamics of a temporary stream. Under the hi-
erarchical hypothesis, this curve is proven to be solely determined by the spatial
distribution of the local persistency, providing a crucial link between the spatial and
temporal dimensions of the problem. Temporary streams can be also characterized
via their length regimes, providing an objective classification system based on the
dynamic behaviour of the networks. A stochastic model for streamflow generation
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is also exploited in conjunction with the hierarchical activation scheme, to enable
the spatio-temporal simulation of a temporary stream under a wide variety of cli-
matic scenarios. This type of simulations require a small number of parameters and
a limited computational effort, and allows a deeper understanding of the influence
of climate on the origins and implications of channel network dynamics. A set of
synthetic temporary streams are used as input for a dynamic metapopulation model
simulating the occupancy of a target aquatic species within the network. This ap-
plication reveals the fundamental role that network dynamics have in degrading the
ability of a riverine ecosystem to support a metapopulation, particularly in drier
climates, by significantly reducing the average occupancy and increasing the proba-
bility of extinction of the target species. Taking into account the dynamic nature of
the active network represents a fundamental prerequisite for a correct assessment of
many ecological and biochemical functions that are mediated by riverine systems.
The work presented in this thesis offers a comprehensive analysis of dynamical river
networks, providing a new theoretical framework and novel analytical tools and nu-
merical models for the reconstruction and simulation of the dynamics of the active
extent of a stream. Given the rising awareness of the impacts of human activities on
the environment, and the sensitivity of temporary streams to a changing climate, the
tools provided in this study will hopefully foster the development of better strategies
for the management and protection of such systems.
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1 Introduction

Water is essential to all forms of life for a number of reasons, including the fact
that it acts as a vector for the transport of nutrients and other substances. The
hydrosphere is a fundamental component of the Earth because it covers more than
70% of its surface and shapes its form. The hydrosphere is a dynamic system, in
which water continuously move generating an endless water cycle that supply water
to the environment. Starting from precipitation falling onto the soil, water drains
through the hillslopes forming organized structures that are commonly identified as
streams and rivers. These drainage networks collect water from the uplands and
efficiently transport it downstream to the sea or the ocean. As such, river networks
shape the Earth landscape and control fundamental ecological processes, by regu-
lating a multitude of hydro-biogeochemical processes such as erosion and transport
of sediments and nutrients (e.g. Battin et al. 2008; Rinaldo et al. 2018). Rivers
provide a wide spectrum habitats, supporting diverse aquatic and riparian biota,
thus promoting biodiversity, and act as a preferential pathway for the transport of
aquatic species, as well as pollutants and waterborne diseases. Furthermore, streams
and rivers have always played a fundamental role for human activities, because they
represent the primary source for freshwater. Rivers promoted the development of
advanced societies, providing food, energy and efficient pathways for transportation.

For decades, the spatial organization of streams has stimulated scientific debate
around observed morphological and ecological patterns in river basins. At fine scales,
the location of the channel heads has been the focus of pioneering work (Montgomery
et al. 1988; Montgomery et al. 1989) that fuelled an array of methodologies for the
analysis of Digital Terrain Maps; at larger spatial scales, theoretical investigations
examined origins and implications of the branching shape of river networks and
their fractal nature (Kirchner 1993; Rinaldo et al. 1993; Rodriguez-Iturbe et al.
1997; Banavar et al. 1999; Sassolas-Serrayet et al. 2018; Yi et al. 2018).

Recently, the temporal dimension of river networks has been recognized as a core
issue not only over geological timescales typical of landscape evolution models, but
also during individual years or seasons, within which river segments may temporarily
cease to flow (e.g. Godsey et al. 2014; Acuña et al. 2014; Zimmer et al. 2020). This
empirical evidence has shown that the flowing portion of many river networks does
vary in time, owing to seasonal and/or event-based expansion-retraction cycles that
mimic the unsteady nature of the underlying climatic forcing. Such rivers, commonly
referred to as temporary streams, are believed to represent more than half of the
global river network (Datry et al. 2014). Temporary streams are observed in most

1



2 Chapter 1. Introduction

climatic regions worldwide, including arid, semi-arid, Mediterranean, temperate and
humid areas (Skoulikidis et al. 2017; Durighetto et al. 2020). The dynamic nature
of channel networks has important implications beyond catchment hydrology, which
include nutrient cycling, green-house gas emissions, stream metabolism, ecological
dispersion and water management (Abbott et al. 2016; Berger et al. 2017; Dupas
et al. 2019; Von Schiller et al. 2014; Boodoo et al. 2017; Datry et al. 2018; Datry
et al. 2014; Vander Vorste et al. 2020a; Nikolaidis et al. 2013; Acuña et al. 2014;
Reyjol et al. 2014). Therefore, the study of active stream dynamics is pivotal not
only to characterize spatial patterns of hydrologic regimes but also to understand
the influence of flow intermittency on e.g. ecological dispersion, in-stream processes,
hyporheic exchange and nutrient spiraling (Cardenas 2007; Mari et al. 2014; Tonkin
et al. 2017; Burrows et al. 2017; Stubbington et al. 2017; Datry et al. 2017).

The first hydrologic studies about temporary streams date back to half a century
ago (Gregory et al. 1968; Morgan 1972; Blyth et al. 1973; Anderson et al. 1978; Day
1978; Roberts 1978; Gregory et al. 1979; Day 1980; Day 1983). Those pioneering
works revealed the twofold challenge that underlies the study of temporary streams:
while collecting empirical data implies a significant burden, extensive datasets are
necessary to disentangle the intertwined spatial and temporal dimensions of the
problem, which complicate the identification of the physical processes underpinning
the activation/deactivation of different stream portions. Even tough field monitoring
remains to date labor intensive, the last decade had seen a significant increase in the
number of available datasets. Most of the empirical data about network dynamics
is still collected by visual inspection during field surveys (Zimmer et al. 2017; Shaw
2016; Shaw et al. 2017; Jensen et al. 2017; Datry et al. 2016; Durighetto et al.
2020; Senatore et al. 2020; Godsey et al. 2014; Whiting et al. 2016; Lovill et al.
2018; Van Meerveld et al. 2019). However, new technologies have been introduced
to reduce monitoring efforts, including electrical resistance sensors (Goulsbra et
al. 2014; Peirce et al. 2015; Jaeger et al. 2012; Assendelft et al. 2019; Jensen et
al. 2019; Kaplan et al. 2019; Paillex et al. 2020; Perez et al. 2020; Zanetti et al.
2021), aerial photographs (Wiginton et al. 2005; Phillips et al. 2011; González-
Ferreras et al. 2017; Malard et al. 2006) and unmanned vehicles (Jensen et al. 2012;
Neachell 2014; Debell et al. 2015; Woodget et al. 2015; Spence et al. 2016; Pai et
al. 2017; Woodget et al. 2017; Briggs et al. 2019; Borg Galea et al. 2019; Casas-
Mulet et al. 2020; Samboko et al. 2020; Kuhn et al. 2021). Nonetheless, a limited
number of studies about river network dynamics have been conducted in continental
Europe so far, and only few of them provided a full survey of the flowing stream
network on a regular basis. In some cases the analysis was restricted to individual
stretches (Doering et al. 2007; Medici et al. 2008) or to the channel heads only
(Agren et al. 2015), not including the full geometrical complexity of the river network
and the presence of disconnected reaches. Other studies, instead, monitored the
hydrologic status of a pre-defined set of nodes that do not necessarily correspond to
the entire network (Datry et al. 2016), leading to a possible underestimation of the
drainage density. In other cases, sporadic surveys were performed (Van Meerveld
et al. 2019), preventing a full characterization of the stream network variability over
multiple time-scales. As a consequence, comprehensive and organic datasets for the
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description of stream dynamics within different sites characterized by heterogeneous
climates, physiographies and land covers, are very rare.

In order to explain the main drivers of network dynamics, Godsey et al. 2014 and
Prancevic et al. 2019 proposed a conceptual model that links the surface flow at a
point to the imbalance between the downvalley seepage rate (seen as the combina-
tion of surface and subsurface flows, and proportional to the cumulated area) and
subsurface transmissivity (related to hydraulic conductivity, local slope and valley
cross-sectional area). However, the application of this conceptual model for the pre-
diction or the simulation of the spatial patterns of the flowing streams is problematic,
as it would require the specification of spatial patterns subsurface transmissivity and
valley cross-sectional area, which are very difficult to measure or predict.

Few other studies have directly linked network dynamics to climatic variables such
as antecedent precipitation and evapotranspiration (Morgan 1972; Blyth et al. 1973;
Goulsbra et al. 2014; Jaeger et al. 2019; Jensen et al. 2018; Ward et al. 2018; Jensen
et al. 2019), but none of them allows the prediction of the temporal variability
of stream network length based on precipitation data alone. Moreover, in all the
existing studies the aggregation timescale of the precipitation input (or its range)
was pre-defined. Consequently, the full spectrum of impacts of rainfall variability on
stream length dynamics - and particularly the combined effects of short-term and
long-term rainfall - has not been fully captured yet.

In spite of the enhanced availability of empirical data, to date there is a limited
availability of analytical tools with general applicability that are suitable to objec-
tively characterize the magnitude and the extent of river network variability through
time. To date, the outcome of experimental surveys is usually represented by a set
of active stream network maps characterized by different scales and resolutions (e.g.
Shaw et al. 2017; Jensen et al. 2018), complemented by a variety of statistical anal-
yses of relevant stream attributes (e.g. stream length, discharge, number of flow
origins and connectivity). Consequently, due to the heterogeneity of the available
datasets, comparative analyses and quantitative syntheses of the observed patters of
river network dynamics across different geographic areas are lacking. On the other
hand, currently available definitions of ephemeral and intermittent water courses are
often qualitative (e.g. Wiginton et al. 2005; Datry et al. 2016; Jensen et al. 2017).
In many cases, the attribution of a stream class is performed based on specific hy-
drologic indexes, including the number and duration of dry spells (Osterkamp et al.
1982; Uys et al. 1997; Svec et al. 2005; Wohl 2017; Kaplan et al. 2019), or using ad-
hoc ecomorphological indicators (Hansen 2001; Gallart et al. 2012; Leigh et al. 2016;
Stromberg et al. 2016; Levick et al. 2018; Stubbington et al. 2019; Gallo et al. 2020).
While existing classification approaches were mainly developed based on discharge
records and in-situ field inspections, hybrid frameworks that combine experimental
observations and modeling tools can also be found in the literature (Williamson et
al. 2015). Nonetheless, comparative studies for the development of general criteria
for the classification of temporary watercourses and the identification of targeted
policy actions are still lacking.

Existing classifications tools for temporary rivers share the adoption of a local per-
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spective, according to which a stream type is associated to every single river segment
(or reach) in a network, depending on the hydrologic and ecologic regime observed
in that particular location. While extremely useful, reach-wise classifications are
difficult to extrapolate in space (Levick et al. 2018; Gordon et al. 2003) as the re-
sulting stream types might be highly heterogeneous along the stream network e.g.
owing to the internal geological complexity of a catchment. Moreover, local ap-
proaches do not take into account the status of the river network upstream of the
focus stretch, which instead might be highly influential for a proper definition of
the ecological and biogeochemical function of streams. The advantages implied by
the adoption of a network-scale perspective in the classification of temporary rivers
have been already discussed in the literature (González-Ferreras et al. 2017), even
though the practical efforts made by the scientific community in this direction are
relatively limited. The total flowing length of a drainage network, L, and its tempo-
ral variability represent important spatially integrated characteristics of temporary
streams. A proper characterization of the dynamics of L allows direct inference on
the catchment-scale effect of the expansion and contraction cycles experienced by
the flowing network in response to unsteady hydro-climatic conditions. Besides, the
active channel length and its temporal variations exert a fundamental control on
a number of factors relevant for the temporal evolution of the stream water qual-
ity, including the distribution of catchment-scale travel times (Van Meerveld et al.
2019), the strength of hillslope-channel connectivity (Soulsby et al. 2011) and the
magnitude of important biogeochemical processes contributing to the metabolism
of rivers (Botter et al. 2010c; Kiel et al. 2014; Bertuzzo et al. 2017). Even though
the total active length of a temporary stream has been linked to the corresponding
catchment discharge using empirical power-law relationships (Godsey et al. 2014), a
joint probabilistic description of the temporal variations in the hydrological response
of a catchment and the corresponding changes in the active network length is lack-
ing. Moreover, network-scale classifications of temporary streams based on the total
active length that is involved in the hydrologic response of a given catchment have
never been developed.

Despite the lack of standard tools, in recent years there have been couple of prac-
tical attempts to reproduce the full spatial and temporal dynamics of the actively
flowing channels within specific river networks: i) Ward et al. 2018 used a detailed,
physically-based, distributed model that simulated surface water-groundwater inter-
actions and active length variations along a 2.9 km channel in the western Cascades,
Oregon, USA, and ii) Jensen et al. 2018 created a logistic regression model that
combined catchment discharge measurements and spatial patterns of morphometric
attributes, which can potentially be used to simulate network dynamics. These mod-
eling attempts were extremely valuable in clarifying the major climatic and geologic
determinants of stream network expansion/retraction; however, these models can
hardly be generalized and used for predictive purposes outside the specific context
in which they were conceived, in particular for applications to study sites where
empirical data on network dynamics are lacking. Moreover, the existing literature
lacks of stochastic approaches capable of linking the spatial and temporal dynamics
of the active portion of the river network to the underlying rainfall and streamflow
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regimes. This emphasizes the need for developing general but parsimonious models
- potentially applicable even to ungauged locations - for the synthetic generation of
long-term scenarios representative of different hydrologic and active length regimes.

In freshwater ecology, landscape connectivity and suitability are two of the main de-
terminants of species dispersal. These attributes are known to influence the persis-
tence of aquatic populations and communities across a variety of hydrologic systems
(e.g. Fagan 2002; Campbell Grant et al. 2007; Datry et al. 2016). River networks,
owing to its seemingly fractal nature, are able to create key preferential pathways for
the propagation of species within 2D domains, leading to important consequences
for biodiversity, species persistence and stability (Todd et al. 2010; Mari et al. 2014;
Terui et al. 2018; Rinaldo et al. 2018). While the spatial dimension of stream
networks has been extensively analyzed in the literature, their temporal dynam-
ics, implied by the ever-changing wetness conditions in the surrounding landscape,
historically received much less attention by the ecological community. In particu-
lar, temporary streams ensure dynamic conditions to species, potentially generating
transient connectivity windows and ephemeral dispersal opportunities available only
when the flowing network reaches its maximum extent (Fahrig 1992; Zeigler et al.
2014; Martensen et al. 2017). Streams that periodically experience dry conditions,
on the other hand, may temporarily reduce the number, size and connectivity of
suitable habitat patches (Boulton et al. 2017; Garbin et al. 2019). The long-term
persistence of a metapopulation arguably reflects the interplay between the extent of
habitat fluctuations and the dispersal ability of the focus species (Perry et al. 2019;
Abbott 2011; Mari et al. 2014; Unmack 2001). Therefore, characterizing the joint
dynamics of a temporary stream and its aquatic metapopulation require the develop-
ment of inter-disciplinary approaches at the interface of ecology and hydrology, able
to capture how hydroclimatic fluctuations are perceived by the organisms hosted
by river networks. This also represents a prerequisite for the definition of optimal
management and conservation strategies in riverine ecosystems. The ecological im-
plications of spatio-temporal variability in habitat suitability and connectivity have
been already analyzed in the ecohydrological literature (Fagan et al. 2009; Zeigler
et al. 2014; Mari et al. 2014; Stoffels et al. 2016; Zhou et al. 2017; Lowe et al. 2019;
Giezendanner et al. 2021; DeAngelis et al. 2010; Bertassello et al. 2019; Bertassello
et al. 2020; Bertassello et al. 2021). However, the question of how population occu-
pancy and persistence respond to the dynamic habitat changes and fragmentation
observed in temporary streams is still unanswered. Until now, addressing the above
key ecological issue was not possible, in the absence of a model for the long-term
simulation of hydrologically-driven fluctuations in the extent and configuration of
the flowing stream network (see e.g. Giezendanner et al. 2021).

This thesis provides a series of methods and tools for the study of temporary streams,
starting from experimental activities. By introducing a general theoretical frame-
work, analytical results and mathematical tools are developed, unveiling the role of
climate on stream dynamics. The proposed approach delineates the possible regimes
of the flowing portion of a river, enabling quantitative comparisons between different
streams, and facilitates the spatio-temporal modeling of temporary streams. The
sound theoretical basis provided by this framework may offer useful insights on the
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complex inner-workings of dynamic river networks, possibly serving as guidance for
the development of new policies for the protection and management of temporary
steams.

1.1 Aims and objectives

The overarching goal of this thesis work is to provide a comprehensive analysis of
the physical drivers, dynamic characters and ecohydrological relevance of temporary
streams. More specifically, the key objective is to provide a new framework that
can serve as a basis for the description and modeling of dynamic river networks,
regardless of the spatial and temporal scales of interest, which may range from one
hectare to tens of square kilometers, and from a single rainfall event to seasonal or
inter-annual timescales. The goal is pursued through a combination of theoretical,
statistical and stochastic approaches for the development of quantitative tools to
characterize the dynamics of a stream network, and to link such dynamics to other
hydrologically relevant quantities such as streamflow and antecedent precipitation.
The specific research objectives of this thesis can be summarized as follows:

to assemble and analyze a unified empirical dataset regarding the dynamics
of temporary stream networks in a set of representative study sites around
the globe, characterized by heterogeneous climates, geologies and land covers,
spanning multiple years of observations and employing different techniques;

the development of a new theoretical framework to identify the mathematical
link between the overall dynamics of a stream network and the behaviour of
each single stream reach within the network, providing novel insights on the
local features of a river basin that prove meaningful at the network-scale;

to identify the general schemes underlying the activation and deactivation of
the different branches of a temporary stream, shedding light on the physical
processes regulating the local presence or absence of surface flow;

to develop suitable tools for the quantitative characterization of the variability
of the active length, in order to provide a general criteria for a consistent,
network-scale classification of temporary streams based on the underlying dy-
namics of the river network;

to identify the main physical drivers of network dynamicity, determining the
major meteorological variables and the temporal scales over which the expan-
sion/contraction cycles of the stream network take place;

to enable easy and efficient spatio-temporal modeling of a temporary stream,
for the reconstruction of the continuous dynamics of a river network from a
limited number of field surveys or for the simulation of such dynamics under
a broad range of climatic settings
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1.2 Thesis structure

The presentation of the research in this thesis is structured as follows.

Chapter 2 illustrates the experimental activities that allowed the collection of
empirical data on a set of study catchments. In particular, visual field surveys and
water presence sensors were employed to characterize the variability of the status of
the stream networks over time.

Chapter 3 then describes the location, climate and main hydrogeological char-
acteristics of each study catchment, as long as the specific available data and study
period.

Chapter 4 develops a theoretical framework for the description of the main sta-
tistical properties of the active length of a dynamic stream network. In particular,
the foundations of a general framework are layed out and used to mathematically
link the dynamic character of a steam network to the underlying wetting and drying
structure of each individual stream reach (Sections 4.1 and 4.1). This framework
is then used to identify the hierarchical mechanism of stream activation, a com-
mon behaviour of all temporary streams for which the activation and deactivation
of stream reaches during the expansion and contraction cycles of the active network
happens following a fixed, predetermined order (Section 4.3). The hierarchical acti-
vation scheme maximizes the spatial correlation of the status, creating a direct link
between the local persistency and the statistics of the active length, and demonstrat-
ing that temporary streams are as dynamic as they could possibly be (Section 4.4).
Finally, the Stream Length Duration Curve is defined (Section 4.5), and proposed
as a tool to quantify the natural temporal variability of the active stream network
under a broad range of field settings.

Chapter 5 explores the temporal dynamics of the active length of a temporary
stream. A set of empirical models is developed in Section 5.1, with the goals of
identifying the main physical drivers and time scales of active length variability.
The proposed approach enables the reconstruction of the continuous dynamics of
the active length starting from climatic data. Subsequently, the coupled dynamics
of streamflow and active length are probabilistically described, identifying a set of
possible regimes and providing a consistent network-scale classification of temporary
streams (Section 5.2).

Chapter 6 includes the description of two different approaches for modeling the
full spatio-temporal dynamics of the active stream network, by combining the find-
ings of the previous chapter with the hierarchical activation scheme. In particular,
Section 6.1 presents a data-based method for reconstructing the continuous dynam-
ics on the basis of a limited number of field surveys and climate data. Section
6.2, instead, describes a stochastic model for the simulation of synthetic stream dy-
namics. An ecological model for metapopulation occupancy is then introduced and
applied, with the goal of assessing the fundamental role that stream dynamics play
on non-hydrologic processes (Section 6.3).



8 Chapter 1. Introduction

Chapter 7 presents the results of the application of all the tools and models de-
scribed in the previous chapters on the study catchments. The results are layed out
starting from the validation of the hierarchical structuring of temporary streams,
with a view to the characterization of the statistics of the active length; then, the
temporal dynamics of the active length and their regimes are investigated and, lastly,
the full spatio-temporal network dynamics are modeled. In this chapter, a set of syn-
thetic scenarios is also explored and used as a basis for the simulation of metapopu-
lation dynamics on temporary streams under a broad range of climatic settings and
length regimes.

Chapter 8 concludes the thesis, providing an overview of the major findings
reported in this thesis, and discussing possible research topics that could further
increase our understanding of temporary streams and their impact on the related
landscapes and ecosystems.



2 Experimental activities

This chapter describes the empirical activities used for monitoring the dynamics of
the river networks in this thesis. In particular, section 2.1 illustrates the procedure
developed for visual field surveys, while the use of custom built water presence
sensors is described in section 2.2. Combining direct monitoring activities with
existing data about active length dynamics allowed the creation of a unique dataset
for temporary streams, that covers a wide variety of settings, encompassing different
climates, geologies and land covers.

This dataset offered the opportunity of developing a general theoretical framework
for the description of temporary streams, allowing the identification of the main
factors and mechanisms driving network dynamics.

2.1 Visual field surveys

The goal of a field campaign is twofold: i) to delineate the geometry of the poten-
tial drainage network (i.e. the maximum possible extent of the flowing network),
and ii) to map the presence of flowing water during each survey and capture the
spatio-temporal variability of the active network. The activities related to the vi-
sual field surveys can be subdivided into data collection, network delineation and
data analysis, as described in the next paragraphs.

Data collection. The potential drainage network is identified by the presence
of either flowing water during at least one survey or permanent channelization signs
(e.g. absence of vegetation on a narrow strip of otherwise vegetated terrains, concave
areas with clear continuous channel-like erosion pathways). The geometry of the
network is specified by nodes (points) connected by stretches (continuous lines). A
node is marked at every channel head (i.e. the upstream point of channelized or
potentially channelized reaches), at every confluence point and approximately every
20 m in between. The location of each node is dictated by local properties of the
network, such as river meandering or the specific position of wet/dry and dry/wet
transitions. Additional nodes are included to better describe the location of surface
flow initiation/cessation during each survey. For this reason, the spatial resolution
of the surveys is higher than the initial nodes spacing (20 m). Each node is coded
as active when there is visible water flow with a minimum width of 10 cm, and dry
otherwise. The above width threshold is selected because it was noted that below
this threshold the local micro-topography might impact the status of each node by

9
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creating very unstable flow conditions in space and time (ponding/dry/wet) as a
byproduct of extremely low flows (e.g., 1 l/min). This threshold is also consistent
with the resolutions that can be typically achieved using remote imagery, which is
becoming a widespread technique for monitoring network dynamics (such as thermal
cameras installed on drones, see e.g. Debell et al. 2015; Spence et al. 2016; Briggs et
al. 2019). Each survey lasts a single day, so that uniform hydrologic conditions can be
assumed for all the nodes observed in a single survey. The survey consisted in walking
the entire length of the drainage network, moving upstream along each tributary
and collecting the GPS coordinates of network nodes with the aid of a geotracking
device. In addition to mapping the network from the outlet upstream, the hillslopes
were also scouted to ensure the mapping of channels that are disconnected from the
outlet. The scouting was informed by vegetation greenness patterns derived from
satellite imagery and by a reference network extracted from the DTM, with a very
small threshold on the contributing area (0.5 ha). Nevertheless, all the hillslopes
and areas far-away from the connected network in the upper part of the basin were
also monitored by hiking the whole catchment area to avoid under-representation of
existing channels.

Network delineation. Stream network maps were obtained combining infor-
mation from field surveys and remotely sensed imagery, including a high resolution
DTM and an orthophoto. The DTM is pre-processed using a pit removal algorithm:
a threshold of 300 m2 was chosen on the basis of field observations to discriminate
between real pits (not removed by the algorithm) and artifacts of the DTM that
should be removed. Flow directions were then calculated using the D8 algorithm
(Ocallaghan et al. 1984; Tarboton 1996) and manually corrected in 132 pixels on
the basis of field observations to properly represent local anomalies in the observed
drainage network, due to human interventions (e.g. presence of roads and hiking
trails). Finally, the contributing areas were calculated for each cell based on the
corrected flow directions.

The coordinates of the field-collected nodes were adjusted by snapping the nodes over
pixels of the DTM where accumulation of the contributing area occurs. Orthophotos
were also used to ensure the correct positioning of each node. Maximum horizontal
corrections were below 10 m, consistent with the positioning error of the system
used for the field surveys. The corrections applied to the flow directions and the
adjustments on the coordinates of field-mapped nodes ensured that DTM-derived
information and data from the field surveys were consistent with each other.

The drainage network was then delineated by connecting all the nodes with stream
stretches, following flow directions along individual streams. Each stretch of the
network was considered as active during a given survey only if both the upstream
and downstream nodes were simultaneously active.

Preliminary data analysis. To quantify the dynamics of the stream network,
a persistency index (Pi) was calculated for each stretch (i) dividing the number of
times the stretch i was active by the total number of field surveys. Pi represents
the percentage of surveys during which a stretch was active and, under the ergodic
assumption, it provides an indication of the probability of that stretch being active
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during the campaign. The idea of quantifying the probability of network activity
through spatial maps was first introduced by Jensen et al. 2017, even though in
that case such probabilities were derived from the flow duration curve, whereas in
this work maps of Pi were calculated directly from observational data. While still
relying on the assumption that the available surveys properly represent the temporal
variability of the status of each node, this method relaxes the additional hypothesis
that a unique active network configuration exists for a given discharge at the outlet.
Stretches with Pi = 1 were classified as persistent, while stretches with 0 < Pi < 1
were coded as temporary; stretches with Pi = 0 were indicated as dry, to underline
the fact that they were inactive in all the field surveys. It must be noted that the
value of Pi depends on the number/dates of field surveys conducted. Accordingly,
a stretch classified as persistent (or dry) in this study may become temporary after
the completion of additional field campaigns.

Five key properties of the drainage network were calculated for each field survey:

a) active length (L [km]): the total length of the active drainage network on a
given date;

b) active drainage density [km-1]: L divided by the catchment area;

c) active disconnected length (disconnected L, [km]): length of the active drainage
network that is not connected at the surface to the outlet;

d) number of active channel heads : the number of origins of the active drainage
network, hereafter named sources, including all the points in which surface
flow resumes downstream of a disconnection along the potential network;

e) disconnected clusters : the number of contiguous parts of the active network
that are disconnected from the outlet.

The mean and variance of L were also calculated, to be used as indicators of the
mean drainage density and the extent of stream network dynamics.

2.2 Water presence sensors

While visual field surveys allow the delineation of the potential drainage network,
their main limitation is the required effort, which seldom allows for a continuous
monitoring of the dynamics of a temporary stream with high temporal resolutions.
An alternative possibility is given by water presence sensors (as seen in Figure 2.1)
which continuously monitor the presence of flowing water in a set of prescribed
nodes.

Sensor design and deployment. Usually, these sensors are based on Onset
HOBO Pendant loggers (HOBO UA-002-64, Onset Computer Corp, Bourne, MA,
USA, hereafter HOBO) and suitably modified following the methodology suggested
by Chapin et al. 2014. The main changes introduced in this study consisted in
removing the light sensor and adding two long electrodes, which recorded a posi-
tive electrical signal when connected by the flowing water. The obtained electrical
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(a) (b)

(c) (d)

Figure 2.1: Sensors placed along the tributaries of the Rio Valfredda. Left: picture of Zone 1 (a)
and a sensor on the grass (c). Right: picture of Zone 2 (b) and a sensor screwed on a rock (d).

resistance (ER) sensors were placed along the river networks to estimate flow inter-
mittency within different network nodes. The electrical conductivity signal recorded
by the HOBO ranged from 0 to 330000 lux (corresponding to the maximum value
recorded by the sensors when the two electrodes were fully immersed in water) and
the temporal sampling resolution was set to 5 minutes.

The river bed of dynamic headwater streams is usually highly heterogeneous, and
hydro-morphodynamical variations induced by changes in flow magnitude might
cause the flowing water to dodge the sensors, thereby impairing the reliability of the
recorded data. To avoid cases in which water flow paths could bypass the sensors,
particularly during low-flow conditions, a novel experimental setup is identified. It
allows the monitoring of the hydrological state of the whole cross-section where the
sensors as placed. The two machine pin electrodes coming out of the sensors’ housing
cap are connected with two stainless steel wires, from 50 cm to 100 cm long, rolled
up to a geotextile net. The length of the geotextile and wires guaranteed that the
entire cross-section of the channel are connected to the sensor avoiding interference
due to possible variations of the flow field. Rolling the cables on the net prevented
them from moving when flooded, possibly creating artificial short circuits or by-
passes that might impair the reliability of the electrical signal recorded. The net is
then attached to another geotextile using plastic buttons to separate the electrodes
from the ground by a few millimeters (and avoid interference with the wet soil).
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When placed in field, HOBOs are secured to their networks with suitable plastic
strips; silicon is used to protect all the sensors’ housing caps and prevent infiltration
of water within the loggers. The nets are then screwed on rock emergencies or fixed
on the stream bed using pickets, depending on the specific substrate in the location
of the deployment (see panels (c) and (d) of Figure 2.1 for two different examples in
the Valfredda catchment).

Preliminary data analysis. Two hydrologically-relevant indexes are calculated
from the time series collected by the HOBOs: the average intensity (AI) and the
exceedance of the threshold (E). Average intensity is the mean of the electrical signal
registered by each HOBO in the period of record. Exceedance of the threshold is
the probability that the electrical signal registered by a sensor is greater or equal
than a chosen threshold value, separating the wet condition from the dry condition,
which is chosen based on the intensity measured by the instruments placed in wet
nodes during the field surveys. The threshold value is inferred directly from field
observations, instead of relying on laboratory experiments (e.g., with a soil column),
to get a more reliable representation of the complexity of the natural environments
typically found in most headwater catchments of the Alpine region. The above
hydrological indexes (AI and E) are calculated for each ER sensor and subsequently
correlated with the persistency of the corresponding nodes which was estimated from
field surveys.

A visual representation of spatial and temporal dynamics of the river network is
obtained based on the intensity signal recorded by the HOBOs. For each time of the
surveyed period, the electrical signals recorded by each sensor and its neighbours
were interpolated in space, in order to define which part of the stretch connecting
the nodes is wet or dry. The exceedance of the threshold by the electrical signal is
used to determine the wet or dry status of the stretches. Probes were divided into
three categories, depending on the electrical signal recorded:

active, when the value of intensity was greater than the threshold and the
cross-section where the HOBO was placed was identified as wet;

inactive, when the signal collected was lower than the threshold and the cross-
section was identified as dry;

missing data, when the sensor didn’t provide reliable data. These occurrences
are mainly related to accumulation of sediments around the geotextile or de-
tachment of the probes from the loggers by grazing animals.

A river stretch is identified as a reach connecting two subsequent HOBOs. When
two neighbouring sensors are both active, inactive or missing data, the stretch in
between is defined as active, inactive or missing data accordingly. Instead, if two
neighbouring HOBOs have data but one of them is active and the other inactive (or
when a sensor with missing data has two neighbouring HOBOs providing reliable
data), the wet length in the stretch connecting those sensors is calculated using a lin-
ear interpolation of the electrical signal measured by the nearest probes. Whenever
a stretch has both missing data sensors at its end points and it is located between
two concurrently active or concurrently inactive stretches, it is classified as active
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or inactive accordingly. Instead, if a stretch with missing data is located between
two stretches with a different status (i.e., one active and one inactive), it is kept as
a stretch with missing data, as the available data did not allow a proper identifi-
cation of the status of the sensors and the location of the wet-dry transition. This
method can’t be applied to stretches classified as missing data if they are located
at the sources or in presence of confluences. In these cases, the behaviour of the
neighbouring stretches, experimental evidences and the observed spatial patterns of
persistency are considered in order to define the status of the stretch (active, inactive
or missing data). Finally, a MATLAB code is used to obtain time-lapse visualization
of the stream network dynamics with the desired temporal resolution (e.g. 3 hours).



3 Case studies

The empirical activities depicted in the previous sections enabled the compilation of
a dataset comprising 18 different study catchments located in Europe and eastern
USA, spanning a wide range of latitudes, climates, land covers, geologies and sizes
(see Figure 3.1 and Table 3.1).

Section 3.1 provides a detailed description of the Valfredda catchment and all the
specific empirical activities carried out in this site from 2018 to 2021 for monitoring
the dynamics of the active network and other hydrologically-relevant variables (e.g.
precipitation, evapotranspiration and streamflow). Section 3.2, instead, contains a
description of all the other study sites included in this thesis, as well as the related
available empirical data.

3.1 The Valfredda catchment

The Rio Valfredda is a small alpine creek in northern Italy belonging to the Piave
river basin (Figure 3.2, for more details on the basin the reader is referred to Botter

Figure 3.1: Geographical location of the study catchments across Europe and eastern USA. The
number of case studies for each location is indicated within round brackets only when this number
is larger than one.

15
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et al. 2010a; Lazzaro et al. 2013). The catchment elevation ranges from 1500 to
3000 m a. s. l., with a maximum drainage area of 5.3 km2. The geomorphic
network is 16.8 km long, corresponding to a geomorphic drainage density Dg of 3.16
km−1. Lithology and vegetation cover exhibit significant spatial heterogeneity across
elevations, shaping the hydrological dynamics of the basin. On the uplands, deposits
of gravel and rocky debris, originated from the erosion of solid rock emergencies near
the divides, dominate. These deposits are covered by shallow and patchy pastures
generate karst areas that ensure a high soil permeability, thereby promoting the
infiltration of most part of the precipitation (as confirmed by the results of the field
campaign). Below 2400 m a. s. l., soil covers a sedimentary bedrock with trees
growing adjacent to the streams. The lower part of the catchment (below 2000 m a.
s. l.) is characterized by an almost impermeable pyroclastic bedrock and a forested
cover (as shown in Figure 3.2). There are several springs supplying aqueduct intakes,
which collectively withdraw a flow rate that is two orders of magnitude smaller than
the stream discharge at the outlet. Accordingly, the effects of these intakes on stream
network dynamics were neglected.

Figure 3.2: Left: ortophoto showing the different land covers of the Valfredda river catchment
and its location in Italy. Catchment boundaries are depicted with an orange line; light blue lines
represent the potential river network as surveyed; the red marker shows the position of the weather
station. Right: geologic map of the area.
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The site has an alpine climate, characterized by high precipitation throughout the
year (annual rainfall of about 1500 mm), with significant snowfall during winter
and melting in spring. The hydrological regime exhibits a strong seasonality, with
winter low flows (when the whole catchment is covered by snow) followed by higher
discharges during spring and summer. Because of low recession rates in winter and
high rain frequency in the other seasons, intra-seasonal flow regimes are mainly
persistent (sensu Botter et al. 2013).

Climatic data. Climate data were monitored by a weather station of the Veneto
Region Environmental Protection Agency (ARPAV) located in Falcade, 4.5 km far
from the catchment centroid (Figure 3.2). These data are characterized by a daily
resolution and are available since 2010. Monitored variables include precipitation,
temperature, relative humidity, solar radiation, wind speed and direction. These
data were analyzed to characterize the climatic regime of the study catchment, es-
pecially during the first year of field campaign (summer-fall 2018). Two additional
weather stations were installed within the catchment area in 2019, after part of the
field campaign described in this paper. Precipitation records gathered by these in-
struments were compared with the corresponding time series of the ARPAV weather
station to ensure that the data used in this study represent sufficiently well the
dynamics of the water input in the study catchment (see SI). The morphology of
the Valfredda was characterized via a LiDAR survey that was carried out in Octo-
ber 2018 to produce a high resolution (20 cm) Digital Terrain Model (DTM) and a
corresponding orthophoto.

Streamflow. Discharge measurements were taken in two cross-sections, one at
the outlet of the study catchment and one at about half of the maximum drainage
area, where water flows permanently. A pressure transducer allowed the measure-
ment of the water stage with a temporal resolution of 5 minutes. A total of 28
streamflow measurements were performed under different hydrologic conditions us-
ing either a three dimensional Acoustic Doppler Velocimeter or the salt dilution
method. Streamflow measurements were combined to stage data, to estimate the
rating curves at the two measuring stations with discharge ranging between 9 and
620 l/s and a coefficients of determination R2 = 0.99. Discharge time series were
then derived for the entire study period with a temporal resolution of 3 hours, so as
to reduce the noise in the recorded signal. The same method was applied to measure
the constant discharge originated by the localized springs that feed the permanent
fraction of the river network.

Visual field surveys. The active portion of the river network has been surveyed
32 times from July 2018 to November 2021, following the procedure described in
section 2.1; the specific date of each survey was selected on the basis of the antecedent
precipitation in order to maximize the variability of the observed conditions. An
additional survey was performed in January 2019, while the catchment was covered
by snow. This survey was not used for modeling purposes, but only to obtain an
estimate of the extent of the drainage network during the winter time (i.e. from
December to May), when the network remains almost steady due to the winter
freezing. For more detailed information about the Valfredda catchment the reader
is referred to Durighetto et al. 2020.
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Figure 3.3: (a) Ortophoto of the upper Valfredda catchment, position of the meteorological station
(red dot) and of the section where discharge measurement were taken (white square). (b) Location
of the deployed sensors within Zone 2. (c) Location of the water presence sensors deployed in Zone
1.

Water presence sensors. The dynamics of the active stream network during
the study period (4th September to the end of October 2019) were observed using 31
water presence sensors, as described in 3.3. The water presence sensors were installed
mainly into two different regions of the upper Valfredda catchment, as shown in
Figure 3.3. The location of each sensor was chosen based on field surveys carried
out prior to the installation of the instruments. Technical difficulties and the time
needed to reach each node of the network were carefully considered in the selection
process. The specific location of the sensors was also chosen taking into account the
heterogeneous substrates of the catchment, so as to enable an accurate analysis of
the sensors’ behaviour in different settings while granting an even distribution of the
nodes’ persistency.

Fifteen sensors were deployed along tributaries of the southeastern part of the basin
(Zone 1), an area that has glacial morphogenesis and is characterized by moraine
deposits shaped on mild slopes covered by pastures (Figure 2.1a); therein, the river
width ranges from 20 to 80 cm, and the sensors were fixed to the ground using
pickets (Figure 2.1c). This led to a quite uneven spatial distribution of the sensors,
with a mean inter-sensors distance of approximately 55 m.

Thirteen sensors were placed in the northwestern part of the network (Zone 2),
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where the riverbed is on a steep canyon composed of quartz porphyry rocks (Figure
2.1b). These rocks are small and unstable, and they can move along the channel in
response to rainfall events, thereby supporting the intermittent nature of hydrologic
flows. In this region, the channel width ranges from 20 cm to about 1 m and the
sensors’ net were screwed on rock emergencies (Figure 2.1d). In Zone 2, the criteria
used in the selection of the HOBOs’ positions were the same as for Zone 1. However,
in this case, a more even spatial distribution of the ER sensors was obtained, with
a smaller mean inter-sensors distance (30 m).

The other 3 sensors were installed along three disconnected branches of the network
on the grassland between Zone 1 and 2. Some of the tributaries of the Valfredda
Creek were monitored only through visual inspection, as field surveys allowed a
simple yet reliable characterization of the hydrological conditions experienced by
those reaches during the study period (they were permanently wet even under ex-
treme low flow conditions or they were completely dry even during the most intense
precipitation event of the entire period).

3.2 Other study sites

The empirical dataset used in this thesis comprises not only the Valfredda, but
also other 16 experimental sites in Europe and USA. A summary description of each
study site is reported below, as long as the characterization of the experimental data
that is available for each catchment (in particular, active length data). Furthermore,
a summary of the long-term climatic, hydrological and geological characteristics of
the sites is reported in Table 3.1.

3.2.1 Turbolo

The Turbolo creek is a small river located in southern Italy, where the climate is
Mediterranean with hot summers; its drainage area is approximately 7 km2 at the
outlet of Fitterizzi, with elevations ranging between 183 and 1005 ma.s.l.. The
empirical data used in this study refers to two sub-basins in the northern part of
the catchment, with contributing areas of 0.67 and 0.48 km2 (catchments T1 and
T3, respectively). A third catchment (T2), nested into T1, has also been identified to
capture the effects of the internal heterogeneity of geology and land cover in the study
area. The T2 catchment drains an area of 0.23 km2 only. The Mediterranean climate
of the area consists in hot and dry summers with wet, mild winters. The annual
precipitation is approximately 1200 mm, but due to high evapotranspiration rates a
complete dry-down of the network is observed during the summer. The T catchments
are dominated by silty marly clays with low permeability, that generate (jointly
with the aridity of climate) streams with very low persistency. The geomorphic
drainage densities in this site range between 2.8 and 5.6 km2. The upper part of
T1 is composed by sandy-conglomerate formations, in which the higher permeability
produce a relative increase in the persistency of the stream network. The catchments
T1 and T2 have been monitored for 35 times from April 2019 to January 2020, while
T3 was monitored for 42 times from May 2019 to January 2020. For more information
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on the Turbolo catchment the reader is referred to Senatore et al. 2021.

3.2.2 Hubbard Brook

Three US catchments considered in this study pertain to the Hubbard Brook Ex-
perimental Forest of New Hampshire (New England). In the paper, they have been
identified as H1, H2 and H3, and their contributing areas are 0.14, 0.25 and 0.42
km2, respectively. The mean altitude of these catchments ranges between 630 and
740 ma.s.l., with average slopes of 28%. The stream networks of these catchments
are the densest of the dataset, with geomorphic drainage densities of 12.5, 14.5 and
8.9 km−1, respectively. The geology of the sites is mainly composed of shists and
granulites, covered by a mantle of sandy loams. The humid continental climate of
the area provides a mean annual precipitation of 1400 mm, with cold snowy winters
and mild summers. For each catchment, 7 visual monitoring of the active network
have been carried out in June and July 2015, spanning a wide range of hydroclimatic
conditions. More information on this catchments is available in Jensen et al. 2017.

3.2.3 Fernow

The Fernow Experimental Forest is located in the Appalachian Plateau of West Vir-
ginia (USA). In this site, three study catchments (F1, F2, F3) have been selected,
with drainage areas of 0.14, 0.16 and 0.37 km2, respectively. These catchments have
a mean altitude of approximately 800 ma.s.l., with slopes around 30%. Field obser-
vations revealed geomorphic drainage densities of 2.9 km−1 with local persistencies
varying in the full range between 0 and 1. The bedrock is composed of shales and
sandstones, with a soil cover consisting mainly of silt loams. The average annual
precipitation is approximately 1450 mm, with rainy summers and mite winters.
Snowfalls are common but usually limited and isolated. From May to December
2016 a total of 7 field surveys per catchment were carried out. More information on
this study site can be found in Jensen et al. 2017.

3.2.4 Potts and Poverty

Three study catchments are located in the Valley and Ridge physiographic provinces
of Virginia (USA). Two of them (P1 and P2) are part of the Poverty Creek, while
the third (P3) belongs to the South Fork Potts Creek, 25 km northern of P1 and P2.
These catchments have a contributing area of 0.25, 0.35 and 0.73 km2, respectively.
P1 and P2 have and average elevation of 750 ma.s.l., a mean slope of 33% and
a geomorphic drainage density of 7 km−1. The Potts Creek catchment, instead,
has a higher elevation (1030 ma.s.l.) and gentler slopes (27%). Its geomorphic
drainage density is 2.9 km−1. Bedrocks are mainly composed by sandstones in all
the catchments, whereas shales and siltstones can be found in the P1 and P2 sites.
The average annual precipitation in the area is close to 1000 mm, remarkably lower
than all the other USA catchments considered in this study (and comparable with the
T sites in southern Italy). Unlike the Turbolo Creek, however, the drainage networks
do not experience summer dry down due to the lower evapotranspiration rates. The
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active network in these catchment has been monitored by visual inspection 7 times
between September 2015 and March 2016. More information about these study
sites can be found in Jensen et al. 2017. In the P2 site, network dynamics were
also monitored with a network of 51 water presence sensors between May 2017 and
February 2018 (Jensen et al. 2019).

3.2.5 Coweeta

The C1, C2 and C3 catchments are located in the Coweeta Hydrologic Laboratory,
North Carolina (USA). They are the highest and steepest USA sites considered
in this study, with mean elevations between 800 and 1100 ma.s.l. and slopes of
about 50%. These sites have areas of 0.12, 0.33 and 0.40 km2, respectively, and
drainage densities ranging between 3.6 and 6.2 km−1. The catchments lie on the
Southern Blue Ridge Mountains, which mainly consist of exposed metamorphic rock
(biotite gneiss and amphibolite). The climate is generally warm and humid, with
temperatures above 0°C all year round. The precipitation is greatest in winter and
early spring, with an average annual precipitation of about 1800 mm. The field
campaign for detecting the active stream network in these sites were carried out
from November 2015 to December 2016, and consisted in 7 field surveys for each
catchment. More information about these study sites can be found in Jensen et al.
2017.

3.2.6 Attert

The Attert catchment (catchment code A) covers an area of 247 km2 between Lux-
emburg and Belgium. The altitude ranges between 245 and 550 ma.s.l. and the
geology is dominated by slate, marls and sandstone, while lithology is driven by
land use (mainly forest and agriculture). The climate is characterized by wet win-
ters and mild summers, with an average annual precipitation of 900 mm uniformly
distributed throughout the year (Pfister et al. 2017). Different types of sensors were
employed in this catchment (time-lapse photography, conductivity sensors and wa-
ter level gauging stations) to monitor flow presence in a set of 182 nodes along the
network. These sensors recorded water presence at a 30-minute time interval from
2013 to 2017. The sparse arrangement of the sensors along the network didn’t allow
a proper calculation of the active length. Therefore this data was only used to vali-
date the hypothesis of hierarchical activation of the stretches. Detailed information
about this catchment can be found in Kaplan et al. 2019.

3.2.7 Seugne

The Seugne river is located in the Charente-Maritime département in west France.
The catchment (hereafter coded as S) has a contributing area of 920 km2, with
elevations that span between 8 and 160 ma.s.l.. The geology is composed of lime-
stones, carbonates, sedimentary rocks and sand. The climate is Marine West Coast.
The active network was monitored in the catchment as part of the Onde campaign.
Visual inspection observations were employed determine water presence in a set of
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40 predetermined nodes, at a monthly interval from 2012 to 2020. As for the At-
tert catchment, this data was only used for validating the hierarchical hypothesis
because the sparse monitoring points did not allow the calculation of the active
length. More information about the field campaign can be found in Observatoire
national des étiages (ONDE) dataset n.d.
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4 Theoretical framework

The available data about the active portion of the stream network lied at the basis of
the development of a general theoretical framework for the mathematical description
of network dynamics. In particular, the aim of this chapter is to provide an analyt-
ical characterization of the statistics of the active length (i.e. mean, variance and
probability density function), on the basis of the statistical properties of the nodes
that belong to the network. The general framework introduced in this chapter is
further expanded in chapter 5, which describes the temporal dynamics and regimes
of the active length, and in chapter 6 where the full spatio-temporal dynamics of
the active network are modeled.

This chapter is structured as follows: the general theoretical framework is introduced
in section 4.1, while a simplified, Bayesian version of such model is derived in section
4.2. The introduction of the hierarchical behaviour (section 4.3) allows the speci-
fication of a general mechanism according to which networks expand and contract.
The hierarchical structuring of network dynamics enables a significant simplification
of the analytical expressions derived in this thesis. Then, the statistics of the active
length are linked to the local persistency of the nodes of the network (section 4.4).
Last but not least, the Stream Length Duration Curve (SLDC) is defined in section
4.5. The SLDC is proposed as a general tool to quantify the temporal variability
of the active length in a broad range of settings, allowing objective comparisons
between different catchments.

4.1 General framework

Let me define a dynamical stream network through a set of N nodes with arbitrary
spatial coordinates within a 3D space, representative of the terrain of a given land-
scape. In this framework, the dynamical nature of the stream network can be prob-
abilistically represented by a random shifting between two possible states associated
to each node: “active" or “dry". From a mathematical viewpoint, the river network
thus corresponds to a vector of N binary random variables X = (X1, X2, ..., XN),
whose components are associated to the N nodes of the network. Specifically, Xk

(k ∈ (1, N)) characterizes the local status of the kth node according to the following
coding scheme:

Xk =

{
0 if the node is dry
1 if the node is active

(4.1)

24
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Xk follows a Bernoulli probability distribution with parameter pk:

Xk ∼ p xkk (1− pk) 1−xk , (4.2)

where xk denotes a realization of the stochastic variable Xk, and the symbol ∼
means “is distributed as". The mean and the variance of the dichotomic process at
the node k, Xk, can be expressed as:

E[Xk] = pk

E[(Xk − E[Xk])
2] = pk(1− pk)

where E[...] denotes expectation. Therefore, the parameter pk in equation (4.2)
represents the mean local persistency of the node k (i.e. the average percentage of
time during which the node k is active). The mean local persistency (hereafter local
persistency) can be estimated from independent field surveys as the sample mean of
Xk, i.e. pk = Nak

Nk
∈ [0; 1], where Nak is the number of surveys in which the node k

is active and Nk the number of times the node k was surveyed (see e.g. Durighetto
et al. 2020). It is worth noting that the quantity pk is a local property in space,
though temporally integrated.

The length of the active stream network at a given time is crucially dependent on
two independent factors, namely i) the fraction of stream length associated to each
node and ii) the sequence of nodes active at a given time. In particular, the stream
network length L can be expressed as:

L = X · ∆l , (4.3)

where · indicates the scalar product and ∆l = (∆l1,∆l2, ...,∆lN) is a vector of
lengths whose components represent the increase of overall stream length produced
by the activation of each node of the network. ∆lk can be calculated (for every
node) based on the network topology as the sum of the semi-distances between the
node at hand and the connected neighboring nodes (upstream and downstream),
suitably evaluated along the flow directions. Equation (4.3) shows that, due to the
randomness of X, the active stream network length is a random variable as well.

The sequence of nodes that are active at a given time can be characterized in a
probabilistic way through the definition of the joint pdf of the vector of N random
variables Xk , k ∈ [1, N ]. The joint pdf of the random vector X is a multivariate
Bernoulli distribution, with possibly correlated components. The analytical expres-
sion of this multivariate distribution reads (e.g. Dai et al. 2013):

p(x) = p
[
∏N
j=1(1−xj)]

00...0
p
[x1

∏N
j=2(1−xj)]

10...0
p
[(1−x1)x2

∏N
j=3(1−xj)]

01...0
. . . p

[
∏N
j=1 xj ]

11...1
(4.4)
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where pabc..z is the joint probability of X1 = a,X2 = b,X3 = c, ..., XN = z and x =
(x1, x2, ..., xN) represents a realization of X. In order to fully specify the joint pdf in
equation (4.4), the identification of a large number of parameters (2N) is required.
Therefore, the problem can be largely undetermined (i.e. overparametrized) unless
further simplifying assumptions are introduced.

The mean network length can be calculated based on the local persistency, taking
the expectation of both sides of equation (4.3):

〈L〉 =
N∑
i=1

pi ∆li (4.5)

Equation (4.5) shows that the mean length can be expressed as a weighted sum of
the local persistency along the network. Nevertheless, changes in the state (active vs
dry) of the nodes of the network, as induced by the interaction of unsteady climatic
forcing (e.g. a random sequence of rainfall events) and local geologic or morpholog-
ical properties, make the overall length of the flowing streams time-variable. The
variability in time of the stream network length can be summarized through the
variance of L, that can be estimated from equation (4.3) as the variance of a linear
combination of random variables:

var(L) =
N∑
i=1

N∑
j=1

∆li∆ljCov(Xi, Xj) =
N∑
i=1

N∑
j=1

ρi,j∆li∆lj

√
pi(1− pi)pj(1− pj) ,

(4.6)

where Cov(Xi, Xj) is the covariance between Xi and Xj and ρi,j is the corresponding
cross correlation (i.e. the covariance scaled to the product of the standard devia-
tions of Xi and Xj). Equation (4.6) shows that, differently from the mean network
extension, the variability of the stream length through time is crucially impacted
by the spatial correlation structure of the sequence of random states Xk along the
network.

The temporal variability of the length of the flowing streams can be characterized
in a more detailed manner through the probability density function (pdf) of L -
or, alternatively, through the corresponding cumulative distribution functions of
L (exceedance or non-exceedance probabilities). A general closed-form expression
for the exceedance probability of the length of the flowing network, PL(L), can be
written as:

PL(L) = Prob [l ≥ L] = Prob [X ·∆l ≥ L] (4.7)

The left hand side of equation (4.7) represents the probability to observe a length
of flowing streams larger than (or equal to) L, while the right hand side of the same
equation represents the Cumulative Distribution Function CDF of a linear combina-
tion of possibly correlated Bernoulli-distributed binary random variables. Were these
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binary variables uncorrelated, the pdf of the stream length would be expressed as a
convolution of N scaled Bernoulli pdfs, thereby originating a Binomial-Bernoulli dis-
tribution when ∆lk = const(k). Instead, the presence of mutual correlations among
the components of X, which is a reflection of the physical mechanisms that underlie
river network expansion and contractions, prevents a full analytical treatment of the
problem in the general case, unless further simplifying assumptions are introduced
(see section 4.3).

4.2 A Bayesian model for dynamic networks

Given the complexity of the physical processes under investigation, a simplified prob-
abilistic description of the nodes state in the network can be helpful to quantify the
effect of the expansion/contraction cycles experienced by rivers on the temporal vari-
ability of the active stream length. Here, stream network dynamics are described
through a spatially-correlated dichotomic stochastic process, in which the state of
one node is seen as a binary random variable (active/dry, see equation (4.1)) that is
probabilistically linked to the state of another (suitably identified) node in the net-
work. In other words, pairwise joint pdfs representing the status of two connected
nodes are identified (Figure 4.1). Considering now a generic couple of directly con-
nected nodes (say, the nodes j and i), the joint probabilities of the state of these
nodes are identified by the following elements (Figure 4.1):

pji11 (probability that the node j is active and the node i is active);

pji10 (probability that the node j is active and the node i is dry);

pji01 (probability that the node j is dry and the node i is active);

pji00 (probability that the node j is dry and the node i is dry); (4.8)

These joint pdfs are spatially variable (i.e., they do depend on the couple of nodes
at hand, as reflected by the notation) and must obey to the following additional
constraints: pji11 + pji10 = pj, pji01 + pji11 = pi and pji11 + pji10 + pji01 + pji00 = 1 (joint and
marginal pdfs must be consistent, and the total probability has to be conserved). A
few important remarks are, in order: i) this is a probabilistic model, and mechanistic
cause-effect relationships affecting the sequential activation of different nodes are not
necessarily represented in an explicit manner; ii) the pairs of connected nodes are not
necessarily close-by in the physical space (the probabilistic space and the geometric
space are different); iii) assuming a direction in the connections between any pair of
nodes is necessary for the calculation of pairwise conditional pdfs and, thus, for the
calculation of the joint pdf of the node states according to the Bayesian paradigm.
The directionality of the links allows the identification of a parent and a child node
for each pair of connected nodes, such as the connection is directed from the parent
to the child. However, these directions might be arbitrary (i.e. they can be reversed
provided that only pairwise conditional pdfs are generated) and don’t necessarily
reflect causality (see point i) above). Under the above assumptions, the correlation
between two directly connected nodes Xi and Xj, ρij reads:
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Figure 4.1: a) Schematic of a Bayesian binary network with two possible states (active or dry). Each
node, represented by a circle, is identified by a number. Nodes are linked together by directed edges
to represent the dependence structure of the network. Blue labels represent marginal probabilities
of node activation, orange labels indicate the correlation between two nodes. b) Schematic of the
joint probability of activation of two connected nodes i and j, as indicated by the blue labels.
Active nodes (X = 1) are color-coded as blue, while dry nodes (X = 0) are represented in grey. c)
and d) Two example configurations of possible states of the nodes. The active nodes may or may
not be continuous along the network.
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ρi,j =
pji11 − pi pj√

pi pj(1− pi)(1− pj)
(4.9)

The correlation ρ given above quantifies the probability that two neighbouring nodes
are simultaneously active or simultaneously dry. Nevertheless, the correlation can
be calculated for both neighbouring and non-neighbouring nodes. The correlation
between two nodes k and m that are not directly connected can also be expressed
as:

ρk,m =
∏

i:k−>m

ρi,i+1 . (4.10)

where the product involves all the couples of directly connected nodes (i, i+ 1) that
generate a path connecting the nodes k and m (see Figure 4.1). Therefore, the full
correlation structure of the network is identified by the pairwise correlations of the
states of neighbouring nodes (hereafter, local correlations). Overall, a dichotomic
Bayesian network is thus defined through the specification of five attributes: i) the
number of nodes N , ii) the stream length associated to each node (i.e. the vector
∆l), iii) the network structure, i.e. how each node is connected with the other nodes,
iv) the N local persistencies pi and v) the N − 1 local spatial correlations between
neighbouring nodes, ρi,j. The mean degree of correlation of the network, 〈ρntwk〉,
can be then calculated as:

〈ρntwk〉 =
1

N2

N∑
k=1

N∑
m=1

ρk,m (4.11)

Equation (4.11) expresses the overall correlation of the system as the average cor-
relation existing among all the possible couples of (directly or indirectly) connected
nodes of the network. 〈ρntwk〉 is a lumped measure of the degree of spatial correlation
of the random states X within a temporary stream.

A key element of the formulation is that the correlation between two nodes is con-
strained by the local persistency of the two nodes. In fact, for a given couple of
nodes i, j with local persistencies pi and pj ≤ pi, the maximum possible correlation
between the nodes, ρmaxij , is:

ρmaxi,j =

√
pj(1− pi)
pi(1− pj)

≤ 1 (4.12)

while the corresponding minimum possible correlation, ρminij , reads:

ρmini,j = −
(

pipj
(1− pi)(1− pj)

)β
≥ −1 (4.13)
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Figure 4.2: Schematic of the hierarchical model applied to an example river network with 8 nodes.
a) A representative stream network drawn as a blue line that can be either active (continuous)
or dry (dotted line). The nodes are active (blue) or dry (grey) accordingly. b) Schematic of the
corresponding chain obtained by applying the hierarchical model. The nodes are first reordered
from the most to the least persistent, and then direct connections between nodes are set. If the
condition p(i−1) i

01 = 0 is set for all the neighbouring nodes, then node activation follows the chain
order (i.e. the node 1 is the first to be activated, while the node 8 is active only when all the
other nodes are already switched on). Note that the reordering of the nodes allows the hierarchical
model to describe also active stream networks that are discontinuous in the physical space.

where β = 1/2 if pi + pj ≤ 1 and β = −1/2 otherwise. Therefore, the full set of
possible correlations (i.e., the range (−1, 1)) is available only when pi = pj = 0.5.
Otherwise, the maximum local correlation is upwardly bounded or the minimum
correlation is downwardly bounded. For example, two nodes with persistency 0.5
can display a correlation between −1 and 1, two nodes with persistency 0.9 have a
correlation between −0.11 and 1, whereas for two nodes with persistencies (0.1, 0.9)
the correlation ranges between −1 and 0.11. It is worth mentioning that a unit linear
Pearson correlation is possible only in the case of pi = pj, for which two connected
nodes can be systematically active at the very same time. As one of the two local
persistencies of the connected nodes (or both) tends to 0 or 1, the upper limit of the
local correlation approaches 0.

4.3 A persistency-driven hierarchical model
of network dynamics

This section introduces a simplified case of the model presented in section 4.2, in
which the switching on of the various network’s nodes during the expansion of the
flowing streams takes place in a hierarchical way - from the most persistent to
the least persistent nodes. Mathematically, this implies that the nodes are first
re-ordered in a chain based on their local persistency, from the most to the least
persistent (Figure 4.2). Then pairwise connections are set between consecutive nodes
(i.e. between the nodes i − 1 and i) imposing the constraint p(i−1) i

01 = 0 (in which
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the first subscript refers to the status of the most persistent node of the pair, and
the second subscript refers to the state of the least persistent) for all the possible
pairs of directly connected nodes. This does not imply that the underlying active
stream network is spatially continuous, as the re-ordering does not reflect the actual
position of the nodes (two connected nodes can be far apart in the physical space,
as in the example of Figure 4.2). Under these assumptions, the three non-null joint
pdfs defined in equation (4.8) can be written as:

p
(i−1) i

11
= pi − p

(i−1) i

01
= pi

p
(i−1) i

10
= pi−1 − p

(i−1) i

11
= pi−1 − pi

p
(i−1) i

00
= (1− pi−1)− p(i−1) i

01
= 1− pi−1 , (4.14)

where the nodes i and i − 1 are two consecutive nodes in the chain, re-ordered by
descending persistency (i.e., pi < pi−1).

This process represents a single chain, in which all the nodes with the same local
persistency (i.e. same pi) behave systematically in the same manner (they are all
simultaneously switched-on or switched off). Moreover, a node with a given pi can
be switched on only if all the network’s nodes with a larger local persistency are
already switched on. In this case, a mechanistic relationship between pairs of nodes
is introduced as the switching on of the i− 1 node is a necessary (but not sufficient)
condition for the activation of the node i. The physical interpretation of this model
is based on the idea that, during the network expansion, a hydrological signal is
propagated along the network when a given landscape portion becomes saturated
and, consequently, overland flow is generated.

Provided that the nodes are re-ordered according to a decreasing value of local
persistency, each of the possible sequences of ordered nodes corresponds to a sequence
of K (K ∈ [0, 1, 2, ..., N ]) active nodes (X1 = 1, X2 = 1, ...., Xk = 1), followed by a
sequence of N − K dry nodes (XK+1 = 0, XK+2 = 0, ..., XN = 0). Accordingly, in
equation (4.4), the only non-zero terms of the joint pdf of X are those of the type
p1000...00, p1100...00, p1110...00, ..., p1111...10, p1111...11 and a single transition from 1 to 0
is allowed in the chain. As the position of each node in the physical space is not
explicitly specified in the stochastic model, a sequence of wet and dry nodes of this
type is consistent with a stream network in which the active reaches, during wetting,
expand either upstream or downstream (Durighetto et al. 2020). Furthermore, the
hierarchical scheme is also suited to describe active networks that are not continuous
in the physical space because of non-monotonic changes of the local persistency along
the network (see Figure 4.2. Under the above assumptions, equation (4.4) can be
simplified as follows:

p(x) = p
[
∏N
j=1(1−xj)]

000...0
p
[x1

∏N
j=2(1−xj)]

100...0
p
[x1 x2

∏N
j=3(1−xj)]

110...0
. . . p

[
∏N
j=1 xj ]

111...1
(4.15)

The transition between 1 and 0 in the chain is observed between the nodes i− 1, i
with a probability equal to p10 = pi−1−pi. Accordingly, the probability of a sequence
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of N consecutive active nodes is the probability that the least persistent node of the
network is active, pN . Likewise, the probability of a sequence of N consecutive dry
nodes is the probability that the first node of the chain is dry, 1 − p1. Therefore,
the joint pdfs of all the possible combinations of states appearing in equation (4.15)
can be expressed as:

p000...00 = 1− p1

p100...00 = p1 − p2

p110...00 = p2 − p3

. . .

p111...10 = pN−1 − pN
p111...11 = pN

(4.16)

Provided that the geometry of the stream network is described by the active lengths
associated to each node, the active stream length in this case only depends on the
number of nodes active at a given time. Let us define Li as the partial sum of the
first i components of the vector ∆l, i.e.

Li =
i∑

k=1

∆lk , (i ≥ 1) (4.17)

whereas L0 = 0 by convention. Li (i = [0, 1, 2, ..., N ]) identifies the length of the
stream network when i nodes are active - only the nodes with persistency larger than
(or equal to) pi. This instance is observed with probability pi−1 − pi for 0 < i < N
(see equation (4.16)) . Therefore, a general expression for the probability density
function (pdf) of the stream length can be written as:

pL(L) =
N∑
i=0

(pi − pi+1)δ(L− Li) , (4.18)

where δ(·) is the Dirac-delta generalized function (ref), p0 = 1 and pN+1 = 0 to
simplify the notation. The cumulative density function (cdf) of the stream length
can then be calculated by means of equation (4.7), or simply integrating the stream
length pdf shown in equation (4.18) as:

PL(L) =

∫ L

0

i=N∑
i=0

(pi − pi+1)δ(x− Li)dx =
i=N∑
i=0

(pi − pi+1)H[L− Li] (4.19)

where H(·) is the unit Heavyside step-function. Equation (4.19) is a linear stepwise
function of L and it can be rewritten as:

PL(Li) = 1− pi . (4.20)
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The r.h.s. of equation (4.20) expresses the cumulative probability of the local per-
sistency along the network.

4.3.1 Accuracy of the hierarchical model

The hierarchical model assumes that the activation of the nodes follows a descend-
ing persistency order. Such hypothesis was validated using empirical data with the
procedure reported in this section. The hierarchical activation scheme implies that,
at any given time, there exists a persistency threshold P ∗ that allows a separa-
tion between the dry nodes (P < P ∗) and the wet nodes (P ≥ P ∗). Accordingly,
hierarchical active networks were constructed assuming that, at any given time t,
each node was active if and only if its local persistency was bigger than a suit-
able, time-dependent threshold P ∗(t). For each field survey, P ∗ was calculated as
the exceedance probability of the corresponding observed number of active nodes.
To compare observed and hierarchical active networks at a given time, a confu-
sion matrix was computed for each node of each study catchment. The modeled
and observed states of each node within all the field surveys were then compared.
The spatially and temporally averaged accuracy of the hierarchical model was then
calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
(4.21)

where TP, TN, FP and FN indicate, respectively, the true positives (i.e. the number
of nodes and times for which the status of a node is correctly modeled as active),
the true negatives, the false positives and the false negatives. An accuracy of 100%
means that the hierarchical model was able to correctly model the status of all the
nodes in the network during all the field surveys. The local accuracy is defined
analogously, the only difference being that it refers to a single node, instead of the
whole network. The accuracy can be thus integrated in time, i.e. across all the
surveys.

4.4 Linking active length statistics to local
persistency

The hypothesized hierarchical behaviour of river networks enables the derivation of
novel theoretical results that advance our ability to predict the dynamics of flowing
channels in temporary streams. In hierarchical networks, in fact, active channel
length statistics can be expressed analytically in terms of the mean network per-
sistency, unveiling the complex linkage between climate and stream dynamics, as
reported in this section. In particular, a set of equations linking the mean and
variance of the active length to the mean network persistency and its internal het-
erogeneity is derived in section 4.4.1. Then, in section 4.4.2 the results are reported
in terms of active drainage density (defined as the active length normalized with the
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corresponding catchment area), to allow the comparison of catchments with differ-
ent sizes, and a further simplification is introduced showing how the mean network
persistency is the only factor affecting the statistics of the active length.

Finally, an empirical linear regression between mean network persistency and mean
monthly excessive precipitation (i.e. total precipitation minus potential evapotran-
spiration) is used to show that water availability, which is a byproduct of climate,
regulates the extent of the variability of a dynamic river network.

4.4.1 Mean and variance of the active length

If, without loss of generality, ∆li = ∆ l is assumed to be a constant (i.e., equally
spaced nodes), the mean active length can be calculated as:

〈L〉 = E[L] = N ∆l E[X] = Lmax P̄ , (4.22)

where E[−] denotes expectation, P̄ is the mean network persistency (i.e. the average
node persistency throughout the entire network; P̄ =

∑N
i=1 Pi/N in case of equally

spaced nodes) and Lmax = N∆l is the geomorphic length (i.e. the maximum length
of the network).

The variance of the active length, V ar(L), is linked to the covariances Cov(Xi, Xj)
between the status of all the pairs of nodes that make up the network. In the general
case, the covariance of the states of two nodes can be written as:

Cov(Xi, Xj) = (1− Pi)(1− Pj)P ij
11 + (1− Pi)(0− Pj)P ij

10+

(0− Pi)(1− Pj)P ij
01 + (0− Pi)(0− Pj)P ij

00

= P ij
11 − PiPj

(4.23)

Due to the symmetry of the covariance (Cov(Xi, Xj) = Cov(Xj, Xi)), there is no
loss of generality in assuming Pi ≥ Pj. Introducing the hypothesis of hierarchical
activation of the nodes is equivalent to imposing P ij

01 = 0 (i.e. the less persistent
node j cannot be active if the more persistent node i is dry), or P ij

11 = Pj. As a
consequence, the covariance between the states of two nodes reads:

Cov(Xi, Xj) = Pj(1− Pi) . (4.24)

This expression is only dependent on the persistencies of the two nodes. Let us
now consider a stream network with N nodes numbered in a decreasing order of
persistency (i.e. Pi ≥ Pj for i < j). Note that node numbering does not necessarily
reflect the actual position of the nodes in the physical space. The states of the
nodes can be represented in a vector of random variables X = (X1, X2, ..., XN).
The covariance between each possible couple of nodes can then be summarized in
the covariance matrix, the elements of which can be expressed as:
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Cov(X) =


Pi(1− Pi) for j = i

Pi(1− Pj) for j < i

Pj(1− Pi) for i > j

(4.25)

where i and j represent the row and column indexes, respectively. At any given time,
the active stream length L is a linear combination of the states of all the nodes, as
per equation (4.3). The stream length variance is therefore expressed as the sum of
all the elements of the covariance matrix, properly weighted by the ∆li associated
to each node, as expressed by equation (4.6). Without loss of generality, to simplify
the notation a constant unit length ∆li = ∆l = 1 is assumed for each node. All
the relevant equations, however, can be easily generalized to the case ∆li 6= const
by properly weighting each term associated to the node i (i.e. the status Xi or the
local persistency Pi) with the corresponding ∆li. First, let us express each local
persistency as the sum of the mean network persitency, P̄ , and a local deviation
from the mean, ∆Pi (i.e. Pi = P̄ + ∆Pi). Note that

∑N
i=1 ∆Pi = 0 by definition.

Combining equations (4.25) and (4.6), and using the above definitions, the stream
length variance can then be written as:

V ar(L) =

[
N∑
i=1

Pi(1− Pi)

]
+

[
2

N∑
i=2

i−1∑
j=1

Pi(1− Pj)

]

= N2P̄ (1− P̄ )−
N∑
i=1

∆P 2
i − 2

N∑
i=2

i−1∑
j=1

∆Pi∆Pj + 2
N∑
i=1

i∆Pi

≈ N2P̄ (1− P̄ ) +N2∆̃P

(4.26)

where the term ∆̃P = 2/N 2 ·
∑N

i=1 i∆Pi represents a weighted spatial average of
the persistency deviations around the mean. The weights associated to each ∆Pi
increase as i increases (i.e., as Pi decreases). Therefore, a bigger weight is attributed
to the negative values of ∆Pi, and ∆̃P ≤ 0. It is important to note that the last row
of equation (4.26) represents an approximation of the actual value of V ar(L), which
is obtained from the full expression of V ar(L) by neglecting the following two terms:
i) the term

∑N
i=1 ∆P 2

i , that proves to be negligible when N is large (because it is of
order N , while the other terms are of order N2); ii) the term 2

∑N
i=2

∑i−1
j=1 ∆Pi∆Pj,

that is negligible because of the compensating effects originated by the interplay
between the factors ∆Pi and ∆Pj when the summation indices vary. A detailed set
of numerical simulations based on synthetic networks and available empirical data
confirmed that the neglected terms are at least four orders of magnitude smaller
than all the other terms of the equation.

4.4.2 Statistics of the active drainage density

In this framework, the average drainage density (D̄, defined as the average active
stream length normalized with the corresponding catchment area, Horton 1945) can
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be directly derived from equation (4.22), and expressed as:

D̄ = P̄Dg , (4.27)

where Dg is the potential geomorphic drainage density, that corresponds to the
simultaneous activation of all the N nodes in the channelized network, including
streams that are typically dry but excluding what is out of the geomorphically
obvious channel features and the hillslopes (where surface flow could be temporarily
observed). Being D and L proportional, its statistics can be easily derived from the
corresponding statistics of L.

When the activation of the nodes is hierarchical, the temporal coefficient of variation
of the active drainage density, CVD (that also corresponds to the temporal coefficient
of variation of the active network length, CVL) can be written combining equations
(4.26) and (4.22) as:

CVD = CVL =

√
P̄ (1− P̄ ) + ∆̃P

P̄ 2
, (4.28)

where the term ∆̃P = 2/N2·
∑N

i=1 i(Pi−P̄ ) ≤ 0 represents a weighted spatial average
of the persistency deviations around the mean. Thus, ∆̃P reflects spatial variation
of persistency likely induced by patterns of geologic and morphometric attributes in
the channel network or landscape.

Equation (4.28) allows for the identification of two distinct contributions to the
temporal changes of the drainage density: a positive contribution proportional to
P̄ (1 − P̄ ), determined by the mean persistency of the whole stream network, and
a negative contribution proportional to ∆̃P , that depends on the internal spatial
variability of Pi. Thus, an upper limit for the coefficient of variation of the active
drainage density can be identified by setting ∆̃P = 0 in equation (4.28):

CV max
D = CV max

L =

√
1− P̄
P̄

. (4.29)

Equation (4.29) corresponds to the theoretical coefficient of variation of a homoge-
neous network made up of synchronous nodes sharing the same persistency (P̄ ). In
realistic cases, instead, the actual value of CVD is influenced by the spatial varia-
tions of the local persistency. Enhanced internal geological, landscape and hydrolog-
ical heterogeneities entail the spatial changes of flow persistence and increase |∆̃P |,
thereby reducing the variability of the active length. To describe the influence of the
spatial variability of the local persistency on CVD, a one-parameter beta probability
density function is used to represent the heterogeneity of the persistency among the
different nodes in the network. In fact, empirical data suggest that the local persis-
tency along a network can be in most cases represented by a beta distribution with
the first shape parameter equal to 1:
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pdf(Pi) =
(1− Pi)β−1

B(1, β)
, (4.30)

where P is the local persistency, β is the second shape parameter of the distribution
and B(1, β) = 1

β
. Under this assumption, the term ∆̃P in equations (4.26) and

(4.28) reads:

∆̃P = − P̄ (1− P̄ )

2− P̄
(4.31)

leading to the following equation for CVD:

CVD = CVL =

√
(1− P̄ )2

P̄ (2− P̄ )
. (4.32)

Differently from equation (4.29), equation (4.32) accounts for the statistical distri-
bution of flow intermittency within the river network. The resulting expression for
CVD, however, only depends on the mean network persistency because the term
∆̃P of equation (4.28) was in turn expressed as a function of P̄ . The existence of
a general link between ∆̃P and P̄ should not be surprising, since in perennial (or
persistently dry) rivers all the nodes necessarily exhibit very similar persistencies -
thereby implying that ∆̃P ' 0 for very high or very low values of P̄ .

4.5 The Stream Length Duration Curve

In the previous section, the mean and variance of the active length were explored and
linked to the corresponding statistics of the local persistency. Here, the cumulative
density function of the active length is used to define the Stream Length Duration
Curve (SLDC), to better quantify the temporal variability of the active length. It
is then shown how, thanks to the hierarchical activation, the SLDC can also be
estimated from the cumulative spatial distribution of local persistency.

Being a monotonic function of L, the exceedance probability of the active stream
length, PL(L), can be inverted and re-interpreted as the active Stream Length Du-
ration Curve (SLDC), in analogy with the definition of flow duration curve that is
widely employed in the hydrological literature and in practical engineering to char-
acterize the temporal variability of the flowrate at-a-station (e.g. Vogel et al. 1994;
Castellarin et al. 2004; Doulatyari et al. 2015). Flow duration curves provide a use-
ful basis to address important water resources problems such as water abstractions,
environmental flows, hydro-power, irrigation (Searcy 1959; Vogel et al. 1994; Ridolfi
et al. 2020). Analogously, the SLDC enables the description of active stream dy-
namics providing a tool to compare stream extension and variability across different
climatic areas.
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Figure 4.3: Schematic of a Stream Length Duration Curve.

This can be done graphically by putting all the possible active flow lengths (L) on
the y-axis of a plot, and then representing on the x-axis the corresponding duration,
D(L) (Figure 4.3). The duration of a given length expresses the time for which that
flowing length is equalled or exceeded, and it is calculated as the complementary of
the cumulative distribution function of L as follows:

D (L) = 1− PL (L) , (4.33)

where PL(L) is the cumulative distribution function (i.e. the non exceedance prob-
ability) of the active length. This produces a function L(D) that is the inverse of
the exceedance probability of the active stream length given by equation (4.7). By
construction, the area underlying the SLDC represents the mean length of the active
streams, as given by equation (4.22), while the slope of the Stream Length Duration
Curve is proportional to the variance of L expressed by equation (4.6).

Under the assumption of hierarchical activation of the nodes, the Stream Length
Duration Curve can be seen as the spatial integral of the local persistency. This
means that the duration of a given length (say, L∗) is the exceedance probability
of the local persistency (interpreted as a spatial random variable) up to a suitable
persistency threshold p∗(L∗). This threshold is set in a way for which L∗ is the
overall network length when only the nodes with persistency larger than (or equal
to) p∗ are simultaneously switched on. Equation (4.20) suggests that the temporal
distribution of the active stream length is linked to the spatial distribution of the
local persistency. This space-for-time substitution for the estimation of the Stream
Length Duration Curve is allowed only when each node of the network constraints
the status of the node(s) with a smaller persistency according to the hierarchical
model.
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The SLDC is proposed as a general tool to quantify the natural temporal variability
of the active stream network under a broad range of field settings, possibly enabling
the definition of an objective classification of temporary streams, based on the un-
derlying dynamics of the river network. In fact, the active length regime of a river
can be defined based on the shape of the D (L) curve, as discussed in section 5.2.4.



5 Temporal dynamics and statistics of
the active length

The theoretical framework proposed in chapter 4.1 enables the description of dy-
namic river networks using spatially and temporally integrated statistics (e.g. aver-
age, variance and pdf of the active length). In this chapter, instead, the temporal
dynamics of the active length are explored. In particular, two different but comple-
mentary approaches are employed.

In section 5.1, climatic data is used to develop a set of simple empirical models for the
estimation of the active length. Even tough these models are catchment-specific and
cannot be used to get a general characterization of the global patterns of temporary
streams, the application of such models may provide useful insights on dynamic
river networks. Specifically, the main goals of these models are a) to identify the
physical drivers of active length variability, possibly enabling the identification of the
hydrological processes involved in the activation/deactivation of different portions of
a stream network, and b) to reconstruct the continuous dynamics of the active length
starting from a limited number of field observations and widely available climatic
data, such as daily precipitation and evapotranspiration.

Section 5.2, instead, takes advantage of a well-established empirical relationship
linking active length to the corresponding streamflow at the outlet (Godsey et al.
2014; Jensen et al. 2017; Lapides et al. 2021; Senatore et al. 2021). The coupled
dynamics of streamflow and active length are probabilistically described starting
from the physically based stochastic model introduced by Botter et al. 2007. This
allows the definition of the Stream Length Duration Curve as a derived distribution
of the streamflow distribution. This approach can be used to provide a consistent
network-scale classification of temporary streams by identifying a set of possible
regimes of streamflow and active length, as discussed in section 5.2.4.

5.1 A statistical model for active length

Three different empirical models for the description of the active stream network
length L were developed and their performance was formally compared to elucidate
the major climatic controls on active network dynamics and the temporal scales over
which the expansion/contraction cycles take place.

Rainfall depth h [mm] and potential evapotranspiration ET0 [mm] at daily scale

40
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are the two model inputs. The latter was evaluated from climatic data through the
Penman-Monteith equation (Allen et al. 1998).

5.1.1 Model 1

The first model uses the cumulative precipitation hT [mm] as the unique explanatory
variable for L. hT was calculated as the sum of antecedent precipitation over a time
period of T days:

hT (t) =

∫ t

t−T
h(τ)dτ. (5.1)

where t is the time to which hT is referred and τ is the integration variable. The
active length was then modeled with the formula:

L(t) = k0 + kh · hT (t) (5.2)

where the parameters k0 [km] and k1 [km/mm] are the intercept and slope of the
recession line, respectively, which represent the length of the permanent drainage
network and the length increase per unit of hT .

Three model parameters (T , k0, k1) need to be calibrated in this model. For any
given period T , a linear regression of the observed L against the corresponding hT
was used to calibrate the parameters k0 and k1 of equation (5.2), and the goodness
of fit was assessed through the coefficient of determination R2, calculated based on
all the available observations. Subsequently, the optimal value of T was selected
by maximizing the function R2(T ). The robustness of the parameter estimation
was checked via leave-one-out cross validation. This technique consists in repeating
the calibration procedure for different training subsets of the available data, each of
which is obtained by removing a single data point from the complete data set. The
final calibrated parameters are then the average of the parameters obtained from
each training subset. To characterize model performance, the standard deviations
of the calibrated parameters and the mean absolute model error were calculated.

5.1.2 Model 2

The second model was obtained by replacing in equation (5.1) the cumulative rainfall
depth, hT , with the cumulative of excess rainfall, EPT [mm], i.e. the cumulative
difference between daily precipitation and evapotranspiration over a period of T
days.

The reference crop evapotranspiration ET0 was estimated with the Penman-Monteith
equation (Allen et al. 1996; Settin et al. 2007). Then, a dimensionless crop coefficient
kc was used to estimate the actual evapotranspiration ET as:

ET (t) = kc · ET0(t). (5.3)
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In general, kc depends on crop type and development stage, and therefore it should
be variable both in space (as a function of land cover) and in time (as a function
of the vegetative state). The two main land covers of the Valfredda catchment are
grazing pastures and conifer trees, for which the suggested values for kc are between
0.85 and 1 throughout the study period (Allen et al. 1998). Therefore, in this work
a uniform and constant kc was calibrated in order to link spatially- and temporally-
averaged vegetation conditions to the event-based dynamics of the overall stream
length. Also, in this region, soil water content is typically higher than the incipient
stress point. Accordingly, equation (5.3) does not include the effect of water stress
on ET . Nevertheless, the calibrated value of kc should implicitly include the possible
effect of reduced soil-water availability on catchment-scale evapotranspiration.

The daily excess precipitation was thus expressed as EP (t) = h(t) − ET (t). The
cumulative excess precipitation, EPT [mm], was then calculated by integrating EP
over the period T as:

EPT (t) =

∫ t

t−T
EP (τ)dτ. (5.4)

Note that EP and EPT can take negative values when evapotranspiration is bigger
than precipitation.

The basic equation of this model is analogous to equation (5.2):

L(t) = k0 + k1 · EPT (t). (5.5)

This model involves four parameters: the crop coefficient kc (equation 5.3), the
reference aggregation time T (equation 5.4), the length of the permanent drainage
network k0, and the L increase per unit of EPT , k1 (equation 5.5).

The calibration was performed following the same procedure used for model 1: for
any given combination (T , kc), the parameters k0 and k1 were estimated via linear
regression of the observed Ls against the corresponding values of EPT ; the goodness
of fit was evaluated through the determination coefficient R2. The estimation of the
optimal values of T and kc was then performed maximizing the function R2(T, kc).
The calibration over the full set of available data was then cross validated with a
leave-one-out technique.

Including ET in the calculation of the predictor for L should improve the repre-
sentation of the shrinking of the Active Drainage Network during recessions. This
model, in fact, is expected to originate a decrease of L over time right after each
rainfall event because of the negative values of EP during non-raining days. During
wet periods, instead, ET is typically smaller than the rainfall amounts, also because
of lower temperatures and reduced solar radiation associated to rainy days, thereby
leading to an arguably smaller impact of ET on network dynamics. Note that for
kc = 0 model 2 corresponds to model 1.
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5.1.3 Model 3

The third model was used to assess the possible influence of different flow generation
processes (surface and subsurface flow/groundwater) on the length of the drainage
network. Accordingly, two cumulative rainfall depths (with two different time peri-
ods T1 and T2) were used to predict the active drainage network length as

L(t) = k0 + k1 · hT1(t) + k2 · hT2(t). (5.6)

The rationale of this model is the existence of multiple nested expansion/contraction
cycles of the active drainage network driven by the cumulative rainfall at different
time scales. These time scales possibly correspond to the time scales of the different
stream flow generation processes active in the study basin.

The parameters of this model can be divided in two groups: the aggregation time
scales T1 and T2 used to calculate the cumulative precipitations, and the three coef-
ficients (k0, k1 and k2) of equation (5.6).

The calibration procedure was analogous to the previous cases: for any given combi-
nation (T1, T2), the parameters of equation (5.6) were estimated via linear regression
and the corresponding R2 was evaluated; the optimal value of the couple (T1, T2)
was then selected by maximizing the function R2(T1, T2), and the calibration was
cross-validated with a leave-one-out technique.

The two predictors hT1 and hT2 used in equation (5.6) are different aggregations of
the same data, and thus they could display collinearity effects. When collinearity
exists, the estimate of the regression coefficients would become very sensitive to
small changes in the available data, thereby reducing the statistical significance of
the model. For this reason, the Belsley test (Belsley 1991) was carried out on the
predictor variables to check the possible presence of collinearity between hT1 and hT2
for the calibrated values of T1 and T2.

5.1.4 Model selection

Model selection was carried out based on Akaike Weights. This method combines
model performance (by minimizing the log of the residual square sum, RSS, be-
tween model estimates and experimental data) and model complexity (accounting
for the number of calibrated parameters of the model). First, the Akaike Information
Criterion, corrected for small sample sizes, was calculated as (Akaike 1974):

AICc = 2 · g + 1

n
+ log(

RSS

n
) + 2 · g · g + 1

n− g − 1
(5.7)

where n is the sample size and g is the number of calibrated parameters.

Akaike Weights, AWm, were then calculated for each model m as



44 Chapter 5. Temporal dynamics and statistics of the active length

AWm =
exp(−∆AICc,m/2)∑
m exp(−∆AICc,m/2)

(5.8)

where ∆AICc,m is the difference between AICc for model m and the minimum value
of AICc among all the models. The optimal model is the one characterized by the
lowest value of AICc, that coincides to the highest value of AW . Akaike Weights
are used for a formal assessment of the best model, as they formally represent the
relative likelihood of each model.

5.2 Exploiting active length vs streamflow
relationships

The empirical models presented in the previous section are useful for the identifi-
cation of the temporal scales and major climatic controls related to active network
dynamics, but are not suitable for the definition of an objective system for the
classification of temporary streams based on the underlying dynamics of the net-
work. The latter is in fact achieved in this section, in a series of steps. First, the
streamflow statistics are quantified (section 5.2.1); then, a well-established empirical
relation between streamflow and active length is introduced (section 5.2.2) and used
to link the SLDC to the characteristics of streamflow (section 5.2.3). Finally, a joint
characterization of streamflow and active length regimes is provided in section 5.2.4.

5.2.1 Modeling streamflow dynamics

River flow regimes are here quantified through the probability distribution function
(pdf) of daily streamflows, using an analytical model which is based on a stochas-
tic description of streamflow dynamics (Botter et al. 2007). These dynamics are
assumed to result from the superposition of a sequence of flow pulses generated by
precipitation. The model is well established in the literature and it has often been
applied to estimate the pdf of daily flows based on limited information on climate
and landscape (Botter et al. 2010c; Botter et al. 2013; Doulatyari et al. 2015; Basso
et al. 2015).

In this model, the rainfall hydrological forcing is described by a marked Poisson
process with frequency λp [T-1] and exponentially distributed depths with average
α [L]. Precipitation events are infiltrated in the root zone where they replenish
the moisture deficit created by evapotranspiration in between rain events. The
drainage towards the stream is assumed to take place only when soil moisture, in
response to some rain events, exceeds a given wetness threshold. These fill-and-
spill dynamics create a second stochastic process corresponding to the sequence
of effective rainfall pulses, resulting from the filtering operated by soil moisture
dynamics on the total precipitation. Consequently, the sequence of events producing
streamflow (i.e. effective rainfall) can also be approximated by a Poisson process,
characterized by a frequency λ [T-1] (< λp).
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If the drainable catchment storage is assumed to behave as a linear reservoir with
time constant k [T-1], the excess water deriving from the infiltrated rainfall, which
represents the effective rainfall, is eliminated through the catchment hydrological
response determining a sudden increase of the streamflow in correspondence of each
event, followed by exponential recessions. Under the assumptions made, the magni-
tude of the jumps experienced by q are random and exponentially distributed with
mean αk.

Provided that the system is linear, the overall streamflow is given by the sum of the
contribution of the different effective pulses forcing the contributing catchment and
the presence of overlapping pulses does not change the recession time constant, k.
Hence, the stochastic dynamical equation for the specific discharge at a daily time
scale reads (Botter et al. 2007):

dq

dt
= −kq (t) + ξt, (5.9)

where the temporal variations of specific discharge (per unit catchment area) q (t) are
expressed as the sum of two terms: one expresses the exponential decay of the flow in
between two events; the other, ξt [L/T2], describes the effect of a sequence of random
streamflow increments due to effective rainfall events. Under these assumptions, the
master equation associated with the stochastic process given in eq. (5.9) can be
solved in steady-state conditions. The corresponding analytical expression for the
pdf of q is a Gamma-distribution with shape parameter λ/k and rate parameter αk
(Botter et al. 2007):

pq (q) =
(αk)−

λ
k

Γ
(
λ
k

) q
λ
k
−1 exp

(
− q

αk

)
, (5.10)

where Γ (ω) is the complete Gamma-function of argument ω, defined as (Abramowitz
et al. 1994):

Γ(ω) =

∫ ∞
0

tω−1etdt. (5.11)

The cumulative distribution function (cdf) of daily discharges can be calculated
integrating the pdf of q given by eq. (5.10), as follows:

Pq (q) =
γ
(
λ
k
, q
αk

)
Γ
(
λ
k

) , (5.12)

where γ(ω, x) is the lower incomplete Gamma-function of argument ω with integra-
tion extreme equal to x, defined as (Abramowitz et al. 1994):

γ (ω, x) =

∫ x

0

tω−1etdt. (5.13)
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Eq. (5.12) represents the non-exceedance probability of daily discharges during a
reference period, expressed as a function of α, λ and k. According to the above
formulation, the mean discharge can be obtained through the following equation
(Botter et al. 2007):

〈q〉 = αλ. (5.14)

Likewise, the coefficient of variation of daily discharges, CVq, can be analytically
expressed as (Botter et al. 2007):

CVq =

√
k

λ
. (5.15)

This coefficient, which represents the ratio of the standard deviation to the mean, is a
measure of dispersion of a probability distribution around the mean, and represents
a quantitative metric to classify flow regimes as proposed by Botter et al. 2013.
Eq. (5.10) and (5.12) are best applied to individual seasons, as they rely on the
assumption of stationarity.

5.2.2 Active length vs streamflow relationship

Streamflows and active network lengths of a river co-evolve in response to the tempo-
ral variability of the the climate forcings suitably modulated by landscape features.
To evaluate the dynamicity of the river network, and quantify its tendency to extend
or contract in response to rainfall events accounting for geologic and topographic
characteristics of the site, a well-established empirical relationship between the total
active drainage length (L) and the corresponding specific discharge (q) was used.
According to this formulation, the active stream length increases as a power-law
function of the catchment discharge as (Godsey et al. 2014; Jensen et al. 2017;
Lapides et al. 2021; Senatore et al. 2021):

L = a qb. (5.16)

In eq. (5.16) a [db/cmb-1] is a constant and b is the network scaling exponent, which
typically ranges between 0.02 and 1. This analytical model for the description of
the joint variations in active length and discharge has been already investigated and
tested in several headwater networks in humid and semiarid climates (Gregory et al.
1968; Blyth et al. 1973; Day 1978; Godsey et al. 2014; Prancevic et al. 2019). Com-
bining theoretical analysis and empirical data, the scaling exponent b was linked to
physical properties of the catchment. In particular, b was found to be influenced
by the exponents of other three geomorphological scaling relationships (local slope,
valley transmissivity, and drainage area). These exponents depend on key charac-
teristics of the study site such as the drainage density, the channel slope and the
topographic curvature. Higher b values identify more dynamic stream networks.
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In some cases, streamflow timeseries at the outlet of the catchment within which
active lengths are evaluated might not be available, but discharge measurements
could be available in a different control section of the same river. In such circum-
stances, a permanent streamflow could be observed even in cases where the river
network within the focus catchment is completely dry. If the active network length
is null when the discharge is strictly positive, eq. (5.16) needs to be replaced by the
following formula (Senatore et al. 2021):

L = a (q − q0)b (q > q0), (5.17)

in which q0 represents a threshold specific discharge, for which L = 0.

5.2.3 The SLDC as a derived distribution

The active length regime of a river can be defined based on the shape of the Stream
Length Duration Curve (SLDC), as discussed in the following sections. To determine
the SLDCs, the probability distribution function of the active lengths, pL (L), or the
related cumulative distribution function, PL (L), must be estimated. To this aim,
a derived distribution approach that exploits the analytical relationship between L
and q was used. Inverting eq. (5.16), it is possible to express q as a function of L as
follows:

q =

(
L

a

) 1
b

. (5.18)

Then, provided that PL(L) = Pq(q(L)), the cumulative distribution of the active
lengths can be obtained from eq. (5.12), as:

PL (L) = Pq (q(L)) =
γ
(
λ
k
,
(
L
a

) 1
b 1
αk

)
Γ
(
λ
k

) . (5.19)

Eq. (5.19) can be then differentiated in order to get the analytical expression for
the pdf of L, which is a generalized Gamma-distribution:

pL (L) =
(αk)−

λ
k

abΓ
(
λ
k

) (L
a

) λ
kb
−1

exp

(
−
(
L

a

) 1
b 1

αk

)
. (5.20)

The mean value for the active length is represented by the following formula:

〈L〉 =
a(αk)bΓ(λ

k
+ b)

Γ
(
λ
k

) , (5.21)

and the modal value of the distribution reads:
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L0 = a (αk)b
(
λ

k
− b
)b
. (5.22)

Hence, the ratio between the mode of the pdf of L (eq. (5.22)) and the mean active
length (eq. (5.21)) is expressed as:

L0

〈L〉
=

Γ
(
λ
k

) (
λ
k
− b
)b

Γ
(
λ
k

+ b
) . (5.23)

Similarly, the coefficient of variation of the active length can be analytically derived
from the Moment Generating Function of the underlying stochastic process L(t) as:

CVL =

√√√√Γ
(
λ
k

)
Γ
(
λ
k

+ 2b
)

Γ
(
λ
k

+ b
)2 − 1. (5.24)

This coefficient quantifies the extent of active length variations. When λ/(kb)� 1,
pronounced network dynamics are observed (CVL > 1). When λ/(kb)� 1, network
dynamics are smoothed (CVL < 1). The dependence of CVL on λ/k and b will be
further discussed in the following section.

When the active network length is equal to 0 even if the corresponding observed
discharge is null (see eq. (5.17)), eq. (5.17) reads:

q =

(
L

a

) 1
b

+ q0. (5.25)

Therefore, the cumulative distribution function of L for this specific case can be
written as:

PL (L) =
γ
(
λ
k
,
((

L
a

) 1
b + q0

)
1
αk

)
Γ
(
λ
k

) . (5.26)

In line with the previous derivations, the probability distribution function of L when
q0 6= 0 is obtained by differentiating eq. (5.26) as:

pL
C (L) =

(αk)−
λ
k

abΓ
(
λ
k

) (L
a

) 1−b
b

((
L

a

) 1
b

+ q0

)λ
k
−1

exp

[
−

((
L

a

) 1
b

+ q0

)
· 1

αk

]
.

(5.27)

Eq. (5.27) is valid only for L > 0 and represents the continuous part of the pdf, pCL .
However, in this case a finite probability is associated to L = 0. This corresponding
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"atom" of probability in L = 0 must be added to the pdf so as to account for the
fact that the network is completely dry when q ≤ q0. The atom of probability can
be written as:

pL
A (L) = Pq (q0) δ (L) , (5.28)

where Pq (q0) = Prob[q ≤ q0] as given by eq. (5.12) and δ is the Dirac delta function.
The overall probability distribution function of the active length, in this case, can
be expressed as a sum between the continuous part of the pdf and the atom:

pL (L) = pL
C (L) + pL

A (L) . (5.29)

The Stream Length Duration Curve can be obtained by inverting the function PL (L)
as given by eq. (5.19) and (5.26).

5.2.4 Streamflow and active length regimes

To identify the major drivers of discharge and active network length regimes, the
analytical distributions of the catchment streamflow and active length have been
normalized with the mean values of q and L. The pdf of the normalized discharge
q∗ = q/〈q〉 can be written as:

p∗q (q∗) =
1

Γ
(
λ
k

)q∗ λk−1 exp

(
−q
∗λ

k

)
. (5.30)

which is only a function of λ/k. Likewise, the pdf of the normalized active length
L∗ reads:

p∗L (L∗) =
1

b
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+ b
) λ
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Γ
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) λ
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+1
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−1 exp
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) ) 1
b

, (5.31)

where L∗ is the ratio between active length values L and the mean active length 〈L〉,
obtained through eq. (5.21).

Similarly, the cdfs of normalized q and L have can be represented by the following
equations:

P ∗q (q∗) =
γ
(
λ
k
, q

∗λ
k

)
Γ
(
λ
k

) , (5.32)

and:
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P ∗L (L∗) =

γ

(
λ
k
,

(
L∗

Γ (λk+b)
Γ(λk )

) 1
b

)
Γ
(
λ
k

) . (5.33)

Eqs. (5.30) to (5.33) clarify that the shape of the streamflow distribution depends
on the ratio λ/k while the shape of active length distribution is controlled by two
dimensionless parameters: λ/k and b.

A graphical representation of the Flow Duration Curve can be helpful in order to
identify the different types of river flow regimes associated to different values of
the dimensionless parameter λ/k. A convex duration curve that sharply decreases
towards the x-axis is obtained for λ/k < 1. This represents an erratic regime in which
very low flows are frequent, but sporadic high flows are also possible (Fig. 5.1a). The
erratic regime is observed when the frequency of events producing streamflow (λ) is
smaller than the recession time of the catchment (k). Under these circumstances the
river is able to dry considerably before the arrival of new pulses. Thus, streamflows
are unpredictable (i.e. they strongly fluctuate in time) and the preferential state of

a) b)

c) d)

Duration D Duration D

Duration DDuration D

q* q*
L*L*

Figure 5.1: Theoretical examples of FDCs with normalized streamflow data (q∗ = q/〈q〉) and LDCs
with normalized active length data (L∗ = L/〈L〉) for erratic regime (panels a and c respectively,
λ/k = 0.5) and for persistent regime (panel b and d respectively, λ/k = 2). In panel c) the values
of λ/(kb) ranges from 0.59 (solid line) to 1.43 (dotted line), while in panel d) they range from 2.35
(solid line) to 5.7 (dotted line).
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the system is lower than the mean. As per equation (5.15), in the erratic flow regime
the coefficient of variation of daily flows is larger than one (CVq > 1).

Conversely, an S-shaped FDC with an inflection point is obtained when λ/k > 1.
This corresponds to a persistent regime with a limited streamflow variability and a
continuous water supply to the stream from the contributing catchment (Fig. 5.1b).
This corresponds to cases in which the frequency of flow-producing rainfall events
(λ) is larger than the catchment recession rate (k) . Under these conditions, the
hydrograph is weakly variable around the mean discharge and more predictable.
Therefore, as per equation (5.15), the coefficient of variation of daily flows is smaller
than one (CVq < 1) and the slopes of the FDC are gentler. Flow duration curves
typical of the intermediate regimes (λ/b ' 1) exhibit a behaviour which lies in
between the two end members described above.

Differently from the flow regime, the shape of PL (L) and the corresponding active
length regimes are driven by the interplay between λ/k and b. When λ/(kb) < 1,
an ephemeral regime is obtained, and the river network is dry or almost dry at
some point during the reference period (e.g. one season, one year) but expands
significantly in correspondence of a few rain events. The corresponding SLDC is a
convex function of D which decreases sharply (Figure 5.1c) and is characterized by
relatively high slopes (i.e. significant temporal variations of L). Note that if λ/k < 1
, the SLDC can be concave, as the pdf of q, or it could exhibit an inflection point
depending on the value of the parameter b (Figure 5.1c). For λ/k < 1 and b > 1,
both the duration curves of q and L are convex functions of D. However, for a fixed
value of λ/k, if the value of the scaling exponent b decreases the SLDC becomes
flatter. Thus, if λ/k < 1 and b < 1, the SLDC and the FDC might be characterized
by different shapes. When λ/(kb) > 1, in fact, the stream length duration curve has
an inflection point (Fig. 5.1d), representing a perennial regime in which the shortest
values of L are characterized by a duration of 1 (i.e. at least a portion of the stream
network never dries out) and the temporal variations of L are relatively limited.
However, in cases where the highest value of the probability density is observed
for L → 0 (e.g. when L0/〈L〉 < 0.1), the active length regime can be defined as
“ephemeral de facto" provided that most of the time the network is almost dry. Under
these circumstances, the SLDC closely resembles a convex function of D, in which
D ' 1 only for very low values of L. Hence, when λ/k > b, the actual behaviour of
the SLDC is determined by the ratio between the modal and the mean values of L,
expressed by eq. (5.23). If this ratio is lower than, say, 0.1 the regime, though being
perennial from a purely mathematical viewpoint, is ephemeral on practical grounds,
provided that the preferential network configuration is much shorter than the mean
network length. Numerical and analytical arguments suggest that, when b is lower
than 1.0, the chance to observed an "ephemeral de facto" regime is quite limited.
Thus, for b < 1 one can retain the distinction between ephemeral and perennial
regimes previously introduced (if λ/k > b perennial; if λ/k > b ephemeral). For
higher values of b, instead, the "ephemeral de facto" regime can be observed quite
frequently, and needs to be explicitly considered. For practical reasons, eq. (5.23)
can be approximated by a polynomial function. Thus, the criterion for identifying
when the regime is ephemeral de facto can be written as:
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λ

k
< 0.4114 b2 + 0.7168 b. (5.34)

According to equation (5.24), in the perennial regime CVL < 1, whereas in both
the ephemeral and ephemeral de facto regimes, CVL > 1. Therefore, if λ/k < b an
ephemeral regime for the active stream length is observed with CVL > 1, while in
cases where λ/k > b and eq. (5.34) is satisfied, the river shows an “ephemeral de
facto" active length regime with CVL > 1. Otherwise, if λ/k > b and the condition
expressed by eq. (5.34) is not fulfilled, the river displays a perennial active length
regime with CVL < 1.

The analytical expressions derived above clarify how two dimensionless parameters,
λ/k and b, determines different combinations of active length and discharge regimes
in temporary rivers. The dependence of these regimes on the driving parameters,
can be graphically represented in a b vs λ/k plot (Fig. 5.2).

As per the streamflow regimes, the plane can be subdivided into two regions: i)
when λ/k > 1, a persistent flow regime with an S-shaped FDC is observed; ii) when
λ/k < 1, instead, the flow regime is erratic, with a convex FDC. As per the active
length regime, instead, three different domains can be identified in the λ/k vs. b
plane. When λ/k < b the SLDC is steep and approaches the x-axis for durations
lower than 1, representing an ephemeral active length regime with relatively high
probabilities associated with a river network that completely dries out. Conversely, if
λ/k > 0.4114 b2 +0.7168 b, the SLDC results in a flat curve that covers the full range
of durations. The S-shaped SLDC indicates a perennial active length regime with a
river network that never dries out. If b ≤ λ/k ≤ 0.4114 b2 + 0.7168 b, the catchment
experiences an ephemeral de facto active length regime, with a SLDC that intersects
the x axis for D ' 1. In addition, if the value of b is lower (larger) than 1, the SLDC
intersects the corresponding FDC due to its flatter (steeper) shape. Instead, if b
is close to 1 the SLDC results similar to the corresponding FDC. Combining these
conditions, 7 macro-regions or “classes" can be identified, which are characterized by
different combinations of streamflow and active length regimes, as shown in Figure
5.2 and detailed in the following.

Class A (λ/k < b and b < 1): in this class the flow regime is erratic and
CVq > 1. The active stream length regime is ephemeral, with CVQ > CVL >
1. This corresponds to cases in which the high variability of discharges is
smoothed by the L time-series. Nevertheless, the variability in the active
length is pronounced and the river network tends to dry out for a non-negligible
portion of time, in correspondence of the lowest values of q.

Class B (λ/k < 1 and b > 1): in this class the flow regime is erratic and
CVq > 1. The active stream length regime is ephemeral, with CVL > CVQ > 1.
This corresponds to cases in which the high variability of discharges is further
enhanced by the active length dynamics. Thus, the variability in the active
length is pronounced and the river network tends to dry out for a significant
amount of time during the frequent droughts.
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Class C (λ/k < b and b > 1): in this class the flow regime is persistent
and CVq < 1. The active stream length regime is ephemeral, with CVL >
1. This corresponds to cases in which the variability of discharges is limited
but significant temporal changes in the the active length are observed. The
pronounced variability in the active length through time is also reflected by
the complete dry-down of the river network. In fact, L = 0 for a non-negligible
portion of time, in correspondence of the lowest values of q.

Class D (b < λ/k < 0.4114 b2 + 0.7168 b and b > 1): in this class the flow
regime is persistent and CVq < 1. The active stream length regime, instead,
is ephemeral de facto, with CVL > 1. This corresponds to cases in which the
variability of discharges is limited but the corresponding temporal changes of
the active length are comparatively more pronounced. The variability in the
active length is moderate and the river network tends to dry out in corre-
spondence of the lowest values of q. Mathematically, the most likely network
configuration corresponds to a short network with a small but positive length.
On practical grounds this regime is very similar to that identified as "class C".

Class E (λ/k > 0.4114 b2 + 0.7168 b and b > 1): in this class the flow regime
is persistent and CVq < 1. The active stream length regime is perennial, with
CVq < CVL < 1. Although active length variations are more pronounced than
the corresponding temporal changes of q, the active length variability is not
huge. In fact, the river network includes some perennial reaches that never
dry out.

Class F (λ/k > 1 and b < 1): in this class the flow regime is persistent and
CVq < 1. The active stream length regime is perennial, with CVL < CVq < 1.
This corresponds to cases in which the variability of discharges is limited and
so are the temporal changes in the active length. The temporal variability
in the active length is very small and the river network includes a significant
perennial portion that never dries out.

Class G (λ/k > b and b < 1): in this class the flow regime is erratic and
CVq > 1. The active stream length regime is perennial, with CVL < 1. This
corresponds to cases in which the pronounced variability of the discharge is
not mirrored by the timeseries of L. This implies that the variability in the
active length is limited. In this case the river network has a perennial portion
that never dries out.

5.2.5 Model application and evaluation

The model application to a given case study requires three sequential steps: i)
parameter estimation; ii) calculation of streamflow and active length statistics; iii)
model evaluation.

As per the estimation of the streamflow model, the reference parameters α, λ and k
were estimated on a seasonal basis starting from the available data of daily rainfall
[cm] and daily specific discharge [cm/d]. k was estimated using recession data, as
detailed in Basso et al. 2015. For the identification of λ, two methods were used:
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a) a mass balance between rainfall and streamflow: λ = 〈q〉/α (eq. (5.14)); b) a
computation of the frequency of positive jumps observed in the streamflow series
(Ceola et al. 2010; Betterle et al. 2017). The method b) was used only in cases
where several outliers in the observed streamflow data were detected (e.g. Poverty
Creek during winter and spring season), which might impair the discharge sample
mean.

The parameter α was calculated in two different ways: from rainfall data (method
c) or using a statistical calibration (method d). Generally, the parameter α was
calculated as the average of the daily precipitation depths observed during rainy
days. In some cases, however, unrealistically high values of λ were obtained with
this method (c) - an instance which indicates some inconsistency between rainfall and
discharge data. In these cases, adjusting the streamflow data was unfeasible because
of the difficulties in characterizing systematic errors in discharge measurements.
Consequently, the inconsistency was resolved by calibrating α and minimizing the
model errors in reproducing the relevant quantiles of the distribution (method d).

The parameters a and b of eq. (5.16) instead were obtained by a linear regression in
the log(L)-log(q) plane starting from available L and q data (see SI). The constant
a was determined as the antilog of the intercept value, while the exponent b was
calculated as the slope of the regression line. When eq. (5.17) was used, the same
procedure described above was applied replacing q with (q-q0), where q0 corresponds
to the maximum specific discharge for which L = 0. In all cases, the goodness of fit
between the available data has been estimated in the linear regression through the
R2 coefficient.

The calculation of the underlying statistics of L and q was performed using the ana-
lytical equations detailed in the previous sections, exploiting an ad-hoc Matlab code.
The pdfs and cdfs of q and L are first evaluated at the seasonal level, and then - when
needed - they were aggregated at the annual timescale through a weighted average
of the corresponding seasonal distributions (SI). The seasons have been defined on
a calendr basis, taking into account the duration of the available timeseries.

The robustness of the analytical model for the probabilistic description of q and L
developed in this paper was assessed by comparing the analytical pdfs (and cdfs) of
q and L with the corresponding empirical distributions of observed discharges and
active lengths. The empirical pdfs of q and L were created subdividing the range
between zero and the maximum observed value of q and L into a number of equally-
spaced intervals, and then computing the frequency distribution of the observations
across these intervals. The empirical cdfs, instead, have been calculated using a
standard Weibull plotting position, after suitable ranking of the data based on their
magnitude. Finally, the performance of the models was evaluated for each case study
and each subperiod of analysis using the Mean Absolute Error (MAE) among the
0.2, 0.4, 0.6 and 0.8 quantiles of the cdfs. The mean difference among the analytical
and the observed cdfs of q and L in correspondence of the above quantiles were
calculated using the analytical expressions for Pq(q) (eq. (5.12)) and PL(L) (eq.
(5.19) or (5.26)). The MAE was scaled to the mean value of the corresponding
distribution (i.e. Scaled Mean Absolute Error, SMAE).



6 Spatio-temporal dynamics of the
active network

In this chapter, the temporal dynamics of the active length described in chapter 5
are combined with the hierarchical activation scheme of section 4.3 in order to model
the full spatio-temporal dynamics of the active stream network.

In particular, section 6.1 describes a simple yet effective way to reconstruct the
complete dynamics of a temporary stream on the basis of a limited number of field
observations, by taking advantage of the empirical models for active length dynamics
introduced in section 5.1 and the concept of hierarchical structuring of channel
networks.

Section 6.2, instead, describes the modeling of stream network dynamics based on
the stochastic generation of timeseries of streamflow at the outlet. The model is
used to explore spatiotemporal dynamics of the active network in streams subjected
to contrasting flow regimes and various spatial patterns of flow persistency (section
6.2.3). The generated active network time-series are then used as a basis for a dy-
namic stochastic patch occupancy model (section 6.3), in which the structure of the
ecological network changes through time in response to unsteady climatic conditions,
to provide key information on the ecological significance of stream expansion and
retraction, unveiling how river network dynamics are mirrored by key topological
metrics and metapopulation occupancy under different settings.

6.1 An empirical model for reconstructing
spatio-temporal dynamics of surface flow
emergence

The model presented in this section combines the statistical approach proposed in
section 5.1 to predict the temporal dynamics of the flowing length and the hierarchi-
cal model developed in section 4.3 to explain the spatial patterns of flow persistency.
The empirical nature of this approach and the reduced number of parameters make
it particularly suited to handle highly heterogeneous networks where spatially dis-
continuous flow patterns are observed.

The hierarchical activation scheme can be represented as a Markov chain in which
the node i can be active only if all the previous nodes in the chain (i.e. nodes with
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larger local persistency) are active too (see section 4.3). As a consequence, each pos-
sible network configuration corresponds to a sequence of K active nodes (K ∈ [1, N ])
followed by a sequence of N −K dry nodes, and a biunivocal relation between the
active length and its spatial configuration along the network is generated. With this
mechanism in place, spatial maps of active network can be computed at any given
time following three sequential steps: i) the spatial pattern of local persistency Pi
is estimated from field observations as the fraction of times surface flow was ob-
served at each location; ii) the active network length L is computed from antecedent
precipitation using a suitably calibrated empirical model (e.g. the one reported in
section 5.1) iii) at each time step of the simulation the nodes are activated following
the hierarchical scheme until the desired active length is reached.

Note that steps i) and iii), which recreates the spatial pattern of the active net-
work, rely on empirical data alone, without any additional parameter calibration.
Given the usually limited number of field surveys, Pi can only take a set of discrete
values; thus, the network geometry is composed by discrete stretches with uniform
persistency. In order to provide a prediction of a network that is continuous both in
time and space, Pi is linearly interpolated in space along the network prior to the
application of the step iii) of the above procedure.

This procedure represents a simple way to reconstruct the complete spatio-temporal
dynamics of a dynamic river network from precipitation data and a limited number of
field surveys, allowing an optimized used of empirical data about stream dynamics.
This approach is also useful to enhance the resolution of empirical data within a
mathematically robust framework, in which the temporal and spatial dimensions of
the problem are suitably connected through the persistency of the network nodes.
An example application of the approach is shown in Chapter 7.10.

6.2 A spatially explicit Bayesian hierarchical
model of channel network dynamics

This section describes the modeling of stream network dynamics based on the
stochastic generation of streamflow timeseries. Although the proposed model re-
quires a small number of parameters and a limited computational effort, it allows
the synthetic simulation of the spatio-temporal dynamics of the active stream net-
work under a broad range of climatic and morphological conditions. The model is
used to explore spatiotemporal dynamics of the active network in streams subjected
to contrasting flow regimes and various spatial patterns of flow persistency (section
6.2.3).

The mechanism of hierarchical activation is tantamount to assuming that at any
time there exist a time-dependent persistency threshold P ∗(t) that separates dry
nodes (the nodes in the map with persistency lower than P ∗(t)) from wet nodes (the
ones with persistency higher than P ∗(t)). The advantage offered by this approach
is the disentanglement of the temporal component of network dynamics, dictated
by P ∗(t), from the spatial pattern shown by active network through time, which is
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prescribed by the arrangement of the local persistency along the network.

Operationally, modeling the spatio-temporal dynamics of the active network with
this procedure requires two main steps: the potential network is first defined via
a set of connected nodes with prescribed local persistency (section 6.2.1) and then
a time-variable persistency threshold P ∗(t) is used to discern dry nodes from wet
nodes at each time step of the simulation (section 6.2.2.

6.2.1 Simulating spatial patterns of local persistency

The spatial patterns of network dynamics are governed by the spatial distribution
of local persistency along the network. These data can be directly estimated from
field surveys (see section 2.1); however, if empirical data about stream persistency
is lacking, a first-order approximation can be made by exploiting climatic and mor-
phological data. This procedure is divided in three consecutive steps: 1) estimation
of the mean network persistency, 2) definition of the cumulative density function of
local persistency, and 3) assignment of local persistency to each node.

The first step consists in defining the average local persistency along the network,
P̄ , by taking advantage of its linear correlation with the catchment-scale excess
precipitation. An empirical law obtained from the available data (see section 7.5)
can be used to estimate P̄ as

P̄ = 0.0527 + 0.1951(Pt − Ep) (6.1)

where Pt and Ep are, respectively, total precipitation and potential evapotranspira-
tion in mm/year.

The second step defines CDFP , the cumulative density function of local persistency.
Experimental data gathered in a set of catchments located in different geomorpho-
climatic regions suggests that the statistical distribution of the local persistency Pi
along the river network follows a one-parameter beta probability density function
(see equation (4.30) in section 4.4.2). This is a special form of the beta distribu-
tion in which one of the two parameters is set equal to one. The corresponding
cumulative density function of Pi can be written as

CDFP (Pi) = 1− (1− Pi)β (6.2)

where the parameter β = 1/P̄ − 1 is inversely related to the average network persis-
tency. Thus, once the mean persistency of a given network is known, or it has been
estimated via equation (6.1), the parameter β in eq (6.2) can be determined.

In the third step, each node of the network is then assigned a local persistency Pi
extracted from the known distribution CDFP , given by equation (6.2). Observed
spatial correlations of the local persistency in dynamical river networks are typically
quite variable across different study sites. While spatial patterns of Pi were found
to be positively correlated with some relevant geomorphic properties (Jensen et al.
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2018), in some cases local heterogeneity in geological features dominates, making
the observed heterogeneity of Pi enhanced and rather unpredictable (e.g. Senatore
et al. 2020; Durighetto et al. 2020). To cope with this issue, three different scenar-
ios are identified here. In the first, the local persistency of each node is assigned
in a completely random manner, resulting in non-correlated values of Pi along the
network; in the second scenario, instead, Pi is deterministically linked to the to-
pographic wetness index (TWI), which was proposed to be a good measure of the
likelihood of surface flow (Beven et al. 1979). Specifically, the scheme assumes that,
for any pair of nodes i and j, if Pj < Pi then TWIj < TWIi; finally, in the third
scenario Pi is deterministically linked to the upslope accumulated area, which is
usually considered to be proportional the amount of water supplied from upstream.

6.2.2 Stochastic generation of spatio-temporal dynamics
of the active channel network

The hierarchical framework proposed in this thesis, the temporal dynamics of expan-
sion and contraction of temporary streams are uniquely determined by the temporal
variability of a persistency threshold separating wet from dry nodes, P ∗(t). The
temporal variations of the persistency threshold P ∗(t) are driven by the changes in
the corresponding catchment streamflow q(t): when q increases (decreases), the net-
work expands (contracts), and P ∗ decreases (increases). When available, timeseries
of observed or modeled q(t) can be directly employed for the reconstruction of the
past dynamics of the active network. Alternatively, the physically-based stochastic
model presented in section 5.2.1 can be employed to generate synthetic timeseries of
q(t) that mirror the natural intermittency of precipitation. The main advantage of
using the model presented in section 5.2.1, as compared to more sophisticated hydro-
logical models, is that it requires only 4 parameters with a clear physical meaning,
and thus it enables a parsimonious and simple generation of long-term scenarios in
which the stochastic nature of rainfall is explicitly accounted for.

The stochastically-generated streamflow follows the Gamma distribution reported in
equation (5.12). This function can be inverted and interpreted as the Flow Duration
Curve (FDC), which links each flow value q to the corresponding relative duration
D, i.e. the fraction of time for which that specific q value is equalled or exceeded.
In particular, the flow duration curve can be written as:

D(q) = FDC(q) = 1− Pq (q) . (6.3)

As one can imagine, the dynamics of the active network mimic the sequence of
streamflow pulses and recessions. Due to the hierarchical scheme, network expansion
always follows the same sequence of network configurations in which new nodes
are activated at each expansion step and no active nodes are deactivated. The
reverse sequence corresponds to network contraction. Therefore, the synchronism
between increases (decreases) of q and network expansion (contraction) suggests the
existence of a biunivocal correspondence between q and the configuration of the
active network. This correspondence is in line with the literature about temporary
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streams, which show the existence of a bijective relation between q and L (Day 1978;
Godsey et al. 2014; Prancevic et al. 2019; Jensen et al. 2019; Zanetti et al. 2021). As
a consequence, whenever a streamflow q with duration D is observed at the outlet,
the corresponding network configuration is composed of nodes that are active for
a percentage of time of at least D, because they are also active in all the more
expanded configurations relative to higher flows. To state it differently, whenever a
given network configuration is observed, all the active nodes have a local persistency
Pi which is at least D:

P ∗(t) = D(q(t)) = 1− Pq (q) , (6.4)

where P ∗(t) is the instantaneous value of the threshold of local persistency that
allows a distinction between active and dry nodes. Therefore, for each time step the
status of each node of the network is assigned as:

Xi(t) =

{
1 if Pi ≥ P ∗(t)

0 otherwise
(6.5)

The length of the active network, L(t), can then be calculated as the sum of the
lengths ∆li associated to each active node:

L(t) =
N∑
i=0

∆li ·Xi(t) . (6.6)

Once L(t) is known, the Stream Length Duration Curve can be easily obtained with
the Weibull plotting position method. However, thanks to the hierarchical activation
scheme, the SLDC can also be directly achieved from the spatial distribution of the
local persistency. In particular, 1− CDFP (Pi) can be interpreted as the fraction of
nodes with local persistency greater than Pi, which corresponds to the fraction of
length that is active for a relative duration of D = Pi. Therefore, the Stream Length
Duration Curve can be written as

L

Lg
= 1− CDFP (D) (6.7)

where Lg is the geomorphic length, i.e. the total length of the stream network.

This setup allows the generation of a stochastic timeseries of streamflow following
equation (5.9), and which is transformed into a timeseries of persistency thresholds
with eq. (6.4). Finally, starting from the potential network generated in 6.2.1,
equation (6.5) dictates which nodes are active at each time step. Therefore, the full
spatial and temporal dynamics of a temporary stream are obtained.
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6.2.3 Numerical setup

A number of simulations was carried out to explore different scenarios achievable by
the presented model. Multiple sets of climatic parameters were tested, as reported
in Table 6.1. In particular, three different triplets of rainfall parameters (λP , α, Ep)
were used to simulate three contrasting climatic types (namely Dry D, Intermediate
I and Wet W ). The recession coefficient k was assumed to be representative of
the alpine climatic region. The actual evapotranspiration Ea is calculated with the
Budyko curve (Budyko 19774; Mianabadi et al. 2019) as

Ea
Pt

=

[
Ep
Pt
tanh

(
Pt
Ep

)(
1− exp

(
−Ep
Pt

))]1/2

(6.8)

where Pt = αλP is the mean total precipitation. The mean effective rainfall fre-
quency λ is estimated with a catchment water balance, where the mean effective
precipitation can be written as the difference between Pt and the actual evapotran-
spiration Ea

λ = λP −
Ea
α
. (6.9)

The mean network persistency is then estimated by means of equation (6.1). Local
persistency values for each node of the network are randomly extracted from the pdf
shown in eq. (6.2). In particular, three different criteria for assigning local persis-
tencies are compared: 1 ) completely random, resulting in non-correlated persistency
along the network, 2 ) by topographic wetness index (i.e. nodes with higher TWI
are given higher persistency) and 3 by contributing area. Each of the 9 scenarios
explored in this paper is determined by the combination of a criterion for persistency
assignment (1-3 ) with a climatic type (D, I or W ) and, accordingly, identified by
the corresponding label (e.g. the scenario with wet climate and local persistencies
by contributing area is labeled W3 ).

For each scenario, a timeseries of streamflow at the outlet q(t) is stochastically
generated, from which the flow duration curve is derived and used to generate the
corresponding timeseries of persistency threshold P ∗(t), as explained in 6.2.2. The
status of each node is assigned for each time step by means of eq. (6.5), and the
active length calculated with eq. (6.6). Finally, the Weibull plotting position method
is used to construct the Stream Length Duration Curve (SLDC) from L(t), and
compare it with equation (6.7).

Finally, the sensitivity of the active stream network on the local persistency threshold
was assessed. To this aim, the length of the Minimum Spanning Tree, MST, is
calculated on the active nodes of the stream network for each of the 9 scenarios.
Therefore, the advantage of the MST lies in the possibility of conceiving it as the
SLDC of the connected portion of the network.
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Table 6.1: Summary of the parameters used in the erratic and persistent flow regime scenarios.
Only λP , α, Ep and k are independent parameters.

Climatic scenario Dry (D) Intermediate (I ) Wet (W )

λP 0.25 0.40 0.55 d-1

α 15.0 12.00 10.0 mm/d
Ep 3.0 2.50 2.0 mm/d
k 0.15 0.15 0.15 d-1

Pt 3.75 4.80 5.50 mm/d
Ea 2.29 2.16 1.82 mm/d
λ 0.10 0.22 0.37 d-1

λ/k 0.65 1.47 2.45 d-1

P̄ 0.20 0.50 0.74 -

6.3 Beyond hydrology: dynamic
metapopulation model

The generated active network time-series can be used as a basis for the dynamic
stochastic patch occupancy model proposed in this section, in which the structure
of the ecological network changes through time in response to unsteady climatic con-
ditions. This approach enables an assessment of the full impact of the hydrological
dynamics to which river networks are exposed on species persistence. The results of
the metapopulation model and the comparison between dynamic and static network
scenarios may in fact provide key information on the ecological significance of stream
expansion and retraction, unveiling how river network dynamics are mirrored by key
topological metrics and metapopulation occupancy under different settings.

In particular, to show the potential of the analytical and numerical tools developed
in this thesis, a dynamic stochastic patch occupancy model (D-SPOM) is used to
simulate the presence-absence of a focal species over the aforementioned dynamic
stream network. The model is a dynamic version of the widely adopted stochastic
patch occupancy model, SPOM (Hanski 1994; Moilanen 1999; Rybicki et al. 2013;
Giezendanner et al. 2019). The SPOM is a homogeneous first-order Markov chain
in which the state of the metapopulation at time t+1 depends only on the state
(occupancy pattern) of the metapopulation at time t. In particular, a binary state
variable, yi(t), is set to 1 if site i is occupied at time t, and 0 otherwise. Then,
for each node in the network and each time step, the probabilities of colonization
and extinction events depend on colonization and extinction rates with exponential
survival probability:

PC,i(t) = 1− exp(−Ci(t))∆t (6.10)

PE,i(t) = 1− exp(−Ei(t))∆t (6.11)
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where ∆t is the simulation time step and Ci(t) and Ei(t) are the colonization and
extinction rates for the i-node at time t. The key novelty introduced in the D-SPOM
is to consider Ci(t) and Ei(t) as dependent on the current hydrological status of the
river network according to the following equations:

Ci(t) = c
∑
i6=j

exp(−dij(t)/D)Pj(t)yj(t) (6.12)

Ei(t) = e/Pi(t) (6.13)

where Pi is the persistency of the i-node, and dij(t) is the pairwise distance be-
tween the reach i and j calculated along the river network. The presence of rescue
effects (Brown et al. 1977; Moilanen 2004) in the extinction rate (equation (6.11))
is neglected, because the primary objective is about how environmental stochastic-
ity, rather than demographic stochasticity, affects species dispersal and persistence.
Temporal fluctuations of colonization rate, Ci(t), and extinction rate, Ei(t), include
three specific traits of the given focal species: colonization, c, extinction, e, and
mean dispersal distance. The specific values of these parameters were chosen from
literature to be c = 0.1 d−1, e = 0.05 d−1, and D = 200 m. It is important to note
that the goal of this application is to highlight the importance of the dynamics of a
river network on ecological processes rather than provide an exact description of e
specific study site. For this reason, no calibration or sensitivity analysis is performed
on the parameters.

In classical metapopulation theory (Hanski et al. 1991; Hanski et al. 2000), the
metapopulation capacity, λmax, is derived for a static landscape (i.e. Pi(t) = Si) and
captures the impact of landscape structure (the amount of habitat and its spatial
configuration) on metapopulation persistence. Species can persist if the equilibrium
state p0 corresponding to global extinction (i.e. characterized by pi = 0 for any i) is
unstable. This condition is met when the leading eigenvalue of the Jacobian matrix
J of the system linearized around p0 is positive. By defining a landscape matrix M
consisting of elements mij = exp(−dij/D)SiSj for i 6= j and mii = 0, the Jacobian
reads J = cM- eI, where I is the identity matrix. The leading eigenvalue of J can
be expressed as cλmax − e, where λmax is the leading eigenvalue of matrix M that
contains information about the landscape and the quality of the river reach. The
theoretical prediction of the classical metapopulation theory is that a species can
persist whenever λmax > e/c (Hanski et al. 1991; Hanski et al. 2000). However,
when simulating the stochastic discrete process using D-SPOM, even a species with
e/c above the λmax threshold could go extinct due to demographic stochasticity
(Bertassello et al. 2021).

The advantage of the proposed D-SPOM approach is to explicitly account for the
spatiotemporal dynamics influencing habitat availability and accessibility for a focal
species. The model requires two fundamental variables of metapopulation dynamics:
habitat suitability, which is considered here as function of the local persistency (Pi),
and connectivity, which is estimated based on dispersal across the inter-patch dis-
tance (dij). In this analysis both landscape attributes are temporally variable, being
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driven by daily, seasonal, and annual-scale hydroclimatic forcing (see section 6.2.2).
Metapopulation dynamics are estimated in terms of length occupancy, Ω(t), which
identifies the temporal dynamics of the fraction of river network that is occupied by
a focal species. Ω(t) = 1 means that every node of the river network is occupied
by the species, while Ω(t) = 0 indicates that the species is extincted in the given
habitat.



7 Results

7.1 Visual field surveys in the Valfredda
catchment

The active length observed in the Valfredda catchment during the 32 field surveys
performed from 2018 to 2021 ranges from 5.5 to 12.2 km (33 to 77 % of the maximum
potential length as defined in section 2.1), depending on the underlying hydrolog-
ical conditions, with an average of 9.1 km (Table 7.1). The corresponding Active
Drainage Density ranges between 1.06 and 2.35 km-1. The connectivity of the ob-
served drainage network is reported in Table 7.1 in terms of disconnected length and
disconnected clusters (i.e. number of contiguous parts of the active network that are
disconnected from the outlet). The minimum length (Figure 7.1a) was surveyed on
the 26th of October, 2018, after a dry period of about 50 days (total precipitation
38 mm). The maximum extension of the active drainage network was recorded 8
days later, on the 3rd of November, after a precipitation event of about 320 mm
(Figure 7.1b).

The spatial distribution of the persistency index, Pi, is represented in Figure 7.1c.
The lower order branches of the network generally have a lower persistency, with
the exception of the tributaries that are supplied by permanent springs, marked on
the Figure with pale red circles.

The permanent fraction of the drainage network covers only 28 % of the total
length (Figure 7.1d), suggesting a high temporal variability of the drainage network
notwithstanding the humid climate and the presence of many permanent springs in
the catchment. Despite showing evident channelization signs, 21 % of the potential
length was inactive during all the field surveys.

Figure 7.2 shows how the number of disconnected clusters, the number of sources,
the disconnected length and the persistency index Pi vary as a function of L. As L
increases, two contrasting processes can affect the number of disconnected branches
of the network. On one hand, in the presence of active streams that are only tem-
porarily disconnected from the outlet due to a dry channel downstream, an increase
in L should remove the disconnections, thus reducing both the number of discon-
nected clusters and the disconnected L. On the other hand, in case of temporary
stretches that remain always disconnected from the main river network, an increase
in L during wetting produces the activation of new disconnected reaches, thereby
increasing both the number of disconnected clusters and the disconnected L. The
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Figure 7.1: Maps of the Valfredda drainage network: (a) active drainage network at its minimum on
26/10/2018, (b) active drainage network at its maximum on 03/11/2018, (c) persistency index, from
0 (yellow) to 1 (blue) and (d) classification of network stretches as persistent (blue), temporary
(red) and dry (orange). Red circles in panel (c) denote permanent springs. Panels (c) and (d)
show the potential network; disconnections are present when channels stop and the water flow is
dispersed on the hillslope and infiltrated.
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Table 7.1: Summary of the field surveys, with the active length (L, in km and as a percentage of
the 16.2 km of mapped potential drainage network), the active drainage density, the disconnected
length (in km and %), and the number of disconnected clusters (i.e. the number of active stretches
that are not connected at the surface to the outlet).

Date Active
length L

Active
drainage
density

Disconnected
length

Disconnected
clusters

[km] % [km-1] [km] % [-]
12 Jul 2018 9.16 56 1.72 1.70 10.5 31
26 Jul 2018 9.25 57 1.71 1.76 10.9 33
07 Aug 2018 10.36 64 1.95 2.29 14.1 36
23 Aug 2018 10.14 62 1.91 1.83 11.3 30
04 Sep 2018 11.28 69 2.13 3.30 20.4 41
13 Sep 2018 9.36 58 1.77 1.75 10.8 33
01 Oct 2018 7.97 49 1.50 1.17 7.2 18
26 Oct 2018 6.41 39 1.21 0.63 3.9 13
03 Nov 2018 12.48 77 2.35 3.45 21.3 49
18 Jan 2019 5.46 33 1.06 0.78 4.8 14
07 Aug 2019 10.44 64 1.96 2.88 17.8 36
12 May 2020 8.72 53 1.64 1.24 7.7 25
03 Jul 2020 10.71 65 2.01 2.11 13.0 40
28 Jul 2020 9.92 61 1.86 1.41 8.7 27
05 Aug 2020 13.48 82 2.53 3.24 20.0 56
17 Sep 2020 9.89 60 1.86 1.43 8.9 29
23 Sep 2020 9.72 59 1.83 1.43 8.8 31
30 Sep 2020 9.67 59 1.82 1.41 8.7 29
08 Oct 2020 13.26 81 2.49 3.46 21.4 44
30 Oct 2020 9.97 61 1.87 1.40 8.7 29
06 Nov 2020 9.77 60 1.83 1.44 8.9 31
18 Nov 2020 9.68 59 1.82 1.42 8.8 27
25 Nov 2020 9.21 56 1.73 1.34 8.3 25
14 Jul 2021 9.20 56 1.73 1.14 7.1 27
12 Aug 2021 9.45 58 1.77 1.83 11.3 29
02 Sep 2021 8.80 54 1.65 1.21 7.5 27
10 Sep 2021 8.92 55 1.67 1.24 7.6 29
30 Sep 2021 9.20 56 1.73 1.37 8.5 25
20 Oct 2021 9.74 60 1.83 1.51 9.3 31
28 Oct 2021 8.80 54 1.65 1.24 7.6 29
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Figure 7.2: Correlation between key properties of the drainage network. Number of disconnected
clusters (a), disconnected active drainage length (b) and number of sources (c) are linearly corre-
lated with L. Persistency Pi follows a gamma distribution with k = 15.8 and θ = 0.67 km (d). The
red dotted lines represent the regression line (panels a, b, c) and the theoretical gamma distribution
(panel d). The P-value of each regression is smaller than 10−3.

increasing trend of disconnected clusters and disconnected length as function of L
shown in Figure 7.2 therefore indicates that in the Valfredda catchment the activa-
tion of additional disconnected reaches during river network expansion dominates.
Accordingly, also the number of sources increases with L because the less persistent
stretches (which become active only for high values of L) mostly correspond to the
lower order upstream channels, where the network is more branched (see Figure
7.1c).

Figure 7.2d shows the relationship between L and the persistency index Pi. The plot
shows the length of the active drainage network obtained when only the stretches
with persistency greater than (or equal to) different values of Pi are active. The
observed points closely follow a gamma distribution with shape parameter k = 15.8
and scale parameter θ = 0.67km.

Based on the geological features of the bedrock, 5 different geologic units were de-
tected in the Valfredda catchment: U1) solid and debris limestones, moraine and
debris deposits; U2) marl limestones; U3) dolomite and chalks; U4) moraine deposits
and sandstone; and U5) rhyodacitic ignimbrites. The heterogeneity in the geology
is also reflected in the soil cover and vegetation, (see below).

A significant spatial variability in the drainage density and network dynamics was
observed across the five geologic units (Figure 7.3). In the northern part of the catch-
ment (U1), where debris deposits and terrain depressions dominate, the drainage
density is low (namely 1.9 km−1, of which 1.3 km−1 has a persistency smaller than
0.5). This is also reflected by the presence of several pits in the DTM, some of them
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Figure 7.3: Drainage density in the five main geologic units of the catchment, classed based on the
underlying persistency.

characterized by relatively high contributing areas, where water can accumulate
during rainfall events to be later infiltrated and transferred to the groundwater.

In the portion of the catchment between 1800 and 2150 m a. s. l. (U2) there are
five perennial sources fed by groundwater (pale-red dots in Figure 7.1), possibly
originating from the northern part of the basin. These permanent streams repre-
sent the non-dynamical fraction of the network. However, they can be enriched by a
multitude of temporary tributaries during wet conditions (Figure 7.1a-c). In this ge-
ologic unit, the drainage density (3 km−1) is almost evenly contributed by persistent
and temporary streams (Figure 7.3). These dynamic tributaries can either expand
upstream from the most permanent reaches of the network or expand downstream
from disconnected reaches that temporarily reconnect to the main Valfredda creek
during wet conditions.

The most dynamical reaches of the network were observed in the central-eastern
region of the watershed (U3), where rocky outcrops dominate. Interestingly, the
tributaries that are located on the western side of the catchment (U4) were much
less dynamical. This asymmetry in the temporariness of the tributaries that origi-
nates from the two hillslopes of the main valley in the central part of the catchment
is explained by the heterogeneity of geology and physiography. The western side of
the valley is characterized by moraine deposits overlaid by a relatively thick organic
soil layer covered by grassland and conifers (Figure 3.2). This part of the catch-
ment shows a high drainage density (≈ 5.5 km−1), of which only 1.2 km−1 has a
persistence smaller than 0.5 (Figure 7.3). Instead, on the eastern side the dolomite
bedrock is close to the surface and generates an almost-impermeable surface with
steep slopes. The resulting network has a much lower persistency, and drainage den-
sity is much smaller than in U3 (3.6 km−1). Finally, the lower part of the main valley
(U5) is covered by thick forest. Here, the drainage density is reduced to 2.6 km−1,
and all channels are persistent.
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Figure 7.4: Examples of time series recorded by some of the sensors for two weeks between October
03 and October 18. The dashed line represent the threshold of 270000 lux (c) and location of these
sensors along the tributaries of Zone 1 (a) and 2 (b).

7.2 Water presence sensors in the Valfredda
catchment

The analysis of the time series of the electrical signals, I(t), recorded by the water
presence sensors deployed in two study zones of the Valfredda (see section 2.2)
elucidates the different hydrological behaviour of the two study zones, and also
emphasizes the heterogeneity of the signal recorded by different sensors within each
zone. In most cases, I(t) shows a pronounced temporal variability within the whole
period of record.

The HOBOs belonging to Zone 1, which were all placed on a grassy substrate,
exhibited quite heterogeneous behaviours. Some sensors, such as S35 (Figure 7.4),
systematically recorded intensity values close to the maximum intensity, as they
were located along streams where water flowed permanently during the entire study
period. Other sensors, instead, were placed in more dynamical streams and displayed
an electrical signal that fluctuated between the maximum intensity (during rainfall
events) and 100000 – 150000 lux (during the driest periods: S10). Other sensors,
mainly located in the higher part of Zone 1, recorded no intensity at all during most
of the time, with intensity peaks that were observed only during rainfall events,
when discontinuous ephemeral ponds were generated in correspondence of the stream
network (S05).

Unlike the HOBOs of Zone 1, none of those placed in Zone 2 (Figure 7.4) was
consistently wet during the whole study period. The probes activated during rainfall
events and dried out afterwards with heterogeneous velocities, depending on their
position: sensors located in the central part of the creek persisted being wet for
longer (see e.g. S24), while those placed close to the channel heads turned off very
quickly after each rain event (S22). Other sensors, while they recorded an increase
in the electrical signal during precipitation events, remained consistently below the
270000 lux threshold for the entire study period (S40).

A statistical analysis was carried out to assess the consistency between the hydro-
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Figure 7.5: Scatter plots of persistency vs average intensity (a) and persistency vs exceedance of
the threshold (b) of the sensors of Zone 1 (green points) and Zone 2 (orange points).

logically relevant indexes (namely, the average intensity and the exceedance of the
threshold) calculated for each sensor and the persistency of the corresponding nodes,
as derived from field surveys. Figure 7.5 shows the scatter plots of persistency vs.
AI and persistency vs. E for 28 sensors of Zone 1 and 2. All the available data were
represented in the same two plots in order to emphasize differences and similarities
among the HOBOs located in different zones.

The working hypothesis is that an higher persistency of the nodes is reflected by
an higher average intensity of the current recorded by the sensors and an enhanced
probability that the electrical signal exceeds the selected saturation threshold. This
hypothesis seems to be supported by the high coefficients of determination which
were calculated from the data (R2 always above 0.84). However, Figure 7.5 also
shows that the morphological characteristics of the studied zones (altitude and het-
erogeneous land cover) can influence the electrical signal registered by the instru-
ments. Data collected from sensors of Zone 1 are not homogeneous despite they are
located close-by in the field. The HOBOs of Zone 1 are clustered in two separate
groups (Figure 7.5): one cluster includes the sensors located downstream that are
mostly wet (E > 0.7 and AI > 2 105 lux) and the other includes only the HOBOs
located upstream that turn on only during rainfall events (E ≤ 0.2 and AI < 0.8
105 lux). Instead, the tributary along which sensors of Zone 2 are located completely
dries down, as indicated by the low values of the maximum persistencies observed in
this area. The data points in these cases are evenly distributed along the regression
line, indicating a more homogeneous internal distribution of the node persistencies.
It is also interesting to note that the two zones display very heterogeneous regression
slopes between mean intensity and persistency. Instead, the slopes of the regression
lines between exceedance of the threshold and persistency are comparatively more
similar in the two zones. This suggests that E might be a more robust indicator
of the underlying hydrological dynamics experienced by the nodes in the network,
regardless of the specific position of the sensors in the catchment.

Data collected by the sensors deployed along the watercourse provide information
about the high frequency spatial and temporal dynamics of the stream network.
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Figure 7.6: Map of the active stream network of Zone 1 (left) and Zone 2 (right) on the 8th of
September (a), on the 25th of September (b) and on the 5th of October 2019 (c). Active stretches
and sensors are blue, inactive are orange and no-data elements are white.
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The full video of the observed river network dynamics is shown in Zanetti et al.
2021, while Figure 7.6 presents a sequence of snapshots taken from the video that
represent the temporal evolution of the spatial configuration of active channels in
the study catchment. Figure 7.6a represents the channel network during the most
intense rainfall event of the period studied, on the 8th of September, when all of the
sensors of Zone 1 (left) were wet (blue dots). Not all the sensors of Zone 2 (right)
had already been installed at that time. This circumstance explains the reason why
some stretches are represented as no data (white dots) in that region. Also in Zone
2, on September 8, most of the network streams were wet, with the exception of two
river segments (shown in orange) that remained dry during the entire study period.

After the rainfall event that was observed on September 8, 2019, the network kept
drying out for several weeks, and then wetted up again, owing to a rain event that
was observed on the 25th of September (shown in Figure 7.6b). This precipitation
event was less intense than the previous one and it was characterized by a lower
antecedent precipitation. Consequently, some headwater branches did not get wet
in both zones.

The snapshot in Figure 7.6c shows the network on October 5, three days after an
isolated precipitation event that took place in between a relatively dry period. On
that date, all the HOBOs of Zone 2 were dry, while only the downstream sensors
of Zone 1 (those closer to the permanent part of the network) became wet. Figure
7.6c emphasizes, once again, the dynamical nature of the channel network in the
study catchment, and the different hydrological behaviour of the two focus regions
identified in this study.

The data suggest that the two regions of the study catchments are strongly hetero-
geneous, not only in terms of land cover but also in many features of the underlying
network dynamics. The lower part of Zone 1 was permanently wet, with high values
of E and persistencies close to 1 for most of the sensors. In the upper part of the
same zone, instead, the network branches were more dynamical and they usually
got wet in response to precipitation events. Along the main channel of Zone 2, in-
stead, water was able to infiltrate and exfiltrate rapidly, creating frequent stream
disconnections, promoted by the unstable morphology of the river bed. In this case,
mean current intensities and node persistencies were consistently smaller than those
observed in Zone 1.

In both regions, a good correlation between the persistency of the nodes and two
statistical features of the electrical signal recorded by the ER sensors (namely, the
mean intensity and the exceedance of a suitably selected saturation threshold) was
found. This suggests that the statistics of the ER signals recorded in the field
could be robust indicators of the hydrological status of different network nodes. In
particular, ER time series could be used to extrapolate information on the spatial
patterns of node persistency, which could be, in turn, used to define the hierarchy
according to which the nodes in the network are activated in response to rain events
and then deactivated during the subsequent drying (Botter et al. 2020).
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7.3 A novel global dataset

The empirical activities described in section 2 allowed the monitoring of the dynam-
ics of the active network in the Valfredda catchments. The results of these activities
(sections 7.1 and 7.2), in combination with the available data pertaining to the other
study catchments of this thesis, constitute a global dataset comprising 18 different
study catchments located in Europe and eastern USA. The objective of this dataset
is to provide a strong empirical basis for the validation and application of the the-
oretical and modeling tools presented in this thesis. As such, the catchments were
selected to be very heterogeneous, spanning a wide range of latitudes, climates, land
covers, geologies and sizes. Figure 7.7 summarizes the main climatic and hydro-
logical characteristics of the study catchments. The figure indicates that the study
catchments cover a wide range of climatic conditions in terms of mean precipitation,
evapotranspiration, aridity and temperature. Furthermore, the catchments are char-
acterized by heterogeneous elevations and catchment areas. Therefore, the dataset
can be considered as representative of a broad range of climatic and morphological
settings.

Table 7.2 which reports the study period, number and type of field observations
for each study catchment. In all cases, the available data refers to prolonged field
campaigns with regular observations lasting at least one year, in order to properly
capture the intra-annual variability of the extent of the active network that results
from multiple precipitation events.

The observed stream network dynamics are summarized by the maps of local per-
sistency in Figure 7.8. All the network of catchments T1, T2 and T3 have a low local
persistency (Pi < 0.4), suggesting that these catchments tend to be very dry, with
only sporadic activations of the network dictated by rainfall events. On the oppo-
site, other catchments such as C1, C2, C3 and F1 show very high persistency, with a
limited number of stretches having Pi < 0.60. This suggests that in these sites most
of the stream network tends to remain active all year round and the dynamics are
very limited. Nonetheless, most of the sites show local persistency ranging between
0 and 1, and a enhanced dynamicity of the stream network.
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7.4 Validation of the hierarchical activation
hypothesis

Figure 7.9: a) Relative frequency of the accuracy of the hierarchical model (relative number of
nodes properly classified as wet or dry by the hierarchical model) for all the study catchments.
The maps in b) show spatial patterns of local persistency and local accuracy of the hierarchical
model in the best and the worst cases (respectively South Fork of Potts Creek, USA and Valfredda
Creek, Italy). Analogous maps for all the study sites are reported in Appendix A.

The global dataset was used to validate the robustness of the hierarchical scheme
of Section 4.3. For each study site, flow presence maps representing the observed
active network on different dates were produced using multi-month field mapping
campaigns (with a mean frequency of two weeks) or water presence sensors (with
a sub-hourly resolution). These maps were converted into sets of geo-referenced
nodes with binary states (wet/dry), and the local persistency of each node (Pi)
was calculated as the relative fraction of data indicating the presence of flowing
water in that location. Afterwards, each flow presence map was compared with
the outcome of the hierarchical model, in which the network nodes were switched
on from the most to the least persistent, until the total number of nodes observed
as active during the corresponding survey was reached (section 4.3). Regardless of
the underlying climatic and geologic complexity, the accuracy of the hierarchical
model (here defined as the relative number of nodes properly classified as wet or dry
throughout a river network during all the surveys) typically exceeded 99% (Figure
7.9b and Table 7.2), with a minimum accuracy around 95% for two European rivers,
the Attert and the Valfredda (Figure 7.9b). The average accuracy is very high, and
much higher than the accuracy of a random model that assigns the status of each
node at random independently on the status of the other nodes but consistently
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with the local persistency, which is 0.79 ± 0.075% for the selection of case studies
(see Appendix A). Thus, the observations suggest that the most persistent nodes
were generally the first to activate during individual rainfall events and the last to
dry-out during the subsequent recessions. The less persistent nodes, instead, were
mostly switched on only in response to the most significant rain events and when
all the nodes with a higher persistency were already active.

The most common exceptions to the hierarchical behaviour observed in the set of
case studies were the following: i) nodes with a relatively low persitency that acti-
vate in the early stage of a rain event (Poverty Creek); ii) lack of symmetry in the
rate and/or the direction of wetting and drying processes (Valfredda, Turbolo); iii)
inter-event shifts in the wetting mechanism (e.g. from the downstream propagation
of a saturation front induced by intense events taking place after dry periods to
the upstream expansion of saturated areas around the permanent network, as ob-
served in the Valfredda). In spite of this complexity, the hierarchical phenomenon
was dominant across the full range of climatic conditions, temporal resolutions and
spatial scales explored in the paper. In particular, the hierarchical activation rule
applied also to disconnected river networks, where the nodes with the same persis-
tency are not necessarily adjacent because of local discontinuities of landscape and
geology (see Figure 7.9b). This means that the hierarchical phenomenon is much
more than a simple upstream/downstream propagation of a saturation front along
the network (Godsey et al. 2014). In particular, these results indicate that stream
sections potentially quite distant in the physical space (up to tens or hundreds of
kilometers) might share the same average degree of persistency and exhibit sys-
tematically synchronous dynamics. Furthermore, the hierarchical scheme held also
within catchments as large as several hundreds of km2 (the Attert and the Seugne).
These basins are characterized by significant internal landscape and climatic gra-
dients that are potentially responsible for the unsystematic, selective activation of
limited and specific portions of the river network. The ability of the hierarchical
model to describe active stream dynamics in these larger river basins indicates that
meso-scale channel network dynamics maximize the spatial correlation of the nodes’
states (see section 4.4.1) and reflect an homogeneous signal, such as the total catch-
ment storage, driven by mid-range antecedent precipitation (e.g. weekly to monthly
rainfall, see section 7.7). Interestingly, the spatial homogeneity of the hydrologi-
cal signal underpinning the hierarchical dynamics of temporary streams promotes
the synchronization of node status within a channel network, regardless of the ob-
served complex patterns of local persistency produced by spatially heterogeneous
physiographic and morphometric features (see Figure 7.9b and Jensen et al. 2017).

The results shown in Figure 7.9 bear important practical and theoretical implica-
tions. For instance, the hierarchical behaviour of temporary streams can streamline
empirical surveys of river network dynamics, with beneficial consequences on the
ability to characterize spatiotemporal patterns of flow persistency (Fritz et al. 2013;
Prat et al. 2014). In perfectly hierarchical networks, the adoption of ad-hoc moni-
toring strategies that exploit information available from previous surveys can reduce
the number of nodes to monitor during a long-term field campaign with at least 10
surveys by 40 to 75 %, depending on the exact number of surveys and the mean
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network persistency (see Appendix B). Although several initial surveys that include
most of the network are needed to establish the hierarchy among the nodes, the sav-
ing in terms of number of surveys becomes particularly significant when the number
of surveys exceeds 20 - as typically needed to capture event-based variations of the
active length, see Table 1 in Senatore et al. 2021. This indicates that the hierarchical
nature of stream dynamics could significantly facilitate the observational mapping
of flowing streams in a broad range of settings, especially in large river basins. Fur-
thermore, the existence of a fixed hierarchical order in the expansion and retraction
of temporary rivers allows the identification of a one-to-one relationship between the
total length of flowing streams and the spatial distribution of active nodes in the
network, if a spatial map of the local persistency is known e.g. based on multiple
field surveys.

7.5 Linking active length statistics to local
persistency

The theoretical relationships between the statistics of the dynamic drainage density
and the mean network persistency were tested using active length data derived from
field surveys in the study catchments (Figure 7.10). As expected, the mean network
persistency P̄ well approximates the temporal average of the active drainage density
normalized by the geomorphic drainage density, as implied by equation (4.27) (Fig-
ure 7.10a). The 1:1 relationship between the spatial average of the mean percentage
of time during which a node is active and the temporal average of the normalized
mean active length is implied by the linearity of the average operation. The scatter-
ing of the points is only due to the fact that the geomorphic drainage density was
calculated independently from the number of network surveys based on geomorphic
signatures of the landscape. Available data also confirm that the magnitude of CVD
is modulated by the mean network persistency across the entire set of study catch-
ments, with higher values of CVD and an enhanced sensitivity to P̄ for low network
persistencies (Figure 7.10b). Remarkably, the analytical model given by equation
(4.32) captures the observed network length variability across the full set of study
catchments (R2 = 0.97), proving that the temporal variation of active streams are
in fact linked to the mean persistency of the river network. All the experimental
points obey to the inequality CVD < CV max

D , indicating that the observed temporal
dynamics of active stream length are properly constrained by the theoretical limit
given by equation (4.29). This finite universal limit of the active length standard
deviation derives from the contrasting patterns of CV max

D (P̄ ) and D̄(P̄ ) shown in
Figure 7.10. The relatively small distance of the experimental points from the theo-
retical limit given by equation (4.29) suggests that the total active stream length is
about as dynamic as it can possibly be (i.e., the CV of network length or drainage
density is not far from its maximum possible value). Active stream dynamics and
temporarily-dry channels are known to modify the distribution of catchment travel
times owing to changes in the length of channel and hillslope flowpaths (Durighetto
et al. 2020; Van Meerveld et al. 2019), thereby affecting important biogeochemical
and ecological properties of rivers across a broad range of hydroclimatic settings
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Figure 7.10: Climatic controls on the active drainage density. a) mean drainage density scaled to
the geomorphic drainage density as a function of the mean network persistency, P̄ ; b) coefficient of
variation of the drainage density as a function of the mean network persistency P̄ . Also shown here
are the maximum theoretical limit for CVD (equation (4.29)) and the value of CVD predicted by
the hierarchical beta-model (equation (4.32)); c) the correlation between mean network persistency
and effective precipitation (total precipitation minus potential evapotranspiration ET) during the
period when the active network was surveyed (average monthly value among all the months during
which at least one field survey was performed). Points with a lighter gray border represent cases in
which the surveys are not evenly distributed within the study period (Hubbard Brook and Fernow)
as the median time between all the possible pairs of survey dates, τm, was smaller than 15 days.
P3 was not included in this plot because of the lack of reliable precipitation data.
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(Fritz et al. 2008; Gallart et al. 2017; Stubbington et al. 2018; Vander Vorste et
al. 2020b). Thus, temporal variations of the active channel length should be prop-
erly taken into account in regional assessments of biogeochemical function of river
networks, such as CO2 outgassing and nutrient spiraling (Raymond et al. 2013;
Gómez-Gener et al. 2016; Bertuzzo et al. 2017; Schiller et al. 2019; Keller et al.
2020).

Other relevant implications of these results stem from the identification of the major
physical determinants of the mean network persistency. Surface flow is the byproduct
of the excess water drained by the upstream contributing catchment, as proposed by
Godsey et al. 2014; Prancevic et al. 2019. Thus, in line with these previous studies,
the hypothesis is that mean network persistency represents an important climatic
signature of river basins. Accordingly, P̄ , which was poorly correlated with drainage
basin areas (R2 < 0.01), was found to be strongly linked to the underlying climatic
water balance, here represented by the effective precipitation, Pt−ET (i.e., total pre-
cipitation minus the potential evapotranspiration during the surveyed periods), as
shown by Figure 7.10c. Despite the high correlation between effective precipitation
and persistency (overall R2 = 0.79), some scattering appears in the observational
data. This scatter is attributed to two factors: i) relevant inter-catchment differ-
ences of geological or morphometric features, as suggested by Prancevic et al. 2019;
Stoll et al. 2010; and ii) an uneven distribution of the survey dates that might
bias the relationship between the observed mean network persistency and the av-
erage climatic conditions during the study period for some catchments (light grey
dots in Figure 7.10c). Nevertheless, a clear climatic signature is present within
drainage density statistics: lower mean network persistencies and enhanced relative
active length variability were observed in the drier catchments (with CVD > 1.5
for Pt − ET < 40mm/month, as in the Turbolo site). Conversely, in the wettest
site (Coweeta, where Pt − ET > 160mm/month), the mean network persistency
approached unity and network dynamics are smoothed, with CVD → 0. This result
offers novel insight on the impact of climate on the active stream length variability
(Jaeger et al. 2014), and nicely complements existing modeling and empirical ap-
proaches for the characterization of the spatial patterns of flow persistency across a
landscape (Prancevic et al. 2019; Jensen et al. 2019; Senatore et al. 2021). There-
fore, the proposed framework may provide useful insights into the impact of climate
on the temporal changes of the active drainage density.

Several studies have investigated the impact of rainfall regimes on the geomorphic
drainage density, Dg (Melton 1957; Moglen et al. 1998; Collins et al. 2010; San-
gireddy et al. 2016). However, the influence of hydroclimatic drivers on the active
fraction of the network is not fully understood. Notwithstanding the variability
of Dg across the study catchments (attributed to their geological diversity), these
results confirm that the extent of active channel length is linked to the amount
of excess precipitation in the contributing catchment, as previously proposed in
the literature (Godsey et al. 2014; Senatore et al. 2021). This suggests the emer-
gence of distinctive ecohydrological patterns within different climatic regions of the
world. The largest temporal variations in the active stream length were found in the
sites characterized by intermediate climates (i.e., 40 < Pt − ET < 100mm/month
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Figure 7.11: Dependence of key drainage density statistics on the mean network persistency, P̄ ;
the following statistics are shown in the three panels: (a) the standard deviation of the dynamic
drainage density, dev(D), scaled to the geomorphic drainage density, Dg; (b) the geomorphic
drainage density; (c) the standard deviation of the active drainage density, that is proportional
to the standard deviation of the active length through the contributing area. Panel a) shows
a comparison between observed values of Dev(D)/Dg (dots) and the corresponding theoretical
prediction of the analytical model as derived from Eqs. (4.27) and (4.32) for all the case studies
where active lengths were monitored; in panels b) and c) the box-plots represent the first, second
and third quartiles of observed data (solid lines) aggregated for different persistency ranges (as
indicated by the dashed lines). The average is shown as a dotted line, while the full range is
represented by whiskers.
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and 0.4 < P̄ < 0.6), where the standard deviation of the active length and the
geomorphic drainage density are concurrently higher (Figure 7.11). Crucially, for
intermediate values of Pt − ET both the overall dynamic channel length and its
internal heterogeneity are enhanced. In these settings, in fact, the observed local
persistencies ranged from 0 to 1 (Supplementary Information) revealing the presence
of multiple expansion/contraction cycles that operate with diverse frequencies, from
individual storms to seasons. This behaviour generates a gradient of spatially het-
erogeneous habitats, from predominantly terrestrial to lentic, widening the spectrum
of adaptation strategies and increasing biodiversity (Vander Vorste et al. 2020b). In
the driest site (Turbolo), the relative variability of D is much higher than in all
other settings (Figure 7.10b), as almost the entire network is dynamic. However,
the mean active length is typically reduced because of the predominance of dry
reaches experiencing episodic activation. The lower persistencies induced by limited
water availability entail shorter dynamical lengths of streams, regardless of the pro-
nounced temporal changes of flow conditions experienced by dry rivers (Basso et al.
2016). The ability of the analytical framework to quantitatively describe this wide
spectrum of behaviours suggests the general applicability of the proposed approach
within large-scale studies and makes it a sound basis for developing more specific
numerical tools aimed at interpreting or predicting channel network dynamics.

7.6 The stream length duration curves

The stream network dynamics of a catchment are efficiently summarized by the
Stream Length Duration Curve (SLDC, see section 4.5). This section reports the
SLDC obtained from the visual field surveys on the Valfredda site, in order to
briefly explain how the main characteristics of a temporary streams are reflected by
different features of the SLDC. Analogous results are obtained for all the study sites,
as reported in Figure 7.13, and in section 7.9 where the SLDC is used to explore the
different regimes of the active length.

The comparison between the empirical SLDC of the Valfredda catchment, that was
obtained based on the field surveys performed in the summer and fall of 2018, and
the prediction of the hierarchical model, i.e. the cumulative exceedance probability
of the local persistency along the network (equation (4.20)), is reported in Figure
7.12b. The two curves display a very similar behavior, with a MAE between the
quantiles of 0.32 km. This confirms that spatial and temporal variability of streams
are tightly linked, thereby allowing the calculation of the SLDC as the cumulative
exceedance probability of the mean persistency of the different network nodes.

The SLDC embeds important information about the dynamics of the active stream
network induced by climatic variability. The value of the active stream length with
a duration of 100% corresponds to the length of the permanent streams of the
network, that, according to the empirical observations, for the Valfredda river is
about 5 km. The difference between the maximum and minimum length, instead,
is the total length of the intermittent streams, approximately 11 km for this study
catchment. About 4.5 km of temporary network is active more than 50% of the time.
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Figure 7.12: Empirical SLDC of the Valfredda catchment obtained with the plotting position
method (blue), compared with the cumulative probability of the local persistency along the network
(orange).

The median length (9.3 km, corresponding to a duration of 50%) is very similar to
the mean length, suggesting that the distribution of active stream lengths is not
significantly skewed. In the range of durations between 10 and 90%, the slope of the
SLDC is pronounced and uniform, thereby implying that the whole stream network
is very dynamical, and there are no preferential values of the active length that are
observed with a particularly high probability. The predicted increase in the slope
of the SLDC for durations below 10% also suggests that a considerable length of
stream network (3.5 km) is activated only during extremely wet climatic conditions.

Figure 7.13 shows the Length Duration Curves obtained for all the other sites stud-
ied in this thesis. The Turbolo catchments (T1, T2, T3) prove to be the driest
catchments of the study set, with completely dry networks for more than 50 % of
the time. The part of LDC associated with the smaller durations are very steep,
suggesting that these network only activate briefly in response to rainfall events, and
dry out afterwards. At the other extreme, the catchments C2 and C3 are the less
dynamic ones, with almost flat LDCs suggesting that at any time their networks are
almost completely active. The LDC of catchments F1, F2, F3 and P3 tend to be
flat in only the central part, suggesting the presence of a preferential configuration
of the active network and a limited variability of the active length, that may be only
generated by the most intense precipitation events and droughts. The Poverty (P1,
P2) and Hubbard Brook (H2) catchments are the most dynamic ones, as the full
range of lengths (from 0 to their respective maximum) is associated with durations
spanning from 0 to 100 %.
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7.7 A statistical model for active length

Three different empirical models for the estimation of the active length starting
from climatic data were applied to the study catchments and compared, in order
to understand how the unsteady climatic forcing controls stream network dynamics.
In particular, the results reported here refer to the Rio Valfredda, and lie at the
basis of the reconstruction of the continuous spatio-temporal dynamics of the active
network reported in section 7.10. Nonetheless, the same methods could be used to
obtain analogous results in all the other catchments.

The performance of the different models described in section 5.1 was assessed through
the R2 and the MAE of the linear regression between the observed and predicted L
during the surveys carried out from July to November 2018. Despite its simplicity,
model 1 provides a good description of L, with a R2 of 0.96 (Figure 7.14). The values
of the calibrated parameters are reported in Table 7.3, together with the mean and
variance of L during the study period, the Akaike Index and the corresponding
Akaike Weight. Figure 7.14a shows R2 and MAE as function of the aggregation
time scale for rainfall (T ) in model 1. Two different local maxima of R2 can be
recognized: a first, narrow peak for T = 5 days (R2 ' 0.67) and a second peak,
much higher and wider, for T = 35 days (R2 = 0.96). The same pattern is found
in the MAE, for which two local minima can be identified for the same aggregation
timescales mentioned above. This suggests the simultaneous presence of multiple
expansion/contraction cycles of the active drainage network operating at different
time scales (i.e. 5 and 35 days).
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Figure 7.14: Performance of model 1 as a function of time period T in terms of R2 (a) and MAE
(b). Scatter plots of L vs hT for the two time periods of 5 and 35 days (panels c and d, respectively);
the blue points correspond to field surveys, the orange dotted line is the linear regression. The
P-value of the linear regression is smaller than 0.015 for 4 ≤ T ≤ 66 days, and smaller than 0.05
in all other cases.
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Figure 7.15: R2 and MAE of model 2 as a function of time period T and crop coefficient kc.

Figure 7.14c shows the scatter plot of L against h5, which is the cumulative rainfall
observed during the 5 days prior to each survey. Data points appear to be aligned
quite well along the regression line for high values of h5, while they are more scattered
for small values, probably because after 5 days of little or no precipitation the
hydrological condition of the catchment is dictated by slower hydrological processes
that are more affected by long-term precipitation patterns. On the other hand,
when a considerable rainfall event occurs, a significant fraction of the network is
impacted by faster hydrological dynamics, which are in turn affected by short-term
precipitation.

The scatter plot of L against h35, the cumulative precipitation in the 35 days before
each survey, is reported in Figure 7.14d. In this case, all the points are well aligned
on the regression line and the model performance increased (R2 = 0.96) relative to
the case in which h5 was used as a predictor for L. The increased performance of the
model suggests that, at the catchment scale, the river network dynamics are mainly
controlled by processes occurring on monthly timescales. Further, note that h35 can
be seen as the sum of h5 and the precipitation from 5 to 35 days prior to the surveys.
Thus h35 includes, to some extent, the cumulative effect of the variability of short-
term and long-term precipitation. As a result, the Pearson correlation coefficient
between h5 and h35 is 0.73.

Compared to model 1, model 2 introduces the effect of evapotranspiration through
the parameter kc. Figure 7.15 shows R2 andMAE as function of the two calibration
parameters, T and kc, for model 2. Model performance generally decreases for larger
values of kc, and reaches its maximum for kc = 0, a value for which this model
corresponds to model 1. For fixed values of kc (i.e. along horizontal lines in the plot
of Figure 7.15), the patterns of R2 (and MAE) are the same as in model 1, with a
wide peak around T = 35 days and high values of R2 up to T = 60 days.

The performance of model 3 as a function of the time periods T1 and T2 is shown in
Figure 7.16, where R2(T1) exhibits a peak for T1 = 5 days and a global maximum
at T1 = 35 days and R2(T2) follows the same pattern, generating the maximum R2

for T2 = 35 days. As a consequence, the optimal combination of T1, T2 is (5, 35)
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Figure 7.16: R2 and MAE of model 3 as a function of the two time periods T1 and T2.

days. This model reaches R2 = 0.99, further improving the performance of model
1 because it simultaneously accounts for processes happening on two different time
scales. The Belsley collinearity test between the cumulative precipitation for the two
relevant time periods identified by calibration produces a maximum scaled condition
index around 3, indicating that collinearity is not an issue for the given model.

All the models were validated through a leave-one-out cross validation technique. As
reported in Table 7.3, the standard deviation of the calibrated parameters is very
small, originating coefficient of variations (CV) for each model parameter in the
order of 0.01. The small variability of the parameters on different training subsets
is an indicator of the robustness of the models. Table 7.3 also shows the MAE and
its standard deviation for each calibrated model. The MAE coefficient of variation
is very small, indicating the robustness of the approach regardless of the specific
calibration subset chosen for calibration. The mean MAE exhibits the same pattern
of R2, being smaller for model 3 and higher for model 1, particularly when using h5

as predictor variable.

The additional survey performed on January 18th, 2019, was used to get a prelim-
inary indication of the performance of each model during winter conditions, when
snow dynamics affect the hydrology of the site. Model 1 shows the smallest absolute
error, 0.19 km, when h35 is used as independent variable, while the same model
produces the highest error (1.9 km) with h5 used as a predictor of L. This is ar-
guably related to the effect of snow storage that impacts the water balance during
relatively short time-scales. Model 3, that combines the two predictors together, has
an absolute error of 0.3 km. These errors are comparable to the MAE of the models
during the calibration/validation period, suggesting that the same approaches might
be valid also during the winter season. However, more data is needed to confirm
this hypothesis.

The different models were formally ranked using the Akaike Weights (AW), as re-
ported in Table 7.3. Model 1b is the best model, according to the Akaike Weights,
as it is able to provide a good description of the dynamics of L using a limited
number of parameters. Model 2 has one parameter more than model 1, with no
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Table 7.3: Comparison of the calibrated parameters and performances (in terms of R2 and Akaike
Weights) of the different models. Model 1 is presented twice, considering for the parameter T both
the local optimum of 5 days and the global optimum of 35 days.

Model # of calibrated
parameters

Regression
parameters R2 MAE AW

1a 3
T
k0
k1

5
7.4± 0.3

0.082± 0.008

days
km

km/mm
0.64 1.17± 0.81 0.224

1b 3
T
k0
k1

35
5.7± 0.07

0.020± 0.0004

days
km

km/mm
0.96 0.40± 0.20 0.688

2 4

T
kc
k0
kh

35
0

5.7± 0.07
0.020± 0.0004

days
-

km
km/mm

0.96 0.40± 0.20 0.084

3 5

T1
T2
k0
k1
k2

5
35

5.8± 0.09
0.022± 0.0002
0.017± 0.0005

days
days
km

km/mm
km/mm

0.99 0.28± 0.20 0.004

performance improvement. In fact, the model 2 calibration results in kc = 0, for
which the behavior is the same as model 1. As a result, model 2 has a lower AW
than model 1 because the same performance can be obtained with less parameters.
Model 3 allows a slight increase in model performance, though it requires two addi-
tional parameters. As a consequence, model 1 has a significantly better rating than
the other models, since it represents the optimal trade-off between goodness of fit
and model complexity.

The simulated L time series for models 1 and 3 are compared in Figure 7.17. The
main differences occur during and shortly after the major precipitation events; this
is particularly visible for the large rainstorm at the end of October. Such differences
are due to model 3 being able to better capture the expansion/contraction cycles
of the active drainage network in response to short-term and long-term precipita-
tion. Model 1, on the other hand, only captures long-term L variability induced by
monthly rainfall dynamics, and it is likely to underestimate the actual short-term
temporal variability of L.

One of the main goals of this study was to quantitatively analyze how the unsteady
nature of the climatic forcing controls stream network dynamics. Empirical data and
model results indicate that the temporal dynamics of the stream network length are
mainly driven by the observed patterns of short and long-term antecedent precipita-
tion (timing and amount). The comparison of the different models also suggests that
evapotranspiration does not affect significantly the observed intra-seasonal changes
of stream length in the Valfredda catchment, possibly due to the high runoff ratios
typical of this Alpine region and the low percentage of forested areas (almost 30%
of the total area).

The modeling results indicate the presence of multiple expansion and retraction
cycles operating at different time scales behind the observed dynamics of the Rio
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Figure 7.17: Comparison of the calibrated models. The top plot shows precipitation during the
period from July, 1st to November, 30th 2018. The bottom plot shows L as calculated by the
calibrated models. Model 2 is not reported as it is the same as model 1b. For clarity, L axis has
been limited to 20 km even if the maximum length reached by model 1 is about 32 km.

Valfredda stream network. These overlapping dynamics may be in turn controlled
by two distinct hydrological processes: i) quick subsurface flow in the root zone
feeding temporary streams; and ii) slower groundwater flow generated by the aquifers
supplying water to the less dynamical reaches of the river network.

7.8 Active length vs. discharge power-law
relation

The available hydrologic data and the data derived from the water presence sensors
were also used to study the relationship between discharge and active length in the
Valfredda catchment, as reported in this section. The same type of analysis could be
performed for all the study catchments, and lies at the basis of the characterization
of the flow and active length regimes of section 7.9.

The temporal evolution of rainfall (h), total discharge and total active length during
the entire study period is shown in Figure 7.18. During the first precipitation event,
the most intense of the period, observed variations of Q and L were both significant.
After September 11, instead, the intensity of the events was smaller and discharge
variations were barely noticeable less important. However, ER sensors indicate that
small rainfall volumes were able to activate several channels for some days, leading to
noticeable changes in the total wet length L. Overall, the Figure indicates that the
dynamics of L were mainly driven by precipitation, the temporal pattern of which
differs from the corresponding streamflow dynamics because of the non linearity of
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Figure 7.18: Top: temporal evolution of rainfall during the study period. Centre: temporal
evolution of catchment discharge, Q(t), during the study period. Bottom: temporal dynamics of
active length, L(t), during the study period. Areas in green represent the periods during which
active length and discharge are plotted in figure 7.19.

rainfall-runoff mechanisms.

Figure 7.19 shows the joint changes in active length and catchment discharge ob-
served during the five periods shaded in green in Figure 7.18. During the most con-
sistent precipitation event of the period (September 8), the peaks of active length
and streamflow were reached at the same time (Figure 7.19a). However, during the
early recession of Q, the active length remained stable and close to its peak value.
Afterwards, the discharge showed a non-monotonic behaviour with a small second
peak, while L decreased consistently.

During the precipitation events that took place between the 25th and the 30th of
September (Figure 7.19b), and between the 02nd and the 03rd of October (Figure
7.19c), the maximum active length was reached a few hours after each rain pulse,
though in the absence of significant Q variations. Afterwards, the wet length first
experienced a rapid decrease (again without significant changes in the discharge)
and then it remained almost steady while the discharge kept decreasing. A rainfall
event preceded the event shown in Figure 7.19b and it was responsible to increase
the catchment moisture conditions prior to the considered event. Therefore, after
the end of the rainfall input, the active length remained stable for some time before
it started declining. The trend observed during the event occurred between October
02 and 03 (Figure 7.19c) is similar to that shown in Figure 7.19b, but in this case,
the soil was drier before the event and the precipitation was less intense, thereby
inducing a quicker decrease of the active length as compared to what observed in the
recession between 09/25 and 09/30. In both cases, however, consistent variations of
the wet length (∆L ' 1km) corresponded to comparatively small variations of the
discharge (∆Q ' 50l/s).
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The rain events that took place between the 14th and the 18th of October (Figure
7.19d) and between the 20th and the 24th of October (Figure 7.19e), instead, exhib-
ited a different trend: the maximum wet length preceded the maximum discharge
that was reached only when the active length was almost back to its initial value.
In both these cases, the intensity of the rainfall events was small and the variations
of Q were barely noticeable (∆Q ≤ 5l/s).

Figure 7.20 summarizes the joint changes of wet length and discharge during the
whole study period, for both the total values of L and Q (Figure 7.20 a) and for
their dynamical contributions Ld and Qd (Figure 7.20 b). As expected, in both cases,
the pattern is similar. The variations of Q caused by the first precipitation event
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(d)
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Figure 7.19: Plots of discharge and active length during individual events across the study period,
as indicated in Figure 7.18.
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(a)
10/24

(b)

10/16

10/02

09/25

09/09

09/04

Figure 7.20: (a) Plot of total discharge (Q) and total active length (L). (b) Plot of dynamical
discharge (Qd) and active length (Ld) for the entire period studied.

(blue dots) are larger than those observed in the remainder of the period. Instead,
active length dynamics are observed during the entire study period. The available
data of Q and L were fitted with a power law relationship, of the type shown in eq.
(5.16).

While log(L) and log(Q) are linearly correlated (p − value < 10−5 at the 0.01
significance level), a pronounced scatter of the points around the regression line is
also observed, mainly due to the effect of small rain events. This scatter underpins
the relatively low value of the coefficient of determination (R2 = 0.48) of the power-
law model. There is no noticeable difference in the scattering of the points in the
two plots of Figure 7.20, as the observed pattern is mainly driven by the dynamical
components of L and Q. In both cases, the exponent of the power-law model b is
close to 0.2, which is relatively low but still falls in the literature range (Godsey
et al. 2014; Prancevic et al. 2019).

7.9 Streamflow and length regimes

This section combines the experimental observations with the analytical derivations
of section 5.2, which are grounded on a well-established streamflow probabilistic
model, to provide a parsimonious probabilistic description of the coupled dynamics
of streamflow and active length of a catchment.

These results are derived from the application of the theoretical setup described
in section 5.2.4, which by construction should be general and suitable for a wide
range of climates and landscapes. The main limitation on its applicability, however,
is related to the number and frequency of available simultaneous observations of
streamflow and active length that is necessary to correctly capture the inter-event
coupled dynamics of active length and streamflow. For this reason, these regimes
were studied only for the Valfredda and Poverty catchments, where water presence
sensors were employed to continuously monitor the dynamics of the active network
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for a number of expansion/contraction cycles, and for the Turbolo creek, where the
visual field surveys were conducted at a weekly interval.

Starting from the available hydroclimatic data, the parameters of the analytical
model have been estimated for each case study, as shown in Table 7.4. These pa-
rameters enabled the calculation of the analytical distributions of q and L, which
were then compared with the corresponding empirical counterparts, as discussed in
the following.

Table 7.4: Summary of the fitted streamflow and length parameters for the different case studies.
Note that the winter season of the Poverty Creek was divided into two subperiods (winter 1 and
winter 2) with contrasting characteristics, as detailed in the SI.

Catchment Period α
[cm]

λ
[d−1]

k
[d−1]

Fitting
method

a
[db/cmb−1]

b
[−]

R2

[−]

Valfredda Autumn 3.00 0.14 0.05 a-d 0.40 0.17 0.52

Poverty Creek Spring 9.00 0.32 0.14 a-d

0.30 1.09 0.77
Summer 0.72 0.23 0.19 a-c
Autumn 0.92 0.25 0.20 a-c
Winter 1 0.50 0.29 0.12 a-d
Winter 2 6.00 0.34 0.14 a-d

Turbolo Spring 0.52 0.20 0.07 a-c

6.17 0.50 0.21Summer 0.91 0.04 0.06 a-c
Autumn 0.80 0.16 0.13 a-c
Winter 0.95 0.20 0.10 b-d

7.9.1 Flow duration curves and stream length duration
curves

In the Valfredda catchment the effective rainfall frequency was moderate (one flow
pulse every 5 days on average), whereas the observed recession rate was much lower,
leading to an average response time of 20 days (Table 7.4). Despite the process
complexity, the analytical model was able to capture reasonably well the stream-
flow statistics observed in the Valfredda. The analytical Pq(q) underestimated low
discharges and overestimated high streamflows, though reproducing in a reliable
manner the shape of the observed cdf (Figure 7.21a). The MAE, evaluated as the
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Figure 7.21: Cumulative distribution functions of streamflow (Pq(q), panel a) and active length
(PL(L), panel b) for the Valfredda site: comparison between models and observations.
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mean difference between the modeled and the observed discharges associated to the
0.2, 0.4, 0.6, and 0.8 quantiles of the distribution, is 0.054 cm/d. The relatively low
value of the SMAE (12.7%) indicates a good performance of the model in this case.

The shape of the discharge cdf mirrored the relatively high frequency of flow-
producing events and the importance of groundwater contributions to the discharge,
which reduced the observed discharge variability and led to a persistent flow regime.
This behaviour complied with the climate of the region. In fact, most of the Alpine
rivers in this area are characterized by a constant water supply during the summer
and the early fall, which is due to the high frequency of rainfall events (Botter et al.
2010b).

The network extension scaling exponent b, which represents the river dynamicity, is
equal to 0.17 indicating a reduced responsiveness of the active length to changes in
the underlying climatic conditions. The relatively low value of the R2 (R2 = 0.52) is
related to the scatter of the points around the regression line which is caused by the
high variability of observed active lengths for a given discharge, especially during
moderate rain events.

The analytical cdf of the active length (eq. (5.19)) mirrors the behaviour of the
underlying streamflow distribution (Fig. 7.21b). The plot shows that the modeled
PL(L) underestimates low length probabilities and overestimates high length prob-
abilities, but it is able to fit reasonably well the observed cdf of L. The MAE,
evaluated as the difference between the analytical and the observed active length
cdfs is relatively low and equal to 0.091 km. The performance of the analytical
model was deemed satisfactory (SMAE = 14%), in the light of the simplicity of
the approach, the limited number of the required parameters and the geological
complexity of the study catchment. The shape of PL(L) suggested the presence of
limited temporal changes in the active length, which are represented by a perennial
active length regime. In fact, the presence of significant groundwater contributions
to the discharge ensured a continuous supply to the perennial portion of the drainage
network (1045 m).

In the Poverty Creek, the mean recession rate varied between 0.2 and 0.12 d−1 de-
pending on the time of the year, while the mean frequency of effective rain pulses
was in the range (0.23 d−1 − 0.34 d−1). The mean intensity of effective rain events,
instead, shows a marked variability across the seasons (Table 7.4). The annual
streamflow cdf of the Poverty Creek has been calculated as a weighted average of
the seasonal Pq(q). The annual flow regime is influenced by the presence of seasonal
droughts generally observed during the summer and the fall. During the summer,
in particular, the ratio λ/k was slightly larger than 1, with modal discharge values
close to zero and an intermediate-to-persistent flow regime (Figure 7.22a). Summer
and autumn were characterized by high temperature and evapotranspiration rates,
which induced low discharge rates and pronounced event-based streamflow fluctua-
tions. On the other hand during the spring the mean discharge was much higher,
and the frequency of flow pulses was larger than the corresponding recession rate,
leading to a persistent flow regime in which Pq was almost zero for q < 0.6 cm/d
(Figure 7.22c). While the seasonal analytical distributions didn’t perfectly represent
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the observations across all the seasons, the annual Pq(q) (Figure 7.22e) was able to
reproduce the overall shape of the observed cdf quite well, with a MAE of 0.1 cm/d
in this case (12.8% of the mean discharge). Nevertheless, the model underestimated
the probability of low streamflows. At the annual timescale, the streamflow regime
of Poverty Creek had an erratic behaviour with CVq > 1 and high slopes of Pq
especially for low values of q.

In Poverty Creek, the parameter b that modulates the active length vs. discharge
relationship is equal to 1.09, leading to an almost linear relationship between these
variables. Relatively high values of b imply a high dynamicity of the river network
which is consistent with the observed seasonal variations of the flowing length in this
case. In addition, the relatively high value of R2 (0.77), indicates that the power-law
model provides a good representation of the observed L vs q relationship.

Similarly to the annual Pq, the analytical cdf of the active length at the annual
timescale was calculated as a weighed average of the seasonal curves. The annual

a) b)

c) d)

e) f)

Observed
Modeled

Figure 7.22: Cumulative distribution functions of streamflow (Pq(q), left plots) and active length
(PL(L), right plots) for the Poverty site. Panels a) and b) refer to the summer season, panels c)
and d) to the spring season, while panels e) and f) refer to the whole year.
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a) b)
Observed
Modeled

Figure 7.23: Cumulative distribution functions of streamflow (Pq(q), panel a) and active length
(PL(L), panel b) for the Turbolo site.

PL(L) underestimated the observed cumulative distribution of wet length, particu-
larly for L < 1 km. The shape of the modeled cdf indicates that a high probability is
associated to the almost complete network shrinking. Likewise, a wide range of ac-
tive lengths was associated to the highest non-exceedance probabilities. The MAE,
which is equal to 0.138 km (38.5% of the mean), indicates discrepancies between the
modeled and the observed active length cdfs. This performance was still deemed
acceptable, as the overall shape of the cdf was captured by the model (Fig. 7.22f).
The shape of annual active length distribution was influenced by the seasonality
of the climate in the study site. During the spring (Figure 7.22d) and the winter
(SI), high values of the active stream length were observed, but no particular pref-
erential states were observed in the network configuration. On the other hand, the
summer (Figure 7.22b) - similarly to the autumn (SI) - was characterized by dry
conditions with active lengths which were often close to zero (with PL approaching
1 for L < 0.3 km).

In the Turbolo catchment, owing to the strong seasonality in the underlying hy-
droclimatic conditions, the parameters α, λ and k all varied significantly across the
year. The mean effective rainfall depth was slightly lower than 1 cm/d in all seasons
but the spring, during which α = 0.52 cm/d. The effective rainfall frequencies, in-
stead, ranged from 0.04 d−1 during the summer to 0.20 d−1 during the winter and the
spring. The mean recession rate followed a similar trend, with values that were in
the range (0.06 d−1 − 0.13 d−1). The annual Pq(q), calculated as a weighted average
of the seasonal curves, slightly underestimated the probability of low streamflows
but it was able to properly reproduce the shape of the observed cdf of q (Fig. 7.23a).
The MAE of the streamflow model is equal 0.030 cm/d (17.8% of the mean) in this
case.

The annual cdf was a concave function of q. This circumstance is related to the high
slope of the summer FDC in correspondence of q → 0. The annual cdf also mirrored
the pronounced seasonality of the climate in the whole Crati region. Therein, the
summer season was characterized by high temperature and high evapotranspiration
rates, which led to a low mean discharge with pronounced streamflow variations.
Instead, the other seasons of the year were featured by more frequent rainfall events
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which induced a streamflow regime characterized by more abundant water resources
and reduced hydrologic fluctuations.

The scaling exponent b is equal to 0.50 in the Turbolo, a value which lies in the
literature range. The low value of R2 (R2 = 0.21) is possibly due to the fact that
discharge measurements were only available at the outlet of much larger catchment.

The annual modeled PL(L) is reported in Fig. 7.23b, where a comparison with
the corresponding observed distribution is shown. The modeled PL(L) generally
underestimated the probabilities associated with all the observed active lengths but
it properly replicated the shape of the observed cdf. The MAE, calculated as the
mean difference between the modeled and the observed active lengths associated to
the 0.2, 0.4, 0.6, and 0.8 quantiles of the distribution, is equal to 0.329 km (49.0%
of the mean). The MAE for the Turbolo indicates a systematic underestimation of
PL throughout the L domain.

7.9.2 Streamflow and active length regimes

Figure 7.24 compares the shape of the FDC and the SLDC in the three study
catchments, using both empirical data (left panels) and the corresponding analytical
curves (right panels). The Figure emphasizes that, by and large, the analytical
models are able to capture the observed relationship between the discharge and the
active length regime across all the case studies.

The Valfredda river (Figure 7.24a and 7.24b) is characterized by a persistent flow
regime and a perennial active length regime. In fact, the flow duration curve displays
a smooth shape and a relatively flat slope covering the full range of durations from 0
to 1. The stream length duration curve has a smaller slope of the FDC, and displays
a clear inflection point which makes the SLDC strictly positive for all the durations
between 0 and 1. In this case, the ratio λ/k (= 2.8) is larger than 1 while b < 1. This
implies that the Valfredda catchment, based on the theoretical regime classification
proposed in section 5.2.4, has a “class F" behaviour. Accordingly, the theoretical
and observed coefficients of variation of streamflows and wet lengths, turned out to
be lower than 1, with CVL < CVq < 1. This behaviour is mainly induced by the
presence of few permanent groundwater springs feeding some perennial channels of
the stream network.

Regarding Poverty Creek, the FDC and the SLDC both display pronounced sea-
sonality (SI). In the spring (Figure 7.24c), the ratio λ/k is equal to 2.29, thereby
suggesting a persistent flow regime, as mirrored by the knee-shaped FDC. As the
parameter b is equal to 1.09, the ratio λ/(kb) is also larger than 1. Therefore, the
active length regime can be classified as a perennial regime, as reflected by the shape
of the SLDC, which leads to positive values of L/〈L〉 for D → 1. Overall, the be-
haviour during the spring belongs to the “class E". However, during the summer,
λ/k = 1.21 and λ/(k b) = 1.11. Under these circumstances, (λ/k ' 1, b ' 1, λ/k > b
and λ/k < 0.4114 b2 + 0.7168 b) an ephemeral de facto active length regime and an
intermediate flow regime are observed. Thus, during the summer, the behaviour of
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Poverty Creek belongs to the “class D".

The normalized annual flow duration curve (Fig. 7.24g and 7.24h) is quite steep and
concave within the whole domain (0,1). Similarly, also the annual SLDC has a steep
shape and it clearly approaches the x-axis at durations lower than 1, indicating an
ephemeral active length regime. On an annual basis CVq and CVL are both larger
than 1, indicating a pronounced variability of q and L in time, with a behaviour
in between “class A" and “class B" (b ≈ 1). This is mostly related to the high
seasonality of discharge and active length regimes. In the Poverty Creek the shape
of the seasonal SLDCs resembles that of the corresponding FDCs, as b ' 1.

In the Turbolo, the streamflow variability is enhanced (CVq > 1) and an erratic
flow regime is observed, which is reflected by the convex shape of the FDC (Fig.
7.24i and 7.24j). Similarly, also the temporal variations of the active length are
pronounced (CVL > 1). The annual SLDC intersects the x-axis in a point with a
duration lower than 1, suggesting an ephemeral active length regime. Overall, the
Turbolo shows a “class A" behaviour. The ephemeral nature of the active length
regime in the Turbolo catchment is not surprising in the light of the climate of the
study site. In several cases the river network has been detected as completely dry,
with active length values equal to 0. This is in accordance with the Mediterranean
climate, which is characterized by high temperature and prolonged droughts during
the whole summer, which leads to a seasonal dry-down of the drainage network.
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Figure 7.24: FDCs and the SLDCs using empirical data (left panels) and the corresponding ana-
lytical curves (right panels) for the three study catchments. Panels a) and b) refer to the whole
study period in the Valfredda site. Panels c) to h) refer to different periods in the Poverty creek:
spring (c, d), summer (e, f) and the whole year (g, h). Panels i) and j) show the annual curves for
the Turbolo creek. All plots refer to dimensionless quantities (L∗ = L/〈L〉 and q∗ = q/〈q〉).
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7.10 An empirical model for reconstructing
the spatio-temporal dynamics of the
active channel network

To show the potential of the empirical model described in section 6.1, the model
was used to reproduce the change in the active network of the Rio Valfredda during
a period of 5 months (from July 1st to December 6th, 2018), on the basis of 9
empirical surveys performed in the same period. A video showing the continuous
spatio-temporal dynamics can be found in Durighetto et al. 2021. Instead, Figure
7.25 presents a sequence of snapshots taken from the simulation in correspondence
of the most intense rainfall event of the whole study period. Although the results
reported here only refer to one study case, analogous results can be obtained for all
the experimental sites presented in Chapter 3, as this simulation is mainly based on
the hierarchical activation scheme that holds true in all the studied sites (see Section
7.4).

The video highlights that different modes of network expansion and contraction
concur to determine the observed changes in the active network of the Valfredda
catchment. During stream expansion, some branches lengthen upstream while other
expand downstream, either connecting to the outlet or remaining disconnected from
the main river. During network contraction, disconnections frequently appear along
many tributaries, especially in the lower-east part of the catchment where the lim-
ited soil permeability supports a flashy activity of the streams, thus enhancing flow
intermittency. Furthermore, network expansion is much faster than the subsequent
contraction, mirroring the positive skewness of the hydrograph (e.g. Botter et al.
2003). As an example, during the huge rain event that took place in late October,
the network lengthened from approximately 7 to 17 km in only 3 days, while more
than one month was necessary to go back to the average length of 8 km. In par-
ticular, Figure 7.25a displays the modeled active network during its expansion on
the 27th of October, when 50 mm of rainfall occurred after two almost completely
dry months. As the network expands, disconnected active stretches appear in the
northern and south-eastern part of the catchment, expanding downstream. In the
middle part of the network, instead, the already connected active branches lengthen
upstream. The active network reached its maximum extension on October 29, after
3 days of continuous, heavy rainfall for a total of about 265 mm (Figure 7.25b). In
this configuration, all parts of the network are completely active and connected to
the outlet, with the only exception being some smaller branches that are geometri-
cally disconnected from the rest of the streams. As the network starts to contract in
the subsequent days (Figure 7.25c), the most flashy branches dry down and discon-
nections reappear along the network. Overall, the simulation emphasizes the spatial
heterogeneity of network dynamics, highlighting once more the importance of cap-
turing high-frequency dynamics of the active network. The continuous nature of the
modeling, both in space and time, facilitates the identification of many important
features of network dynamics which are much harder to catch from a sequence of
static maps.
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a)

b)

c)

Figure 7.25: Maps of the modeled active stream network of the Valfredda catchment on the 27th of
October (a), 29th of October (b) and 02th of November 2018 (c). Active stretches are blue, inactive
are orange. White dots correspond to locations where surface flow starts or stops.
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7.11 A Bayesian hierarchical model for
space-time channel network dynamics

The model presented in section 6.2 allows the coupled simulation of streamflow
and stream network dynamics, enabling the stochastic simulation of the spatio-
temporal dynamics of the active stream network under a broad range of climatic and
morphological conditions while requiring a small number of parameters and a limited
computational effort. The model was used to explore spatiotemporal dynamics of the
active network in synthetic streams subjected to contrasting flow regimes and various
spatial patterns of flow persistency. The generated dynamical active networks were
then used as a basis for the D-SPOM metapopulation model (see section 6.3), to
provide an assessment of the impact of the hydrological network dynamics on species
persistence under different setting.

The model presented in section 6.2 was applied to 9 different climatic and physio-
graphic scenarios to illustrate its capability in reproducing network dynamics under
different climatic and geomorphological settings. All the results related to the ac-
tive length are shown in terms of relative length, defined as L(t)/Lg were Lg is the
geomorphic length (i.e. the maximum potential length of the active network), to
emphasize the fact that the spatial scale is not relevant for the generation of stream
dynamics through the presented model.

The simulation results relative to the W2 scenario are reported in Figure 7.26.
The timeseries of rainfall shows how the high frequency of precipitation in the wet
climate (λ = 0.37) provides a regular water input on the catchment, often resulting
in continuous precipitation events that last for multiple days. The stochasticity of
the effective rainfall is directly reflected into the timeseries of streamflow, in which
the positive increments dictated by precipitation are combined into a continuous
signal by the linear recession rate. The timeseries of threshold P ∗(t), obtained
with eq. (6.4), shows an analogous, albeit reversed, behaviour. In particular, the
stochastic rainfall events that increase Q(t) are reflected into reductions of P ∗(t),
with consequent expansions of the active network. As per equation (6.4), CDFQ
modulates the transformation of Q(t) into P ∗(t), introducing a non-linear relation
between these two signals. As Figure 7.26 shows, in fact, for the W2 scenario the
variability of the highest flows (Q(t) > 7.5mm/d) corresponds to weak variations
of P ∗(t). Instead, streamflow variations in the range between 2.5 and 5mm/d are
amplified in P ∗(t), suggesting that the active network may be most sensitive for
average flow conditions (Q̄ = 4mm/d for scenario W2 ). Panels d) to g) of Figure
7.26 show a sequence of snapshots of the simulated active network, while the full
dynamics can be observed as a video in the SI. The maximum extension of the
network (panel d) is obtained at day 16 of the simulation, after a series of intense
rain events that result in a huge increase of Q. During periods with weak rainfalls
(e.g. from day 45 to 60) or in the absence of precipitation (e.g. in the period
between day 111 and 123), the streamflow gradually decreases, with a consequent
progressive contraction of the active network (as shown in panels e and f of Figure
7.26), reaching its most contracted configuration only after the longest dry spells
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Figure 7.26: Simulation results for the W2 scenario. Panels a), b) and c) show the timeseries of
rainfall, streamflow Q(t) and persistency threshold P ∗(t). Panels d) to g) report the simulated
maps of the active network on the 4 different time steps indicated in panel c).

(panel g).

The difference dynamics that the network experiences under each scenario are ex-
plored by comparing the corresponding maps of local persistency (Figure 7.27),
generated timeseries of Q and L (Figures 7.28 and 7.29), and different sequences
of possible configurations that each network experiences during expansion (Figures
7.30, 7.31, 7.32).

The generated maps of local persistency for the 6 scenarios related to the wet and
dry climates are reported in Figure 7.27. All the dry scenarios (D1, D2, D3 ) share
the same mean persistency P̄ = 0.20, and therefore the same statistical distribution
of Pi, with the only difference being the related spatial patterns. The same is true
also for the three wet scenarios (W1, W2, W3 ), which all share a mean persistency P̄
of 0.74. As one would expect, randomly assigning persistencies (D1, W1 ) generates
maps where adjacent nodes might have very different values Pi, while persistencies
assigned via the underlying contributing area (D3, W3 ) are monotonically increasing
in the downstream direction. Using the TWI as the key criterion for assigning
the local persistencies (D2, W2 ), instead, originates maps with Pi that on average
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Figure 7.27: Maps of local persistency for the 6 simulated scenarios.
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increases in the downstream direction with some exceptions.

An example timeseries of streamflows for the dry climate is depicted in Figure 7.28a.
Under this climate, the recession rate is higher than the mean frequency of flow-
producing rainfall events (λ/k = 0.65), resulting in an erratic streamflow regime.
Consequently, streamflow dynamics are characterized by spiky flow pulses separated
by prolonged intervals with very low flows. The active length timeseries, shown in
Figure 7.28b, inherits some of the properties of the Q(t), with some key differences.
The faster recessions exhibited by active length dynamics as compared to the corre-
sponding streamflows generate long spells during which the stream network is almost
completely dry. Nonetheless, a remarkable fraction of the network is activated by
a few moderate to high flow events. This produces a significant variability in the
active length (CVL = 1.35). The flow duration curve (FDC) depicted in Figure 7.28c
is convex and quite steep, owing to the high probability associated to very low flows.
The FDC, being the inverse function of CDFQ, shows how Q(t) is transformed into
P ∗(t), modulating the expansion and contraction of the active network. This sug-
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Figure 7.28: Time series of simulated streamflow (a) and active length (b) for the scenarios with
dry climate. Panels c) and d) show the corresponding flow and stream length duration curves.
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gests that, in the scenarios with dry climate, P ∗(t) is more sensitive to low flows, for
which the FDC is flatter. The SLDC (Figure 7.28d) displays similar characteristics,
and approaches the x-axis for a duration of about 0.65. Thus, the network is almost
completely dry for about 1/3 of the simulation.

Figure 7.29 shows the simulated timeseries of streamflow and active length for the
wet climate, as well as the corresponding flow and stream length duration curves.
In this case the mean interarrival between effective rainfall events is smaller than
the recession rate (λ/k = 2.45), leading to a persistent flow regime with streamflows
that are weakly variable around the mean. As a consequence, most of the stream
network is active for significant periods of time, with sensible reductions of L(t)
only during the longest recession periods. The active length timeseries shows how
active length recessions tend to be concave, with the L(t) staying quite constant for
a few days before starting the real contraction process. This tends to reduce active
length variability (with respect to streamflows), resulting in a coefficient of variation
CVL equal to 0.28. The FDC is knee-shaped, suggesting that the most probable
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Figure 7.29: Time series of simulated streamflow (a) and active length (b) for the wet climate
scenarios. Panels c) and d) show the corresponding flow and stream length duration curves.
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streamflow value is greater than zero. The SLDC is concave and much flatter than
the one observed under the erratic regime, further confirming the reduced variability
of the active length in this case. Furthermore, the SLDC approaches D = 1 for a
relative length of about 0.2, revealing that in this case a significant portion of the
network remains permanently active.

Thanks to the hierarchical scheme, during network expansion (contraction) nodes
are activated (deactivated) following a fixed order prescribed by the local persis-
tency. As a result, for a given active length L (or its duration D(L)) only one
network configuration, intended as the set of nodes that are active, is possible. Fig-
ure 7.30 shows two sets of network configurations associated to durations ranging
from 0.05 to 0.95, for scenarios W1 and D1. It is worth noting how D(L) can
also be interpreted as the persistency threshold P ∗ determining the status of the
nodes. Therefore, as P ∗(t) experiences continuous increasing/decreasing cycles as a
response to the stochastic climatic input, the corresponding expansion/contraction
cycles of the active network consist of a continuous sequence of the configurations
reported in the figure. The random assignment of local persistency along the net-
work results in a patchy activation of network segments, generating a multitude of
disconnections that are gradually removed as the network approaches its completely
expanded configuration. Furthermore, it is evident how under the dry climate (D1 )
owing to the erratic flow regime most parts of the network are activated only spo-
radically, with the active network associated to a relative length of 50% having a
duration D < 0.2. The same network configuration, on the contrary, has a dura-
tion D > 0.8 under the wet scenario (W1 ). In this case, 93% of the network is
active with duration D = 0.2. Nonetheless, multiple disconnections remain present
throughout all the possible network configurations (with the only exception being
the completely expanded network). As Figure 7.32 shows, such disconnections are
not present in the D3 and W3 scenarios, where Pi follows the order of increasing
contributing area. In this case, the network always expands from the outlet up-
stream, ensuring the continuity of its active portion. When TWI is used as criterion
for the assignment of Pi (scenarios D2 and W2 shown in Figure 7.31), the spatial
pattern of flowing network combines the characteristics described above for the other
scenarios. In this case, in fact, network expansion can be associated with a double
action: the activation of new reaches in the upper part, usually disconnected from
the rest of the active nodes, is accompanied by the removal of disconnections in the
lowest part of the network. As a consequence, the network configuration at any
given time is composed of a main part, comprising most of the active length and
usually connected to the outlet, and a number of small disconnected reaches in the
uppermost branches.
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Figure 7.30: Snapshots of the active network (in blue) for scenarios D1 and W1, i.e. dry and wet
climates and random assignment of local persistency, with the corresponding active length and its
duration.
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Figure 7.31: Snapshots of the active network (in blue) for scenarios D2 and W2, i.e. with local
persistencies assigned by TWI, with the corresponding active length and its duration.
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Figure 7.32: Snapshots of the active network (in blue) for scenarios ED3 and W3, i.e. with local
persistencies assigned by contributing area, with the corresponding active length and its duration.
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The generated time series of active network provide great examples of the main
hydrological features of temporary streams in relation to the underlying properties
of the climate within the catchment. But the importance of temporary streams
goes far beyond hydrology, with important ecological implications related to, as an
example, nutrient cycling and species occupancy. This sections provides the results
of the application of the metapopulation model described in Section 6.3, which
builds upon the simulated networks discussed earlier, with the aim of providing key
information on the ecological significance of stream expansion and retraction and
unveiling how river network dynamics may affect metapopulation occupancy.

Figure 7.33 displays the time series of network occupancy (i.e. the fraction of net-
work length that is occupied by the target species at any given time) for the 9
different scenarios presented earlier, which combine erratic, intermediate and persis-
tent flow regimes with three different spatial configurations of local persistency (i.e.
by contributing area, TWI, or random). Furthermore, the metapopulation dynamics
for each scenario are compared with the ones of an equivalent, average static net-
work. The results show that dynamic networks are always associated with a lower
mean occupancy than the corresponding static networks. A probable reason for this
behaviour is that, in dynamic stream network almost all the nodes aren’t always ac-
tive, regardless of the underlying climate, and a certain amount of time is required

Figure 7.33: Comparison between the time series of river network occupancy computed using the
D-SPOM (blue lines) and its static version (red lines). Each of these two type of time series
represent the temporal mean over 50 single realizations. The comparison is repeated for persistent,
intermediate, and erratic regimes for each of the three persistency scenarios: AD8, TWI and
Random.
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for the metapopulation to colonize a node once it is activated. The difference in
mean occupancy is enhanced by erratic flow regimes, where network expansions are
usually sporadic and flashy, and therefore a very limited number of nodes can sus-
tain the metapopulation for prolonged time periods and act as a starting point for
species dispersal when the network expands. The time-variability of occupancy on a
dynamic stream network (blue lines in Figure 7.33) is, instead, always considerably
higher than the cases with static networks (red lines). This could be attributed to
the fact that in dynamic networks the active length (i.e. the available habitat for the
target species) changes with time, and the activation/deactivation of different nodes
is also reflected into different possibilities of dispersal of the metapopulation due to
the insertion or removal of disconnections along the network. For this reason, the
increase in variability is less pronounced in persistent regimes, where the network is
usually more expanded and constituted of bigger intra-connected clusters, than in
erratic ones where smaller habitat patches are continuously switched on and off and
connected/disconnected from the rest of the network. In fact, the coefficient of vari-
ation of the network occupancy is 4 to 6 times higher in dynamic networks than in
static ones, growing from 0.05 to 0.19 in persistent regimes and from 0.07 to 0.45 in
intermediate ones. This type of comparison could not be done for the erratic regime
because all the simulation reached extinction in the dynamic case, thus impeding the
calculation of reliable coefficients of variation. The variability in network occupancy
is also reflected into a higher probability of extinction in dynamic networks than in
the static case. This extinction probability is enhanced in the case of random assign-
ment of local persistency, which generates active networks that are very fragmented,
thus reducing the possibilities of species dispersal and colonization of non-occupied
nodes. Furthermore, this process is particularly important in erratic regimes, where
the occasional activations of the network generate a lower mean occupancy in the
static cases, and a high extinction probability in the dynamic ones. The synergis-
tic effects of sporadic, flashy, expansions of the network with the presence of many
disconnections that are removed only in the most expanded configurations of the
network result into a probability of extinction of 100 % in a very short time period
in the case of random local persistencies and erratic flow regimes.

The above results suggest that the ability of a temporary stream to sustain a target
species is related to the size of the continuous parts of the network that are active
at any given time. These continuous parts of active network, in fact, have two fun-
damental properties: a) they are active, and therefore the target species can occupy
these habitat patches, and b) they are continuous, thus enabling the dispersal of the
species between any couple of nodes belonging to the same continuous habitat patch.
In graph theory, the size of the biggest continuous part of a network is described
by the Minimum Spanning Tree (MST) length. The MST varies with time, as the
active network expands and contracts; furthermore, it is influenced by the spatial
patterns of local persistency that dictate which nodes are active for any possible
length of the active network, and the location of the internal disconnections. Figure
7.34 shows the length of the MST as a function of the persistency threshold P ∗ for
each of the 9 scenarios, showing how the length of the biggest continuous habitat
patch varies as the network goes from completely expanded (P ∗ = 0) to contracted
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Figure 7.34: Sensitivity of the Normalized Minimum Spanning Tree length to the persistency
threshold for persistent, intermediate, and erratic hydrological conditions. The computation is
repeated for the three different scenarios of local persistency: AD8, TWI and Random.

(P ∗ = 1). Furthermore, P ∗ can be interpreted as the fraction of time for which the
corresponding active length L, or MST length, is equalled or exceeded (see Section
6.2.2). As no disconnections are present in the active network if the local persisten-
cies are assigned by contributing area, the curves in Figure 7.34 relative to scenarios
W1, I1 and D1 also correspond to the Length Duration Curves of all the networks
that undergo the same flow regime. In the case of local persistency assigned by
TWI (scenarios W2, I2, D2), some disconnections are introduced, and some smaller
parts of the active network are not connected to the main one, impeding species
dispersal and therefore reducing the network occupancy. Interestingly, in the case of
non-correlated local persistencies (scenarios W3, I3, D3) the MST has a significant
size for a very small duration even in the case of persistent flow regime, suggesting
that the fragmentation of the active network significantly hinders the dispersal of the
metapopulation, resulting in a lower mean occupancy and a higher extinction prob-
ability than in the corresponding scenarios with correlated local persistencies. As
the flow regime changes from persistent to erratic, the curves in Figure 7.34 move
to the left, showing how smaller and smaller durations are associated to network
configurations with habitat patches of significant size.



8 Conclusions

In this study, the pulse of temporary streams was analyzed using a series of different
empirical and theoretical tools, including novel monitoring techniques and new sta-
tistical indexes for the characterization of active length regimes. The thesis allowed
the identification of the physical drivers of the temporal variability of the extent of
the flowing network, and the development of new models for the spatio-temporal
dynamics of the active network.

The study provides a new framework for a comprehensive analysis of temporary
streams in a wide range of climatic and geologic settings. The framework is based
on the discretization of the river network into nodes with a status that changes
through time, and the characterization of each node through its local persistency.
The pivotal finding of the thesis is the hierarchical activation scheme, according
to which nodes are always activated a fixed order during network expansion, and
deactivated in the opposite order during contraction. As a consequence, all the inter-
actions between the states of different nodes are dictated by their local persistency,
because a node can be activated only if all the more persistent nodes are already
active, and the possible spatial configurations of the active network are solely de-
fined by the spatial pattern of local persistency. This hierarchical behavior fostered
most of the analytical and modeling results of this thesis. In fact, it enabled the
derivation of analytical expressions for the main statistics of the active length (e.g.
mean, variance and pdf) by disentangling the spatial and temporal dimensions of
the dynamics of the active stream, and opened new ways for the spatiotemporal
modeling of dynamic river networks.

Experimental activities. This study presents the results of a field campaign
for the visual mapping of the stream networks in the Valfredda catchment, comple-
menting the studied empirical dataset with data from a series of catchments located
in Europe and USA. The data confirm previous results obtained in other climatic
and geographic settings about the highly dynamical nature of river networks (e.g.
Buttle et al. 2012; Datry et al. 2014; Godsey et al. 2014; Jensen et al. 2017).
In particular, notwithstanding the humid climate typical of the Alps, more than
72 % of the stream network in the Valfredda catchment is dynamic, with an ob-
served drainage density that varied, during about six months, between 1 and 2.5
km-1 depending on the underlying hydrological conditions. Under wet conditions,
a considerable increase in the disconnected clusters and sources was also observed.
This circumstance hints at the importance of mapping not only the streams di-
rectly connected to the outlet, but also all the channels that may be temporarily
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or permanently disconnected. The portion of the network that was mapped in the
Valfredda catchment as systematically inactive is 21%, suggesting that for many
streams the time scale of wetting/drying cycles may be smaller than 48 hours (the
typical lag between a precipitation event and the subsequent field survey in the field
campaign). Moreover, the expansion/contraction cycles of the active drainage net-
work are strongly controlled by event-scale hydrological dynamics, as indicated by
the fact that the transition from the shortest to the longest recorded networks was
observed in response to a single, albeit extreme, precipitation event.

Observed spatio-temporal patterns of stream network dynamics were efficiently sum-
marized through persistency index maps, which indicate the percentage of time
during which every stream of the network is active. These maps provide a useful
graphical tool to characterize stream network dynamics and allow fair and objective
comparisons across diverse river systems (e.g. Ovenden et al. 1980).

The use of ER sensors for the monitoring of active network dynamics was also tested.
To this aim, a personalized version of the HOBO sensors previously proposed in the
literature was used and modified to be suited for a deployment under different sub-
strates and is deemed to be more accurate under unstable hydrodynamic conditions
and during low-flow conditions. ER sensors provided precious information about
high frequency space-time network dynamics in the study catchment during the fall
of 2019; in particular, collected ER data were used to produce a video and a se-
quence of maps representing the dynamics of the active network with a sub-daily
temporal resolution. The mean intensity of the ER signal, and the exceedance of
a suitably selected intensity threshold were found to be highly correlated with the
persistency of the network nodes estimated from visual surveys; this suggests that
ER sensors signal provides statistically meaningful information on the hydrologic
status of different nodes of the river network. The successful application of ER
sensors under the heterogeneous environmental conditions found in the Valfredda
catchment suggests the good potential and the flexibility of the tool for river net-
work mapping. Likewise, the study highlighted the major shortcomings of this type
of technology and the dependence of these shortcomings on the type of substrate:
in steep rocky channels, the main problem is the sensor flushing during floods and
the accumulation of sediments; in grassy regions, the major problems relate to water
ponding and grazing of animals that might remove the sensors during the deploy-
ment. For the above reasons, the use of ER sensors for river network mapping needs
to be quite intensively supervised. The high-frequency monitoring of flow rates and
active stream lengths performed in this study allowed an in-depth analysis of the
relationship between catchment discharge (Q) and active length (L). The data indi-
cated the presence of some hysteresis in the L−Q relation, both within individual
events and across different events. The hysteresis observed in the Valfredda was
attributed to the larger responsiveness of the active length to small rain events and
to non-synchronous increase/decrease of L and Q within individual events.

It is fair to stress that a longer dataset could further enhance the robustness of the
results, as new events could be included in the analysis. This, however, would require
significant efforts, especially in the light of the challenges imposed by the specifics
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of the site (e.g., the heterogeneous substrate, snow dynamics, the high frequency
of floods and presence of grazing animals that might interfere with the sensors).
Furthermore, more extensive field campaigns would not significantly modify the main
conclusions of this study, as the features outlined in the paper emerged systematically
from the data collected during a sequence of events, which were few in number but
characterized by heterogeneous hydroclimatic features.

Theoretical framework and hierarchical activation. The analysis elu-
cidates the major implications of the observed hierarchical behaviour of temporary
streams on the spatial statistics of the node states and the temporal dynamics of the
flowing length. In particular, temporal changes of the active drainage density are
linked to the catchment water balance through the mean persistency of the whole
network, whereas observed spatial patterns of flowing streams maximize the spa-
tial correlation of the node states (wet vs. dry). The internal heterogeneity of the
node persistency, though reflecting landscape complexity, is also modulated by cli-
mate and proves to be particularly enhanced under intermediate climatic conditions,
leading to larger dynamical channel lengths in these settings. Furthermore, because
changes in wetness are generally synchronized, stream networks tend to be highly
dynamic (i.e., they are nearly as dynamic as they can possibly be). Consequently,
temporal variations of the active stream length and their climatic controls should
be properly taken into account for accurate regional or global assessment of bio-
geochemical and ecological function of stream networks, particularly with changing
climate.

The Stream Length Duration Curve. The concept of Stream Length Du-
ration Curve was proposed and formalized, as a novel hydrologic index that can
be used to efficiently summarize the effect of hydrological variability on the extent
of the flowing stream network under a variety of climatic conditions and field set-
tings. A stochastic model has been developed to link the shape of the SLDC to
the local persistency of the stream network nodes and its spatial correlation. The
mean length of the stream network is solely dictated by the mean persistency of
the different nodes of the stream network; the higher the overall average of the
node persistencies, the higher the mean length of the active streams and the area of
the Stream Length Duration Curve. The shape of the SLDC, instead, is driven by
the pdf of the local persistencies. In particular, intermediate persistencies enhance
the network length dynamics, thereby implying steeper SLDCs. Conversely, low or
high persistencies smooth the changes of the active stream length through time, and
originate nearly-horizontal SLDCs. When the activation of the stream network is
hierarchical, as described above, the state of the network nodes is highly correlated
and the temporal variability of the network length is enhanced; under these circum-
stances, the SLDC corresponds to the spatial Cumulative Distribution Function of
the persistency of the different nodes in the network (i.e. space for time substitution
is allowed). The Stream Length Duration Curve of the Valfredda river was estimated
based on the conducted field surveys. The SLDC of this humid headwater catch-
ment of the Italian Alpine region is quite steep and regular, with an average slope
of 1 km for percentile. This reflects a pronounced sensitivity of the length of active
streams to the underlying hydrological conditions. This work provides a basis for



119

the development of comparative studies of stream network dynamics across different
climatic regions and offers a clue for the development of stochastic and mechanistic
models for the expansion and contraction of actively flowing streams.

Statistical modeling of the active length. One of the main goals of the
study was to quantitatively analyze how the unsteady nature of the climatic forc-
ing controls stream network dynamics. Empirical data and model results indicate
that the temporal dynamics of the stream network length are mainly driven by the
observed patterns (timing and amount) of short and long-term antecedent precipita-
tion. The comparison of the different models also suggests that evapotranspiration
does not affect significantly the observed intra-seasonal changes of stream length in
the Valfredda catchment, possibly due to the high runoff ratios typical of this Alpine
region and the low percentage of forested areas (almost 30% of the total area).

The modeling results indicate the presence of multiple expansion and retraction
cycles operating at different time scales behind the observed dynamics of the Rio
Valfredda stream network. These overlapping dynamics may be in turn controlled
by two distinct hydrological processes: i) quick subsurface flow in the root zone feed-
ing temporary streams; and ii) slower groundwater flow generated by the aquifers
supplying water to the less dynamical reaches of the river network. The superposi-
tion of dynamics characterized by different time scales could lie at the basis of the
hysteresis frequently observed in the relationship between discharge and L (Shaw
et al. 2017; Jensen et al. 2018; Ward et al. 2018; Prancevic et al. 2019). In spite of
the empirical nature of the link between L and precipitation provided here, these
results could provide a preliminary basis to incorporate the simulation of network
expansion and contraction in hydrological models using climatic data.

The value of active length vs streamflow relationships. An analytical
model for the characterization of the streamflow regimes has been integrated with
the empirical power law model that links active length (L) and specific discharge
(q) to provide a probabilistic description of the temporal variations of the flowing
length of a dynamic stream network. Novel analytical expressions have been derived
for the probability density function of the flowing length and for the Stream Length
Duration Curve (SLDC) based on five simple hydroclimatic and morphological pa-
rameters. These expressions link the statistics of the active stream length to a set of
relevant hydrological processes including rainfall dynamics, recession characteristics
and the sensitivity of the active length to changes in the catchment discharge. The
model has been tested using data from three different headwater catchments located
in Italy and in the USA. The selected case studies provide representative scenarios
characterized by different hydrologic conditions (e.g. temperature, rainfall, evap-
otranspiration, vegetation and soil/geologic properties). Model performances were
satisfactory with a mean of the annual SMAEs across the case studies of 15% for
the FDC and 33.0% for the SLDC. Larger errors were typically associated to drier
climates and highly dynamic stream networks.

The proposed theoretical analysis revealed that streamflow and active length regimes
are only dependent on two dimensionless parameters: i) the ratio between the fre-
quency of flow pulses and the catchment recession rate λ/k; ii) and the scaling
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exponent that regulates the relationship between L and q, b. In particular, ana-
lytical arguments and empirical evidence indicate that, depending on the value of
the dimensionless parameters λ/k and b, seven different classes of behaviour can
be identified (from “class A" to “class G"). These classes correspond to different
combinations of streamflow regimes (erratic or persistent) and active length regimes
(perennial, ephemeral de facto, ephemeral). In general, when b < 1 (b > 1), the
SLDC is flatter (steeper) than the corresponding flow duration curve. On the other
hand, when b ' 1 the shape of the FDC and that of the SLDC are similar. The
variety of hydrological behaviours predicted by the theory is also confirmed by the
analysis of the empirical data, and suggest that the proposed model and the implied
joint classification from the flow and active length regimes might be useful tools for
an objective and simple estimation of the joint dynamics of q and L in catchments
characterized by diverse climate, geological and morphological features.

Spatio-temporal dynamics of the active network This thesis also shows
how network dynamics can be reconstructed and visualized starting from precipita-
tion data and using a limited number of field surveys (approach 1), or stochastically
modeled on the basis of few climatic and hydrologic parameters (approach 2).

The first approach is based on the assumption that the activation of the network
nodes is hierarchical, and utilizes an empirical regression between active length and
precipitation. This novel visualization technique presented allows an optimized use
of the empirical data about active stream dynamics, providing useful information on
the influence of precipitation on network expansion and contraction cycles. The ap-
proach is also useful to enhance the resolution of empirical data within the proposed
mathematically robust framework, in which the temporal and spatial dimensions of
the problem are suitably connected through the persistence of the network nodes, al-
lowing an easiest identification of the spatio-temporal patterns of network expansion
and contraction in temporary streams.

The second approach allows the coupled simulation of streamflow at the outlet and
network dynamics, on the hypothesis that changes in Q and L are synchronized be-
cause streamflow increases (decreases) are driven by the same precipitation events
(dry spells) that also affect network expansion (contraction). Streamflow is stochas-
tically simulated with the model developed by Botter et al. 2010b, and, thanks to
the hierarchical activation scheme, used to define the configuration of the active
network on the basis of the local persistencies. This setup allows the modeling of
the full spatio-temporal dynamics of a temporary streams on the basis of only four,
physically-based, parameters, that are mean daily precipitation intensity α and fre-
quency λ, recession rate k and potential evapotranspiration Ep. The parsimonious
nature of this model facilitates the simulation and comparison of multiple scenarios
spanning very different climates and hydrological behaviors, and once again high-
lights the fundamental importance of precipitation in the dynamics of a stream
network. Dry climates exhibit erratic flow regimes due to the synergy of irregular
water input and fast recessions. The recession of the active length proved to be even
faster, thanks to the low local persistency of the nodes, generating long spells during
which the stream network is almost completely dry that are interrupted by flashy ac-
tivations of the network, leading to a significant variability of the active length. Wet
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climates, instead, are characterized by a steadier water input and slower recessions,
and results in timeseries of Q and L that are less variable around the mean.

The stochastic model was used as a basis for carrying out ecological simulations of
the occupancy of a metapopulation in a temporary riverine systems. The simula-
tions suggest the fundamental role that network dynamics play on metapopulation
survival: dynamic river networks, in fact, show a significantly lower mean occu-
pancy and a much higher variability of the extent of occupied network with respect
to their average static counterparts, particularly in erratic regimes where metapopu-
lation dispersal is consistently prevented by the limited length of the active network.
This reduced stability of the metapopulation on dynamic streams is also reflected in
higher probabilities of extinction, and is enhanced by the presence of disconnections
in the active network, that further limit the ability of the metapopulation to disperse
in un-occupied nodes. This confirms that not only network geometry, but also its
dynamicity should be considered a fundamental characteristic of a river.

Stream network dynamics are expected to impact a huge number of biogeochemical
and ecological processes, including the release of CO2 from headwater streams to the
atmosphere, and the export of carbon and nutrients from uplands to downstream
ecosystems (e.g. Battin et al. 2009; Bertuzzo et al. 2017; Dick et al. 2014; Dupas
et al. 2019; Ensign et al. 2006; Fasching et al. 2016; Helton et al. 2017; Krause
et al. 2017; Von Schiller et al. 2014). As such, the theoretical and modeling efforts
presented in this thesis may prove to become useful tools in many stream-related
disciplines, and for the development and application of management strategies for
the protection of riverine ecosystems.



Appendix A Performance of the
hierarchical model

The accuracy of the hierarchical model on each of the study networks is calculated
by means of equation (11) of the methods. Figure A.2 shows the maps of the local
accuracy of the hierarchical model for each study catchment. The figures indicate
that the local accuracy is close to 100% in most cases. The average accuracy within
each study catchment is reported in Table 7.2. In the framework presented in this
paper, the local persistency is calculated from empirical observations. Given that
node persistency dictates the fraction of time for which a node is active, one could
expect that a model in which each node is randomly activated/deactivated through
time in a way that is consistent with the local persistency could have a positive
accuracy. In fact, the accuracy of such a random model for a node with persistency
Pi is P 2

i + (1 − Pi)2, leading to a minimum accuracy of 50%. The accuracy of the
hierarchical model was thus compared to the accuracy of the random model for all
the study catchments. Figure A.3 shows the maps of local accuracy that would
be obtained from the random model. Figure A.1 shows that the mean accuracy of
the hierarchical model (99± 1.7%) is substantially higher than the accuracy of the
random model (79± 7.5%).
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Figure A.1: Accuracy of the hierarchical and random models as a function of the mean network
persistency.
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Appendix B Monitoring hierarchical
networks

If the activation and deactivation of the nodes of a dynamic stream network obeys to
a purely hierarchical scheme, the monitoring of active stream length dynamics can be
significantly facilitated. In fact, the hierarchical assumption can be used to deduce
the status of some nodes in the network from the observed status of other nodes.
Specifically, if a node is observed as wet then all the nodes in the network with a
larger persistency should be wet. Likewise, if a node is dry, then all the nodes with
a smaller persistency should be dry as well. One might argue that prior to the field
campaign for the monitoring of active stream network dynamics the persistencies of
the nodes are not known. However, as long as the surveys take place, this hierarchy
is progressively revealed and, crucially, the hierarchies emerging during any survey
will remain unchanged for the entire campaign. Thus, as the number of available
active stream network maps increases, the ability to extrapolate in space information
about the status of the nodes increases as well. To quantify the number of nodes
that do not need to be visited during a field campaign (because their status can
be deduced from the status of other nodes), a series of numerical simulations was
performed in which I simulated the dynamics of the stream network by simulating
a hierarchical chain of nodes and the position of the transition between wet and dry
nodes in the chain. Likewise, the number of nodes that has to be visited using the
information available prior to the survey is computed. These numerical simulations
consisted in the following steps: i) a sequence of N nodes with a dichotomic status
and a fixed distribution of the local persistencies is considered; ii) the nodes are first
re-ordered in a chain following a decreasing order of local persistency (the first node
is the most persistent, the last node the least persistent); iii) an auxiliary counting
variable, k, is set equal to 1; iii) the position of the unique transition between wet
and dry nodes in the chain is identified by selecting randomly one of the existing
groups of nodes in the chain; if k = 1 the position of the transition is set within
the unique group containing all the N nodes of the chain; iv) the selected group is
then randomly split into two sub groups (namely, the group of wet nodes and the
group of dry nodes) and a new group is thus created; v) a new hierarchy is created
between these two node subgroups by assigning an apparent persistency Pa to the
existing k + 1 groups as follows: Pa = s/k, where s is the number of times that a
group of nodes was observed as active during the campaign up to the kth survey; vi)
the number of nodes to be visited during the kth survey to characterize the whole
active network is then computed as the sum of the number of nodes that need to
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be surveyed to identify the groups within which the transition takes place (i.e., the
number of existing groups k) plus the number of nodes that need to be visited to
identify the precise location of that transition within the nodes of the relevant groups
(all the nodes that are included in the two groups where the transition takes place);
vii) the counting variable k is increased to the subsequent integer number and the
procedure starts again from step iii). The procedure stops when a pre-determined
number of field surveys (say, K) is performed. The percentage of nodes that has to
be surveyed is then calculated as the number of surveyed nodes during the whole
campaign scaled to the number of nodes that potentially have to be visited (i.e.,
N K). The simulations were performed with different combinations of K, N and P̄ ,
and the results are shown in Figure B.1. The plot indicates that, for hierarchical
networks, the number of nodes to be visited is between 60 to 30 % of the overall
number of nodes that should be surveyed in non-hierarchical networks, with smaller
percentages associated to field campaigns made up of a larger number of surveys.

Figure B.1: Percentage of nodes to survey in perfectly hierarchical networks, as a function of the
number of performed surveys and the number of nodes, N . The orange line shows the average,
while the shadowed area shows the range obtained by varying the number of nodes in the network
between 100 and 1000.
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