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abstract

The modern industrial world calls for efficient, reliable and safe systems. A contribu-
tion to the solution to all these problems is the predictive maintenance.

According to this trend and tailoring the analysis to the electric drives field, this
thesis performs a step forward for the realization of more reliable drives through
their condition monitoring. Different AC motors have been considered in the disser-
tation: Permanent Magnet Synchronous Motors, Induction Motors and Synchronous
Reluctance Motors, covering the actual and also the next future industrial drives
scenario.

Some of the more relevant faults that can occur on these machines have been taken
into account: interturn short circuits, demagnetization and damage at the rotor bars.
The development of adequate observation indexes for the recognition of these failures
has been researched deeply in the past. Nowadays, the prompt recognition of the
incoming failure condition is the issue that modern research in this field has to face.
In the following chapters, some innovative Artificial Intelligence-based tools will be
applied for the condition monitoring of electric motors. Artificial Neural Networks
and Convolutional Neural Networks are used here in different ways: for an effective
modelling of the machine behaviour and for the knowledge-based recognition of the
motor state of health.

The main bottleneck in developing Neural Networks is the availability of a proper
training dataset for the efficient tuning of their weights. In case of electric motors, the
problem is even more relevant. A huge amount of healthy and damaged motors are
needed, an unaffordable condition for this industry-oriented context. As an innovative
and never-used-before approach, very precise models of the motors have been used
in the thesis to generate artificially the training dataset. When these models were not
available, the Data Augmentation theory was used instead as a keen and innovative
approach for the artificial enhancing of the available training datasets.

Very relevant results have been obtained and the principal and more significant
ones are reported in this dissertation. Three different Convolutional Neural Network
designs are reported. The first, trained only on a simulative accurate model of the
motor, was able to efficiently recognize demagnetization and the interturn fault on
Permanent Magnet Synchronous Motors. The second one, oriented to Induction
Motors, the model was not available and so Data Augmentation was used to train
the network that recognizes broken bars in the rotor. The third network was used
again for Induction Motors but it made use of a model which definition was still
based on a built-in Neural Network. Finally, this same Artificial Intelligence-based
modelling methodology was used for the effective implementation of the Extended
Kalman Filter for the sensorless control of Synchronous Reluctance Motors, thus
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further enhancing the reliability of the drive, since the position sensor is avoided. The
motor non linearities have been managed through a custom Artificial Neural Network
and new approaches to the original Extended Kalman Filter implementations have
been studied.

As common root of all the treated topics, Neural Networks applicability on the
electric drives field has been investigated. In the development of these tools, a special
and careful eye was taken to maintain the solution feasible and attractive from an
industrial point of view. Therefore, each of the arguments was fully validated through
an intensive simulation and experimental stages, as reported in the thesis.
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1

introduction

Once only a remote concern, climate change is now an existential threat and the great-
est challenge facing the present and future generations. Human activities have been
emitting greenhouse gases and CO2 since the industrial revolution, heavily modifying
the global environmental conditions. Even now, the footprint that humanity is leaving
leads to an always warmer world. It is sufficient to observe how the greenhouse gas
emissions are still growing year by year in the world and in the top-emitter countries
(Figure 1.1).

The phenomena is inherently global and it afflicts the whole planet surface, no
matter where or by whom they are emitted. The world today is 1.1 ◦C warmer than in
pre-industrial times. The consequences of this warming are dramatic, as seen in the
increase in intense floods and fires and extreme weather events of the past decade.
Rapid, deep and transformative change is needed throughout society, not only to
reduce emissions and stabilize global temperatures, but also to build a safer, healthier
and more prosperous future for all.

The progressive efforts made by the United Nations Framework Convention on
Climate Change (UNFCCC) are gradually defining the global guidelines and limits
which should stabilize the greenhouse gas concentration to an acceptable level [12].
According to the Intergovernmental Panel on Climate Change report of 2018 "Human
activities are estimated to have caused approximately 1 ◦C of global warming above
pre-industrial levels... Global warming is likely to reach 1.5 ◦C between 2030 and
2052 if it continues to increase at the current rate". It also specifies the feasibility of
the 1.5 ◦C target provided that deep emissions reductions are applied throughout the
world. Moreover, the report finds that the 2 ◦C temperature increase limit specified
during Conference of the Parties (COP) 21 is no more sufficient to avoid catastrophic
anthropogenic interferences on the earth’s climate system.

In order to avoid the 1.5 ◦C of global warming limit a reduction of the CO2 emission
levels by about 45 % by 2030 (compared to 2010 values) is advisable [24]. According to
this guidelines, the international pollution constrains and governmental policies for
the next years should have been defined during COP 25. Actually, these agreements
have not been reached yet, although a growing number of ambitious Countries have
committed to reduce their carbon emissions to net zero by 2050.

An example is the european union which with the european green deal wants to
reduce the greenhouse gas emissions by at least 55 % below 1990 levels by 2030 and to
become climate neutral by 2050. On 14 July 2021, the european commission adopted
a series of 55 legislative proposals covering a wide range of policy areas including
climate, energy, transport and taxation to achieve the posed target.

In the world, several activities have been identified as main responsible for green-
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Figure 1.1. Total amount of greenhouse gas emissions of the world and top emitters [50].
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Figure 1.2. The frame of my predictive maintenance project.

house gas emissions. The actual main CO2 sources can be framed into 5 sectors,
namely (in decreasing order of emissions): energy, agriculture, industrial processes,
waste and land-use change and forestry. It is worth noticing that the energy sector is
responsible for more than 75 % of the actual world emissions [50], while agriculture
(the second source) generates the 12 % of emissions.

It is evident how operating and improving the energy production and management
assumes a paramount importance for the next generation sustainability. The majority
of this energy is used by the industry and for transportations in the form of driving
energy. For what concerns electrical energy the International Energy Agency stands
that electric motor driven systems are responsible for 53 % of global electricity use
[2]. Electric motors and drives therefore represent a focal point for an optimization of
the actual energy employment.

1.1 The frame of predictive maintenance

The aforementioned optimization process passes surely through the usage of more
efficient motors and a better design of the whole drive. Nonetheless, also an improved
maintenance and recycle of the electrical machine can heavily affect the achieve-
ment of the desired goals of efficiency. The damage of a motor can easily cause a
cascade interruption of different parts of the production plant, thus causing surely an
increase of costs but also a waste of energy. Another waste is in term of components
and devices that must be substituted when a fault occurs. In this case, if the fault
incoming condition is properly recognized in advance, it could be possible to repair
the machine or avoid the damage of other plant components before making them
unusable. Therefore, an additional improvement in terms of avoiding squandering
can be achieved.

In addition to the efficiency concept, there are other two topics that cannot be
forgotten during the development of an adequate condition monitoring of modern
systems. They are the reliability and safety issue (Figure 1.2).
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In order to contextualize them within the actual industrial scenario, it is worth
noticing that from the industrial point of view, the traditional maintenance approaches
as the run to failure methods or preventive maintenance are often no more suitable
and admissible from the reliability point of view. The modern complexity and cost of
industrial systems leave less room for malfunctions and performance degradation.
While the scheduling of not-necessary, preventive upkeeps is ever more demanding
and time-consuming. Therefore the prompt recognition of abnormal conditions and
incoming failures is gaining uppermost relevance.

From the safety point of view, it is also easy to understand how the continuous
condition monitoring of the plant can be very useful to prevent potential dangerous
conditions for human operators.

As a meaningful example, the growing electrification of transportations will likely
benefit from an improved maintenance policy. The huge amount of energy required by
modern mobility gives to the electrical machines a primary relevance in the paradigm
of smart cities. It is sufficient to know that according to [5], in 2019 less than 2 %
of light vehicle production was accounted for by battery electric vehicles models.
But the forthcoming forecasts estimate that the 40 % of all cars sold across the globe
in 2027 will be electrified, rising to over 95 % by 2050. It is easy to understand that
the realization of a system able to alarm the driver if the car will soon need some
maintenance would be very useful from all the efficiency, reliability and safety points
of view.

1.2 The predictive maintenance in the electric drives field

In the electric drives field, there is a growing need to detect and identify any incoming
failure as soon as possible [32] in order to improve the system reliability. The research
is increasingly focusing on techniques and methodologies able to give an augmented
autonomy to modern industrial drives. This capability allows a more intelligent and
efficient scheduling of the interventions on the plant according to the predictive
maintenance paradigm.

The solution of the condition monitoring problem is composed by three steps,
namely the fault detection, isolation and identification. In other words, understand
that a fault has occurred, detecting where and finally comprehend how much severe
is the fault degree [32]. The complexity of the problem and the many contributing
factors make the solution not trivial.

Several technical papers have dealt with the fault detection issue in electric motors
and they have been collected and summarised in different reviews on condition moni-
toring for Induction Motors (IMs) [61, 81, 118] or for Permanent Magnet Synchronous
Motors (PMSMs) [110]. According to most of them, failure conditions on an electric mo-
tor can be classified into three categories which are electrical, mechanical or magnetic
faults.

1.2.1 Electrical faults

The electrical faults are related to the health conditions of the stator winding and
they can mainly involve interturn shorts, open circuit faults or grounding [15, 100,
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Figure 1.3. Possible electrical faults in three-phase motor windings.

110]. Whatever motor is considered, it is composed by an electrical winding, these
failure conditions can occur on each type of motor. In three-phase AC systems, the
mentioned three types of electrical faults can be represented as in Figure 1.3.

Since the nature of these faults, the electrical variables as voltages or currents
are particularly sensitive to these fault conditions. The major part of the winding
condition monitoring works are based on the analysis of these signals [10, 40, 45, 108].

1.2.2 Mechanical faults

Mechanical faults are mainly related to the rotor that being the part in movement it
is the most prone to this type of failure. Faults can be classified into eccentricities,
ball-bearing defects or damages on the rotor bars, for IMs [55, 95].

Let’s identify as 𝑂𝑠 and 𝑂𝑟 the barycentres of cross-sections of stator and rotor
respectively. When some eccentricity 𝑒 is present they will not coincide. In function
of the position of the rotation centre 𝐶 on which the rotor rotates, three different
types of eccentricities can be defined:

• No eccentricity: if 𝐶 ≡ 𝑂𝑠 ≡ 𝑂𝑟
• Static eccentricity: if 𝐶 ≡ 𝑂𝑟 ≢ 𝑂𝑠
• Dynamic eccentricity: if 𝐶 ≢ 𝑂𝑠 and 𝐶 ≡ 𝑂𝑟
• Mixed eccentricity: otherwise

The faults that can occur on ball bearings are subdivided in function of their
position. The bearing is composed of 4 different elements which can be damaged: the
outer and the inner races, the balls and the protective cage.

A rough schematic of a ball bearing with its components can be observed in
Figure 1.5. Some additional features can be recognized: the balls diameter 𝐷𝐵, the
pitch diameter 𝐷𝑃 and the balls contact angle 𝛾 . According to [62], some principal
fault-related vibration frequencies can be derived as main effect of the damage of ball
bearings.
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𝜔𝐶 =12𝜔𝑚 (1 − 𝐷𝐵 cos(𝛾 )𝐷𝑃 )𝜔𝑂𝑅 =𝑁𝐵2 𝜔𝑚 (1 − 𝐷𝐵 cos(𝛾 )𝐷𝑃 )𝜔𝐼 𝑅 =𝑁𝐵2 𝜔𝑚 (1 + 𝐷𝐵 cos(𝛾 )𝐷𝑃 )𝜔𝐵 = 𝐷𝑃2𝐷𝐵𝜔𝑚 (1 − 𝐷2𝐵 cos2(𝛾 )𝐷2𝑃 )
(1.1)

Ball-bearing defects and eccentricities are very common and they can afflict any
type of motor. Their main effect is a radial displacement of the rotational axis due to
the creation of tangential forces and so the more direct method for a fast recognition
of this condition is through the measurement of this vibrations. Different sensors
can be used. The most obvious and historically used are the accelerometers. This
has been one of the first approaches to the condition monitoring of electric motors.
Even though modern accelerometers are very cheap, the usage of this sensor can be
problematic in all the cases in which there is not enough space for sensor positioning
or in very noisy environments from vibrations point of view as it is typical in industry.

A quite modern approach is also the usage of thermographic cameras [68]. This
tool features a very low invasive nature, since a simple photo of the plant can give
useful information on it. As a matter of fact, the vibrations generated by the faults
cause some heat dispersion, with a local increase of the temperature of the motor. In
turn, this enables to estimate the conditions of the bearings. Nonetheless, it is easy to
understand that although it is a very interesting and pioneering approach, it is quite
difficult to automatize.

The third mechanical damage refers to the broken bars of the rotor in an IM, and
it consists in the interruption of the bar conductivity into the rotor squirrel cage.
Since IMs earned a wide diffusion, the broken bar damage was studied in literature,
making available several works in which the behaviour of the faulty IM is examined
and analysed [38, 80].

Differently from the previous cases, this fault features an imbalance in the three-
phase system represented by the squirrel cage. Its main effect is a change of rotor
linking circuit, an imbalance in the rotor currents and so in the flux linkage. So even
if the fault has a typical mechanical nature, its effects are prevalently magnetic and
electric. The observation of the stray flux around the motor is eligible as a very good
fault index for the prompt recognition of this incoming failure. Its analysis through
external sensor coils has drawn an increasing attention due to the low cost, simplicity
and non-invasive nature [53].

As another distinctive approach, different versions of the Kalman Filter (KF) have
been applied in literature for the estimation of the rotor resistance [96, 117]. A broken
bar fault leads to an increase of this value and comparing its estimate with the nominal
value it is possible to understand the health conditions of the rotor. Nonetheless, for
overcoming the tuning and estimation errors of the filter very complex structures are
needed, that still lack of experimental verifications [117].
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1.2.3 Magnetic faults

Finally, magnetic faults concern the demagnetization of permanent magnets, which
is the partial loss of the residual flux density [27]. This loss can affect all the rotor
Permanent Magnets (PMs), and so it is referred as global demagnetization, or only some
PMs, giving rise to partial demagnetization. A scheme of the types of demagnetization
that can occur on a motor with PMs is reported in Figure 1.6.

Given the damaged component considered, in this case the analysis of the flux
with external or built-in sensors is surely the more effective countermeasure.

1.3 The approach of this thesis

Different key concepts have been used as cornerstones in the development of this
thesis. They are reported and explained in the following sections.

On the wave of the recent wide diffusion of innovative Artificial Intelligence (AI)-
based techniques, the development of neural networks tailored for the electric drives
field is surely one of the main innovative contributes of this thesis. Convolutional
Neural Networks (CNNs) have been used for the condition monitoring of the motors.
This type of network, particularly suitable for image classification tasks, allowed to
automatically extract the useful features of the current signature and recognize the
health of the motor.

Another type of network, the Artificial Neural Network (ANN), was instead effi-
ciently used for the accurate modelling of the motor magnetic behaviour. As a matter
of fact, the capability of this network to learn and fit complicated multiple input,
multiple output static functions, elects it as effective tool for the motor magnetic non
linearities modelling.
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1.3.1 No additional sensors

As observed from the previous exploratory analysis, each fault can be assessed more
simply if a characteristic belonging to its own class is observed. Nonetheless, this
approach is surely quite expensive considering all the possible damages that can
occur on an electric motor. Moreover, the implementation of several methods based
on difference sensor measurements gives itself a worsening of the reliability issue.

Recalling the above-mentioned faults some considerations on their detectability
observing the motor currents can be drawn. As they are directly related to the stator
windings, all the electrical faults are very prone to be recognized observing motor
currents. Eccentricities and ball-bearing defects give a variable airgap length to the
magnetic flux. The flux linkage on the stator windings is affected by this variation
and a change in motor currents can be observed. Similar observations can be derived
considering the broken bar fault and the demagnetization of PMs. As an example, Faiz et.
al. in [28] proposed a revision and comparison of several current-based fault detection
indexes for the demagnetization fault with some extensions also to eccentricities.

Therefore, as a more effective approach one can consider that all failures somehow
affect the airgap flow distribution and consequently the magnetic path of the motor
fromwhich the currents are dependent. In principle, any abnormal operating condition
can be detected through the analysis of motor currents. This approach is not new. It
is called Motor Current Signature Analysis (MCSA) [104] and it has great potentiality
since it does not require any additional hardware with respect to a standard industrial
drive, maintaining cost-effectiveness and reliability.

In the development of this thesis, I adopted this approach as a comprehensive tool
potentially able to recognize different faults with the same architecture. The motor
currents were chosen as common fault index to all faults, obtaining a reduction of
required sensors, enhancing the reliability and the cheapness of the solution.

Not all the described faults have been analysed in this dissertation. The interturn
short circuit and the demagnetization faults have been studied for PMSMs and the
broken bars for IMs.

1.3.2 Automatization of the fault index classification through CNNs

A great effort has been made in the past to identify possible fault indexes, highlighting
their drawbacks and potentialities. The nowadays great question is to develop a
procedure for the automatic recognition of the failure. As a first challenge, this thesis
wants to do a step forward in this direction taking advantage of a keen approach to
AI and in particular with the use of CNNs.

Given the recent growing trends of Internet of Things and Industry 4.0 and essen-
tially thanks to the modern availability and possibility to manage a huge amount of
data and information, the knowledge-based or data-driven techniques are acquiring
an increasing importance [36]. The basic idea is always to develop an expert classifier,
based on the elaboration of a proper fault index, and trained on a big volume of
historical data, that automatically detects an incoming failure. ANNs can be chosen as
suitable tools for this kind of problem as Nandi et al. report in [81]. They are gaining
popularity because of their physical model-free solutions.
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One of the first applications is the ANN technique applied by Chow et al. in [62]
to detect incoming failures on ball bearings of an electric motor. In that study, the
vibrations, measured through specific accelerometers, were used as index to under-
stand the bearing health level and the classification was performed by an AI-based
algorithm. The study was soon followed by many others, always using the ANN as
enabling technology for the condition monitoring problem [23].

Nevertheless, a recent research [35] has shown how a CNN performs better than
the traditional multi-perceptron ANN, thanks to some inherent features that will be
highlighted later on in chapter 3.

Promising results were reported in [77] and [111], in which a CNN was applied
on induction motors in order to identify different types of fault. The main focus
was on the transformation of a current sequence into a 2D image, in order to use a
traditional 2D CNN as it is usually applied to image recognition. The former illustrates
the preliminary findings using a specially designed CNN and a time/frequency-domain
bearing vibration analysis, in order to detect ball bearing, rotor bar and winding
insulation faults. The latter used an already trained LeNet-5 network, presenting a
new signal-to-image conversion method aimed at eliminating the experts’ experiences
as much as possible.

One step beyond was performed by Ince in [49], demonstrating that 2D transforma-
tion is not necessary and a simple 1D convolution can be applied reaching a good level
of accuracy in the dichotomic choice between healthy and faulty induction motors.
Finally, an application of a 1D CNN on PMSMmonitoring was considered in [57], where
all the main faults which can occur on a PMSM were successfully recognized.

The problem remains the CNN training, which requires a large batch of training
data from the field. Without them, any technique is destined to remain almost a pure
academic exercise.

1.3.3 Affordable realization of the training dataset

At least two main points for the realization of the training dataset are addressed in the
present thesis. The first is that in all the aforementioned AI-based works the dataset
was generated by damaging a real motor for each fault and fault level. The set was
then realized acquiring current records at different levels of speed and current. This
methodology is very expensive, unpractical and scarcely affordable from an industrial
point of view. A second aspect that requires attention is that so far a totally black
box approach has been applied. Useful information on motor behaviour, features
of the phase current patterns and network characteristics were neglected. The lack
was compensated by the CNN capabilities, at the cost of increasing enormously and
uselessly the complexity of the network and the related training problems. In the
electric drives world, this may be not a successful direction.

The principal aim of this thesis is the development of proper solutions to the
generation of the training dataset which should be effective and efficient from both
economical and industrial points of view. As a completely new challenge in the electric
drives field, the solution is composed by different innovative techniques which can be
collected under the class of Data Augmentation (DA) methods. In fact, even though the
modern concepts of Big Data and Data Mining are helping in providing these training
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datasets, a simpler and more immediate step forward is allowed by this approach.
These techniques were born as artificial (geometrical, mathematical) transformations
for the increase of the available training dataset, but nowadays they assume a more
wide and general meaning [74, 112].

In the following, the first step was the realization of very accurate models, able to
generate artificially the training samples. It is easy to understand the great impact
of the development of this model-based DA technique. Only a reduced number of
prototypes are necessary with the only aim to fine tune the model, that in future
will provide results similar to a real motor, including also the spurious harmonics
overlapped to the fundamental behaviour of the motor. Since this is the main source
for the realization of the training dataset, its precise design assumed great importance
during the thesis work. In particular, the extensive usage of Finite Element Analy-
sis (FEA) and the implementation of custom ANNs allowed to accurately model the
magnetic behaviour of the motors. The modelling of the fault behaviour and its effects
on the stator currents are accurate. Finally, for a proper and wide training dataset
generation, some additional DA techniques have been selected and applied to the
elaboration of signals coming from electric drives. Their use represents a completely
innovative approach in the electric drives field, and the study of their effects on the
final condition monitoring system accuracy is another distinctive contribution.

1.3.4 Magnetic model identification through ANNs

In addition to the resolution of classification problems, neural networks can be used
to manage regression tasks [39, 41]. The availability of a training set of input-output
points of the function that has to be fitted allows to back-propagate the estimation
error and to tune the network weights in order to optimally fit the available training
points.

In particular, the usage of different non linear activation functions and the powerful
given by the inter-connection of a great number of neurons elect ANNs as ideal
candidates to fit complex multi-variate functions. This tool is especially suitable for
"black-box" approaches in which no particular knowledge on the function that has to
be fitted is required or available. As amatter of fact, the fitting through an interpolating
function requires to specify its architecture which should be brought in line with the
complexity of the problem, thus involving some additional knowledge on the issue.
Surely this requirement is still present for the definition of the network structure
(number of neurons and layers), but provided that a good training dataset is available,
this strict relationship becomes lighter. ANNs are a powerful tool for mapping unknown
non linear relationships in different applications. As an example an ANN has been
used in [113] to compensate observer estimation errors in the sensorless control of an
IM. Another one is reported in [105], in which the ANN has been exploited to identify a
Nonlinear AutoRegressive Moving Average with eXogeneous inputs (NARMAX) model
of DC motors.

The interpolation of the inherently complex interactions between motor struc-
ture, currents, and magnetic fluxes can be considered as ideal application of an ANN.
Therefore, also in this case paving the way to more intelligent drives, ANNs have
been extensively used in this thesis to fit the magnetic model of IMs (chapter 5) and
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Synchronous Reluctance Motors (SynRMs) (chapter 6).

1.4 Dissertation outline

First of all, in chapter 2 a brief recall of the motors considered throughout the disser-
tation is reported. This part surely does not represent a complete and deep treatise
of the motor features and behaviours. It is aimed only to recall the main theoretical
background needed for a straightforward understanding of the following chapters.

Chapter 3 considers the predictive maintenance of PMSMs. These motors are widely
used in modern applications, such as electrical vehicles, wind energy, home, and
industrial appliances. Their popularity is due to the simple and compact structure,
easy manufacturing, and high power density, more precise control compared with
other electrical motors, and high power factor over constant torque region [28].
The stator currents in steady-state conditions are elaborated by a CNN. A proper
training dataset is generated artificially through an accurate model of the PMSM and
the implementation of different data augmentation techniques.

IMs are considered in chapters 4 and 5. The robustness and cheapness make them
the most widespread electric motors in many industrial contexts. Although the well-
known reliability even in harsh environments, damages are still possible, and a quite
common fault is related to the interruption of one or more bars in the rotor of a
squirrel cage IM.

Chapter 4 is the result of an international collaboration with professor Daviu of
the Universitat Politecnica de Valencia in Spain. He is an expert in the development
and study of informative indexes for the recognition of failures in IMs. Exploiting one
of these indexes, the measurement and analysis of the stray flux, my efforts were
devoted to the design and training of the CNN.

The stray flux measurements are used as fault index during the start-up of the
motor. This signal claims a time vs frequency tool and the elaboration of data in form
of matrix needing a complete redesign of the CNN structure and data augmentation
methods. In this case a model able to accurately describe the stray flux of the motor
is quite impossible to achieve. Therefore, a small experimental dataset was used,
enlarging it properly through an intense application of data augmentation.

Conversely, in chapter 5 the stator currents of the IM are considered for the recog-
nition of broken bars during the start-up, thus avoiding the requirement of additional
stray flux sensors used in the previous chapter. In the proposed implementation, the
classification is performed through a CNN on the image of the Continuous Wavelet
Transform (CWT) elaborated on the start-up current. A model was used for the ar-
tificial generation of the whole training dataset. The use of simulation-based data
augmentation technique was the exploration of both different start-up situations
and fault conditions (more broken bars, for example). The result was an exhaustive
training, to which is added the ease of including new situations, without resorting to
experimental measurements, more complex to set up.

According to the archetype of a more efficient energy consumption, chapter 6 deals
with SynRMs as an optimal trade-off between costs and efficiency, which are the main
problem of PMSMs and IMs respectively. During the past years, SynRMs have collected
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an increasing interest from the research world and, recently, they are also spreading
into the industrial one. This wide diffusion is principally caused by their inherent
efficiency combined with the absence of expensive PM materials. These properties,
compared respect to the low efficient IM and costly PMSM, elect the SynRM as valid
alternative for the reduction of the human environmental footprint, in particular for
all the low-medium performance variable speed drive applications.

Nonetheless, the present motor energy consumption is still majorly driven by
IMs. To speed-up their replacement to more efficient SynRMs, work is still needed.
A part of this task is surely the enhancing of sensorless operating capabilities of
the SynRM, gaining an increase in cheapness, robustness and compactness of the
system. Moreover, as common thread among the chapters, the reliability of the drive
is augmented in this manner. The avoidance of expensive and fault-prone sensors, as
the position encoders are, surely helps in limiting undesired failures and unexpected
shutdowns.

Due to their robustness and adaptability, position estimators based on the extended
Extended Kalman Filter (EKF) have been used in all PMSMs for decades. The time
has come to extend their use to reluctance motors as well and chapter 6 focuses
on the elements that hinder the transition. It is shown that all passes through the
availability of an accurate motor magnetic model, which can be obtained by AI tools.
The chapter uses a Radial Basis Function (RBF)-ANN to derive an analytical form of the
highly non linear magnetic model of a SynRM. Improvements in the state estimation
function make the EKF not only feasible, but applicable over an extended range of
speeds. The experimental session will compare different implementation possibilities,
concluding with a new hybrid algorithm as the best compromise between accuracy
and computational load.





2

ac motor models

Since their invention, electric motors have gathered increasing interest all around
the world and they are the modern largest driving solution in the globe. Different
structures and torque generation principles have been introduced but the modern
industrial applications are based principally on radial flux AC machines. The mo-
tors considered in this thesis are the Permanent Magnet Synchronous Motor, the
Synchronous Reluctance Motor and the Induction Motor.

2.1 Permanent Magnet Synchronous Motors

In PMSMs the electrodynamic principle is exploited for the generation of the torque as
interaction between a rotor and a stator flux. As the other AC machines considered in
this thesis, the stator flux is produced by a three-phase winding system located within
the slots of a series of metal sheets stacked together. The rotor flux is instead perma-
nently generated by some PMs superficially mounted on the rotor. This architecture
leads to an isotropic structure of the rotor. A graphical sketch of the cross-sectional
structure of this motor is reported in Figure 2.1. In red are indicated the north pole of
PMs while in blue the south pole.

As principal feature of this motor, the presence of PMs avoids the necessity to
magnetize the rotor through currents. This, together with the isotropic characteristic,
brings a series of advantages: the avoidance of fault-prone elements as the brushes,
the absence of rotor Joule losses that reduce the maximum achievable torque. This
motor exhibits a extremely linear magnetic behaviour that simplifies the control.
Among the main drawbacks are the cost and heavy environment impact caused by
the extraction of the rare earth needed for the production of PMs.

The voltage balance equations of the three-phase stator windings are:𝑢𝑎 = 𝑅𝑖𝑎 + 𝑑𝜆𝑎𝑑𝑡𝑢𝑏 = 𝑅𝑖𝑏 + 𝑑𝜆𝑏𝑑𝑡𝑢𝑐 = 𝑅𝑖𝑐 + 𝑑𝜆𝑐𝑑𝑡
(2.1)

in which 𝑢𝑎,𝑏,𝑐 , 𝑖𝑎,𝑏,𝑐 and 𝜆𝑎,𝑏,𝑐 are respectively the stator voltages, currents and flux
linkages. 𝑅 represents the phase stator resistance. The flux linkage is composed of
two components: one is due to the flux generated by stator currents while the other
is due to PMs in the rotor. As an example, for phase 𝑎:𝜆𝑎 = 𝐿𝑎𝑖𝑎 + 𝑀𝑎𝑏𝑖𝑏 + 𝑀𝑎𝑐 𝑖𝑐 + 𝜆𝑚𝑔𝑎 (2.2)
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Figure 2.1. Graphical sketch of the structure of a PMSM.

with 𝐿𝑎 as self inductance, 𝑀𝑎𝑏 and 𝑀𝑎𝑐 as mutual inductances with axes 𝑏 and 𝑐, 𝜆𝑚𝑔𝑎
as the portion of permanent magnet flux linked with phase 𝑎. If a fault occurs𝑀𝑎𝑏 can
be in general different from 𝑀𝑎𝑐 . This is the case when the interturn fault is studied
as observed in section 3.1.3. In case of healthy motor 𝑀𝑎𝑏 = 𝑀𝑎𝑐 = 𝑀 and under the
hypothesis 𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 = 0, equation (2.2) can be rearranged:𝜆𝑎 = 𝐿𝑎𝑖𝑎 − 𝑀𝑖𝑎 + 𝜆𝑚𝑔𝑎 = 𝐿𝑖𝑎 + 𝜆𝑚𝑔𝑎 (2.3)

in which 𝐿 = 𝐿𝑎 − 𝑀 is defined as synchronous phase inductance.
From this notation it is possible to move on to space vector notations which are

simpler to manage. These can be defined either in a stationary reference frame 𝛼𝛽 or
synchronous with the rotor 𝑑𝑞.

A particular transformation to the stationary reference frame is used in the disser-
tation for the modelling of the interturn fault and it is properly described in section
3.1.3.

The 𝑑𝑞 reference frame is defined fixing the 𝑑 axis along the direction of north
poles of PMs in the rotor and it is assumed that the rotor position 𝜗𝑚𝑒 is equal to zero
when the 𝑑 axis is aligned with phase 𝑎. The relative model equations can be achieved
applying the Park transformation

𝑇𝑃 = 32
⎡⎢⎢⎢⎢⎢⎣
cos (𝜗𝑚𝑒) cos (𝜗𝑚𝑒 − 2𝜋3 ) cos (𝜗𝑚𝑒 − 4𝜋3 )− sin (𝜗𝑚𝑒) − sin (𝜗𝑚𝑒 − 2𝜋3 ) − sin (𝜗𝑚𝑒 − 4𝜋3 )1/√2 1/√2 1/√2

⎤⎥⎥⎥⎥⎥⎦
(2.4)

to equation (2.1). The PMSM electrical dynamic voltage balance equations in 𝑑𝑞 refer-
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Figure 2.2. Block diagram of a PMSM model.

ence frame are: 𝐮𝑑𝑞 = 𝐑𝐢𝑑𝑞 + 𝑑𝝀𝑑𝑞𝑑𝑡 + 𝐉𝜔𝑚𝑒𝝀𝑑𝑞 with 𝐉 = [0 −11 0 ] (2.5)

where 𝐮𝑑𝑞 = [𝑢𝑑 , 𝑢𝑞]𝑇 , 𝐢𝑑𝑞 = [𝑖𝑑 , 𝑖𝑞]𝑇 and 𝝀𝑑𝑞 = [𝜆𝑑 , 𝜆𝑞]𝑇 are the stator voltage,
current and flux linkage vectors, respectively. 𝐑 = 𝑑𝑖𝑎𝑔{𝑅, 𝑅}, while 𝜔𝑚𝑒 = 𝑝𝜔𝑚 is
the electromechanical speed, that is the pole pairs 𝑝 times the mechanical speed 𝜔𝑚.
Making explicit the two contributes of the flux linkage the following equation is
obtained. 𝐮𝑑𝑞 = 𝐑𝐢𝑑𝑞 + 𝐋𝑑𝑞 𝑑𝐢𝑑𝑞𝑑𝑡 + 𝐉𝜔𝑚𝑒 (𝐋𝑑𝑞𝐢𝑑𝑞 + 𝝀𝑚𝑔𝑑𝑞 ) (2.6)

The PMSM model can be completed by considering the electromechanical torque:𝜏 = 32𝑝 (𝜆𝑑 𝑖𝑞 − 𝜆𝑞𝑖𝑑) (2.7)

and by describing the mechanical dynamics by a first-order system

𝜏 = 𝐵𝜔𝑚 + 𝐽 𝑑𝜔𝑚𝑑𝑡 + 𝜏𝐿 (2.8)

with 𝐽 and 𝐵 as rotor inertia and viscous friction, respectively, and 𝜏𝐿 as load torque.
A block diagram of the complete 𝑑𝑞 mathematical model of a PMSM is reported

in Figure 2.2. As it will be clear in section 3.1.1, it can be easily adjusted to take
into consideration the position-related harmonics for the healthy and demagnetized
cases. In the figure, the symbol ⋅ represents the scalar product, while × indicates the
difference of the cross-products in (2.7).

2.2 Synchronous Reluctance Motor Model

While the stator is the same of a PMSM, in the rotor of a SynRM there is not any active
element. It is designed to produce a variable reluctance path for the magnetic flux.
Exploiting the variable reluctance torque generation principle, the preferential rotor
position is the one which guarantees the minimum reluctance path. Also in this case
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Figure 2.3. Graphical sketch of the structure of a SynRM.

there are not rotor currents and therefore the SynRM, as the PMSM, is characterized
by high efficiency. While the absence of PMs gives an increasing importance to this
motor in terms of costs, the variable reluctance structure is very prone to magnetic
saturation and cross-coupling phenomena. Thus, the SynRM is more complex from
the regulation point of view, requiring modern and innovative control techniques. A
sketch of the cross-section of this motor is reported in Figure 2.3.

The mathematical model of a SynRM can be outlined in different reference frames.
The analysis can start from the same voltage equations (2.1), in which, due to the
absence of PMs the 𝑎 flux linkage is only generated by the stator currents. Considering
for example the phase 𝑎: 𝜆𝑎 = 𝐿𝑎(𝜗𝑚𝑒)𝑖𝑎 (2.9)

in which, it has been highlighted that for this motor a variable reluctance path its
generated by the rotation of the rotor and so the phase self-inductance is variable
with the rotor position.

In order to avoid the 𝜗𝑚𝑒 dependence of the inductive terms, the 𝑑𝑞 reference frame,
synchronous with the rotor, is very common. The traditional coordinate system for
the development of the EKF on synchronous motors is the stationary one (𝛼𝛽), fixed
with the stator. Therefore, a model of the SynRM in the 𝛼𝛽 framework is derived from
the 𝑑𝑞 one.

The voltage balance of the stator circuit is expressed by the following matrix
equation. 𝐮𝑑𝑞 = 𝐑𝐢𝑑𝑞 + 𝐋𝑑𝑞(𝐢𝑑𝑞) 𝑑𝐢𝑑𝑞𝑑𝑡 + 𝜔𝑚𝑒𝐉𝝀𝑑𝑞(𝐢𝐝𝐪) (2.10)

The variable names are the same used for the PMSM model described in section 2.1.
Since this motor is subjected to saturation and cross-coupling effects of the magnetic
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Figure 2.4. Fluxes to currents characteristics of the SynRM.

path even within the nominal current range, the inductance matrix

𝐋𝑑𝑞(𝐢𝑑𝑞) = [ 𝐿𝑑 (𝐢𝑑𝑞) 𝐿𝑑𝑞(𝐢𝑑𝑞)𝐿𝑑𝑞(𝐢𝑑𝑞) 𝐿𝑞(𝐢𝑑𝑞) ] (2.11)

is defined as Jacobian of the fluxes 𝝀𝑑𝑞 respect to the state variable 𝐢𝑑𝑞 . The electrome-
chanical speed is indicated with the symbol 𝜔𝑚𝑒 and it is equal to the pole pairs 𝑝
times the rotor mechanical speed 𝜔𝑚.

With this model, the non linear dependence of the fluxes and their derivatives on
the motor currents are included in the definition of 𝝀𝑑𝑞 and 𝐋𝑑𝑞 .

In Figure 2.4 the fluxes to currents relations of the SynRM used in this thesis
(Table 6.1) are reported as an example of typical magnetic behaviour of SynRMs. The
curves are normalized in p.u. dividing the fluxes for their maximum values, which
were respectively 𝜆𝑚𝑎𝑥𝑑 = 0.978 V s and 𝜆𝑚𝑎𝑥𝑞 = 0.298 V s. As it can be appreciated in the
figure, the curves are strongly non linear and a non-negligible level of cross-coupling
is also present. In the figures is also reported in red the magnetic behaviour if a
nominal, linear, with no cross-coupling model is assumed. This is to highlight that
even if the red model is surely less complex, some big differences between the model
and the real behaviour of the motor are expected when the motor is heavy loaded.
That feature will assume a critical importance during the implementation of the EKF
in chapter 6.

The model can be completed with the same torque generation equation (2.7) and
mechanical dynamics (2.8). Nonetheless, as it will be clear in chapter 6, the model
of the mechanical dynamics will be simplified for the realization of the sensorless
control algorithm. Therefore, it is here reported for the sake of completeness only but
it is henceforth neglected.

In order to obtain a model particularly suitable for implementing the EKF, as
required in chapter 6, a synchronous to stationary frame transformation is applied
according to the following rotation matrix

𝑇 = [cos(𝜗𝑚𝑒) − sin(𝜗𝑚𝑒)sin(𝜗𝑚𝑒) cos(𝜗𝑚𝑒) ] (2.12)
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deriving the 𝛼𝛽 notation:

𝐮𝛼𝛽 = 𝐑𝐢𝛼𝛽 + 𝐀𝑑𝐢𝛼𝛽𝑑𝑡 + 𝜔𝑚𝑒 (𝐁𝐢𝛼𝛽 + 𝐂) (2.13)

Rearranged in state-space form, it becomes:𝑑𝐢𝛼𝛽𝑑𝑡 = 𝐀−1 [𝐮𝛼𝛽 − 𝐑𝐢𝛼𝛽 − 𝜔𝑚𝑒 (𝐁𝐢𝛼𝛽 + 𝐂)] (2.14)

Matrices 𝐀, 𝐁 and 𝐂 are defined by:

𝐀 = [𝐿Σ + 𝐿Δ cos(2𝜗𝑚𝑒) − 𝐿𝑑𝑞 sin(2𝜗𝑚𝑒) 𝐿Δ sin(2𝜗𝑚𝑒) + 𝐿𝑑𝑞 cos(2𝜗𝑚𝑒)𝐿Δ sin(2𝜗𝑚𝑒) + 𝐿𝑑𝑞 cos(2𝜗𝑚𝑒) 𝐿Σ − 𝐿Δ cos(2𝜗𝑚𝑒) + 𝐿𝑑𝑞 sin(2𝜗𝑚𝑒)]
𝐁 = [ −𝐿Δ sin(2𝜗𝑚𝑒) − 𝐿𝑑𝑞 cos(2𝜗𝑚𝑒) 𝐿Σ + 𝐿Δ cos(2𝜗𝑚𝑒) − 𝐿𝑑𝑞 sin(2𝜗𝑚𝑒)−𝐿Σ + 𝐿Δ cos(2𝜗𝑚𝑒) − 𝐿𝑑𝑞 sin(2𝜗𝑚𝑒) 𝐿Δ sin(2𝜗𝑚𝑒) + 𝐿𝑑𝑞 cos(2𝜗𝑚𝑒) ]

𝐂 = [−𝜆𝑑 sin(𝜗𝑚𝑒) − 𝜆𝑞 cos(𝜗𝑚𝑒)𝜆𝑑 cos(𝜗𝑚𝑒) − 𝜆𝑞 sin(𝜗𝑚𝑒) ] , 𝐿Σ = 𝐿𝑑 + 𝐿𝑞2 , 𝐿Δ = 𝐿𝑑 − 𝐿𝑞2
(2.15)

In order to simplify the treatise, some additional coefficients able to synthesize
these matrices are defined:

𝐀 = [𝑎11 𝑎12𝑎21 𝑎22]𝐁 = [𝑏11 𝑏12𝑏21 𝑏22]𝐂 = [𝑐1𝑐2]𝐀−1 = 1𝐿𝑑𝐿𝑞 − 𝐿2𝑑𝑞 [𝑎22 𝑎21𝑎12 𝑎11] = [𝛾11 𝛾12𝛾21 𝛾22]
(2.16)

2.3 Induction Motors

IMs are based on the induction torque generation principle, thus some slip between
rotor and stator flux vector is required for the generation of the torque. Defining as𝜔0 and 𝜔𝑚 the angular speed of the stator rotating field caused by the three-phase
voltages given to the windings and the rotor speed, respectively, the slip 𝑠 is defined
as: 𝑠 = 𝜔0 − 𝜔𝑚𝜔0 (2.17)

The slip frequency between the rotational speed of the stator flux vector and the
rotor, some currents are induced in the rotor bars. These in turn generate a rotor flux
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Figure 2.5. Graphical sketch of the structure of a IM.

whose interaction with the stator generates the torque. The necessary presence of
the slip brings to classify the IM as an asynchronous motor.

The most diffused rotor structure, and the one considered in this dissertation, is the
squirrel cage. In the past, this motor has dominated the electric drives market and only
recently is slightly being substituted by its more efficient synchronous counterparts.
Its historical large diffusion is due to its robust structure and simple controllability
which elect it still the most diffused motor. Nonetheless, due to the fact that some
energy is spent to magnetize the rotor, this motor is usually less efficient. A graphical
sketch of the cross-section of also this motor is reported in Figure2.5.

The electrical dynamic behaviour of the IM can be described in different coordinate
systems. In this thesis the space vector notation is considered also for this motor
and a stationary reference frame 𝛼𝛽 fixed to the stator winding is preferred. As a
matter of fact, the implementation on a synchronous reference frame would need the
knowledge of the rotor flux position. This approach fits for the standard control based
on the fundamental synchronous. In the present case, in which the key point is the
behaviour of the fault-related harmonics, the synchronous reference frame is useless.

The voltage balance equations for the stator and rotor are the following:

𝐮𝑠 = 𝐑𝑠𝐢𝑠 + 𝑑𝝀𝑠𝑑𝑡𝟎 = 𝐑𝑟 𝐢𝑟 + 𝑑𝝀𝑟𝑑𝑡 + 𝜔𝑚𝑒𝐉𝝀𝑟 , 𝐉 = [ 0 1−1 0] (2.18)

where 𝐮𝑠 = [𝑢𝑠𝛼 , 𝑢𝑠𝛽]𝑇 , 𝐢𝑠 = [𝑖𝑠𝛼 , 𝑖𝑠𝛽]𝑇 , 𝝀𝑠 = [𝜆𝑠𝛼 , 𝜆𝑠𝛽]𝑇 and 𝐑𝑠 = diag(𝑅𝑠) are the stator
voltages, currents, flux linkages and constant resistance matrix, respectively. The same
quantities for the rotor are indicated with symbols 𝐮𝑟 = [𝑢𝑟𝛼 , 𝑢𝑟𝛽]𝑇 , 𝐢𝑟 = [𝑖𝑟𝛼 , 𝑖𝑟𝛽]𝑇 ,𝝀𝑟 = [𝜆𝑟𝛼 , 𝜆𝑟𝛽]𝑇 and 𝐑𝑟 = diag(𝑅𝑟 ), in which the rotor voltages are equal to zero,
due to the squirrel cage structure. Also in this case, the electromechanical speed and
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Figure 2.6. Block schematic of the model of an IM in the 𝛼𝛽 reference frame.

position are respectively 𝜔𝑚𝑒 = 𝑝𝜔𝑚 and 𝜗𝑚𝑒 = 𝑝𝜗𝑚 , with 𝑝 the number of pole pairs
of the motor.

The saturation of the iron core is the main cause of non linearity, that becomes
even more pronounced in the case of failure, due to the intrinsic asymmetry involved.
Therefore, to keep the model as general as possible, the flux linkage vectors 𝝀𝑠 , 𝝀𝑟
are expressed as non linear functions of both current vectors 𝐢𝑠 , 𝐢𝑟 . Moreover, due to
the stationary reference frame, they depend also on the mechanical position.𝝀𝑠 (𝐢𝑠 , 𝐢𝑟 , 𝜗𝑚)𝝀𝑟 (𝐢𝑠 , 𝐢𝑟 , 𝜗𝑚) (2.19)

To take all that dependencies into account, a general function 𝐠 is used:

[𝝀𝑠𝝀𝑟] = 𝐠 ⎛⎜⎜⎝
⎡⎢⎢⎣
𝐢𝑠𝐢𝑟𝜗𝑚⎤⎥⎥⎦

⎞⎟⎟⎠ (2.20)

The electromechanical torque 𝜏 generated by the motor can be expressed as

𝜏 = 32𝑝 (𝜆𝑟𝛽 𝑖𝑟𝛼 − 𝜆𝑟𝛼 𝑖𝑟𝛽) (2.21)

while the same mechanical dynamic already used for the PMSM model can be used
(2.8). Equations (2.18), (2.21) and (2.8) lead to the graphical representation of the IM
model shown in Figure 2.6.
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pmsm fault detection using stator currents

This chapter is focused on the automatic fault detection of PMSMs. In particular, the
aim is the realization of a CNN trained to recognize the health conditions of a PMSM
through the elaboration of its steady-state motor currents.

In this context, the algorithm also takes advantages of some improvements typical
of the so-called data augmentation techniques, as detailed in Section 3.4.2. Actually, in
CNN-based image processing, DA is a mean to increase the available training dataset
[74] or to improve the accuracy and robustness of the classifier [30]. DA is an hot
and open issue in the industrial predictive maintenance field as the recent literature
reports [46, 54, 73]. Its use is commented in Section 3.4.2 in this chapter.

The present thesis includes the condition monitoring of fractional PMSM motors,
that is, motors with non-integer number of slots per pole per phase. This is uncommon
in the scientific literature, opposite to the use of fractional-slot motors which is an
increasing trend in the industrial world due to their specific advantages in both torque
ripple minimisation and coils length [21]. Of course, the proposed approach is valid
also for integer slot per pole per phase motors.

The chapter also develops a useful "frequency normalization” technique in order to
make current patterns less variant with the motor speed. Thanks to this, a very simple
network structure is already capable to correctly classify the conditions of a PMSM
into the following three categories: healthy, demagnetization fault and interturn fault.
Detected faults have a broad degree of seriousness, yielding enhanced prediction
capability.

The chapter is organized as follows. Section 3.1 presents the models used for the
generation of the training dataset. Each model is explained with particular care on the
mathematical formulation and founding hypotheses. The expected current pattern
during each fault condition is analysed at steady state, that is the condition in which
the proposed condition monitoring operates. Section 3.2 reports the main properties
and features of the CNN tool used for the condition monitoring process. The design
steps of the network are also reported, for the sake of algorithm repeatability. Section
3.3 illustrates the design of experiments, along with the features of the selected CNN
and the highlights on the training dataset.

Experimental results are finally shown and commented in section 3.4, that is split
in two parts. The first one reports the validation of the PMSM models, by comparing
the simulated output with the experimental one. The models are then used to generate
the phase current data patterns for the CNN training. The second part analyses the
classification ability of the trained CNN, on real experimental patterns obtained from
different PMSM motors, either healthy or with some degree of failure. Conclusive
remarks and implementation hints are included.
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3.1 Motor models

Each motor condition is characterized by a certain current signature. An accurate
predictive algorithm is able to early detect a particular fault by recognising its relative
signature. This concept may be easily extended to any motor fault. In particular,
mechanical defects cause characteristic oscillations in the phase current [81]. By
increasing the network complexity and setting new motor models for the generation
of the training dataset, the signatures relative to any mechanical fault can be included.

Hereafter, the analysis has been limited to the investigation of some of the pos-
sible faults, less prone to be detected by the commonly available techniques (i.e.
accelerometers).

In order to generate the dataset of examples for the convolutional neural network
training a proper model of each fault is necessary. Since not only the fundamental
harmonic of current is of interest but also some spurious ones, the model of the healthy
motor should include proper finite element simulations [86]. The same concept is
valid for demagnetized motor, while for interturn fault the model proposed in [108] is
here adjusted to fit for the fractional-slot PMSM under test.

The choice of the reference frame for the motor models is worth a little deepening.
The alternative is between a stationary frame, fixed to the stator, and a synchronous
one, fixed to the rotor flux. As regards the healthy and demagnetised motors, the
two frames are equivalent, since multiple harmonics of the fundamental have to be
considered, so that both models become position-dependent. In case of different motor
types, the choice of a synchronous reference frame may help in including magnetic
nonlinearity. As regards the interturn fault, the choice of a stationary reference frame
yields a constant inductance matrix with respect to the rotor position, opposite to
the synchronous frame case. The analysis of different fault severity or locations also
comes easily. Anyway, in case of different motors that suffer of saturation, a shift to a
synchronous frame would be advantageous for a better matching with FEA methods.

The models selected for the present work are illustrated in detail below.

3.1.1 Healthy motor

For the realization of the healthy motor model equation 2.5 and Figure 2.2 can be used
as starting point.

Due to the surface mounted permanent magnet structure, the effect of saturation
in motor fluxes is almost negligible. Therefore a linear behaviour of the magnetic
paths is assumed and it is described through the (constant) synchronous inductance
matrix 𝐋 = 𝑑𝑖𝑎𝑔{𝐿, 𝐿}. Conversely, PM flux linkage 𝝀𝑚𝑔𝑑𝑞 can be affected by local and
partial demagnetisation, which creates flux spatial harmonics that finally modify the
current harmonic content. A suitable model for the flux linkages spatial distribution
can be the following: 𝝀𝑑𝑞 (𝜗𝑚) = 𝐋𝐢𝑑𝑞 + 𝝀𝑚𝑔𝑑𝑞 (𝜗𝑚) (3.1)

where 𝜗𝑚 is the mechanical rotor position. It is worth noting that the space flux
harmonics different from the fundamental one affect both axes.
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Figure 3.1. Finite element analysis of the healthy PMSM of Table 3.1, when 𝜗𝑚 = 0◦ and 𝑖𝑞 = 0A.
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Figure 3.2. Motor model for both healthy and demagnetised cases.

The position-dependent distribution of (3.1) has been derived through a proper
FEA, at null stator currents. An example of the flux density across the PMSM under
test (Table 3.1) at 𝜗𝑚 = 0◦ is reported in Figure 3.1.

Since PMs have the same permeability as the air, the FEA model was also used to
derive the current-dependent flux linkage, and thus the inductance 𝐿, after removing
the magnets from the drawing. Several simulations at different current levels have
confirmed the linearity hypothesis with respect to the phase current, as stated above.

The complete model of Figure2.2 can be tailored to take into account of position
harmonics. It is obtained from equations (2.5)-(3.1) and it is shown in Figure 3.2. The
PM flux linkage model obtained by FEA incorporates the dependence on the rotor
geometry and it is embedded in the Look-Up Tables (LUT) block 𝝀𝑚𝑔𝑑𝑞 (𝜗𝑚). The same
model will also be used for the motor under demagnetisation fault, as explained in
the next section. Therefore, inside the block 𝝀𝑚𝑔𝑑𝑞 (𝜗𝑚) there are various LUTs, which
differ in the demagnetisation factor 𝑑𝑓 .

In the healthy case, the main component in both the flux linkage and the stator
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current is clearly the fundamental one. But in a real motor, also the 5-th and 7-th flux
linkage harmonics have not a negligible effect on the currents [101]. Hence the need
to consider those contributions in the current patterns used for the training.

The simulation model of Figure 3.2 was used to run the AC drive in several different
working points. For each of them, the 𝑞 current was stored for future use in the CNN
training.

3.1.2 Motor with demagnetisation fault

Overtemperature and exposition to intense external fields can induce either a partial
or global irreversible decrease of magnetisation in the PMSM rotor magnets [60]. The
macroscopic effect is different in the two cases.

In case of homogeneous demagnetisation, all rotor poles are equally affected, so
that the airgap flux density distribution maintains a very similar profile as in the
healthymotor. In particular, the electrical behaviour of the motor is still represented by
a three-phase balanced system and there is not the evidence of new harmonics eligible
as indexes for the fault recognition. In that case the torque per ampere ratio decreases,
and a comparison with the brand-new product may help in the fault detection.

More challenging is the case of partial demagnetisation, in which the flux density
distribution is no more periodic in the electromechanical angle, that is, it depends on
the considered pole pair. The distribution along the airgap is a function of the angular
displacement, which can be expressed with respect to either the stationary (𝜗𝑠) or the
synchronous (𝜗𝑟 ) reference frame, as depicted with the dashed line in Figure 3.3.

In all generality, the number 𝑝 of pole pairs of the PMs in the rotor can be different
from the number 𝑝𝑤 of pole pairs in the windings.

An example with 𝑝 = 4 and 𝑝𝑤 = 2 is represented in Figure 3.4. The upper graph
reports the airgap flux density distribution due to PMs referred to 𝜗𝑟 (Figure 3.3).
This reference frame with the whole waveform is shifted of 𝜗𝑚 with respect to the
stationary reference frame fixed to the axis of the winding 𝑎.

The lower graph shows the flux linkage of winding 𝑎 due to the PM. In place of
the distributed winding, its equivalent concentrated one is displayed. According to
the electric machines theory, the magnetic behaviour is preserved by changing the
number of turns according to a winding distribution factor 𝑘𝑤 that depends on the
constructive features of the winding.
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Figure 3.4. An example of the airgap flux density distribution in a PMSM.

The aim of the next passages is to qualitatively obtain the flux linkage harmonics
of the phase 𝑎, in the specific case of partial demagnetisation of the rotor.

If a healthy motor is considered, the airgap flux density is space-periodical, with
period 2𝜋 in the angular coordinate 𝑝𝜗𝑟 . In general, the airgap flux density can be
expressed according to the Fourier series expansion.

𝐵𝑔 (𝜗𝑟 ) = ∞∑𝑛=1 [𝐵̂𝑐𝑔𝑛 cos (𝑛𝑝𝜗𝑟 ) + 𝐵̂𝑠𝑔𝑛 sin (𝑛𝑝𝜗𝑟 )] (3.2)

Due to the symmetrical distribution respect to axis 𝑑 , the coefficients 𝐵̂𝑠𝑔𝑛 are equal
to zero and therefore, the second term of the sum can be neglected for each harmonic𝑛. According to this, the superscript 𝑐 in 𝐵̂𝑐𝑔𝑛 is hereafter removed.

When a partial demagnetization occurs, the distribution (3.2) is modulated by a
signal which is space-periodical in the coordinate 𝜗𝑟 , becoming:

𝐵𝑔 (𝜗𝑟 ) = [ ∞∑𝑛=1 𝐵̂𝑔𝑛 cos (𝑛𝑝𝜗𝑟 )] [ ∞∑𝑘=0 𝛼𝑘 cos (𝑘𝜗𝑟 )]= ∞∑𝑛=1 ∞∑𝑘=0 𝐵̂𝑔𝑛𝛼𝑘 12[ cos ((𝑛𝑝 − 𝑘)𝜗𝑟)−cos ((𝑛𝑝 + 𝑘)𝜗𝑟)]
(3.3)

where 𝛼𝑘 is the coefficient that, for each harmonic 𝑘, represents the impact of demag-
netization on the healthy waveform.

The flux linked by a single turn of a coil can be estimated as the integral of the
flux density within the area enclosed by the current loop. A sketch of this area in the
case of 𝑝𝑤 = 1 is reported in Figure 3.5. According to that figure the flux linked by
one single turn of a coil can be estimated according to the following integral.

𝜆1 = ∫ 𝜋2𝑝𝑤− 𝜋2𝑝𝑤 𝐵𝑔(𝜗𝑠)𝐷𝐿2 𝑑𝜗𝑠 (3.4)
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Figure 3.5. A sketch example of the area enclosed by one turn in an electric motor with 𝑝𝑤 = 1.
The area is the grey-coloured one.

Extending the equation to more coils (specifically, 𝑝𝑤 coils), and taking into account
of the equivalent number of turns for each coil according to the winding factor 𝑘𝑤 ,
the total flux linked by winding 𝑎 can be expressed as:

𝜆𝑚𝑔𝑎 = 𝑘𝑤 𝑝𝑤−1∑𝑖=0 ∫ 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤− 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 𝐵𝑔(𝜗𝑠)𝐷𝐿2 𝑑𝜗𝑠 (3.5)

with 𝐷 and 𝐿 as diameter at the airgap and stack length of the motor, respectively. It is
worth noting that the sum with index 𝑖 is general and makes equation (3.5) applicable
for any value that 𝑝𝑤 can assume.

Replacing (3.3) and 𝜗𝑟 = 𝜗𝑠 − 𝜗𝑚 into (3.5) gives the following:

𝜆𝑚𝑔𝑎 (𝜗𝑚) = 𝑝𝑤−1∑𝑖=0 ∞∑𝑛=1 ∞∑𝑘=0 {𝑘𝑤 𝐵̂𝑔𝑛𝛼𝑘 𝐷𝐿4 ⋅
∫ 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤− 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 cos [(𝑛𝑝 − 𝑘)(𝜗𝑠 − 𝜗𝑚)]−

cos [(𝑛𝑝 + 𝑘)(𝜗𝑠 − 𝜗𝑚)]𝑑𝜗𝑠}
(3.6)

Solving the integrals in (3.6) in the integration variable 𝜗𝑠 and repeatedly applying
the sum and difference identities gives (see appendix A for a more detailed description
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of the mathematical steps):

𝜆𝑚𝑔𝑎 (𝜗𝑚) = 𝑝𝑤−1∑𝑖=0 ∞∑𝑛=1 ∞∑𝑘=0 𝑘𝑤 𝐵̂𝑔𝑛𝛼𝑘 𝐷𝐿2
{

𝛽−𝑘[cos(2𝜋𝑖𝑝𝑤 (𝑛𝑝 − 𝑘)) cos((𝑛𝑝 − 𝑘)𝜗𝑚)+
sin(2𝜋𝑖𝑝𝑤 (𝑛𝑝 − 𝑘)) sin((𝑛𝑝 − 𝑘)𝜗𝑚)]−𝛽+𝑘[cos(2𝜋𝑖𝑝𝑤 (𝑛𝑝 + 𝑘)) cos((𝑛𝑝 + 𝑘)𝜗𝑚)+
sin(2𝜋𝑖𝑝𝑤 (𝑛𝑝 + 𝑘)) sin((𝑛𝑝 + 𝑘)𝜗𝑚)]}

(3.7)

where symbols 𝛽±𝑘 are defined as

𝛽±𝑘 = 1𝑛𝑝 ± 𝑘 sin((𝑛𝑝 ± 𝑘)𝑝𝑤 𝜋2 ) . (3.8)

First of all, it can be observed that due to the periodicity of the sine function and
due to the fact that 𝑛𝑝 ± 𝑘 is always an integer, the following term is equal to zero for
each choice of the parameters 𝑝, 𝑝𝑤 , 𝑛 and 𝑘:𝑝𝑤−1∑𝑖=0 sin(2𝜋𝑖𝑝𝑤 (𝑛𝑝 ± 𝑘)) = 0 (3.9)

As a matter of fact this sum is composed by a series of opposing addends. Then, (3.7)
can be simplified as

𝜆𝑚𝑔𝑎 (𝜗𝑚) = 𝑝𝑤−1∑𝑖=0 ∞∑𝑛=1 ∞∑𝑘=0 𝑘𝑤 𝐵̂𝑔𝑛𝛼𝑘 𝐷𝐿2
{

𝛽−𝑘[cos(2𝜋𝑖𝑝𝑤 (𝑛𝑝 − 𝑘)) cos((𝑛𝑝 − 𝑘)𝜗𝑚)]−
𝛽+𝑘[cos(2𝜋𝑖𝑝𝑤 (𝑛𝑝 + 𝑘)) cos((𝑛𝑝 + 𝑘)𝜗𝑚)]}

(3.10)

Expression (3.10) is involved. The evaluation of the coefficients that multiply the
harmonics is difficult and the uncertainties on the parameters knowledge make useless
their estimation. Nonetheless, it is worth appreciating that its particular form makes it
possible to infer that for a given couple 𝑝, 𝑝𝑤 (that is, for each specific motor geometry)
only certain harmonics are present in the flux linkage.

Thus, a simplified expression can be taken into account.

𝜆𝑚𝑔𝑎 (𝜗𝑚) = ∞∑𝑛=1 ∞∑𝑘=0 𝜆𝑑𝑚𝑛,±𝑘 cos [(𝑛𝑝 ± 𝑘) 𝜗𝑚] (3.11)
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The flux linkage is so expressed as sum of harmonics at (𝑛𝑝 ± 𝑘)𝜗𝑚 scaled by a generic
coefficient 𝜆𝑑𝑚𝑛,±𝑘 which should take into account of all the multiplying coefficients in
equation (3.10). As mentioned their analytical evaluation is pointless and a numerical
estimation is recommended.

The present chapter is relative to the fractional-slot PMSM whose data are reported
in Table 3.1. An accurate FEA and the mathematical analysis just described and applied
to the considered motor, allows to identify the coefficients of the harmonics present
in the stator flux linkage. Among them, the main ones are the fundamental derived
from (3.11) by posing 𝑛 = 1, 𝑘 = 0 and the fault-related harmonic, given by 𝑛 = 1,𝑘 = +1. The amplitude of the main fault-related harmonic, which from now on will be
indicated by 𝜆𝑑𝑚𝑎 , is eligible as significant index of the PM health. Due to the winding
distribution of the motor with winding pole pairs 𝑝𝑤 = 1, 𝜆𝑑𝑚𝑏 and 𝜆𝑑𝑚𝑐 have the same
distribution but shifted respect to 𝜗𝑚 by 2𝜋/3 and 4𝜋/3 respectively.𝜆𝑑𝑚𝑎 (𝜗𝑚) = 𝜆𝑑𝑚1,1 cos [(𝑝 + 1)𝜗𝑚] (3.12)

Remembering that 𝑝 = 4, one can easily argue that the three-phase system represented
by the previous equation leads to a reverse phasor sequence rotating at −5𝜗𝑚. With
respect to a 𝑑𝑞 synchronous reference frame, the sequence rotates at −5𝜗𝑚 − 𝜗𝑚𝑒 =−9𝜗𝑚. As a result, under demagnetisation fault and at steady-state conditions a 𝑖𝑞
current harmonic at 9𝜔𝑚 is expected.𝑖𝑑𝑚𝑞 (𝑡) = 𝑖𝑑𝑚1,1 cos (9 𝜔𝑚𝑡) (3.13)

In case of demagnetisation fault, themodel is still described by the equation (2.5) and
Figure 3.2. Time by time, the model was updated for different partial demagnetisation
levels, by changing the 𝝀𝑚𝑔𝑑𝑞 (𝜗𝑚) LUTs through customised FEA sessions. The modelling
of the mechanical part remains unchanged. As in the healthy case, the generation
of the CNN training datasets was obtained by changing the motor working points,
storing at the same time the 𝑖𝑞 current patterns.

3.1.3 Motor with interturn fault

Due to its peculiar mathematical description, the most effective dynamic state-space
model of the motor with interturn fault is obtained in the 𝛼𝛽 stationary reference
frame. In principle, the present work adopts the modelling technique described by
Vaseghi et al. in [108]. That method was suited for permanent magnet motors with an
integer number of slots per pole and per phase. Here, the method is re-elaborated and
extended also to fractional-slot PMSM motors.

The interturn fault is highlighted in Figure 3.6. Each phase is composed by 𝑁 coils.
For example here it is considered a loss of insulation in the first coil of phase 𝑏. The

severity of the damage can be graduated by changing the value of the resistance 𝑟𝑓 .
The fault divides the coil into two parts 1𝑓 and 1ℎ, characterised by the ratio between
the faulty turns and total coil turns 𝜇 = 𝑁𝑓 /𝑁𝑠 .

The damage causes the phase current to split into two paths. The new path (𝑖𝑓 ,
Figure 3.6) drains part of the flux-producing current, with a consequent flux linkage
reduction.
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Figure 3.6. Model of N-coil windings with an interturn fault on phase 𝑏..
Let 𝑅𝑐𝑜𝑖𝑙 be the total coil resistance and 𝑅𝑓 = 𝜇𝑅𝑐𝑜𝑖𝑙 and 𝑅ℎ = (1 − 𝜇) 𝑅𝑐𝑜𝑖𝑙 the

resistances of the two portions 1𝑓 and 1ℎ, with currents 𝑖𝑏 − 𝑖𝑓 and 𝑖𝑏 flowing through
them, respectively.

Treating the current in each coil (including the two sub-coils generated by the
fault) as an independent state variable it is possible to obtain a system of (3 ⋅ 𝑁 ) + 1
equations that describes the electrical behaviour of the circuit. Then, substituting
each current with the correspondent 𝑖𝑎 , 𝑖𝑏 , or 𝑖𝑐 current, adding the voltage Kirchoff
law on the closed loop created by 𝑟𝑓 and reshuffling the equations, it is possible to
obtain a 4-dimensional voltage balance system:⎡⎢⎢⎢⎣

𝑢𝑎𝑢𝑏𝑢𝑐0
⎤⎥⎥⎥⎦ = 𝐑𝑎𝑏𝑐𝑓 ⎡⎢⎢⎢⎣

𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓
⎤⎥⎥⎥⎦ + 𝐋𝑎𝑏𝑐𝑓 𝑑𝑑𝑡 ⎡⎢⎢⎢⎣

𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓
⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
𝑒𝑎𝑒𝑏𝑒𝑐−𝑒𝑓

⎤⎥⎥⎥⎦ (3.14)

where

𝐑𝑎𝑏𝑐𝑓 = ⎡⎢⎢⎢⎣
𝑅 0 0 00 𝑅 0 −𝑅𝑓0 0 𝑅 00 −𝑅𝑓 0 𝑅𝑓 + 𝑟𝑓

⎤⎥⎥⎥⎦
𝐋𝑎𝑏𝑐𝑓 = ⎡⎢⎢⎢⎣

𝐿 𝑀 𝑀 𝑀𝑎𝑓𝑀 𝐿 𝑀 𝑀𝑏𝑓𝑀 𝑀 𝐿 𝑀𝑐𝑓𝑀𝑎𝑓 𝑀𝑏𝑓 𝑀𝑐𝑓 𝐿𝑓
⎤⎥⎥⎥⎦

(3.15)

Symbols 𝑢𝑎 , 𝑢𝑏 , 𝑢𝑐 represent the phase voltages while 𝑒𝑎 , 𝑒𝑏 , 𝑒𝑐 are the back-Electro
Motive Forces (b-EMFs). It is worth to note that only a portion 𝑒𝑓 = 𝜇𝑒𝑐𝑜𝑖𝑙 of the total
b-EMF 𝑒𝑐𝑜𝑖𝑙 is induced in the faulty part 1𝑓 of the coil itself.

The knowledge of the inductance matrix 𝐋𝑎𝑏𝑐𝑓 comes from the availability of an
accurate FEA, which is an essential requirement of the proposed technique. Inductances𝐿 and 𝑀 are the usual phase stator mutual and self-inductances. The fourth row (or
column) contains the mutual and self-inductance between phases and the coil 1𝑓 .

While 𝐿 and 𝑀 are easily obtainable, the self- and mutual inductances related to
the 1𝑓 coil need to include effect of 𝜇. In details,𝑀𝑎𝑓 is the mutual inductance between
coil 1𝑓 and the entire winding 𝑎. Through a FEA it is possible to easily estimate the
value of the mutual inductance 𝑀1𝑎 between coil 1 of the faulty phase (𝑏 in this case)
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and phase 𝑎. This is performed imposing a constant current into the winding 𝑎 and
evaluating the flux linkage on the coil 1 of phase 𝑏. Then, knowing that the mutual
inductance is proportional with the number of coil turns, 𝑀𝑎𝑓 can be obtained scaling𝑀1𝑎 by the factor 𝜇. With the same approach the self-inductance 𝐿𝑓 is equal to the
self-inductance of coil 1 of phase 𝑏 weighted by 𝜇2.

Once the model in the natural 𝑎𝑏𝑐𝑓 coordinates is achieved, the augmented space-
vectormodel in the stationary reference frame 𝛼𝛽0𝑓 is obtained by an extended version
of Park transformation that makes use of the following transformation matrix:

𝐓 = 23
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −12 −12 00 √32 −√32 01√2 1√2 1√2 00 0 0 √32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.16)

where the last element of the matrix is chosen in order to have: 𝑝𝑎𝑏𝑐𝑓 = 3/2 ⋅ 𝑝𝛼𝛽0𝑓 .
That is the electrical power in 𝑎𝑏𝑐𝑓 reference frame is 3/2 times the power in 𝛼𝛽0𝑓 .

The homopolar component of the current 𝑖0 can be neglected, as it does not
contributes to the torque production. The resulting three-dimensional model for the
interturn fault is: 𝐮𝛼𝛽𝑓 = 𝐑𝛼𝛽𝑓 𝐢𝛼𝛽𝑓 + 𝐋𝛼𝛽𝑓 𝑑𝐢𝛼𝛽𝑓𝑑𝑡 + 𝐞𝛼𝛽𝑓 (3.17)

and it is shown in Figure 3.7. The effect of spatial harmonics is included in the model
thanks to a LUT block (𝐞𝑁𝑎𝑏𝑐𝑓 ) obtained experimentally. In particular, the three phase
induced voltages are measured as function of the rotor position 𝜗𝑚 and normalized
with respect to 𝜔𝑚𝑒 . The fourth dimension of vector 𝐞𝑁𝑎𝑏𝑐𝑓 is estimated as a portion (𝜇)
of the voltage induced in the faulty phase 𝑒𝑏 .

The electromagnetic torque is estimated by an energy balance of the augmented
motor model (3.17): 𝜏 = 32 𝑒𝛼 𝑖𝛼 + 𝑒𝛽 𝑖𝛽 − 𝑒𝑓 𝑖𝑓𝜔𝑚 (3.18)

in which the sign minus in 𝑒𝑓 𝑖𝑓 is due to the particular definition of 𝑒𝑓 in the model,
according to equation (3.14).

Finally, it is appropriate a consideration about the expected current patterns in case
of interturn fault. In normal conditions the spectrum of the current vector is formed by
the fundamental signal rotating at 𝑝𝜔𝑚 and its multiple harmonics. Considering the
Fourier Series in amplitude and phase form one can express the currents as follows.

𝑖𝑎 (𝑝𝜔𝑚) = ∞∑𝑛=1 𝑖𝑛 cos (𝑛𝑝 𝜔𝑚 +��𝜑𝑛) (3.19)

As for the healthy and demagnetized cases, the phase of each harmonic is present but
neglected in the analysis since it has no significance in this context.
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Figure 3.7. Motor model for the interturn fault case.

Multiples of the third harmonic are null due to the hypothesis of a three-phase
balanced system. Clearly, when an interturn fault occurs the system balance is lost and
the third harmonic and its multiples may appear in the current signal. This was also
verified by simulation, from which it has been deduced that the major fault-related
contribution is actually due to the third harmonic. It generates a positive phasor
sequence in the three-phase system, which in turn generates an 𝑖𝑞 current oscillation
at 2𝑝𝜔𝑚 that can be profitably used as healthy index:𝑖𝑖𝑡𝑞 (𝑡) = 𝑖𝑖𝑡1 cos (2𝑝 𝜔𝑚𝑡) (3.20)

The 𝑖𝑞 current was obtained under different interturn fault hypotheses (i.e. different
values of 𝜇) from the 𝑖𝛼𝛽 current of the model represented in Figure 3.7, through the
inverse of transformation (3.16). Then, the current patterns were stored for next use
in the CNN training procedure.

3.2 Convolutional neural networks

This section reports the fundamentals of convolutional neural networks, whose prop-
erties and design issues will facilitate the understanding of the following paragraphs.

CNNs are a type of AI-based algorithm that are inspired by the behaviour of mam-
malian visual cortex [47, 115]. In particular, their principal similarity is in the procedure
called feature extraction, which is the recognition of more or less complex characteris-
tics that are present inside the image. This operation is performed by applying several
filters, called kernels, through different layers in cascade. Such structure allows the
recognition of characteristics that are as complex as the number of layers increases.
This set of layers forms the convolutional stage of the CNN.

Other common layers in CNNs are then briefly described. For an example of their
utilization inside a CNN see Figure 3.8 which is the CNN that has been used within this
chapter.

The next layer after the convolution is nonlinearity, that can be used to adjust
or cut-off the generated output. For many years, sigmoid and tanh were the most
popular non-linearity. More recently, the Rectifier Linear Unit (ReLU) has been used
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Figure 3.8. Example of a 1D convolutional neural network.

more often, for its simpler definitions in both function and gradient [3]. It implements
the following function:

𝑦 = {𝑥 if 𝑥 ≥ 00 otherwise
(3.21)

The nonlinear layer helps in training and fitting nonlinear behaviours. Finally,
a classical Fully Connected (FC) net layer is used to classify the image among the
possible output classes .

Generally, in image recognition a 2D discrete convolution is used. It is applied
between the input image 𝐼 and a kernel 𝐾 characterized by a certain receptive field (i.e.
height 𝑚 and width 𝑛) which is typically smaller than the dimensions of the image.
The output is often called feature map. The operational definition of the convolution
may vary, depending on whether or not it is of interest to maintain the commutative
property [36]. In this work, the convolution 𝑆 = 𝐾 ∗ 𝐼 has been implemented as
follows: 𝑆(𝑖, 𝑗) = ∑𝑚 ∑𝑛 𝐼 (𝑖 − 1 + 𝑚, 𝑗 − 1 + 𝑛)𝐾(𝑚, 𝑛) + 𝑏 (3.22)

where it is intended that the matrix indices start from 1. The algorithm may also be
defined as a cross-correlation, which is identical to a standard convolution, without
flipping the kernel [36]. An example, reported in Figure 3.9, will help in understanding
the procedure.

Firstly, an element-by-element (Hadamard) product between a sub-matrix of the
input image and the kernel is performed. The portion of the input matrix that must be
considered is identified by the indexes (𝑖, 𝑗). In Figure 3.9, the computation of 𝑆(1, 1)
is obtained by the Hadamard product of a 3 × 3 kernel matrix and sub-matrix of the
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Figure 3.9. A convolution example. In case of 1D CNN, heights of input image, kernel and
convolution output (conv𝑜𝑢𝑡 ) are unitary.
same size located in the upper-left corner of 𝐼 . The products (i.e. the elements of the
Hadamard matrix) are summed together with a bias 𝑏, generating a value for 𝑆(1, 1)
element. To compute 𝑆(1, 2), one has to refer to the sub-matrix 𝐼 highlighted in blue
in Figure 3.9, and so forth.

3.2.1 Convolutional neural networks properties

Due to convolution, three are the main properties of a CNN that a normal fully
connected neural network does not have: sparse interactions, parameter sharing and
equivariance to translations. Sparse interactions and parameter sharing are properties
which are reciprocally highly connected. Since the kernel dimension is generally
smaller than the input image, the same weights (i.e. the elements of the kernel) are
applied on different portion of the image. Therefore, the same parameters are shared
among the neurons of the each layer, justifying the sparse interaction quality.

Opposite to traditional neural networks, that are fully connected, in CNNs the
reduced kernel dimensions enable both a lower storage capability and a lighter com-
putational load.

Finally, equivariance of a function means that if the input changes, the output
changes too, accordingly. The property of equivalence to the translation of a CNN
network means that if the input image is shifted in time, so will the output. Having
in mind the pattern recognition problem, the equivariance is definitely useful, since
the position of the fault within the input image is unknown.

3.2.2 Convolutional neural networks parameters

The design of a CNN is a very complex task, with a huge number of possibilities and
parameters. This is the main concern when approaching the use of this powerful, but
rather challenging analysis tool. In the following paragraphs some hints will be given
in order to guide the designer in the choice, with specific reference to the condition
monitoring problem.

The definition of a CNN requires many different parameters, which can be subdi-
vided into hyperparameters and learnable parameters.

The formers define the architecture of the network. Some examples are the number
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or type of layers that compose the CNN, the number of filters in each convolutional
layer or the number of neurons in the filters.

The learnable parameters are the weights and biases of each neuron of the CNN.
They are chosen after that the CNN structure is designed through the definition of all
the hyperparameters.

The design of the CNN does not necessarily follow that order. In the present chapter
it has been found that a procedure that goes back and forth between the hyperpa-
rameters and the learnable ones may be the most suited way to come to satisfactory
results. In the following, some details are given.

Learnable parameters

The training procedure defines the weights and biases inside the network. This
problem is faced within a very powerful class of methods that are known as supervised
learning techniques. A labelled training dataset is necessary, that is, a set of images
to feed the network and that it tries to classify.

If the network performs its task properly, i.e. the CNN classifies the images as their
are labelled, the weights are correctly tuned. If not, an optimization method to update
them is necessary.

A typical choice falls in the back-propagation error-based techniques in which the
target is the minimisation of a given loss function, which is evaluated at each iteration
of the training dataset (epoch) by comparing the known (labelled) fault conditions
with the ones predicted by the CNN.

A commonly used method is the Stochastic Gradient Descendent (SGD) algorithm
[92]. This method is particularly known for its simplicity in the implementation and
for its optimality in the convergence rate, equal to (1/𝑇 ). This parameter is the
expected excess cost of the approximated solution respect to the optimal one after 𝑇
optimization iterations.

With this method, once the loss on the training dataset is calculated, weights are
updated by a small step in the direction of negative gradient of the loss itself. The
dimension of the step is imposed by the learning factor coefficient, which governs
the convergence speed. An upper limit to the learning factor is given by the possible
triggering of oscillations of the loss function around its minimum, without reaching
it. A deeper analysis of SGD is done in [103] or still in [36].

It is of paramount importance that the training dataset covers the whole space of
images that the network is asked to classify. When the CNN is trained on a very small
subset, it will perform well only locally, since it has not a good extrapolation ability.

Hyperparameters

The focus moves now on the design of the CNN structure, i.e. the definition of the
hyperparameters. A typical AI-related problem is the overfitting issue.

Overfitting is a situation such that the neural network is so closely fitted to the
training set that it finds difficult to generalize the problem andmake correct predictions
for new data. This is directly related to the neural network model capacity, which
defines the complexity of the tasks that a neural network is able to solve. The more
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well-structured the CNN, the larger its model capacity. On the other hand, if the CNN
has a too big model capacity, it may tends to overfit training data and will be unable
to elaborate new data.

The opposite condition, the underfitting, is also a problem. In that case, the model
capacity is insufficient and the CNN does not track the real trend of training data. It
tends to interpolate the experimental data by a too simple model and some crucial
information are lost.

In the present work, it has been found that an iterative procedure can help in
defining all the hyperparameters of the CNN. The training procedure is started with a
CNN of minimum model capacity. The training set obtained by the drive models is
splitted into two datasets (cross-validation method). The first is used for the training
by the SGD algorithm. After each training epoch the SGD evaluates the loss function
to decide whether to reiterate the training by starting a new epoch or to stop it.
The end of the training can happen because the loss function has either reached a
predetermined minimum value, or it has not improved during the last epochs.

The second dataset, called validation set is used to check the CNN during the training
outlined above, at regular intervals. The loss function is evaluated but (opposite to
the training procedure) the check is not intended to modify the weights of the CNN. It
just interrupts the training flow, verifying the ability of the network to recognise a
dataset (i.e. a motor fault) that it has never seen before. At the end, the time evolution
of the loss function of both the training and validation during the SGD training yields
three possible situations:
• overfitting: the training accuracy is satisfactory, but the validation test on new
images still returns a poor result. The CNN has to be simplified, for example reducing
the number of layers.

• underfitting: both the training and validation still exhibit low accuracy. The CNN
model capacity is too small and it shall be increased by either adding layers,
increasing kernel sizes or making other decisions that lead to a more complex
structure. Iteratively, the architecture of the CNN will become more and more
structured till it edges an overfitting flaw.

• well-tuned: the predetermined overall accuracy (for example, 97% of positive
matches) is reached and the validation test on new images returns a good re-
sult as well. The CNN is sized appropriately and the weights are well tuned. The
training procedure has been successful.
The procedure outlined above was used to design the CNN that underlies the

present condition monitoring technique. Even not revolutionary, still it represents an
operative and effective way for the implementation. The various steps are summarised
in Figure 3.10, while the CNN specific features are reported in section 3.2.2.

3.3 Design of the experiment

This section analyses the design and execution of experiments for the proposed
condition monitoring of a fractional-slot permanent magnet synchronous motor. It
is subdivided into a part related to the validation of the models necessary for the
generation of the artificial training dataset and a part relative to the CNN design.
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Figure 3.10. Proposed iterative design of CNN for condition monitoring.

3.3.1 Permanent magnet synchronous motor drive models validation

One of the main innovation proposed in this thesis is the combined use of motor
models and CNN to get a comprehensive approach to condition monitoring. The motor
models need to be validated before being used as generators of artificial dataset for
the CNN training. The availability of a virtual unlimited dataset greatly enhance the
industrial feasibility of the method, with respect to those based on the collection a
great number of real faulty motors.

The validation of the models presented in the previous sections was achieved by
comparing their behaviours with a real PMSM. It was a 1.5 kW PMSM whose main
features are reported in Table 3.1.

In order to validate the models under different loading conditions, the PMSM was
stiffly coupled and dragged at constant speed 𝜔∗𝑚 by a Dragging Motor (DM). The
whole test bench is shown in Figure 3.11.

Actually, two prototypes of the same motor were manufactured with customised
features. The first one was an healthy motor with a modified winding. According to
the modelling of section 3.1.3, a contact has been extracted from an intermediate point
of the phase 𝑏. In this way, it was possible to insert an external variable resistance to
simulate interturn faults of different severity. The absence of the resistance was the
healthy motor, of course.

The second motor was used for the validation of the condition monitoring in case
of demagnetisation. The rotor was modified removing the permanent magnets of a
pole pair and replacing them with demagnetised elements, namely with the 20 % of
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Figure 3.12. Experimental current-controlled PMSM drive.

nominal remanence.
The experimental setup was completed by two Space Vector Modulation (SVM)

inverters connected to the motors and controlled by a Fast Control Prototype (FCP)
system (Figure 3.11), implementing the conventional field oriented control (Figure 3.12).

The phase motor currents are of fundamental importance for the condition moni-
toring proposed in this work. They were directly measured through the MicroLabBox
Analog to Digital Converters (ADCs), with a resolution of 16 bit for a full scale current
of ±14A. The inverter switching frequency and the ADC sampling frequency were
both of 10 kHz. The drives were operated at different speed and load conditions and
the real currents were compared with those obtained by the Simulink models, for
validation purposes.

The validation has involved both healthy and faulty motors and the related models.
The first point to resolve was whether a frequency or time comparison was more
appropriate. The former is a well-defined method, even if it involves the burden of
a transformation in the frequency domain. It can be the best candidate in case you
want to automate the validation procedure. The second enables a qualitative analysis
of the trend of the signals over time. It is convenient because it provides at a glance
information on the quality of the model. Although the validation was performed on
different working conditions, only one per type of fault is here reported, for illustrative
purposes.

As described in section 3.1, an incoming fault is characterised by the emergence
of new (fault) harmonics in the current spectrum. For what concerns the qualitative
validation in the time domain, Figure 3.13 shows the 𝑖𝑞 current in healthy conditions,
at a speed of 104.7 rad/s and a load torque of about 0.5 Nm, corresponding to a current𝑖𝑞 = 1A.

The same working point was selected for the demagnetised PMSM and the interturn
fault. The results of the comparisons are analysed in Figure 3.14 and Figure 3.15,
respectively. It is worth to note how the demagnetisation of a single magnetic pole
pair (out of 4) causes a marked oscillation at the frequency 9𝜔𝑚/2𝜋 = 150Hz, as
required by (3.13).

It is also evident that the interturn fault gives rise to an oscillation, due to the
phase unbalance. Its period is of about 7.5ms, as expected from (3.20) that indicates a
frequency of 2𝑝𝜔𝑚/2𝜋 = 133.3Hz.

All figures also track the percentage error in the 𝑖𝑞 current between model and
experiments, referred to the nominal motor current (3.8 Aeff , Table 3.1). In all cases
the errors lie within the satisfactory range of ±1%.
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Figure 3.13. Model and experimental 𝑖𝑞 current time patterns, healthy PMSM. The percentage
error is referred to the nominal motor current.
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Figure 3.14. Model and experimental 𝑖𝑞 current time patterns, partially demagnetised PMSM.
The percentage error is referred to the nominal motor current.
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Figure 3.15. Model and experimental 𝑖𝑞 current time patterns, interturn fault. The percentage
error is referred to the nominal motor current.

For what concerns the validation in frequency domain, Table 3.2 shows the com-
parison between the amplitudes of both the fundamental current components and
fault harmonics, in case of simulation models (sim) and of experimental prototypes
(exp). The percentage errors (err) are referred to the PMSM nominal current (Table 3.1).
All data refer to the same working conditions described in Figure 3.13-Figure 3.15. It
is easy to note the impressive similarity of the results, which confirms the accurate
FEA of the motor. The strong correspondence between models and real prototypes
will yield a trustworthy generation of artificial patterns for the CNN training, which
is one of the key-features of my thesis work.

Table 3.2. Model validation through Fast Fourier Transform (FFT) analysis of the 𝑖𝑞 current.
sim [A] exp [A] err [%]

healthy fundamental 1 0.999 0.018
fault harmonic (absent) - - -

demagnetized fundamental 0.9997 1 -0.0055
fault harmonic (@ 150Hz) 0.108 0.102 0.111

interturn fundamental 0.964 0.972 -0.141
fault harmonic (@ 33.3Hz) 0.039 0,038 0.025
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3.3.2 Convolutional neural network design hints

The CNN was designed by adopting the approach explained in section 3.2. To make
it easier to reproduce the conditioning monitoring system, some design hints are
reported below.

Since the system is operating on current patterns, a 1D neural network was realized.
The only one dimension is the 𝑞 current record length that will be indicated with
letter 𝑀 .

At steady state, an healthy PMSM should exhibit a constant 𝑞 current. As highlighted
during the model validation stage, either a partial demagnetisation or an interturn
fault cause oscillations to arise, because of harmonics at frequency different from the
fundamental one.

It is expected that more severe is the fault level, the greater the amplitude of
oscillations, while its angular frequency should identify the type of fault. The angular
frequency is strictly dependent on the motor speed and this eases the evaluation of
the right fault-related harmonics. In principle, a proper threshold on the oscillation
amplitude could then implement a good condition monitoring. This apparently simple
method has some implementation flaws, as the need of establishing the threshold and
facing possible slight frequency shifts of the selected harmonic.

The use of a well-tuned convolutional neural network is definitely preferable, as
it takes the index in the recognition process not only a specific harmonic but the
current time behaviour as a whole. The classification of the motor conditions will be
more robust and successful.

Choice of kernel and current record sizes

The condition monitoring is based on the analysis of 𝑖𝑞 current time strings, each
of them composed by 𝑀 points, usually sampled at the beginning of every inverter
switching period 𝑇𝑐 = 100 𝜇s. The mean value associated to the operating point of
the motor is out of interest, and it is removed. After data post-processing, an healthy
motor should return current patterns just noisy around zero. A first important choice
is about the kernel size (or length) (Figure 3.9), that is the time period by which the 𝑖𝑞
current record is scanned by convolution. The following considerations provide some
hints in the trade-off.

The oscillations due to the demagnetisation and interturn faults have a time period
established by equations (3.13) and (3.20) and it is a function of the motor speed.

The kernel elements are the CNN weights that after the training will approxima-
tively have a sinusoidal shape, at the fault-related harmonic frequency. Therefore,
the minimum kernel length 𝑀𝑚𝑖𝑛 that may guarantee the detection needs to includes
at least one period of oscillation in the worst conditions, i.e. at the minimum motor
speed 𝜔𝑚𝑖𝑛 and in presence of an interturn fault:𝑀𝑚𝑖𝑛 ≥ 𝜋𝑝 𝜔𝑚𝑖𝑛𝑇𝑐 (3.23)

A longer kernel would contain more than one period of oscillation, with a detection
capability preserved and even improved, at the cost of a longer processing time. A
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Figure 3.16. Frequency normalization for kernel matching. The graphs are two 𝑖𝑞 current
records, (a) @ 𝜔𝑚 > 𝜔𝑚𝑖𝑛 , (b) @ 𝜔𝑚𝑖𝑛 . After normalisation, 𝑀𝑠 samples contain the same
number of oscillations of 𝑀 samples @ 𝜔𝑚𝑖𝑛 .
rough, but effective, rule of thumb is to set 𝑀𝑘 ≈ 2𝑀𝑚𝑖𝑛, while the length of each 𝑖𝑞
current record was set to 𝑀 ≈ 25𝑀𝑚𝑖𝑛 .

It is worth to note that a certain independence between the fault-related harmonic
period and the kernel length enables the use of the same kernel for both the monitored
faults, without increasing the depth of the CNN.

The technique is based on the effects of the faults into the airgap flux density, which
in turn affects the b-EMF and finally the current patterns. The effect is less evident
at low speed and therefore below a certain minimum speed the algorithm cannot
work. It has been found that a proper choice for the PMSM prototypes used during the
experiments is to trigger the operation of the condition monitoring algorithm above
the minimum operating speed 𝜔𝑚𝑖𝑛 = 42 rad/s = 400 rpm, less than 0.1 ⋅ Ω𝑚,𝑁 . In turn,
that choice leads to a minimum kernel length 𝑀𝑚𝑖𝑛 = 187, 𝑀𝑘 = 300 and 𝑀 = 5000,
according to (3.23) and the related discussion.

Frequency normalization

For the sake of an easier implementation in the real drive, the 𝑖𝑞 current time records
always contain the same number 𝑀 of samples. As the speed increases, more and
more oscillation periods are present, as depicted in Figure 3.16, upper track. This is a
big issue, since the kernel size and weights cannot be changed in real time.
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When the PMSM runs at the minimum speed 𝜔𝑚𝑖𝑛, by construction 𝑀𝑚𝑖𝑛 samples
correspond to a whole period of oscillation and each 𝑖𝑞 current record, composed by𝑀 elements contains 𝑀/𝑀𝑚𝑖𝑛 = 25 whole oscillation periods. This is a design feature
that must be preserved in any working condition. As the motor accelerates to a speed𝜔𝑚 , the 𝑖𝑞 records more than 25 periods, so it must be scaled down by taking only the
first 𝑀𝑠 samples, calculated proportionally as𝑀𝑠 = 𝑀 𝜔𝑚𝑖𝑛𝜔𝑚 (3.24)

so that the number of oscillations is still 25 at any speed and the effectiveness of the
convolution is maintained.

3.4 Experimental results

As it is evident from the previous sections, the road to a complete algorithm is a
complex interweaving of interdisciplinary skills, ranging from the physics of electric
motors to the design of appropriate neural networks.

Each phase involved theoretical studies, simulations and experimental sessions.
Therefore, this section is entitled Experimental Results in the sense that it will show
CNN’s actual classification capabilities on PMSM propotypes that in no way took part
to its training. First, some further implementation details are given below.

3.4.1 Convolutional neural network implementation details

The convolutional neural network was implemented in Matlab through the Neural
Network Toolbox. The training requires the design of an artificial dataset, composed
by 𝑖𝑞 current records (images) obtained from the models validated above. Training
samples among the three classes (healthy, demagnetized and motor with interturn
fault) have to span the whole motor operating region in terms of both current and
speed. Records are randomly mixed to compose epochs, as described in section 3.2.2.
Once the kernel length 𝑀𝑘 is fixed, it can be applied along each current pattern, for
all the patterns of the epoch.

The convolutional network structure depicted in Figure 3.8 ends with a classifi-
cation among healthy and two faulty conditions. In details, the CNN returns a real
number for each neuron of the FC output layer. Namely, OUTℎ for the healthy motor
class, OUT𝑑 and OUT𝑖) for the demagnetised and interturn fault classes, respectively.
Them alone are insufficient for a proper final decision on the PMSM state.

Another layer, called softmax, translates the neurons output in a percentage. Then,
the label 𝐶 of the class which has the higher probability to include the given 𝑖𝑞 time
record is computed by the simple expression:

𝐶 = max𝑥 [ OUT𝑥∑𝑥 OUT𝑥 ]; 𝑥 = {ℎ, 𝑑, 𝑖}. (3.25)

By comparing 𝐶 returned by (3.25) with the known state of the PMSM that has
produced the current record, the training algorithm iteratively tunes the elements of
the kernel as well as the weights of the FC net, as already described in Figure 3.10.
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In the training dataset generation process, speed was imposed at different levels
starting from 𝜔𝑚𝑖𝑛 = 42 rad/s at steps of 20 rad/s up to Ω𝑚,𝑁 = 576 rad/s, while the 𝑖𝑞
current was controlled by steps of 0.5 A up to 𝐼𝑁 = 3.8 Aeff .

Several demagnetization levels were included in the training set, generating sam-
ples with PMs at 20 %, 40 % and 60 % of nominal remanence. Interturn fault samples
were achieved at the following different levels of the fault resistance 𝑟𝑓 : 0.01Ω, 0.1 Ω,1Ω.

The artificial training dataset (14700 current vectors, of 𝑀 samples each) was
divided randomly into two subsets: the first, composed by the 70 % of the original
dataset, was used for the training, while the remaining samples were used for the
validation of the neural network (Figure 3.10). Thus, 0.7 ⋅ 14700 = 10290 samples were
used in each epoch for the update of the network weights.

3.4.2 Data augmentation techniques

The data augmentation is the artificial generation of training patterns to enlarge the
training dataset and obtain better tuned networks. Actually, in the present case, the
whole training set is created artificially through the simulation model and therefore,
also this operation can be classified within the data augmentation methods. The
application of this approach gives wide possibilities for the generation of several
training patterns in different working conditions of the motor. Nonetheless, as it will
be appreciate in the following, the implementation of additional data augmentation
methods is mandatory to reach satisfactory results.

A recent review [112] has collected the main time series DA methods, framing them
in an accurate taxonomy. All methods have the goal of increasing the number of
training samples.

The most challenging ones are the decomposition, the learning methods and finally
the model-based methods. The formers decompose the initial training dataset in a
series of statistical informations as trend, seasonality and residuals. Then they apply
some transformations to these variables creating the augmented training dataset.
While interesting, they are probably too complex for using in the present work.
Learning-based methods assume that simple transformations applied to encoded
inputs rather than to the raw inputs would produce effective DA [112]. They represent
a viable improvement and are worth a future deepening.

Last, model-based time series augmentation approaches typically involvemodelling
the dynamics of the time series with statistical models. The present implementation
borrows some DA techniques, namely white noise addition and random cropping,
always with an eye to maintain the necessary overall simplicity. They have been
applied to both simulation and experimental current patterns, as described below.

Firstly, a white noise was added to the 𝑖𝑞 patterns obtained by the models, obtaining
new patterns and therefore enlarging the artificial dataset.

Secondly, special attention was paid to the phase of the artificial faulty patterns.
Since they are generated by a model, it is easy to make the mistake of polarising
them with unrealistic conditions. This is particularly true for the initial conditions of
the simulation that, if unchanged, may lead to faulty current patterns with always
the same initial phase of the harmonics. It has been found that a good solution is to
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generate quite long current patterns and then obtain several artificial sequences by
randomly cropping M-samples portions.

The same cropping technique was used to triple the experimental dataset used to
validate the classification capabilities of the CNN in Section 3.4.3.

3.4.3 Convolutional neural network classification capabilities

The classification capabilities of the condition monitoring system were finally vali-
dated through an experimental set of samples collected on the custom real motors
available in the laboratory. None of the sets was used in the training of the CNN.

A set of 144 current vectors was obtained in different working conditions. In details,
the experiment grid was obtained by regularly spacing the speed in the interval[1/10… 1 Ω𝑚,𝑁 ] and the 𝑖𝑞 current within [0.2… 1 𝐼𝑁 ]. As regards the interturn fault,
fault resistances were selected in the range [1… 15Ω]. They were finally presented
to the proposed condition monitoring system for classification in order to test its
performances.

To evaluate the impact of the DA techniques to the network classification accuracy,
they were applied one after the other for the generation of the training dataset. After
each improvement, the CNN was asked to classify the same experimental dataset.

As common practice in supervised learning algorithms, the results are reported
in a so-called confusion matrix, a specific table layout (Figure 3.17) that allows the
evaluation of performances at a glance. Each column of the matrix represents the
instances in a predicted class while each row represents the instances in an actual
class.

In the first case (Figure 3.17 (a)) neither noise addition (except quantization noise)
nor random cropping were applied for the generation of each sample of the training
dataset. Each sample pattern started from the same initial condition. In this case the
classification results are very poor and the network is able to classify correctly only
the 59.7% of the experimental motor conditions.

Some improvements were achieved by adding a white noise to the current patterns
used to train the CNN (Figure 3.17 (b)), increasing the net accuracy up to 66.67%. The
performance is still non-optimal because in this way the same initial phase is always
imposed on the harmonics (Section 3.4.2), a condition that is obviously not respected
by the experimental data.

The classifier accuracy was further increased by random M-samples cropping
within each simulation sample. This improvement in the training dataset produced
the classification reported in Figure 3.17. In this case the recognition is perfect and
all cases are correctly classified (Figure 3.17 (c)), confirming the validity of both the
method and the proposed DA hints.

Last, the experimental batch was enlarged by adding 9 further measurements at
very low speed (26.2 rad/s), below the speed of 42 rad/s fixed as lower limit during
the system design (section 3.3.2). Such new measurements were accomplished in the
interturn fault case with 𝑟𝑓 varying between [0.025Ω…0.1Ω] with 𝑖𝑞 = 1A.

This new test was intended to validate the recognition problems at low speeds of
the motor. Even increasing the severity of the fault by strongly reducing the fault
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Figure 3.17. Experimental confusion matrices. Classification results are listed by gradually
including different DA techniques to the training dataset. The rightmost matrix includes 9
experimental patterns out of the CNN training range.
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resistance 𝑟𝑓 , the reduced rotor speed leads to some false positive predictions. In
particular, the CNN correctly classifies only 3 current patterns over 9 (Figure 3.17 (d)).

Finally, it is worth remembering that the study has been conducted considering
a torque controlled PMSM (the speed was imposed by the load), but the technique is
general and can be applied also to speed-controlled motors provided that they are in
steady-state conditions. In this case the only difference is that the current reference is
not constant but generated by the speed controller and so an additional background
noise due to the speed control loop can be present. In order to properly manage this
issue the training dataset should be composed by patterns including also this noise,
enabling the network to learn it and to distinguish it from the fault-related harmonics.

3.5 Conclusive remarks

An effective method for condition monitoring of PMSM has been presented in this
chapter. As the following chapters, it falls into the category of knowledge-based
systems, matching the more-intelligent drives paradigm.

The proposed condition monitoring technique is composed of two parts. The first
one, performed offline, consists in the model setup and tuning, the training dataset
generation and the CNN training. The second one, performed online, is relative to the
experimental current pattern acquisition and their processing by the trained CNN,
for a continuous monitoring of the health conditions of the motor. Therefore, the
algorithm well fits for the Industry 4.0 paradigm and can be easily adapted to an
IoT environment. The integration of the PMSM drive in an articulate and complex
system eases the exchange of data between the components of the system itself. With
such a structure it is possible to designate each task to the appropriate element. So
the operations which need determinism and real-time behaviour, as for the motor
control, are implemented in the slave inverter, while the condition monitoring of
the motor can be performed by a master server which can be devoted also to other,
more complex, but not deterministic tasks. The interconnection guarantees an online
master-slave communication. The slave can acquire in real-time the motor current
patterns sending them to the master, that performs the condition monitoring and
takes the proper actions if it detects a potentially dangerous situation.

The use of 1-D CNNs fits for the simplicity that is required by the industrial field,
while providing the benefits of versatility and robustness typical of artificial intelli-
gence.

From the very beginning, the approach was intended to be comprehensive, in
the sense of addressing every theoretical and implementation aspect. An objective
impediment to the straightforward transposition of the techniques used for image
recognition to the field of electric motors is the lack of an adequate number of test
cases.

To tackle the problem and as a distinctive feature of this thesis, we proposed the
generation of artificial training patterns, obtained on motor models validated on
custom prototypes. The effort is certainly less than either finding a vast archive of
faulty current signatures, or reproducing the faults by damaging several motors.

The models were merged in the complete AC drive simulation, to get realistic
current patterns. Actually, the second important feature of this work is that it uses
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only existing current sensors, present in any AC motor drive.
The datasets for both training and validation were enlarged by using simple DA

techniques. Some more advanced and challenging methods are worth deepening in a
next research steps.

The chapter includes all the design hints for reproducing the condition monitoring
system. Experimental results relative to each stage have been included, and final
verification of the classification ability, carried out on real prototypes, has confirmed
the effectiveness and the practical feasibility.

The procedure is general and relevant for all the types of fault that have a measur-
able effect on phase currents. The approach is then easily extendible to other faults,
as for example the ball bearing-related ones and to other types of motor as well. The
results of this activity are documented in [89].
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im fault detection using stray flux measurements

In recent years, predictive maintenance on IMs has become of increasing interest in
the industry, due to the intense participation of these machines in a vast number of
processes and applications. Despite the characteristic robustness of the machines, the
severe repercussions of failures justify the development of diagnostic techniques to
avoid premature failures. This chapter and the following one are targetted to the early
fault detection of this type of electrical machines.

One of the most widely used diagnostic techniques in the industry (especially for
IMs) is the MCSA, which analyses the current during steady-state operation. However,
the classical techniques have some drawbacks. Many of the techniques are not immune
to the existence of false indicators caused by the presence of oscillations in the load
torque or fluctuations in the supply voltage [31]. In this respect, techniques such as
transient stray-flux analysis can provide immunity against those phenomena. The
technique also has other advantages over other classical techniques which are widely
used in industry, such as the non-invasive nature and the low cost of the sensors
that are required. This can convert stray-flux analysis onto an excellent alternative or
complement for the diagnosis [22], [53].

Several works have studied the viability of this approach to detect different type
of failures, such as eccentricities [75, 97], rotor damages [8, 42, 85, 93, 94], coupling
system problems [29] and even winding asymmetries in wound rotor induction motors
[116]. Many of these papers are based on the analysis of these EMF signals under
steady-state conditions. However, there are some drawbacks when using classical
methods. The presence of load torque oscillations or rotor axial air ducts could result
in a false positive in steady-state analysis.

On the other hand, it is well-known that IMs demand a high current under starting.
This has negative effects such as significant voltage drops in the installations, possi-
bility of stressing the motor insulation and additional energy wastes under starting.
Due to this, different reduced voltage modalities have been proposed with the aim
of reducing the startup current peak, being the use of soft-starters quite extended in
industry.

Soft-starters are based on modifying the supply voltage applied to the motor by
changing its rms value with the aim of allowing a softer startup. Most are based on a
power circuit with anti-parallel thyristors installed on one, two or all three phases
of the motor supply line (i.e. one, two or three-phase control). Changing the angle
of the thyristors, enables the variation of the rms value of the voltage applied to the
motor. Many soft-starters allow certain parameters to be varied at start-up. The most
common soft-starters allow the starting time and the percentage of voltage applied to
be varied, and some even allow the current to be limited during starting.
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However, the use of soft-starters does not avoid the possibility of motor failures.
In fact, their use is known to amplify certain harmonics and introduce others, which
could make motor diagnostics more difficult [26], [25].

This chapter presents the results of a joint research, made in collaboration with
professor Antonino Daviu of the Universitat Politecnica de Valenica and it is aimed to
the analysis of the stray-flux in the transient regime in motors started by using static
starters. The patterns obtained by analysing the stray-flux have been characterised by
various authors. Despite this, the translation of these signals to the identification of
the health degree of the motor is still subject to the user’s interpretation. In line with
the paradigm of "more intelligent drives" that is the thread of my thesis, the target
was then to automate the fault diagnosis using artificial intelligence techniques. CNNs
will be applied with the ultimate goal of obtaining an automatic diagnosis of the fault
(i.e. without user intervention). Even in this case the main issue to deal with is the
availability of a proper training dataset. Differently from the case of PMSMs, the very
complex nature of the stray flux signal makes difficult the realization of an accurate
model able to artificially generate the training dataset. As a valid alternative, in this
case the poor experimental training dataset has been intelligently dealt through some
drive-oriented data augmentation techniques.

4.1 Rotor Bar Damage

Stray-flux analysis under the starting transient allows the detection of different
types of faults in induction motors [93]-[116]. With regards to bar breakages, some
components are amplified over others in the time-frequency maps. It has been shown
that the 𝑠 ⋅ 𝑓 and 3 ⋅ 𝑠 ⋅ 𝑓 components (where 𝑓 is the supply frequency and 𝑠 is the slip)
are particularly sensitive to rotor faults [14]. These components are axial in nature. On
the other hand, the 𝑠 ⋅ 𝑓 component can also be amplified in the case of the existence
of eccentricities in the machine [14].

In addition to the components of axial nature, there are components of radial
nature given by 𝑓 ⋅ (1 ± 2𝑠). These components are known as the sideband components,
located on either side of the fundamental frequency, depending on the sign that is
considered [14].

The nature of the failure components is relevant since depending on the position
of the sensor the Electro-Motive Force (EMF) induced components will be axial or
radial. Figure 4.1 shows the different sensor positions usually considered for stray-flux
measurement. In position A, the sensor measures axial flux. In position B, the sensor
measures radial flux and a portion of axial flux. Finally, sensor position C measures
radial flux (Figure 4.1). Depending on the position studied, one component or the
other prevails.

On the other hand, it should be noted that some authors have shown that the
existence of bar breakage can amplify the component related to eccentricities or
misalignments with the load given by 𝑓𝑒𝑐𝑐 = 𝑓 ⋅ (1 ± 𝑚 ⋅ (1−𝑠)𝑝 ) (𝑝 is the number of pole
pairs and 𝑚 = 1, 2, 3…) [52].

All components are slip-dependent and therefore follow a certain evolution during
the transient which was well-characterized in previous works of the Spain research
group [93]-[116]. In particular, the Short Time Fourier Transform (STFT) is applied
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Figure 4.1. Coil sensor positions for stray flux measurements.

to process the signals obtained from coils. Using a Matlab program, the appropriate
parameters have been modified to obtain a good representation of the time-frequency
map and to visualise the fault patterns.

4.2 Convolutional Neural Network Basics

A CNN is a particular type of ANN which is especially suitable for image recognition
problems. The key difference respect to a traditional Fully Connected ANN is in the
application of at least one convolution process during the elaboration of the input
image. This operation allows the recognition of the presence in the image of particular
signatures useful for its classification. As a matter of fact, this stage of the network is
also called feature extraction stage. This primary stage is followed by another stage that
performs the classification of the image according to the extracted features (therefore
called classification stage). The CNN design methodology used in this chapter is the
same of previous chapter 3.

4.2.1 The importance of training phase - a comprehensive view

Once the network structure is determined, a tuning of its weights (or learnable param-
eters) is necessary. As a recall, this design step needs three different datasets, namely,
training, validation and test datasets. In the following, the size of these datasets will
be indicated by symbols 𝑛𝑡𝑟 , 𝑛𝑣𝑎 , 𝑛𝑡𝑒 , respectively. The first is used to tune iteratively
the CNNweights, with the aim of optimizing the network performances on the classifi-
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cation of this dataset. The validation one is used during the training, but not to update
the weights. It is only needed as a mean to detect arise of overfitting issues [36]. It
helps in understanding whether the network is going to improve its performance also
on new data or only on the training ones (section 3.2.2). Finally, the test dataset is
used to test the network capabilities on a dataset completely independent from the
design procedure.

A crucial issue in electric drives is the availability of these large datasets. In the
present work, the enhancement of poor training datasets through DA techniques
tailored on the application is the main key point. It will be dealt with separately in
section 4.2.2.

The training procedure is composed by two steps, namely the forward propagation
and the back-propagation. In the former, the training samples are fed to the network
returning for each image of the training dataset the relative estimated classification.
These estimates are then compared with the correct labels to obtain the classification
error on the training dataset. In the latter, the back-propagation of this error is applied,
updating the network weights with the aim of minimizing the training error as cost
function of this optimization process.

Different algorithms for the update of these weights are already present in literature
[67]. The iterative repetition of the forward and backward operations returns the
optimal choice of the network weights for the considered training dataset.

Periodically, to monitor the network capabilities, a forward propagation of the
validation dataset is applied. This is not followed by the back-propagation update.
Actually, to recognize the overfitting condition, the validation dataset should not
influence the CNN weights.

4.2.2 The data augmentation of training dataset

The absence of a large volume of historic data in the electric drives field is the main
barrier to the diffusion of knowledge-based fault detection systems. It has been found,
and proposed in this chapter, that a simple and immediate solution relies on DA theory.

Basically, DA means a synthetic generation of training samples. It encompasses a
suite of techniques for the artificial enlargement of the available dataset using some
label-preserving transformations [99]. The goal is a better exploration of the input
space can be achieved while maintaining correct labels [112].

It is worth noting that the STFT images are very simple respect to the typical
applications of CNNs. Therefore, it is expected that among the several DA techniques
available in literature the more basics can easily and effectively improve the CNN
classifier performances. The study was focused on which of them were best suited for
this application. They turned out to the following:

• Random Cropping (RC): it consists in a random crop of a portion of the original
image with a next resize to fit the CNN input size requirements. The aspect ratio
of the crop is equal to the original image while its dimensions are determined
according to a scaling factor. With a high scaling factor the crop is similar to
the original image while little translations with a spreader distribution of the
harmonics involved in the image can be emulated.
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Figure 4.2. Data augmentation techniques on a STFT image sampled from a one broken bar
motors.

• Change in Brightness (BR): in practice it is a random scale in amplitude of the
original STFT values. This transformation takes into account of slight variations of
the fault-related harmonic intensity or of other spurious ones.

• Time Translation (TT): A single transient can occur repeatedly with some time
delay resulting in horizontal offsets of the original STFT image. This phenomena
can be easily taken into account shifting the image by a random number of samples.
The empty space left in the opposite side of the shift direction is filled replicating
the last sample column for all the empty columns.

• Frequency Translation (FT): As the previous transformation but along the fre-
quency axis (i.e. vertical of the STFT image). Although this behaviour is not expected
because of the constant supply frequency, the addition of this augmentation can
improve the CNN robustness on small variations of the frequency distribution of
the STFT.

• Addition of Gaussian Noise (GN): To achieve a satisfactory robustness to noise
measurements a Gaussian noise can be added on the STFT images with zero mean
and randomly chosen standard deviation.

The chosen parametersmust generate reasonable images and their proper definition
is part of the designer expertise, acquired on the particular application (especially
the chosen STFT features). A graphical description of the mentioned DA techniques
applied on a STFT image is reported in Figure 4.2.

4.3 Fault detection - design of experiment

For the class of drives here considered a well-diffused solution to economically start
the motor while limiting the stator currents is the soft-starter. Therefore, the fault
detection of soft-started IMs was considered in the experimental stage.
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In particular, my study was focused on the evaluation of the effectiveness of DA in
the performance improvement of CNN-based predictive maintenance tools. In order
to provide this, different CNNs were used for the detection of broken bar damages
of an experimental IM prototype. The measurement setup and the STFT parameters
are reported in section 4.3.1. To appreciate the effect of DA, the same CNN structure
and training options are maintained the same and they are described in section 4.3.2.
Therefore, the only difference among the reported cases is in the training dataset
generation according to the DA technique previously described into section 4.2.2.

4.3.1 Induction motor drive setup and stray flux signal processing

The tests carried out in the laboratory consist of a 1.1 kW squirrel cage motor, which
was subjected to the bar damages, coupled to a DC motor acting as a load.

The motor was started using 4 different industrial starters, modifying the parame-
ters of starting time and applied voltage. Each of the tests was carried out with and
without load. Two sensor positions, A and B, were studied (Figure 4.1).

Through the described experimental setup 180 different start-up STFTs were col-
lected, equally distributed among the three considered fault conditions (Healthy (H),
One Broken Bar (1BB), Two Broken Bars (2BB)). Of these, the 60 % (108 samples) were
randomly chosen as training dataset, 10 % (18 samples) for the validation dataset while
the remaining (54 samples) were used as test dataset.

4.3.2 The adopted convolutional neural network structure and training
parameters

The design of a CNN is a very complex task, due to the large number of possibilities
and parameters. This is the main concern when approaching the use of this powerful,
but rather challenging tool. As highlighted in the previous chapter and published in
[89] there are some useful guidelines and hints that can be followed for the design of
a CNN applied to electric drives. In that work the observed signals were time-series,
but the developed concepts also apply to the 2-dimensional case. Following those
hints, the final network architecture was obtained (Figure 4.3). The CNN consists of
a four element sequence. The convolution stage recognizes the presence of more or
less complex signatures in the signal pattern thanks to some filters normally called
kernels. The size of the input image elaborated by the convolution, was equal to 200
samples along time axis (abscissa), 100 samples along frequency axis (ordinate). The
convolution process was composed by 10 kernels (with size 80 × 40). The nonlinear
behaviour of the classification problem calls for nonlinear elements in the CNN. This
feature is guaranteed through a ReLU which improves the fitting capabilities of the
network (see section 3.2). Therefore, each output of the convolution is passed through
a ReLU function. A FC layer is then used to elaborate the features extracted from the
previous layers. The number of output neurons is equal to the number of classes that
the network has to recognize (namely H, 1BB, 2BB). Finally, a softmax operation returns
the most probable class as classification of the elaborated input image (section 3.4.1).

Also in this case the SGD was chosen as training algorithm for its simple implemen-
tation (section 3.2.2). The training dataset size 𝑛𝑡𝑟 will be different in function of the DA



im fault detection using stray flux measurements 57

1BB

200x100 STFT input image

ReLU

FC net
softmax

output of
10 conv. kernels

Figure 4.3. CNN architecture for STFT analysis.

technique applied on the 108 initially available training samples. The training dataset
was subdivided in mini-batches [72]. During the classification of each mini-batch
a cumulative 0-1 loss function was evaluated. The error obtained at the end of the
mini-batch was then back-propagated through the network for the optimization of its
weights. The choice of the mini-batch size is arbitrary. If the mini-batch size is equal to
one sample the resulting training would be slow (for each sample a back-propagation
is applied) and noisy. The opposite boundary is to choose the batch size as the entire
training dataset. In this case, the training will be smoother and faster as less back-
propagation iterations are required. It is worth noticing that some noisy behaviour is
useful in an optimization problem, as it helps in avoiding the convergence on local
minima of the cost function. For the Author expertise a proper value of the batch size
is one hundredth of the training dataset size.

Another important parameter is the learning rate which represents how fast the
network should learn from its classification errors. High learning rate implies that for
the same error an heavier modification of the weights during the back-propagation is
obtained. In order to avoid instability of the training process this parameter should
be initially chosen very small and gradually increased to speed up the procedure.
Another useful tip is to gradually decrease the learning rate during the progress of
the training to obtain a fine tuning of the network weights, avoiding to excessively
oscillate around the optimal point. An initial learning rate equal to 10−5 was chosen
and it was divided by a factor of ten every 5 epochs, i.e. every 5 times the entire
training dataset was given to the network. The training of the network was performed
offline on a GPU Nvidia GeForce 1070 GTX board.

The training dataset was augmented through the techniques described in section
4.2.2. Here below, the main parameters of the DA techniques are summarised.
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• RC: a random scaling factor for the crop was chosen between the boundaries 0.9
and 0.99.

• BR: a random scaling factor in brightness was chosen between 0.95 and 1.15.
• TT: a random value of time samples delay was chosen between −15 and 15.
• FT: a random value of frequency samples offset was chosen between −10 and 10.
• GN: a zero-mean and random value (below 15) of the variance were chosen for the
application of the Gaussian Noise.

4.4 Experimental results

By exploiting the experimental setup described above, 7 different training datasets
were realized. A first dataset was composed by only the experimental measurements,
without applying any of the mentioned DA techniques. It represented the classical
application of an AI-tool, i.e. taking advantage of some previously collected historical
data (108 for the training, 18 for the validation and 54 for the test) a CNN was trained
to recognize the failure condition.

Other 5 training datasets were developed applying only one DA technique at a time
on the initial dataset. Considering for example the Random Cropping, in addition to
the raw images, the training dataset was composed by 2 random cropping for each
image. The resulting training dataset size was equal to 432 samples ((2+1)×108 = 432).
The same was made for the other 4 DA techniques (BR, TT, FT, GN).

The last (7𝑡ℎ) dataset was realized to appreciate the effect of the simultaneous
application of all the methods. The same DA options were applied concurrently on the
initial training dataset in this case. Therefore, the total amount of training samples
were (2 + 1)5 × 108 = 26244, which is a significant increase over the initial small batch.

Once these semi-synthetic datasets were realized, 7 CNNs with equal structures
were trained on them. The previously acquired 𝑛𝑣𝑎 = 18 and 𝑛𝑡𝑒 = 54 samples were
used respectively to validate (during the training) and to test each network. The
obtained predictors accuracy on the test dataset was evaluated as number of correct
predictions over the total amount of classifications.

The features and results of the 7 described experiments are reported in Table 4.1.
From the table it is possible to appreciate that the network trained on the raw data
is characterized by very poor performance. Only the 61.1 % of the test samples were
correctly classified. The improvements linked to each DA technique are also reported.
Each of them enhances the network capabilities but it is shown that only the applica-
tion of all DA techniques leads to a very good accuracy (94.4 %). The intersection of
all of them seems to improve, rather than weaken, CNN’s performance.

Taking the application of all DA case as the best solution to the artificial dataset
generation, the evolution of the accuracy and loss quantities, as well as the confusion
matrix relative to the classification of the test dataset are reported in Figure 4.4a and
4.4b, respectively.

A gradual improvement of network classification indexes is observed during the
training and no evident overfitting issues are noticed (validation points are quite close
to training ones in Figure 4.4a). The confusion matrix shows that among the 54 test
samples only 3 are wrongly classified (accuracy = 94.4 %).
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Table 4.1. Features of the augmented training datasets. 𝑛𝑡𝑟 , 𝑛𝑣𝑎 and 𝑛𝑡𝑒 represent the number
of samples used for the training, for the validation and for testing, respectively.

Dataset n DA technique 𝑛𝑡𝑟 𝑛𝑣𝑎 𝑛𝑡𝑒 accuracy
1 None 108 18 54 61.1 %
2 RC 324 18 54 72.2 %
3 BR 324 18 54 70.4 %
4 TT 324 18 54 74.1 %
5 FT 324 18 54 68.5 %
6 GN 324 18 54 70.4 %
7 All 26244 18 54 94.4 %

Among the three wrong classifications, in two cases a fault with 2 broken bars
was recognized as 1BB and in one case it was vice-versa. Therefore, the incorrect
predictions refer only to the severity of the failure, not whether it is present or not.
This is definitely less serious than predicting a false healthy/faulty motor condition.

4.5 Conclusive remarks

The chapter draws some considerations about AI the feasibility of artificial intelligence
techniques to automate the diagnosis of induction motors started by soft starters.

The difficulty with this work was that soft starters introduce harmonics, and this
can make it difficult to detect the characteristic patterns of the fault components. The
other big drawback common to any ANN-based technique is that a large amount of
data is required for training. Despite this, the DA techniques selected and applied in
this thesis work have led to a correct detection of the fault in an automatic way, based
on the transient evolutions of the fault harmonics present in the flux signals under
the starting. The experimental stage has demonstrated the feasibility of the proposed
method, that is ready for industrial implementation. Partial results of this work were
published in [87] while the more recent achievements are currently being presented
at the 47th Annual Conference of the IEEE Industrial Electronics Society [88].
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im fault detection using stator currents

In this chapter the broken bar fault prediction of IMs is still considered. Somehow
merging the concepts of the previous chapters, the aim of the present one is to describe
a CNN-based algorithm able to recognize the fault condition elaborating the motor
currents during the start-up, thus avoiding the necessity of additional stray-flux
sensors.

As detailed in the chapter, to tackle the need of a huge amount of experimental
data an accurate model of the IM is derived with the aim of generating artificially
the entire training dataset. The model takes advantage of several FEA and a specific
ANN for the accurate description of the magnetic behaviour under different levels of
failures.

The recognition capabilities of the CNN when classifying concomitant or different
faults were not tested, but as reported in reference [80], each of the most common
faults in IMs affects the current with different harmonics. Therefore, it is expected
the CNN is able to minimize incorrect classifications even with other or mixed failure
conditions if a proper, comprehensive training dataset is used. Inverter faults are
abrupt and disruptive and therefore they cannot be included in an early fault detection
system. On the other hand, the proposed algorithm was designed to recognize the
failure condition during the start-up of the motor through a wide range of possible
start-up transients. Nothing can be said on the behaviour of the algorithm under
transients outside the ones used for the training.

5.1 Broken bar induction motor model

In this section a model of the squirrel cage IM is developed. It is oriented to the study
of broken bars, but its completeness makes it eligible for the analysis of other failures
that may affect the IM, too. The aim of this model is the artificial generation of the
training dataset

First, the overall mathematical description is reported. Then, the dissertation is
focused on the attainment of the motor magnetic relationship through the exploitation
of some FEA and an ANN. Finally, a brief mathematical recap of the wavelet transform
is exposed.

5.1.1 Mathematical background

The electrical dynamic behaviour of the IM can be described in different coordinate
systems. In this chapter the spatial vector notation is considered and a stationary
reference frame 𝛼𝛽 fixed to the stator winding is preferred. As a matter of fact, the
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implementation on a synchronous reference frame would need the knowledge of the
rotor flux position. This approach is particularly suitable from the standard control
point of view in which only the fundamental synchronous component is of interest.
In the present case in which the key point is the behaviour of the other fault-related
harmonics, the synchronous reference frame results unsuitable.

The voltage balance equations for the stator and rotor are the following:

𝐮𝑠 = 𝐑𝑠𝐢𝑠 + 𝑑𝝀𝑠𝑑𝑡𝟎 = 𝐑𝑟 𝐢𝑟 + 𝑑𝝀𝑟𝑑𝑡 + 𝜔𝑚𝑒𝐉𝝀𝑟 , 𝐉 = [ 0 1−1 0] (5.1)

where 𝐮𝑠 = [𝑢𝑠𝛼 , 𝑢𝑠𝛽]𝑇 , 𝐢𝑠 = [𝑖𝑠𝛼 , 𝑖𝑠𝛽]𝑇 , 𝝀𝑠 = [𝜆𝑠𝛼 , 𝜆𝑠𝛽]𝑇 and 𝐑𝑠 = diag(𝑅𝑠) are the stator
voltages, currents, flux linkages and constant resistance matrix, respectively. The same
quantities for the rotor are indicated with symbols 𝐮𝑟 = [𝑢𝑟𝛼 , 𝑢𝑟𝛽]𝑇 , 𝐢𝑟 = [𝑖𝑟𝛼 , 𝑖𝑟𝛽]𝑇 ,𝝀𝑟 = [𝜆𝑟𝛼 , 𝜆𝑟𝛽]𝑇 and 𝐑𝑟 = diag(𝑅𝑟 ), in which the rotor voltages are equal to zero,
due to the squirrel cage structure. The electromechanical speed and position are
respectively 𝜔𝑚𝑒 = 𝑝𝜔𝑚 and 𝜗𝑚𝑒 = 𝑝𝜗𝑚 , with 𝑝 the number of pole pairs of the motor.

To keep the model as general as possible, the flux linkage vectors 𝝀𝑠 , 𝝀𝑟 are
expressed as nonlinear functions of both current vectors 𝐢𝑠 , 𝐢𝑟 . The saturation of the
iron core is the main cause of nonlinearity, that becomes even more pronounced in
the case of failure, due to the intrinsic asymmetry involved.

It is also worth to note that a broken bar generates speed-dependent harmonics,
that are the best indicators of the health conditions. Therefore, for a simulation to be
a valid substitute of a real damaged motor, it has to include the rotor position in the
magnetic model.

The electromechanical torque 𝜏 generated by the motor can be expressed as𝜏 = 32𝑝 (𝜆𝑟𝛽 𝑖𝑟𝛼 − 𝜆𝑟𝛼 𝑖𝑟𝛽) (5.2)

while the motor mechanical dynamic is described by the following equation.

𝜏 − 𝜏𝐿 = 𝐽 𝑑𝜔𝑚𝑑𝑡 + 𝐵𝜔𝑚 (5.3)

The inertia of the motor and the viscous friction are indicated with symbols 𝐽 and 𝐵
respectively and an external load torque 𝜏𝐿 is considered. Equations (5.1), (5.2) and (5.3)
lead to the graphical representation of the IM model shown in Figure 5.1. The same
figure includes the block schematic of the different start-up methods that were used
to gather the simulated start-up current patterns described in Section 5.4. Quantities𝐴 and 𝑓 represent respectively amplitude and frequency of the three-phase sinusoidal
voltage reference to the inverter-fed IM.

The magnetic model is represented by the multi-input, multi-output function 𝐠. The
determination of 𝐠 is not trivial, since the FEA just produces (for any given position) a
direct map 𝐟 from currents to flux linkages. The details are given in Section 5.1.3.

Finally, it is worth noting that a broken bar affects the model twice, both in 𝐠 and
the rotor resistance matrix 𝐑𝑟 . Accounting for a resistance variation in the rotor bars



im fault detection using stator currents 63

us

ωme

Rs

1
s

1
s

Rr

J

λs

λr

ϑm g (·)
is

ir

(2)
τ

τL

1
Js+B ωm

1
s ϑm

ur = 0

p

ωme

50Hz

soft
start

is

start-up procedure IM motor model

f

A
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(a) Healthy motor. (b) One broken bar motor.

Figure 5.2. IM sheet drawings and FEA under different health conditions.

would imply the return to a three-phase physical model, that could hardly be included
in a complete drive simulation as that depicted by Figure 5.1. On the other hand, the
proposed health monitoring is able to identify a single broken bar failure, so that the
overall phase resistance variation remains very limited. Some tests have proven that
considering a constant resistance matrix 𝐑𝑟 even after the fault does not compromise
the accuracy of the current pattern generation.

5.1.2 Finite element analysis for the determination of the magnetic model

Symbol 𝐟 represents amultivariate functionwhichmaps the quintuple [𝑖𝑠𝛼 , 𝑖𝑠𝛽 , 𝑖𝑟𝛼 , 𝑖𝑟𝛽 , 𝜗𝑚]𝑇 =[𝐢𝑠 , 𝐢𝑟 , 𝜗𝑚]𝑇 to the quadruple [𝜆𝑠𝛼 , 𝜆𝑠𝛽 , 𝜆𝑟𝛼 , 𝜆𝑟𝛽]𝑇 = [𝝀𝑠 , 𝝀𝑟 ]𝑇 . The accurate determina-
tion of this function by measurements on a real IM is almost impossible. Nonetheless,
the availability of the stator and rotor sheets drawing allows to easily obtain 𝐟 , i.e.
the direct magnetic model, through several FEA simulations. The main interesting
parameters of the considered motor are shown in Table 5.1 and the relative stator and
rotor sheets can be appreciated in Figure 5.2.

Each FEA is realized initializing an input vector [𝐢𝑠 , 𝐢𝑟 , 𝜗𝑚]𝑇 , while the output of
the simulation is the vector of the fluxes [𝝀𝑠 , 𝝀𝑟 ]𝑇 . Evaluating the output for different
input points, it is possible to estimate the non-linear function 𝐟 as four look-up tables
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Table 5.1. IM parameters.

Symbol Parameter Value𝑃𝑛 Nominal power 3000W𝑝 Number of pole pairs 1𝐼𝑛 Nominal current 9.3 A𝜔𝑛 Nominal speed 2900 rpm𝑁𝑠𝑠 Number of stator slots 24𝑁𝑟𝑠 Number of rotor slots 18
with one output and five input variables each.

It should be remembered that all the currents and fluxes are referred to a stationary
reference frame fixedwith the stator. Therefore, there is the need to report the variables
in the relative 𝑎𝑏𝑐 reference frame in order to impose the correct FEA currents in both
the stator and the rotor [16], [4]. Once the currents and the rotor position are imposed
on FEA drawing, the simulation returns one point of the function 𝐟 .

If a motor with one broken bar is considered, it is sufficient to limit the current in
the relative bar, to an extent determined by the degree of the damage. A qualitative
example is shown in Figure 5.2, in which for the same input vector [𝐢𝑠 , 𝐢𝑟 , 𝜗𝑚]𝑇 =[0A, 0A, 0A, 3A, 0◦]𝑇 the results obtained considering an healthy rotor and a rotor
with one completely broken bar (current in the slot equal to zero) are reported. The
damaged bar is the red-coloured one and it highlights the possible effects of the
broken bar on the magnetic flux path. The failure distorts the flux density distribution
creating an asymmetry in the machine which is anyway well described through the
respective non-linear function 𝐟 .

Repeating the simulation for different input vectors it is possible to map 𝐟 in the
considered healthy and faulty case. In the present application, it was evaluated for each
combination of the currents among the following values: [−1, −0.4, −0.2, 0, 0.2, 0.4, 1] 𝐼𝑛 .
In order to reduce the simulation time requirements some symmetries were exploited
and the position was changed by constant steps of 7.5◦ between 0◦ to 60◦ and 0◦ to180◦ for the healthy and faulty rotor respectively. Therefore, the function 𝐟 consists
of four look-up tables (one for each stator and rotor flux linkage component) with74 ⋅ (60/7.5 + 1) = 21609 points for the healthy motor and 60025 points for the faulty
case. These vectors were chosen as the best compromise between the computational
load and the accuracy in modelling both the saturation and the position harmonics.

The multi-dimensionality of 𝐟 makes a comprehensive graphic investigation very
cumbersome. Anyway, some useful considerations can be made observing the be-
haviour of 𝐟 by imposing changes only to some of the input variables, while main-
taining fixed the others. For example, the evolution of the stator flux along the 𝛼-axis
varying the currents (Figure 5.3a, 5.3b) or position (Figure 5.3c) are shown in Figure 5.3.

Figure 5.3a reports the stator flux linkage as function of the stator and rotor currents
along the 𝛼 axis from −𝐼𝑛 to 𝐼𝑛 . In a linear system, the graph would be a plane, being
the flux a linear combination of the 𝛼-axis currents. Yellowish and deep blue meshes,
relative to the curved upper and lower part of the graph are representative of iron
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Figure 5.3. IM magnetic model (current to flux linkages), obtained through FEA simulations. (a):𝜆𝑠𝛼 as function of the stator and rotor 𝛼 currents (𝑖𝑠𝛽 = 𝑖𝑟𝛽 = 0A, 𝜗𝑚 = 0◦) in the healthy IM.
(b): 𝜆𝑠𝛼 as function of the stator currents (𝑖𝑟𝛼 = 𝑖𝑟𝛽 = 0A, 𝜗𝑚 = 0◦) in the healthy IM. (c): 𝜆𝑠𝛼
as function of the position (𝑖𝑠𝛼 = 𝑖𝑠𝛽 = 𝑖𝑟𝛽 = 0A, 𝑖𝑟𝛼 = 𝐼𝑛) in both healthy and damaged motor.
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saturation, that evidently begins below the nominal current.
In Figure 5.3b, one appreciates the presence of some cross-coupling between the 𝛼𝛽

axes. This is another non-ideality that can be easily modelled through the proposed
FEA-based approach.

Finally, Figure 5.3c shows the flux linkage as function of the rotor position (i.e.,
the position of the broken bar), while a current 𝑖𝑟𝛼 = 𝐼𝑛 was applied (all the other
currents were null). With respect to the healthy case, the fault condition causes a
position-dependent oscillation to appear, which is the cause of the fault harmonics at
the mechanical frequency and around.

The general concept that comes out from Figure 5.3 is that only a FEA-based model
is capable of encompassing all of the IM details necessary for generating a reliable set
of current patterns, that in turn will be used for an effective training of the CNN, as
detailed in section 5.4.

As mentioned, the IM model depicted in Figure 5.1 requires the inverse function𝐠 = 𝐟−1. Even in the simpler case of a two-dimensional magnetic model, the inversion
requires special precautions [6]. After some trials, it becomes soon evident that the
nonlinearity makes the multivariable system really hard to reverse. For each angular
position, FEA provide a four-dimensional vector map, that can be imagined as scattered
input-output data links. The problem is the interpolation of the function out of the
known points. A particularly efficient and original solution specifically developed to
solve the problem is described in the next section.

5.1.3 The magnetic model interpolation based on artificial neural network

After FEA simulations, a set of precise relations between flux linkages [𝝀𝑠 , 𝝀𝑟 ]𝑇 and
currents [𝐢𝑠 , 𝐢𝑟 , 𝜗𝑚]𝑇 is available for each rotor position 𝜗𝑚. An analytical approach
to interpolation is extremely involved, and this has sparked interest in an artificial
neural network solution. The ANN can be trained in order to obtain an approximating
function of the scattered points used during the training. Among the possible solutions,
a fully connected feedforward ANN has been shown to successfully accomplish the
task.

In the design procedure, the network complexity is increased until it proves to be
able to solve the given problem. For example, one-neuron network is surely not able
to fit the considered 𝐠 function. Conversely, a network with thousands of neurons
would be not only complex in the implementation, but also particularly sensitive to
the problem of overfitting [36]. Gradually increasing the network complexity and
continuously evaluating its performances through the comparison between training
and validation losses, it is possible to find the right balance, in the narrow space
between underfitting and overfitting. The approach is very similar to the method
used to design the CNN in chapter 3 and described in section 3.2.2. Transposing that
design method and tailoring it to the ANN case the procedure reported in Figure 5.4

The architecture of the ANN obtained in this chapter is shown in Figure 5.5. It
features just one hidden layer of 𝑛ℎ𝑙 = 100 fully connected neurons. The 5-element
input vector 𝐮 = [𝝀𝑠 , 𝝀𝑟 , 𝜗𝑚]𝑇 is linearly weighted by the 𝑛ℎ𝑙 × 5 weight matrix 𝐖1
and the bias vector 𝐛1. Each of the 𝑛ℎ𝑙 weighted elements fires the sigmoid activation
function 𝜎 associated to the neurons of the hidden layer, producing the 𝑛ℎ𝑙-element
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intermediate output vector 𝐲ℎ𝑙 . The output layer returns the 4-element output vector𝐲 = [𝐢𝑠 , 𝐢𝑟 ]𝑇 by a 4 × 𝑛ℎ𝑙 weight matrix 𝐖2. The searched function 𝐠, i.e. the inverse
magnetic model, is obtained from the composition of the results of the two layers,
that is, the inherent input-output behaviour of the ANN [36]:𝐲ℎ𝑙 = 𝜎 (𝐖1𝐮 + 𝐛𝟏)𝐲 = 𝐖2 𝐲ℎ𝑙 } 𝐲 = 𝐠(𝐮) (5.4)

The weights of 𝐖1, 𝐖2 and bias 𝐛1 are obtained by training the ANN using the
points of the function 𝐟 derived from the FEA simulations. Of those, 60%were randomly
selected for the training, 20% for test and the remaining 20% for validation, as common
good practice [36].

The tuning of the ANN weights was realized through the Levenberg-Marquardt
training algorithm [76]. This method, as the SGD, is used to solve non linear least
square problems. It is a combination of two other methods: the gradient descent
and the Gauss-Newton. Both the gradient descent and Gauss-Newton methods are
iterative algorithms. The gradient descent differs in that at each iteration, the solution
updates by choosing values that make the function value smaller. More specifically,
the sum of the squared errors is reduced by moving toward the direction of steepest
descent. In the Gauss-Newton method, the cost function is reduced assuming that
it is locally quadratic in the parameters, and finding the minimum of this quadratic
problem. At each iteration, the Levenberg–Marquardt algorithm chooses either the
gradient descent or Gauss-Newton and updates the solution. The iterative update is
dependent on the value of an algorithmic parameter, 𝜆, a non-negative damping factor
which smooths out the graph. The update is Gauss-Newton if 𝜆 is small (i.e. close
to the optimal value) and a gradient descent if 𝜆 is large [33]. The Gauss-Newton is
more accurate and faster than the gradient descent when close to the minimum error.
While it is more complex from the implementation point of view, the merge of the two
methods results in a more robust training. The complexity of the function the ANN
has to interpolate led to choose the Levenberg-Marquardt rather than the previously
used SGD for which no satisfactory results were achieved. In the present case the
default level of 𝜆 = 0.001 suggested by the Matlab implementation was considered.

As an index for the evaluation of the ANN performances the mean squared error
on the validation dataset estimation was used, and the training was stopped when
this MSE was below 0.01 V2 s2, which roughly corresponds to a mean error of ±1%
over the known validation dataset.

5.1.4 Wavelet transformation

The presence of broken bars reflects into the current pattern through some harmonics
around the supply frequency at 𝑓𝑓 = 𝑓 (1 ± 2𝑠), as mentioned in the introduction.
In particular, the proposed technique is focused on the observation of the smaller
frequency 𝑓 (1 − 2𝑠). This assumes its maximum value (𝑓 ) at the beginning of the
transient for which 𝑠 = 0. It becomes 0 when 𝑠 = 0.5 and then it increases again to a
steady-state value, smaller than 𝑓 , which depends on the load conditions. Therefore,
the frequencies of interest are limited between 0 and 𝑓 (50Hz if the grid supply is
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Figure 5.6. CWTs of the stator current under the start-up of the motor.

used). In synchronous motors the recognition of such harmonics may be profitably
achieved by the direct monitoring of the current in the time domain at steady state [89].
Conversely, in IMs the harmonics are related to the slip frequency, so that monitoring
during the transient start-up has to be preferred, as it involves high values of slip even
at light loads. Nevertheless, the evaluation of a transient current pattern is easier in
the frequency domain. Specifically, a joint time-frequency representation is needed, as
for example the STFT used in chapter 4. Unfortunately, STFT is quite time consuming
and it suffers of a trade-off between frequency and time resolution [91].

A more effective approach is based on the CWT, which is less computationally
demanding and less resolution-critical than STFT [70]. The CWT has a 𝑂(𝑛) complex-
ity [78], less than a conventional FFT which is 𝑂(𝑛𝑙𝑜𝑔𝑛) For a deeper analysis and
comparison of the two analysis tools (STFT and CWT) see appendices B and C. As the
Fourier transform, also the CWT is based on the description of the signal through a
base signal conveniently weighted and modified (mother wavelet). The transformation
can be different in function of the chosen type of mother wavelet. In absence of a
suitable unifying theory for wavelet behaviours, the choice of a particular wavelet
for a particular problem may even appear arbitrary. In this chapter a Morse wavelet
has been selected, as it may be recommended as an ideal starting point for general
purpose use [66]. The application of the CWT tool to the acquired current patterns
during IM speed start-up produces a 2D image able to describe the evolution of current
spectra during the transient, as shown in Figure 5.6.



70 chapter 5

5.2 Validation of the model for virtual patterns generation

In order to validate the model represented in Figure 5.1, some of its (virtual) current
patterns were compared with those obtained in a real experimental test bench. The
validation process is of paramount importance, since the CNN fault detection capability
will depend on the accuracy and precision of the dataset used during the training.

The experimental prototype is shown in Figure 5.7a. The IM motor was coupled
to a permanent magnet synchronous motor acting as a virtual load. Both motors
were controlled through a MicroLabBox dSpace FCP system. The current sampling
was maintained at 10 kHz (synchronous with the inverter switching frequency) to
avoid the current ripple induced by the modulation. Actually,the characteristic fault
harmonics are very low in frequency with respect to 10 kHz. According to the Nyquist
sampling theorem, a downsampling was adopted to reduce the memory requirements.
Table 5.1 recalls the main parameters of the IM under analysis.

The validation was performed by comparing the model and prototype current
patterns. In the prototype, the broken bar condition shown in Figure 5.2b was realized
by drilling the rotor in correspondence to a bar, as shown in Figure 5.7b. It is worth to
note that it was not a complete open-circuit, since even with an hole diameter larger
than the bar width, some current still flows due to the undesired loss of insulation
between the magnetic sheets caused by the drill bit.

The CNN deputed to fault detection analyses the current pattern during speed
transients (start-up). Anyway, the start-up condition is very difficult to model due to
the countless phenomena and spurious effects which afflict this transient. Therefore,
a first comparison was carried out in steady-state conditions, by a simple Volt/Hertz
control strategy.

The supply frequency was imposed at half the nominal speed. In order to appreciate
the behaviour of the model under different saturation conditions, the voltage was
varied to obtain a stator current vector equal to 𝐼𝑛/3 and 2/3𝐼𝑛. In case of healthy
IM, the time behaviour of the currents with |𝑖𝑠 | = 2/3𝐼𝑛 obtained experimentally and
in simulation are reported in Figure 5.8. Even being only a qualitative comparison,
it already gives an idea of the accuracy of the model, accurately replicating the
experimental measurement.

A quantitative evaluation can be based on the analysis in the frequency domain,
with focus in the current harmonics around the fundamental one. The FFT of the
steady-state current 𝑖𝑠𝛼 in the two considered cases (𝐼𝑛/3 and 2/3𝐼𝑛) returns the values
reported in Table 5.2. Obviously, a perfect match is not expected, due to the several
items that can affect the analysis, as for example little differences in the material
permeability, slight errors in the motor dimensions, the disregard of the leakage flux
in the stator back iron, and so forth. The added value of the present analysis is that
it gives a hint of the bearable imprecision in the model that still ensures optimal
performance in generating CNN traning patterns. The same comparison in case of
faulty motor deserves some considerations. As previously mentioned, in the real
prototype the interruption of the bar is not completely achieved. Therefore, it is very
difficult to estimate the real degree of failure to impose in the simulation model to
obtain the best match among the twos. Consequently, the same analysis for the broken
motor has not been made, while a more qualitative comparison is reported in the
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Figure 5.8. Experimental and simulated 𝑖𝑠𝛼 current in steady-state condition. Healthy motor.

Table 5.2. Main harmonics comparison. Healthy motor.|𝑖𝑠 | harmonic order sim. ampl. [A] exp. ampl. [A]𝐼𝑛/3 fundamental 3.1483 3.1483
II 0.03476 0.05504
III 0.02395 0.03
IV 0.008562 0.012652/3𝐼𝑛 fundamental 6.0937 6.0951
II 0.03059 0.01405
III 0.103 0.1053
IV 0.02288 0.01383
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Figure 5.9. Architecture of the CNN used for broken bar detection in IM.

following.
As described in section 5.1.4, the CNN is trained on a Morse wavelet transform of

the current transient, with the decomposition level equal to 36 covering the frequency
range from 5 to 60Hz. For the decomposition level meaning, see appendix C. In
Figure 5.6 the CWTs obtained from the simulationmodel and experimental prototype in
the healthy case are reported in figures 5.6a and 5.6b, while the same in the faulty case
in figures 5.6c and 5.6d. In the faulty case, the CWT exhibits the typical V-pattern due
to the fault-related harmonics, that are absent in case of an healthy motor. Comparing
experimental and the simulation-based faulty CWTs it can be observed that they are
very similar. A slight difference is only in terms of amplitude of the fault harmonic,
as expected. Actually, while in the simulation a total loss of the bar conductivity is
considered, in the experimental case this is not achieved and the fault harmonic is
smaller (the V-pattern is less intense).

On one hand, it is to stress out that the validation of the model is important for
a successful training of the CNN. On the other hand, this does not mean that the
correspondence must be absolute. A certain degree of imprecision, as that shown
in the present paragraph, is well tolerated by the network, that somewhat takes
advantage on imprecise input to increase its classification capability.

5.3 Convolutional neural network

A CNN similar to that used in previous chapter 4 has been considered in this chapter.
In the following the main differences are highlighted.

5.3.1 Architecture and training

The CNN architecture adopted for the interpretation of the CWT images, chasing
the early defects in rotor bar conductivity, is graphically described in Figure 5.9. A
design procedure that goes back and forth between hyperparameters and learnable
parameters may be the most suitable way to achieve a satisfactory result as previously
described in chapter 3. At first, it may appear either fuzzy or daunting with respect
to conventional tuning algorithms. Nevertheless, there are some powerful tools, as
those made available by Matlab [13], that let the designer to change quickly some
parameters (as the number and size of convolution kernels and pooling), so that the
entire design process can be sketched out in less than two days. The Matlab listing
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used in this thesis for the design and training of the CNN is reported in following
listing.

1 %% Layers

2 dropoutProb = 0.2;

3

4 layers = [

5 imageInputLayer ([100 100 1])

6

7 convolution2dLayer ([3 3], 8)

8 reluLayer ()

9 maxPooling2dLayer ([5 5])

10

11 dropoutLayer(dropoutProb)

12

13 fullyConnectedLayer (2)

14 softmaxLayer ()

15 classificationLayer ()];

16

17 %% Training options

18

19 opt = trainingOptions('sgdm', 'MaxEpochs ', 30,

20 'InitialLearnRate ', 0.000001 ,

21 'Plots ','training -progress ',

22 'MiniBatchSize ', 20,

23 'ValidationData ', valData ,

24 'ValidationFrequency ', 10,

25 'LearnRateSchedule ', 'piecewise ',

26 'LearnRateDropPeriod ', 6,

27 'LearnRateDropFactor ', 0.1);

28

29 %% Network training

30

31 [net , trainInfo] = trainNetwork(trainData , layers , opt);

Listing 5.1. Matlab code used for the design and training of the CNN.

In Figure 5.9, the convolutional stage is deputed to extract the "V-shaped" feature
from the input image, while the classification stage performs the final choice, as
function of the recognized feature. Some design hints are highlighted below.
• Input image pre-processing - While for constant supply frequency the CWT y-axis is
constant too, the x-axis (i.e. time) depends on the duration of the transient, that can
vary upon speed ramp settings and load conditions. In this work, a 100 × 100 input
layer was fixed and the dimension of any CWT image was adapted accordingly,
through a proper resizing. This operation is performed through a resampling of the
original image according to the desired dimensions (100 × 100). The new samples
of the image are obtained linearly interpolating the original ones. Moreover, the
native double-precision CWT values were converted to a 8-bit greyscale. Thus,
the total amount of memory required to store each single image was less then10𝑘𝑏𝑦𝑡𝑒𝑠. These features were chosen through a trial and error approach as a trade
off between memory and calculation requirements and the image resolution.

• Convolution - The input image is elaborated by a convolution through 8 kernels
with a dimension of 3 × 3 [36].
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• ReLU and Pooling - Among popular nonlinear activation functions, the ReLU has
been preferred for its simplicity and widespread use in deep neural networks,
especially in image processing tasks. ReLU’s output is the maximum between the
input and zero, which is easy to compute. The max-pooling operation (with size
2x2) mainly provides a spatial dimension reduction technique and its role is not as
critical [3].

• Output flattening and dropout - The output of the convolutional stage is then
flattened as required by the subsequent FC network. The FC net connects all the
outputs of the convolution to only two neurons that represent the probability
of the input image to belong to either an healthy or faulty motor. An additional
feature, called dropout, has been added to the FC net. It consists in randomly drop
units from the FC during training, along with their connections [102]. During the
training, each neuron becomes more independent from the previous ones due to
the dropped connections. The training becomes longer as the convergence to the
optimal weights has been complicated but it results in a more general network.
This has been shown to be effective against overfitting, which is an impending
danger with limited training data available. The percentage of neuron dropout was
selected at 60%.

• Classification through Softmax - The Softmax function takes as input a vector of 𝐾
real numbers (the output of the FC network), and normalizes it into a probability
distribution composed of 𝐾 probabilities proportional to the exponentials of the
input numbers. Therefore, it returns as output the class of health conditions with
the highest probability.

5.4 Convolutional neural network training and experimental results

While the potentiality of a CNN is directly related to its architecture, the achievement of
good performances relies on the training dataset. The training is the most challenging
aspect in bridging a sophisticate AI-based technique to the world of AC drives, which is
relatively simple and with very few examples of broken motors to be used as training
data (e.g. compared to huge datasets of animals). This work mainly addressed this
obstacle and in this direction a great help is offered by data augmentation methods,
which pursue the artificial increase of the available dataset. In this work the concept
was carried to the extreme, as the entire training was based on an artificial, model-
based dataset.

Two output classes were considered, namely healthy or faulty motor. As regards
the former, the model of Figure 5.1 has been particularized for the case of completely
healthy IM and with a small percentage of failure, obtained by imposing a 10% reduc-
tion of the due current in the broken bar. Similarly, for the faulty class the model of
Figure 5.1 was fitted with other two magnetic maps, featuring the 90% and 100% of
reduction of the due current in the bar, respectively. This introduces some degree
of fault tolerance, which can be graduated depending on the specific application
requirement.

For each of the aforementioned four conditions, four different transients were
simulated, and namely a nominal voltage direct start-up, a three equally-spaced voltage
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steps up to the nominal value, a voltage ramp and the start-up of the motor through a
soft-starter, with a limitation on the stator current to three times the nominal value 𝐼𝑛 .

Different levels of inertia (from 1 to 10 of IM’s own one), load torque (from 0 to the
motor nominal one) and duration of the voltage ramp (from 0.5 s to 4 s) were used to
generate the different cases of an artificial dataset of 2284 start-up transients. Random
noise was added in each sample that composes the training dataset. Of these, 60%
were used to train the network, while the remaining ones were equally split between
validation and testing. The detailed functionality of these three datasets has already
been explained in [36].

The 80 elements of the convolution kernels and the weights of the FC net were
trained with the same approach already described in Figure 3.10 of chapter 3. An
initial learning rate equal to 10−6 was used, that was then decreased to 10−7 after 6
epochs. The update of the weights by the back-propagation algorithm was performed
not after the presentation of the single input image, but at the conclusion of the
presentation of a group of them (a 20 images minibatch, in the present work). This
stabilizes and speed-up the training process [36].

These design choices in the CNN training, obtained after many attempts in different
directions, proved to be the best in relation to the early fault detection problem and
on the dataset considered.

The ANN training is usually heavy and it can be done offline once and for all for
any drive-motor pair. The trained ANN can be either made resident on a server that is
fed by the current patterns (according to the Industry 4.0 paradigm) or implemented
in the AC drive, bearing a certain amount of computational power. Being focused
on the many innovative aspects of both the IM model and the CNN, this work meets
the former case. The training was performed in the Matlab environment, on a PC
featuring a GPU NVIDIA GeForce GTX1070 and it took about 5 minutes. Certainly,
the latter solution would lead to a stand-alone drive, with the inherent ability of
self-detecting the motor defects. In this perspective, the most demanding part is the
post-elaboration of the transient pattern through the CWT algorithm. In any case,
the Author believes that the solution is feasible, since the calculation can be part of
the main control cycle, released from the rigid timing of the control routines, as an
instantaneous evaluation of the motor status is not necessary.

The real accuracy of a classifier is in general hard to define, since it would theo-
retically imply the availability of an infinite number of experimental data. On the
contrary, here the accuracy is necessarily based on a restricted set of available data
obtained from healthy and damaged motors.

Specifically, in the real IM drive (Figure 5.7) 72 new current patterns during the
IM start-up were acquired, half with the healthy motor and half with a broken bar
rotor. Of them, 8 were direct start-ups at nominal voltage, 32 start-ups under voltage
ramp and the remaining were generated by starting the IM with a soft-starter. For all
these cases, the CWT was applied to the current patterns and the achieved 2-D images
were downsampled according to the CNN input image dimension. The experimental
dataset was given to the network in terms of new, never seen before samples to test its
classification capabilities and it was able to correctly classify all of them (Figure 5.10).
This remarkable result is due to (a) the stochastic nature of the CNN training (b) the
data augmentation with artificial addition of white noise on the training dataset (c) a
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Figure 5.10. Confusion matrix obtained from the classification of the experiments through the
CNN..

wide range of transient durations and load levels.
It is clear that the 100% of accuracy is not realistic. It is surely what it was obtained,

but on relatively few never-seen-before test dataset. If a much larger experimental
dataset was available, very likely this accuracy would decrease. Anyway, the result
is surely informative on the quality of the proposed algorithm. From an industrial
application perspective, one could consider starting with the proposed implementation
and then exploiting the CNN’s ability to self-improve, as will be discussed in the
conclusive remarks.

5.5 Conclusive remarks and possible developments

An automatic classifier for the health recognition of a squirrel cage rotor, based on
a convolutional neural network, has been described in this chapter. Several issues
have been addressed, strictly related to the target of bridging the gap between the
complex design of artificial neural networks and the world of electric drives, which
is approaching the concepts of predictive maintenance with curiosity, sensing the
advantages in terms of reliability and production efficiency.

From the experiments, some conclusions can be drawn:

• The use of Wavelet Transform as time vs. frequency analysis tool during start-up
transients is accurate and avoids risks of miss-classifications due to slightly loaded,
steady-state conditions.

• The CNN is reliable in recognizing the single broken bar in a never-seen-before
real case. A single bar has been here considered as an early fault warning. The
CNN has been trained to recognise also partially damaged bars, further graduating
the CNN prediction.

• The innovative use of a tuned model to generate artificially all of the training
sequences, taking to the limit the concept of data augmentation, has demonstrated
to be a methodology that paves the way for the application of CNNs to the elec-
trical drive industry, still poor in experimental series of data for training (as also
demonstrated in chapter 3 for PMSMs).

• One key point is the reliability of the IM model. Perceptron neural networks can be
surprisingly useful in the inversion of magnetic current-flux linkage maps obtained
from FEA.
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As a resume, the adopted design procedure for the proposed technique is sketched
in the Algorithm 1 pseudocode.

Algorithm 1: Design procedure of the proposed fault recognition technique.
1 Creation of the FEA model of the motor and the relative ANN-based magnetic

maps (Figure 5.2);
2 Setup of the IM model (Figure 5.1);
3 Simulation of several start-up transients and recording of the motor currents;
4 Application of the CWT algorithm for the realization of the CNN training

dataset (Figure 5.6);
5 CNN design (Figure 5.9) and training in the Matlab environment;

Of course, the use of complex AI-tools as a means towards more-intelligent AC
drives requires specific skills and good computational power, and there is still a lack
of case studies. in particular, no guidelines for the initial design of the CNN were not
available in the literature. As a contribution, it has been decided to include in this
thesis work several hints and reasonings about the choices made during the long
experimental stage. Another evident drawback is the time needed for the FEA setup,
which also implies the availability of all IM constructive details and materials.

It is worth noticing that since the training of the CNN is based on simulated patterns,
the proposed fault detection system can be categorized between the model-based fault
detection methodologies. A first remarkable difference with respect to the existing
one resides in the accuracy of the model, attained by using a complex multivariable
function 𝐠 (obtained through FEA). It represents a substantial improvement to the
problem of model mismatches that affects the model-based methodologies.

Now let’s come to the choice of using a CNN to classify the state of health of the IM.
Since an accurate model is available, one could directly compare the simulation output
with the experimental measurements to understand the health level of the motor.
A direct, online comparison of the model output and the experimental data would
require a simulation to be incorporated into the drive, with a high computational
burden, often excessive for a standard AC Drive. Conversely, a trained CNN has proven
to fairly manage the task, with an unpaired robustness, due to the large number of
cases used for its training. Additionally, in an incremental learning perspective, the
CNN can be continuously and automatically updated whenever new labelled samples
are available. In this way a better tuning of the CNN on all the features and spurious
behaviours not considered in the model but present in the real system is expected.

Finally, it is worth remembering that only the current acquisition is necessarily
achieved online by the IM drive, while FEA, magnetic model inversion, CWT algorithm
and CNN training can all be performed offline by a supervision software, according to
the Industry 4.0 paradigm.

This work has been submitted and it is at the moment in press in the IEEE Journal
of Emerging and Selected Topics of in Power Electronics [90].
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synrm ekf-based sensorless control

To further increase the reliability and to augment the fault tolerant characteristics of
modern industrial drives, the sensorless control of a SynRM through EKF has included
in my PhD studies. The proposal technique was individuated after a detailed analysis
of the existing solutions, and in particular how they could match the specificity of
the SynRMs.

Several methodologies for the sensorless position estimation of AC motors are
present in literature. A recent review of them can be found in [114] and specifically
for synchronous motors in [109] and [43]. Each sensorless algorithm can be classified
as either a saliency-based or a model-based method. While the former is suitable for
stationary or low-speed conditions [58, 69], the latter is preferable at high speeds. The
full range can be obtained if the twos converge seamlessly into a complete sensorless
control algorithm. These types of solutions are effective, but they often entail complex
implementation and fine-tuning [20, 44, 107].

The saliency-based methods are usually based on high-frequency signal injection
and measurement of the related motor response. They can provide an accurate esti-
mation at low speeds, showing good immunity against dc offset and low-frequency
noises. The acoustic noise can be mitigated by randomly modifying the injected
signal, as proposed in [63]. However, the injection methods still have some drawbacks,
including complexity, less operating voltage, higher core losses, and extra torque
ripples. The research is now oriented towards the reduction of the injected signals to
minimize audible noise and high-frequency losses, as described in [19].

Many applications in which the reluctance motor can compete with the induc-
tion motor do not require high starting torques. Clear examples include pumps and
Heating Ventilation and Air-Conditioning (HVAC) drives, as well as wind turbines
[9]. An alternative to the delicate full-range algorithms is the combination of a ro-
bust model-based technique with a simple I-f start-up algorithm, which allows the
motor to operate at low speeds without either initial position estimation or machine
parameters identification [1]. To exit the open-loop operations as soon as possible,
it is advantageous to extend the validity of the model-based sensorless technique as
far as possible towards low speeds [34], which was one of the primary goals of the
present work.

Most popular model-based methods to reconstruct the rotor position were devel-
oped for PMSMs through the estimation of the b-EMF. Nonetheless, extending the sen-
sorless techniques already pioneered for PMSM and Interior Permanent Magnet (IPM)
to SynRM is not trivial, due to the marked magnetic nonlinearity [71].

The problem is well represented by [48], which proposes a control based on novel
extended electromotive force models. The inclusion of magnetic saturation is done by
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a complex online parameter estimation technique, that uses a pseudorandom sequence
signals injection.

In general, the model-based sensorless methods of SynRMs can be categorized into
Extended Electromagnetic Force (EEMF) based methods and Direct Flux Observer (DFO)
based methods [64]. The formers are based on the tracking of extended b-EMF as in
[48] or [83] in which a design method of the full-order EEMF observer is proposed.
Methods based on DFO instead exploit voltage integration to estimate the direct flux
position. A Phase Locked Loop (PLL) is effectively used for flux position estimation in
[51].

A good and effective sensorless algorithm for synchronous motors is based on the
EKF. Since its early applications to AC drives, it has shown excellent qualities as an
optimal recursive estimation algorithm for non linear systems, and is very suitable in
case of noisy measurements. [18, 98]. Unfortunately, the transposition to SynRMs is not
straightforward. The first attempts date back to the early 2000s, which immediately
highlighted the problems associated with magnetic saturation [98]. The complexity
is evidenced by the few publications that followed that seminal article [9, 82], but a
recent upswing indicates that the interest in this technique has not waned [65, 79,
119].

The main obstacles are the instability that the linearization around the working
point can in a too-simple model and the derivative of Jacobian matrices, which is
critical when the magnetic model is based on a piecewise-linear interpolation of LUTs
[56]. A viable alternative can represented by the use of approximating functions, if
one accepts non negligible estimation errors in some portion of the working region.
Once again, it all comes down to the SynRM model.

In the frame of the use of AI to improve the next generation of electric drives, this
chapter reformulates the EKF algorithm exploiting an innovative magnetic model,
based on RBF-ANN, firstly proposed in [84]. This AI-based tool can be tuned offline
to accurately describe the magnetic behaviour of the motor, including any self- and
cross-saturation. But the distinctive feature is that it returns an analytical model,
which guarantees differentiability of any order.

The typical implementation of the EKF on a synchronous motor neglects the sat-
uration and assumes a linear magnetic model with nominal inductances. In other
words, the model indicated with the red lines and previously described in chapter
1, Figure 2.4 is assumed. It is easy to understand that if this model is quite correct
for small currents this is no longer true when the motor operates under heavy load
conditions. Therefore, to properly deal with this, the model described in section 2.2 in
equations (2.14) and (2.15) are used.

6.1 Extended Kalman Filter

For what concerns the mechanical model of the motor a "infinite inertia" hypothesis
is adopted, i.e. the variation in speed within the control cycle 𝑇𝑠 is assumed negligible.
Therefore, it can be described with equations (6.1).𝑑𝜔𝑚𝑒𝑑𝑡 = 0, 𝑑𝜗𝑚𝑒𝑑𝑡 = 𝜔𝑚𝑒 (6.1)
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The more traditional and simple choice of the state variable for the EKF implemen-
tation is chosen 𝐱 = [𝑖𝛼 , 𝑖𝛽 , 𝜔𝑚𝑒 , 𝜗𝑚𝑒]𝑇 (6.2)
of which [𝑖𝛼 , 𝑖𝛽 ]𝑇 are directly measured on the drive. Combining equations (2.14) and
(6.1) the total state-space non linear model of the SynRM can be derived𝐱̇(𝑡) = 𝐟 (𝐱(𝑡), 𝐮(𝑡)) + 𝝈(𝑡)𝐲(𝑡) = 𝐡 (𝐱(𝑡)) + 𝝁(𝑡) (6.3)

in which the measurements 𝐲(𝑡) are the currents 𝐢𝛼𝛽 . While:

𝐟 = ⎡⎢⎢⎣
𝐀−1 (𝐮𝛼𝛽 − 𝐑𝐢𝛼𝛽 − 𝜔𝑚𝑒 (𝐁𝐢𝛼𝛽 + 𝐂))0𝜔𝑚𝑒 ⎤⎥⎥⎦𝐡 = [1 0 0 00 1 0 0]

(6.4)

This notation allows a direct application of the EKF theory and estimator, provided
that the added system and measurement noises, 𝝈(𝑡) and 𝝁(𝑡), are both zero-mean,
white Gaussian noises with covariance 𝐐𝜎 and 𝐑𝜇 respectively. Moreover, these
covariance matrices must be symmetric, positive semi-definite and independent from
state 𝐱(𝑡). All these hypothesis are assumed to be valid on the considered system.

The EKF is an optimal, stochastic estimator able to perform estimations on noisy
systems. It implements a predictor-corrector estimator and it is optimal in the sense
that it minimizes the estimated error covariance. Conversely to its linear version, the
EKF is able to estimate the state of non linear systems hinging on a local linearisation
for the update of the covariances.

Starting from a state-space model described as in (6.3) the discrete implementation
of the EKF can be derived. The model is firstly discretized according to the control
period 𝑇𝑠 𝐱̂(𝑘 + 1) = 𝐟 (𝐱̂(𝑘), 𝐮(𝑘)) + 𝝈(𝑘)𝐲(𝑘) = 𝐡 (𝐱(𝑘)) + 𝝁(𝑘) (6.5)

While 𝐡 remains unchanged, henceforth with 𝐟 is intended the discrete version of
the model state space function. To synthesise, the time dependence is reported as
subscript.

𝐟 =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑖𝛼,𝑘+1 = 𝑖𝛼,𝑘 + 𝑇𝑠𝛾11,𝑘[𝑢𝛼,𝑘 − 𝑅𝑖𝛼,𝑘 − 𝜔𝑚𝑒,𝑘(𝑏11,𝑘 𝑖𝛼,𝑘 + 𝑏12,𝑘 𝑖𝛽,𝑘 + 𝑐𝛼,𝑘)]++ 𝑇𝑠𝛾12,𝑘[𝑢𝛽,𝑘 − 𝑅𝑖𝛽,𝑘 − 𝜔𝑚𝑒,𝑘(𝑏21,𝑘 𝑖𝛼,𝑘 + 𝑏22,𝑘 𝑖𝛽,𝑘 + 𝑐𝛽,𝑘)]𝑖𝛽,𝑘+1 = 𝑖𝛽,𝑘 + 𝑇𝑠𝛾21,𝑘[𝑢𝛼,𝑘 − 𝑅𝑖𝛼,𝑘 − 𝜔𝑚𝑒,𝑘(𝑏11,𝑘 𝑖𝛼,𝑘 + 𝑏12,𝑘 𝑖𝛽,𝑘 + 𝑐𝛼,𝑘)]++ 𝑇𝑠𝛾22,𝑘[𝑢𝛽,𝑘 − 𝑅𝑖𝛽,𝑘 − 𝜔𝑚𝑒,𝑘(𝑏21,𝑘 𝑖𝛼,𝑘 + 𝑏22,𝑘 𝑖𝛽,𝑘 + 𝑐𝛽,𝑘)]𝜔𝑚𝑒,𝑘+1 = 𝜔𝑚𝑒,𝑘𝜗𝑚𝑒,𝑘+1 = 𝜗𝑚𝑒,𝑘 + 𝑇𝑠𝜔𝑚𝑒,𝑘
(6.6)

The Jacobians of functions 𝐟 and 𝐡 are evaluated on the actual working point 𝑘.𝐅(𝑘) = 𝜕𝐟𝜕𝐱 ||||𝐱=𝐱̂(𝑘) , 𝐇(𝑘) = 𝜕𝐡𝜕𝐱 ||||𝐱=𝐱̂(𝑘) (6.7)
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The ̂ operator is introduced to specify that in the implementation the real state is
unknown and its estimate is used.

It is worth recalling that the coefficients 𝛾 depends on non linear inductance
functions (2.16), (2.15) that are in turn obtained by derivation of the synchronous
flux linkages 𝝀𝑑𝑞 . Starting from the knowledge of the currents vs fluxes relationship.
the achievement of Jacobians (6.7) requires two orders of derivation. The first for
obtaining the synchronous inductances, while the second to evaluate the Jacobian
terms. It is easy to understand the overwhelming complexity of these calculations
if the flux functions are not chosen properly. In keeping with the characters of this
thesis, a RBF-ANN fitting function was used. The calculations for the achievement of
Jacobians of (6.6) are reported in appendix D.

The algorithm is composed by two steps. The former is the measurement update
(or correction) in which the estimation is corrected through the new measurement at
point 𝑘 (a posteriori estimation). The latter is called time update (or prediction) and
consists in the estimation at step 𝑘 + 1 given the previously corrected estimate at step𝑘 (a priori estimation). They will be differentiated using respectively the temporal
indexes 𝑘|𝑘 and 𝑘 + 1|𝑘.

The main operations performed at time 𝑘𝑇𝑠 are the following.
• measurement update (correction)𝐇 = 𝜕𝐡𝜕𝐱 ||||𝐱=𝐱̂(𝑘|𝑘−1)𝐊 = 𝐏(𝑘|𝑘 − 1)𝐇𝑇 (𝐇𝐏(𝑘|𝑘 − 1)𝐇𝑇 + 𝐑𝜇)−1𝐱̂(𝑘|𝑘) = 𝐱̂(𝑘|𝑘 − 1) + 𝐊 [𝐲(𝑘) − 𝐡(𝐱̂(𝑘|𝑘 − 1))]𝐏(𝑘|𝑘) = 𝐏(𝑘|𝑘 − 1) − 𝐊𝐇𝐏(𝑘|𝑘 − 1)

(6.8)

• time update (prediction) 𝐱̂(𝑘 + 1|𝑘) = 𝐟(𝐱̂(𝑘|𝑘), 𝐮(𝑘))𝐅 = 𝜕𝐟𝜕𝐱 ||||𝐱=𝐱̂(𝑘|𝑘)𝐏(𝑘 + 1|𝑘) = 𝐅𝐏(𝑘|𝑘)𝐅𝑇 + 𝐐𝜎
(6.9)

𝐊 represents the Kalman gains matrix evaluated at step 𝑘 used to correct the state
estimation through the innovation contribute 𝐲(𝑘) − 𝐡(𝐱̂(𝑘|𝑘 − 1)). The matrix 𝐏(𝑘)
represents the error covariances of each state variable.

The Kalman estimate is optimal provided that the covariance matrices 𝐐𝜎 and 𝐑𝜇
are properly tuned on the real system noises. They are typically chosen as diagonal
matrices assuming that each state is only affected by its relative noise [17]. While
the measurement covariance can be easily identified experimentally, during the com-
missioning of the drive, the estimation of 𝐐𝜎 is not trivial and typically requires an
iterative trial and error fine tuning. This approach was considered in this thesis.

6.2 Radial Basis Function Neural Network

The computation of the Jacobian 𝐅 in (6.9) is relevant in deciding the feasibility of
the EKF algorithm. Due to the strongly non linear magnetic behaviour included in
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the model equations (2.14), the evaluation of 𝐅 requires the estimation of the first
and second order derivatives of the flux linkages shown in Figure 2.4. The former
are directly employed, in form of differential inductances, in the implementation of
equation (2.14) during the prediction step, while the latter are necessary as derivatives
of these inductances in the determination of 𝐅.

There is the need to estimate the fluxes as continuous and differentiable functions,
at least up to the second order of derivation. An effective solution is represented by a
description based on a RBF-ANN, as suggested in [84]. The model is based on an equally
distributed neuron network which, elaborating the input currents 𝐢𝑑𝑞 , estimates the
output fluxes 𝝀𝑑𝑞 . Gaussian activation functions are used for each neuron and the
synchronous fluxes 𝝀𝑑𝑞 can be expressed as linear combination of exponential terms.

𝝀𝑑𝑞 = 𝐾∑𝑘=0 𝐰𝑘𝑒−(||𝐢𝑑𝑞−𝐱𝑘 ||𝑏𝑘)2 (6.10)

The usage of a Gaussian activation function gives to each neuron a local charac-
teristic, which means that if the input is sufficiently far from a neuron this last is
not used in the determination of the network output. This distance is an Euclidean
distance evaluated respect to each of the 𝐾 neurons which compose the network. In
other words, the distance between the input 𝐢𝑑𝑞 and the 𝑘-th neuron is represented by||𝐢𝑑𝑞 −𝐱𝑘 || in which 𝐱𝑘 = [𝑥𝑑𝑘 , 𝑥𝑞𝑘 ]𝑇 are the coordinates of the neuron. The distances are
scaled by the coefficients 𝑏𝑘 and passed through an exponential function. The results
are then linearly combined according to the weights 𝐰𝑘 = [𝑤𝑑𝑘 , 𝑤𝑞𝑘 ]𝑇 to estimate the
synchronous fluxes 𝝀𝑑𝑞 .

Clearly, the computational effort required by the assessment of equations (6.10) is
heavier respect to the same evaluation through LUTs. Nonetheless, the realization by
means of exponential functions guarantees differentiability at any order of derivation.
Moreover, once the network weights are tuned offline is also possible to implement
online only a reduced order Mac-Laurin approximation of the exponential, thus
reducing the computational effort required by the algorithm.

Based on (6.10), the synchronous inductances can be easily evaluated as the fol-
lowing equations show.

𝐿𝑑 = 𝜕𝜆𝑑𝜕𝑖𝑑 = 𝐾∑𝑘=0 −2 (𝑖𝑑 − 𝑥𝑑𝑘 ) 𝑏2𝑘𝑤𝑑𝑘 𝑒−(||𝐢𝑑𝑞−𝐱𝑘 ||𝑏𝑘)2
𝐿𝑞 = 𝜕𝜆𝑞𝜕𝑖𝑞 = 𝐾∑𝑘=0 −2 (𝑖𝑞 − 𝑥𝑞𝑘 ) 𝑏2𝑘𝑤𝑞𝑘 𝑒−(||𝐢𝑑𝑞−𝐱𝑘 ||𝑏𝑘)2
𝐿𝑑𝑞 = 𝜕𝜆𝑑𝜕𝑖𝑞 = 𝐾∑𝑘=0 −2 (𝑖𝑞 − 𝑥𝑞𝑘 ) 𝑏2𝑘𝑤𝑑𝑘 𝑒−(||𝐢𝑑𝑞−𝐱𝑘 ||𝑏𝑘)2

(6.11)

Finally, applying the transformation (2.12), it is possible to express equations (6.10)
and (6.11) as functions of stationary currents 𝐢𝛼𝛽 with the aim to derivate them respect
to the state 𝐱 and evaluate Jacobian 𝐅 as reported in appendix D. It is evident that,
despite the computational load, the derivation of the flux linkages becomes straight-
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Table 6.1. SynRM parameters.

Symbol Parameter Value𝑃𝑛 Nominal power 1600W𝑈𝑛 Nominal voltage 400V𝐼𝑛 Nominal current 4A𝑝 Number of pole pairs 2𝜔𝑚,𝑛 Nominal speed 1500 rpm𝐿𝑑,𝑛 Nominal 𝑑 inductance 380mH𝐿𝑞,𝑛 Nominal 𝑞 inductance 85mH
forward when this RBF model of the fluxes is considered. Once these are evaluated,
the Jacobian 𝐅 can be obtained.

The identification of the weights 𝐰𝑘 and biases 𝑏𝑘 which best fit the flux maps is
carried out through a supervised training of the ANN. This procedure is based on the
availability of a training dataset [39], in this case composed by a series of inputs 𝐢𝑑𝑞
and their relative outputs 𝝀𝑑𝑞 that should span all the motor operating region. As
previously done for the ANN in section 5.1.3, a Levenberg-Marquardt algorithm was
chosen to evaluate the estimation error of the network on the training dataset and
back-propagate it for updating the ANN weights.

From the implementation point of view, the training dataset was realized offline.
Thanks to the availability of a test bench as that reported in Figure 6.1 and described
in section 6.3, a set of couples 𝐢𝑑𝑞 , 𝝀𝑑𝑞 was acquired. The currents were explored from−𝐼𝑛 to 𝐼𝑛 with 19 points equally spaced along both 𝑑𝑞 axes, obtaining 19 × 19 = 361
points. Performing the steady-state measurements of currents, voltages and speed for
each of these points the corresponding 𝝀𝑑𝑞 set was obtained [11].

The RBF-ANN was then trained with this training dataset. After some attempts the
best results were achieved using an ANN architecture with 14 × 14 = 196 neurons
equispaced along the axes of the 𝑑𝑞 synchronous reference frame. Comparing the
currents to fluxes maps obtained experimentally with the outputs given by the trained
ANN a mean square error equal to 1.22 × 10−6V2s2 while the absolute error evaluated
for each 𝐢𝑑𝑞 , 𝝀𝑑𝑞 point was always below 1.24 % respect the nominal value.

6.3 Experimental Results

6.3.1 Test rig description

The experiments were performed on the test bench shown in Figure 6.1. The SynRM
(Table 6.1) was speed-controlled through the sensorless feedback of the estimated state.
A PMSM was mechanically coupled with the SynRM in a back to back configuration in
order to emulate the effect of a load torque during the operation of the SynRM. Both
the motors were actuated with two Voltage Source Converters (VSCs) connected to
the same DC bus. The DC bus voltage value was 540V and the switching frequency
of the inverters equal to 8 kHz. The VSCs were controlled through a MicroLabBox
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Figure 6.1. The experimental test bench.

dSpace FCP system.
The idea was to appreciate the effect of magnetic non linearities on the filter

estimation and sensorless control of the SynRM. The dynamics of the inner current
loops was maintained flat through an adaptive PI current control structure [7]. With
this solution a constant bandwidth of the current control loop was guaranteed in
each working condition. Therefore, the stability or instability of the sensorless control
during the tests was ascribable to only the EKF performances and not to the variations
of the current control dynamics. The PI gains were tuned to obtain 200Hz bandwidth
with 70◦ phase margin and 5Hz bandwidth with 70◦ phase margin in the current and
speed control loops respectively.

As is known, the EKF applied on SynRM suffers of observability issues [20, 106]
when the motor flux is absent, i.e. when the motor is unloaded. In order to guarantee
a widespread range of operability a modified Maximum Torque Per Ampere (MTPA)
approach was considered (see Figure 6.2), limiting the 𝑑-axis current above 30%
the nominal value. This was chosen as an arbitrary threshold. The experimental
optimization of this value was not the aim of my study, but it would be advisable in
an industrial application to maximize the drive efficiency.

Three types of EKF were considered whose performance comparison is the main
target of this project.

• a standard implementation of the EKF using the nominal, linear magnetic model of
the SynRM as those already present in literature (hereafter called Linear (Lin) EKF),

• an implementation which takes into account of magnetic non linearities (Non
Linear (NL)) thanks to the knowledge of an accurate neural network-basedmagnetic
model of the motor,

• an hybrid version of the previous twos, optimized from the execution time point
of view (called Hybrid (Hy)).
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Figure 6.2. MTPA currents in the 𝑑𝑞 plane.

The first was the simpler, based on a nominal and linear magnetic model. Taking
advantage of the RBF neural model a second version was considered which includes
the magnetic non linearities of the motor.

It should be highlighted that, even though the ANN allows to easily estimate all
grade derivatives of the fluxes, the equations to implement are quite complex. As it
is known, the EKF tries to overcome the non linearity problem in two ways. On one
hand, it hinges on the model knowledge for updating the state estimates. On the other
hand, since the propagation of covariances consists in matrix calculations a linearised
version of the model is considered.

Since some imprecision is tolerated in the covariance matrix, and given the heavy
computational load for estimating the Jacobian components, a novel hybrid solution
was evaluated. It was based on the complete RBF magnetic model for the state estima-
tion, while it considered a simplified model for the propagation of the covariances. In
other words, during the estimation of 𝐅 the saturation of inductances was neglected
and the nominal model was considered.

Although the complete non-linear proposal is theoretically more correct, the hybrid
solution becomes very interesting from the implementation point of view. As a matter
of fact, the formulation of Jacobians taking into account of non-linear magnetic effects
is quite complex and requires many operations during the cycle time. An overrun
condition can easily occur if the control time is slightly reduced or if the algorithm
is not accurately optimized. The features of the considered three versions of the
EKF are resumed in Table 6.2. In the table, the linear or non-linear characteristic
means whether the dependence of 𝐋𝑑𝑞 on the motor currents were neglected or
not during the prediction or the evaluation of the Jacobian. Each of the three EKFs
were experimentally tuned through a trial and error approach optimizing the state
estimation over the whole operating region of the motor. Although some differences
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Table 6.2. EKF types and relative features.

Symbol Name Prediction 𝐋𝑑𝑞(𝐢𝑑𝑞) Jacobian 𝐅
Lin Linear Linear Linear
Hy Hybrid Non-Linear Linear
NL Non-Linear Non-Linear Non-Linear

were expected due to the different precision on the motor model, the experimental KF
tuning leads to the same optimal covariance matrices for all the three filter versions
which were 𝐐𝜎 = 𝑑𝑖𝑎𝑔(1, 1) and 𝐑𝜇 = 𝑑𝑖𝑎𝑔(0.01, 0.01, 0.1, 1𝑒−10).

6.3.2 Comparison of the three EKF solutions - Pullout curve test

The different EKFs performances were tested on a very demanding pull-out curve. This
was arbitrarily chosen with the aim of stressing out the sensorless control capabilities
of the different EKF algorithms. Figure 6.3 reports the speed and torque references
for the SynRM and PMSM respectively. The transient lasts 12 s, in which the speed
gradually changes from 50%, to 100% and finally to 15% of the nominal value, while
the torque goes from 0 p.u. to 0.95 p.u.

The aim was to get an insight of the operative range of the motor. Clearly, as theory
demonstrates [20], very low speed functioning is not feasible. In this operating point
an alternative injection-based sensorless algorithm is mandatory in an industrial
application. It is important that this threshold between the two sensorless methods
(i.e. injection-based or EKF) is as low as possible. In the experiments, a satisfactory
lower limit for the speed at full load was set to 15% of the nominal value.

The results obtained on the experimental rig driven by the reference of Figure 6.3
with the SynRM speed control closed on the linear, hybrid or non-linear EKF are reported
in Figure 6.4, 6.5 and 6.6 respectively.

At the beginning of the transient (𝑡 ≤ 1 s) the motor was rotating at half the
nominal speed and it was unloaded (𝜏𝐿 = 0). These are quite favourable conditions
for the EKF estimator and no particular critical behaviours are expected. Moreover,
the motor currents are quite low. In this case also the linear EKF behaves well since
the nominal model quite corresponds with the actual one. Nonetheless, even in this
uncritical situation, observing the position estimation error (𝜖𝜗𝑚 = 𝜗̂𝑚 − 𝜗𝑚), a better
behaviour of the hybrid and non-linear filters is remarkable. The position error goes
from a medium error of −2.2◦ for the linear EKF to quite −0.6◦ for the other versions.

Some minor differences can be pointed out but all the three versions work properly
during the speed transient up to 𝜔𝑚,𝑛 with no load applied.

The magnetic model knowledge forcefulness is as more valuable as the level of
motor currents increases due to the growing in the load torque. In this circumstance
the motor inductances saturate, the linear EKF model is substantially different respect
to the actual one and the estimation error diverges. Even with a time-consuming fine
tuning of the covariance matrices, a successful accomplishment of the entire transient
managed by the linear EKF estimates was not achieved. In steady-state conditions,
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Figure 6.3. Speed and torque references used during the tests of the three different EKF
sensorless controls.

Table 6.3. Turnaround times.

Symbol EKF type Turnaround time
Lin Linear 27 µs
Hy Hybrid 79 µs
NL Non-Linear 108 µs

the maximum level of load torque the SynRM was able to bear with the linear EKF was
about the 45 %.

The situation was far better with the hybrid and non-linear solutions. Albeit some
little differences on the estimate noisiness and errors, the hybrid and non-linear EKFs
behaved the same, as regard the stability.

6.3.3 Comparison of the three EKF solutions - Execution time collation

An additional information which could help in determining the best EKF choice for the
speed sensorless control of a SynRM is the execution time. This value was evaluated
as the total amount of time required to complete the control algorithm during a cycle
period. It includes not only the EKF calculations but also the control algorithm and
the measurement procedure.

Table 6.3 reports the execution time for the three EKF versions. The simple EKF
with nominal, linear magnetic model on the considered test bench takes 27 µs. If a
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Figure 6.4. Experimental results. Linear EKF.
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Figure 6.5. Experimental results. Hybrid EKF.
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Figure 6.6. Experimental results. Non linear EKF.
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comprehensive description of the non linear magnetic model through a RBF-ANN is
included an almost prohibitive algorithm is obtained. An increase of 300 % of the
execution time in the experimental rig was recorded. It is worth noticing that the
control period was 𝑇𝑠 = 125 µs and therefore the EKF with non linear magnetic model
wasted almost all the available period. A better compromise was reached with the
hybrid EKF solution that takes 79 µs (vs 108 µs of the full-non linear EKF).

6.4 Conclusive remarks

A comprehensive experimental verification of an EKF-based sensorless control for
SynRMs has been reported in this chapter. In order to properly understand and deal
with the critic factors of the system three different EKF versions have been proposed.
Firstly, the standard EKF for synchronous motors is considered and in particular, a
linear magnetic model is assumed. This is the simpler solution, directly inherited
from PMSM applications. Nonetheless, the experimental measurements show that the
linear magnetic model assumption on a strongly non linear motor heavily limits the
stability of the system. Perhaps that is the reason for EKF’s lack of success for the
time being. It is clear that in order to obtain reasonable performance for all the motor
working region a method able to consider of magnetic non linearities is needed.

A solution has been found in the accurate modelling of these non-idealities through
a RBF-ANN avoiding the augmentation of the state for the estimation of motor fluxes
and inductances. Thanks to this, a very precise EKFmodel was achieved. Although the
provided solution already solves the problem of operating at full torque and speed,
the sensorless algorithm is still very time-consuming.

Therefore, an hybrid version of the previous two EKFs has been finally introduced
in this chapter which leads to a reduction of the computational effort maintaining
the enhanced operability range. Proper experimental results and measurements are
reported to validate the provided assertions.

This research activity is not yet neither published nor under revision, but it will be
made pubblic in the coming months.



conclusions

The climate change requires rapid and deep counteractions. Recent national and
international policies are leading to an industrial world more efficient, reliable and
safe. Tailoring these concepts to the electric drives field, this thesis proposes a modern
and innovative study based on AI tools. In this context, CNNs have been applied and
experienced as valid expert predictors of the health conditions of different AC motors.
The application of these intelligent tools is surely inline with the modern trends
of Industry 4.0 and Internet of Things. As a matter of fact, the connectivity and
share of data that are typical of these development guidelines surely facilitate the
implementation of neural networks also to the electric machines. The implementations
reported in this thesis are intended to work offline, in a dedicated server, to which
the online measurements from the motor are sent. In a near future, it is probable that
an increased computational power will allow an online implementation of all the
proposed algorithms.

The interturn short circuit and the demagnetization where considered for PMSMs,
while the broken bars for IMs. The avoidance of potential additional sensors in these
industry-oriented drives was chosen as cornerstone of the presented predictive main-
tenance projects. Although during the collaboration reported in chapter 4 also the
stray flux has been studied, I tried to preferentially develop condition monitoring
systems based on the analysis of the motor currents. This because any modern drive
is already provided of the current sensor and as it can be chosen as common index
for the recognition of different failure conditions.

The standard approach for the realization of the training dataset for the CNNwould
require the collection of several current patterns from both healthy and faulty motors
and in different load and speed conditions. This unaffordable method makes the
application of this type of AI tool in the electric drives field still unpracticable. In
order to enhance the feasibility of these condition monitoring systems a completely
new approach has been investigated in this thesis. This was the completely artificial
generation of the entire training dataset through some accurate models of the motors.
The networks trained on them have shown to perform optimally. When the models
were not available or they were not adequately precise, the application of different and
tailored DA techniques for the training dataset enhancement has shown to strongly
increase the accuracy of the final predictor and these results have been highlighted
throughout the thesis.

It is confirmed that a general method for the design of the CNN architecture cannot
be achieved. As a further contribute to the research world, the reported implementa-
tions are quite similar and the rule of thumbs and design hints reported in the thesis
can be a valid tool for development of new CNNs able to recognize other types of
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Figure 6.7. Design procedure of the CNN predictor developed in this thesis..

faults or applicable to other motors. In Figure 6.7 is reported a summary scheme of
the adopted procedure for the design of a CNN-based fault monitoring system for AC
electric motors.

Additionally, the knowledge-based identification of motor non linearities through
ANNs has also been exploited successfully for the realization of a sensorless control
algorithm for SynRMs. The topic has been studied as it represents an important step for
the efficiency (usage of more efficient SynRMs) and reliability (avoidance of fault-prone
position sensors). The standard implementation of the EKF has been modified with
two novel proposals: a completely non linear and an hybrid one. This last one has
been finally chosen as best as it gives the same stability performance, while limiting
the computational load of the control algorithm.

All the results have been validated through extensive simulations and experimental
stages in the Electric Drives Laboratory in Vicenza (EDLabVI).

Although very relevant results have been already obtained and described in this
thesis, there is surely a lot to do in the next future. Something has been done for the
simultaneously recognition of different faults, but a comprehensive and complete
fault recognition system able to manage also the remaining failures has not been
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developed yet. The optimized design of the CNN structure and implementation on an
industrial micro-controller is certainly another relevant issue that up to date research
has to face.

Finally, a self-tuning for the EKF applied to SynRM would conclude the transition to
an autonomous, more intelligent generation of electric drives.





A

solution of the integral for determining flux
harmonics in a demagnetised pmsm

The mathematical passages for the determination of the additional flux harmonics
created by the demagnetization of a PMSM (3) are here reported. The analysis starts
from equation (3.6) which is here recalled for convenience.

𝜆𝑚𝑔𝑎 (𝜃𝑚) = 𝑝𝑤−1∑𝑖=0 ∞∑𝑛=1 ∞∑𝑘=0 𝑘𝑤 𝐵̂𝑔𝑛𝛼𝑘 𝐷𝐿4 ⋅
∫ 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤− 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 cos [(𝑛𝑝 − 𝑘)(𝜃𝑠 − 𝜃𝑚)]− cos [(𝑛𝑝 + 𝑘)(𝜃𝑠 − 𝜃𝑚)]𝑑𝜃𝑠

(A.1)

Solving the integral, one can obtain:

𝜆𝑚𝑔𝑎 (𝜃𝑚) = 𝑝𝑤−1∑𝑖=0 ∞∑𝑛=1 ∞∑𝑘=0 𝑘𝑤 𝐵̂𝑔𝑛𝛼𝑘 𝐷𝐿4
{

1𝑛𝑝 − 𝑘 [sin((𝑛𝑝 − 𝑘)( 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 − 𝜃𝑚))− sin((𝑛𝑝 − 𝑘)(− 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 − 𝜃𝑚))]− 1𝑛𝑝 + 𝑘 [sin((𝑛𝑝 + 𝑘)( 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 − 𝜃𝑚))− sin((𝑛𝑝 + 𝑘)(− 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 − 𝜃𝑚))]}
(A.2)

Each term is expanded to see if any simplification is possible. Let’s denote the sine
terms in (A.2) as 𝑠1, 𝑠2, 𝑠3 and 𝑠4.𝑠1 = sin [(𝑛𝑝 − 𝑘)( 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 − 𝜃𝑚)]𝑠2 = sin [(𝑛𝑝 − 𝑘)(− 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 − 𝜃𝑚)]𝑠3 = sin [(𝑛𝑝 + 𝑘)( 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 − 𝜃𝑚)]𝑠4 = sin [(𝑛𝑝 + 𝑘)(− 𝜋2𝑝𝑤 + 2𝜋𝑖𝑝𝑤 − 𝜃𝑚)]

(A.3)
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They can be expanded by applying repeatedly the trigonometric sum and difference
identities. For example, considering 𝑠1 it gives:

𝑠1 = sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 + (𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 − (𝑛𝑝 − 𝑘)𝜃𝑚]= sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 + (𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)𝜃𝑚]− cos [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 + (𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)𝜃𝑚]= sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)𝜃𝑚]+ cos [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)𝜃𝑚]− cos [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)𝜃𝑚]+ sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)𝜃𝑚]

(A.4)

The same holds for 𝑠2, 𝑠3 and 𝑠4. The following expansions are obtained.

𝑠2 = − sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)𝜃𝑚]+ cos [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)𝜃𝑚]− cos [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)𝜃𝑚]− sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)𝜃𝑚]
(A.5)

𝑠3 = sin [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)𝜃𝑚]+ cos [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)𝜃𝑚]− cos [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)𝜃𝑚]+ sin [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)𝜃𝑚]
(A.6)
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𝑠4 = − sin [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)𝜃𝑚]+ cos [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)𝜃𝑚]− cos [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)𝜃𝑚]− sin [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)𝜃𝑚]
(A.7)

Considering the expansion to (A.2) the following subtractions are of interest:

𝑠1 − 𝑠2 = 2 sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)𝜃𝑚]+ 2 sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)𝜃𝑚]= 2 sin [(𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤 ]{cos [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 − 𝑘)𝜃𝑚]+ sin [(𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 − 𝑘)𝜃𝑚]}
(A.8)

𝑠3 − 𝑠4 = 2 sin [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)𝜃𝑚]+ 2 sin [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)𝜃𝑚]= 2 sin [(𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤 ]{cos [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] cos [(𝑛𝑝 + 𝑘)𝜃𝑚]+ sin [(𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 ] sin [(𝑛𝑝 + 𝑘)𝜃𝑚]}
(A.9)
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Now, substituting this differences (A.8) and (A.9) in (A.2), one obtains:

𝜆𝑚𝑔𝑎 (𝜃𝑚) = 𝑝𝑤−1∑𝑖=0 ∞∑𝑛=1 ∞∑𝑘=0 𝑘𝑤 𝐵̂𝑔𝑛𝛼𝑘 𝐷𝐿4 { 1𝑛𝑝 − 𝑘 [𝑠1 − 𝑠2] − 1𝑛𝑝 + 𝑘 [𝑠3 − 𝑠4]}
= 𝑝𝑤−1∑𝑖=0 ∞∑𝑛=1 ∞∑𝑘=0 𝑘𝑤 𝐵̂𝑔𝑛𝛼𝑘 𝐷𝐿4{ 2𝑛𝑝 − 𝑘 sin((𝑛𝑝 − 𝑘) 𝜋2𝑝𝑤)

[cos((𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 )cos ((𝑛𝑝 − 𝑘)𝜃𝑚)
+ sin((𝑛𝑝 − 𝑘)2𝜋𝑖𝑝𝑤 )sin ((𝑛𝑝 − 𝑘)𝜃𝑚)]− 2𝑛𝑝 + 𝑘 sin((𝑛𝑝 + 𝑘) 𝜋2𝑝𝑤)
[cos((𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 )cos ((𝑛𝑝 + 𝑘)𝜃𝑚)
+ sin((𝑛𝑝 + 𝑘)2𝜋𝑖𝑝𝑤 )sin ((𝑛𝑝 + 𝑘)𝜃𝑚)]}

(A.10)

Simplifying and defining the coefficients:

𝛽±𝑘 = 1𝑛𝑝 ± 𝑘 sin((𝑛𝑝 ± 𝑘)𝑝𝑤 𝜋2 ) . (A.11)

equation (A.10) can be further simplified to

𝜆𝑚𝑔𝑎 (𝜃𝑚) = 𝑝𝑤−1∑𝑖=0 ∞∑𝑛=1 ∞∑𝑘=0 𝑘𝑤 𝐵̂𝑔𝑛𝛼𝑘 𝐷𝐿2
{

𝛽−𝑘[cos(2𝜋𝑖𝑝𝑤 (𝑛𝑝 − 𝑘)) cos((𝑛𝑝 − 𝑘)𝜃𝑚)+
sin(2𝜋𝑖𝑝𝑤 (𝑛𝑝 − 𝑘)) sin((𝑛𝑝 − 𝑘)𝜃𝑚)]−𝛽+𝑘[cos(2𝜋𝑖𝑝𝑤 (𝑛𝑝 + 𝑘)) cos((𝑛𝑝 + 𝑘)𝜃𝑚)+
sin(2𝜋𝑖𝑝𝑤 (𝑛𝑝 + 𝑘)) sin((𝑛𝑝 + 𝑘)𝜃𝑚)]}

(A.12)

which is equal to equation (3.7) used in chapter 3.



B

short time fourier transform

The operating principle of STFT comes from the same theory of the classical Fourier
transform, thus is used to analyse the steady state frequency behaviour of a windowed
part of a signal. Different types of window can be applied.

In order to perform its discrete version, there are two parameters that have to be
properly design: the time resolution 𝑇𝑠 and frequency resolution 𝐹 . The former, is
directly related to the sampling frequency 𝑓𝑠 = 1/𝑇𝑠 , specifies the maximum frequency
that can be analysed through the Fourier transform according to the Nyquist theorem.
The latter is directly related to the time length 𝑇 of the signal on which the transform
is applied. The frequency resolution of the obtained transform is equal to 𝐹 = 1/𝑇 . As
it is known, during the acquisition of a signal for this purpose, the parameters 𝑓𝑐 and𝑇 must be properly chosen as trade-off between time and frequency resolution and
the memory requirements for the storage of the signal. In online implementations
also the computational cost is surely another important parameter for the design.

Generally, the entire signal is elaborated and the analysis returns correct results
only if the signal is acquired in steady-state conditions. No information about the
evolution of the frequency spectrum during time is provided.

The main idea of the STFT is to subdivide the original signal 𝑥(𝑡) in different equal
parts and to perform a FFT on them [37]. The results are as many FFT as the number of
parts in which the original signal is subdivided, thus obtaining a mean of analysing
the evolution of the spectrum in time (Figure B.1).

Defining as 𝑥(𝑡) the signal and 𝑤(𝑡) the rectangular transform window (Figure B.1),
the continuous STFT can be evaluated as follows.

𝑋(𝜏 , 𝑓 ) = ∫ ∞
−∞ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓 𝑡𝑑𝑡 (B.1)

Its discrete version [59] is implemented by:

𝑋(𝜏 , 𝑛) = 𝐿−1∑𝑘=0 𝑥(𝑘)𝑤(𝑘 − 𝜏)𝑒−2𝜋𝑗𝑛𝑘/𝐿 (B.2)

in which 𝐿 represents the length of the 𝜏 -th part of the original signal.
The output𝑋(𝜏 , 𝑛) is a function of two variables: the discrete time 𝜏 and the discrete

frequency 𝑛. A typical way to appreciate its magnitude values in an informative and
effective figure is the plot of the module of the transform values when varying
frequency 𝑛 and time 𝜏 along the ordinate and abscissa axes, respectively. This is
called spectrogram or waterfall plot. The spectrogram of the stray flux measurements
were used as fault index in the project described in chapter 4.
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Figure B.1. Graphical example of the subdivision of a signal 𝑥(𝑡) for the implementation of a
STFT.

The algorithm has a 𝑂(𝑛𝑙𝑜𝑔𝑛) complexity. A particularly intuitive way of appreci-
ating the resolution issues and differences between different types of decomposition
is to look at the so-called “Heisenberg boxes” in the Phase Plane. The purpose of these
boxes is to illustrate uncertainty principle governing the multi-resolution analysis,
according to which the frequency and time of a signal at a specific instant cannot
be known exactly. Instead, there is a trade-off between the resolution in time and in
frequency, resulting in an area of ambiguity on a time-frequency graph. On the so-
called Phase Plane, indeed, time is located on the horizontal axis, whereas frequency
is on the vertical axis. Some examples are shown in Figure B.2. In Figure B.2a the
raw signal is considered. It is composed by a series of samples in the time domain.
Therefore, we have low uncertainties along time axis while no information is available
for the frequency axis. The opposite case is when the Fourier transform is considered
(Figure B.2b). In the STFT case, it is possible to reduce uncertainty in both axis but
they are the result of a compromise among the two. The time resolution of the STFT is
higher if the signal is divided in very small parts. Nonetheless, as observed for the
traditional FFT (in this case applied to each part) the resolution in frequency is higher
choosing longer parts. A graphical example of two extreme cases, in which the time or
the frequency resolution is preferred, is reported in Figure B.2c and B.2d, respectively.
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(a) Original signal resolution.
time

freq

(b) Fourier transform resolution.

time

freq

(c) STFT with high time but low frequency reso-
lution.

time

freq

(d) STFT with low time but high frequency reso-
lution.

Figure B.2. Resolution issues in STFT.





C

wavelet transform

The frequency analysis of a signal through the Fourier transform is based on the
description of the original signal as sum of specifically defined sinusoids. The am-
plitude of each sinusoid describes how much that harmonic (positioned at a specific
frequency) contributes in the definition of the signal waveform. In other words, the
transform is the decomposition of the signal in different "mother" signals (the sinu-
soids) opportunely scaled and translated in frequency. As a general approach, one
can perform a similar transformation using any mother signal.

Nonetheless, using the Fourier transform approach the time information is lost.
In the CWT, the signal is decomposed according to a sum of simple mother signals
(wavelets), but in this case the time information is preserved.

Let’s define a general mother wavelet 𝜓(𝑡). In order to be eligible for the CWT it
has to guarantee some properties [70]:

• Defining as 𝐿2(R) the set of square derivable functions, 𝜓(𝑡) ∈ 𝐿2(R)
• ∫ ∞0 |Ψ(𝜔)|2|𝜔| 𝑑𝜔 < ∞, in which as Ψ(𝜔) is indicated the Fourier Transform of the
mother wavelet 𝜓(𝑡)
A "dilated-translated" version of the original wavelet can be defined as main

decomposition tool of the original time-series.

𝜓𝑎,𝑏(𝑡) = 1√𝑎𝜓 (𝑡 − 𝑏𝑎 ) (C.1)

The dilation coefficient 𝑎 makes the wavelet larger or tighter, while the translation
coefficient 𝑏 specifies a time offset of the wavelet. Since a low frequency sinusoid has
a larger period, large values of 𝑎 are used for wavelets whose amplitudes describe the
low frequency behaviour of the signal. The contrary is valid for high values of 𝑎. The
time shift parameter 𝑏, considered respect to the original signal, is used to localize
the wavelet (and so that specific frequency behaviour) along the time axis.

The CWT can be evaluated by the following integral.

𝑊𝑥 (𝑎, 𝑏) =< 𝑥, 𝜓𝑎,𝑏 >= ∫ ∞
−∞ 𝑥(𝑡)𝜓 𝑎,𝑏(𝑡)𝑑𝑡 = 1√𝑎 ∫ ∞

−∞ 𝑥(𝑡)𝜓 (𝑡 − 𝑏𝑎 ) 𝑑𝑡 (C.2)

With symbol 𝜓 is indicated the conjugate complex of 𝜓 . The integral result gives a
quantitative meaning of how much the specific dilated-translated wavelet contributes
in the signal waveform.
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Figure C.1. Phase Plan partition with the CWT.

Generally, instead of the pure CWT𝑊𝑥 (𝑎, 𝑏), its energy density is considered:𝑆(𝑎, 𝑏) = |𝑊𝑥 (𝑎, 𝑏)|2. (C.3)

This quantity is called scalogram and it is typically plotted as function of the frequency-
related parameter 𝑎 and the time 𝑏.

For the present analysis, its discrete version is of interest.

𝑊𝑥 (𝑎, 𝑘𝑇𝑠) = 𝑇𝑠√𝑎 ∑𝑛 𝑥(𝑛𝑇𝑠)𝜓 ((𝑛 − 𝑘)𝑇𝑠𝑎 ) (C.4)

The computational complexity of this tool is𝑂(𝑛) [70] and an example of its scalogram
plot can be observed in Figure 5.6. In this case, the uncertainty principle application for
the realization of the Heisenberg boxes leads to a dyadic partition of the Phase Plane
(Figure C.1). Moving downside along the plane the wavelets at increasing values of 𝑎
(larger wavelets, low frequency description capabilities of the wavelet) are considered.
The abscissa axis describes the time position of the wavelet according to coefficient 𝑏.
The decomposition level consists on the number of dilations 𝑎 that are considered in
the CWT implementation to span the desired range of frequency. For example, in the
case of section 5.2, 36 values of 𝑎 were chosen to describe the frequency behaviour in
the range 5 to 60Hz.

A CWT typical effect is called edge effect and it is caused by the finite length of
the sampled pattern on which the CWT is performed. In order to obtain the CWT each
dilated-translated wavelet must be applied along the entire signal. To do this, the
centre of the wavelet is iteratively shifted and applied in correspondence of each
original sample. At the beginning and at the end of the signal a particular condition,
graphically described in top plot of Figure C.2 occurs. There is a part of the mother
wavelet that is applied on a region in which the signal 𝑥(𝑡) is undefined. In order to
perform the transform (C.4) it is assumed that the signal is zero outside its domain,
thus causing a distortion of the original signal and relative CWT at initial and final
instants. The time length of this distortion grows as the wavelet becomes wider, that
is, at growing values of 𝑎. In the frequency-time plane this distortion is localized into
a limited area shown in Figure C.2.
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Figure C.2. Edge effect on the frequency-time plane CWT.





D

derivation of jacobians using the rbf-ann model

The analytical Jacobian 𝐅 is here derived. The dependence on sampling time 𝑘 is
omitted for simplicity. Equation (6.6) is considered and it is here recalled to make
reading more comfortable.

𝐟 =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑖𝛼,𝑘+1 = 𝑖𝛼,𝑘 + 𝑇𝑠𝛾11,𝑘[𝑢𝛼,𝑘 − 𝑅𝑖𝛼,𝑘 − 𝜔𝑚𝑒,𝑘(𝑏11,𝑘 𝑖𝛼,𝑘 + 𝑏12,𝑘 𝑖𝛽,𝑘 + 𝑐𝛼,𝑘)]++ 𝑇𝑠𝛾12,𝑘[𝑢𝛽,𝑘 − 𝑅𝑖𝛽,𝑘 − 𝜔𝑚𝑒,𝑘(𝑏21,𝑘 𝑖𝛼,𝑘 + 𝑏22,𝑘 𝑖𝛽,𝑘 + 𝑐𝛽,𝑘)]𝑖𝛽,𝑘+1 = 𝑖𝛽,𝑘 + 𝑇𝑠𝛾21,𝑘[𝑢𝛼,𝑘 − 𝑅𝑖𝛼,𝑘 − 𝜔𝑚𝑒,𝑘(𝑏11,𝑘 𝑖𝛼,𝑘 + 𝑏12,𝑘 𝑖𝛽,𝑘 + 𝑐𝛼,𝑘)]++ 𝑇𝑠𝛾22,𝑘[𝑢𝛽,𝑘 − 𝑅𝑖𝛽,𝑘 − 𝜔𝑚𝑒,𝑘(𝑏21,𝑘 𝑖𝛼,𝑘 + 𝑏22,𝑘 𝑖𝛽,𝑘 + 𝑐𝛽,𝑘)]𝜔𝑚𝑒,𝑘+1 = 𝜔𝑚𝑒,𝑘𝜗𝑚𝑒,𝑘+1 = 𝜗𝑚𝑒,𝑘 + 𝑇𝑠𝜔𝑚𝑒,𝑘
To easy the next mathematical passages, the following variables are defined:

𝐟 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑓𝑖𝛼𝑓𝑖𝛽𝑓𝜔𝑚𝑒𝑓𝜗𝑚𝑒 (D.1)

The Jacobian matrix is defined as

𝐅 = 𝜕𝐟𝜕𝐱 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑓𝑖𝛼𝜕𝑖𝛼 𝜕𝑓𝑖𝛼𝜕𝑖𝛽 𝜕𝑓𝑖𝛼𝜕𝜔𝑚𝑒 𝜕𝑓𝑖𝛼𝜕𝜗𝑚𝑒𝜕𝑓𝑖𝛽𝜕𝑖𝛼 𝜕𝑓𝑖𝛽𝜕𝑖𝛽 𝜕𝑓𝑖𝛽𝜕𝜔𝑚𝑒 𝜕𝑓𝑖𝛽𝜕𝜗𝑚𝑒𝜕𝑓𝜔𝑚𝑒𝜕𝑖𝛼 𝜕𝑓𝜔𝑚𝑒𝜕𝑖𝛽 𝜕𝑓𝜔𝑚𝑒𝜕𝜔𝑚𝑒 𝜕𝑓𝜔𝑚𝑒𝜕𝜗𝑚𝑒𝜕𝑓𝜗𝑚𝑒𝜕𝑖𝛼 𝜕𝑓𝜗𝑚𝑒𝜕𝑖𝛽 𝜕𝑓𝜗𝑚𝑒𝜕𝜔𝑚𝑒 𝜕𝑓𝜗𝑚𝑒𝜕𝜗𝑚𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Exploiting coefficients 𝛾11, 𝛾12, 𝛾21 and 𝛾22 as denoted in (2.16) the component in (D.2)
are evaluated with the following equations.
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𝜕𝑓𝑖𝛼𝜕𝑖𝛼 = 1 + 𝑇𝑠 𝜕𝛾11𝜕𝑖𝛼 [𝑢𝛼 − 𝑅𝑖𝛼 − 𝜔𝑚𝑒(𝑏11𝑖𝛼 + 𝑏12𝑖𝛽 + 𝑐1)]++ 𝑇𝑠 𝜕𝛾12𝜕𝑖𝛼 [𝑢𝛽 − 𝑅𝑖𝛽 − 𝜔𝑚𝑒(𝑏21𝑖𝛼 + 𝑏22𝑖𝛽 + 𝑐2)]+
+ 𝑇𝑠𝛾11 [−𝑅 − 𝜔𝑚𝑒 (𝜕𝑏11𝜕𝑖𝛼 𝑖𝛼 + 𝑏11 + 𝜕𝑏12𝜕𝑖𝛼 𝑖𝛽 + 𝜕𝑐1𝜕𝑖𝛼 )]++ 𝑇𝑠𝛾12 [−𝜔𝑚𝑒 (𝜕𝑏21𝜕𝑖𝛼 𝑖𝛼 + 𝑏21 + 𝜕𝑏22𝜕𝑖𝛼 𝑖𝛽 + 𝜕𝑐2𝜕𝑖𝛼 )] (D.2)

𝜕𝑓𝑖𝛼𝜕𝑖𝛽 = 𝑇𝑠 𝜕𝛾11𝜕𝑖𝛽 [𝑢𝛼 − 𝑅𝑖𝛼 − 𝜔𝑚𝑒(𝑏11𝑖𝛼 + 𝑏12𝑖𝛽 + 𝑐1)]++ 𝑇𝑠 𝜕𝛾12𝜕𝑖𝛽 [𝑢𝛽 − 𝑅𝑖𝛽 − 𝜔𝑚𝑒(𝑏21𝑖𝛼 + 𝑏22𝑖𝛽 + 𝑐2)]+
+ 𝑇𝑠𝛾11 [−𝜔𝑚𝑒 (𝜕𝑏11𝜕𝑖𝛽 𝑖𝛼 + 𝜕𝑏12𝜕𝑖𝛽 𝑖𝛽 + 𝑏12 + 𝜕𝑐1𝜕𝑖𝛽 )]++ 𝑇𝑠𝛾12 [−𝑅 − 𝜔𝑚𝑒 (𝜕𝑏21𝜕𝑖𝛽 𝑖𝛼 + 𝜕𝑏22𝜕𝑖𝛽 𝑖𝛽 + 𝑏22 + 𝜕𝑐2𝜕𝑖𝛽 )] (D.3)

𝜕𝑓𝑖𝛼𝜕𝜔𝑚𝑒 = 𝑇𝑠𝛾11[−(𝑏11𝑖𝛼 + 𝑐1 + 𝑏12𝑖𝛽 )]+𝑇𝑠𝛾12[−(𝑏21𝑖𝛼 + 𝑐2 + 𝑏22𝑖𝛽 )] (D.4)

𝜕𝑓𝑖𝛼𝜕𝜗𝑚𝑒 = 𝑇𝑠 𝜕𝛾11𝜕𝜗𝑚𝑒 [𝑢𝛼 − 𝑅𝑖𝛼 − 𝜔𝑚𝑒(𝑏11𝑖𝛼 + 𝑏12𝑖𝛽 + 𝑐1)]++ 𝑇𝑠 𝜕𝛾12𝜕𝜗𝑚𝑒 [𝑢𝛽 − 𝑅𝑖𝛽 − 𝜔𝑚𝑒(𝑏21𝑖𝛼 + 𝑏22𝑖𝛽 + 𝑐2)]++ 𝑇𝑠𝛾11 [−𝜔𝑚𝑒 ( 𝜕𝑏11𝜕𝜗𝑚𝑒 𝑖𝛼 + 𝜕𝑏12𝜕𝜗𝑚𝑒 𝑖𝛽 + 𝜕𝑐1𝜕𝜗𝑚𝑒)]++ 𝑇𝑠𝛾12 [−𝜔𝑚𝑒 ( 𝜕𝑏21𝜕𝜗𝑚𝑒 𝑖𝛼 + 𝜕𝑏22𝜕𝜗𝑚𝑒 𝑖𝛽 + 𝜕𝑐2𝜕𝜗𝑚𝑒)] (D.5)

𝜕𝑓𝑖𝛽𝜕𝑖𝛼 = 𝑇𝑠 𝜕𝛾21𝜕𝑖𝛼 [𝑢𝛼 − 𝑅𝑖𝛼 − 𝜔𝑚𝑒(𝑏11𝑖𝛼 + 𝑏12𝑖𝛽 + 𝑐1)]++ 𝑇𝑠 𝜕𝛾22𝜕𝑖𝛼 [𝑢𝛽 − 𝑅𝑖𝛽 − 𝜔𝑚𝑒(𝑏21𝑖𝛼 + 𝑏22𝑖𝛽 + 𝑐2)]+
+ 𝑇𝑠𝛾21 [−𝑅 − 𝜔𝑚𝑒 (𝜕𝑏11𝜕𝑖𝛼 𝑖𝛼 + 𝑏11 + 𝜕𝑏12𝜕𝑖𝛼 𝑖𝛽 + 𝜕𝑐1𝜕𝑖𝛼 )]++ 𝑇𝑠𝛾22 [−𝜔𝑚𝑒 (𝜕𝑏21𝜕𝑖𝛼 𝑖𝛼 + 𝑏21 + 𝜕𝑏22𝜕𝑖𝛼 𝑖𝛽 + 𝜕𝑐2𝜕𝑖𝛼 )] (D.6)
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𝜕𝑓𝑖𝛽𝜕𝑖𝛽 = 1 + 𝑇𝑠 𝜕𝛾21𝜕𝑖𝛽 [𝑢𝛼 − 𝑅𝑖𝛼 − 𝜔𝑚𝑒(𝑏11𝑖𝛼 + 𝑏12𝑖𝛽 + 𝑐1)]++ 𝑇𝑠 𝜕𝛾22𝜕𝑖𝛽 [𝑢𝛽 − 𝑅𝑖𝛽 − 𝜔𝑚𝑒(𝑏21𝑖𝛼 + 𝑏22𝑖𝛽 + 𝑐2)]+
+ 𝑇𝑠𝛾21 [−𝜔𝑚𝑒 (𝜕𝑏11𝜕𝑖𝛽 𝑖𝛼 + 𝜕𝑏12𝜕𝑖𝛽 𝑖𝛽 + 𝑏12 + 𝜕𝑐1𝜕𝑖𝛽 )]++ 𝑇𝑠𝛾22 [−𝑅 − 𝜔𝑚𝑒 (𝜕𝑏21𝜕𝑖𝛽 𝑖𝛼 + 𝜕𝑏22𝜕𝑖𝛽 𝑖𝛽 + 𝑏22 + 𝜕𝑐2𝜕𝑖𝛽 )] (D.7)

𝜕𝑓𝑖𝛽𝜕𝜔𝑚𝑒 = 𝑇𝑠𝛾21[−(𝑏11𝑖𝛼 + 𝑐1 + 𝑏12𝑖𝛽 )]+𝑇𝑠𝛾22[−(𝑏21𝑖𝛼 + 𝑐2 + 𝑏22𝑖𝛽 )] (D.8)

𝜕𝑓𝑖𝛽𝜕𝜗𝑚𝑒 = 𝑇𝑠 𝜕𝛾21𝜕𝜗𝑚𝑒 [𝑢𝛼 − 𝑅𝑖𝛼 − 𝜔𝑚𝑒(𝑏11𝑖𝛼 + 𝑏12𝑖𝛽 + 𝑐1)]++ 𝑇𝑠 𝜕𝛾22𝜕𝜗𝑚𝑒 [𝑢𝛽 − 𝑅𝑖𝛽 − 𝜔𝑚𝑒(𝑏21𝑖𝛼 + 𝑏22𝑖𝛽 + 𝑐2)]++ 𝑇𝑠𝛾21 [−𝜔𝑚𝑒 ( 𝜕𝑏11𝜕𝜗𝑚𝑒 𝑖𝛼 + 𝜕𝑏12𝜕𝜗𝑚𝑒 𝑖𝛽 + 𝜕𝑐1𝜕𝜗𝑚𝑒)]++ 𝑇𝑠𝛾22 [−𝜔𝑚𝑒 ( 𝜕𝑏21𝜕𝜗𝑚𝑒 𝑖𝛼 + 𝜕𝑏22𝜕𝜗𝑚𝑒 𝑖𝛽 + 𝜕𝑐2𝜕𝜗𝑚𝑒)] (D.9)

𝜕𝑓𝜔𝑚𝑒𝜕𝑖𝛼 = 0, 𝜕𝑓𝜔𝑚𝑒𝜕𝑖𝛽 = 0, 𝜕𝑓𝜔𝑚𝑒𝜕𝑖𝜔𝑚𝑒 = 1, 𝜕𝑓𝜔𝑚𝑒𝜕𝑖𝜗𝑚𝑒 = 0𝜕𝑓𝜗𝑚𝑒𝜕𝑖𝛼 = 0, 𝜕𝑓𝜗𝑚𝑒𝜕𝑖𝛽 = 0, 𝜕𝑓𝜗𝑚𝑒𝜕𝑖𝜔𝑚𝑒 = 𝑇𝑠 , 𝜕𝑓𝜗𝑚𝑒𝜕𝑖𝜗𝑚𝑒 = 1 (D.10)

Of these Jacobians the following components have to make explicit.

𝜕𝛾11𝜕𝑖𝛼 = 𝜕(1/det𝐀)𝜕𝑖𝛼 𝛾11 + 1
det𝐀 (𝜕𝐿Σ𝜕𝑖𝛼 − 𝐿Δ𝜕𝑖𝛼 cos(2𝜗𝑚𝑒) + 𝜕𝐿𝑑𝑞𝜕𝑖𝛼 sin(2𝜗𝑚𝑒)) (D.11)

𝜕𝛾12𝜕𝑖𝛼 = 𝜕𝛾21𝜕𝑖𝛼 = 𝜕(1/det𝐀)𝜕𝑖𝛼 𝛾12 + 1
det𝐀 (− 𝐿Δ𝜕𝑖𝛼 sin(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛼 cos(2𝜗𝑚𝑒)) (D.12)

𝜕𝛾22𝜕𝑖𝛼 = 𝜕(1/det𝐀)𝜕𝑖𝛼 𝛾22 + 1
det𝐀 (𝜕𝐿Σ𝜕𝑖𝛼 + 𝐿Δ𝜕𝑖𝛼 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛼 sin(2𝜗𝑚𝑒)) (D.13)
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𝜕𝛾11𝜕𝑖𝛽 = 𝜕(1/det𝐀)𝜕𝑖𝛽 𝛾11 + 1
det𝐀 (𝜕𝐿Σ𝜕𝑖𝛽 − 𝐿Δ𝜕𝑖𝛽 cos(2𝜗𝑚𝑒) + 𝜕𝐿𝑑𝑞𝜕𝑖𝛽 sin(2𝜗𝑚𝑒)) (D.14)

𝜕𝛾12𝜕𝑖𝛽 = 𝜕𝛾21𝜕𝑖𝛽 = 𝜕(1/det𝐀)𝜕𝑖𝛽 𝛾12 + 1
det𝐀 (− 𝐿Δ𝜕𝑖𝛽 sin(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛽 cos(2𝜗𝑚𝑒)) (D.15)

𝜕𝛾22𝜕𝑖𝛽 = 𝜕(1/det𝐀)𝜕𝑖𝑏 𝛾22 + 1
det𝐀 (𝜕𝐿Σ𝜕𝑖𝛽 + 𝐿Δ𝜕𝑖𝛽 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛽 sin(2𝜗𝑚𝑒)) (D.16)

𝜕𝛾11𝜕𝜗𝑚𝑒 = 𝜕(1/det𝐀)𝜕𝜗𝑚𝑒 𝛾11 + 1
det𝐀( 𝜕𝐿Σ𝜕𝜗𝑚𝑒 − 𝐿Δ𝜕𝜗𝑚𝑒 cos(2𝜗𝑚𝑒) + 𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒 sin(2𝜗𝑚𝑒)−− 𝐿Δ sin(2𝜗𝑚𝑒) + 𝐿𝑑𝑞 cos(2𝜗𝑚𝑒)) (D.17)

𝜕𝛾12𝜕𝜗𝑚𝑒 = 𝜕𝛾21𝜕𝜗𝑚𝑒 = 𝜕(1/det𝐀)𝜕𝜗𝑚𝑒 𝛾12 + 1
det𝐀( − 𝐿Δ𝜕𝜗𝑚𝑒 sin(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒 cos(2𝜗𝑚𝑒)−− 𝐿Δ cos(2𝜗𝑚𝑒) + 𝐿𝑑𝑞 sin(2𝜗𝑚𝑒)) (D.18)

𝜕𝛾22𝜕𝜗𝑚𝑒 = 𝜕(1/det𝐀)𝜕𝜗𝑚𝑒 𝛾22 + 1
det𝐀( 𝜕𝐿Σ𝜕𝜗𝑚𝑒 + 𝐿Δ𝜕𝜗𝑚𝑒 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒 sin(2𝜗𝑚𝑒)++ 𝐿Σ − 𝐿Δ sin(2𝜗𝑚𝑒) − 𝐿𝑑𝑞 cos(2𝜗𝑚𝑒)) (D.19)

in which:

𝜕(1/det𝐀)𝜕𝑖𝛼 = − 𝜕𝐿𝑑𝜕𝑖𝛼 𝐿𝑞 + 𝜕𝐿𝑞𝜕𝑖𝛼 𝐿𝑑 + 2𝐿𝑑𝑞 𝜕𝐿𝑑𝑞𝜕𝑖𝛼(𝐿𝑑𝐿𝑞 − 𝐿2𝑑𝑞)2 (D.20)

𝜕(1/det𝐀)𝜕𝑖𝛽 = − 𝜕𝐿𝑑𝜕𝑖𝛽 𝐿𝑞 + 𝜕𝐿𝑞𝜕𝑖𝛽 𝐿𝑑 + 2𝐿𝑑𝑞 𝜕𝐿𝑑𝑞𝜕𝑖𝛽(𝐿𝑑𝐿𝑞 − 𝐿2𝑑𝑞)2 (D.21)

𝜕(1/det𝐀)𝜕𝜗𝑚𝑒 = − 𝜕𝐿𝑑𝜕𝜗𝑚𝑒 𝐿𝑞 + 𝜕𝐿𝑞𝜕𝜗𝑚𝑒 𝐿𝑑 + 2𝐿𝑑𝑞 𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒(𝐿𝑑𝐿𝑞 − 𝐿2𝑑𝑞)2 (D.22)
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and finally:

𝜕𝑏11𝜕𝑖𝛼 = −𝜕𝐿Δ𝜕𝑖𝛼 sin(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛼 cos(2𝜗𝑚𝑒) (D.23)

𝜕𝑏12𝜕𝑖𝛼 = 𝜕𝐿Σ𝜕𝑖𝛼 + 𝜕𝐿Δ𝜕𝑖𝛼 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛼 sin(2𝜗𝑚𝑒) (D.24)

𝜕𝑏21𝜕𝑖𝛼 = −𝜕𝐿Σ𝜕𝑖𝛼 + 𝜕𝐿Δ𝜕𝑖𝛼 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛼 sin(2𝜗𝑚𝑒) (D.25)

𝜕𝑏22𝜕𝑖𝛼 = 𝜕𝐿Δ𝜕𝑖𝛼 sin(2𝜗𝑚𝑒) + 𝜕𝐿𝑑𝑞𝜕𝑖𝛼 cos(2𝜗𝑚𝑒) (D.26)

𝜕𝑏11𝜕𝑖𝛽 = −𝜕𝐿Δ𝜕𝑖𝛽 sin(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛽 cos(2𝜗𝑚𝑒) (D.27)

𝜕𝑏12𝜕𝑖𝛽 = 𝜕𝐿Σ𝜕𝑖𝛽 + 𝜕𝐿Δ𝜕𝑖𝛽 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛽 sin(2𝜗𝑚𝑒) (D.28)

𝜕𝑏21𝜕𝑖𝛽 = −𝜕𝐿Σ𝜕𝑖𝛽 + 𝜕𝐿Δ𝜕𝑖𝛽 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝑖𝛽 sin(2𝜗𝑚𝑒) (D.29)

𝜕𝑏22𝜕𝑖𝛽 = 𝜕𝐿Δ𝜕𝑖𝛽 sin(2𝜗𝑚𝑒) + 𝜕𝐿𝑑𝑞𝜕𝑖𝛽 cos(2𝜗𝑚𝑒) (D.30)

𝜕𝑏11𝜕𝜗𝑚𝑒 = − 𝜕𝐿Δ𝜕𝜗𝑚𝑒 sin(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒 cos(2𝜗𝑚𝑒)−− 2𝐿Δ cos(2𝜗𝑚𝑒) + 2𝐿𝑑𝑞 sin(2𝜗𝑚𝑒) (D.31)

𝜕𝑏12𝜕𝜗𝑚𝑒 = 𝜕𝐿Σ𝜕𝜗𝑚𝑒 + 𝜕𝐿Δ𝜕𝜗𝑚𝑒 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒 sin(2𝜗𝑚𝑒)−− 2𝐿Δ sin(2𝜗𝑚𝑒) + 2𝐿𝑑𝑞 cos(2𝜗𝑚𝑒) (D.32)

𝜕𝑏21𝜕𝜗𝑚𝑒 = − 𝜕𝐿Σ𝜕𝜗𝑚𝑒 + 𝜕𝐿Δ𝜕𝜗𝑚𝑒 cos(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒 sin(2𝜗𝑚𝑒)−− 2𝐿Δ sin(2𝜗𝑚𝑒) − 2𝐿𝑑𝑞 cos(2𝜗𝑚𝑒) (D.33)



114 appendix d

𝜕𝑏22𝜕𝜗𝑚𝑒 = − 𝜕𝐿Δ𝜕𝜗𝑚𝑒 sin(2𝜗𝑚𝑒) − 𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒 cos(2𝜗𝑚𝑒)++ 2𝐿Δ cos(2𝜗𝑚𝑒) − 2𝐿𝑑𝑞 sin(2𝜗𝑚𝑒) (D.34)

𝜕𝑐1𝜕𝑖𝛼 = −𝜕𝜆𝑑𝜕𝑖𝛼 sin(2𝜗𝑚𝑒) − 𝜕𝜆𝑞𝜕𝑖𝛼 cos(2𝜗𝑚𝑒) (D.35)

𝜕𝑐1𝜕𝑖𝛽 = −𝜕𝜆𝑑𝜕𝑖𝛽 sin(2𝜗𝑚𝑒) − 𝜕𝜆𝑞𝜕𝑖𝛽 cos(2𝜗𝑚𝑒) (D.36)

𝜕𝑐1𝜕𝜗𝑚𝑒 = − 𝜕𝜆𝑑𝜕𝜗𝑚𝑒 sin(𝜗𝑚𝑒) − 𝜕𝜆𝑞𝜕𝜗𝑚𝑒 cos(𝜗𝑚𝑒) − 𝜆𝑑 cos(𝜗𝑚𝑒) + 𝜆𝑞 sin(𝜗𝑚𝑒) (D.37)

𝜕𝑐2𝜕𝑖𝛼 = 𝜕𝜆𝑑𝜕𝑖𝛼 sin(2𝜗𝑚𝑒) − 𝜕𝜆𝑞𝜕𝑖𝛼 cos(2𝜗𝑚𝑒) (D.38)

𝜕𝑐2𝜕𝑖𝛽 = 𝜕𝜆𝑑𝜕𝑖𝛽 sin(2𝜗𝑚𝑒) − 𝜕𝜆𝑞𝜕𝑖𝛽 cos(2𝜗𝑚𝑒) (D.39)

𝜕𝑐2𝜕𝜗𝑚𝑒 = 𝜕𝜆𝑑𝜕𝜗𝑚𝑒 cos(𝜗𝑚𝑒) − 𝜕𝜆𝑞𝜕𝜗𝑚𝑒 sin(𝜗𝑚𝑒) − 𝜆𝑑 sin(𝜗𝑚𝑒) − 𝜆𝑞 cos(𝜗𝑚𝑒) (D.40)

The equations above are necessary for the implementation of the EKF in the 𝛼𝛽
reference frame taking into account of SynRM model non linearities. They are valid
whatever function is used to interpolate the fluxes and differential inductances at
varying of 𝑖𝛼 , 𝑖𝛽 and 𝜗𝑚𝑒 . Tailoring the analysis to the usage of an ANN model as that
described in equations (6.10) and (6.11) in chapter 6 the following mathematical steps
can be performed.

𝜕𝜆𝑑𝜕𝑖𝛼 = 𝐾∑𝑘=0 𝑤𝑑𝑘 𝜕𝑎𝑘𝜕𝑖𝛼 , 𝜕𝜆𝑞𝜕𝑖𝛼 = 𝐾∑𝑘=0 𝑤𝑞𝑘 𝜕𝑎𝑘𝜕𝑖𝛼𝜕𝜆𝑑𝜕𝑖𝛽 = 𝐾∑𝑘=0 𝑤𝑑𝑘 𝜕𝑎𝑘𝜕𝑖𝛽 , 𝜕𝜆𝑞𝜕𝑖𝛽 = 𝐾∑𝑘=0 𝑤𝑞𝑘 𝜕𝑎𝑘𝜕𝑖𝛽 (D.41)

𝜕𝜆𝑑𝜕𝜗𝑚𝑒 = 𝐾∑𝑘=0 𝑤𝑑𝑘 𝜕𝑎𝑘𝜕𝜗𝑚𝑒 , 𝜕𝜆𝑞𝜕𝜗𝑚𝑒 = 𝐾∑𝑘=0 𝑤𝑞𝑘 𝜕𝑎𝑘𝜕𝜗𝑚𝑒
and
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𝜕𝐿𝑑𝜕𝑖𝛼 = 𝐾∑𝑘=0 −2𝑤𝑑𝑘 𝑏2𝑘[𝑎𝑘 cos(𝜗𝑚𝑒) + (𝑖𝛼 cos(𝜗𝑚𝑒) + 𝑖𝛽 sin(𝜗𝑚𝑒) − 𝑥𝑑𝑘 ) 𝜕𝑎𝑘𝜕𝑖𝛼 ] (D.42)

𝜕𝐿𝑑𝜕𝑖𝛽 = 𝐾∑𝑘=0 −2𝑤𝑑𝑘 𝑏2𝑘[𝑎𝑘 sin(𝜗𝑚𝑒) + (𝑖𝛼 cos(𝜗𝑚𝑒) + 𝑖𝛽 sin(𝜗𝑚𝑒) − 𝑥𝑑𝑘 ) 𝜕𝑎𝑘𝜕𝑖𝛽 ] (D.43)

𝜕𝐿𝑑𝜕𝜗𝑚𝑒 = 𝐾∑𝑘=0 −2𝑤𝑑𝑘 𝑏2𝑘[𝑎𝑘(−𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒))+ (D.44)

+ (𝑖𝛼 cos(𝜗𝑚𝑒) + 𝑖𝛽 sin(𝜗𝑚𝑒) − 𝑥𝑑𝑘 ) 𝜕𝑎𝑘𝜕𝜗𝑚𝑒 ] (D.45)

𝜕𝐿𝑞𝜕𝑖𝛼 = 𝐾∑𝑘=0 −2𝑤𝑞𝑘 𝑏2𝑘[−𝑎𝑘 sin(𝜗𝑚𝑒) + (−𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 ) 𝜕𝑎𝑘𝜕𝑖𝛼 ] (D.46)

𝜕𝐿𝑞𝜕𝑖𝛽 = 𝐾∑𝑘=0 −2𝑤𝑞𝑘 𝑏2𝑘[𝑎𝑘 cos(𝜗𝑚𝑒) + (−𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 ) 𝜕𝑎𝑘𝜕𝑖𝛽 ] (D.47)

𝜕𝐿𝑞𝜕𝜗𝑚𝑒 = 𝐾∑𝑘=0 −2𝑤𝑞𝑘 𝑏2𝑘[𝑎𝑘(−𝑖𝛼 cos(𝜗𝑚𝑒) − 𝑖𝛽 sin(𝜗𝑚𝑒))+ (D.48)

+ (−𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 ) 𝜕𝑎𝑘𝜕𝜗𝑚𝑒 ] (D.49)

𝜕𝐿𝑑𝑞𝜕𝑖𝛼 = 𝐾∑𝑘=0 −2𝑤𝑑𝑘 𝑏2𝑘[−𝑎𝑘 sin(𝜗𝑚𝑒) + (−𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 ) 𝜕𝑎𝑘𝜕𝑖𝛼 ] (D.50)

𝜕𝐿𝑑𝑞𝜕𝑖𝛽 = 𝐾∑𝑘=0 −2𝑤𝑑𝑘 𝑏2𝑘[𝑎𝑘 cos(𝜗𝑚𝑒) + (−𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 ) 𝜕𝑎𝑘𝜕𝑖𝛽 ] (D.51)

𝜕𝐿𝑑𝑞𝜕𝜗𝑚𝑒 = 𝐾∑𝑘=0 −2𝑤𝑑𝑘 𝑏2𝑘[𝑎𝑘(−𝑖𝛼 cos(𝜗𝑚𝑒) − 𝑖𝛽 sin(𝜗𝑚𝑒))+ (D.52)

+ (−𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 ) 𝜕𝑎𝑘𝜕𝜗𝑚𝑒 ] (D.53)

in which
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𝜕𝑎𝑘𝜕𝑖𝛼 = −2𝑏2𝑘𝑎𝑘[𝑖𝛼 cos(𝜗𝑚𝑒) + 𝑖𝛽 sin(𝜗𝑚𝑒) − 𝑥𝑑𝑘 −− 𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 )][cos(𝜗𝑚𝑒) − sin(𝜗𝑚𝑒)] (D.54)

𝜕𝑎𝑘𝜕𝑖𝛽 = −2𝑏2𝑘𝑎𝑘[𝑖𝛼 cos(𝜗𝑚𝑒) + 𝑖𝛽 sin(𝜗𝑚𝑒) − 𝑥𝑑𝑘 −− 𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 )][sin(𝜗𝑚𝑒) + cos(𝜗𝑚𝑒)] (D.55)

𝜕𝑎𝑘𝜕𝜗𝑚𝑒 = −2𝑏2𝑘𝑎𝑘[𝑖𝛼 cos(𝜗𝑚𝑒) + 𝑖𝛽 sin(𝜗𝑚𝑒) − 𝑥𝑑𝑘 −− 𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒) − 𝑥𝑞𝑘 )][−𝑖𝛼 sin(𝜗𝑚𝑒) + 𝑖𝛽 cos(𝜗𝑚𝑒)−− 𝑖𝛼 cos(𝜗𝑚𝑒) + 𝑖𝛽 sin(𝜗𝑚𝑒)] (D.56)
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