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Abstract

In this work we devise a new version of the Lawson-Hanson with Devia-
tion Maximization (LHDM) algorithm, a block method for the solution of
NonNegative Least Squares (NNLS). It is shown that the new algorithm
here presented convergences in a finite number of steps under suitable
conditions. An extensive campaign of experiments is performed in order
to evaluate the performance gain with respect to the standard Lawson-
Hanson algorithm. We also explore the sparse recovery ability of LHDM,
comparing it against several `1-minimization solvers in terms of solution
quality and time-to-solution on a large set of dense instances.
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1 Introduction

NonNegative Least Squares (NNLS) problems arise in many applications where
data points can be represented as nonnegative linear combinations of some
meaningful components. Such problems are frequently encountered in signal
and image processing and they are core problems in more complex computa-
tions, such as nonnegative matrix and tensor decompositions, see e.g. [20, 18].
Moreover, when dealing with underdetermined systems of equations, the non-
negativity constraint is known to naturally enhance sparsity of the solution,
that is the solution attained has few nonzeros, see e.g. [6, 17, 31, 32]. An
important outcome of this body of work is that nonnegativity alone may at-
tain a satisfactory sparse recovery. Moreover, NNLS solvers can be adopted to
solve unconstrained least squares problems with minor adjustments. Over the
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last two decades, sparsity has become one of the most relevant topics in signal
processing. In general, sparsity in signals describes the phenomenon where high
dimensional data can be expressed with few measurements and it results in find-
ing a sparse solution to underdetermined systems of equations. This problem
is highly nonconvex and its solution is NP-hard in general, although it is well
known that `1-minimization leads to the sparsest solution for a restricted class
of matrices. This fact is known as `0 − `1 equivalence and it has been found
empirically [9] and theoretically [13, 16].

The first algorithm devised for NNLS is the Lawson-Hanson algorithm [19].
Since this seminal work, many modifications have been proposed in order to im-
prove the standard Lawson-Hanson algorithm: Bro and Jong [5] have proposed
a variation specifically designed for use in nonnegative tensor decompositions;
their algorithm, called “fast NNLS” (FNNLS), reduces the execution time by
avoiding redundant computations in nonnegative matrix factorization problems
arising in tensor decompositions and performs well with multiple right-hand-
sides problems, which is not the case here discussed, thus we omit a comparison.
Van Benthem and Keenan [30] presented a different NNLS solution algorithm,
namely “fast combinatorial NNLS” (FCNNLS), also designed for the specific
case of a large number of right-hand sides. Principal block pivoting method
introduced by Portugal et al. [22] is an active set type algorithm which dif-
fers from the standard Lawson-Hanson algorithm, since the sequence of iterates
produced does not necessarily fall into the feasible region. The convergence is
ensured provided the objective function is strictly convex, while when we deal
with underdetermined matrices it is simply convex, therefore this algorithm may
fail in sparse recovering. Surprisingly, the Lawson-Hanson algorithm [19] does
not suffer from this drawback.

The Lawson-Hanson algorithm is an active set method which iteratively
builds an optimal solution by solving at each iteration an unconstrained least
squares subproblem, e.g. by computing a QR decomposition, on a subset of
columns of the initial matrix, in such a way that the objective value strictly
decreases while the iterates are kept within the feasible region. The algorithm
performs a column pivoting by selecting one column at a time and therefore it
relies only on BLAS–2 operations, resulting in poor performance. In an actual
implementation, the columns are not permuted, rather a vector of indices is used
to keep trace of columns ordering. In general, column pivoting makes it more
difficult to achieve high performances in QR computation, see [1, 2, 3, 23, 4].

In this work, we address the NNLS problem in which the objective function
matrix is dense and we present a modified Lawson-Hanson algorithm in which
multiple column selection is performed in order to exploit BLAS–3 operations
for efficiency. The column selection is based on the “deviation maximization”
pivoting presented in [10] to obtain rank-revealing QR factorizations. The main
difference is that the column selection here does not aim at revealing the rank of
the matrix, but is driven from the active-set method to solve the non-negativity
constrained problem. The proposed algorithm is named Lawson-Hanson with
Deviation Maximization (LHDM). A first try of combining the two techniques
was presented in [11], where we observed good sparsity recovery capacity and
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a significant performance gain with respect to the standard Lawson-Hanson
algorithm when dealing with underdetermined systems. However, in this pre-
liminary version the algorithm may fall in an infinite loop without converging
to a solution: indeed, it is known that manipulating multiple columns at once
may allow cycling. In the present paper, we introduce a new mechanism which
allows a similar performance gain, but the termination in a finite number of
steps is ensured. Moreover, we explore its sparsity recovery ability against sev-
eral `1-minimization solvers, extending a comparison that has been done in the
recent literature [21].

The rest of the paper is organized as follows. In Section 2, we formally
introduce the NNLS problem and the Lawson-Hanson algorithm. We present
the deviation maximization algorithm for column selection and the new version
of the Lawson-Hanson with Deviation Maximization algorithm. We provide a
theoretical result about finite convergence of LHDM by generalizing the anal-
ogous result for the standard Lawson-Hanson. In Section 3, we introduce the
`0-minimization problem as sparse recovery and the convex `1-minimization
problem. We recall results that ensure the so-called `0 − `1 equivalence and
conditions under which the underdetermined NNLS problem has a unique so-
lution. Last, we recall how arbitrary signed sparse recovery can be attained by
NNLS solvers. In Section 5, we present a comparison of LHDM against several
`1-minimization solvers in terms of performance and solution found. The re-
sults are shown with an extensive campaign of experiments. Finally, Section 6
concludes the paper.

2 Active set algorithms for nonnegative least
squares

Consider the nonnegative least squares problem

min
x
‖Ax− b‖2, s.t. x ≥ 0, (1)

where A = (a1 . . . an) is a matrix of size m× n, b is a vector of length m. In
this work, we address the case in which A is a dense matrix, i.e. it is stored as
a full array with mn entries. The case in which A is sparse would require the
design of a specific implementation in order to exploit the presence of many null
entries. Trivially, a solution x? of (1) also solves

min
x

1

2
‖Ax− b‖22, s.t. x ≥ 0.

Define φ(x) := ‖Ax−b‖22. Note that the gradient of φ at a point x, i.e. steepest
descend direction with opposite sign, is

∇φ(x) = ATAx−ATb = −AT (b−Ax) = −AT r(x),

where r is the residual function r(x) = b−Ax. The set of points satisfying the
constraints is called feasible region, here Ω = {x ∈ Rn : x ≥ 0}, and a point x is
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said to be feasible if it belongs to the feasible region. Let us recall the following
basic definition.

Definition 1. Let x ∈ Rn be a feasible point, i.e. x ≥ 0. A vector s ∈ Rn is a
feasible direction at x if there exists ε > 0 such that

x + εs ≥ 0.

Notice that if s is a feasible direction at x and si < 0, then we must have
xi > 0. The following theorem characterizes the solutions of the convex problem
(1). For a proof see e.g. [19].

Theorem 1. (Karush-Kuhn-Tucker conditions for NNLS) A point x? ∈ Rn is
a solution of problem (1) if and only if there exists w? ∈ Rn and a partition
Z? ∪ P ? = {1, . . . , n} such that

w? = AT (b−Ax?), (2)

x?i = 0, i ∈ Z?, x?i > 0, i ∈ P ?, (3)

w?
i ≤ 0, i ∈ Z?, w?

i = 0, i ∈ P ?. (4)

Notice that equations (3-4) imply

x?iw
?
i = 0, i = 1, . . . , n, (5)

which are the well known complementarity conditions. The points x and w are
referred as primal and dual variables, respectively. Notice that the primal and
dual variables are related as follows w = AT r = −∇φ(x), i.e. the dual vector
w is the opposite of the gradient direction, i.e. the steepest descend direction,
at x.

Active set methods are in the family of descend algorithms, that is they look
for the solution by decreasing the objective function value, in particular at each
iteration the new solution is a feasible point in a feasible descend direction with
respect to the current solution. Recall that the i-th constraint is said to be
active if it holds with equality, here xi = 0, it is said to be passive when it holds
with strict inequality, here xi > 0, otherwise it is violated, namely xi < 0.

2.1 The Lawson-Hanson algorithm

The first algorithm to solve (1) is due to Lawson and Hanson [19], and it is
presented in Algorithm 1, in an efficient formulation that uses Householder and
Givens orthogonal transformations, which are then detailed here below and in
sec. 4. It is an active set method and a particular case of the algorithm intro-
duced in [26] for the least squares problem with linear inequality constraints.

Let us now describe the main features of the Lawson-Hanson algorithm.
Let Ps denote the passive set and Zs denote the active set at k-th algorithmic
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Algorithm 1 LH(A,b)

1: P0 = ∅, Z0 = {1, . . . ,M}, x(0) = 0, w(0) = ATb, s = 0

2: while Zs 6= ∅ and max(w
(s)
Z ) > 0 do . outer loop

3: js ∈ argmaxi w
(s)
i

4: set Ps+1 = Ps ∪ {js}, Zs+1 = Zs \ {js}
5: if s = 0 then
6: set R(1) as the Householder reflector related to ajs and compute b(1)

7: else
8: use rank-1 modification to update R(s+1) and update b(s+1)

9: end if
10: compute y

(s+1)
P as the solution of R(s+1)y = b(s+1), set y

(s+1)
Z = 0

11: while min
(
y
(s+1)
P

)
≤ 0 do . inner loop

12: s = s+ 1

13: α = min

{
x
(s−1)
i

(
x
(s−1)
i − y(s)i

)−1
: i ∈ Ps, y

(s)
i ≤ 0

}
14: x(s) = x(s−1) + α

(
y(s) − x(s−1)

)
15: Q =

{
i : x

(s)
i ≤ 0

}
16: Ps+1 = Ps \Q
17: Zs+1 = Zs ∪Q
18: R(s+1) = R(s)

19: for j ∈ Q do
20: delete column corresponding to index j from R(s+1)

21: reduce R(s+1) to triangular form by Givens transformation and update b(s+1)

22: end for
23: compute y

(s+1)
P as the solution of R(s+1)y = b(s+1), set y

(s+1)
Z = 0

24: end while
25: x(s+1) = y(s+1)

26: w
(s+1)
Z =

(
A

(s+1)
Z

)T
b, w

(s+1)
P = 0

27: s = s+ 1
28: end while
29: return P ? = Ps, Z? = Zs, x? = x(s)

step, with cardinality respectively ns and n − ns. Let us define the following
submatrices

A
(s)
P =

(
ai1 . . .ains

)
, i1, . . . ins

∈ Ps,

A
(s)
Z =

(
aj1 . . .ajn−ns

)
, j1, . . . jn−ns

∈ Zs.

We define the k-th iterate as x(s) =
(
x

(s)
1 , . . . , x

(s)
n

)T
∈ Rn. With an analogous

notation to the one introduced above for matrices, we have

x
(s)
P =

(
x

(s)
i1
, . . . , x

(s)
ins

)T
∈ Rns , i1, . . . , ins ∈ Ps,

x
(s)
Z =

(
x

(s)
j1
, . . . , x

(s)
jn−ns

)T
∈ Rn−ns , j1, . . . , jn−ns

∈ Zs.
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Since the iterates produced by Lawson-Hanson algorithm do not leave the feasi-

ble region, we always have x
(s)
Z = 0. The vector y

(s)
P is the least squares solution

of the following unconstrained subproblem

min
y

∥∥∥A(s)
P y − b

∥∥∥ , (6)

and y
(s)
Z = 0. Notice that these vectors change size at each iteration.

With the notation introduced, we have

r(s) = b−Ax(s) = b−A(s)
P x

(s)
P ,

w(s) = AT
(
b−Ax(s)

)
= AT

(
b−A(s)

P x
(s)
P

)
= AT r(s),

w
(s)
Z =

(
A

(s)
Z

)T (
b−A(s)

P x
(s)
P

)
=
(
A

(s)
Z

)T
r(s),

w
(s)
P =

(
A

(s)
P

)T (
b−A(s)

P x
(s)
P

)
= 0.

where the last identity is a consequence of normal equations for (6), since at the

end of the outer loop we have x
(s)
P = y

(s)
P . Clearly we have w(s) · x(s) = 0 for

every k. As shown in [19], Algorithm 1 terminates in a finite number of steps
and x(s),w(s), Ps, Zs satisfy KKT conditions (3-4) on termination.

Since the columns of A
(s)
P are linearly independent, the vector y

(s)
P is the

unique solution of the linear system R(s)y
(s)
P = b(s), where R(s) is the square

upper triangular matrix of order ns = |Ps| in the QR decomposition of A
(s)
P ,

that is

A
(s)
P = Q(s)

(
R(s)

0

)
.

Here the passive set Ps is an ordered set (the order in which the column indices
have been inserted) and therefore Ps also imposes the column ordering in QR
computation. Similarly, the updated right-hand side is given by

b(s) =
(
Q(s)

)T
b.

With respect to the original matrix A, we obtain the following partial QR de-
composition with column pivoting(

Q(s)
)T

A Π(s) =

(
R(s) B(s)

0 C(s)

)
,

where Π(s) is the permutation matrix that permuted the elements in Ps in
the leftmost positions. In an actual implementation [19], the columns are not
physically permuted, rather a permutation vector is used to keep track of the
column ordering. Here, B(s) has size ns× (n−ns) and C(s) has size (m−ns)×
(n− ns).
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Let us spend the rest of this section by giving some details about the im-
plementation of Algorithm 1. Notice that the matrix R(s) is never computed
from scratch, instead it is modified by means of rank-1 updates or downdated
by means of Givens rotations. Let us briefly detail these strategies. At the
beginning of the outer loop, the new passive set is incremented of exactly one
index, therefore ns+1 = |Ps+1| = ns + 1. Then, the corresponding Householder
vector is computed and applied to the right-hand side and to the trailing matrix,
i.e. (

I − vT
s vs

)
C(s) =

(
rns+1 bns+1,2 . . . bns+1,n−ns

0 C(s+1)

)
, (7)

where we supposed that the selected column was in the leading position. The
new block C(s+1) has size (m−ns− 1)× (n−ns− 1). The partial factorization
is updated as follows

R(s+1) =

(
R(s) b

(s)
1

rns+1

)
, B(s+1) =

(
b

(s)
2 . . . b

(s)
n−ns

bns+1,2 . . . bns+1,n−ns

)
.

On the other hand, when a column is removed from the passive set, the R factor
is almost an Hessenberg matrix, i.e. it has some nonzero entries in its first lower
diagonal, and it has to be reduced to triangular form. This can be done by
computing a sequence of Givens rotations, which have to be applied to the
whole matrix A and to the right-hand side. In this way, the orthogonal factor
Q(s) is never computed nor stored. We detail the modified QR decomposition
procedure in Section 4.

2.2 The Lawson-Hanson algorithm with Deviation Maxi-
mization

In this section we propose a new active set method in which multiple columns
are manipulated at a time and for which finite termination can be established in
exact arithmetic. Before coming to the description of the main algorithm, let us
discuss a strategy, for columns selection, based upon the deviation maximization
[10].

Recall that for an m × k matrix C = (c1 . . . ck) whose columns cj are
non-null, the correlation matrix Θ has entries

θij =
cTi cj
‖ci‖‖cj‖

, 1 ≤ i, j ≤ k. (8)

In particular, we have Θ =
(
CD−1

)T
CD−1 = D−1CTCD−1, where D is the

diagonal matrix with entries di = ‖ci‖ , 1 ≤ i ≤ k. It is immediate to see that
Θ is symmetric positive semidefinite, it has only ones on the diagonal, and its
entries range from −1 to 1. Notice that θij is the cosine of αij = α(ci, cj) ∈
[0, π), the angle (modulo π) between ci and cj . In order to emphasize this
geometric interpretation, from now on we refer to Θ as the cosine matrix.

Algorithm 2 presents the deviation maximization algorithm for column selec-
tion. Here, the procedure for computing the candidate set I has been adapted
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to fit the Lawson-Hanson algorithm and it is slightly different from the one
presented in [10].

Algorithm 2 Deviation Maximization: [J ]=DM(A,u1,u2, τ1, τ2, δ, kmax)

1: J = {j : j ∈ argmaxu1}
2: I = {i : ul(i) ≥ τl maxul, i 6= j, l = 1, 2}
3: if |I| > kmax then
4: I = {is ∈ I : k = 1, . . . , kmax}
5: end if
6: compute the cosine matrix Θ associated to [A]:,I
7: for i ∈ I do
8: if |θi,j | < δ,∀j ∈ J then
9: J = J ∪ {i}

10: end if
11: end for
12: return J

The resulting procedure, namely the Lawson-Hanson algorithm with Devi-
ation Maximization (LHDM), is presented in Algorithm 3, and it terminates in
a finite number of steps as shown in Theorem 3 below.

Theorem 2. Let A
(s)
P be a full column rank matrix, and let R(s+1) be the R

factor of the QR decomposition of A
(s+1)
P =

(
A

(s)
P A

(s)
J

)
, where A

(s)
J is the

submatrix of A that is obtained by taking columns with indices in the set Js,
which is chosen by the deviation maximization with 0 < τ1, τ2 < 1, kmax > 1,
and

δ ≤ τ2
kmax − 1

. (9)

Then

σ̄(s+1) ≥ σns+1
(A)

σ̄(s)

σ1(A)

1√
2(n− ns+1)ns+1

τ2
√

1− τ2
k2
sns

, (10)

where ks = |Js| and σ̄(s+1) is the smallest singular value of R(s+1), which is in
particular nonsingular.

Proof. Apply Theorem 2 of [10] to conclude.

It is known, it has been showed in [10], that even if the matrix A
(s)
P is well

conditioned, there could be a potentially dramatic increase in the condition

number of A
(s+1)
P when using the deviation maximization strategy, as well as

for the other column selection strategy like the standard column pivoting. A
famous example is the Kahan matrix, however it is a very unlikely occurrence
in practice.

The choice (9) is not the only one possible: in fact, the values of δ and τ2
can be set independently, as shown in [10].

Let us now prove the main result of this work.

Theorem 3. Consider the NNLS problem

min ‖Ax− b‖22, s.t. x ≥ 0.

8



Algorithm 3 LHDM(A,b, τ1, τ2, τc, kmax)

1: P0 = ∅, Z0 = {1, . . . ,M}, x(0) = 0, w(0) = ATb, y(0) = 0, s = 0
2: R(0) = 0, B(0) = 0, C(0) = A
3: initialize u(0) as the vector of column norms of A
4: while Zs 6= ∅ and max

(
w(s)

)
> 0 do . outer loop

5: [Js]=DM(C(s),w(s),u(s), τ1, τ2, δ, kmax)
6: Ps+1 = Ps ∪ Js
7: Zs+1 = Zs \ Js
8: if s = 0 then
9: set R(1) as the R factor of the QR decomposition of A

(1)
J and compute b(1), B(1)

and C(1)

10: else
11: use rank-k update to get R(s+1), B(s+1), C(s+1), and update b(s+1)

12: end if
13: compute y

(s+1)
P as the solution of R(s+1)y = b(s+1), set y

(s+1)
Z = 0

14: while min
(
y
(s+1)
J

)
≤ 0 do . ensure a feasible descend direction

15: delete the last element from Js
16: Ps+1 = Ps ∪ Js
17: Zs+1 = Zs \ Js
18: delete the last column of R(s+1) and update b(s+1), B(s+1), C(s+1),

19: compute y
(s+1)
P as the solution of R(s+1)y = b(s+1), set y

(s+1)
Z = 0

20: end while
21: while min

(
y
(s+1)
P

)
≤ 0 do . inner loop

22: s = s+ 1

23: α = min

{
x
(s−1)
i

(
x
(s−1)
i − y(s)i

)−1
: i ∈ Ps, y

(s)
i ≤ 0

}
24: x(s) = x(s−1) + α

(
y(s) − x(s−1)

)
25: Q =

{
i : x

(s)
i ≤ 0

}
26: Ps+1 = Ps \Q
27: Zs+1 = Zs ∪Q
28: R(s+1) = R(s)

29: for j ∈ Q do
30: delete column corresponding to index j from R(s+1)

31: reduce R(s+1) to triangular form by Givens transformation and update b(s+1)

32: end for
33: compute y

(s+1)
P as the solution of R(s+1)y = b(s+1), set y

(s+1)
Z = 0

34: end while
35: x(s+1) = y(s+1)

36: w(s+1) = AT
(
b−Ax(s+1)

)
37: update u(s) as the vector of column norms of C(s+1)

38: s = s+ 1
39: end while
40: return P ? = Ps, Z? = Zs, x? = x(s)

kmax > 1, Algorithm 3 terminates in a finite number of steps. On termination,
x will be a solution vector and w will be a dual solution vector.

Proof. In order to ensure finite convergence of Algorithm 3, we have to ensure
the following

1. termination of the outer loop, by showing that s(s+1) = y(s+1) − x(s) is a
feasible descent direction;
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2. termination of the inner loop with a nonempty passive set.

Let us address the first task. Theorem 2 ensures that A
(s+1)
P =

(
A

(s)
P A

(s)
J

)
has

numerically linearly independent columns. Let us claim the following statement:

if y
(s+1)
J > 0, then s(s+1) = y(s+1) − x(s) is a feasible descend direction at x(s).

Then, if y
(s+1)
j ≤ 0 for some j ∈ Js, the last column of A

(s)
J is dropped and the

corresponding index jks is moved back to the active set Zs+1. We then look for
a new value of y(s+1) such that

R
(s+1)
1 y

(s+1)
P = b

(s+1)
1 ,

where R
(s+1)
1 is equal to R(s+1) where the last column is missing, and the right

hand side b
(s+1)
1 has been properly updated, e.g. by applying the Givens ro-

tation that zeros out the last diagonal element of R(s+1), corresponding to the
deleted column. We continue dropping a column index at a time from Js until

y
(s+1)
j > 0 for all indices j left in Js. It should be noticed that this procedure

terminates at most when only the first column of A
(s)
J is left, that is the same

column index that would be selected by the standard Lawson-Hanson algorithm,
i.e. it would guarantee the positivity of the inserted component.

For what concerns the second task, the inner loop terminates each time in
at most ns+1 − 1 steps. Set s = s + 1 and notice that the first time the inner

loop is entered, we have y
(s)
J > 0, implying x

(s)
J = αy

(s)
J > 0 and thus Js and

Q do not intersect. Therefore, indices in Js are not removed before computing
y(s+1). Moreover, at least the first index j1 of Js is left, because of Lemma
23.17 in [19], and thus the inner loop must terminate at most in ns+1 − 1 step
with a nonempty passive set Ps+1 ⊇ {j1}.

Let us now prove the claim, i.e. if y
(s+1)
J > 0, then s(s+1) = y(s+1) − x(s)

is a feasible descend direction at x(s). Consider the least squares solution y
computed at step 13 of Algorithm 1 with deviation maximization pivoting, that
is y solves

yP = argmin
y

∥∥∥A(s)
P y − b

∥∥∥ yZ = 0. (11)

where Z = Zs and P = Ps. The additional inner loop ensures that y
(s)
j > 0

for j ∈ Js on termination. This, together with x(s−1) ≥ 0, means that s(s) :=
y(s)−x(s−1) is a feasible direction. Let us now prove that s(s) is also a descend
direction. Said r(s−1) = b−Ax(s−1), let us define ẑ as follows

ẑ = argmin
zZ=0

‖Az− r(s−1)‖ = argmin
zZ=0

‖A(x(s−1) + z)− b‖, (12)

where Z = Zs and P = Ps. Notice that ẑ can be obtained as

ẑP = argmin
z
‖A(s)

P z− r(s−1)‖, ẑZ = 0. (13)

Then we have

‖Aẑ− r(s−1)‖ = ‖Aẑ− (b−Ax(s−1))‖ = ‖A(ẑ + x(s−1))− b‖
≥ ‖Ay(s) − b‖,

(14)
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since ẑ + x(s−1) vanishes on Zs and the minimum is reached at y(s). On the
other hand

‖Ay(s) − b‖ = ‖Ay(s) −Ax(s−1) − b +Ax(s−1)‖ = ‖A(y(s) − x(s−1))− r(s−1)‖
≥ ‖Aẑ− r(s−1)‖,

(15)
since y(s) − x(s−1) vanishes on Zs and the minimum is reached at ẑ. Therefore

‖Aẑ− r(s−1)‖ = ‖Ay(s) − b‖,

and the inequality chain (15) collapses in an equality chain. As a consequence
of the uniqueness of minimizers of (11) and (12), we have

ẑ = s(s) = y(s) − x(s−1). (16)

Consider the function

ϕ(ε) =
1

2
‖A(x(s−1) + εs(s))− b‖2.

We have

ϕ′(0) = (s(s))TAT (Ax(s−1) − b) = −(s(s))Tw(s−1) = −(y(s))Tw(s−1)

=
∑
i∈J

y
(s)
i (−w(s−1)

i ) < 0, (17)

since w
(s−1)
i > 0 for all i ∈ J and y

(s)
i > 0 for all i ∈ J . Therefore there exists

ε > 0 such that

‖A(x(s−1) + εs(s))− b‖2 < ‖Ax(s−1) − b‖2 = φ(x(s−1)).

By definition (12) and relation (16), we have

‖A(x(s−1) + s(s))− b‖2 ≤ ‖A(x(s−1) + εs(s))− b‖2 < ‖Ax(s−1) − b‖2. (18)

Thus, we take ε = 1 (i.e. x(s) = y(s)), if y(s) is feasible, otherwise the algorithm
enters the inner loop and we choose a smaller step length α, more precisely the
largest possible to keep the new iterate within the feasible region. It’s easy to
check that

‖A(x(s−1) + αs(s))− b‖2 = min
ε

{
‖A(x(s−1) + εs(s))− b‖2 : x(s−1) + εs(s) ≥ 0

}
≤ ‖Ax(s−1) − b‖2.

We deduce that the objective function is always non increasing. Equation (18)
also implies that every time step 35 is reached, we have a strictly smaller value
of the objective function. Hence at every iteration of the outer loop, the current
objective value is strictly smaller than the preceding one. Since the solution
solves a least squares subproblem like those of steps 13 and 33, the corresponding
passive set must be different from the preceding one. As the number of possible
combinations of active and passive sets is finite, namely it is equal to 2n, the
algorithm must terminate in at most 2n outer loop repetitions.
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The proposed strategy may look naive. In order to give an idea about the
reasons why this should work well, let us prove the following.

Theorem 4. If τ1 = 1 and τ2 ≤ 1/2, then in the outer loop we have y
(s)
J > 0

for all s > 0.

Proof. The proof is an extension of Lemma 23.17 in [19], in which we end up
showing

y
(s)
J = (CTC)−1w

(s+1)
J ,

where C = A[ns + 1 : m,ns + ks] and w
(s+1)
J = (ω, . . . , ω), where ω =

max w(s+1) > 0, because τ1 = 1. The matrix CTC is τ2-scaled diagonally dom-
inant because it has been selected by deviation maximization, with τ2 ≤ 1/2,
hence its inverse is also diagonally dominant with a positive diagonal [24], yield-
ing

y
(s)
J > 0.

This result shows that it is possible to analytically prove that cycling is
avoided without the need of an additional loop to ensure a feasible descend
direction. However, τ1 = 1 may be a too demanding choice and the algorithm
may loose in performance. In Section 5, we give experimental evidence of the
significant performance gain that this strategy can lead.

3 Sparse recovery

In this section we present the problem of sparse recovery and its connections
with nonnegative least squares and with the deviation maximization technique.
Sparse recovery is a fundamental problem in compressed sensing, signal de-
noising, statistical model selection and related fields, and it consists in find-
ing the sparsest solution to an underdetermined system of equations, see e.g.
[14, 12, 15]. There is a wide literature in the field of signal processing, in which
a matrix is usually referred as a dictionary and its columns are called atoms.
Here, we abandon this terminology in favour of the classical linear algebra one.

Given a vector x ∈ Rn, we define its support S = S(x) = {i : xi 6= 0}. We
aim at identifying the solution x? of the linear system Ax = b with the sparsest
support S?. Formally, we consider the optimization problem

min ‖x‖0, s.t. Ax = b. (19)

Recall the “`0-norm” of a vector x is defined as

‖x‖0 = |S(x)| = |{i : xi 6= 0}| ,

and it is not an actual norm because it does not hold that for any scalar s we have
‖sx‖ = |s| ‖x‖. Actually, problem (19) of combinatorial search is NP-hard, and
in general we seek an approximate solution. Two well known approaches are:

12



“greedy algorithms”, that focus on the determination of the support and then
a simple LS solution on it, and “relaxation methods”, that focus on smoothing
the l0 norm and then adopt smooth optimization. A famous greedy algorithm
is the Orthogonal-Matching-Pursuit (OMP), while a popular convex relaxation
technique is the so-called Basis Pursuit (BP) [8] problem

min ‖x‖1, s.t. Ax = b, (20)

which is a convex optimization problem, since ‖x‖1 is a convex function of x
and the solutions of Ax = b form a convex set. We will concentrate on this
second approach. Indeed, the two problems (19) and (20) yield the same solution
provided it is sparse enough. This result is known as `0− `1 equivalence, and it
has been found empirically [9] and theoretically [13, 16].

3.1 Exact recovery

There are different conditions under which we have `0 − `1 equivalence, i.e. an
exact recovery. In the literature, these conditions are usually found by showing
the uniqueness of solution to problems (19) and (20) and their coincidence. As
a consequence of these results, efficient algorithms to solve (20) can be used to
find the sparsest solution to an underdetermined system of equations.

3.1.1 Uniqueness based on RIP

Let us recall the following definition.

Definition 2. Consider a matrix A ∈ Rm×n, and suppose there exists δs ∈ (0, 1)
such that for every m× s submatrix As of A and for every y ∈ Rs we have

(1− δs)‖y‖22 ≤ ‖Asy‖22 ≤ (1− δs)‖y‖22. (21)

We say that A has the s-order Restricted Isometry Property (RIP) with
constant δs.

For a given s, one is usually interested in the smallest constant δs for which
(21) holds, which is referred as the s-order restricted isometry constant.

A popular result [7] states that if δ2s < 1, then problem (19) has a unique
solution x with support size obeying ‖x‖0 ≤ s. Moreover, if δ2s <

√
2− 1, then

the solution to problem (20) also solves problem (19). However, the problem
of establishing whether a given matrix A fulfills the s-order RIP is NP-hard in
general [28].

3.1.2 Uniqueness based on ERC

Let us state the following result from [29].

Theorem 5. Consider a linear system Ax = b. If there exists a solution x̄
with support S̄ = S(x̄) such that

max
i 6∈S̄

∥∥∥A†S̄ai

∥∥∥
1
< 1, (22)

13



then x̄ is the unique solution to the minimum `0 problem (19), which can be
recovered by solving the minimum `1 problem (20).

We refer to (22) as Exact Recovery Condition (ERC). This provides an
easy sufficient optimality check for a given support S, but finding a support S
satisfying (22) is a combinatorial problem.

3.2 Sparse recovery by NNLS

The nonnegativity constraint is known to naturally produce sparse solutions, see
e.g. [6, 17, 31, 32]. An important outcome of this body of work is that nonnega-
tivity alone may attain a satisfactory sparse recovery. There are also important
similarities. For example, [17] shows that the before mentioned Orthogonal-
Matching-Pursuit (OMP) resembles the Lawson-Hanson algorithm except for
the internal loop, which has indeed an evident benefit on nonnegative recovery.
They note also that this internal loop acts as a shrinkage: it brings to zero
the component which is relatively more negative and brings to positive with a
reduced magnitude the other components that have become negative. So, it
modifies all the components and, more importantly, reduces the l1-norm of the
solution. In synthesis, the Lawson-Hanson algorithm finds monotonically the
solution if the growing support is correct, otherwise enters in a inner loop that
reduces the support and diminishes the l1-norm of the solution.

Notice also that arbitrary signed sparse recovery is easily achievable. Given
x̄ ∈ Rn, decompose it as x̄ = x̄+ − x̄−, where x̄+ ≥ 0 and x̄− ≥ 0. Then the
solutions of the linear system Ax̄ = b can be attained as the solutions of the
nonnegative least squares problem

min
x
‖(A −A)x− b‖22 , x ≥ 0, (23)

where x =

(
x̄+

x̄−

)
∈ R2n. This has been shown e.g. in [17] and it is sometimes

referred as “positivity trick”.

3.2.1 Uniqueness for NNLS problem

This topic has been treated in [6, 25, 17].
Let us define the following class of matrices

M+ =
{
A ∈ Rm×n : ∃ h ∈ Rm s.t. ATh = w > 0

}
. (24)

A necessary condition in order to have a unique solution to the NNLS problem
(1) is that A belongs to M+ [31].

Definition 3. The coherence or mutual coherence or two-sided coher-
ence of a matrix A is defined as

µ(A) = max
i<j
|θij |

(
= max

i>j
|θij |

)
. (25)
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In [29] it is demonstrated the following uniqueness result, under the necessary
condition (24).

Theorem 6. Consider a linear system Ax = b such that A ∈ M+. If there
exists a nonnegative solution x̄ with ‖x̄‖0 ≤ s and

µ(A) <
1

2s− 1
, (26)

then x̄ is the unique nonnegative solution and the minimum `1-norm solution
to Ax = b.

3.3 Sparsity enhancing methods and approximate mea-
surements

Let us now consider the more general situation in which the linear system does
not have to be exactly solved, i.e. we rather look for an approximate solution
satisfying Ax = b + ε, where ε is the vector containing the error in the mea-
surements. A famous method addressing this problem is the so-called LASSO
[27]. Following [17], we address to the solution of the following closely related
problem

min ‖x‖21 + λ‖Ax− b‖22. (27)

As we already pointed out that no theoretical result states that NNLS solvers
ensure sparse recovery, problem (27) can be interpreted as a sparsity enhancing
or squared `1-regularization method consisting in adding a penalization term to
the objective function. This problem can be thought as a weighted-sum form of
a multiobjective problem where the parameter λ controls the tradeoff between
the two objectives. This technique suffers from an evident drawback that is the
choice of λ, which is not explicitly related norm to the sparsity, nor to the linear
system.

In [17], problem (27) is recast as a nonnegative least squares problem. By
making use of the positivity trick, problem (27) becomes

min

∥∥∥∥( 1 . . . 1
λA − λA

)(
x+

x−

)
−
(

0
λb

)∥∥∥∥2

2

, s.t. x+,x− ≥ 0 (28)

which will be referred as `1-NNLS. A nice feature of this form is that the matrix
involved clearly belongs to M+ and uniqueness of the solution is possible for
any λ. The equivalence between problem (20) and problem (28) above can
be established for λ → ∞, meaning that the squared residual is much more
important then the `1-norm, which becomes more and more vacuous as λ gets
larger. This suggests it could be sufficient to solve a simple NNLS problem in
order to get a sparse solution.

4 Upgrading the QR decomposition

We have already mentioned that in the methods here presented it is not nec-
essary to compute the QR decomposition from scratch, but instead one can
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upgrade the current QR decomposition. In this section we detail the “updat-
ing” and “downdating” procedures to be adopted in the outer and inner loop,
respectively. In the next subsection we see the general case, while in the follow-
ing we see a simplified downdating applicable with the positivity trick.

4.1 The general case

Let us first consider the problem of updating the QR decomposition in the outer
loop. Let A be an m × n matrix and B an m × k matrix, both full rank by
columns, such that k + n ≤ m, and suppose moreover that the columns in B
are linearly independent from those in A. We want to exploit the knowledge of
the decomposition A = QR in order to compute Q̃, R̃ such that

Ã := (A B) = Q̃R̃.

The following procedure is based on Householder transformations, and it is
simply the Block Recursive Householder decomposition (without computing the
initial QR decomposition A = QR, that has already been computed in this
context).

Algorithm 4 Updating

1: A = QR, B
2: B = QTB
3: Q̃ = Q, R̃ = (R B)
4: for i = 1, . . . , k do
5: [β, v] =house(B(n+ i : m, i)) . compute Householder reflector

6: R̃(n+ i : m,n+ i : m) = (Im−(n+i)+1 − βv vT )R̃(n+ i : m,n+ i : m)
7: Hn+i = Im
8: Hn+i(n+ i : m,n+ i : m) = (Im−(n+i)+1 − βv vT )

9: Q̃ = Hn+iQ̃
10: end for

Note that explicit computation of Q̃ is not necessary if we express it as a
product of Householder matrices

Q̃ = QHn+1 · · ·Hn+k.

Operation count for the above algorithm (without taking into account the ex-

plicit computation of Q̃ in steps 7–9) if that of an Householder QR decomposi-
tion of a matrix of size m− (n+ 1)× k, i.e. about 2k2(m− (n+ 1)− k/3) flops,
plus the operation count in step 2. If we suppose that Q itself is expressed as a
product of Householder matrices, i.e.

Q = Hn · · ·Hn,

we get about kn(2m − n) flops. The whole procedure involves about 2k2(m −
(n+ 1)− k/3) + kn(2m− n) = O(k2m+ knm) flops.
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Let us now consider the downdating problem. Consider a set of k column
indices {j1, . . . , jk}, with 1 ≤ j1 < · · · < jk < n, and let Ã be the m × (n − k)
matrix whose columns are the columns of A with index not in {j1, . . . , jk}.
Again, we want to exploit the knowledge of the decomposition A = QR in order
to compute Q̃, R̃ such that

Ã = Q̃R̃.

The matrix Ã has a structure close to the Hessenberg form. Suppose m = 8,
n = 7, k = 2, j1 = 2 and j2 = 5. Then we have

Ã =



× × × × ×
× × × ×
× × × ×
× × ×
× ×
× ×
×


.

The following procedure is based on Givens rotations. We do this in a column-
major fashion, using Givens rotation to annihilate the highlighted entries one
at a time:

× × × × ×
× × × ×
××× × × ×
× × ×
× ×
× ×
×


→



× × × × ×
× × × ×
× × ×
××× × ×
× ×
× ×
×


→



× × × × ×
× × × ×
× × ×
× ×
× ×
××× ×
×


→



× × × × ×
× × × ×
× × ×
× ×
××× ×
×
×


→



× × × × ×
× × × ×
× × ×
× ×
×
×
×××


→



× × × × ×
× × × ×
× × ×
× ×
×
×××


.

Thus, columns with indices jl < j < jl+1 have exactly l subdiagonal entries to
annihilate. Note that one could also zero out one subdiagonal at a time, with
exactly the same number of floating point operations. The following algorithm
describes the resulting procedure (in column-major fashion).

Again, the explicit computation of Q̃ is not necessary if we express it as a
product of Givens rotation matrices

Q̃ = QGT
1 · · ·GT

t ,
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Algorithm 5 Downdating

1: A = QR, j1 < · · · < jk
2: Q̃ = Q, R̃ = R, jk+1 = n+ 1
3: for l = 1, . . . , k do
4: for j = jl + 1, . . . , jl+1 − 1 do
5: for p = 1, . . . , l do
6: i = j − p+ 1
7: G̃ =givens(Ã(i− 1 : i, j)) . compute Givens rotation

8: R̃(i− 1 : i, j + 1 : m) = G̃R̃(i− 1 : i, j + 1 : m)

9: Q̃(:, i− 1 : i) = Q̃(:, i− 1 : i)G̃T

10: end for
11: end for
12: end for
13: R̃(:, j1, . . . , jk) = [ ] . delete columns j1, . . . , jk

where t is the total number of computed rotations and Gl is the m×m matrix
obtained enlarging the corresponding G̃l.

The operation count can be computed by observing that this procedure
boils down to the annihilation of k subdiagonals of different length, as in the
second exemplification. After removing column jl, we have to zero out the last
element of each column of the remaining m × (n − jl − (k − l)) matrix: in
fact the columns from jl-th (not included) until the last one are n − jl, but
there are also k − l columns we don’t have to downdate, those with indices
jl+1, . . . , jk, that have already been removed. Define nl = (n − jl − (k − l)).
Then, this operation takes

∑nl

i=0 6(nl − i) = O(3n2
l ) = O(3(n− jl − (k − l))2).

We compute the worst case of the total operation count, in which the first k
columns are removed: we have jl = l with 1 ≤ l ≤ k, thus we have to zero
out the last k subdiagonals of the remaining m× (n− k) matrix. This involves

O(
∑k

l=1 3(n− k)2) = O(3n2k + 3k3 − 6nk2) flops.
The updating and downdating procedures allow to modify the current QR

decomposition with a remarkable computational saving. In a practical imple-
mentation, one can apply each time the orthogonal transformations to the whole
matrix, or only to the columns whose indices are in the current passive set. In
the first case, it is not necessary to keep trace of the transformations themselves.
In the second case, we need to keep in memory the sequence of orthogonal trans-
formations computed so far; moreover, an additional vector is needed to keep
trace of the number of orthogonal transformations that have been applied to
each column.

4.2 The positivity trick case

Let us now consider the particular case in which we deal with the NNLS problem
(23). In such a case, the objective function’s matrix is [A ; −A]. The updating
procedure by Householder triangularization is unchanged, while the downdating
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procedure by Givens rotations in the inner loop can be avoided with a simple
“sign flip”, as we show here.

Suppose that y(s) is not a feasible point, thus y
(s)
k < 0, for some k ∈ Ps.

Since s(s) := y(s+1) − x(s−1) is a feasible descend direction, we have k 6∈ Js. If
k ≤ n, the index k corresponds to a column of A, otherwise if n < k ≤ 2n, k
corresponds to a column of −A. Let us denote by k̄ the twin index of k, i.e.
k̄ = k + n if k ≤ n, and k̄ = k − n if n < k ≤ 2n. Let us show that if we
let P (s+1) = (P (s) ∪

{
k̄
}

) \ {k}, then y(s+1) is a feasible point and s(s+1) :=

y(s+1) − x(s−1) is a feasible descend direction.
We first show that y(s+1) is a feasible point. With a little abuse of notation,

we will denote by k both the index itself and its position within the passive set

Ps. If we write by columns A
(s)
P = (a1 . . .ak−1 ak ak+1 . . .ans), then we have

A
(s+1)
P = (a1 . . .ak−1 − ak ak+1 . . .ans

). Consider the QR decomposition

A
(s)
P = Q(s) R(s) = Q(s) (r1 . . . rk−1 rk rk+1 . . . rns),

then we can write

A
(s+1)
P = Q(s) R(s+1) = Q(s) (r1 . . . rk−1 − rk rk+1 . . . rns

).

Indeed, if H is the Householder reflector of a vector x, i.e. Hx = ‖x‖ e1, then
H(−x) = −‖x‖ e1. Now, y(s) is the solution of the least squares problem

y
(s)
P = argmin

y

∥∥∥A(s)
P y − b

∥∥∥ , y
(s)
Z = 0, (29)

which can be obtained as the solution of

R(s)y
(s)
P = b

(s)
P := (Q(s))Tb, y

(s)
Z = 0. (30)

Let us split y
(s)
P = (y

(s)
1 , y

(s)
k ,y

(s)
2 )T , where y

(s)
1 ∈ Rk−1, y

(s)
2 ∈ Rns−k, and

y
(s)
k < 0. Similarly, we write b

(s)
P = (b

(s)
1 , b

(s)
k ,b

(s)
2 )T , where b

(s)
1 ∈ Rk−1,

b
(s)
2 ∈ Rm−k, and y

(s+1)
P = (y

(s+1)
1 , y

(s+1)

k̄
,y

(s+1)
2 )T . The triangular matrices

can be split as

R(s) =

 R11 rk(1 : k − 1) R12(1 : k − 1, :)
0T rk(k) R12(k, :)
0 0 R22

 , (31)

and

R(s+1) =

 R11 −rk(1 : k − 1) R12(1 : k − 1, :)
0T −rk(k) R12(k, :)
0 0 R22

 , (32)

where R11 is upper triangular of order k− 1, R12 has size k× (ns− k), and R22

is upper triangular of size (m− k)× (ns − k).
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Since y
(s)
2 solves min ‖R22y− b2‖, we have y

(s)
2 = y

(s+1)
2 . By backsubstitu-

tion, we obtain

y
(s)
k =

1

rk(k)

(
b
(s)
k −R12(k, 1 : ns − k)Ty

(s)
2

)
< 0, (33)

and similarly

y
(s+1)

k̄
= − 1

rk(k)

(
b
(s)
k −R12(k, 1 : ns − k)Ty

(s+1)
2

)
= −y(s)

k > 0, (34)

where we used the fact that y
(s+1)
2 = y

(s)
2 . Last, we have

y
(s)
1 = R−1

11

(
b

(s)
1 − y

(s)
k rk(1 : k − 1)−R12y

(s)
2

)
, (35)

and

y
(s+1)
1 = R−1

11

(
b

(s)
1 + y

(s+1)

k̄
rk(1 : k − 1)−R12(1 : k − 1, :)y

(s+1)
2

)
= R−1

11

(
b

(s)
1 − y

(s)
k rk(1 : k − 1)−R12(1 : k − 1, :)y

(s)
2

)
= y

(s)
1 .

(36)

Therefore, y
(s+1)
P = (y

(s)
1 ,−y(s)

k ,y
(s)
2 )T > 0, meaning that y(s+1) is a feasible

point and s(s+1) = (y(s+1) − x(s−1)) is a feasible direction.
Let us show that s(s+1) is also a descend direction. Suppose now without

loss of generality that k ≤ n (k̄ > n), i.e. k corresponds to a column of A, and
let A = (a1 . . . an). Recall that, at the beginning of the inner loop, the vector
s(s) = (y(s) − x(s−1)) is a descend direction, i.e.

‖r(s)‖ = ‖(A −A)y(s) − b‖ < ‖(A −A)x(s−1) − b‖.

We have

r(s+1) = b− (A −A)y(s+1)

= b−
∑
i∈P
i≤n

aiy
(s+1)
i +

∑
i∈P

i>n,i6=k̄

aiy
(s+1)
i + aiy

(s+1)

k̄
ak̄

= b−
∑
i∈P

i≤n,i6=k

aiy
(s)
i +

∑
i∈P
i>n

aiy
(s)
i + aiy

(s)
k ak

= r(s),

therefore s(s+1) is a feasible descend direction with y(s+1) feasible. We can set
x(s+1) = y(s+1). Notice that once computed y(s), no further computation is
needed to obtain y(s+1), except for the sign flip.
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5 Numerical experiments

In this section, we present a few results obtained by applying LHDM and other
methods for sparse recovery, to a quite large set of linear systems.

We compared LHDM with LH, both written by us in Matlab, with the other
convex relaxation techniques tested in [21] and with the Orthogonal Matching
Pursuit algorithm (OMP), whose implementation is publicly available online:

• “l1 magic”, a primal-dual interior-point method for a LP reformulation
of Basis-Pursuit (20), from www.l1-magic.org;

• “l1 homotopy”, from users.ece.gatech.edu/~sasif/ homotopy;

• “solveBP”, from SparseLab (sparselab.stanford.edu);

• “spgl1”, from www.cs.ubc.ca/labs/scl/spgl1;

• “isal1”, from wwwopt.mathematik.tu-darmstadt.de/spear;

• “solveOMP”, from SparseLab (sparselab.stanford.edu).

As done in [21], we used the default setting for all optional parameters of
these solvers.

The comparisons are made in terms of solution quality, i.e. the `2 norm of
the error (“distance to optimum”), and execution times. Note that the distance
to optimum is computable because the unicity of the solution is guaranteed,
under the ERC property (22).

Our purpose is not to provide an exhaustive experimental comparison be-
tween the methods but, instead, to assess the substantial performance gain
attained by the Deviation Maximization to the Lawson-Hanson algorithm, i.e.
by the LHDM algorithm, and its competitiveness with the other methods pub-
licly available for sparse recovery of dense, underdetermined systems. Actually,
numerical experiments reveal that LHDM is a good choice for sparse recovery,
for a wide class of instances.

Numerical tests have been carried out on a dataset freely available online
and fully described in [21]. For brevity, we refer to the cited article for details
about the 548 matrices that make up the database. It contains many instances
satisfying the ERC (22), thus representing a favorable situation for compressed
sensing in terms of recoverability of sparse solutions via `1 minimization. It also
includes instances not satisfying the ERC in order to assess solvers’ performance
outside the so-called `0− `1 equivalence. In our test we have used 444 instances
over 548, since we restrict our investigation to dense matrices from this dataset.
In fact, dealing with sparse matrices would require a dedicated implementation
of LHDM which can be addressed in the future. In order to simplify the com-
parison of the results here presented with the ones in [21], we keep the same
indexing from 1 to 548 to show the results. Results concerning sparse instances
are left blank. Instances satisfying the ERC are indexed in two intervals [1, 200]
and [275, 474]. This helps the understanding of the Figures.

21



We used the positivity trick presented in (23) in order to achieve an arbitrary
signed solution by means of LHDM, which succeeded in exact recovery for all
tests verifying the ERC, meaning that the solution with smallest support was
found.

We used a fixed choice of the thresholds used in LHDM, that is τ1 = 0.6, δ =
0.9, τ2 = 0.15 and kmax = 32, that are the same values used in [10], hence
giving evidence of the wide applicability of the method proposed without the
need of choosing problem dependent parameters. However, a fine tuning of
the parameters can give slight improvements in specific problem families. For
example, for very well-conditioned matrices, δ can be substantially smaller, to
get a more efficient choice of columns. This fine tuning is out of the scope of
this paper since here we want to exploit the general applicability of the method.

The results are grouped into subsections, each devoted to a single experi-
mental aspect.

5.1 Efficiency of the “sign flip”

We have seen in sec. 4.2 that, in the case of the positivity trick, the inner loop of
LH can be substituted by a much simpler “sign flip” of the involved R columns.
In Figure 1 we see in LH the difference between running the inner loop and the
sign-flip: there is an interesting speedup, around 1.5×, for the more expensive
tests.
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Figure 1: Execution times (left), speedup of LH with sign flip vs LH with internal
loop (center) and distance to optimum ||x − xcalc||2 (right), for the Lawson-
Hanson (LH) algorithm, with the classic internal loop and with its replacement
of sec. 4.2 (“sign flip”). The vector xcalc is the solution computed by the
algorithm and x the true solution (unique, in ERC tests).

5.2 Speedup of LHDM versus LH

In Figure 2 and 3 we see the speedup of LHDM with respect to LH, for solution
vectors at different levels of sparsity. The original dataset of [21] has instances
with very sparse solution vectors; we created a few modified datasets, starting
from the original, with random generated solutions at prescribed sparsity levels,
and perturbing matrices to satisfy the ERC property at each instance. As we can
notice, the speedup varies a lot with the sparsity of the solution: the more the
solution is less sparse, i.e. the number of nonzeros increases, the more LHDM
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accelerates on LH. The Figures shows the two extreme situations: the original
database with very sparse solutions and a modified database with almost dense
solution vectors.
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Figure 2: Execution times (left), speedup of LHDM vs LH (center) and distance
to optimum ||x− xcalc||2 (right), for the original dataset, whose instances have
very sparse solution vectors. The vector xcalc is the solution computed by the
algorithm and x the true solution (unique, in ERC tests).
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Figure 3: Execution times (left), speedup of LHDM vs LH (center) and distance
to optimum ||x−xcalc||2 (right), for the modified dataset, whose instances have
almost dense solution vectors. The vector xcalc is the solution computed by the
algorithm and x the true solution (unique, in ERC tests).

5.3 Comparison with the other convex relaxation solvers

In Figure 4 we see the comparison of LHDM with the other convex relaxation
solvers listed at the beginning of this section.
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Figure 4: Execution times (left), speedup of LHDM vs the other convex re-
laxation solvers listed at the beginning of this section (center) and distance to
optimum ||x − xcalc||2 (right). Each row of plots corresponds to a convex re-
laxation solver, in this order (from the top): l1 magic, l1 homotopy, solveBP ,
spgl1, isal1 and solveOMP . The vector xcalc is the solution computed by the
algorithm and x the true solution (unique, in ERC tests).
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We can notice that LHDM is a good performer except versus solveOMP (an
implementation of the Orthogonal Matching Pursuit), that surprisingly has not
been considered in [21] for theoretical reasons, but actually outperforms all the
other methods in the whole database considered. In the next subsection we will
therefore go into a detailed comparison between LHDM and solveOMP.

5.4 LHDM vs SolveOMP and the DM role

To compare LHDM with SolveOMP we will perturb the database in three main
directions: sparsity level, condition number of the system matrix, and nonneg-
ativity of the solution.

Let us start with the first database modification. As already did in sec. 5.2,
we created a few modified datasets, starting from the original, with random
generated solutions at prescribed sparsity levels, and perturbing matrices to
satisfy the ERC property at each instance. As we can notice in Figure 5, where
a modified database with almost dense solution vectors is used, LHDM behaves
quite better than SolveOMP now, with a substantial speedup (compare with
Figure 4, where the original database with very sparse solution vectors were
used). If we consider also the speedup gain of LHDM vs LH with the same
modified dataset, shown in Figure 3, we can conclude that the performance
gain of LHDM vs SolveOMP is due to the Deviation Maximization (DM) and
not to LH alone. This is not surprising, since SolveOMP is based on Cholesky
factorization, which is computationally lighter that the QR factorization on
which LH is based. However, the QR is a more stable algorithm and it allows
the DM to improve the performances considerably in a wide range of instances.
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Figure 5: Execution times (left), speedup of LHDM vs SolveOMP (center)
and distance to optimum ||x− xcalc||2 (right), for the modified dataset, whose
instances have almost dense solution vectors. The vector xcalc is the solution
computed by the algorithm and x the true solution (unique, in ERC tests).

This observation suggests us to try a modified dataset along the second
direction: the matrix condition number. The matrices of the original dataset
in [21] are very well conditioned (condition number < 102). We created a few
modified datasets, starting from the original, with random generated matrices
at prescribed condition numbers, and then perturbing the resulting matrices to
satisfy the ERC property at each instance. If the matrix condition number is
moderate, say between 105 and 106, SolveOMP fails ≈ 70% of instances, while
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LHDM solves all of them. Moreover, as we can notice in Figure 6, LHDM keeps
its performance gain vs LH, independently from the conditioning of the problem
(compare with Figure 2).
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Figure 6: Execution times (left), speedup of LHDM vs LH (center) and distance
to optimum ||x−xcalc||2 (right), for the modified dataset, whose matrices have
a moderate condition number (between 105 and 106). The vector xcalc is the
solution computed by the algorithm and x the true solution (unique, in ERC
tests).

The third direction in which we modified the database is the nonnegativity
of the solution. We created one modified dataset, starting from the original,
by taking componentwise the absolute value of each solution vector, and then
perturbing the matrices to satisfy the ERC property at each instance. When a
nonnegative solution is requested, SolveOMP does not satisfy this requirement,
while LHDM does. Moreover, as we can notice in Figure 7, LHDM keeps its
performance gain vs LH.
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Figure 7: Execution times (left), speedup of LHDM vs LH (center) and distance
to optimum ||x−xcalc||2 (right), for the modified dataset, whose solution vectors
are componentwise the absolute value of each solution vector of the original
dataset. The vector xcalc is the solution computed by the algorithm and x the
true solution (unique, in ERC tests).

6 Conclusions

In this work we have presented a new NNLS solver, namely the Lawson-Hanson
with Deviation Maximization algorithm (LHDM), based on the “deviation max-
imization” columns selection strategy. Our method relies on cosine evaluation in
order to select a subset of sufficiently linearly independent columns to compute

26



a feasible descend direction and we have used it as column pivoting strategy to
devise a new active set method. We have provided a theoretical analysis prov-
ing the finite convergence of LHDM, which is shown to terminate in at most 2n

steps, just like the standard Lawson-Hanson. This is a worst case bound, and
in practice a polynomial rate of convergence is observed.

We have given also the details for an efficient implementation of LHDM,
through Householder and Givens orthogonal transformations. In particular, the
algorithmic clue given for the positivity-trick case in sec. 4.2 is by itself a novel
contribution, as far as we know.

Extensive numerical experiments have been carried out over a wide set of
instances, confirming that LHDM yields a significant performance gain over LH
with an average speedup of 3× with peaks up to 6×. Moreover, we compared
it with several `1 solvers whose implementation is publicly available online.
Numerical testing has confirmed that LHDM is competitive with `1 solvers for
sparse recovery in terms of solution quality and execution times, revealing it as
a good choice for sparse recovery for a wide class of instances.

The proposed LHDM algorithm exploits BLAS-3 operations for efficiency. A
thorough experimental evidence is not possible in this Matlab implementation
and it requires an implementation in a compiled programming language, e.g.
the C language, which is an ongoing project, for an open-source delivery. With
a C implementation, the performances seen in sec. 5 should sensibly improve,
like we did experience with QRDM [10], included the speedup with respect to
LH.

We did not cope with sparse instances, since it would require a dedicated im-
plementation based on sparse QR with column pivoting and would be interesting
to compare with randomization techniques. Finally, it would be also interesting
to extend the deviation maximization as pivoting strategy to other problems
which require column selection, e.g. more general constrained optimization
problems such as least squares problems with linear inequality constraints.
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