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Abstract

One of the most common and prolific aspects of modern Bayesian statistical re-

search concerns the determination of posterior distributions. Over the last decades,

Monte Carlo sampling techniques based on Markov chains have represented the

primary strategy to obtain posterior distributions when their explicit form is un-

available. Nevertheless, some limitations regarding their usage have emerged with

the advent of the so-called big data, including the impossibility of scaling to large

amounts of data and the non-rare difficulty of achieving satisfactory convergence.

Variational approximations represent a possible alternative that may overcome

the issues of Markov chain Monte Carlo. These methods are based on approxi-

mating the posterior distribution with a more tractable statistical distribution. The

approximating distribution must be identified within a family of statistical distribu-

tions wisely chosen to be computationally manageable and sufficiently similar to the

true and unknown posterior distribution. Once the approximation is obtained, this

can be used to carry out inference on the model parameters. If the approximation is

reliable, the inferential conclusions will be similar to those obtainable from the true

posterior distribution.

This PhD thesis studies new variational approximation strategies for Bayesian

inference and prediction concerning prominent statistical models and challenging

data types. The first chapter provides a sufficiently exhaustive overview of the ex-

isting literature on variational approximations. The second chapter investigates al-

ternatives to common variational approximation approaches based on the Kullback-

Leibler divergence for fitting univariate, linear and generalized linear models. The

third chapter develops a computationally efficient and accurate approximation strat-

egy for selecting fixed effects in multilevel linear models. The fourth chapter pro-

poses posterior distribution approximations for Gaussian process regression models

having nonstationary covariance functions.





Sommario

Uno degli aspetti più noti e prolifici nella ricerca statistica moderna di stampo

Bayesiano riguarda la determinazione delle distribuzioni a posteriori. Negli ultimi

decenni, le tecniche di campionamento Monte Carlo basate su catene di Markov

hanno rappresentato la strategia principale per ottenere distribuzioni a posteriori

quando la loro forma esplicita non è disponibile. Ciononostante, alcuni limiti ri-

guardanti il loro utilizzo sono emersi con l’avvento dei cosiddetti big data, tra i quali

l’impossibilità di essere scalate su grandi quantità di dati e la non-rara difficoltà a

raggiungere una soddisfacente convergenza.

I metodi di approssimazione variazionale rappresentano una possibile alternati-

va che potrebbe superare i problemi legati al campionamento Monte Carlo basato

su catene di Markov. Questi metodi si basano sull’approssimare la distribuzione a

posteriori con una distribuzione statistica più facilmente trattabile. La distribuzione

approssimante va individuata all’interno di una famiglia di possibili distribuzio-

ni statistiche, sapientemente scelta affinchè sia computazionalmente maneggevole

e sufficientemente simile alla vera ed ignota distribuzione a posteriori. Una volta

determinata l’approssimazione, questa può essere utilizzata per svolgere l’inferenza

sui parametri del modello. Se l’approssimazione è fedele, le conclusioni inferenziali

ottenute saranno simili a quelle ottenibili con la vera distribuzione a posteriori.

Questa tesi di dottorato studia nuove strategie di approssimazione variaziona-

le per l’inferenza e la previsione di tipo Bayesiano, riguardanti importanti modelli

statistici e stimolanti tipologie di dati. Il primo capitolo svolge una panoramica

sufficientemente esaustiva sulla letteratura esistente riguardante le approssimazioni

variazionali. Il secondo indaga alternative ai più comuni approcci di approssima-

zione variazionale basati sulla divergenza di Kullback e Leibler per l’adattamento di

modelli univariati, lineari e lineari generalizzati. Il terzo capitolo sviluppa una stra-

tegia di approssimazione computazionalmente efficiente ed accurata per la selezione

di effetti fissi in modelli lineari multilivello. Il quarto capitolo propone approssima-

zioni della distribuzione a posteriori per modelli di regressione basati su processi

Gaussiani aventi funzioni di covarianza non-stazionarie.
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The Greek Alphabet

Letter (lowercase) Letter (uppercase) English name Greek name
α A alpha άλφα

β B beta βήτα

γ Γ gamma γάμμα

δ ∆ delta δέλτα

ϵ E epsilon έψιλον

ζ Z zeta ζήτα

η H eta ήτα

θ Θ theta θήτα

ι I iota ιώτα

κ K kappa κάππα

λ Λ la(m)bda λά(μ)βδα

µ M mu μυ

ν N nu νυ

ξ Ξ xi ξι

o O omicron όμικρον

π Π pi πι

ρ P rho ρώ

σ Σ sigma σίγμα

τ T tau ταυ

υ Υ upsilon ύψιλον

ϕ Φ phi φι

χ X chi χι

ψ Ψ psi ψι

ω Ω omega ωμέγα

Source: https://en.wikipedia.org/wiki/Greek_alphabet.

https://en.wikipedia.org/wiki/Greek_alphabet
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Notational Conventions

Throughout this PhD thesis, lower-case Roman and Greek letters denote scalars.

Lower-case Roman and Greek letters in boldface denote vectors. Unless specified

otherwise, they are always assumed to be column vectors. Upper-case Roman and

Greek letters in boldface denote matrices, whose entries are indicated with double-

index subscripts. Blackboard-bold Roman letters indicate numeric sets.

We now list and clarify notational conventions adopted in this PhD thesis:

N (and N+) The set of natural (and positive) numbers.

R (and R+) The set of real (and positive) numbers.

Rd The set of real vectors of dimension d, for d ∈N.

Rd×d′ The set of real matrices of dimension d× d′, for d, d′ ∈N.

Sd
+ The set of real symmetric and positive definite matrices of dimen-

sion d× d, for d ∈N.

[a]i or ai The ith element of vector a ∈ Rd, for 1 ≤ i ≤ d.

[A]ij or Aij The (i, j)th cell of matrix A ∈ Rd×d′ , for 1 ≤ i ≤ d and 1 ≤ j ≤ d′.

a−i The vector of dimension (d − 1) × 1 obtained removing the ith

element of a ∈ Rd, for d ∈N.

(·)T The transpose operator, such that for a ∈ Rd, aT is a 1× d row

vector and for A ∈ Rd×d′ , AT is a d′ × d matrix with (A)T
ij = Aji.

(·, . . . , ·) The concatenate operator, working horizontally.

0 and O A vector and a matrix full of zeros, respectively.

1 and U A vector and a matrix full of ones, respectively.

I The identity matrix.

diag(·) For a vector a ∈ Rd, diag(a) creates the d× d diagonal matrix with

all the elements of a placed on its main diagonal.
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diagonal(·) For a matrix A ∈ Rd×d, diagonal(A) creates the d × 1 column

vector composed by the main diagonal of A.

stack (·) For a sequence of m matrices A1 ∈ Rd1×d, A2 ∈ Rd2×d, . . . , Am ∈
Rdm×d, stack1≤i≤m (Ai) creates the (d1 + d2 + . . . + dm)× d matrix

obtained stacking all the matrices underneath each other vertically.

blockdiag (·) For a sequence of m matrices A1 ∈ Rd1×d′1 , A2 ∈ Rd2×d′2 , . . . , Am ∈
Rdm×d′m , blockdiag1≤i≤m (Ai) creates the (d1 + d2 + . . . + dm) ×
(d′1 + d′2 + . . .+ d′m) block-diagonal matrix obtained placing all ma-

trices in its main diagonal.

vec(·) For a matrix A ∈ Rd×d′ , vec(A) returns the vector of dimension

dd′ × 1 obtained stacking the columns of A underneath each other

in order from left to right. vec−1(·) is the associated inverse opera-

tor: for a vector a ∈ Rdd′ , vec−1
d×d′(a) returns the d× d′ matrix such

that vec(vec−1
d×d′(A)) = A. The subscript must be coherent with

the vector dimension, and can be omitted if and only if d = d′.

vech(·) For a symmetric matrix A ∈ Rd×d, vech(A) returns the vec-

tor of dimension d(d + 1)/2 × 1 obtained half-vectorizing A, that

is, stacking the lower-diagonal columns of A (the diagonal el-

ements included) underneath each other in order from left to

right. vech−1(·) is the associated inverse operator: for a vector

a ∈ Rd(d+1)/2, vech−1(a) returns the d× d symmetric matrix such

that vech(vech−1(A)) = A.

dim(·) For a generic space A, dim(A) returns its dimension.

tr(·) For a matrix A ∈ Rd×d, tr(A) returns its trace ∑d
i=1 Aii.

| · | For a matrix A ∈ Rd×d, |A| returns its determinant.

(·)−1 For a non-singular matrix A ∈ Rd×d, A−1 returns its inverse.

⊗ For two matrices A ∈ Rm×n and B ∈ Rp×q, A⊗ B returns a mp×
nq matrix obtained by Kronecker product.

∥·∥ For a matrix a ∈ Rd, ∥a∥ returns its Euclidean norm (∑d
i=1 a2

i )
1/2.
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+,−,⊙, / For two vectors a, b ∈ Rd, a{+,−,⊙, /}b returns the d × 1 vec-

tor obtained {adding, subtracting, multiplying, dividing} a and b

elementwise. For two matrices A, B ∈ Rd×d′ , A{+,−,⊙, /}B re-

turns the d× d′ matrix obtained {adding, subtracting, multiplying,

dividing} A and B elementwise.

f (·) For a vector a ∈ Rd, f (a) returns the d× 1 vector obtained com-

puting f elementwise. Similarly, for a matrix A ∈ Rd×d′ , f (A)

returns the d× d′ matrix obtained computing f elementwise.

≡ A shorthand notation indicating that the quantity on its left-hand

side is defined following the expression on its right-hand side.

←− A shorthand notation indicating that the quantity on its left-hand

side is updated computing the expression on its right-hand side.

∝ A shorthand notation indicating that the quantity on its left-hand

side is equal to that on its right-hand side, up to multiplicative

constants that can be discarded.

≈ A shorthand notation indicating that the quantity on its left-hand

side is approximately equal to that on its right-hand side.

≪ A shorthand notation indicating that the quantity on its left-hand

side is much less than that on its right-hand side.

O(·) For f and g real valued functions, both defined on some un-

bounded set of real positive numbers and g strictly positive,

f (x) = O(g(x)) as x → ∞ if and only if there exist M ∈ R+

and x0 ∈ R such that | f (x)| ≤ Mg(x) for all x ≥ x0.

∇ · For a scalar-valued function f with arguments x ∈ Rd, ∇ f (x) de-

notes the associated d× 1 derivative vector.

H · For a scalar-valued function f with arguments x ∈ Rd, H f (x) de-

notes the associated d× d Hessian matrix.

p(·) A generic probability density function.

q(·) A generic approximate posterior density function.
ind∼ For a sequence generic random variable x1, . . . , xd, xi

ind∼ Di means

that x1, . . . , xd are independently distributed as D1, . . . , Dd.
iid∼ For a sequence generic random variable x1, . . . , xd, xi

iid∼ D means

that x1, . . . , xd are independently and identically distributed as D.
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E(·) For a generic random variable x, E(x) returns its expected value.

Usually for a univariate random variable x, µ = E(x); for a mul-

tivariate random vector x, µ = E(x); for a matrix-variate random

matrix X, M = E(X).

Var(·) For a generic univariate random variable x, Var(x) returns its vari-

ance. It is usually denoted with σ2 = Var(x).

Cov(·) For a multivariate d-variate random vector x, Cov(x) returns its

d× d covariance matrix. It is usually denoted with Σ = Cov(x).

1(·) The indicator function. For a logical condition P , it is such that

1(P) = 1 if P is true and 1(P) = 0 otherwise.

δ(·) The Dirac delta function. It is defined as the function such that∫︁ ∞
−∞ f (x)δ(x− c)dx = f (c), for any f and c ∈ R.

ϕ(·) If x is a scalar, ϕ(x) represent the probability density function of

a univariate standard Gaussian distribution. If x is a vector of

dimension d × 1, ϕ(x) represent the probability density function

of a multivariate d-variate standard Gaussian distribution.

Φ(·) The cumulative distribution function of a standard univariate

Gaussian distribution.

Γ(·) The Euler’s Gamma function.

For a scalar x, it is such that: Γ(x) =
∫︁ ∞

0 ux−1eudu.

ψ(·) The first logarithmic derivative of the Euler’s Gamma function, also

known as digamma function.

For a scalar x > 0, it is such that: ψ(x) = d
dx log Γ(x).

logit(·) The logit function.

For a scalar x ∈ (0, 1), it is such that: logit(x) = log
(︁ x

1−x
)︁
.

expit(·) The expit function, usually indicated with logit−1(·) as it represents

the inverse logit function.

For a scalar x, it is such that: expit(x) = 1
1+exp(−x) .

Subscripts are added to give additional informations on how the symbol is as-

sumed to be working, when it is not implicit by the context. Chapter-specific ad-

ditional notation is described along with the PhD thesis. Notation overlapping be-

tween different chapters has to be intended chapter-specific.







Introduction

The world is one big data problem.

There’s a bit of arrogance in that,

and a bit of truth as well.

— A. P. McAfee (2014)

Overview

As statisticians and young researchers, we often get stuck in finding credible and

easy-to-explain reasons that allow us to motivate the importance of what we study

to a broad audience of listeners. To do so, we usually bring up antiquated real-data

examples, complicated concepts, and bizarre quotes such as the overused “I keep

saying that the sexy job in the next ten years will be statisticians” from Google’s chief

economist Hal Varian. This confounds the ideas and makes us appear as scientists

working with odd formulas and incomprehensible graphs.

We are afraid this PhD thesis is not exempt from such contents. However, we

would like to introduce it with the main motivations that prompted us to deepen

into the fascinating world of approximate variational methods for Bayesian infer-

ence, employing an up-to-date example that concerns all of us.

The ongoing COVID-19 global pandemic of coronavirus disease has changed our

lifestyles and confronted us with the urge of being able to extract useful information

from the large amount of data that suddenly arose from hospitals, hospitalization

facilities, laboratory experiments, and national surveillance systems. Related issues

that suddenly occurred can be summarized into three main topics:

1. each day, a wide amount of new data emerges from disparate data sources and

need to be stored efficiently into organized structures;

1
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2. statistical software must be scaled to accommodate for immediately extracting

real-time information that is useful for countering the evolution of the pan-

demic;

3. outputs of the analysis need to be statistically reliable and an as informative

as possible summary of the large data available.

It is years since statisticians have been challenged by the need to develop method-

ological tools for addressing these issues. With extreme confidence, we can say that

finding adequate and widely accepted solutions will be one of the controversial

research trends in the following decades. Collecting data is no longer the main

problem, and massive amounts can be produced and stored at a much cheaper

cost. Therefore, the urge to develop effective methods for accurate analysis of the

so-called big data will be highly predominant in the future. This appeared highly

prominent in recent times due to monitoring and contrasting the pandemic spread;

however, complementary fields in which big data problems have arisen for years are,

e.g., genomics, neuroscience, economics, physics, medicine, and engineering.

Achieving the aforementioned goals requires a shift in paradigm and statisti-

cal thinking (Efron and Hastie, 2016). The speed at which raw and considerable

amounts of data are transformed into information is one of the benchmarks on

which statistical software are assessed, and it is just as important as the quality of

the produced outputs. Therefore, effective statistical procedures must handle large

sample sizes by balancing statistical accuracy, easiness of implementation, and com-

putational efficiency.

This PhD thesis presents some developments on variational approximation meth-

ods. They represent a class of techniques for performing approximate deterministic

inference over complex statistical models, which is extremely useful in large data

contexts. We will take a Bayesian perspective: the model parameters are equipped

with pre-specified distributions encapsulating possibly prior beliefs, and the model

likelihood is updated accordingly to the well-known Bayes theorem into the so-called

posterior distribution of the model. Variational approximation methods determine

approximations of the posterior distribution, which are faster to obtain than stan-

dard Markov chain Monte Carlo (MCMC) methods, together with assessing a sat-

isfactory degree of accuracy in the approximation. Such approximations are then

employed in place of the posterior distribution for taking inferential conclusions.

For decades, the dominant paradigm for performing approximate Bayesian in-

ference when intractable posterior distributions arise has been MCMC (Hastings,

1970; Gelfand and Smith, 1990; Robert and Casella, 2004). It focuses on constructing
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an ergodic Markov chain on the full parameter space whose stationary distribu-

tion is the posterior distribution and approximates it with samples collected from

that chain. Programming languages and ad-hoc software such as WinBUGS (Lunn

et al., 2000), JAGS (Plummer et al., 2003) or the more recent Stan (Carpenter et al.,

2017) and NIMBLE (de Valpine et al., 2017) helped the diffusion of such approach

also for non-practitioners. They circumvent the urge of investigating and manu-

ally implementing numerically stable and convergence-guaranteed efficient sam-

pling schemes, only requiring the user to specify the statistical model of interest.

Although providing accurate approximations of the posterior distribution, MCMC

methods are well known to be computationally demanding and do not scale effi-

ciently with large data scenarios. These main issues gave rise to the diffusion of

variational approximation methods for Bayesian inference.

The name has its roots in the mathematical discipline of calculus of variations

(Gelfand and Fomin, 1963), which focuses on optimizing a functional over a class

of functions on which that functional depends. Approximate solutions then arise

when the class of functions is restricted in some way to enhance tractability. Due

to their remarkable attractiveness, variational methods rapidly became popular in

Bayesian statistics literature following two parallel yet separate tracks. Peterson and

Anderson (1987) and Opper and Winther (1997) first described the variational pro-

cedure for a neural network, and together with the theory from the physical field

of statistical mechanics (Parisi, 1988) led to a flurry of approximating procedures

for a wide class of other models. At the same time, an algorithm for a similar

neural network model was proposed by Hinton and van Camp (1993). Variational

approximation methods then became popular in the machine learning field (e.g. Jor-

dan et al., 1999; Jordan, 2004; Titterington, 2004; Bishop, 2006; Wainwright and Jor-

dan, 2008) for addressing elaborate problems such as natural language processing,

speech recognition, computational biology, computational neuroscience, computer

vision, and robotics. Noteworthy connections to the expectation-maximization (EM)

algorithm of Dempster et al. (1977) have also been made by Neal and Hinton (1998).

The first introduction to variational approximations using terms from a pure sta-

tistical vocabulary is due to Ormerod and Wand (2010), in which they also illustrated

with explicit examples how these methods work. Blei et al. (2017) is a more recent

reference addressing the same urge of disseminating variational approximation in-

ference to statisticians. Zhang et al. (2019), instead, is a recent review about the

state of the art of variational inference research: references therein give a compre-

hensive overview of statistical advances in this field. Nonetheless, all these works
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mostly focus on variational Bayes approximations, which is the most widespread

type of variational approximation method, but not the only one. More exhaustive

references concerning variational approximations in general are, e.g., Chapter 10 of

Bishop (2006) and Chapters 21 and 22 of Murphy (2012).

Theoretical statistical properties of variational approximation methods from both

Bayesian and frequentist perspective have been abundantly studied, see e.g. Hall

et al. (2002), Wang and Titterington (2006), Hall et al. (2011a), Hall et al. (2011b),

Celisse et al. (2012) and You et al. (2014) among many others. Two more recent and

promising works are Wang and Blei (2019) and Zhang and Gao (2020), in which they

established frequentist consistency and asymptotic normality for variational Bayes

methods, and studied convergence rates of variational posteriors for nonparametric

and high-dimensional inference.

Following Ormerod and Wand (2010), we classify variational approximation meth-

ods into two main approaches: the so-called tangent transform approach and the al-

ternative density transform approach. The former is based on tangent-type representa-

tions of convex functions and is underpinned by convex duality theory (Rockafellar,

1970). The latter involves methods based on approximating the posterior density

function with another density function for which the inference is more tractable.

This PhD thesis only focuses on the latter type.

Density transform variational methods solve an optimization problem concerned

with finding the (optimal) approximate density function which should be the most

similar to the posterior density function among a pre-specified family of possible

competitors. Variational methods stand out one from each other accordingly to the

choices of the following components:

• a divergence D, an information-theoretical measure of proximity between two

densities which establishes how distant a generic approximate density function

is from the model posterior density function. Although most variational ap-

proximations are based on the popular Kullback-Leibler divergence (Kullback

and Leibler, 1951), many alternative divergences are currently studied;

• a family Q of approximate density functions over which the optimal approxi-

mate density function has to be found. Its structure manages the complexity of

the optimization; it is usually chosen to be flexible enough to capture densities

close to the posterior but sufficiently simple to conduct efficient optimization.

Choices range from non-parametric to parametric specifications, depending on

the problem to be addressed;
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• the method for finding the optimal solution. Although the optimization prob-

lem to be solved is deterministic, it can be addressed both with coordinate

ascent algorithm iterating fixed updates until convergence or with stochastic-

gradient based approaches, see e.g. Hoffman et al. (2013).

Combinations of specific choices for these elements lead to different variational

methods. For example, minimization of the Kullback-Leibler divergence leads to

the widest adopted class of Variational Bayes (VB) approximations. Among these,

if Q is the family of multivariate Gaussian distributions, then Gaussian Variational

Approximations (GVA) method emerges. Conversely, suppose Q is defined as the

set of probability density functions which factorize accordingly to a pre-specified

partition of the parameter set: in that case, Mean Field Variational Bayes (MFVB)

approximations arise. Their name is inspired by the so-called mean field approxi-

mations developed in statistical physics (Parisi, 1988). If a mean-field factorization

is adopted for Q having a fixed parametric specification for each of the probability

density functions over which its generic element factorizes, and the Kullback-Leibler

divergence is used in its reversed order, then Expectation Propagation (EP) approxi-

mations are obtained. The literature on variational approximations is tremendously

vast and enlarges day-by-day: alternative and more recent approaches are men-

tioned along with this PhD thesis.

We emphasize that MCMC and variational methods are different approaches to

address the same problem. MCMC runs a Markov chain and approximates the

posterior distribution with those samples, while variational algorithms solve an op-

timization problem and approximate the posterior distribution with the optimiza-

tion result. Nevertheless, if the MCMC sampling procedure is properly designed

and the convergence towards the stationary distribution is correctly assessed, it pro-

duces samples from the correct posterior distribution of the model. Conversely,

variational approximation methods only determine approximations of the true pos-

terior distribution. For this reason, we adopt standard variational literature custom

and refer along with this PhD thesis to MCMC methods as those producing the exact

posterior distribution.
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Main Contributions of the Thesis

This PhD thesis presents some developments for different variational approximation

methods, mixing the aforementioned three components to develop and investigate

novel variational approximation procedures for different statistical models of inter-

est. It is organized into four main chapters.

Chapter 1 presents the mathematical details of variational approximation meth-

ods. In particular, it is focused on MFVB, EP, and GVA approximations, which are

the most widespread approaches and those upon which the subsequent chapters

are built. A detailed presentation would exceed the scope of this work and can be

found in references associated with each method. For this reason, the focus is on

explaining how these methods can be implemented for a generic statistical model

and how the underlying optimization problem is solved.

Chapter 2 deepens into the idea of employing divergences alternative to the

Kullback-Leibler. In particular, it focuses on Power-Expectation Propagation (Power-

EP), one fruitful generalization of EP arising when the family of α-divergences of

Amari (1985) is employed in place of the Kullback-Leibler divergence. The primary

motivating idea is that of exploiting the methodology of Minka (2005) for solving

the associated optimization problem over a generic factor graph representation of

the statistical model of interest: this aids modularization and a generic operational

algorithmic structure for approximate inference over arbitrarily complex models.

Kim and Wand (2016) reformulated the results by Minka (2005) into a more coher-

ent Bayesian statistical framework, although limiting themselves to developing EP

approximations obtained minimizing the α-divergence indexed by α = 1. Doing

this, they did not benefit from the infinitely uncountable set of optimal approximat-

ing density functions that can be found selecting alternative α values. We address

this specific issue, developing explicit algorithms for solving Power-EP approxima-

tions on some common statistical models, generalizing their EP approximations and

encapsulating them as particular cases among a plethora of alternative approxima-

tions. In particular, we focus on the subset of α-divergences indexed by α ∈ (0, 1]

since they conceptually represent all those lying in between the Kullback-Leibler

divergence used for MFVB approximations and the reverse Kullback-Leibler diver-

gence used for EP approximations. This allows us to study the benefits and limita-

tions of this new class of approximations and exploit new technicalities required to

minimize this more general family of divergences. By doing so, we highlight some

technical improvements of the algorithms proposed by Kim and Wand (2018) for
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performing EP approximations over linear and generalized linear models.

Chapter 3 is devoted to deepening into fixed effects selection procedures on

Gaussian-response multilevel models based on streamlined MFVB approximations.

MFVB approximations for linear mixed models have already been extensively stud-

ied in Section 2.2.3 of Ormerod and Wand (2010) and Section 2.2 of Luts et al. (2014),

admitting straightforward generalizations to support MFVB fitting of longitudinal

and multilevel data. This and many other well-known mixed model specifications

account for random effects structures with two-, three- and possible higher-level

of nesting that are well known to introduce sparse design matrix structures in

the model definition and associated estimation procedures, both in frequentist and

Bayesian settings. Lee and Wand (2016) first noticed that MFVB fitting for this class

of models employing naïve matrix inversions is problematic for large model dimen-

sions, due to the iterative variational parameter updates involving extremely sparse

ridge regression-type matrices. They addressed this issue proposing a streamlined

variational enhancement for a particular version of two-level mixed models ensur-

ing significantly lower computational efforts, memory usage and required time to

assess the same global optima. The streamlined variational methodology has then

been extensively studied in Nolan et al. (2020) making explicit usage of mathematical

results by Nolan and Wand (2020) for efficient solutions of sparse matrix problems

arising when dealing with general two-level and three-level random effects spec-

ifications. Our work expands and generalizes their methodology and associated

variational algorithms to account for a richer family of prior distributions over the

fixed effects parameter vector, in contrast to their Gaussian conjugate specification.

We focus our study on variational approximations for global-local shrinkage prior

specifications, which are well known to handle suitable Bayesian variable selection

procedures correctly. By doing so, we extend the streamlined variational method-

ology to account for their specification over a subset of fixed effects which possibly

includes irrelevant covariates. We show with simulated and real data examples that

our developed algorithms still provide the optimal results guaranteed by stream-

lined updating, both in terms of approximation accuracy, memory storage saving,

and computational time. We also assess automated tuning-free procedures for fixed

effects selection only relying on the obtained variational approximations.

Chapter 4 proposes a novel approach based on GVA approximations for fit-

ting nonstationary Gaussian process regression models. They represent a widely-

adopted nonparametric Bayesian method for solving regression problems, which

extends classical Gaussian process regression (Rasmussen and Williams, 2006) into
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a more general framework that accounts for nonstationary data patterns. We con-

sider a nonstationary Gaussian process regression model following the same ap-

proach described by Dunlop et al. (2018) for characterizing a deep Gaussian process,

although limiting ourselves considering a single latent layer, which in turn takes its

foundation on the popular nonstationary kernel construction of Paciorek (2003) and

Paciorek and Schervish (2006). A fully-Bayesian inferential approach is adopted,

and we approximate the true posterior distribution employing a particular version

of GVA having a parsimonious factor structure of the associated covariance matrix,

as proposed by Ong et al. (2018). We show by simulated data experiments in the

unidimensional scenario that satisfactory results can be obtained in terms of model

fitting and prediction, in comparison to standard stationary approaches. This opens

up new interesting opportunities to be developed for spatial and hyperspatial data

settings, although not explicitly experimented in our work. We also outline some

possible strategies for making the approximation algorithm efficient in terms of

computational timings when the data sample size increases.

Four appendices complete this PhD thesis. Appendix A contains useful infor-

mation accounting for vector differential calculus, probability distributions (with a

specific focus on those belonging to the exponential family), and hardware setup

(including programming languages and related libraries) used throughout this PhD

thesis. Appendices B, C and D reflect the structure of this PhD thesis and contains

supplementary derivations and definitions for Chapters 2, 3 and 4, respectively.



Chapter 1

Variational Approximations for

Bayesian Inference

1.1 Bayesian Inference in a Nutshell

In this chapter we summarize the essential key points of Bayesian statistics and

variational approximations. In so doing, we hope to make the reading of this PhD

thesis accessible to those being unfamiliar with this inferential paradigm, and we

also fix the general concepts and notations used hereafter.

Bayesian statistics is a theoretical paradigm for statistical inference based on the

Bayesian interpretation of probability expressed as degree of belief for a specific event.

Unlike the frequentist inference paradigm, here the model parameters are assumed

to be stochastic and therefore possess proper distributions. Bayesian statistics up-

dates possible a-priori subjective beliefs about parameters, i.e., prior probability

claims, with the observed data information that is assumed to be generated from

a statistical model. The updated distribution is then used for inferential reasoning

about the model parameters from a probabilistic perspective (Robert, 1994).

Let y be a generic observed data vector which is assumed to be generated from

a statistical model having likelihood p(y|θ), and θ ∈ Θ be a generic parameter vector

taking values in the parameter space Θ. Without loss of generality, we only treat here-

after the generic case in which both y and θ are assumed to be continuous. Let p(θ)

be the prior probability density function, summarizing all the a-priori beliefs about

model parameters. The main character in Bayesian statistics is the Bayes theorem,

which allows to update the prior density function to account for the observed data

9
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likelihood into the posterior density function:

p(θ|y) = p(y|θ)p(θ)
p(y)

=
p(y, θ)

p(y)
,

where p(y, θ) = p(y|θ)p(θ) is the model joint density function and p(y) is the

marginal likelihood defined as

p(y) =
∫︂

Θ
p(y|θ)p(θ) dθ.

In the following, we interchangeably use terms such as posterior probability den-

sity function, posterior distribution, posterior and, equivalently, prior probability

density function, prior distribution, prior: the most appropriate term for each oc-

currence simply derives implicitly from the context in which it is used.

The exact determination of p(y) requires the marginalization over the parameter

space Θ, whose dimensions make this task impractical in almost all situations. As

a consequence, a closed analytical expression for p(θ|y) is not achievable for most

statistical models, except when dim(Θ) is very low and prior distributions being

conjugate to the model likelihood are specified.

This main drawback overshadowed the usefulness of Bayesian statistics until re-

cent technological advances made powerful computational resources available for

performing onerous simulations in a limited time amount. In particular, MCMC

methods provided a revolutionary way to sample from the posterior distributions re-

gardless of the model complexity and parameter dimensions. The essence of MCMC

is that of collecting samples {θ̃(t) : 1 ≤ t ≤ K} generated from the model posterior

distribution, although it is not expressible in a compact and concise form, and using

them to (approximately) compute inferential quantities of interest via Monte Carlo

integration techniques. For example, the posterior mean value is computed as:

Ep(θ|y)(θ) =
∫︂

Θ
θ p(θ|y) dθ ≈ 1

K

K

∑
t=1

θ̃
(t).

1.1.1 The Gibbs Sampler

Literature on MCMC methods is very vast and is still the subject of prolific re-

search. Among many, the Gibbs sampling strategy (Casella and George, 1992) has

been extensively studied and used for a wide variety of statistical models and still

provides useful MCMC sampling strategies when hierarchical Bayesian models with
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conjugate prior specifications are of interest. Its attractiveness is due to the possi-

bility of sampling draws from the model posterior distribution simply simulating

sub-blocks of the parameters. Its use is particularly appropriate for situations in

which there is a convenient partition of the model parameter vector θ (eventually

augmented with latent parameters) into M sub-vectors {θ1, . . . , θM}, so that all the

associated full conditional posterior densities p(θi|rest) belong to notable probability

distributions for which efficient sampling routines exist. Hereafter, we denote with

“rest” the set containing y and all the M − 1 partitioned sub-vectors θj for which

j ̸= i. Hence, the Gibbs sampler initializes all the θis to some initial random guess

θ̃
(0)
i given as input, for all 1 ≤ i ≤ M, and then performs B + K × thin subsequent

iterations of the following generic t-th step:

1. θ̃
(t) ←− θ̃

(t−1);

2. For 1 ≤ i ≤ M:

Draw θ̃
(t)
i from p

(︂
θi

⃓⃓⃓
y, θ

(t)
1 , . . . , θ

(t)
i−1, θ

(t)
i+1, . . . , θ

(t)
M

)︂
.

As with standard MCMC sampling procedures, the first B collected samples are dis-

carded as burnin iterations required for letting the underlying Markov chain reach its

stationary distribution. The remaining K× thin samples are stored one every thin to

perform a thinning procedure of size thin reducing possible autocorrelation between

subsequent samples. K samples finally remain as output and can be interpreted as

being effectively generated from the model posterior distribution.

Although MCMC methods are well-known to asymptotically approximate the

true posterior distribution with samples collected from it, they suffer many pitfalls

in practical implementations. In fact, they can usually be computationally intensive

for moderately complex Bayesian models, with poor mixing and slow convergence

being the most common issues compromising the convergence to the stationary dis-

tribution, and therefore the validity of inferential conclusions. Moreover, they are

well-known to scale difficultly with large sample size datasets. Gibbs sampling tech-

niques are a reasonable solution to make MCMC algorithms faster. However, their

implementation is not always possible for all statistical models or perhaps it requires

additional computationally-onerous steps such as sampling from complicated dis-

tributions or introducing auxiliary variables in the model specification.
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1.1.2 Variational Approximations

This PhD thesis focuses on variational approximations, which represent deter-

ministic methods for approximating the posterior distribution that usually exhibits

better performances than standard MCMC methods both in terms of computational

runtime and scalability. Their main difference with MCMC methods is that they do

not rely on direct sampling from the true posterior distribution but instead approx-

imate it with a manageable probability distribution. Following the classification

of variational approximation methods mentioned in the introduction of this PhD

thesis, we concentrate hereafter on the so-called density transform approach.

Let D{· ∥ ·} : S× S −→ R+ be a generic divergence measure, defined as a func-

tion that measures how distant two generic probability distributions p, q ∈ S belong-

ing to a generic family of probability density functions S are from each other over a

specific statistical manifold, D{q ∥ p} to be read “the D-divergence of p from q”. It

represents a weaker notion of distance which best suits for quantifying the dissim-

ilarity between two probability distributions, since in general D{q∥p} ̸= D{p∥q}
and the triangular inequality does not hold. Moreover, let Q be a generic set of

probability density functions that is assumed to contain a sufficiently adequate ap-

proximation of p(θ|y), and denote q(θ) ∈ Q its generic element. The family Q can

be selected to be very general, following non-parametric specifications, or restricted

to some pre-specified parametric family of distributions.

All the variational approximation methods investigated in this PhD thesis can be

expressed in terms of the following optimization problem focused on finding the

element of Q being the most similar to p(θ|y), namely:

q∗(θ) = arg min
q(θ)∈Q

D{q(θ)∥p(θ|y)}. (1.1)

The resulting q∗(θ) is the optimal approximating density function, or optimal q-density,

to p(θ|y). It represents the best approximation to the posterior density function

that is achievable among the pre-specified set Q of candidate approximate density

functions.

Both the quality of the approximation and the feasibility of the optimization

problem depend on the algebraic tractability of Q. Precise approximations arise

when a very wide and general family of approximating density functions is selected,

but this leads to possible inefficient and computationally demanding algorithms for

individuating the optimal density function. On the other hand, way too simplistic

choices for Q lead to poor and useless approximations. Moreover, different choices
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of D identify possibly different optimal solutions and require ad-hoc strategies for

making the optimization problem effectively solvable.

Different combinations of D, Q and strategies for solving the optimization prob-

lem lead to a very wide set of variational approximation methods, and many others

are currently under development. In the remainder of this chapter, we give insights

into the three most common variational approximation methods that constitute the

keystones on which the next chapters are developed: Mean Field Variational Bayes,

Expectation Propagation, and Gaussian Variational Approximations. They all rely

upon D selected as being the popular Kullback-Leibler divergence. Recall for two

generic probability density functions p1(x) and p2(x) on X , it is defined as:

KL{p1(x)∥p2(x)} =
∫︂
X
p1(x) log

{︃
p1(x)
p2(x)

}︃
dx.

1.2 Mean Field Variational Bayes

Before describing Mean Field Variational Bayes, we introduce the generic family

of Variational Bayes (VB) approximations as those solving the following optimization

problem:

q∗(θ) = arg min
q(θ)∈Q

KL{q(θ)∥p(θ|y)}. (1.2)

They represent the most common approach for variational approximations, due to

the possibility of explicitly determining a lower-bound for the model marginal like-

lihood p(y) which makes the associated optimization problem tractable. In fact, it

is possible to show (Ormerod and Wand, 2010) that:

KL{q(θ)∥p(θ|y)} = log p(y)− log p(y; q(θ)), (1.3)

where log p(y; q(θ)) ≡ Eq(θ){log p(y, θ)} − Eq(θ){log q(θ)} is the lower bound on the

marginal likelihood p(y), also known as the approximate marginal log-likelihood or the

Evidence Lower BOund (ELBO), see Blei et al. (2017). Exact computation of (1.3) is

mandatory for solving (1.2) but requires the determination of p(y), a task which we

already defined as problematic in almost all practical situations and is supposed to

be circumvented by approximate Bayesian methods.

Nevertheless, basic properties of divergences ensure KL{q(θ)∥p(θ|y)} ≥ 0, with

the theoretical limiting caseKL{q(θ)∥p(θ|y)} = 0 to be reached if and only if q(θ) =

p(θ|y) almost everywhere, although in practical situations p(θ|y) /∈ Q. From (1.3)

and noticing p(y) is unknown but constant for each choice of q(θ), minimization
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of KL{q(θ)∥p(θ|y)} over Q is then equivalent to the maximization of log p(y; q(θ))

over Q, and a more tractable form for (1.2) is:

q∗(θ) = arg max
q(θ)∈Q

log p(y; q(θ)). (1.4)

The term “lower bound” arises from the fact that log p(y) ≥ log p(y; q(θ)) for all

q(θ) ∈ Q. Problem (1.4) is more tractable than (1.2) because an explicit expression

for the objective function now only requires the determination of Eq(θ){log p(y, θ)}
and Eq(θ){log q(θ)}. Nevertheless, their computation would make VB methods use-

less in almost all practical situations because it still requires integrating over the

parametric space Θ.

Tractability of VB is achieved imposing a suitable form for Q known as mean-field

restriction. Let {θ1, . . . , θM} be a pre-specified convenient partition of θ into M sub-

vectors: Mean Field Variational Bayes (MFVB) approximations solve the optimization

problem (1.2) under the following additional non-parametric assumption for Q:

Q =

{︄
q(θ) : q(θ) =

M

∏
i=1

qi(θi) for some partition {θ1, . . . , θM} of θ

}︄
. (1.5)

Notice a very fine partition specified for θ imposes further approximate posterior

independence between the qi(θi)s that may not be present in the target p(θ|y). On

the other hand, too conservatory partitions would not afford the tractability of the

optimization. A trade-off emerges between the accuracy of the obtained approxima-

tions and the tractability of MFVB variational approximations. Depending on the

amounts of true posterior dependence, the quality of the approximation can range

from excellent to poor. Further discussion on this topic is given in Section 3.2 of

Titterington (2004).

An important concept well described in Section 10.2.5 of Bishop (2006) is that con-

cerning induces factorizations for (1.5) that arise from an interaction between the parti-

tion assumed for θ and the conditional independence properties of p(y, θ). They can

be easily detected using simple graphical tests over directed acyclic graph represen-

tations of Bayesian models, such as d-separation theory (Pearl, 1988). Assume as an

illustrative example that θ = (θT
1 , θT

2 , θT
3 )

T is partitioned into {θ1, θ2} and {θ3}, and

therefore the generic element of Q factorizes itself into q(θ) = q{1,2}(θ1, θ2)q3(θ3). If

θ1 and θ2 are conditionally independent given θ3 and y, then the induced factorization

q(θ) = q(θ1) q(θ2) q(θ3) arise. The key aspect here is that the only assumption being

made about the generic approximate posterior density function q(θ) is that {θ1, θ2}
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is a-posteriori independent from θ3, or equivalently that possible a-posteriori depen-

dence may not be accounted by the specified approximation. Induced factorizations

provide further partitioning in the pre-specified partition for θ, and therefore fur-

ther independence in the structure of q(θ), only emerging by default from the model

structure and the initial partitioning choice being made.

1.2.1 The Coordinate Ascent MFVB Algorithm

From Result 1 of Ormerod and Wand (2010), it follows that the optimal approxi-

mating q-densities satisfy:

q∗i (θi) ∝ exp
{︂

Eq∗(θ/θi)
(log p(θi|rest))

}︂
, 1 ≤ i ≤ M, (1.6)

where Eq∗(θ/θi)
(·) denotes the expectation with respect to q∗(θ)/q∗i (θi) = ∏j ̸=i q

∗
j (θj)

and p(θi|rest) is the full conditional posterior density function for θi.

The maximization of (1.4) is therefore achievable initializing all the qi(θi)’s and

updating each in turn by replacing its current estimate with a revised expression

given by:

qi(θi)←−
exp

{︂
Eq(θ/θi)

(log p(θi|rest))
}︂

∫︁
exp

{︂
Eq(θ/θi)

(log p(θi|rest))
}︂

dθi

, 1 ≤ i ≤ M, (1.7)

until the relative increase in log p(y; q(θ)) from two subsequent iterations is negligi-

ble. Once convergence is assumed to be reached, q∗(θ) = ∏M
i=1 q

∗
i (θi) is the solution

to the optimization problem (1.4) and represents the optimal MFVB approximation

to p(θ|y) under product restriction (1.5). Moreover, log p(y; q∗(θ)) represents the

optimal MFVB approximation to log p(y).

Each update (1.7) uniquely minimizes the Kullback-Leibler divergence (or, equiv-

alently, maximizes the lower bound) with respect to qi(θi), forming an iterative co-

ordinate ascent algorithm for climbing the lower-bound, as explained for example in

Section 10.1.1 of Bishop (2006) and Section 2.2 of Ormerod and Wand (2010). Con-

vexity properties can be used to show that convergence to at least one local optima is

guaranteed (Boyd and Vandenberghe, 2004; Luenberger and Ye, 2008). Interestingly,

Beal and Ghahramani (2003) illustrated how the MFVB iterative updating scheme

can be interpreted as a generalization of the Expectation-Maximization algorithm of

Dempster et al. (1977). Such procedure was initially designed for finding maximum
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likelihood estimates in models with latent variables, which alternates between com-

puting the first addendum of the lower bound E{log p(y, θ)} according to p(θ|y)
instead of q(θ) (the E-step), assuming the expectation under p(θ|y) is computable,

and optimizing it with respect to the model parameters (the M-step).

1.2.2 Practicalities

Suppose all the parameters in the model are conditionally conjugate to each

other, as it sometimes happens in practical implementations. In that case, the opti-

mal q-density functions in (1.6) are available in closed parametric forms. Therefore,

their iterative updates reduce into iteratively updating its associated parameters us-

ing the updated parameters of the remaining M − 1 approximating densities. A

more straightforward implementation arises when all the full conditional distribu-

tions θi|rest belong to the exponential family (Wainwright and Jordan, 2008): in this

case the updates are even easier to express in terms of sums of natural parameter

vectors, see Section 4.1 of Blei et al. (2017). The work by Wand (2017) made explicit

usage of this property, deriving fast approximation algorithms for arbitrarily large

models with an approach founded upon a message passing formulation of MFVB

that utilizes factor graph representations of statistical models, known in the litera-

ture as variational message passing (Winn and Bishop, 2005). In all the other situations,

numerical quadrature techniques are required to approximate the denominator of

(1.7). This task is computationally more demanding and affects the benefits of vari-

ational approximation procedures.

Practical examples of MFVB approximations for some common statistical models

are listed in Section 2.2 of Ormerod and Wand (2010), to which we refer. Chapter

3 of the present PhD thesis uses streamlined MFVB versions for obtaining approx-

imations over linear mixed models and provides practical usage for the formulas

presented in the previous pages.

1.3 Expectation Propagation

The idea behind Expectation Propagation (EP) was first revealed by Thomas Minka

through his PhD thesis (Minka, 2001b) and the resulting seminal paper (Minka,

2001a). It unifies two existing approximation techniques: assumed-density filtering
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(Maybeck, 1979), a one-pass sequential method for computing approximate poste-

rior distributions, and loopy belief propagation (Murphy et al., 1999), an extension of

belief propagation for Bayesian networks (Frey and MacKay, 1998).

Following Minka (2005), it is possible to express EP approximations as those

resulting from the following optimization problem:

q∗(θ) = arg min
q(θ)∈Q

KL{p(θ|y)∥q(θ)}. (1.8)

Notice EP uses the Kullback-Leibler divergence in its reverse order, usually known

as inclusive Kullback-Leibler divergence if compared to the one used for defining

the MFVB optimization problem in (1.2). Solution of (1.8) is way more involved

than the coordinate ascent algorithm required for MFVB, and EP is well-known to

uniquely provide a heuristic method for the solution of the associated optimiza-

tion problem. In fact, few theoretical guarantees that it converges to the optimal

solution are present. Nevertheless, it has been shown to outperform alternative

variational approximation methods in specific contexts, see e.g. Nickisch and Ras-

mussen (2008), Jylänki et al. (2011), Gehre et al. (2014) and Jylänki et al. (2014).

A general roadmap to research on EP and associated variants can be found in

https://tminka.github.io/papers/ep/roadmap.html.

A convenient partition of θ into M different subsets {θ1, . . . , θM} is also employed

here, such that Q assumes the same identical form of (1.5). In addition, EP requires

a coherent parametric specification for each qi(θi) to be a member of the exponential

family, namely:

qi(θi; ηqi(θi)
) = exp

{︂
T i(θi)

Tηqi(θi)
− Ai

(︁
ηqi(θi)

)︁}︂
hi(θi), ηqi(θi)

∈Hi,

for each 1 ≤ i ≤ M. A subscript i indicates that the sufficient statistic vector T i,

the log-partition function Ai and the base measure hi are referred to the exponential

familyQi to which qi(θi) is restricted to belong. Moreover, ηqi(θi)
denotes the natural

parameter vector uniquely identifying qi(θi) among Qi.

Two main formulations by which EP is defined for approximate Bayesian infer-

ence arise in literature. The more prominent and common approach dates back to

the seminal paper by Thomas Minka. It assumes p(y, θ) comprises a product over

so-called sites, often corresponding to data points, and so-called cavity and tilted

distributions are obtained by iteratively performing moment-matching procedures.

Details are well explained in, e.g., Section 10.7 of Bishop (2006), Section 13.8 of Gel-

man et al. (2014) and Section 2.1 of Vehtari et al. (2020). Hereafter, we focus on the

https://tminka.github.io/papers/ep/roadmap.html
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alternative approach motivated by Minka (2005) and Minka and Winn (2008) that

finds EP approximations with a message passing algorithm on a factor graph repre-

sentation for the statistical model being considered. This second approach is more

general than the original one because different exponential family distributions can

be selected for the qi(θi)’s. Moreover, it permits us to better understand and digest

the work and notation presented in Chapter 2.

1.3.1 Factor Graphs

Factor graphs (Kschischang et al., 2001; Frey, 2002) are a relatively new graphical

concept in the statistical field. They graphically represent the dependencies occur-

ring in a precise statistical model, together with the product density form specified

for the generic q(θ). Moreover, they permit to compartmentalize the algebra and

coding implementations required for estimating the optimal approximate posterior

density function via a message-passing algorithm that can be built in terms of frag-

ments. Wand (2017) developed factor graph fragmentization to streamline MFVB ap-

proximations over semiparametric regression models, while Chen and Wand (2020)

mimicked the same idea for EP approximations.

We describe factor graphs through a self-explanatory naïve example that is use-

ful for fully understanding the content of Chapter 2. Consider a Bayesian model

with parameter θ = (θT
1 , θT

2 , θT
3 )

T and assume θ is partitioned into {θ1, θ2, θ3};
then, suppose its joint density function p(y, θ) can be factorized into the product

p(y|θ1, θ3) p(θ1|θ2) p(θ2) p(θ3). Such model can be visually represented with the

factor graph displayed in Figure 1.1, having four different factors (represented with

full squared boxes) being those onto which p(y, θ) factorizes and three different

stochastic nodes (represented with empty circles) representing those onto which θ

have been partitioned. Factor graphs connect all the stochastic nodes belonging to

a specific factor (usually called the neighborhood of that factor) with a straight line,

allowing to immediately visualize the dependencies among parameters induced by

the Bayesian specification of a model. For example, the model likelihood factor

p(y|θ1, θ3) depends upon θ1 and θ3: therefore both nodes share a straight line with

it, and compose its neighborhood.

Multiple factor graph representations are possible for the same Bayesian model.

They depend upon the choice for the partition of θ and the different factors onto

which p(y, θ) can be factorized. For more complex statistical models, convenient

choices are required to implement feasible message-passing algorithms.



Chapter 1 - Bayesian Inference via Variational Approximations 19

θ1

θ2
θ3

p(y|θ1,θ3)

p(θ1|θ2) p(θ2)

p(θ3)

Figure 1.1: Factor graph representation of the naïve Bayesian model described in Sec-
tion 1.3.1, with θ partitioned into {θ1, θ2, θ3} and p(y, θ) factorized into the product
p(y|θ1, θ3) p(θ1|θ2) p(θ2) p(θ3).

1.3.2 The EP Message-Passing Algorithm

We now present the mathematical details of the general prescription proposed

by Minka (2005) for solving (1.8) over a generic factor graph representation for a

Bayesian model. To do so, we borrow concepts and notation from the statistically-

oriented explanation given in Section 3 of Kim and Wand (2016).

Let then consider the pre-specified partition of θ into M different sub-vectors,

each representing a stochastic node in the model associated factor graph represen-

tation, and denote θS the set composed by the θi’s having index i ∈ S, S belonging

to the power set of {1, . . . , M}. Given such a partition, it is possible to factorize

the model joint density function into N pieces f j representing factors in the model

associated factor graph representation, namely:

p(y, θ) =
N

∏
j=1

f j(θneigh(j)),

where neigh(j) is the set of stochastic node indexes belonging to the neighbor-

hood of factor f j, for each 1 ≤ j ≤ N. For example, when considering hierarchi-

cal Bayesian model specifications in which p(y, θ) admits a directed acyclic graphical

model representation with hidden nodes θ1, . . . , θM, evidence node y and arrows indi-

cating conditional dependence relationships among the model random variables,

then

p(y, θ) = p (y|parents{y})
M

∏
i=1

p (θi|parents{θi}) ,

with N = M + 1 different factors f j (M corresponding to the density functions of θi
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conditional on its parents, 1 ≤ i ≤ M, and 1 corresponding to the likelihood factor).

Here parents{·} denotes the set of parental nodes of a specific node in a graphical

model, i.e., the set of hidden nodes pointing an arrow towards it. With direct ref-

erence to the factor graph displayed in Figure 1.1, it consists of M = 3 stochastic

nodes θ1, θ2, θ3 from which the joint density function p(y, θ) can be factorized into

N = 4 factors: p(y, θ1, θ3), p(θ1|θ2), p(θ2) and p(θ3).

The EP message passing algorithm runs over the resulting factor graph represen-

tation of the model, iteratively computing and updating for each non-trivial combi-

nation of 1 ≤ i ≤ M and 1 ≤ j ≤ N the EP stochastic node to factor messages:

mθi→ f j(θi)←− ∏
j′ ̸=j : i∈neigh(j′)

m f j′→θi(θi) (1.9)

and the EP factor to stochastic node messages:

m f j→θi(θi)←−

projQi

⎡⎢⎢⎣
Z−1 mθi→ f j(θi)

×
∫︂

f j
(︁
θneigh(j)

)︁
∏

i′∈neigh(j)\{i}
mθi′→ f j(θi′) dθneigh(j)\{i}

⎤⎥⎥⎦
mθi→ f j(θi)

, (1.10)

where Z is the normalizing constant ensuring the density function in θi inside

projQi
[·] integrates to one. Importantly, projQi

[·] is the operator performing the

Kullback-Leibler projection of a general probability density function z(θi) onto the

pre-specified family of distributions Qi for qi(θi), namely

projQi
[z(θi)] = arg min

q f j→θi
(θi)∈Qi

KL{z(θi)∥q f j→θi(θi)}. (1.11)

Finding a solution to this optimization problem is generally unfeasible, unless

Qi belongs to the exponential family of distributions, as it is usually the case in EP

for all 1 ≤ i ≤ M. In this scenario,

q f j→θi(θi) = q f j→θi(θi; η f j→θi
) = exp

{︂
T i(θi)

Tη f j→θi
− Ai

(︁
η f j→θi

)︁}︂
hi(θi)

and (1.11) is equivalent of solving the following optimization problem:

η∗f j→θi
= arg min

η f j→θi
∈Hi

KL{z(θi)∥q f j→θi(θi; η f j→θi
)}, (1.12)
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which essentially reduces to finding the optimal natural parameter vector η∗f j→θi

such that the following sufficient statistic moment-matching equality holds:∫︂
T i(θi) exp

{︂
T i(θi)

Tη∗f j→θi
− Ai

(︁
η∗f j→θi

)︁}︂
hi(θi) dθi =

∫︂
T i(θi)z(θi) dθi.

Due to the fact that

Eq f j→θi
(θi;η f j→θi

){T(θi)} = ∇η f j→θi
Ai
(︁
η f j→θi

)︁
for a generic distribution belonging to the exponential family, the above equality can

be rewritten as

∇η f j→θi
Ai
(︁
η∗f j→θi

)︁
=
∫︂

T i(θi)z(θi) dθi,

where∇η f j→θi
Ai
(︁
η∗f j→θi

)︁
is to be intended as “the derivative vector of Ai(η f j→θi

) with

respect to η f j→θi
, computed in η∗f j→θi

”. The optimal η∗f j→θi
is then:

η∗f j→θi
=

{︃
(∇η f j→θi

Ai)
−1
(︃∫︂

T i(θi)z(θi) dθi

)︃}︃
. (1.13)

In other words, when Qi is restricted to be a family of distributions belonging to the

exponential family, projQi
[z(θi)] identifies the probability density function among

Qi whose Kullback-Leibler divergence is minimal with respect to z(θi). The iden-

tification simply arises determining the optimal natural parameter vector resulting

from the inversion of the derivative vector of Ai(η f j→θi
) with respect to η f j→θi

, com-

puted in Ez(θi)
{T i(θi)}.

For all the regular distributions belonging to the exponential family (i.e., such

that Hi is an open set of Rki for a certain ki ∈ N) in which T i(θi) is the minimal

sufficient statistic vector, results from Section 3 of Wainwright and Jordan (2008)

ensures that ∇η f j→θi
Ai(·) is a bijective map and therefore (∇η f j→θi

Ai)
−1(·) is well-

defined. This is the case, for example, for the univariate and multivariate Normal

distributions and for the Inverse-χ2 distribution expressed in their minimal repre-

sentation. Explicit examples of the Kullback-Leibler projections for some common

exponential families were given in, e.g., Section 2.2 of Kim and Wand (2016) and

Section 2.2 of Chen and Wand (2020), and are extensively discussed in Chapter 2.

Both types of messages are, in practice, proportional to proper probability den-

sity functions. The EP algorithm initializes all the messages involving θi to be a

pre-specified density function in Qi, for all 1 ≤ i ≤ M, and iteratively updates them

with the expressions given in (1.9)–(1.10). Upon convergence of the messages, the
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optimal q-densities are obtained with:

q∗i (θi) ∝ ∏
j:i∈neigh(j)

m f j→θi(θi), 1 ≤ i ≤ M. (1.14)

Notice the effect of the projQi
[·] operator in (1.10) is that of ensuring all the messages

starting from θi or pointing towards it to belong to a specific exponential family

Qi. This means that the expressions (1.9)–(1.10) boil down into uniquely updating

the natural parameter vectors associated with those messages, and multiplications

(divisions) between EP messages boil down to sums (differences) of their natural

parameter vectors.

A reasonable stopping criterion is that of monitoring the evolution of the lower

bound log p(y; q(θ)), similarly to what is usually done in MFVB, and stopping when

its relative change from one iteration to another becomes negligible. Differently from

MFVB, this quantity is not necessarily monotone, nor is convergence guaranteed, as

pointed out in Section 10.7 of Bishop (2006). In terms of the notation introduced so

far for the factor graph representation of a statistical model, its expression is:

log p(y; q(θ)) =
M

∑
i=1

log sθi +
N

∑
j=1

log s f j (1.15)

where

sθi =
∫︂

∏
j:i∈neigh(j)

m f j→θi(θi) dθi (1.16)

and

s f j =

∫︂
f j(θneigh(j)) ∏

i∈neigh(j)
mθi→ f j(θi) dθneigh(j)∫︂

∏
i∈neigh(j)

mθi→ f j(θi)m f j→θi(θi) dθneigh(j)

. (1.17)

Notice this message-passing approach for finding EP approximations follows

the same prescription for variational message passing (Winn and Bishop, 2005). As

clarified by Appendixes A and B of Minka and Winn (2008), the only difference

between EP and MFVB via message passing resides on the expression for the factor

to stochastic node message update (1.10), which does not require any Kullback-

Leibler projection over a pre-determined exponential family for q(θi) and therefore

is simply:

m f j→θi(θi)←− exp
{︂

E f j→θi

[︂
log f j

(︁
θneigh(j)

)︁]︂}︂
,
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where E f j→θi [·] denotes the expectation with respect to the density function:

∏i′∈neigh(j)\{i}m f j→θi′ (θi′)mθi′→ f j(θi′)

∏i′∈neigh(j)\{i}
∫︂
m f j→θi′ (θi′)mθi′→ f j(θi′) dθi′

.

1.3.3 Theoretical Developments

EP approximations have been prevalent in research areas including machine

learning and computer science, with less attention from the statistical community

until recent years. This came with a wide variety of international conference pro-

ceeding papers, technical reports, and arXiv pre-prints to be flourishing in the last

decades accounting for theoretical developments and practical implementations of

EP over many fields. Nonetheless, a limited number of papers have been published

in popular statistical journals.

Recently, research on EP approximations has been increasing also in the Bayesian

statistics field, and it is worth mentioning the title of Vehtari et al. (2020)’s paper

published in the statistically-oriented Journal of Machine Learning Research, “Ex-

pectation propagation as a way of life: a framework for Bayesian inference on par-

titioned data” to understand how prominent this line of research will be over the

next years. Among recent works studying EP approximations from a purely statis-

tical perspective, we mention Kim and Wand (2016) in which an explicit form for

the EP algorithm has been derived for the univariate Normal random sample model

and their later Kim and Wand (2018) paper in which the same task was tackled for

generalized, linear and mixed-effect regression models. Both works allow to better

grasp mathematical details of the derivation and computational challenges required

for the practical implementation of EP for such models. Barthelmé and Chopin

(2014) extended the idea behind EP to approximate Bayesian computation (ABC)

and develop an algorithm that is faster by a few orders of magnitude than standard

ABC approaches while producing a negligible approximation error. Dehaene and

Barthelmé (2015) presented bounds for the EP approximation error, while Dehaene

and Barthelmé (2018) introduced a variant of EP, called averaged-EP, and compared

both methods in the large data limit to prove that EP is asymptotically exact un-

der certain conditions. Another extension of EP that maintains a global posterior

approximation but updates it in a local way, called stochastic expectation propaga-

tion, was proposed by Li et al. (2015b). EP approximations have also been recently

used by Hall et al. (2020) to approximate integrals arising in frequentist statistical

inference for binary response mixed-effect models, showing that fast and accurate
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quadrature-free inference can be realized for the probit link case with multivariate

random effects and higher levels of nesting.

Regarding its implementation in standard statistical software, we mention the

Infer.NET (Minka et al., 2018) computational framework for approximate Bayesian

inference in hierarchical Bayesian models, which implements EP approximations in

addition to standard MFVB, although for a limited number of statistical models (see

Wang and Wand, 2011, for practical examples).

Chapter 2 of the present PhD thesis investigates approximations for some statisti-

cal models with Power-EP, a recently-developed improved version of EP accounting

for the minimization of a divergence alternative to the Kullback-Leibler. Practical

illustrations and insights into the formulas and notation introduced in the previous

pages are exhaustively given.

1.4 Gaussian Variational Approximations

Gaussian Variational Approximations (GVA) are expressible as a particular case of

VB approximations described in the first paragraph of Section 1.2, for which Q is

restricted to be the family of multivariate Normal distributions of dimension k, k

supposed to be the length of the model parameter vector θ. Therefore, they arise as

the optimal solution of a modified version of (1.2) expressible as:

q∗(θ; µ∗q(θ), Σ∗q(θ)) = arg min
q(θ ; µq(θ) , Σq(θ)) ∈Q

KL{q(θ; µq(θ), Σq(θ))∥p(θ|y)}, (1.18)

where q(θ; µ, Σ) = ϕ(Σ−1/2(θ− µ)) denotes the probability density function of a

multivariate Normal distribution with mean parameter µ and covariance matrix Σ.

Notice GVA is a valid variational approximation procedure if and only if θ ∈ Θ ⊆
Rk; otherwise, model parameters contained in θ which are restricted to belong to

some subsets of R must be adequately reparametrized.

Since the multivariate Normal distribution is uniquely identified by its mean

parameter and covariance matrix, (1.18) can be equivalently expressed into finding

q∗(θ) being the optimal N
(︁
µ∗
q(θ), Σ∗q(θ)

)︁
density function such that:

(︂
µ∗q(θ), Σ∗q(θ)

)︂
= arg min

(µq(θ) , Σq(θ)) ∈Rk×Sk
+

KL{q(θ; µq(θ), Σq(θ))∥p(θ|y)}. (1.19)
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Following its exponential family representation described in Appendix A.2, resolu-

tion of (1.19) is also identical to find

η∗q(θ) = arg min
ηq(θ)∈H

KL{q(θ; ηq(θ))∥p(θ|y)}, (1.20)

where ηq(θ) indicates the (k + k(k + 1)/2)-dimensional natural parameter vector of

a multivariate Normal distribution of dimension k belonging the the natural param-

eter vector space H, from which:

Σ∗q(θ) = −
1
2

{︂
vech−1

(︂
[η∗q(θ)]2

)︂}︂−1
and µ∗q(θ) = Σ∗q(θ)[η

∗
q(θ)]1

follows. Nevertheless, (1.18) still suffers the same problematics of VB due to the

necessity of explicitly computing p(y): with similar motivations, it is possible to

rephrase it in terms of the following optimization problem

q∗(θ; µ∗q(θ), Σ∗q(θ)) = arg max
(µq(θ) , Σq(θ)) ∈Rk×Sk

+

log p(y; q(θ; µq(θ), Σq(θ)))

= arg max
ηq(θ)∈H

log p(y; q(θ; ηq(θ))),
(1.21)

that is, of individuating η∗
q(θ) (or equivalently, both µ∗

q(θ) and Σ∗q(θ)) that maximizes

the marginal likelihood lower bound.

1.4.1 Literature Review

Although it has been summarized here taking a Bayesian perspective, GVA has

been extensively used for obtaining variational approximations both from the fre-

quentist and the Bayesian side. Frequentist GVA methods have been discussed in

Section 4 of Ormerod and Wand (2010), while Hall et al. (2011b) and Hall et al.

(2011a) used them to estimate the parameters of a mixed-effects linear model with

Poisson response. They proved root-m asymptotic consistency and normality of the

obtained estimates under relatively mild assumptions, together with providing ex-

plicit expressions for their rates of convergence. Heuristic arguments were given

by Ormerod and Wand (2012) to extend these results for proving the consistency of

GVA for generalized linear mixed models.

Early contributions from a Bayesian perspective are due to Hinton and van Camp

(1993) and Barber and Bishop (1998), who used GVA-type approximations for neu-

ral networks models. Later works include, e.g.: Archambeau et al. (2007), in which
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GVA were applied to the posterior measure over paths for a general class of stochas-

tic differential equations; Raiko et al. (2007), which used GVA over latent variable

models; Nickisch and Rasmussen (2008), who derived GVA for binary Gaussian pro-

cess classification tasks; Honkela et al. (2008), who used the Riemannian structure of

the multivariate Normal distribution to derive a more efficient algorithm for GVA,

and Opper and Archambeau (2009), in which they showed that GVA methods are

extremely efficient in terms of big-O computations if applied to certain classes of

probabilistic models. We refer to Challis and Barber (2013) for an extensive review.

An iterative coordinate ascent algorithm is required for solving (1.21), with many

different numerical optimization strategies that can be implemented, as well sum-

marized in Section 3 of Rohde and Wand (2016). A fixed-point iteration update

scheme was derived in Wand (2014), with generic update expressions:⎧⎪⎪⎨⎪⎪⎩
Σnew
q(θ) ←− −1

2

{︂
vech−1

(︂
∇vech(Σq(θ))

log p(y; q(θ; µold
q(θ)

, Σold
q(θ)))

)︂}︂−1

µnew
q(θ)
←− µold

q(θ)
+ Σnew

q(θ)

{︂
∇µq(θ)

log p(y; q(θ; µold
q(θ)

, Σold
q(θ)))

}︂
.

The superscripts “old” and “new” distinguish between the older and updated values

at each iteration, respectively. Alternative update expressions follow from Result 2

of Rohde and Wand (2016) and only requires the first and second order derivatives

of the lower-bound log p(y; q(θ; µq(θ), Σq(θ))) to be computed with respect to µq(θ),

namely updating Σq(θ) with the following alternative expression:

Σnew
q(θ) ←− −

{︂
Hµq(θ)

log p(y; q(θ; µold
q(θ), Σold

q(θ)))
}︂−1

.

Both expressions require the explicit derivation of log p(y; q(θ; µq(θ), Σq(θ))), and

when this is not available in closed form stochastic gradient ascent methods are

usually employed. We focus on the details of this latter approach, being the one that

is used in Chapter 4.

1.4.2 Stochastic Gradient Ascent-Based GVA

Stochastic gradient ascent (Robbins and Monro, 1951) is an iterative method for

optimizing an objective function with suitable smoothness properties that have been

largely used in variational approximation, see e.g. Paisley et al. (2012), Nott et al.

(2012), Hoffman et al. (2013), Salimans and Knowles (2013), Ranganath et al. (2014),

Titsias and Lázaro-Gredilla (2014) and Kucukelbir et al. (2017) among others. In
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simple words, stochastic gradient ascent for solving (1.21) starts from an initial value

η
(0)
q(θ)

for ηq(θ) and proceeds recursively performing the following update:

η
(t+1)
q(θ)

←− η
(t)
q(θ)

+ ρt ◦
{︂ˆ︁∇ηq(θ)

log p(y; q(θ; η
(t)
q(θ)

))
}︂

(1.22)

for t = 1, 2, . . . until a stopping condition is satisfied. Here ˆ︁∇ηq(θ)
log p(y; q(θ; η

(t)
q(θ)

))

is an unbiased estimate for the gradient vector of log p(y; q(θ; ηq(θ))) with respect

to ηq(θ), evaluated in η
(t)
q(θ)

, and {ρt}t≥0 is a sequence of vector-values learning rates

typically chosen so that its elements satisfy the Robbins-Monro conditions (Robbins

and Monro, 1951). A large literature on different adaptive choices of the learning

rates exists, see https://ruder.io/optimizing-gradient-descent/ for a detailed

review. Convergence to a local optimum under minor regularity conditions is usu-

ally ensured (Bottou, 2010).

Different approaches for the construction of unbiased gradient estimates exist

in literature, and one key related aspect is the reduction of the variance for these

estimates because it affects the stability and speed of convergence of the estima-

tion algorithm. In this PhD thesis we employ the so-called reparameterization trick

(Kingma and Welling, 2014; Rezende et al., 2014) to effectively do this. When ap-

plied to GVA, its essential idea resides on noticing that if there exists an application

θ = z(ζ; ηq(θ)) such that q(ζ) is the N(0, I) density function ϕ(ζ), then:

∇ηq(θ)
log p(y; q(θ; ηq(θ)))

= Eq(θ;ηq(θ))

{︂
∇ηq(θ)

log p(y, θ)−∇ηq(θ)
log q(θ; ηq(θ))

}︂
= Eϕ(ζ)

{︂
∇ηq(θ)

log p(y, z(ζ; ηq(θ)))−∇ηq(θ)
log q(z(ζ; ηq(θ)); ηq(θ))

}︂
.

(1.23)

Now the expectation with respect to the standard multivariate Normal distribu-

tion can be estimated unbiasedly with samples from it. Moreover, the variational

parameters have been moved inside the model joint density function so that the

differentiation is done using derivative information from the target posterior den-

sity function. In practice, it is found that when the reparameterization trick can be

applied it helps greatly to reduce the variance of gradient estimates.

Moreover Roeder et al. (2017), generalizing a method described in Han et al.

(2016) and Tan and Nott (2018), considered a further approach to variance reduction

https://ruder.io/optimizing-gradient-descent/
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showing that the last row of (1.23) can be rewritten as:

∇ηq(θ)
log p(y; q(θ; ηq(θ)))

= Eϕ(ζ)

{︄
dz(ζ;ηq(θ))

dηq(θ)

T(︂
∇θ log p(y, z(ζ; ηq(θ)))−∇θ log q(z(ζ; ηq(θ)); ηq(θ))

)︂}︄
,

(1.24)

where dz(ζ; ηq(θ))/dηq(θ) is defined as the matrix with (i, j)th element the partial

derivative of the ith element of z(ζ; ηq(θ)) with respect to the jth element of ηq(θ).

This latter expression has to be preferred because, if the variational approximation

is exact, then a Monte Carlo estimation to the expectation on its right-hand side is

exactly zero even if such an estimation is formed using only a single draw from

the standardized multivariate Gaussian distribution. Xu et al. (2019) showed explic-

itly how the reparameterization trick reduces the variance of the gradient estimates

when Σq(θ) is assumed to be diagonal.

1.4.3 Parametrizing the Variational Covariance Matrix

Regardless of the strategy employed for solving (1.21), the optimization is well

known to be computationally challenging in high-dimensional models because the

number of variational parameters to be determined grows as O(k2). This makes

GVA impractical unless more parsimonious parameterizations of the covariance

matrix Σq(θ) are adopted, and many strategies to overcome this issue have been

proposed. For example, Titsias and Lázaro-Gredilla (2014) and Kucukelbir et al.

(2017) considered both full and diagonal covariance structures expressed in terms

of Cholesky factors. In particular, the promising approach of Kucukelbir et al. (2017),

called ADVI, have been recently supported by Stan: the user only provides a prob-

abilistic model and a dataset, and ADVI automatically derives an efficient GVA al-

gorithm making use of the aforementioned techniques. Nonetheless, their full-rank

specification still embeds a number of variational parameter which grows quadrat-

ically in k. Salimans and Knowles (2013) parametrized the generic approximating

Gaussian density function in terms of the precision matrix and exploited sparsity of

Hessian matrices for the joint model in their computations. Instead, Tan and Nott

(2018) parametrized the variational optimization directly in terms of the Cholesky

factor of the precision matrix and imposed sparsity on this factor, reflecting condi-

tional independence relationships. Their approach have been extended by Tan et al.
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(2020) accounting for a conditionally-structured specification of the generic approx-

imating density function in terms of global and local model parameters. Never-

theless, all these methods either require some special structure of the model or are

inflexible in the kinds of dependence they can represent, and in general, do not scale

well with high model dimensions.

Alternative approaches rely on parameterizations of Σq(θ) in terms of a factor

structure (Bartholomew et al., 2011), allowing for the total number of variational

parameters to be reduced considerably when the number of factors considered is

much less than the full dimension of the parameter space. Early contributions in-

clude Barber and Bishop (1998) and Seeger (2000) but are restricted to models in

which the lower bound expression can be evaluated analytically, while Rezende

et al. (2014) only considered a factor structure for Σ−1
q(θ)

restricted to only one factor

component. In this PhD thesis, we opt for a more general approach developed by

Ong et al. (2018) in which a latent factor structure was considered for the variational

covariance matrix, making the total number of variational parameter growing as

O(kp), p being the number of latent factors considered. Such a covariance matrix

parameterization may be particularly useful in situations where there is no natural

conditional independence structure to be exploited in the model for reducing the

number of covariance parameters. GVA approximations with this convenient pa-

rameterization are employed in Chapter 4. We finally mention the prominent work

of Quiroz et al. (2020) in which they combined factor parameterizations for state re-

duction with sparse precision Cholesky factors for capturing dynamic dependence

structure in high-dimensional state space models.

1.5 Approximation Assessment

Once the optimal approximating density q∗(θ) has been obtained, it is of interest

to evaluate how good the approximation is if compared to the exact posterior density

function. Goodness can be measured in many different ways, regardless of the

variational approximate method employed: in this PhD thesis, we usually focus

on determining how accurate the approximation is and on quantifying the saving in

computational runtime if compared to classical MCMC sampling procedures. Issues

related to these two major benchmarks are discussed hereafter.
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1.5.1 The Accuracy Index

Measuring the global accuracy of the approximation for a k-variate approximat-

ing density function q∗(θ) if compared to p(θ|y) is very complicated even for mod-

erate dimensions of θ. Nonetheless, it is always possible to assess this task for

univariate dimensions, one model parameter at a time, both graphically or with

appropriate score indexes. Procedures of the former type are usually conducted

superimposing the associated univariate approximate posterior density function to

the binned kernel density function built with MCMC draws from the true posterior

distribution. Procedures of the latter type are way more useful since they permit

to summarize the quality of that superimposition with only one specific score, and

therefore allow immediate comparison between multiple approximations, as pro-

vided by the accuracy index first introduced in Section 3.2 of Faes et al. (2011) and

well described in described in Section 8 of Wand et al. (2011).

Let then θ ∈ Θ be a generic univariate parameter belonging to the generic model

parameter vector θ, and measure the l1-distance between q∗(θ) and p(θ|y) with the

integrated absolute error (IAE) index given by:

IAE{q∗(θ)} =
∫︂

Θ
|q∗(θ)− p(θ|y)| dθ.

Such error measurement has the attractions of being invariant to monotone transfor-

mations on θ and to return a scale-independent number between 0 and 2 (Devroye

and Györfi, 1985). The second of these characteristics motivates measuring the ac-

curacy of the approximation with the accuracy index being defined as:

Accuracy{q∗(θ)} =
(︃

1− 1
2

IAE{q∗(θ)}
)︃
× 100%, (1.25)

taking values from 0% to 100%, with larger scores to be preferred.

Despite its elegant expression, computation of the accuracy index is a little chal-

lenging because it depends on the marginal posterior density function p(θ|y), which

is the element we are trying to avoid by using approximate variational methods.

Nonetheless, sufficiently large samples obtained from MCMC can be used to ade-

quately estimate it employing binned kernel density estimation with direct plug-in

bandwidth selection (see e.g. Section 3.6.1 of Wand and Jones, 1995), as facilitated by

the R package KernSmooth (Wand, 2020). The integration in (1.25) is then accurately

solved via numerical quadrature.

Notice the obvious choice of the Kullback-Leibler divergence as an alternative to
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(1.25) has to be avoided here since it can be dominated by the tail behavior of the

densities involved, as pointed out by Hall (1987).

1.5.2 Runtime Comparisons

Another critical aspect for benchmarking variational approximations is the com-

putational runtime required for obtaining the optimal q∗(θ) density function. Re-

gardless of the approximating method employed, obtaining a reliable measurement

is typically out of the question because it would be conditioned by many technical

details involved in the algorithm implementation. Some of them include the effi-

ciency of the updating scheme to be manually programmed in standard statistical

software, the way convergence was assessed and its associated threshold value, the

programming language and data structures employed, possible fixed data manipu-

lations or iteration-invariant matrix multiplications being performed prior running

the estimating algorithm. Therefore only runtime comparisons between different

procedures keeping all these aspects fixed are possible and scientifically significant.

Variational approximations are usually compared to MCMC sampling strategies

even in their respective runtime. However, even in this case, it is challenging to

quantify the speed gains scientifically due to many different options making the

different algorithms incomparable. For example, the global MCMC sampling run-

time is conditioned by the number of iterations required to claim the convergence of

the underlying Markov chain to the stationary distribution, by the sampling strat-

egy, by the programming language on which it is implemented (including the usage

of probabilistic languages such as Stan or Nimble) and whether possible sparse ma-

trix structures have been exploited. Detailed discussions on this topic are given in,

e.g., Section 5.1 of Ormerod et al. (2017) and Section 7 of Nolan et al. (2020).





Chapter 2

Power-EP Approximations Based on

the α-Divergence

2.1 Introduction

The primary goal of this chapter is to investigate a class of approximations based

on a divergence measure generalizing the Kullback-Leibler divergence, called α-

divergence, for some of the most popular statistical models. As shown in Chapter

1, all the most common variational approximation methods are based upon the

Kullback-Leibler divergence quantifying the distance between p(θ|y) and the generic

q(θ) ∈ Q. This choice is usually motivated by the tractability of the resulting associ-

ated optimization scheme; nonetheless, a generic variational approximation (1.1) is

defined for a divergence measure D not necessarily corresponding to the Kullback-

Leibler divergence. Therefore, many competing variational approximation methods

have been developed and proposed in recent years, often exhibiting better approxi-

mation performances or possessing more reliable convergence guarantees. A recent

overview of popular divergence measures employed in statistics is Nielsen (2020),

to which we refer.

The literature on variational approximations with divergences alternative to the

Kullback-Leibler divergence is vast and grows year by year. For example, Li and

Turner (2016) solved (1.1) with D being a member of the family of Rényi divergences

of order α, while Dieng et al. (2017) minimized Dχ2{p(θ|y∥q(θ)}, Dχ2 representing

the χ2-divergence. Liu and Wang (2016) connected the Kullback-Leibler divergence

with a recently proposed kernelized Stein divergence which is indeed minimized.

Recent promising work is due to Knoblauch et al. (2019), in which they defined a

completely new class of generalized variational inference methods, allowing for a

33
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wide family of divergence measures to be minimized. Saha et al. (2020) proposed

a novel Riemannian geometric framework for variational inference based on the

nonparametric Fisher-Rao metric on the manifold of probability density functions,

reformulating the task of approximating the posterior distribution as a variational

problem on the hypersphere based on the Rényi divergences of order α. Huggins

et al. (2020) discussed alternative criteria, including the notable Wasserstein diver-

gence, and provided some theoretical guarantees. A complete review of Bayesian

approximate methods goes beyond the scope of this PhD thesis, and Section 5.2 of

Zhang et al. (2019) contain additional references to this topic.

In this chapter, we focus on variational approximations minimizing a member of

the α-divergences family (Amari, 1985), expressible with the convention of Zhu and

Rohwer (1997) as:

Dα{p(x)∥q(x)} = 1
α(1− α)

{︃
1−

∫︂
X
p(x)αq(x)1−α dx

}︃
, α ∈ R\{0}, (2.1)

for two generic probability density functions p(x) and q(x) having support in X .

Although having similar name and notation, and sharing connections as pointed

out in Section 2.2 of Cichocki and Amari (2010), (2.1) must not be confounded with

the popular Rényi-divergences of order α (Rényi, 1961), having expression:

DRényi
α {p(x)∥q(x)} = 1

α− 1
log
(︃∫︂
X
p(x)αq(x)1−α dx

)︃
, α ∈ R\{1}.

Additional relations of the α-divergence with the f -divergence (Ali and Silvey, 1966)

and the Bregman divergence (Bregman, 1967) classes have been pointed out by

Amari (2009). As it is clear by its definition, a divergence measure is selected among

this family only once a specific value for α is chosen, and we emphasize this fact

adding a subscript on Dα.

Solving (1.1) with the α-divergence (2.1) chosen as reversed divergence measure

defines Power-Expectation Propagation (Power-EP). It represents an extension of EP

proposed by Minka (2004) for solving some of its well-known drawbacks, e.g., the

convergence which is not always guaranteed (see Minka, 2001a), and possibly ob-

taining better approximations. A message-passing algorithm for solving the un-

derlying minimization problem has been proposed by Minka (2005). It generalizes

the EP message-passing algorithm summarized in Chapter 1, which turns out to be

equivalent to local Kullback-Leibler divergence minimizations of the exact distribu-

tions raised to a power α (Minka, 2004). This also motivates the name Power-EP.
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Among infinitely many choices for α, we highlight two major notable cases of

interest for which (2.1) gained attractiveness over the years and connect with varia-

tional methods described in Chapter 1. If α = 1, then

D1{p(x)∥q(x)} = KL{p(x)∥q(x)}

while if α→ 0, then

D→0{p(x)∥q(x)} = KL{q(x)∥p(x)}.

Therefore, Power-EP unifies both EP approximations and VB approximations under

the same umbrella, because once a unique method for solving its associated mini-

mization problem is defined regardless of the value chosen for α, then both arise as

particular cases only selecting α = 1 and α→ 0, respectively.

These appealing characteristics drove our interest in exploring Power-EP appli-

cations to some of the most common statistical models. Rather than considering

VB and EP approximations as two opposite and competing approaches, as it usu-

ally happens in standard variational literature, we recast them as boundaries of an

infinitely uncountable set of approximations that arise within a specific choice for

α ∈ (0, 1]. We restrict our attention to all the variational approximations conceptu-

ally lying in between VB and EP and investigate their behavior for different values

of α. In principle, there could be some model-specific values of α ∈ (0, 1] that share

the approximating behavior of VB and EP, allowing for optimal and more accurate

approximations between the two.

Little attention has been paid to developing explicit algorithms that account for

this type of approximations and statistical applications are still mostly unexplored,

further motivating our research interest towards this direction. For each statistical

model considered, we present a detailed and explicit Power-EP message-passing al-

gorithm for obtaining the optimal approximating posterior density functions, high-

lighting benefits and possible drawbacks connected to their implementations. In-

terestingly, the algorithms we propose derive Power-EP approximations following

the same structure on the iterative updating steps, regardless of the approximation

required. What changes between one approximation and another is the choice of

α ∈ (0, 1] before initializing the estimating algorithm.

Our work shares common points with Hernandez-Lobato et al. (2016). However,

they solved the underlying optimization problem using a stochastic gradient descent

algorithm and did not exploit the message-passing formulation of the underlying
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fixed-point iteration scheme. Although Power-EP approximations are still some-

how overshadowed by standard EP approximations, recent works in which they are

proved to exhibit better performances include Jylänki et al. (2011), Bui et al. (2016),

Bui et al. (2017) and Wilkinson et al. (2020).

2.2 Power Expectation Propagation

Due to the strict connection of Power-EP with EP, its mathematical treatment

(Minka, 2005) follows that for EP summarized in Section 1.3 with minor changes.

Given a model with posterior density function p(θ|y), Power-EP approximations

result from the following optimization problem:

q∗α(θ) = arg min
q(θ)∈Q

Dα{p(θ|y)∥q(θ)}, α ∈ R\{0}. (2.2)

A subscript α is added on the optimal approximating density function to highlight

that it solves (2.2) within a specific α-divergence indexed by a pre-specified α value,

as different α-divergences may lead to possible different and competing solutions.

Solution of (2.2) can be obtained with different approaches. Coherently with

the formulation summarized for EP in Section 1.3, we adopt a message-passing

algorithm for solving (2.2) over a generic factor graph representation for a Bayesian

model that follows from a pre-specified partition of θ into {θ1, . . . , θM}. It iteratively

computes and updates, for each non-trivial combination of 1 ≤ i ≤ M and 1 ≤ j ≤
N, the Power-EP stochastic node to factor message:

m(α)
θi→ f j

(θi)←− ∏
j′ ̸=j : i∈neigh(j′)

m(α)
f j′→θi

(θi) (2.3)

and the Power-EP factor to stochastic node message:

m(α)
f j→θi

(θi)←−

projQi

⎡⎢⎢⎢⎣
Z−1

(︂
m(α)

f j→θi
(θi)

)︂1−α
m(α)

θi→ f j
(θi)

∫︂ [︂
f j
(︁
θneigh(j)

)︁]︂α

× ∏
i′∈neigh(j)\{i}

(︂
m(α)

f j→θi′
(θi′)

)︂1−α
m(α)

θi′→ f j
(θi′) dθneigh(j)\{i}

⎤⎥⎥⎥⎦
m(α)

θi→ f j
(θi)

. (2.4)

Upon convergence of the messages, the optimal qα-densities are obtained with:

q∗i,α(θi) ∝ ∏
j:i∈neigh(j)

m(α)
f j→θi

(θi), 1 ≤ i ≤ M. (2.5)
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Notice the right-hand side of (2.3) corresponds to the one of (1.9) and, similarly,

the right-hand side of (2.5) corresponds to the one of (1.14). The reason is due to

the structure of the message-passing algorithm, which is always the same for any

type of variational approximation required. Moreover, the Power-EP lower bound

log p(y; qα(θ)) is expressible as:

log p(y; qα(θ)) =
M

∑
i=1

log s(α)θi
+

1
α

N

∑
j=1

log s(α)f j
(2.6)

where

s(α)θi
=
∫︂

∏
j:i∈neigh(j)

m(α)
f j→θi

(θi) dθi (2.7)

and

s(α)f j
=

∫︂ [︂
f j(θneigh(j))

]︂α

∏
i∈neigh(j)

(︂
m(α)

f j→θi
(θi)

)︂1−α
m(α)

θi→ f j
(θi) dθneigh(j)∫︂

∏
i∈neigh(j)

m(α)
θi→ f j

(θi)m
(α)
f j→θi

(θi) dθneigh(j)

. (2.8)

If all the M different qi(θi) ∈ Qi such that q(θ) = ∏M
i=1 qi(θi) are selected

among the exponential family of distributions, as it usually happens for practical

EP and Power-EP implementations, then the Power-EP message-passing expressions

between a generic factor f and stochastic node θ become

m(α)
f→θ(θ) ∝ exp

{︂
T(θ)Tη(α)

f→θ− A
(︂

η(α)
f→θ

)︂}︂
,

m(α)
θ→ f (θ) ∝ exp

{︂
T(θ)Tη(α)

θ→ f − A
(︂

η(α)
θ→ f

)︂}︂
and the message-passing updates boil down to the solely updating of the associated

natural parameter vectors. In particular, update (2.3) reduces into

η(α)
θi→ f j

←− ∑
j′ ̸=j : i∈neigh(j′)

η(α)
f j′→θi

, (2.9)

since the vector of sufficient statistics T(θi) is the same for each neighboring factor

f j, and update (2.4) reduces into

η(α)
f j→θi

←− η∗(α)f j→θi
− η(α)

θi→ f j
, (2.10)

with η∗(α)f j→θi
indicating the optimal natural parameter vector (1.13) resulting from the
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Algorithm 2.1 General implementation of a Power-EP message-passing algorithm for solv-
ing (2.2) on a Bayesian statistical model representable as a factor graph following the pre-
specified parameter partition {θ1, . . . , θM}.

1. Select α ∈ (0, 1].

2. Initialize the natural parameter vectors η(α)
f j→θi

of the Power-EP factor to stochastic
node messages belonging to a suitably-chosen exponential family of distributions Qi,
for all the non-trivial combinations of 1 ≤ i ≤ M and 1 ≤ j ≤ N.

3. Until convergence, cycle:

For each factor f j, 1 ≤ j ≤ N:

3.1 Update all the natural parameter vectors η(α)
θi→ f j

of the Power-EP stochastic node
to factor messages using (2.9), for all the relevant 1 ≤ i ≤ M;

3.2 Update all the natural parameter vectors η(α)
f j→θi

of the Power-EP factor to stochas-
tic node messages using (2.10), for all the relevant 1 ≤ i ≤ M;

4. Compute and return the natural parameter vectors η
q∗i,α(θi)

corresponding to the opti-

mal approximating densities using (2.11), for all 1 ≤ i ≤ M.

Kullback-Leibler projection into Qi. Upon convergence of all the natural parameter

vector updates, the optimal qα-densities (2.5) are uniquely identified by their natural

parameter vectors to be computed as:

ηq∗i,α(θi)
= ∑

j:i∈neigh(j)
η(α)

f j→θi
, 1 ≤ i ≤ M. (2.11)

For all the messages, natural parameter vectors and associated quantities, we

stress that they depend upon the minimization of a specific α-divergence adding the

superscript (α). All the expressions for EP presented in Section 1.3 arise from those

presented in the previous pages fixing α = 1: Power-EP generalizes and includes it

among a broad set of competing approximations indexed by α. In this chapter we

focus on α ∈ (0, 1] values being those conceptually bridging the gap between VB and

EP. For the remainder of this chapter, we also introduce the following notation:

η(α)
f j↔θi

≡ (1− α)η(α)
f j→θi

+ η(α)
θi→ f j

.

Algorithm 2.1 gives a general structure for the Power-EP message-passing al-

gorithm. The only step requiring a considerable computational effort is Step 3.2,

because it needs to perform the required Kullback-Leibler projection into Qi. All

the other steps are straightforward manipulations of natural parameter vectors.
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2.3 Power-EP for the Univariate Normal Random Sam-

ple Model

Dealing with the concepts of factor graphs, Kullback-Leibler projections and the no-

tation for the natural parameter vector update expressions defined in the previous

pages can be quite complicated. Therefore, difficulties in correctly interpreting how

the Power-EP message-passing algorithm works are frequent. For this reason, in-

spired by the excellent work of Kim and Wand (2016), we describe in detail Power-

EP approximations for the simplest statistical model ever, the univariate Normal

random sample model, and explicitly derive the required algebra for computing the

associated natural parameter vector updates.

Assume then a random sample y of length n has been generated from a univari-

ate Normal distribution, and consider the following model specification:

yi|µ, σ2 iid∼ N(µ, σ2) for 1 ≤ i ≤ n,

µ ∼ N(µµ, σ2
µ), σ ∼ Half-Cauchy(s)

where µµ ∈ R, σ2
µ, s > 0 are prior hyperparameters controlling the prior beliefs

about the mean parameter µ and variance parameter σ2. Following Gelman (2006),

we set the Half-Cauchy prior distribution for the standard deviation parameter σ,

which usually better lends itself to weakly-uninformative prior specification. A use-

ful result for Half-Cauchy distributions, as recalled in Appendix A.2, helps restore

to the popular Inverse-Gamma (Inverse-χ2) conjugate prior specification for the vari-

ance parameter σ2, at the cost of introducing the augmented variable a. Therefore,

an equivalent Bayesian formulation is:

y|µ, σ2 ∼ N(µ1, σ2I),

µ ∼ N(µµ, σ2
µ), σ2|a ∼ Inverse-Gamma(1/2, 1/a),

a ∼ Inverse-Gamma(1/2, 1/s2).

(2.12)

Here θ = (µ, σ2, a)T and we partition it into M = 3 stochastic nodes, namely θ1 =

{µ}, θ2 = {σ2} and θ3 = {a}. Such a partitioning choice has a crucial impact on

the quality of the Power-EP approximation, as it implies the following factorization

for the approximating density function: q(µ, σ2, a) = q(µ) q(σ2) q(a). Moreover, the

joint density function p(y, µ, σ2, a) = p(y|µ, σ2) p(σ2|a) p(µ) p(a) naturally factorizes

itself into N = 4 distinct factors.
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p(μ) μ p(y|μ,σ2) σ2 p(σ2|a) a p(a)

Figure 2.1: Factor graph representation of model (2.12) following parameter partition
{{µ}, {σ2}, {a}} and joint density factorization p(y|µ, σ2) p(σ2|a) p(µ) p(a).

Figure 2.1 shows the factor graph representation of model (2.12) with the pre-

specified global parameter partition. Each of the M = 3 stochastic nodes is repre-

sented with an empty circle, while each of the N = 4 factors is represented with a

full squared box and corresponds to each of the factors into which p(y, µ, σ2, a) is

factorized accordingly to the pre-specified partition of (µ, σ2, a)T. An edge, repre-

sented with a solid straight line, connects all the stochastic nodes belonging to the

neighborhood of each factor, since neigh(p(µ)) = {µ}, neigh(p(y|µ, σ2)) = {µ, σ2},
neigh(p(σ2|a)) = {σ2, a} and neigh(p(a)) = {a}.

Power-EP then solves the following optimization problem:

q∗α(µ, σ2, a) = arg min
q(µ,σ2,a)∈Q

Dα{p(µ, σ2, a|y)∥q(µ, σ2, a)}, α ∈ R\{0}, (2.13)

with Q = {q(µ, σ2, a) : q(µ, σ2, a) = q(µ)q(σ2)q(a)} and the following convenient

exponential family distributions selected for each approximating density function:

q(µ) is a N
(︁
µq(µ), σ2

q(µ)

)︁
density function ,

q(σ2) is an Inverse-Gamma
(︁
ξq(σ2), λq(σ2)

)︁
density function ,

q(a) is an Inverse-Gamma
(︁
ξq(a), λq(a)

)︁
density function .

(2.14)

Notice these generic approximating q-densities are not equipped with the α sub-

script in their notation, because the generic family Q is the same regardless of the

α-divergence chosen in (2.13). Conversely, q∗α(µ), q∗α(σ2) and q∗α(a) are the associated

optimal solutions minimizing a pre-specified α-divergence, uniquely identified by

their associated natural parameter vectors ηq∗α(µ)
, ηq∗α(σ2) and ηq∗α(a), and therefore

exhibit the α subscript.

Choosing Qµ, Qσ2 and Qa to belong to the exponential family of distributions

boils down the message-passing algorithm into the only need of updating the nat-

ural parameter vectors of the Power-EP stochastic node to factor messages (2.9),
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having explicit expressions:

η(α)
µ→p(µ)

←− η(α)
p(y|µ,σ2)→µ

, η(α)
µ→p(y|µ,σ2)

←− η(α)
p(µ)→µ

,

η(α)
σ2→p(y|µ,σ2)

←− η(α)
p(σ2|a)→a, η(α)

σ2→p(σ2|a) ←− η(α)
p(y|µ,σ2)→σ2

η(α)
a→p(σ2|a) ←− η(α)

p(a)→a, η(α)
a→p(a) ←− η(α)

p(σ2|a)→a,

(2.15)

and the natural parameter vectors of the Power-EP factor to stochastic node mes-

sages (2.10), having explicit expressions:

η(α)
p(µ)→µ

←− η∗(α)
p(µ)→µ

− η(α)
µ→p(µ)

,

η(α)
p(y|µ,σ2)→µ

←− η∗(α)
p(y|µ,σ2)→µ

− η(α)
µ→p(y|µ,σ2)

,

η(α)
p(y|µ,σ2)→σ2 ←− η∗(α)

p(y|µ,σ2)→σ2 − η(α)
σ2→p(y|µ,σ2)

,

η(α)
p(σ2|a)→σ2 ←− η∗(α)

p(σ2|a)→σ2 − η(α)
σ2→p(σ2|a),

η(α)
p(σ2|a)→a ←− η∗(α)

p(σ2|a)→a − η(α)
a→p(σ2|a),

η(α)
p(a)→a ←− η∗(α)

p(a)→a − η(α)
a→p(a).

(2.16)

Once the iterative refinements of the natural parameter vectors have reached con-

vergence, application of (2.11) gives the natural parameter vectors of the Power-EP

optimal approximating q-densities, namely:

ηq∗α(µ)
= η(α)

p(µ)→µ
+ η(α)

p(y|µ,σ2)→µ
,

ηq∗α(σ2) = η(α)
p(y|µ,σ2)→σ2 + η(α)

p(σ2|a)→σ2 ,

ηq∗α(a) = η(α)
p(σ2|a)→a + η(α)

p(a)→a

(2.17)

and therefore the optimal q-densities are:

q∗α(µ) is the N
(︁
− [η

q∗α(µ)
]1/(2[η

q∗α(µ)
]2),−1/(2[η

q∗α(µ)
]2)
)︁

density function ,

q∗α(σ
2) is the Inverse-Gamma

(︁
− [η

q∗α(σ2)
]1 − 1,−[η

q∗α(σ2)
]2
)︁

density function ,

q∗α(a) is the Inverse-Gamma
(︁
− [η

q∗α(a)]1 − 1,−[η
q∗α(a)]2

)︁
density function .

(2.18)

The only step requiring a non-negligible computational effort concerns the com-

putation of the natural parameter vectors η∗(α)f j→θi
with (1.13), for each non-trivial

combination of 1 ≤ i ≤ M and 1 ≤ j ≤ N. With direct reference to model (2.12),



42 Section 2.3 - Power-EP for the Univariate Normal Random Sample Model

this means computing η∗(α)
p(µ)→µ

and η∗(α)
p(y|µ,σ2)→µ

performing a Kullback-Leibler pro-

jection onto the univariate Normal exponential family of distributions, and comput-

ing η∗(α)
p(y|µ,σ2)→σ2 , η∗(α)

p(σ2|a)→σ2 , η∗(α)
p(σ2|a)→a and η∗(α)

p(a)→a performing a Kullback-Leibler

projection onto the Inverse-Gamma (Inverse-χ2) exponential family of distributions.

The following two results derived by Kim and Wand (2016) give an operational

strategy for determining such natural parameter vectors.

Result 2.1. Let X be a non-degenerate random variable for which E(X2) exists and with

density function p(x). The Kullback-Leibler projection of p(x) onto the univariate Normal

family,

qKL(x; µKL, σ2
KL) = projN[p(x)] = arg min

q(x;µ,σ2)∈N(µ,σ2)

KL{p(x)∥q(x; µ, σ2)}.

is the N(µKL, σ2
KL) density function with mean and variance parameters

µKL = E(X) and σ2
KL = E(X2)− (µKL)

2,

respectively.

Result 2.2. Let X be a positive-valued non-degenerate random variable for which E(1/X)

and E(log X) exist and with density function p(x). The Kullback-Leibler projection of p(x)

onto the Inverse Gamma family,

qKL(x; ξKL, λKL) = projIG[p(x)] = arg min
q(x;ξ,λ)∈IG(ξ,λ)

KL{p(x)∥q(x; ξ, λ)}.

is the Inverse-Gamma(ξKL, λKL) density function with shape and scale parameters

ξKL = (log–ψ)−1{log E(1/X) + E(log X)} and λKL = ξKL/E(1/X),

respectively. Here (log–ψ)(x) ≡ log(x)− ψ(x) is defined for all x > 0 and can be effec-

tively computed in R with the logmdigamma() function in the statmod library (Smyth et al.,

2021). Theorem 1 of Kim and Wand (2016) proves it is a proper bijective mapping from R+

to R+ and gives further technicalities on how to efficiently compute its inverse mapping.

Algorithm 2.2 gives a synthetic and general scheme for performing Power-EP

approximations on model (2.12) solving (2.13) with approximating density functions

restricted to the parametric family described in (2.14). Without loss of generality, we

initialize η(α)
p(y|µ,σ2)→µ

to be the natural parameter vector of a N(0, 1) distribution,
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Algorithm 2.2 Power Expectation Propagation message-passing algorithm on factor graph
displayed in Figure 2.1 for determining the natural parameter vectors of the optimal density
functions (2.18) for approximate Bayesian inference on model (2.12).

Data Inputs: y (n× 1). Create summary data vector D = (n, yT1, ∥y∥2)T.

Power-EP α choice: α ∈ (0, 1].

Hyperparameter Inputs: µµ ∈ R, σµ and s > 0.

Initialize: η(α)
p(µ)→µ

←
[︄

µµ/σ2
µ

−1/(2σ2
µ)

]︄
, η(α)

p(a)→a ←
[︄
−3/2

−1/s2

]︄
, η(α)

p(y|µ,σ2)→µ
←
[︄

0

−1/2

]︄
,

η(α)
p(y|µ,σ2)→σ2 ←

[︄
−2

−1

]︄
, η(α)

p(σ2|a)→σ2 ←
[︄
−2

−1

]︄
, η(α)

p(σ2|a)→a ←
[︄
−2

−1

]︄
.

η(α)
µ→p(y|µ,σ2)

← η(α)
p(µ)→µ

; η(α)
a→p(σ2|a) ← η(α)

p(a)→a.

Cycle until convergence:

Updates for the p(µ) factor: fixed.

Updates for the p(y|µ, σ2) factor:

η(α)
σ2→p(y|µ,σ2)

←− η(α)
p(σ2|a)→a;

η(α)
p(y|µ,σ2)→µ

←− GN
(︂
η(α)
p(y|µ,σ2)↔µ

, η(α)
p(y|µ,σ2)↔σ2 ; αD

)︂
+ (1− α)η(α)

p(y|µ,σ2)→µ
;

η(α)
p(y|µ,σ2)→σ2 ←− GIG1

(︂
η(α)
p(y|µ,σ2)↔σ2 , η(α)

p(y|µ,σ2)↔µ
; αD

)︂
+ (1− α)η(α)

p(y|µ,σ2)→σ2 .

Updates for the p(σ2|a) factor:

η(α)
σ2→p(σ2|a) ←− η(α)

p(y|µ,σ2)→σ2 ;

η(α)
p(σ2|a)→σ2 ←− GIG2

⎛⎝η(α)
p(σ2|a)↔σ2 ,

⎡⎣ [η(α)
p(σ2|a)↔a]1 + 2(1− α)

[η(α)
p(σ2|a)↔a]2/α

⎤⎦ ; 3α

⎞⎠+ (1− α)η(α)
p(σ2|a)→σ2 ;

η(α)
p(σ2|a)→a ←− GIG2

⎛⎝η(α)
p(σ2|a)↔a,

⎡⎣ [η(α)
p(σ2|a)↔σ2 ]1 + 2(1− α)

[η(α)
p(σ2|a)↔σ2 ]2/α

⎤⎦ ; α

⎞⎠+ (1− α)η(α)
p(σ2|a)→a.

Updates for the p(a) factor: fixed.

Outputs: η
q∗α(µ)

= η(α)
p(µ)→µ

+ η(α)
p(y|µ,σ2)→µ

, η
q∗α(σ2)

= η(α)
p(y|µ,σ2)→σ2 + η(α)

p(σ2|a)→σ2 ,

η
q∗α(a) = η(α)

p(a)→a + η(α)
p(σ2|a)→a.

while η(α)
p(y|µ,σ2)→σ2 , η(α)

p(σ2|a)→σ2 and η(α)
p(σ2|a)→a to be the natural parameter vectors of

an Inverse-Gamma(1, 1) distribution. Details on the GN, GIG1 and GIG2 wrappers and

derivations of the associated Kullback-Leibler projected natural parameter vectors

are given in Appendices B.1 and B.2, respectively.
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Performing approximate Bayesian inference on the univariate Normal random

sample model is more a theoretical exercise than a useful inferential strategy. Nonethe-

less, it gives a deepened illustration of how the Power-EP message-passing algo-

rithm works, allowing for a straightforward interpretation of the generic update

expressions.

Two significant considerations emerge. Firstly, Algorithm 2.2 generalizes Algo-

rithm 1 of Kim and Wand (2016) for performing EP on the same model specification,

allowing for α ∈ (0, 1] and potentially for an infinitely uncountable set of approxi-

mate distributions to the model posterior density function. This comes just specify-

ing a proper value for α before initializing the algorithm, preserving the convenient

structures of the integral-defined functions and underlying numerical routines, to-

gether with the natural parameter vector updates expressions. If α = 1 is selected,

we obtain the same results for their EP approximation methodology. Secondly, hav-

ing a closer look at how the α value affects Algorithm 2.2, we see that it acts on

the evaluation of the Kullback-Leibler projection associated wrappers GN and GIG1

defined in Kim and Wand (2016). In fact, it selects a proportion of the summary data

vector D in their c argument and a proportion of the Power-EP factor contribution

to stochastic node message natural parameter η(α)
f j→θi

to be included in their a and

b arguments (just remember how η(α)
f j↔θi

is defined). Similar comments apply to the

GIG2 related updates, although with a less intuitive and clear interpretation.

We emphasize that the most computationally-challenging operation regards the

Kullback-Leibler projection onto a suitably-chosen distribution belonging to the

exponential family. This comes in the univariate Normal random sample model

and similar univariate-like models with unidimensional numerical integration tech-

niques to be performed, for which fast numerical routines usually provide accurate

results. In the remainder of this chapter, we propose a novel methodology for per-

forming Power-EP approximations on some regression models. What differs from

what has been reported so far is that Kullback-Leibler projections onto the Multi-

variate Normal family are required to achieve optimal approximation accuracies.

Such projections require multivariate numerical integration techniques, which may

slow down the estimating process and make the overall Bayesian approximating

algorithm useless. Kim and Wand (2018) tackled this problem for EP approxima-

tions introducing what they called derived variables to circumvent it; nonetheless, this

strategy becomes unfeasible in large-data settings and is not amenable for Power-EP

extension. The following pages demonstrate how their strategy can be circumvented

for developing Power-EP approximations for some common regression models.
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2.4 Power-EP for the Normal Linear Regression Model

Let us consider the following linear regression model with Normal responses:

y|β, σ2 ∼ N(Xβ, σ2I),

β ∼ N(µβ, Σβ), σ2|a ∼ Inverse-Gamma(1/2, 1/a),

a ∼ Inverse-Gamma(1/2, 1/s2),

(2.19)

where y is the observed response vector y of dimension n, X = (xT
1 , . . . , xT

n )
T is the

design regressor matrix of dimension n× d, β is a d-dimensional vector of regres-

sion coefficients and σ2 is the variance parameter for the unit-specific error term.

A multivariate Normal prior distribution for β is chosen, with µβ ∈ Rd and Σβ

being a symmetric positive definite matrix of dimension d× d. Moreover, the afore-

mentioned Half-Cauchy(s) prior is placed over the standard deviation parameter σ.

Notice that if d = 1 and X = 1, then model (2.12) is found; in the following we

exclude this degenerate particular case always assuming d > 1, i.e. that X contains

at least one regressor column in addition to the intercept.

Bayesian inference focuses on determining the posterior density function having

expression p(β, σ2, a|y) ∝ p(y|β, σ2) p(β) p(σ2|a) p(a), and we aim to find the op-

timal Power-EP posterior approximating density q∗α(β, σ2, a) that best solves (2.2)

for a fixed α ∈ (0, 1]. Differently from the univariate Normal random sample

model, here θ = (βT, σ2, a)T with β being d-dimensional: we consider the par-

tition {{β}, {σ2}, {a}} for θ, from which the following factorization q(β, σ2, a) =

q(β) q(σ2) q(a) for the generic q(θ) ∈ Q arise. We specify the following convenient

exponential family distributions for each approximating density function:

q(β) is a N
(︁
µq(β), Σq(β)

)︁
density function ,

q(σ2) is an Inverse-Gamma
(︁
ξq(σ2), λq(σ2)

)︁
density function ,

q(a) is an Inverse-Gamma
(︁
ξq(a), λq(a)

)︁
density function .

(2.20)

It is extremely important not to specify further inner partitions for β, and there-

fore to jointly approximate the full parameter β in order to account for the depen-

dence relationships among them with the covariance matrix Σq(β). Otherwise, if

further factorizations are considered, e.g. {β} → {{β0}, . . . , {βd−1}}, then q(β) =

∏d−1
h=0 q(βh) and this automatically implies the conditional independence among all

the regression coefficients. This leads to inaccurate estimation of the variability for
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p(β) β p(y|β,σ2) σ2 p(σ2|a) a p(a)

Figure 2.2: Factor graph representation of model (2.19) following parameter partition
{{β}, {σ2}, {a}} and joint density factorization p(y|β, σ2)p(β)p(σ2|a)p(a).

the marginal posterior distributions on each regression coefficient, and hence to

possibly misleading inferential conclusions.

Figure 2.2 shows the factor graph representation of model (2.19) with the pre-

specified parameter partition. Notice its structure exactly corresponds to the factor

graph displayed in Figure 2.1 for the univariate Normal random sample model, with

µ replaced by β. The messages involving factors p(σ2|a) and p(a) remain identical

to those described for that model and do not need to be derived again. In fact, the

same hierarchical prior construction is placed on σ and the same exponential family

distributions are chosen for q(σ2) and q(a).

Yet, a new degree of complexity is introduced here, since Kullback-Leibler projec-

tions onto the multivariate Normal distribution family are needed for determining

and updating both the m(α)
p(β)→β

(β) and m(α)
p(y|β,σ2)→β

(β) messages. In particular, this

would require the computation of∫︂
Rd

h(β) dβ,
∫︂
Rd

β h(β) dβ and
∫︂
Rd

vech(ββT) h(β) dβ

for some h(β), arising numerical intractability even for d > 3. Kim and Wand (2018)

performed EP approximations treating our same model specification, although con-

sidering a different factor graph structure with n factors in place of p(y|β, σ2), one

for each likelihood term p(yi|β, σ2). They circumvented this computational prob-

lem by introducing n auxiliary variables α1, . . . , αn (and n additional factors in the

underlying factor graph as a direct consequence) each having a degenerate Dirac

density function of the form δ(αi − xT
i β). Such a formulation allowed them to di-

rectly update all the natural parameter vectors involving the factor p(y|β, σ2), but

suffers two major limitations. Firstly, Power-EP approximations can not be formu-

lated generalizing their results, as this would require the mathematical definition

of δ(·)α for any α ∈ (0, 1]. Secondly, it requires the update of 4n factor to stochas-

tic node messages (2n for all the p(yi|β, σ2) factors, and 2n for all the δ(αi − xT
i β)

factors) on each iteration, slowing down the overall algorithm runtime when large

sample sizes are considered.
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We propose a different strategy that overcomes these two limitations, making
explicit reference to the factor graph structure displayed in Figure 2.2 and only
employing standard univariate numerical techniques. Following the same step
proposed for the univariate Normal random sample model, a proper Power-EP
message-passing algorithm iterates over natural parameter vectors updates (2.9)–
(2.10) until convergence, returning the optimal natural parameter vectors ηq∗α(β),
ηq∗α(σ2) and ηq∗α(a). The associated optimal q-densities were specified as:

q∗α(β) is the N
(︁
− {vech−1([η

q∗α(β)
]2)}−1[η

q∗α(β)
]1/2,−{vech−1([η

q∗α(β)
]2)}−1/2

)︁
density function ,

q∗α(σ
2) is the Inverse-Gamma

(︁
− [η

q∗α(σ2)
]1 − 1,−[η

q∗α(σ2)
]2
)︁

density function ,

q∗α(a) is the Inverse-Gamma
(︁
− [η

q∗α(a)]1 − 1,−[η
q∗α(a)]2

)︁
density function .

(2.21)

Unlike for Power-EP approximations on the univariate Normal random sample

model, here η∗(α)
p(β)→β

and η∗(α)
p(y|β,σ2)→β

result from a Kullback-Leibler projection onto

the multivariate Normal exponential family of distributions. The following result

extends Result 2.1 to give an operational strategy for determining such natural pa-

rameter vector:

Result 2.3. Let X be a non-degenerate d-dimensional random vector for which E(XXT)

exists and with density function p(x). The Kullback-Leibler projection of p(x) onto the

d-dimensional multivariate Normal family,

qKL(x; µKL, ΣKL) = projMVNd
[p(x)] = arg min

q(x;µ,Σ)∈N(µ,Σ)
KL{p(x)∥q(x; µ, Σ)}.

is the N(µKL, ΣKL) density function with mean vector and covariance matrix

µKL = E(X) and ΣKL = E(XXT)− µKLµ
T
KL

respectively.

Computation of η∗(α)
p(y|β,σ2)→σ2 , η∗(α)

p(σ2|a)→σ2 , η∗(α)
p(σ2|a)→a and η∗(α)

p(a)→a requires a Kullback-

Leibler projection onto the Inverse-Gamma (Inverse-χ2) exponential family of distri-

butions and an operational strategy again follows from Result 2.2.

Algorithm 2.3 gives a synthetic and general scheme for performing Power-EP

approximations on model (2.19) with approximating density functions restricted to

the parametric family described in (2.20). Without loss of generality, we initialize
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Algorithm 2.3 Power Expectation Propagation message-passing algorithm on factor graph
displayed in Figure 2.2 for determining the natural parameter vectors of the optimal density
functions (2.21) for approximate Bayesian inference on model (2.19).

Data Inputs: y (n× 1), X (n× d).

Create summary data vector D = (n, ∥y∥2, (XTy)T,− 1
2 vech(XTX)T)T.

Power-EP α choice: α ∈ (0, 1].

Hyperparameter Inputs: µβ ∈ Rd, Σβ ∈ Sd
+ and s > 0.

Initialize: η(α)
p(β)→β

←
[︄

Σ−1
β µβ

− 1
2 vech(Σ−1

β )

]︄
, η(α)

p(a)→a ←
[︄
−3/2

−1/s2

]︄
,

η(α)
p(y|β,σ2)→β

←
[︄

0

− 1
2 vech(I)

]︄
, η(α)

p(y|β,σ2)→σ2 ←
[︄
−2

−1

]︄
,

η(α)
p(σ2|a)→σ2 ←

[︄
−2

−1

]︄
, η(α)

p(σ2|a)→a ←
[︄
−2

−1

]︄
.

η(α)
β→p(y|β,σ2)

← η(α)
p(β)→β

; η(α)
a→p(σ2|a) ← η(α)

p(a)→a.

Cycle until convergence:

Updates for the p(β) factor: fixed.

Updates for the p(y|β, σ2) factor:

η(α)
σ2→p(y|β,σ2)

←− η(α)
p(σ2|a)→a;

η(α)
p(y|β,σ2)→β

←− GMVN
lm

(︂
η(α)
p(y|β,σ2)↔β

, η(α)
p(y|β,σ2)↔σ2 ; αD

)︂
+ (1− α)η(α)

p(y|β,σ2)→β
;

η(α)
p(y|β,σ2)→σ2 ←− GIG4

(︂
η(α)
p(y|β,σ2)↔σ2 , η(α)

p(y|β,σ2)↔β
; αD

)︂
+ (1− α)η(α)

p(y|β,σ2)→σ2 .

Updates for the p(σ2|a) factor:

η(α)
σ2→p(σ2|a) ←− η(α)

p(y|β,σ2)→σ2 ;

η(α)
p(σ2|a)→σ2 ←− GIG2

⎛⎝η(α)
p(σ2|a)↔σ2 ,

⎡⎣ [η(α)
p(σ2|a)↔a]1 + 2(1− α)

[η(α)
p(σ2|a)↔a]2/α

⎤⎦ ; 3α

⎞⎠+ (1− α)η(α)
p(σ2|a)→σ2 ;

η(α)
p(σ2|a)→a ←− GIG2

⎛⎝η(α)
p(σ2|a)↔a,

⎡⎣ [η(α)
p(σ2|a)↔σ2 ]1 + 2(1− α)

[η(α)
p(σ2|a)↔σ2 ]2/α

⎤⎦ ; α

⎞⎠+ (1− α)η(α)
p(σ2|a)→a.

Updates for the p(a) factor: fixed.

Outputs: η
q∗α(β)

= η(α)
p(β)→β

+ η(α)
p(y|β,σ2)→β

, η
q∗α(σ2)

= η(α)
p(y|β,σ2)→σ2 + η(α)

p(σ2|a)→σ2 ,

η
q∗α(a) = η(α)

p(a)→a + η(α)
p(σ2|a)→a.

η(α)
p(y|β,σ2)→β

to be the natural parameter vector of a d-dimensional N(0, I) distribu-

tion and η(α)
p(y|β,σ2)→σ2 to be the natural parameter vector of an Inverse-Gamma(1, 1)
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distribution, while η(α)
p(σ2|a)→σ2 and η(α)

p(σ2|a)→a follow the same initialization of Algo-

rithm 2.2. Details on the GMVN
lm , GIG1, GIG2 and GIG4 wrappers and derivations of the

associated Kullback-Leibler projected natural parameter vectors are given in Appen-

dices B.1 and B.2, respectively.

Comments similar to those given for Power-EP on the univariate Normal random

sample model apply here. In particular, notice how all the data information required

for performing the updates can be synthesized into the D vector, and how α acts

as a weight for its contribution to the Power-EP updates involving the p(y|β, σ2)

factor. Moreover, the beauty of the message-passing algorithmic infrastructure can

be captured in this example: Algorithm 2.3 is just a modified version of Algorithm

2.2 in which we account for a different form of the likelihood-associated factor, and

hence only its associated message updates need to be derived from scratch.

The major drawback of Algorithm 2.3 is that it requires the numerical computa-

tion of d + d(d + 1)/2 univariate integrals for performing the η(α)
p(y|β,σ2)→β

update at

each iteration. This task grows as O(d2) and, as such, can sensibly slow down the

overall runtime of the estimating algorithm when the number of regressors consid-

ered is far from being small. The choice of which algorithm to employ depends on

the data dimensions and the desired approximation type. Algorithm 1 of Kim and

Wand (2018) can only perform EP approximation and is preferable when the sample

size is small or moderate but allows for large covariate dimensions. On the other

hand, Algorithm 2.3 can perform Power-EP approximations for any α ∈ (0, 1] and

scales efficiently for large sample sizes, but does not scale well for large d.

2.5 Power-EP for Some Notable GLMs

In many applicative contexts, the response vector y cannot be treated as being

generated from a multivariate Normal distribution, e.g., when it refers to a binary

or count variable of interest. Therefore, model (2.19) is no more applicable for

investigating how the associated response variable links to a set of possibly related

regressors. The most employed alternative proposed in statistical literature refers

to the generalized linear models (GLMs) class. Hereafter, we restrict the focus to

Bayesian GLMs having general specifications:

Yi|β ind∼ p(yi|β) = exp
{︁

yi A′−1(F(xT
i β))− A(A′−1(F(xT

i β)))
}︁

h(yi),

β ∼ N(µβ, Σβ)
(2.22)
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p(β) β

p(y1|β)

p(yn|β)

Figure 2.3: Factor graph representation of model (2.22) with joint density factorization
p(β)∏n

i=1 p(yi|β). The vertical dots indicates that n different factors p(yi|β) are considered,
all sharing an edge with stochastic node β.

for each 1 ≤ i ≤ n. Here A(η) is the log-partition function of a suitably chosen uni-

variate distribution belonging to the exponential family (see Appendix A.2), F(η)

is the inverse of the so-called link function and A′−1(η) represents the inverse of

A′(η) = dA(η)/dη. This formulation explicitly shows how the d-dimensional pa-

rameter vector β interacts with the unit-associated regressor vector xi in determining

the likelihood expression for yi, and reduces into a simpler and more intuitive form

if F(η) = A′(η), that is, if the canonical link function is adopted. A prior for β

identical to that for the linear regression model specification (2.19) is chosen.

Specification (2.22) is a particular case of the wider exponential dispersion family

from which GLMs arise, which consider an additional dispersion parameter. We

show that restricting our work to this subfamily still accounts for the most common

GLMs. Regardless of the distribution chosen for the response variable, the only

parameter involved here is β and so the associated posterior probability density

function is simply p(β|y) ∝ p(β)∏n
i=1 p(yi|β).

Power-EP finds the optimal posterior approximating density q∗α(β) that best solves

(2.2) for a fixed α ∈ (0, 1]: no additional factorizations for the generic q(β) ∈ Q are

needed, so as not to introduce misleading posterior conditional independence be-

tween the coefficients. Therefore, we fix the following parametric restriction for the

generic q-density:

q(β) is a N
(︁
µq(β), Σq(β)

)︁
density function . (2.23)

Figure 2.3 shows the factor graph representation of model (2.22). Notice here we

specifically treat each of the n likelihood factors separately, differently to the joint
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likelihood factor displayed in Figures 2.1 and 2.2. Although this choice yields 2n

natural parameter vectors to be updated at each iteration, we show hereafter that

this allows the overall Power-EP approximating algorithm to be performed only

employing univariate numerical integrals.

As well as for model (2.19), the Kullback-Leibler projections onto the multivari-

ate Normal distribution family must be performed in order to update each of the

m(α)
p(yi|β)→β

(β) messages, requiring d-variate numerical integrals to be computed. A

first attempt to solve this drawback was discussed in Section 4 of Kim and Wand

(2018) employing the aforementioned derived variables trick, despite maintaining

all the afore discussed associated problems. Moreover, if applied to get EP ap-

proximations over GLMs, it does not yield explicit natural parameter vector update

expressions anymore.

We propose instead a new and totally different approach inspired by Hall et al.

(2020) and associated Lemma 1 given in Section S.1 of their supplementary materi-

als, which we rephrase here in a more convenient form:

Result 2.4. For any function g : R −→ R, scalar a ∈ R and vector b of dimension d× 1

such that the integrals exists, the following identity holds:

∫︂
Rd

g(a + bTx) ϕ(x) dx =
∫︂ ∞

−∞
g(a + ∥b∥z) ϕ(z) dz,

∫︂
Rd

x g(a + bTx) ϕ(x) dx =
b
∥b∥

∫︂ ∞

−∞
z g(a + ∥b∥z) ϕ(z) dz

and ∫︂
Rd

xxT g(a + bTx) ϕ(x) dx = Id

∫︂ ∞

−∞
g(a + ∥b∥z) ϕ(z) dz

+
bbT

∥b∥2

∫︂ ∞

−∞
(z2 − 1)g(a + ∥b∥z) ϕ(z) dz.

In short words, if Z ∼ N(0, I) then Result 2.4 simplifies the computation of

E(g(a + bTZ)), E(Zg(a + bTZ)) and E(ZZTg(a + bTZ)) boiling down d-variate in-

tegrals into linear transformations of univariate integrals.
We focus our work on three of the most employed GLMs, namely the probit

regression, the logistic regression, and the Poisson regression models. We present
a Power-EP algorithm that approximates their respective posterior distributions for
any α ∈ (0, 1]. We group all the three associated resulting algorithms into Algorithm
2.4, because they share the same structure and only differ in the input arguments
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Algorithm 2.4 Power Expectation Propagation message-passing algorithm on factor graph
displayed in Figure 2.3 for determining the natural parameter vectors of the optimal density
functions (2.24) for approximate Bayesian inference on model (2.22).

Data Inputs: y (n× 1), X (n× d).

Power-EP α choice: α ∈ (0, 1].

GLM regression type choice: Probit, Logistic or Poisson.

Hyperparameter Inputs: µβ ∈ Rd, Σβ ∈ Sd
+.

Initialize: η(α)
p(β)→β

←
[︄

Σ−1
β µβ

− 1
2 vech(Σ−1

β )

]︄
, η(α)

p(yi |β)→β
←
[︄

0

− 1
2 vech(I)

]︄
for 1 ≤ i ≤ n.

Cycle until convergence:

Update for the p(β) factor:

η(α)
β→p(β)

←−
n

∑
i=1

η(α)
p(yi |β)→β

Updates for the p(yi|β) factor, for 1 ≤ i ≤ n:

η(α)
β→p(yi |β) ←− η(α)

p(β)→β
+ η(α)

β→p(β)
− η(α)

p(yi |β)→β

If Probit:

η(α)
p(yi |β)→β

←− GMVN
glm

(︂
η(α)
p(yi |β)↔β

; 0, (2yi − 1)xi, 0,−α log(Φ(x))
)︂
+ (1− α)η(α)

p(yi |β)→β

If Logistic:

η(α)
p(yi |β)→β

←− GMVN
glm

(︂
η(α)
p(yi |β)↔β

; 0, (2yi − 1)xi, α, α log(1 + ex)
)︂
+ (1− α)η(α)

p(yi |β)→β

If Poisson:

η(α)
p(yi |β)→β

←− GMVN
glm

(︂
η(α)
p(yi |β)↔β

; 0, xi, αyi, αex
)︂
+ (1− α)η(α)

p(yi |β)→β

Output: η
q∗α(β)

= η(α)
p(β)→β

+
n

∑
i=1

η(α)
p(yi |β)→β

.

of the general GMVN
glm wrapper defined in Appendix B.1. Without loss of generality,

all the η(α)
p(yi|β)→β

vectors were initialized to be the natural parameter vectors of a
N(0, I) distribution, for 1 ≤ i ≤ n, and once convergence is reached the optimal
approximating q-density reads:

q∗α(β) is the N
(︁
− {vech−1([η

q∗α(β)
]2)}−1[η

q∗α(β)
]1/2,−{vech−1([η

q∗α(β)
]2)}−1/2

)︁
density function .

(2.24)

Derivations of the required Kullback-Leibler projected natural parameter vectors

are given in Appendix B.2. The major limitation of Algorithm 2.4 resides in the

fact that each iteration cycles over n factors to be updated iteratively, one for each
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observation. Nonetheless, it works for any α ∈ (0, 1] and is very efficient even

for moderate to large covariate dimensions. The reason is due to the use of the

GMVN
glm wrapper, which only performs univariate numerical integrals exploiting the

massive contribution of Result 2.4. Appendix B.2 provides further explanations on

how Result 2.4 can be used to boil down the dimension of the numerical integrals

required for performing the natural parameter vector updates. Comparing our work

with that presented in Section 4 of Kim and Wand (2018), we obtain their identical

approximation strategy, albeit it does not require the introduction of n additional

derived variables and associated 2n additional natural parameter vector updates

to be performed at each iteration. Moreover, their approach is only valid for EP

approximations, while ours treats it as a particular case that can be recovered by

selecting α = 1 before starting Algorithm 2.4.

We now give some insights into the three different GLM models considered,

showing how they belong to the general model specification (2.22). We also add

closed-form update expressions not requiring any numerical integration methods to

be performed, arising for EP approximations over the probit and logistic regression

models.

2.5.1 Probit Regression

Probit regression models arise if yi ∈ {0, 1} and a Bernoulli distribution for the

i-th response variable is assumed, having A(η) = log(1 + eη) and h(y) = 1, with

F(η) = Φ(η) chosen as link function:

Yi|β ind∼ Bernoulli(Φ(xT
i β)).

With such a specification, (2.22) can be rewritten in a more compact form as p(yi|β) =
Φ((2yi − 1)xT

i β).

2.5.1.1 Closed Form EP Update

Power-EP approximate inference for the Bayesian probit regression model ad-

mits a closed-form update expression if the EP approximation is required. Hall et al.

(2020) gave the generic idea, albeit from a frequentist point of view and on a pro-

bit mixed-effects regression model. In their Section 3.1 and associated results, they

were able to derive an exact and explicit expression for the Kullback-Leibler projec-

tion of the generic probit likelihood term onto the multivariate Normal distribution

family, employing their Result 1 together with theoretical properties of the inverse
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link function Φ(η). Such a derivation does not require any numerical integration

methods and remarkably improves the overall computational time for the EP algo-

rithm. Making explicit usage of the Kprobit wrapper introduced in their Definition 1,

we can substitute the natural parameter vector update expression of Algorithm 2.4

with

η
(1)
p(yi|β)→β

←− Kprobit

(︂
η
(1)
β→p(yi|β); 0, (2yi − 1)xi

)︂
− η

(1)
β→p(yi|β),

which only requires matrix multiplications and inversions to be performed with

standard algebraic routines. Derivation of this novel expression for η
(1)
p(yi|β)→β

fol-

lows immediately by fixing α = 1 and employing Theorem 1 of Hall et al. (2020) into

derivations for the probit Power-EP algorithm presented in Appendix B.2.

2.5.2 Logistic Regression

Logistic regression models arise if yi ∈ {0, 1} and a Bernoulli distribution for the

i-th response variable is assumed, having A(η) = log(1 + eη) and h(y) = 1, with

F(η) = expit(η) being the canonical link function:

Yi|β ind∼ Bernoulli(expit(xT
i β)).

With such a specification, (2.22) can be rewritten in a more compact form as p(yi|β) =
expit((2yi − 1)xT

i β).

2.5.2.1 Closed Form EP Update

Power-EP approximate inference for the Bayesian logistic regression model ad-

mits a closed-form update expression if the EP approximation is required. Mona-

han and Stefanski (1989) introduced a Normal scale mixture approximation of the

expit(η) function for which, given k ∈N,

sup
x∈R

⃓⃓⃓⃓
⃓expit(x)−

k

∑
i=1

pk,iΦ(sk,i x)

⃓⃓⃓⃓
⃓ = ∆k

for appropriately chosen constants pk,i, sk,i and resulting finite bound ∆k. They tab-

ulated explicit values up to k = 8, for which ∆8 = 2.1× 10−9 and related constants

pk,i, sk,i are reported in Table 2.1. Such a result allows to rephrase the logistic natural

parameter vector update in terms of a finite mixture of Normal cumulative density

functions, yielding an explicit natural parameter update expression that does not

need any univariate integration method to be performed.
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i p8,i s8,i

1 0.00324 63432 72134 1.36534 08062 96348
2 0.05151 74770 33972 1.05952 39710 16916
3 0.19507 79126 73858 0.83079 13137 65644
4 0.31556 98236 32818 0.65073 21666 39391
5 0.27414 95761 58423 0.50813 54253 66489
6 0.13107 68806 95470 0.39631 33451 66341
7 0.02791 24187 27972 0.30890 42522 67995
8 0.00144 95678 05354 0.23821 26164 09306

Table 2.1: Tabulated values for the pk,i and ski costants given in Monahan and Stefanski
(1989), corresponding to the k = 8 Normal scale mixture approximation for expit(x).

For a1 (d× 1), a2 (d(d+ 1)/2× 1) such that vech−1(a2) is symmetric and positive

definite, c0 ∈ R and c1 (d× 1), define the Klogistic wrapper:

Klogistic

(︄[︄
a1

a2

]︄
; c0, c1

)︄
≡
[︄

RT
5 (a1 + r3c1)

vech(RT
5 A2)

]︄

with

A2 ≡ vech−1(a2), ri1 ≡
√︃

2
(︂

2− s2
8,i(c

T
1 A−1

2 c1)
)︂

,

ri2 ≡ s8,i(2c0 − cT
1 A−1

2 a1)/ri1, r3 ≡
2 ∑8

i=1(p8,is8,iϕ(ri2)/ri1)

∑8
i=1(p8,iΦ(ri2))

,

r4 ≡
r2

3
2
+

2 ∑8
i=1(p8,is2

8,iri2ϕ(ri2)/r2
i1)

∑8
i=1(p8,iΦ(ri2))

, R5 ≡ (A2 + r4c1cT
1 )
−1A2

for 1 ≤ i ≤ 8, where the p8,i and s8,i constants are defined in Table 2.1. Then we can

substitute the natural parameter vector update expression of Algorithm 2.4 with

η
(1)
p(yi|β)→β

←− Klogistic

(︂
η
(1)
β→p(yi|β); 0, (2yi − 1)xi

)︂
− η

(1)
β→p(yi|β),

which only requires matrix multiplications and inversions to be performed with

standard algebraic routines.

This update expression is obtained employing an approximation of the expit(x)

function and therefore it is not a purely exact result. Nonetheless, it can be per-

formed without employing any numerical integration methods and therefore it re-

markably improves the overall computational time for computing EP approxima-

tions. The expression for the Klogistic wrapper and update of η
(1)
p(yi|β)→β

arise natu-

rally after substituting ∑k
i=1 pk,iΦ(sk,i x) to the expit(x) function into the derivation
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for the logistic Power-EP algorithm, after fixing α = 1 and rearranging the involved

terms with simple algebraic operations.

2.5.3 Poisson Regression

Poisson regression models arise if yi ∈ N and a Poisson distribution for the i-th

response variable is assumed, having A(η) = eη and h(y) = 1/y!, with F(η) =

exp(η) chosen as link function:

Yi|β ind∼ Poisson(exp(xT
i β)).

With such a specification, (2.22) can be rewritten in a more compact form as p(yi|β) =
exp{yixT

i β− exp(xT
i β)}\yi!. Differently from the probit and logistic regressions, no

explicit Power-EP natural parameter vector update expressions arise in the particu-

lar α = 1 case.

2.6 Numerical Investigations on Simulated Data

We now report the results of a simulation study conducted for investigating how

some of the Power-EP algorithms presented so far perform and how accurately they

approximate the true posterior density functions, for different α ∈ (0, 1] values. All

the algorithms have been implemented in pure R language. Moreover, 105 samples

from the true posterior density functions were obtained via MCMC with the rstan

package (see Appendix A.3), after a burnin of size 103.

The simulation study has been conducted as follows: we chose five different

sample size scenarios n ∈ {25, 50, 100, 500, 1000} and, for each of them, we generated

100 data replicates accordingly to the statistical model specification considered, for

some fixed true parameter values. Then, for each data replication we ran the Power-

EP algorithm for four different α ∈ {0.25, 0.5, 0.75, 1} values selected in the unit

interval. The convergence was assessed whenever

max
1≤i≤M

⃓⃓⃓⃓
⃓⃓ η(α)

θi,curr

η(α)
θi,prev

− 1

⃓⃓⃓⃓
⃓⃓ < 10−4

with η(α)
θi
≡ ∑j:i∈neigh(j) η(α)

f j→θi
, meaning that the one further iteration of the message-

passing algorithm does not bring a significant relative change in any of the resulting

natural parameter vectors for q∗α(θi), 1 ≤ i ≤ M. We denote with the “curr” and
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“prev” subscripts the natural parameter vector values corresponding to the current

and previous iterations of the algorithm, respectively.

Moreover, we obtained MFVB approximations to compare with Power-EP ap-

proximations directly. Just notice for the GLM models considered in this chap-

ter many competing alternative MFVB algorithms have been developed during the

years, and we opted to use the most immediate ones to implement. We obtained

five different sets of optimal approximating densities’ parameters for each model

parameter of interest: four for the different Power-EP approximations and one for

the MFVB approximation. For each of them, we evaluated the accuracy index (1.25)

to measure the goodness of the obtained approximation.

Some model-related choices have been made:

• Normal random sample model: we fixed µµ = 0, σµ = 105 and s = 105

as prior hyperparameters, embedding uninformative prior specifications for

all the model parameters. Each data sample corresponds to a vector y of n

independently-generated draws from a univariate Normal distribution with

true parameter values µ = 0 and σ2 = 1. The Power-EP optimal approximat-

ing densities have been found employing Algorithm 2.2. The MFVB optimal

approximating densities have been found employing Algorithm 1 of Luts et al.

(2014), with X = 1 and β = µ1.

• Normal linear regression model: we fixed d = 5 as the number of regressors

considered and µβ = 0, Σβ = 105I, s = 105 as prior hyperparameters, em-

bedding uninformative prior specifications for all the model parameters. Each

data sample corresponds to the same matrix X of dimension n × d with the

first column corresponding to 1 and the remaining sub-block having each row

generated from a multivariate Normal distribution having zero mean vector

and covariance matrix generated from a Wishart(d− 1, Id−1) distribution, and

a response data vector y of length n generated from a multivariate Normal dis-

tribution having mean vector Xβ and covariance matrix σ2I, with true param-

eter values β = (−2.3, 1.4,−0.9, 2.1, 0.2)T and σ2 = 1. This choice mimics as

much as possible a real data scenario in which regressors share some correla-

tion structure and different variabilities. The Power-EP optimal approximating

densities have been found employing Algorithm 2.3. Without loss of general-

ity, all the columns of X have been normalized before running the algorithm.

The MFVB optimal approximating densities have been found employing Al-

gorithm 1 of Luts et al. (2014).
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• Generalized linear models: we fixed d = 5 as the number of regressors con-

sidered and µβ = 0, Σβ = 105I as prior hyperparameters, embedding uninfor-

mative prior specifications for β. Each data sample corresponds to the same

matrix X of dimension n × d generated with the same identical strategy fol-

lowed for the Normal linear model, and a response data vector y of length

n generated from a model-specific distribution with linear predictor Xβ, hav-

ing true parameter value β = (−2.3, 1.4,−0.9, 2.1, 0.2)T. Differently from the

Normal linear model specification, all the columns of X have been normalized

before the generation of y as to avoid numerical underflows that could emerge

from unreal generated data scenarios (e.g. binary data having response vari-

able all equal to 0 or 1, or count data having response variable taking values

particularly far from 0). The Power-EP optimal approximating densities have

been found employing Algorithm 2.4. Moreover:

– Probit regression: y was generated from the Bernoulli(Φ(Xβ)) distribu-

tion, and when α = 1 is selected, the Power-EP algorithm switched to

the closed-form update expression described before. The optimal MFVB

approximations have been obtained employing Algorithm 4 of Ormerod

and Wand (2010). It implements an approach developed by Girolami and

Rogers (2006) and Consonni and Marin (2008) which is based on the auxil-

iary variable representation of Albert and Chib (1993). Nonetheless, such

an approximation refers to a more general posterior density function in-

cluding the vector of augmented variables, and therefore it is not fully

comparable with the Power-EP approximations for p(β|y).
– Logistic regression: y was generated from the Bernoulli(expit(Xβ)) dis-

tribution, and when α = 1 is selected, the Power-EP algorithm switched to

the closed-form update expression described before. The MFVB optimal

approximating densities have been obtained employing Algorithm 2 of

Nolan and Wand (2017), which unifies results from Knowles and Minka

(2011) and Wand (2014) for providing better approximation accuracy than

the standard Jaakkola and Jordan (2000) approach.

– Poisson regression: y was generated from the Poisson(exp(Xβ)) distribu-

tion. The MFVB optimal approximating densities have been obtained em-

ploying Algorithm 1 of Luts and Wand (2015) under minor modifications

for excluding the random effect structure from their model specification.
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n: 25 n: 50 n: 100 n: 500 n: 1000

μ

σ2

98.0

98.5

99.0

99.5

96

97

98

99

Approximation: α = 0.25 α = 0.5 α = 0.75 α = 1  (EP) MFVB

Figure 2.4: Accuracy values for the optimal approximate densities of the univariate Nor-
mal random sample model, obtained from the simulation study. The first row corresponds
to the optimal approximating densities q∗α(µ) and q∗MFVB(µ) to p(µ|y), while the second
row corresponds to the optimal approximating densities q∗α(σ2) and q∗MFVB(σ

2) to p(σ2|y).
Different choices of α are indicated in the legend.

A visual summarization of the results obtained for the statistical models con-

sidered in this work are reported in Figure 2.4 (Normal random sample model),

Figure 2.5 (Normal linear regression model), Figure 2.6 (Probit regression model),

Figure 2.7 (Logit regression model) and Figure 2.8 (Poisson regression model). All

the figures are shown in the present and subsequent pages for clarity of exposition.

For each Figure, a boxplot represents the distribution of the 100 accuracy scores

obtained. Different filling colors correspond to the different variational approxima-

tion techniques employed, as described in the associated legend. A fixed y-scale is

kept for each row of subfigures, aiding immediate comparison on how the accuracy

scores increase as the sample size gets bigger and bigger.

All the approximating methods exhibit excellent accuracy performances for all

the models considered. As expected, differences between the competing approxi-

mating methods vanish as the sample size increases. Figure 2.4 shows that, for small

sample sizes, Power-EP with α values between 0 and 1 leads to slightly improved

approximations for µ if compared to the standard EP and MFVB approximations.

Nonetheless, for the same model, EP finds the best approximation for σ2. A similar

comment applies to the β coefficients of the linear regression model, see Figure 2.5.

For all the GLMs considered, Power-EP approximations are almost always slightly

more advantageous than the MFVB approximations, especially in the lower sample
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Approximation: α = 0.25 α = 0.5 α = 0.75 α = 1  (EP) MFVB

Figure 2.5: Accuracy values for the optimal approximate densities of the Normal linear
regression model, obtained from the simulation study. The first five rows correspond to the
optimal approximating densities q∗α(βh) and q∗MFVB(βh) to p(βh|y) for 0 ≤ h ≤ 4, while
the last row corresponds to the optimal approximating densities q∗α(σ

2) and q∗MFVB(σ
2) to

p(σ2|y). Different choices of α are indicated in the legend.

scenarios where the MFVB algorithm may not have reached convergence success-

fully. Nonetheless, EP outperforms any other Power-EP approximation obtained by

selecting α ∈ (0, 1).

In all the models considered, Power-EP approximations and their notable α = 1

EP case show slightly better accuracy scores than the MFVB approximations. When

considering low sample sizes, α values lower than one are sometimes especially

useful. One possible motivation regards their ability of re-weighting the natural

parameter vectors obtained from the Kullback-Leibler projection operator with a

(1− α)× 100% portion of its value obtained in the preceding iteration (just remem-

ber η(α)
factor→node ←− G(·) + (1− α)η(α)

factor→node for a proper G(·) wrapper function);

if EP approximations are considered, this does not happen. Such projections are

always based on univariate integrals computed with fast numerical routines, which
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Figure 2.6: Accuracy values for the optimal approximate densities of the probit regression
model, obtained from the simulation study. Each row corresponds to the optimal approxi-
mating densities q∗α(βh) and q∗MFVB(βh) to p(βh|y) for 0 ≤ h ≤ 4. Different choices of α
are indicated in the legend.

may lead to sensibly incorrect approximations for low sample sizes. Power-EP

mitigates this unappealing possibility slowing down the EP algorithm from direct-

ing itself towards incorrect stationary solutions. Interestingly, Minka (2005) intro-

duced the damping adjustment procedure recommending it when approximating al-

gorithms do not converge properly, although not giving any theoretically-founded

motivations. Power-EP updates’ structures derived in this work mimic such adjust-

ment, providing a newer motivation in terms of α-divergence minimizations.

Although a limited grid of equispaced α values is selected for visualization pur-

poses, the resulting boxplots for intermediate α values can be conceptually visual-

ized as being placed in between the two nearest boxplots. For example, if we consider

the n = 25 scenario on the µ parameter of the univariate Normal random sample

model (top-left subpanel of Figure 2.4), then the Power-EP approximations with

0.75 < α < 1 would assess an accuracy score between 98.5% and 99% for most of
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Figure 2.7: Accuracy values for the optimal approximate densities of the logit regression
model, obtained from the simulation study. Each row corresponds to the optimal approxi-
mating densities q∗α(βh) and q∗MFVB(βh) to p(βh|y) for 0 ≤ h ≤ 4. Different choices of α
are indicated in the legend.

the simulated random data samples. Similarly, by looking at the n = 25 scenario

on the σ2 parameter (bottom-left subpanel of Figure 2.4), we immediately see that

no Power-EP approximations with α ∈ (0, 1) lead to accuracy scores overwhelming

those obtained by EP.

Finally, remember VB can be interpreted as the limiting case for Power-EP when

α → 0. Nonetheless, the resulting approximating densities would differ from those

obtained by MFVB because Power-EP adds a proper parametric family assumption

for each approximating density function into which the generic q ∈ Q is factorized.

For this reason, we placed MFVB accuracy boxplots in the far-right position for each

sub-panel instead of the more intuitive far-left position. A numerical counterpart

for the VB approximations could be obtained running our proposed Power-EP al-

gorithms with, e.g., α = 0.05. Nevertheless, we remark that pure VB and MFVB

approximations are not included in the Power-EP approximating family: as such,
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Figure 2.8: Accuracy values for the optimal approximate densities of the Poisson regression
model, obtained from the simulation study. Each row corresponds to the optimal approxi-
mating densities q∗α(βh) and q∗MFVB(βh) to p(βh|y) for 0 ≤ h ≤ 4. Different choices of α
are indicated in the legend.

they must be treated as limiting competitive approximations on which to compare

Power-EP approximations.

One final comment involves the computational timings for all the approximating

methods considered. As already discussed in Section 1.5, a genuine comparison be-

tween the convergence time of the algorithms for Power-EP approximations, MFVB

approximations and MCMC sampling is not possible. Nevertheless, our simula-

tion study confirmed what is already known from the literature: Power-EP and

MFVB algorithms converged in significantly faster timings than those required for

a successfully-converged MCMC sampler. Among them, MFVB algorithms were

faster than those implementing Power-EP approximations because they do not in-

volve any numerical integrations to be computed. Regarding the Power-EP family

of approximations, we have noticed that the convergence is reached with a num-

ber of iterations that increases as α → 0, making EP algorithm always the fastest.
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The reason is imputable again to the Power-EP natural parameter vector updates

structure. In fact, as α → 0 it assigns a way more relevant weight on the additional

contribution to its value computed in the previous iteration. Although this ensures

a more robust strategy for reaching convergence, it requires more iterations to be

performed.

2.7 Concluding Remarks

Power-EP approximations are overshadowed by standard EP and MFVB varia-

tional methods, especially in pure statistical contexts, and Kullback-Leibler diver-

gence minimization still constitutes the main optimization problem faced by vari-

ational methods. The work presented in this chapter is a novel attempt to investi-

gate and develop explicit algorithms for obtaining variational approximations from

the α-divergence family. Their application on some of the most common statisti-

cal models allowed us to derive explicit algebraic computations for implementing

them in standard statistical software. Such derivations could be useful for future

work, expanding towards more complex models. Sources of inspiration have been

the seminal works on EP approximations from a statistical perspective by Kim and

Wand (2016), Kim and Wand (2018) and Chen and Wand (2020). They motivated us

to examine if their EP derivations could be easily extended to account for Power-EP

approximations and, if so, which improvements could emerge.

Our empirical investigations have found few advantages that may suggest the us-

age of Power-EP for obtaining variational approximations in all the statistical models

considered. Reasons are imputable to the fact that, for all of them, MFVB and EP

still achieve optimal results both in terms of accuracy and computational runtimes,

which are rarely improvable. Therefore, accounting for alternative divergence mea-

sures to be minimized turns out to be useless in practical applications.

Nonetheless, we believe some exciting results have emerged from our research

work. Firstly, algorithms for obtaining EP approximations have been embedded

into those for obtaining Power-EP approximations. As such, EP appears to be one

notable case of interest among an extensive set of alternative variational approxi-

mations to be found within the same algorithmic structure. The effort required for

deriving a unifying algorithmic structure for Power-EP approximations allowed us

to propose strategies alternative to the derived variable trick proposed in Kim and

Wand (2018) for facing multivariate Normal projections, leading to more concise
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model specifications not requiring the introduction of additional augmented vari-

ables. Moreover, we have derived explicit natural parameter vector update expres-

sions for doing EP approximations on some notable GLMs.

Secondly, the idea of exploring approximations conceptually lying between VB

and EP is certainly not exhaustively examined in variational literature, especially

from a statistical viewpoint. Recasting them as boundary solutions for the α ∈ (0, 1]

interval is more than a philosophical exercise. Indeed, it allows us to examine all

the variational approximations arising between them and to comment whether they

can improve or worsen EP and VB approximations. Empirical experiments allowed

us to show that some minor improvements arise for some model parameters, al-

though within low sample size settings. Further work into developing Power-EP

algorithms for more complicated statistical models may be necessary to understand

whether α-divergences could effectively provide a more general geometrical per-

spective on measuring the distance between the model posterior distribution and

the approximating one if compared to the Kullback-Leibler divergence. Moreover,

it would also be interesting to examine the quality of approximations found within

Power-EP selecting α < 0 or α > 1, thus exploring beyond VB and EP.

Regarding the choice of which α yields the best Power-EP approximation, this

is still an open question in variational literature and different answers are possible,

depending on the statistical model considered, on the observed data, and on the

approximation required. One possible approach is that of Hernandez-Lobato et al.

(2016), evaluating accuracy metrics over a test set, although this technique is only

possible for machine learning models. Alternatively one can start selecting a grid

of possible competing α values, obtaining their Power-EP approximations and com-

puting the associated lower bounds having expression (2.6). The search can then be

further restricted to a thicker grid of α values selected among those exhibiting the

maximum values of the lower bounds.





Chapter 3

Fixed Effects Selection for Multilevel

Models via Streamlined MFVB

3.1 Introduction

Various statistical models can be formulated as linear regression models incorpo-

rating both fixed and random effects in the linear predictor. The former are effects

associated with the entire population or repeatable levels of experimental factors;

the latter arise from individual experimental units drawn at random. In the sta-

tistical literature, models admitting both fixed and random effects are known as

mixed-effects models (Pinheiro and Bates, 2006). These models are employed in

an assortment of regression-type studies, including the analysis of classical longi-

tudinal data (e.g. Fitzmaurice et al., 2008), repeated measurements (e.g. Vonesh and

Chinchilli, 1997), blocked designs (e.g. Lindner and Rodger, 2009), multilevel data

(e.g. Goldstein, 2010), as well as semi-parametric regression models (e.g. Ruppert

et al., 2003) such as those including spatial or spline-type components.

The focus of this chapter is on Bayesian fitting of linear mixed-effects models

with nested random effects structures, which are commonly used for the analysis

of longitudinal, multilevel, and panel data (e.g. Verbeke and Molenberghs, 2000;

Baltagi, 2021), or small area estimation (e.g. Rao and Molina, 2015). These data are

typically collected from experimental units that can be grouped into different levels

of nesting, and the interest is in modeling within-group correlations.

In areas of application such as genome-wide association studies (e.g. Korte et al.,

2012; Sikorska et al., 2013; Li et al., 2015a) and medical research (e.g. Brown and

Prescott, 2015), datasets typically possess a large number of group-invariant predic-

tors, of which only a few are effectively relevant. A common misleading strategy

67
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is that of including all of them as fixed effects in the model specification. This

may compromise the parsimony of the model specification and validity of inferen-

tial conclusions, especially in sparse covariates settings. Therefore, a properly fixed

effects selection procedure is recommended to identify those being effectively rel-

evant. Although many frequentist procedures have been developed to tackle this

problem (e.g. Schelldorfer et al., 2011; Fan and Li, 2012; Groll and Tutz, 2014; Hui

et al., 2017; Li et al., 2018), little exists in the Bayesian literature. Bayesian approaches

are mostly focused on random effects selection induced by the decomposition of

their covariance matrix (e.g. Chen and Dunson, 2003; Yang, 2013), or joint fixed and

random effects selection (e.g. Kinney and Dunson, 2007; Yang et al., 2020).

The current chapter focuses on fixed effects selection procedures from a Bayesian

perspective. This may be advantageous over frequentist approaches, especially in

high-dimensional settings when likelihood-based inference is computationally in-

tractable and allows prior knowledge about the parameters to be incorporated into

the model specification. MCMC sampling still represents the reference toolkit for

exact Bayesian inference, and all the references mentioned above on Bayesian ap-

proaches for effects selection perform model fitting via MCMC. However, such a

procedure usually generates higher computational times and, in general, necessi-

tates convergence assessment for all the model parameters, which may cause prob-

lems such as poor mixing connected to the model parameterization. These and

other drawbacks have supported the development of variational approximations for

linear mixed models to improve convergence speed at the cost of employing an

approximation of the true posterior distribution.

Wang and Wand (2011) provided some insights on how to implement variational

approximations for approximate Bayesian inference in hierarchical models through

Infer.NET (Minka et al., 2018). Although this computational framework is suitable for

longitudinal and multilevel models, its computational advantage quickly decreases

for high numbers of groups and sub-groups, limiting the usefulness of variational

inference. Algorithm 3 of Ormerod and Wand (2010), and Algorithms 3 and 5 of

Luts et al. (2014) allow to implement variational inference for fitting longitudinal

and multilevel data; however, they do not perform efficiently for large dimensions,

as they include naïve updates based on inefficient matrix inversions.

Lee and Wand (2016) developed a streamlined updating scheme for variational

inference making efficient use of sub-matrix inversion operations whose number is

linear in the size of groups at each level. The streamlined scheme represents an

improvement of two orders of magnitude over naïve implementations of variational
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approximations. These results have also been extended to the class of generalized

linear mixed-effects models and applied, for instance, to models for multiple longi-

tudinal markers (Hughes et al., 2021). Nolan et al. (2020) took advantage of the sparse

matrix results developed in Nolan and Wand (2020) for deriving efficient algorithms

and performing efficient Bayesian variational approximations for linear mixed mod-

els with two and three-level nested random effects structures. This framework,

named streamlined variational inference, allows to dramatically reduce computational

times when compared to naïve implementations of variational inference, although

achieving the same approximation. Furthermore, streamlined variational inference

efficiently stores the matrices needed to perform algorithm updates, hence provid-

ing significant memory savings.

These developments have recently inspired streamlined algorithms for linear

mixed-effects models with crossed random effects (Menictas et al., 2019) and group-

specific curves (Menictas et al., 2021). Many extensions can be envisaged and are

motivated by the high demand for fast and accurate processing methods for big

amounts of data from clinical studies, psychological experiments, or surveys in so-

cial sciences. Nonetheless, the current streamlined variational algorithms have been

developed and tested using generic uninformative Normal priors over the fixed ef-

fects vector. In this chapter, we introduce streamlined variational inference for mod-

els with global-local priors inducing Bayesian posterior shrinkage and we study an

efficient selection procedure for fixed effects.

To the best of our knowledge, the literature lacks of scalable variational approx-

imation methods for fixed effects selection in linear mixed models. Armagan and

Dunson (2011) proposed a sparse variational Bayes analysis of linear mixed models,

which focuses on random effects shrinkage via decomposition of the random effects

vector covariance matrix. A more recent contribution is Tung et al. (2019), where the

suggested approach performs simultaneous fixed-effect selection and parameter es-

timation via variational Bayes and Bayesian adaptive lasso. However, their approach

is limited to high-dimensional two-level generalized linear mixed models and does

not account for any streamlined updating improvements.

The work presented in this chapter extends the results and algorithms of Nolan

et al. (2020) by developing streamlined Bayesian variational approximations for mul-

tilevel linear mixed models with two or three-level random effects where a subset

of fixed effects is subject to selection. The selection is performed by first placing

global-local priors over the fixed effects being subject to selection, which ensures

good shrinkage properties towards the origin for irrelevant fixed effects marginal
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posteriors, and then identifying those being relevant via an automated selection

procedure free from hyperparameters tuning.

3.2 Linear Mixed Models

This chapter treats linear mixed models with Gaussian responses and homoskedas-

tic independent errors. A general specification for these models is:

y|β, u, σ2 ∼ N(Xβ + Zu, σ2I), u|G ∼ N(0, G),

β ∼ N(µβ, Σβ),

σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2), aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

G|AG ∼ p(G|AG), AG ∼ p(AG),

(3.1)

where y is a vector of observed data, β and u are the vectors of fixed and random

effects, X and Z are the associated fixed and random effects design matrices, σ2 is

the variance of the unit-specific error term, and G is the random effects covariance

matrix.

A very general prior specification for the parameters of model (3.1) is typically

considered. The fixed effects vector β has a multivariate Normal prior with hyper-

parameters µβ and Σβ. Following Gelman (2006), the hierarchical prior specification

on σ2 generates a Half-t distribution on σ with νσ2 degrees of freedom and scale

parameter sσ2 , where larger values of sσ2 correspond to weaker informativity. A

similar hierarchical prior is imposed on the random effects vector covariance ma-

trix G: if, for instance, p(G|AG) is an Inverse-G-Wishart(Gfull, νG + 2q− 2, A−1
G ) den-

sity function and p(AG) is an Inverse-G-Wishart(Gdiag, 1, ΛAG) density function with

ΛAG ≡ {νG diag(s2
G, 1, . . . , s2

G, q)}−1, then according to Huang and Wand (2013) such a

prior imposition may induce arbitrarily noninformative priors on the standard de-

viation parameters for large values of sG, 1, . . . , sG, q and a Uniform(−1, 1) distribution

over the correlation parameters. Details are provided in Appendix A.2.

The structures of Z, u, and G embed a rich ensemble of mixed model specifica-

tions, as shown by Zhao et al. (2006). In this chapter, we will focus on multilevel

models having two-level and three-level random effects specifications.
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3.2.1 Two-Level Linear Mixed Models

Multilevel models with two-level random effects arise from applications where

observations from different units belonging to separate groups are available, and

the interest is in capturing the within-group variability. Let m be the number of

groups, each composed by oi units, 1 ≤ i ≤ m. A two-level linear mixed model can

be expressed in terms of the observations from the ith group as follows:

yi|β, ui, σ2 ind∼ N(X iβ + Ziui, σ2I), ui|Σ ind∼ N(0, Σ), 1 ≤ i ≤ m,

β ∼ N(µβ, Σβ),

σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2), aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

Σ|AΣ ∼ Inverse-G-Wishart(Gfull, νΣ + 2q− 2, A−1
Σ

),

AΣ ∼ Inverse-G-Wishart(Gdiag, 1, ΛAΣ
)

(3.2)

with ΛAΣ
≡ {νΣ diag(s2

Σ, 1, . . . , s2
Σ, q)}−1. Here Σ is the covariance matrix for the group-

specific random effects vector ui of length q. Notice model (3.2) is a particular case

of model (3.1), with

y = stack
1≤i≤m

(yi), X = stack
1≤i≤m

(X i), Z = blockdiag
1≤i≤m

(Zi),

u = stack
1≤i≤m

(ui), G = Im ⊗ Σ, AG = Im ⊗ AΣ.
(3.3)

The structure of Z is such that Zu = ∑m
i=1 Ziui and notice that as m increases, Z

becomes sparser with only the (100/m)% of its cells being non-zero.

3.2.2 Three-Level Linear Mixed Models

Multilevel models with three-level random effects extend the two-level specifica-

tion by adding a further hierarchy level. Such structures are employed when there is

interest in capturing the variability within groups and that within their subgroups.

Let m denote the number of level 1 (L1) groups, ni be the number of level 2 (L2)

subgroups belonging to the ith group, 1 ≤ i ≤ m, and oij be the number of units

belonging to the jth subgroup, 1 ≤ j ≤ ni, of the ith group. A three-level linear

mixed model can be defined in terms of the observations from the jth subgroup
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belonging to the ith group as follows:

yij|β, uL1
i , uL2

ij , σ2 ind∼ N(X ijβ + ZL1
ij u

L1
i + ZL2

ij u
L2
ij , σ2I),[︄

uL1
i

uL2
ij

]︄ ⃓⃓⃓
ΣL1, ΣL2 ind∼ N

(︄[︄
0

0

]︄
,

[︄
ΣL1 O

O ΣL2

]︄)︄
, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

β ∼ N(µβ, Σβ),

σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2), aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

ΣL1|AΣL1 ∼ Inverse-G-Wishart(Gfull, νΣL1 + 2q1 − 2, A−1
ΣL1 ),

AΣL1 ∼ Inverse-G-Wishart(Gdiag, 1, ΛA
ΣL1 ),

ΣL2|AΣL2 ∼ Inverse-G-Wishart(Gfull, νΣL2 + 2q2 − 2, A−1
ΣL2 ),

AΣL2 ∼ Inverse-G-Wishart(Gdiag, 1, ΛA
ΣL2 )

(3.4)

with ΛA
ΣL1 ≡ {νΣL1 diag(s2

ΣL1, 1
, . . . , s2

ΣL1, q1
)}−1 and ΛA

ΣL2 ≡ {νΣL2 diag(s2
ΣL2, 1

, . . . , s2
ΣL2, q2

), }−1.

Here ΣL1 is the covariance matrix for the group-specific random effects vector uL1
i of

length q1 and ΣL2 is that for the subgroup-specific random effects vector uL2
ij having

length q2. Notice model (3.4) is a particular case of model (3.1), with

y = stack
1≤i≤m

(︃
stack
1≤j≤ni

(yij)

)︃
, X = stack

1≤i≤m

(︃
stack
1≤j≤ni

(X ij)

)︃
,

Z = blockdiag
1≤i≤m

(︃[︃
stack
1≤j≤ni

(ZL1
ij ) blockdiag

1≤j≤ni

(ZL2
ij )
]︃)︃

,

u = stack
1≤i≤m

⎛⎝[︄ (uL1
i )

T
(︃

stack
1≤j≤ni

(uL2
ij )

)︃T
]︄T
⎞⎠,

G = blockdiag
1≤i≤m

(︄[︄
ΣL1 O

O Ini ⊗ ΣL2

]︄)︄
,

AG = blockdiag
1≤i≤m

(︄[︄
AΣL1 O

O Ini ⊗ AΣL2

]︄)︄
.

(3.5)

The structure of Z is more involved than the one of two-level random effects models

and is such that Zu = ∑m
i=1 ∑ni

j=1(ZL1
ij u

L1
i + ZL2

ij u
L2
ij ). As m and the ni’s increase, Z

becomes sparser with only the {(q1 + q2)/(q1m + q2 ∑m
i=1 ni) × 100}% of its cells

being non-zero.

Notice that in the particular case where ni = 1 for all 1 ≤ i ≤ m and q1 = q2 = q,

the three-level specification corresponds to the two-level one.
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3.3 Mean Field Variational Bayes Approximations

We now give technical details on MFVB approximations for fitting two- and

three-level linear mixed models. We present the so-called naïve MFVB updates re-

sulting from the straightforward implementation of standard formulas from Section

1.2, together with the streamlined MFVB idea providing a more efficient treatment

of sparse matrix structures arising within such updates.

Assume then the posterior density function p(β, u, σ2, aσ2 , G, AG|y) of the generic

linear mixed model specification (3.1) is approximated via (1.2) by a generic q-

density function being factorized as follows:

q(β, u, σ2, aσ2 , G, AG) = q(β, u, aσ2 , AG) q(σ
2, G).

This factorization represents the minimal product restriction for which practical

variational inference algorithms arise, see Section 2 of Nolan et al. (2020). How-

ever, the interaction between the partition assumed for the global parameter vector

and the conditional independence properties underlying model specification (3.1)

admit the following induced factorization for the generic q ∈ Q, namely:

q(β, u, σ2, aσ2 , G, AG) = q(β, u) q(σ2) q(aσ2) q(G) q(AG).

Using arguments from Section 1.2, it is possible to show that the optimal approxi-

mating densities are:

q∗(β, u) is a N
(︁
µq(β,u), Σq(β,u)

)︁
density function ,

q∗(σ2) is an Inverse-χ2(︁ξq(σ2), λq(σ2)

)︁
density function ,

q∗(aσ2) is an Inverse-χ2(︁ξq(a
σ2 ), λq(a

σ2 )

)︁
density function .

(3.6)

The approximating densities for the matrices G and AG vary according to the ran-

dom effects structure considered and are related to the structure of the random

effects design matrix. For the two-level random effects specification, the structures

of G and AG are given by the second row of (3.3), which involves matrices Σ and AΣ.

Therefore, their approximating densities are:

q∗(Σ) is an Inverse-G-Wishart
(︁
Gfull, ξq(Σ), Λq(Σ)

)︁
density function ,

q∗(AΣ) is an Inverse-G-Wishart
(︁
Gdiag, ξq(AΣ), Λq(AΣ)

)︁
density function .
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For the three-level random effects specification, the structures of G and AG are given

by the last two rows of (3.5), which involve matrices ΣL1, ΣL2, AΣL1 and AΣL2 . Therefore,

their approximating densities are:

q∗(ΣL1) is an Inverse-G-Wishart
(︁
Gfull, ξq(ΣL1), Λq(ΣL1)

)︁
density function ,

q∗(AΣL1) is an Inverse-G-Wishart
(︁
Gdiag, ξq(A

ΣL1 ), Λq(A
ΣL1 )

)︁
density function ,

q∗(ΣL2) is an Inverse-G-Wishart
(︁
Gfull, ξq(ΣL2), Λq(ΣL2)

)︁
density function ,

q∗(AΣL2) is an Inverse-G-Wishart
(︁
Gdiag, ξq(A

ΣL2 ), Λq(A
ΣL2 )

)︁
density function .

3.3.1 Naïve MFVB Updates

Let C = [ X | Z ] and denote with n the number of its rows. The parameters of

these optimal q-densities can be obtained by iteratively performing the following

updates until convergence:

Σq(β,u) ←−
(︄

µq(1/σ2) CTC +

[︄
Σ−1

β O

O Eq(G−1)

]︄)︄−1

,

µq(β,u) ←− Σq(β,u)

(︄
µq(1/σ2) CTy +

[︄
Σ−1

β µβ

0

]︄)︄
,

ξq(σ2) ←− νσ2 + n, λq(σ2) ←− µq(1/a
σ2 ) + ∥y− Cµq(β,u)∥2 + tr

{︂
Σq(β,u)C

TC
}︂

,

ξq(a
σ2 ) ←− νσ2 + 1 and λq(a

σ2 ) ←− µq(1/σ2) + 1/(νσ2s2
σ2).

(3.7)

Expressions for updating µq(1/σ2) and µq(1/a
σ2 ) are µq(1/σ2) ←− ξq(σ2)/λq(σ2) and

µq(1/a
σ2 ) ←− ξq(a

σ2 )/λq(a
σ2 ), respectively.

For a two-level random effects specification, the optimal approximating densities

q∗(Σ) and q∗(AΣ) can be obtained by iteratively performing the following updates:

ξq(Σ) ←− νΣ + m + 2q− 2, Λq(Σ) ←− Mq(A−1
Σ ) +

m

∑
i=1

{︂
µq(ui)

µT
q(ui)

+ Σq(ui)

}︂
,

ξq(AΣ) ←− νΣ + q and Λq(AΣ) ←− ΛAΣ
+ diag

{︂
diagonal

(︂
Mq(Σ−1)

)︂}︂
,

where Mq(A−1
Σ ) ←− ξq(AΣ)Λ

−1
q(AΣ)

, and µq(ui)
and Σq(ui)

respectively correspond to the

sub-vector of µq(β,u) and sub-matrix of Σq(β,u) associated with the ith group random

effects vector ui, for 1 ≤ i ≤ m. Also, the update for Eq(G−1) appearing in the first

line of (3.7) is

Eq(G−1)←− Im ⊗Mq(Σ−1), (3.8)
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with Mq(Σ−1) ←− (ξq(Σ) − q + 1)Λ−1
q(Σ)

.
For the three-level random effects specification, the optimal approximating densi-

ties q∗(ΣL1), q∗(AΣL1), q∗(ΣL2) and q∗(AΣL2) can be obtained by iteratively performing
the following updates:

ξq(ΣL1) ←− νΣL1 + m + 2q1 − 2, Λq(ΣL1) ←− Mq(A−1
ΣL1 )

+
m

∑
i=1

{︂
µq(uL1

i )µ
T
q(uL1

i )
+ Σq(uL1

i )

}︂
,

ξq(A
ΣL1 ) ←− νΣL1 + q1, Λq(A

ΣL1 ) ←− ΛA
ΣL1 + diag

{︂
diagonal

(︂
Mq((ΣL1)−1)

)︂}︂
,

ξq(ΣL2) ←− νΣL2 +
m

∑
i=1

ni + 2q2 − 2, Λq(ΣL2) ←− Mq(A−1
ΣL2 )

+
m

∑
i=1

ni

∑
j=1

{︃
µq(uL2

ij )
µT
q(uL2

ij )
+ Σq(uL2

ij )

}︃
,

ξq(A
ΣL2 ) ←− νΣL2 + q2 and Λq(A

ΣL2 ) ←− ΛA
ΣL2 + diag

{︂
diagonal

(︂
Mq((ΣL2)−1)

)︂}︂
,

where Mq(A−1
ΣL1 )
←− ξq(A

ΣL1 )Λ
−1
q(A

ΣL1 )
, Mq(A−1

ΣL2 )
←− ξq(A

ΣL2 )Λ
−1
q(A

ΣL2 )
, µq(uL1

i ) and Σq(uL1
i )

respectively correspond to the sub-vector of µq(β,u) and sub-matrix of Σq(β,u) associ-

ated with the ith group random effects vector at level 1 uL1
i , and µq(uL2

ij )
and Σq(uL2

ij )

respectively correspond to the sub-vector of µq(β,u) and sub-matrix of Σq(β,u) associ-

ated with the jth subgroup of the ith group random effects vector at level 2 uL2
ij , for

1 ≤ i ≤ m and 1 ≤ j ≤ ni. Furthermore, the update for Eq(G−1) appearing in the

first line of (3.7) is

Eq(G−1)←− blockdiag
1≤i≤m

⎛⎝⎡⎣Mq((ΣL1)−1) O

O Ini ⊗Mq((ΣL2)−1)

⎤⎦⎞⎠ , (3.9)

with Mq((ΣL1)−1) ←− (ξq(ΣL1)− q1 + 1)Λ−1
q(ΣL1)

, Mq((ΣL2)−1) ←− (ξq(ΣL2)− q2 + 1)Λ−1
q(ΣL2)

.

The term naïve is used in this chapter when the MFVB updates are implemented

without exploiting associated sparse matrix structures. Note, for example, that the

update for Σq(β,u) in (3.7) involves the inversion of a potentially massive matrix

whose sparse structure is induced by those of Z and G. As explained in Section

3.2, when the model dimensions increase such matrices may become highly sparse

and the inversion operation can face many complications, both in terms of memory

storage and computational efficiency. By taking advantage of the specific random

effects structure, it is possible to perform efficient streamlined variational updates.

3.3.2 Streamlined MFVB Updates

The concept of streamlined variational inference for linear mixed models first

appears in Lee and Wand (2016), where the sparse structure of Σq(β,u) is exploited

for efficiently fitting a particular version of model (3.2) via MFVB. Nolan and Wand
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(2020) defined sparse matrix classes arising from two-level and three-level random

effects specifications and provide efficient mathematical solutions to the associated

matrix inversion problems in their Theorems 2.2, 2.3, 3.2 and 3.3. Nolan et al. (2020)

implemented such results and develop streamlined MFVB algorithms for linear

mixed models having both two-level and three-level random effects specifications.

Algorithms using streamlined updates achieve the same MFVB approximations

obtained with naïve updates, yet reducing memory usage and performing algebraic

steps more efficiently. The former is obtained by circumventing the need of storing

the zero sub-blocks of C and the sub-blocks of Σq(β,u) which are not needed for

performing the other variational updates. The latter is achieved by computing the

useful sub-blocks of Σq(β,u) with faster lower-dimensional matrix inversions, and the

updates of µq(β,u) and λq(σ2) only with the non-zero sub-blocks of C and Σq(β,u).

Excellent performances both in terms of approximation accuracy, computational

time and memory saving when compared to naïve MFVB or efficient MCMC sam-

plers are shown in Nolan et al. (2020), especially for large values of m. Nevertheless,

this reference only treats the generic β ∼ N(µβ, Σβ) prior specification for the fixed

effects vector, as given in (3.1). We develop instead streamlined variational inference

procedures allowing for more general prior specifications on β aiding selection of

fixed effects.

3.4 Approximate Variable Selection with Global-Local

Shrinkage Priors

Regression modeling is often concerned with the problem of selecting an op-

timal subset of plausible regressors having a significant impact on explaining the

variability of the response variable. This is of particular interest for sparse covariate

settings, where a large set of covariates is considered but only a small portion of

them is effectively relevant. We refer to O’Hara and Sillanpää (2009) and references

therein for an exhaustive introductory review on variable selection procedures from

a Bayesian perspective.

3.4.1 Bayesian Methods for Variable Selection

Most common Bayesian approaches involve placing suitable prior distributions

over the parameters subject to selection. Approaches of this type can be essentially
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subdivided into two leading families, based on the so-called spike-and-slab priors

and global-local shrinkage priors.

Spike-and-slab priors are two-component mixture priors. The first prior com-

ponent, the spike, is a point mass function at zero characterizing the noise, usually

given by a Dirac delta function or a Gaussian density function having mean zero and

very small variance. The second component, the slab, is an absolutely continuous

density function representing the signal of nonzero coefficients associated with rel-

evant covariates. The slab is usually given by Laplace or Gaussian density function

and is typically centered around zero. A weight parameter taking values in the unit

interval is used to balance the contribution of the two components. Although being

highly appealing and allowing for separate control of the level of sparsity and the

size of the signal coefficients, these priors may suffer from computational hurdles in

high-dimensions.

Global-local shrinkage priors are absolutely continuous shrinkage priors that are

placed on each coefficient βh, 1 ≤ h ≤ H, which is subject to selection. These pri-

ors admit the following convenient scale mixture representation (Polson and Scott,

2011), for proper choices of p(τ) and p(ζh):

βh|τ, ζh
ind∼ N(0, τ2/ζh), τ ∼ p(τ), ζh

ind∼ p(ζh), 1 ≤ h ≤ H. (3.10)

The global variance parameter τ2 is common to all the coefficients and induces

shrinkage towards the origin in the associated posterior density; the local vari-

ance parameter ζh is coefficient-specific. A more general specification including the

model response error variance parameter is proposed in Bhattacharya et al. (2016).

Depending on the distributional specifications for τ and ζh in (3.10), many well-

known shrinkage priors arise. Examples are the Horseshoe prior of Carvalho et al.

(2009, 2010), the Bayesian lasso of Park and Casella (2008), the Normal-Gamma

prior of Griffin and Brown (2010), the Normal-Exponential-Gamma prior of Grif-

fin and Brown (2011), the generalized double Pareto prior of Armagan et al. (2013),

the Dirichlet-Laplace prior of Bhattacharya et al. (2015) and the Horseshoe+ prior of

Bhadra et al. (2017). Longer lists are given in Table 1 of Tang et al. (2018) and Table

2 of Bhadra et al. (2019).

For spike-and-slab priors, the posterior distributions of negligible coefficients

present a higher weight for the spike component: this provides a direct way to detect

relevant effects, and therefore to perform the selection. For global-local priors, there

is no posterior spike. The posterior density function, instead, is continuous with

probability mass highly concentrated around zero, and a direct way for identifying
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Figure 3.1: Visual comparison of the probability density functions for the Laplace, Horse-
shoe and Normal-Exponential-Gamma (NEG) distributions with zero mean and unit stan-
dard deviation. For easiness of comparison, the standard Gaussian probability density func-
tion is also displayed.

relevant coefficients is usually unavailable.

In this chapter we employ global-local priors as they offer substantial computa-

tional advantages over spike-and-slab priors due to their convenient representation

as Gaussian scale mixtures, which give rise to convenient conjugate updates for all

the βh’s and ζh’s, and a more immediate inferential treatment. Furthermore, the es-

timates of frequentist regularization procedures such as ridge (Hoerl and Kennard,

1970), lasso (Tibshirani, 1996), bridge (Frank and Friedman, 1993) and elastic net

(Zou and Hastie, 2005) can be recasted as posterior mode estimates from models

with specific global-local priors.

3.4.2 MFVB Approximations with Global-Local Priors

Before considering their use within linear mixed model specifications, we illus-

trate the essential elements of mean-field variational inference for the simpler linear

regression model. Without loss of generality, in this chapter we focus on three of

the most commonly adopted global-local priors, namely:

βh|τ iid∼ Laplace(0, τ), βh|τ iid∼ Horseshoe(0, τ) or βh|τ iid∼ NEG(0, τ, λ), (3.11)

for each model coefficient βh, 1 ≤ h ≤ H. Hereafter λ > 0 is an additional shape

parameter that is always assumed being user-specified.

The Laplace, Horseshoe, and Normal-Exponential-Gamma (NEG) distributions

account for different degrees of prior shrinkage towards zero and have different tail

behaviors, as shown in Figure 3.1. Each prior specification in (3.11) can be recasted
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Prior specification p(ζh|aζh) p(aζh)

Laplace(0, τ) Inverse-χ2(2, 1) −
Horseshoe(0, τ) Gamma(1/2, aζ j) Gamma(1/2, 1)
NEG(0, τ, λ) Inverse-χ2(2, 2aζ j) Gamma(λ, 1)

Table 3.1: Hierarchical formulation of the Laplace, Horseshoe and Negative-Exponential-
Gamma (NEG) priors (3.11) following the general global-local representation (3.10).

into the generic glocal-local scale mixture representation (3.10), as summarized in

Table 3.1. For the Horseshoe and NEG priors, we use a convenient hierarchical

representations of p(ζh) based on auxiliary variables aζh , 1 ≤ h ≤ H, involving

tractable Gamma and Inverse-χ2 distributions. Details about the involved density

functions and auxiliary variable representations are given in Appendix A.2.

A linear regression model with one of the three global-local priors in (3.11) is

then expressible as:

y|β0, β, σ2 ∼ N(β01 + Xβ, σ2I),

β0 ∼ N(µβ0 , σ2
β0
), β|ζ, τ2 ∼ N(0, τ2 diag(ζ)−1),

σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2), aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

τ2|aτ2 ∼ Inverse-χ2(1, 1/aτ2), aτ2 ∼ Inverse-χ2(1, 1/s2
τ2),

ζh|aζh

ind∼ p(ζh|aζh), aζh

ind∼ p(aζh), 1 ≤ h ≤ H,

(3.12)

where β0 is the model intercept (which is usually excluded from the selection pro-

cedure), 1 is a vector full of ones, β = (β1, . . . , βH)
T is the vector of coefficients

having global-local shrinkage priors, X = (x1, . . . , xp) is the associated design ma-

trix, ζ = (ζ1, . . . , ζH)
T and aζ = (aζ1 , . . . , aζH)

T. The common Gaussian and Half-t

prior distributions are considered for β0 and σ, respectively. Importantly, we specify

a Half-t(sτ2 , 1) distribution with sτ2 > 0 for the global scale parameter τ, allowing

for weak prior informativeness about the global degree of sparseness when a large

scale parameter sτ2 is used. Hence, we let the variable-selection procedure free from

hyperparameters that must be manually tuned by the user. The densities p(ζh|aζh)

and p(aζh) vary according to the global-local prior specification adopted, as shown

in Table 3.1.
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The model posterior density function p(β0, β, σ2, aσ2 , τ2, aτ2 , ζ, aζ |y) admits a tractable

MFVB approximation when the following mean-field restriction is used:

q(β0, β, σ2, aσ2 , τ2, aτ2 , ζ, aζ) = q(β0, β) q(σ2) q(τ2) q(aσ2) q(aτ2)
H

∏
h=1
{q(ζh) q(aζh)}.

The optimal q-density functions then results as follows:

q∗(β0, β) is a N
(︁
µq(β0,β), Σq(β0,β)

)︁
density function ,

q∗(σ2) is an Inverse-χ2(︁ξq(σ2), λq(σ2)

)︁
density function ,

q∗(aσ2) is an Inverse-χ2(︁ξq(a
σ2 ), λq(a

σ2 )

)︁
density function ,

q∗(τ2) is an Inverse-χ2(︁ξq(τ2), λq(τ2)

)︁
density function ,

q∗(aτ2) is an Inverse-χ2(︁ξq(a
τ2 ), λq(a

τ2 )

)︁
density function ,

q∗(ζh) is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
an Inverse-Gaussian(µq(ζh), 1) density function for a Laplace prior

a Gamma(1, λq(ζh)) density function for a Horseshoe prior

an Inverse-Gaussian(µq(ζh), λq(ζh)) density function for a NEG prior ,

q∗(aζh) is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− for a Laplace prior

a Gamma(1, λq(aζh
)) density function for a Horseshoe prior

a Gamma(λ + 1, λq(aζh
)) density function for a NEG prior

(3.13)

for 1 ≤ h ≤ H. When a Laplace prior is specified, the model does not include the

aζh auxiliary variables and therefore q(aζh) is not present. The expressions for the

parameter updates of these approximating densities are reported in Appendix C.2,

together with their full derivations.

3.4.3 From Shrinkage to Selection: the Signal Adaptive Variable

Selector

One limitation of continuous global-local shrinkage priors is the unavailability

of direct information from the marginal posterior of each βh for selecting relevant

coefficients. Typically, the posterior distributions of less relevant coefficients aris-

ing from such priors are highly concentrated around zero, with marked peaks and

negligible tails, although not having entire mass at zero. Therefore, global-local

shrinkage priors do not provide any sparse posterior solution. This issue becomes

even more relevant when variational inference is used to fit the model because the
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approximate marginal posterior densities of β are Gaussian, and so the peaks shown

by the marginal posterior densities are approximated by bell-shaped curves.

Several heuristic methods have been developed for post-processing posterior dis-

tributions arising from global-local priors and determining whether the associated

covariates have to be selected or not. A simple but possibly misleading solution is to

select the covariates associated with coefficients whose posterior credible intervals

do not contain zero. Nonetheless, this approach usually exhibits poor performances

due to the difficulty of accurately estimating the uncertainty in high dimensional

problems and depends on the chosen coverage level. Carvalho et al. (2010) defined

a local shrinkage factor that can take values in the unit interval and help determine

whether each variable is suggested to be selected or not according to a pre-specified

threshold, analogously to the classical posterior inclusion probability of Barbieri and

Berger (2004). Bondell and Reich (2012) proposed a method based on credible poste-

rior regions, although its implementation and results rely upon the use of conjugate

Normal priors. Zhang and Bondell (2018) extended the method to global-local pri-

ors and propose an intuitive approach to tune the prior hyperparameters based on

minimizing a discrepancy measure between the induced distribution of R2 from the

prior and the desired distribution.

All these methods and many others share a common issue: the dependence on

the choice of one or more thresholds. Bhattacharya et al. (2015) proposed grouping

the entries of posterior medians into null and non-null groups using 2-means clus-

tering. While this approach does not require any tuning parameters, issues emerge

when signals of varying strengths are present. Li and Pati (2017) proposed a similar

approach which is based on first obtaining a posterior distribution of the number

of signals by clustering the signal and the noise coefficients and then estimating the

signals from the resulting posterior median.

In this chapter, we opt for the signal adaptive variable selector (SAVS) partially

motivated by Hahn and Carvalho (2015) and accurately developed by Ray and Bhat-

tacharya (2018). The SAVS approach post-processes a point estimate from the pos-

terior distribution of a coefficient having global-local prior via soft-thresholding to

determine whether the associated covariate is assumed to be relevant or not. We

adapt this procedure for usage in variational inference and propose Algorithm 3.1

as an implementation of the SAVS approach based on the optimal approximate pos-

terior densities q∗(βh), 1 ≤ h ≤ H. The procedure takes the approximate posterior

mean parameter of a generic coefficient subject to selection and the associated un-

standardized covariate as inputs. It then returns a sparsified approximate posterior
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Algorithm 3.1 Signal Adaptive Variable Selector (SAVS) algorithm for performing variable
selection using the optimal approximate density function q∗(βh) of a generic coefficient with
global-local prior.
Inputs: µq∗(βh)

≡ Eq∗(βh) and xh being the covariate vector corresponding to βh.

If ∥xh∥2 ≤ |µq∗(βh)
|−3:

µ∗
q∗(βh)

= 0 and γh = 0;

else:

µ∗
q∗(βh)

= sign(µq∗(βh)
)∥xh∥−2

(︂
|µq∗(βh)

| ∥xh∥2 − µ−2
q∗(βh)

)︂
and γh = 1.

Output: A sparse estimate µ∗
q∗(βh)

for q∗(βh) and the associated binary selector γh.

summary estimate µ∗
q∗(βh)

, together with a binary variable γh indicating whether the

hth covariate is suggested to be selected or not. The attractiveness of this approach

comes from the fact that it is completely automated and does not require any tuning

parameters. Ray and Bhattacharya (2018) provide a theoretical justification for the

SAVS approach, noticing that its output can be obtained by solving an optimization

problem that is closely related to the adaptive lasso of Zou (2006), and showed it is

highly competitive among alternative Bayesian selection procedures.

3.5 Linear Mixed Models with Global-Local Priors on

Fixed Effects

Variational approximations for linear mixed models with two- and three-level

random effects are described in Section 3.3, using a generic β ∼ N(µβ, Σβ) prior

distribution for the fixed effects parameter vector. In this work, our interest is in

developing variational approximations for generalizations of model (3.1) embedding

prior specifications for fixed effects selection such as those discussed in Section 3.4.

In order to do so, we subdivide the p-dimensional fixed effects vector β as:

β =

⎡⎢⎢⎢⎣
βR

βA

βS

⎤⎥⎥⎥⎦ ,

where βR is a pR-dimensional vector of fixed effects associated to the random (R)

effects component of the model, βA is a pA-dimensional vector of additional (A)
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fixed effects and βS is a pS-dimensional vector of fixed effects which are subject to

selection (S). Here p = pR + pA + pS, with pR, pA and pS varying according to the

application of interest. For the two- and three-level mixed models considered in this

work, pR = q and pR = max(q1, q2) respectively. Typically, q, q1 and q2 are relatively

small, while pA and pS could take moderate to large values.

Similarly, we subdivide the fixed effects design matrix as follows:

X =
[︂

XR
⃓⃓⃓

XA ⃓⃓ XS
]︂

,

with XS assumed to have columns with zero mean and unit variance, unless dif-

ferently specified. The fixed effects linear contribution in (3.1) then factorizes into

Xβ = XRβR + XAβA + XSβS, and the same applies to the two-level mixed model

(3.2) and the three-level mixed model (3.4) specifications. Notice that for the latter

specification, Zi = XR
i for all 1 ≤ i ≤ m.

We assume without loss of generality that βR, βA and βS are a-priori independent

from each other, and specify the following prior distributions:

βR ∼ N
(︁
µβR , ΣβR

)︁
, βA ∼ N

(︁
µβA , ΣβA

)︁
, βS ∼ p(βS) =

pS

∏
h=1

p(βS
h),

with hyperparameters µβR ∈ RpR , µβA ∈ RpA , ΣβR and ΣβA symmetric positive def-

inite matrices. The prior specification for βS assumes a-priori independence among

all the coefficients subject to selection, with p(βS
h) taking one of the three different

global-local prior distributions treated in Section 3.4 for each 1 ≤ h ≤ pS:

βS
h|τ

iid∼ Laplace(0, τ), βS
h|τ

iid∼ Horseshoe(0, τ) or βS
h|τ

iid∼ NEG(0, τ, λ).
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The resulting linear mixed model is a generalization of (3.1) that accounts for global-
local prior specification over a subset of the fixed effects, and can be expressed as:

y|βR, βA, βS, u, σ2 ∼ N(XRβR + XAβA + XSβS + Zu, σ2I), u|G ∼ N(0, G),⎡⎢⎢⎣
βR

βA

βS

⎤⎥⎥⎦
⃓⃓⃓⃓
⃓ ζ, τ2 ∼ N

⎛⎜⎜⎝
⎡⎢⎢⎣

µβR

µβA

0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
ΣβR O O

O ΣβA O

O O τ2diag(ζ)−1

⎤⎥⎥⎦
⎞⎟⎟⎠ ,

σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2), aσ2 ∼ Inverse-χ2(1, 1/(νσ2 s2
σ2)),

ζh|aζh

ind∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Inverse-χ2(2, 1) for a Laplace prior

Gamma(1/2, aζh) for a Horseshoe prior

Inverse-χ2(2, 2aζh) for a NEG prior,

aζh

ind∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− for a Laplace prior

Gamma(1/2, 1) for a Horseshoe prior

Gamma(λ, 1) for a NEG prior,

for 1 ≤ h ≤ pS,

τ2|aτ2 ∼ Inverse-χ2(1, 1/aτ2), aτ2 ∼ Inverse-χ2(1, 1/s2
τ2),

G|AG ∼ p(G|AG), AG ∼ p(AG).

(3.14)

Here ζ ≡ (ζ1, . . . , ζpS)
T and aζ ≡ (aζ1 , . . . , aζpS

)T. This model can be fitted via MFVB

assuming that the full posterior density function is approximated as

p(β, u, σ2, aσ2 , ζ, aζ , τ2, aτ2 , G, AG|y) ≈ q(β, u, σ2, aσ2 , ζ, aζ , τ2, aτ2 , G, AG) (3.15)

and a tractable solution arises with the following mean-field restriction:

q(β, u, σ2, aσ2 , ζ, aζ , τ2, aτ2 , G, AG) =

q(β, u) q(σ2) q(aσ2)

{︄
pS

∏
h=1

q(ζh) q(aζh)

}︄
q(τ2) q(aτ2) q(G) q(AG).

(3.16)
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Arguments similar to those given in Sections 3.3.1 and 3.4.2 lead to the optimal
approximating densities being:

q∗(β, u) is a N
(︁
µq(β,u), Σq(β,u)

)︁
density function,

q∗(σ2) is an Inverse-χ2(︁ξq(σ2), λq(σ2)

)︁
density function,

q∗(aσ2) is an Inverse-χ2(︁ξq(a
σ2 ), λq(a

σ2 )

)︁
density function,

q∗(ζh) is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
an Inverse-Gaussian(µq(ζh), 1) density function for a Laplace prior

a Gamma(1, λq(ζh)) density function for a Horseshoe prior

an Inverse-Gaussian(µq(ζh), λq(ζh)) density function for a NEG prior,

q∗(aζh) is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− for a Laplace prior

a Gamma(1, λq(aζh
)) density function for a Horseshoe prior

a Gamma(λ + 1, λq(aζh
)) density function for a NEG prior,

for 1 ≤ h ≤ pS,

q∗(τ2) is an Inverse-χ2(︁ξq(τ2), λq(τ2)

)︁
density function

and q∗(aτ2) is an Inverse-χ2(︁ξq(a
τ2 ), λq(a

τ2 )

)︁
density function.

(3.17)

The optimal approximating densities for the matrices G and AG vary according

to the adopted random effect structure, as explained in Section 3.3. Notice that

(3.16) jointly approximates βR, βA, βS and u, allowing all the fixed effects to share

posterior dependence with the random effects. Also, all the q∗(βS
h) approximating

densities are Gaussian, although different global-local prior specifications may lead

to marginal posterior density functions p(βS
h|y) having shapes around zero that are

different from the typical bell-shaped behavior, especially those of fixed effects as-

sociated to irrelevant covariates. Using MFVB, we sacrifice some degree of accuracy

yet obtaining a substantial computational time advantage over standard MCMC

sampling procedures.

3.5.1 Naïve MFVB Updates

The updates of the parameters of the q-densities in (3.17) can be derived combin-

ing and adapting the results discussed in Sections 3.3.1 and 3.4.2. Those related to
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the q∗(β, u) optimal density function are:

Σq(β,u) ←−

⎛⎜⎜⎜⎜⎜⎜⎝µq(1/σ2) CTC +

⎡⎢⎢⎢⎢⎢⎢⎣
Σ−1

βR O O O

O Σ−1
βA O O

O O µq(1/τ2) diag(µq(ζ)) O

O O O Eq(G−1)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

−1

and µq(β,u) ←− Σq(β,u)

⎛⎜⎜⎜⎜⎜⎝µq(1/σ2) CTy +

⎡⎢⎢⎢⎢⎢⎣
Σ−1

βR µβR

Σ−1
βA µβA

0

0

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ .

(3.18)

The update for Eq(G−1) is given by (3.8) or (3.9) depending on whether a two-level

or a three-level random effects specification is considered. The main difference with

the expressions given in (3.7) is that a global-local prior specification on each element

of βS introduces the diagonal matrix µq(1/τ2) diag(µq(ζ)) of dimension pS× pS inside

the update expression for Σq(β,u). This matrix is updated at each iteration of the

MFVB algorithm employing the updated values of µq(1/τ2) and µq(ζ), accordingly to

the global-local prior adopted.

The updates for the parameters of q∗(σ2) and q∗(aσ2) are identical to those in

(3.7). The updates for the parameters of the optimal approximating q-densities of

G and AG are identical to those described in Section 3.3.1. The updates for the

parameters of q∗(ζh) and q∗(aζh), 1 ≤ h ≤ pS, q∗(τ2) and q∗(aτ2) follow with minor

modifications from those mentioned in Section 3.4.2, replacing H with pS.

Nevertheless, naïve updates (3.18) suffer from the same problems elucidated in

Section 3.3 for large m values. Therefore, an appropriate streamlined enhancement

for efficient implementations is required.

3.5.2 Streamlined MFVB Updates

Results 1 and 4 from Nolan et al. (2020) can be extended to derive a stream-

lined MFVB algorithm for efficiently updating the parameters of the densities in

(3.17) and, in particular, for exploiting the sparse matrix structures presented in up-

dates (3.18). Such results are based on the two- and three-level sparse matrix least

squares problems defined in Nolan and Wand (2020) and make use of the associ-

ated SolveTwoLevelSparseMatrix and SolveThreeLevelSparseMatrix routines, which are

recalled in Appendix C.1.
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The following results explain how to efficiently compute µq(β,u) and the relevant

sub-blocks of Σq(β,u) which are necessary for finding the optimal q-densities in (3.17).

Result 3.1. The MFVB updates of µq(β,u) and each of the sub-blocks of Σq(β,u) that are

relevant for variational inference concerning model (3.14) with a two-level random effects

specification are expressible as a two-level sparse matrix problem of the form Aµq(β,u) = a,

where a and the non-zero sub-blocks of A are, according to the notation in Appendix C.1:

A11 = µq(1/σ2)

m

∑
i=1

(XT
i X i) +

⎡⎢⎢⎢⎣
Σ−1

βR O O

O Σ−1
βA O

O O µq(1/τ2) diag(µq(ζ))

⎤⎥⎥⎥⎦ ,

a1 = µq(1/σ2)

m

∑
i=1

(XT
i yi) +

⎡⎢⎢⎢⎣
Σ−1

βR µβR

Σ−1
βA µβA

0

⎤⎥⎥⎥⎦ ,

A22,i = µq(1/σ2)Z
T
i Zi + Mq(Σ−1), A12,i = µq(1/σ2)X

T
i Zi, a2,i = µq(1/σ2)Z

T
i yi,

for 1 ≤ i ≤ m. Moreover, X i = [ XR
i | XA

i | XS
i ].

The SolveTwoLevelSparseMatrix routine efficiently solves the associated linear system

and provides the solutions:

µq(β) = x1, Σq(β) = A11

and

µq(ui)
= x2,i, Σq(ui)

= A22,i, Eq{(β− µq(β))(ui − µq(ui)
)T} = A12,i, 1 ≤ i ≤ m.

Result 3.2. The MFVB updates of µq(β,u) and each of the sub-blocks of Σq(β,u) that are

relevant for variational inference concerning model (3.14) with a three-level random effects

specification are expressible as a three-level sparse matrix problem of the form Aµq(β,u) = a,
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where a and the non-zero sub-blocks of A are, according to the notation in Appendix C.1:

A11 = µq(1/σ2)

m

∑
i=1

ni

∑
j=1

(XT
ijX ij) +

⎡⎢⎢⎢⎣
Σ−1

βR O O

O Σ−1
βA O

O O µq(1/τ2) diag(µq(ζ))

⎤⎥⎥⎥⎦ ,

a1 = µq(1/σ2)

m

∑
i=1

ni

∑
j=1

(XT
ijyij) +

⎡⎢⎢⎢⎣
Σ−1

βR µβR

Σ−1
βA µβA

0

⎤⎥⎥⎥⎦ ,

A22,i = µq(1/σ2)

ni

∑
j=1

((ZL1
ij)

TZL1
ij) + Mq((ΣL1)−1), A12,i = µq(1/σ2)

ni

∑
j=1

(X ij)
TZL1

ij ,

a2,i = µq(1/σ2)

ni

∑
j=1

(ZL1
ij)

Tyij, A22,ij = µq(1/σ2)(ZL2
ij)

TZL2
ij + Mq((ΣL2)−1),

A12,i,j = µq(1/σ2)(ZL1
ij)

TZL2
ij , A12,ij = µq(1/σ2)X

T
ijZ

L2
ij , a2,ij = µq(1/σ2)(ZL2

ij)
Tyij,

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. Moreover, X ij = [ XR
ij | XA

ij | XS
ij ].

The SolveThreeLevelSparseMatrix routine efficiently solves the associated linear system,

and provides the solutions:

µq(β) = x1, Σq(β) = A11,

µq(uL1
i ) = x2,i, Σq(uL1

i ) = A22,i, Eq{(β− µq(β))(u
L1
i − µq(uL1

i ))
T} = A12,i, 1 ≤ i ≤ m,

and

µq(uL2
ij )

= x2,ij, Σq(uL2
ij )

= A22,ij, Eq{(β− µq(β))(u
L2
ij − µT

q(uL2
ij )
} = A12,ij,

Eq{(uL1
i − µq(uL1

i ))(u
L2
ij − µq(uL2

ij )
)T} = A12,i,j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

We employ these two results to derive a streamlined MFVB algorithm for de-

termining the optimal parameters of the densities in (3.17) for multilevel models

having two-level and three-level random effects. The former specification is accom-

modated by Algorithm 3.2, the latter by Algorithm 3.3. Notice all the sub-blocks of

A and components of a described in Results 3.1 and 3.2 can be updated performing

linear transformations of matrices involving multiplications of sub-vectors of y and

sub-matrices of X and Z, which need to be computed only once instead of at each

iteration of the associated algorithms.

These results are inspired by Results 1 and 4 of Nolan et al. (2020), which are
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expressed in terms of sparse least-squares problems of the type ∥b − Bµq(β,u)∥2, af-

ter exploiting the equalities A = BTB and a = BTb. This class of problems can

be solved via efficient QR-decompositions, instead of sparse matrix problems of

the type Aµq(β,u) = a which rely upon matrix inversion routines. Section 2.1 of

Nolan and Wand (2020) claims that the former class of problems and associated

SolveTwoLevelSparseLeastSquares and SolveThreeLevelSparseLeastSquares routines pro-

posed in Appendix A of Nolan et al. (2020) are numerically preferred to the lat-

ter, since QR-decomposition methods are more computationally stable. However,

streamlined MFVB approximations based on the QR-decomposition require addi-

tional matrices to be updated at each algorithm iteration. Efficient QR-decomposition

routines and functions for performing matrix multiplications with the associated

Q and R matrices are unavailable in all standard computing environments and

programming languages. Furthermore, the sub-blocks of B and components of b

become particularly sparse for large p values, as for the cases considered in this

work, entailing onerous memory consumption and compromising the efficiency of

QR-decomposition. For these reasons, we opt for routines based on sparse matrix

problems instead of those based on sparse least-squares problems.

The convergence of Algorithms 3.2 and 3.3 can be assessed in several ways. One

way is to monitor the relative increment of the variational lower bound and stop

it whenever it falls below a pre-specified threshold. The drawback is that much

tedious algebra is required to derive an explicit lower bound expression. An alter-

native way is to measure the absolute relative increments among all the parame-

ters updated at each iteration and stop when the maximum increment falls below

a pre-specified threshold. However, both the approaches can be computationally

expensive, especially for large m values, and these convergence checks may signif-

icantly slow down the overall streamlined iterations. Therefore, we suggest letting

Algorithms 3.2 and 3.3 run for a reasonable number of iterations fixed in advance

and increase the number of iterations if convergence checks suggest that the desired

level of convergence has not been achieved. Although any formal theoretical guar-

antees of convergence are provided, this technique embeds faster iterations, which

remains the main benefit of streamlined variational techniques.
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Algorithm 3.2 Streamlined algorithm for obtaining the mean field variational Bayes ap-
proximate posterior density functions (3.17) for the parameters of the linear mixed model
(3.14) with the two-level random effects specification. The approximation is based on the
mean-field density restriction (3.16). The algorithm description requires more than one page
and is continued on a subsequent page.

Data Inputs: yi (oi × 1), XR
i (oi × pR), XA

i (oi × pA), XS
i (oi × pS), Zi (oi × q), 1 ≤ i ≤ m.

Build X i =
[︂

XR
i

⃓⃓⃓
XA

i

⃓⃓⃓
XS

i

]︂
(oi × p).

Global-local prior type choice: Laplace, Horseshoe or NEG.

Hyperparameter Inputs: µβR (pR × 1), µβA (pA × 1), ΣβR (pR × pR) and ΣβA (pA × pA)

both symmetric and positive definite, νσ2 , sσ2 , sτ2 , νΣ, sΣ, 1, . . . , sΣ, q > 0.

If NEG: λ > 0.

Initialize: µq(1/σ2) > 0, µq(1/a
σ2 ) > 0, µq(1/τ2) > 0, µq(1/a

τ2 ) > 0, µq(ζ) (pS × 1), µq(aζ)
(pS × 1),

Mq(Σ−1) (q× q), Mq(A−1
Σ ) (q× q) both symmetric and positive definite.

ξq(σ2) ←− νσ2 +
m
∑

i=1
oi; ξq(Σ) ←− νΣ + m + 2q− 2; ξq(a

σ2 ) ←− νσ2 + 1; ξq(AΣ) ←− νΣ + q;

ξq(τ2) ←− pS + 1; ξq(a
τ2 ) ←− 2; ΛAΣ

←− {νΣ diag(s2
Σ, 1, . . . , s2

Σ, q)}−1.

Cycle until convergence:

Compute a1, A11, {a2,i, A22,i, A12,i : 1 ≤ i ≤ m} with expressions from Result 3.1.

S1 ←− SolveTwoLevelSparseMatrix

(︂
a1, A11, {a2,i, A22,i, A12,i : 1 ≤ i ≤ m}

)︂
.

µq(β) ←− x1 component of S1; Σq(β) ←− A11 component of S1;

µq((βS)2) ←− diagonal
(︂

Σq(βS) + µq(βS)µ
T
q(βS)

)︂
;

λq(σ2) ←− µq(1/a
σ2 ); Λq(Σ) ←− Mq(A−1

Σ ).

For i = 1, . . . , m:

µq(ui)
←− x2,i component of S1; Σq(ui) ←− A22,i component of S1;

Eq{(β− µq(β))(ui − µq(ui)
)T} ←− A12,i component of S1;

λq(σ2) ←− λq(σ2) +
⃦⃦

yi − X iµq(β) − Ziµq(ui)

⃦⃦2
+ tr(XT

i X iΣq(β)) + tr(ZT
i ZiΣq(ui))

+ 2tr[ZT
i X iEq{(β− µq(β))(ui − µq(ui)

)T}];
Λq(Σ) ←− Λq(Σ) + µq(ui)

µT
q(ui)

+ Σq(ui);

µq(1/σ2) ←− ξq(σ2)/λq(σ2); Mq(Σ−1) ←− (ξq(Σ) − q + 1)Λ−1
q(Σ)

;

λq(a
σ2 ) ←− µq(1/σ2) + 1/(νσ2 s2

σ2); µq(1/a
σ2 ) ←− ξq(a

σ2 )/λq(a
σ2 );

λq(τ2) ←− µq(1/a
τ2 ) + µT

q(ζ)µq((βS)2); µq(1/τ2) ←− ξq(τ2)/λq(τ2);

λq(a
τ2 ) ←− µq(1/τ2) + 1/s2

τ2 ; µq(1/a
τ2 ) ←− ξq(a

τ2 )/λq(a
τ2 );

g ←− 1
2 µq(1/τ2)µq((βS)2);

continued on a subsequent page . . .
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Algorithm 3.2 continued. This is a continuation of the description of this algorithm that
commences on a preceding page.

If Laplace: µq(ζ) ←−
√︁

1/(2g);

If Horseshoe: λq(ζ) ←− µq(aζ)
+ g; µq(ζ) ←− 1/λq(ζ);

λq(aζ) ←− µq(ζ) + 1; µq(aζ)
←− 1/λq(aζ);

If NEG: λq(ζ) ←− 2µq(aζ)
; µq(ζ) ←−

√︂
λq(ζ)/(2g); µq(1/ζ) ←− 1/µq(ζ) + 1/(2µq(aζ)

);

λq(aζ) ←− µq(1/ζ) + 1; µq(aζ)
←− (λ + 1)(1/λq(aζ));

Λq(AΣ) ←− diag
{︁

diagonal
(︁

Mq(Σ−1)

)︁}︁
+ ΛAΣ

; Mq(A−1
Σ ) ←− ξq(AΣ)Λ

−1
q(AΣ)

.

Outputs: µq(β), Σq(β),
{︂

µq(ui)
, Σq(ui), Eq{(β− µq(β))(ui − µq(ui)

)T} : 1 ≤ i ≤ m
}︂

,

ξq(σ2), λq(σ2), ξq(a
σ2 ), λq(a

σ2 ), ξq(τ2), λq(τ2), ξq(a
τ2 ), λq(a

τ2 ),

if Laplace: µq(ζ), if Horseshoe:
{︂

λq(ζ), λq(aζ)

}︂
, if NEG:

{︂
µq(ζ), λq(ζ), λq(aζ)

}︂
,

ξq(Σ), Λq(Σ), ξq(AΣ), Λq(AΣ).
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Algorithm 3.3 Streamlined algorithm for obtaining the mean field variational Bayes ap-
proximate posterior density functions (3.17) for the parameters of the linear mixed model
(3.14) with the three-level random effects specification. The approximation is based on the
mean-field density restriction (3.16). The algorithm description requires more than one page
and is continued on a subsequent page.

Data Inputs: yij (oij × 1), XR
ij (oij × pR), XA

ij (oij × pA), XS
ij (oij × pS),

ZL1
ij (oij × q1), ZL2

ij (oij × q2), 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Build X ij =
[︂

XR
ij

⃓⃓⃓
XA

ij

⃓⃓⃓
XS

ij

]︂
(ni × p).

Global-local prior type choice: Laplace, Horseshoe or NEG.

Hyperparameter Inputs: µβR (pR × 1), µβA (pA × 1), ΣβR (pR × pR) and ΣβA (pA × pA)

both symmetric and positive definite, νσ2 , sσ2 , sτ2 , νΣL1 , νΣL2 ,

sΣL1, 1, . . . , sΣL1, q1
, sΣL2, 1, . . . , sΣL2, q2

> 0. If NEG: λ > 0.

Initialize: µq(1/σ2) > 0, µq(1/a
σ2 ) > 0, µq(1/τ2) > 0, µq(1/a

τ2 ) > 0, µq(ζ) (pS × 1), µq(aζ)
(pS × 1),

Mq((ΣL1)−1) (q1 × q1), Mq((ΣL2)−1) (q2 × q2), Mq(A−1
ΣL1 )

(q1 × q1), Mq(A−1
ΣL2 )

(q2 × q2)

all symmetric and positive definite.

ξq(σ2) ←− νσ2 +
m
∑

i=1

ni

∑
j=1

oij; ξq(ΣL1) ←− νΣL1 + m + 2q1 − 2; ξq(ΣL2) ←− νΣL2 + ∑m
i=1 ni + 2q2 − 2;

ξq(a
σ2 ) ←− νσ2 + 1; ξq(A

ΣL1 ) ←− νΣL1 + q1; ξq(A
ΣL2 ) ←− νΣL2 + q2;

ξq(τ2) ←− pS + 1; ξq(a
τ2 ) ←− 2;

ΛA
ΣL1 ←− {νΣL1 diag(s2

ΣL1, 1
, . . . , s2

ΣL1, q1
)}−1; ΛA

ΣL2 ←− {νΣL2 diag(s2
ΣL2, 1

, . . . , s2
ΣL2, q2

)}−1.

Cycle until convergence:

Compute a1, A11, {a2,i, A22,i, A12,i : 1 ≤ i ≤ m}, {a2,ij, A22,ij, A12,ij, A12,i,j :

1 ≤ i ≤ m, 1 ≤ j ≤ ni} with expressions from Result 3.2.

S2 ←− SolveThreeLevelSparseMatrix

(︂
a1, A11, {a2,i, A22,i, A12,i : 1 ≤ i ≤ m},

{a2,ij, A22,ij, A12,ij, A12,i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}
)︂

.

µq(β) ←− x1 component of S2; Σq(β) ←− A11 component of S2;

µq((βS)2) ←− diagonal
(︂

Σq(βS) + µq(βS)µ
T
q(βS)

)︂
;

λq(σ2) ←− µq(1/a
σ2 ); Λq(ΣL1) ←− Mq(A−1

ΣL1 )
; Λq(ΣL2) ←− Mq(A−1

ΣL2 )
.

For i = 1, . . . , m:

µq(uL1
i ) ←− x2,i component of S2; Σq(uL1

i ) ←− A22,i component of S2;

Eq{(β− µq(β))(u
L1
i − µq(uL1

i ))
T} ←− A12,i component of S2;

Λq(ΣL1) ←− Λq(ΣL1) + µq(uL1
i )µ

T
q(uL1

i )
+ Σq(uL1

i ).

For j = 1, . . . , ni:
µq(uL2

ij )
←− x2,ij component of S2; Σq(uL2

ij )
←− A22,ij component of S2;

Eq{(β− µq(β))(u
L2
ij − µq(uL2

ij )
)T} ←− A12,ij component of S2;

Eq{(uL1
i − µq(uL1

i ))(u
L2
ij − µq(uL2

ij )
)T} ←− A12,i,j component of S2;

continued on a subsequent page . . .
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Algorithm 3.3 continued. This is a continuation of the description of this algorithm that
commences on a preceding page.

λq(σ2) ←− λq(σ2) +
⃦⃦

yij − X ijµq(β) − ZL1
ij µq(uL1

i ) − ZL2
ij µq(uL2

ij )

⃦⃦2

+ tr(XT
ijX ijΣq(β)) + tr((ZL1

ij )
TZL1

ij Σq(uL1
i )) + tr((ZL2

ij )
TZL2

ij Σq(uL2
ij )
)

+ 2tr[(ZL1
ij )

TX ijEq{(β− µq(β))(u
L1
i − µq(uL1

i ))
T}]

+ 2tr[(ZL2
ij )

TX ijEq{(β− µq(β))(u
L2
ij − µq(uL2

ij )
)T}]

+ 2tr[(ZL1
ij )

TZL2
ij Eq{(uL1

i − µq(uL1
i ))(u

L2
ij − µq(uL2

ij )
)T}];

Λq(ΣL2) ←− Λq(ΣL2) + µq(uL2
ij )

µT
q(uL2

ij )
+ Σq(uL2

ij )
.

µq(1/σ2) ←− ξq(σ2)/λq(σ2);

Mq((ΣL1)−1) ←− (ξq(ΣL1) − q1 + 1)Λ−1
q(ΣL1)

; Mq((ΣL2)−1) ←− (ξq(ΣL2) − q2 + 1)Λ−1
q(ΣL2)

;

λq(a
σ2 ) ←− µq(1/σ2) + 1/(νσ2 s2

σ2); µq(1/a
σ2 ) ←− ξq(a

σ2 )/λq(a
σ2 );

λq(τ2) ←− µq(1/a
τ2 ) + µT

q(ζ)µq((βS)2); µq(1/τ2) ←− ξq(τ2)/λq(τ2);

λq(a
τ2 ) ←− µq(1/τ2) + 1/s2

τ2 ; µq(1/a
τ2 ) ←− ξq(a

τ2 )/λq(a
τ2 );

g ←− 1
2 µq(1/τ2)µq((βS)2);

If Laplace: µq(ζ) ←−
√︁

1/(2g);

If Horseshoe: λq(ζ) ←− µq(aζ)
+ g; µq(ζ) ←− 1/λq(ζ);

λq(aζ) ←− µq(ζ) + 1; µq(aζ)
←− 1/λq(aζ);

If NEG: λq(ζ) ←− 2µq(aζ)
; µq(ζ) ←−

√︂
λq(ζ)/(2g); µq(1/ζ) ←− 1/µq(ζ) + 1/(2µq(aζ)

);

λq(aζ) ←− µq(1/ζ) + 1; µq(aζ)
←− (λ + 1)(1/λq(aζ));

Λq(A
ΣL1 ) ←− diag

{︁
diagonal

(︁
Mq((ΣL1)−1)

)︁}︁
+ ΛA

ΣL1 ; Mq((A
ΣL1 )−1) ←− ξq(A

ΣL1 )Λ
−1
q(A

ΣL1 )
.

Λq(A
ΣL2 ) ←− diag

{︁
diagonal

(︁
Mq((ΣL2)−1)

)︁}︁
+ ΛA

ΣL2 ; Mq((A
ΣL2 )−1) ←− ξq(A

ΣL2 )Λ
−1
q(A

ΣL2 )
.

Outputs: µq(β), Σq(β),
{︂

µq(uL1
i ), Σq(uL1

i ), Eq{(β− µq(β))(u
L1
i − µq(uL1

i ))
T} : 1 ≤ i ≤ m

}︂
,{︂

µq(uL2
ij )

, Σq(uL2
ij )

, Eq{(β− µq(β))(u
L2
ij − µq(uL2

ij )
)T} : 1 ≤ i ≤ m, 1 ≤ j ≤ ni

}︂
,

ξq(σ2), λq(σ2), ξq(a
σ2 ), λq(a

σ2 ), ξq(τ2), λq(τ2), ξq(a
τ2 ), λq(a

τ2 ),

if Laplace: µq(ζ), if Horseshoe:
{︂

λq(ζ), λq(aζ)

}︂
, if NEG:

{︂
µq(ζ), λq(ζ), λq(aζ)

}︂
,

ξq(ΣL1), Λq(ΣL1), ξq(ΣL2), Λq(ΣL2), ξq(A
ΣL1 ), Λq(A

ΣL1 ), ξq(A
ΣL2 ), Λq(A

ΣL2 ).
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3.6 Numerical Investigations on Simulated Data

We now discuss the results of a simulation study conducted to assess:

1. the accuracy of the optimal q-density approximations compared to the marginal

posterior density functions obtained via MCMC when global-local priors are

specified;

2. fixed effects selection performances via the SAVS procedure for effectively dis-

criminating the relevant fixed effects from those being irrelevant;

3. computational timings and memory storage requirements for both naïve and

streamlined algorithm implementations, especially when the number of model

parameters increases.

Notice that the accuracy and variable selection performances are not affected by

the use of streamlined updates in place of naïve counterparts, given that both the

implementations converge to the same solution.

To allow for maximal speed, both the MFVB algorithms and corresponding

MCMC sampling schemes were implemented in C++ employing the Armadillo li-

brary and executed in R using the RcppArmadillo package (Eddelbuettel and Sander-

son, 2014). See Appendix A.3 for further details.

The simulation study focused on three-level random effect models, which give

rise to more complex three-level sparse matrix structures. We simulated 50 datasets

according to model specification (3.14) with m = 100 groups, each with ni = 15

sub-groups, each having oij = 20 units, for 1 ≤ i ≤ 100, 1 ≤ j ≤ 15. We included

a random intercept and a random slope for both the group and sub-group levels

(q1 = q2 = pR = 2) with true parameter values being βR = (0.58, 1.98)T, and pA = 3

additional fixed effects having true parameter values βA = (0.7,−0.9, 1.8)T. We

also considered a sparse design setting with pS = 50 fixed effects such that 40 of

them were assumed to be irrelevant and hence the corresponding parameters had

true value equal to zero, while the remaining 10 parameters were βS
1 = 1.91, βS

7 =

1.96, βS
10 = −0.10, βS

18 = 1.62, βS
24 = −1.45, βS

25 = −1.53, βS
36 = 0.24, βS

37 = 1.76, βS
45 =

1.79 and βS
49 = −0.15. The true variance parameter σ2 was fixed to 0.7. The true

random effects vectors uL1
i and uL2

ij were generated independently from N(0, ΣL1) and

N(0, ΣL2) distributions, having

ΣL1 =

[︄
0.42 −0.09

−0.09 0.52

]︄
and ΣL2 =

[︄
0.80 −0.24

−0.24 0.75

]︄
.
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Figure 3.2: Side-by-side boxplots of the accuracy scores from the simulation study for a
selection of model parameters and random effects. Outliers are displayed as solid points.

For each data replication, the slope-associated column of XR was generated from

a standard Gaussian distribution, while the rows of XA and XS were generated

from two multivariate Gaussian distributions having zero mean vector and covari-

ance matrices generated from Wishart(pA, I) and Wishart(pS, I) distributions, re-

spectively. This strategy produces covariates with different variability and non-zero

correlations, better mimicking a real-data scenario. The setting embeds a fixed ef-

fects design matrix X of size 30,000 × 55, and a sparse random effects design matrix

Z of size 30,000 × 3,200 with 96 millions cells, of which 99.875% are zeros.

We proceed fitting model (3.14) for each data replication using diffuse priors

with hyperparameters µβR = µβA = 0, ΣβR = ΣβA = 1010I, νσ2 = 1, νΣL1 = νΣL2 = 2,

sσ2 = sΣL1, 1 = sΣL1, 2 = sΣL2, 1 = sΣL2, 2 = 105. Without loss of generality, an uninformative

Horseshoe prior for all the elements of βS have been specified, with sτ2 = 105 to

limit prior information about the global degree of sparsity. Along with the simu-

lation study, the MFVB approximations were obtained by running 200 iterations of

the streamlined or naïve algorithms. In comparison, the MCMC samplings were

performed using a warmup of length 5,000 followed by 25,000 iterations, to which

we applied a thinning procedure of size 5 for preventing chain autocorrelation.
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3.6.1 Accuracy Assessment

We measured the quality of the variational approximations using the accuracy

index (1.25). Figure 3.2 shows the accuracy results for the 50 data replicates. The

boxplots refer to all the entries of βR and βA, to 10 elements of βS chosen such that

5 of them have non-zero values (βS
1, βS

10, βS
18, βS

25 and βS
37) and 5 are null (βS

4, βS
15, βS

23,

βS
33 and βS

50), the intercept- and slope-associated elements of uL1
i and uL2

ij , for 1 ≤ i ≤ 3

and j = 1, the entries of ΣL1 and ΣL2, σ2, and τ2. The intercept- and slope-associated

parameters are identified by the subscripts int and slp, respectively.

Variational approximations showed high accuracy scores for all the model pa-

rameters considered and across the different data replications. The accuracies for

βR
1 and βR

2 were slightly affected by inappropriate convergence of their respective

MCMC chains, which may be resolved employing hierarchical centering methods

(see Gelfand et al., 1995 and Section 2.3 of Zhao et al., 2006). All the fixed effects sub-

ject to selection and having non-zero true values exhibited accuracy scores greater

than 90%. In contrast, those having true values equal to zero had lower accuracy

scores between 75% and 85% due to the spiky marginal posterior densities being ap-

proximated by Gaussian variational densities. All the other fixed effects parameters,

random effects and variance parameters showed accuracy scores greater than 90%.

The accuracy scores of the global variance parameter τ2 were under 50%. Despite

not being directly shown, all the q∗(ζh)’s had accuracy scores between 75% and 80%.

Similar results were obtained for the alternative global-local prior specifications.

Figure 3.3 displays the MFVB and MCMC approximate posterior densities, to-

gether with the associated accuracy scores, obtained for the first data replication of

the simulation study. These plots visually assess the quality of the approximation

and show that the approximate posterior density functions are generally concen-

trated around the true parameter values. Notice that the global-local prior shrinks

the MCMC marginal posterior densities of the βS-parameters having true null value

towards zero. The corresponding optimal q-densities are Gaussian and, although

they cannot capture peak and tail behaviors, provide satisfactory approximations.

Notice also that the τ2 approximate posterior density is concentrated around a very

small value, as expected for the sparse covariate setting we considered in the simu-

lation study.
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Figure 3.3: Approximate posterior density functions of some of the three-lever random
effects model parameters obtained from the first replication of the simulation study. Each
plot shows the optimal approximate posterior density function q∗(θ) obtained via MFVB
(black dashed curves) and the MCMC-based p(θ|y) densities (grey curves). A vertical line
indicates the parameter true value. The percentages of accuracy are also provided.

3.6.2 Fixed Effects Selection Assessment

We assessed fixed effects selection performances by running Algorithm 3.3 on the

same 50 data replications, also experimenting the other two global-local priors con-

sidered in this work: the Laplace and Normal-Exponential-Gamma with λ = 0.25.

We also considered the Gaussian prior specification described in Nolan et al. (2020)

with hyperparameters µβS = 0 and ΣβS = 1010I. Then, for each data replication and

each of the four different priors considered, we used the approximating densities

corresponding to fixed effects subject to selection to perform the SAVS procedure of
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Algorithm 3.1. The SAVS procedure have also been employed for the approximate

posteriors obtained from the Gaussian prior in order to compare with a prior that

does not belong to the global-local family.

Let TP (true positives) denote the number of selected fixed effects with true value

different from zero, and TN (true negatives) denote the number of unselected irrel-

evant fixed effects having true value equal to zero. We measured the fixed effects

selection performance for each prior considered using the F1-score (van Rijsbergen,

2004):

F1 ≡
(︃

2× precision× recall
precision + recall

)︃
× 100%, (3.19)

with precision ≡ TP/(TP + FP) and recall ≡ TP/(TP + FN), where FP and FN

denote the number of false positives (incorrectly selected fixed effects) and false

negatives (relevant fixed effects that have not been selected), respectively. This index

takes values between 0% and 100%, with higher values to be preferred.

The median F1-score over the 50 data replicate was 63.5% (1st quartile: 43.5%; 3rd

quartile: 94.2%) for the Gaussian prior and 95.24% (1st quartile: 80%; 3rd quartile:

100%) for the Laplace prior. Both the Horseshoe and Negative-Exponential-Gamma

priors exhibited a F1-score equal to 100% for all the 50 data replications of the sim-

ulation study, meaning that perfect selection (TP = 10 and TN = 40) was always

achieved. From this simplified simulated sparse data scenario, it is apparent that

global-local priors effectively provide better variable selection performances than

the Gaussian prior. The lower performances of the Gaussian and Laplace priors are

due to the SAVS procedure being applied to optimal approximate q-densities that

have not been properly shrunk towards zero, and so irrelevant fixed effects tend to

be selected. Nonetheless, all the four different priors gave FP = 0, meaning that

they did not incorrectly select irrelevant fixed effects.

3.6.3 Speed and Memory Saving Assessment

The streamlined variational inference has been conceived to obtain efficient im-

plementations of variational algorithms. Hence, the assessment of speed and mem-

ory savings is another important aspect. We assessed speed and memory per-

formances of the streamlined variational Algorithm 3.3 and its naïve counterpart,

whose updates are described in Section 3.5.1. Four different group numbers and

three different lengths for the vector of fixed effects to be selected were considered,

namely m ∈ {10, 50, 100, 200} and pS ∈ {25, 100, 200}, aiming to explore the scal-

ability of the streamlined methodology to high dimensions. For each combination
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Total runtime of the algorithm (seconds) Total size of the required data inputs (megabytes)

m pS Streamlined MFVB Naïve MFVB Naïve MFVB
Streamlined MFVB MCMC Streamlined MFVB Naïve MFVB Naïve MFVB

Streamlined MFVB

10 25 0.70(0.06) 3.86(0.50) 5.54 13.03(0.96) 1.39(0.07) 11.06(1.00) 7.97
100 3.90(0.23) 6.51(0.82) 1.67 46.99(1.47) 3.68(0.24) 12.73(1.34) 3.46
200 9.71(1.22) 12.09(2.04) 1.24 176.22(9.37) 6.60(0.52) 15.09(1.89) 2.29

50 25 3.29(0.11) 365.07(37.10) 111.01 63.28(3.76) 6.69(0.20) 240.40(13.92) 35.91
100 19.66(0.87) 415.29(51.66) 21.12 138.42(5.72) 18.37(0.81) 254.04(20.84) 13.83
200 49.25(1.47) 501.33(39.76) 10.18 305.25(6.51) 34.00(1.04) 269.34(14.90) 7.92

100 25 6.77(0.32) 2877.33(177.77) 424.72 151.05(10.48) 13.56(0.34) 967.34(42.15) 71.33
100 40.42(1.66) 3172.66(116.83) 78.50 266.71(10.06) 36.77(1.29) 1010.25(26.94) 27.47
200 97.81(2.07) 3403.55(204.38) 34.80 494.15(9.34) 67.53(1.31) 1013.90(48.67) 15.01

200 25 13.30(0.30) > 5 hours > 1355 328.87(20.04) 26.90(0.56) 3817.06(113.85) 141.88
100 79.97(1.18) > 5 hours > 225 578.88(13.45) 73.74(1.01) 3941.15(97.90) 53.45
200 197.20(4.13) > 5 hours > 95 904.64(15.77) 135.84(2.73) 3991.66(102.48) 29.38

Table 3.2: Average (standard deviation of) elapsed computing times in seconds and average
(standard deviation of) total size of required data inputs in megabytes for fitting model
(3.14) with three-level random effects specification and pS fixed effects having Horseshoe
prior. Results are shown for different group sizes m and different values for pS.

of m and pS, we simulated 10 data replications from model (3.14) with a random

intercept and one slope for a single continuous predictor, choosing the sub-group

dimensions ni uniformly on the discrete set {10, . . . , 20} and the sub-group specific

unit dimensions oij uniformly on the discrete set {20, . . . , 30}. This setting allows

testing models with heterogeneous dimensions, although sharing the same number

of groups m. We considered again a Horseshoe prior for the fixed effects subject to

selection, and all the other model dimensions and hyperparameters were the same

as those described before.

For each simulated dataset, we collected the computational timings and the to-

tal size of the inputs data required for performing both the streamlined and naïve

algorithms. We also ran MCMC and recorded its computational timings, although

MFVB and MCMC do not admit a genuine comparison as already discussed in Sec-

tion 1.5. Moreover, our efficient implementation of MCMC is based on independent

resampling from the full conditional densities of β, uL1
i and uL2

ij , whereas MFVB uses a

joint approximation q(β, u) for all these vectors. Nonetheless, we also report MCMC

timings to provide intuition on the computational effort required for sampling from

the posterior distribution when m and pS increase.

The tabulated results are shown in Table 3.2. The ratio columns help to under-

stand the gain obtained employing the streamlined MFVB methodology over its

naïve counterpart. For increasing m, streamlined MFVB reached convergence faster

than naïve MFVB. Notice that in the biggest scenario under examination (last row of

the table), the streamlined MFVB algorithm ran in less than 4 minutes on average,
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while naïve MFVB required more than 5 hours. Bigger scenarios are computation-

ally demanding for the naïve implementation and may fail to run due to excessive

storage demand, whilst we did not experience these issues with Algorithm 3.3. Sim-

ilar comments apply to the huge saving of memory allocation for the required input

data provided by the streamlined MFVB implementation.

Conditionally on the same m scenario, the speed gain and memory saving ob-

tained by streamlining the MFVB updates decrease as pS increases. This comes with

no surprise as the work of Nolan and Wand (2020) accounts for sparse structures

of Σq(β,u) when m becomes larger and larger and p is assumed to be relatively very

small. Having a closer look at its naïve update expression (3.18), we can conceptu-

ally subdivide it into

Σq(β,u) ←−
(︄[︄

Aβ Aβ,u

Au,β Au

]︄)︄−1

,

where Aβ is a full squared matrix of dimension p referring to the fixed effects

component, Aβ,u is a full matrix of dimension p × (q1m + q2 ∑m
i=1 ni) and Au is a

sparse squared matrix of dimension q1m + q2 ∑m
i=1 ni referring to the random effects

component. The matrix Aβ exactly corresponds to the A11 matrix of dimension

p × p defined in Result 3.2 and refers to the sub-block which does not provide

any sparse structure induced by the three-level random effects specification. The

SolveThreeLevelSparseMatrix routine makes use of this matrix in many multiplica-

tions with the sub-blocks of Aβ,u and Au, increasing the overall runtime as p gets

bigger and bigger. Keeping m fixed and increasing the dimension of pS (and p by

consequence) makes the sub-block Aβ larger and larger with respect to Au, and

overwhelms the computational gain obtained by efficiently accounting for its sparse

structure. This is apparent by the (m = 10, pS = 200) scenario, for which stream-

lined MFVB provides no significative advantages over the naïve implementation in

terms of computational runtime. In general, streamlined MFVB computations and

associated algorithms proposed in this chapter enhance their computational bene-

fits when p is limited in comparison with m. Similar comments apply also to the

two-level random effects specification.

We conclude the discussion by noticing that our methodology takes the ap-

proximate joint posterior dependence between the fixed effects and random effects

parameters into account through the multivariate Gaussian approximating density
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q(β, u). This choice allows to better capture the posterior covariance structure be-

tween β and u and ensures better results in terms of approximation accuracy. Nev-

ertheless, alternative and less restrictive factorizations can be considered, especially

if the quality of the approximation can be sacrificed and faster algorithms are de-

sired. For instance, the additional factorization q(β, u) = q(βR, u)q(βA, βS) could

remarkably speed up the computations if pR is small, regardless of the size of pA

and pS. For implementing this and any other additional independence constraints,

mean-field restrictions such as (3.16) and the algorithms proposed in this chapter

need to be modified accordingly.

3.7 Application to Data from a Perinatal Study

We present an application of the methodology and algorithms proposed in Sec-

tion 3.5 to the National Collaborative Perinatal Project data (Klebanoff, 2009), a

multisite prospective cohort study that took place in the United States of America

between 1959 and 1974. This study was designed to identify the effects of compli-

cations during pregnancy or the perinatal period on birth and child outcomes. The

data are publicly available from the U.S. National Archives with identifier 606622.

Many online resources have already employed this dataset or subset of it for many

analyses. Over the years, it has become a high-quality reference for biomedical and

behavioral research in many areas such as obstetrics, perinatology, pediatrics, and

developmental psychology.

The same data were examined in Nolan et al. (2020) and we expressly account

for the same model specification to experiment a suitable fixed effects selection for

a moderately large set of regressors that have been excluded from their analysis

and that may have a relevant impact onto explaining the response variable. A full-

blown analysis goes beyond the scope of this paper, and we focused on predicting

the height-for-age z-score for 37,257 infants followed longitudinally over their first

year of life, following indications from Taylor (1980). The height-for-age z-score is a

standardized measure of the World Health Organization for children’s height after

accounting for age. Notable discrepancies from this index standard reference values

are considered an alarm signal for malnutrition symptoms.

We performed a Bayesian analysis that accounts for the heterogeneity of the evo-

lution of such index across infants. Our analysis was performed through a two-level

random effects linear model having a random intercept, and linear and quadratic

slopes (q = 3) to account for the quadratic evolution of that score over time. All
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the fixed effects regressors, excluding the intercept, age of the infant (in days since

birth) and its square, were subject to selection; these included characteristics of the

infant at birth (e.g. weight, length, head circumference, sex, and Apgar scores), and

characteristics of the mother, father and family. We also accounted for possible in-

teractions between some infant characteristics and sex, for a total of 38 candidate

predictors subject to selection.

The model we fitted respects the general specification (3.14) and can be expressed

for the generic ith infant (1 ≤ i ≤ 37, 257) as follows:

yi|β, ui, σ2 ind∼ N(XR
i βR + XS

i βS + Ziui, σ2I), ui|Σ ind∼ N3(0, Σ),[︄
βR

βS

]︄ ⃓⃓⃓⃓
⃓ ζ, τ2 ∼ N

⎛⎝[︄ 03

038

]︄
,

⎡⎣ 1010I3 O

O τ2 diag(ζ)−1

⎤⎦⎞⎠ ,

σ2|aσ2 ∼ Inverse-χ2(1, 1/aσ2), aσ2 ∼ Inverse-χ2(1, 10−10),

Σ|AΣ ∼ Inverse-G-Wishart(Gfull, 6, A−1
Σ

),

AΣ ∼ Inverse-G-Wishart(Gdiag, 1, 2× 10−10I3),

ζh|aζh

ind∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Inverse-χ2(2, 1) for a Laplace prior

Gamma(1/2, aζh) for a Horseshoe prior

Inverse-χ2(2, 2aζh) for a NEG prior,

aζh

ind∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− for a Laplace prior

Gamma(1/2, 1) for a Horseshoe prior

Gamma(λ, 1) for a NEG prior,

for 1 ≤ h ≤ 38,

τ2|aτ2 ∼ Inverse-χ2(1, 1/aτ2), aτ2 ∼ Inverse-χ2(1, 10−10).

(3.20)

For the ith infant, oi time-point measurements were recorded, ranging from one to

four in number. The XR
i matrix has size ni × 3 with the first column being a vector

of ones, the second one consisting of the time-point measurements for the ith infant

and the third column containing the square of the elements of the second one. We

set XA
i = O, while the XS

i matrix of size ni × 38 consisted of all the considered

predictors subject to selection. Moreover, Zi = XR
i by definition. Uninformative

priors were placed over all the model parameters. We fitted the model using the

three different global-local priors treated in this work and the Gaussian prior for βS

considered in Nolan et al. (2020).
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Streamlined MFVB and MCMC were used for model fitting. The former was

performed running Algorithm 3.2 and stopping it after 200 iterations. The latter

was performed running 25,000 iterations, to which a thinning procedure of size 5

was applied after discarding 5,000 burnin iterations. The whole input data required

approximately 200 megabytes of memory storage, while a naïve MFVB procedure

would necessitate several gigabytes of memory to store the Z matrix, which is com-

posed of 11,693,705,562 cells of which the 99.997% are zeros. All the covariates

excluding the binary ones were standardized, and the estimates were rescaled to the

original scale before presenting the results. The streamlined MFVB algorithms took

2 to 3 minutes to run for each different global-local prior specification, while the

associated MCMC samplers always took more than 35 minutes.

We omit the presentation of model interpretation, goodness-of-fit analysis, ac-

curacy of the approximations, convergence of the MCMC chains, and visualization

of the fitted height-for-age z-score trajectories over time. Instead, in Figure 3.4 we

present 90% high posterior density credible intervals for all the fixed effects subject

to selection. The thicker lines represent the intervals obtained from the MCMC pos-

terior samples through the emp.hpd function of the TeachingDemos package (Snow,

2020), while the thinner lines represent those calculated from the determined op-

timal MFVB approximate posteriors. The two lines are superimposed to facilitate

immediate comparison for each different global-local prior specification.

Overall, MFVB provided very accurate high posterior density credible intervals

when compared to MCMC. The MCMC chain associated with the birth length fixed

effect showed some convergence problems, probably due to its moderate correla-

tion with the response variable, and this reduced the overlap with MFVB. Notably,

the Laplace prior produced results very similar to those provided by the Gaussian

prior specification. On the other hand, both the Horseshoe and Normal Exponen-

tial Gamma priors seem to have effectively shrunk most of the fixed effects towards

zero, especially those associated with dummy variables.

The SAVS procedure applied to the approximate posterior densities classifies the

following fixed effects as relevant: the indicator that the infant is male, infant’s year

of birth, birth length, birth head circumference, the Apgar score assessed 5 minutes

after the infant’s birth, and the mother’s height. We have little knowledge of the

considered topic to confirm whether these results align with literature references.

However, we are confident that sex, length of both the infant and the mother and

some additional infant-related covariates are effectively relevant for predicting the

height-for-age z-score.
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Figure 3.4: The 90% high posterior density credible intervals for the fixed effects subject to
selection in the real data application. The four different priors for βS are represented with
different colors. For each fixed effect, the thicker lines correspond to the intervals obtained
from the MCMC approximate marginal posterior densities, while the thinner lines represent
those obtained from the streamlined MFVB approximating densities.

Some fixed effects such as the ethnicity of the mother, the place where she con-

ceived, her marital status and information on previous pregnancies were not in-

dicated as relevant by the SAVS procedure, albeit some of their associated high

posterior density credible intervals are far from zero. Notice also that for some

fixed effects, global-local priors drag the intervals towards the origin, with different

intensities probably depending on the variability and correlation of the covariates.

More ad-hoc analyses are firmly suggested, although these go beyond the scope of

the current work.
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3.8 Concluding Remarks

In this chapter, we developed streamlined mean-field variational Bayes proce-

dures for Gaussian response linear mixed models having nested random effects

structures and admitting fixed effects prior specifications alternative to the clas-

sical Gaussian one. The priors we considered are amenable to automated and

hyperparameter-free fixed effects selection procedures. Simulated and real data

examples showed how streamlined variational inference could provide impressive

benefits in terms of computational time and memory saving compared to inefficient

implementations of variational approximations. Albeit the marginal posterior densi-

ties of fixed effects subject to selection are approximated by bell-shaped curves, our

studies showed high performances of the automated selection procedure. It is also

worth mentioning that the more restrictive mean-field approximations discussed at

the end of Section 3.6 can sensibly improve the benefit of streamlined variational

inference for large p scenarios and, in general, when speed is more important than

approximation accuracy.

Numerous ramifications of the proposed methodology can be envisaged. These

include the extension to generalized linear mixed models (e.g., for binary or Pois-

son response variables) or the treatment of models with unit-specific errors, het-

eroskedastic covariance structures for groups and sub-groups, higher levels of nest-

ing, or crossed random effects.

Regarding the selection of fixed effects, alternative shrinkage priors belonging to

the global-local family can be accounted for with minor modifications to the pro-

posed algorithms. Following the prescriptions of Neville et al. (2014), it is possible to

study global-local prior specifications that are not based on auxiliary variables and

investigate whether this could lead to better approximation accuracies, although at

the cost of more computationally intensive variational updates. We also mention

the possibility of admitting spike-and-slab prior formulations following, for exam-

ple, a variational inference approach similar to that of Carbonetto and Stephens

(2012). The main drawback with spike-and-slab priors is that more involved algebra

is required for implementing streamlined variational inference procedures.





Chapter 4

GVA for Nonstationary Gaussian

Process Regression

4.1 Introduction

Gaussian processes (Stein, 1999; Rasmussen and Williams, 2006) are a powerful yet

practical nonparametric Bayesian method for solving supervised learning problems

such as nonlinear regression or classification. Their extensive use is due to their

simplicity, flexibility and substantial theoretical support (e.g. Choi and Schervish,

2007; van der Vaart and van Zanten, 2008; Castillo, 2008; Koepernik and Pfaf, 2021)

and successful applications include time-series modeling (e.g. Roberts et al., 2013),

spatial statistics (e.g. Cressie, 1993), geostatistics (e.g. Journel and Huijbregts, 1978),

metereology (e.g. Thompson, 1956), health monitoring (e.g. Stegle et al., 2008) and

reinforcement learning (e.g. Kuss and Rasmussen, 2004) among others.

In this chapter, we take a machine-learning perspective and focus on Gaussian pro-

cess regression models (Rasmussen and Williams, 2006), namely regression mod-

els in which Gaussian processes are employed as prior distributions over the un-

known latent regression function. Standard machine learning literature correctly

treats them as nonparametric Bayesian probabilistic regression models, because they

embed a nonparametric prior distribution over the set of latent regression func-

tions and Bayes theorem updates it with observed data into the posterior predictive

distribution (O’Hagan, 1978). Nonetheless, this usually generates some confusion

since their specification depends upon hyperparameters characterizing their mean

and covariance functions, which needs to be estimated appropriately with either a

maximum-likelihood or a Bayesian approach. Consistently with the content of this

PhD thesis, we adopt a fully-Bayesian inferential formulation, the name underlining

107
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that we perform Bayesian inference over a nonparametric Bayesian model and, as

such, treat probabilistically model (hyper)parameters assigning proper prior distri-

butions.

Regardless of the inferential strategy adopted, a typical approach to Gaussian

process regression modeling is accounting for stationary prior specifications, for

which a wide variety of functional patterns are encompassed within covariance

function specifications depending on few parameters. This makes the estimation

procedure computationally feasible as long as the observed data reflect station-

ary behaviors. Nevertheless, real data are well known to often exhibit irregular

or unstable patterns which may compromise inferential conclusions if incorrectly

modeled assuming stationarity a-priori. Adopting nonstationary Gaussian process

prior specifications is currently a prolific area of research and many contributions

emerged over the years: in this chapter we focus on convolution methods (Higdon

et al., 1999) from which Paciorek (2003) and Paciorek and Schervish (2006) derived

interesting nonstationary covariance functions. Their intuition extended indepen-

dent work of Gibbs (1997) by introducing nonstationarity accounting for predictor-

dependent length-scale parameters, and we model their unknown relationship with

a stationary Gaussian process prior following the characterization of deep Gaussian

processes proposed by Dunlop et al. (2018).

MCMC sampling procedures for determining the posterior distribution of Gaus-

sian process regression models accounting for such nonstationary covariance func-

tions are summarized in Paciorek (2003). However, they are well known to be com-

putationally demanding and the produced chain often exhibit moderate autocor-

relation. Instead, we investigate GVA approximations to the posterior distribution

employing a parsimonious factor covariance structure described by Ong et al. (2018),

which is particularly suitable when the model parameter dimension is high. A simu-

lation study allows us to describe the broad flexibility of nonstationary data patterns

that are accommodated within our model specification and how it affords better pre-

dictions compared to stationary Gaussian process regression modeling. Drawbacks

and computational limits of our variational approximation approach are summa-

rized at the end of the chapter, together with possible solutions currently under

development and investigation.
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4.2 Gaussian Process Regression in a Nutshell

Many formulations and definitions for Gaussian processes are present in litera-

ture, depending on the applicative context of interest, the type of statistical problem

for which they are employed, and the required level of mathematical abstraction.

In order to proceed with a clear and shared notational convention throughout this

chapter, we start by recalling in this section the main elements of Gaussian process

regression from a so-called function-space view, which constitutes the main source of

interest for this chapter, and to describe how a fully-Bayesian inferential treatment is

handled. For a more in-depth exposure, we refer to Rasmussen and Williams (2006).

4.2.1 Background

Let we assume n predictor-response pairs (xi, yi) ∈ X ×R have been observed,

X ⊆ Rd, and that it is of interest to investigate the unknown regression function

f : X −→ R that relates them. A Gaussian process regression (GPR) model assumes

each response y is independently generated from:

y = f (x) + ϵ, ϵ ∼ N(0, σ2),

where σ2 > 0 and

f (x) ∼ GP(m(x), k(x, x′)) for any x, x′ ∈ X . (4.1)

Expression (4.1) yields a Gaussian process (GP) prior over f having mean function

m : X −→ R and covariance function k : X × X −→ R, usually also known as

kernel, such that m(x) = E{ f (x)} and k(x, x′) = E{( f (x)−m(x))( f (x′)−m(x′))T}
for any x, x′ ∈ X . A covariance function is valid for a GP prior specification if

and only if it is symmetric and positive definite, that is, if k(x, x′) = k(x′, x) and

∑n
i=1 ∑n

j=1 αiαj k(xi, xj) > 0 for any x1, . . . , xn ∈ X and α1, . . . , αn ∈ R. The associated

correlation function is ρ(x, x′) = k(x, x′)/
√︁

k(x, x)k(x′, x′).

Without loss of generality, m(x) is usually assumed to be the zero function. In-

stead, the choice of k(x, x′) is crucial as it essentially determines the behavior of

the GP prior. Many competitors have been proposed during the years and the at-

tention is usually restricted on stationary covariance functions being those expressible

as functions of x− x′. GPs employing stationary covariance functions are referred
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to as stationary GPs. Moreover, isotropic covariance functions are stationary covari-

ance functions expressible as k(x, x′) = k(∥x− x′∥), such as the well-known squared

exponential covariance function:

kS.E.(x, x′; τ2, ℓ2) = kS.E.(r; τ2, ℓ2) = τ2 exp
{︃
− r2

2ℓ2

}︃
, r = ∥x− x′∥. (4.2)

It is parametrized by a signal variance (amplitude) parameter τ2 > 0 and a length-

scale parameter ℓ2 > 0 which determines the oscillation frequency of the GP prior.

The associated correlation function is itself isotropic (and stationary as well):

ρS.E.(x, x′; ℓ2) = ρS.E.(r; ℓ2) = exp
{︃
− r2

2ℓ2

}︃
, r = ∥x− x′∥. (4.3)

The major attractiveness of GPs is that they can be interpreted as a collection

of random variables, any finite number of which have a consistent joint Gaussian

distribution. This means that, for any observed dataset {(xi, yi) : 1 ≤ i ≤ n}
such that y = (y1, . . . , yn)T, X = (xT

1 , . . . , xT
n )

T, f X = ( f (x1), . . . , f (xn))T, mX =

(m(x1), . . . , m(xn))T and KX,X = (k(xi, xi′))1≤i,i′≤n, then the GPR model admits the

following intuitive finite-sample representation:

y| f X ∼ Nn( f X , σ2I), f X ∼ Nn(mX , KX,X).

Notice here and after we denote with proper subscripts the set of predictors over

which the vectors and matrices are computed. Moreover, marginalizing out f X from

the model specification yields y ∼ Nn(mX , KX,X + σ2I).

As for any regression problem, the main use of GPR models is for predicting

f X∗ = ( f (x∗1), . . . , f (x∗n∗))
T over a set of n∗ new predictors X∗ = (x∗,T1 , . . . , x∗,Tn∗ )

T,

exploiting the knowledge about the unknown regression function supplied by the

observed data. Given the Bayesian nature of GPR model, this means obtaining the

posterior predictive distribution of f X∗ given the observed response vector y. Notice

the joint density function for y and f X∗ is given by[︄
y

f X∗

]︄
∼ Nn+n∗

(︄[︄
mX

mX∗

]︄
,

[︄
KX,X + σ2I KX,X∗

KX,X∗ KX∗,X∗

]︄)︄
,

where again mX∗ = (m(x∗1), . . . , m(x∗n∗))
T and KX∗,X∗ = (k(x∗i , x∗i′))1≤i,i′≤n∗ , whereas

KX,X∗ = (k(xi, x∗i′))1≤i≤n,1≤i′≤n∗ and KX∗,X = KT
X,X∗ . The posterior predictive dis-

tribution follows immediately by standard conditioning formulas for multivariate
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Gaussian distributions:

f X∗ |y ∼ Nn∗
(︂

mX∗ + KX∗,X(KX,X + σ2I)−1(y−mX),

KX∗,X∗ − KX∗,X(KX,X + σ2I)−1KX,X∗
)︂

.
(4.4)

If the interest is that of predicting the unobserved response yX∗ = (y∗1 , . . . , y∗n∗)
T

instead of f X∗ , the same reasoning applies replacing KX∗,X∗ with KX∗,X∗ + σ2I and

(4.4) turns into:

yX∗ |y ∼ Nn∗
(︂

mX∗ + KX∗,X(KX,X + σ2I)−1(y−mX),

KX∗,X∗ + σ2I − KX∗,X(KX,X + σ2I)−1KX,X∗
)︂

.
(4.5)

Both expressions require the inversion of a matrix of size n× n, which is anO(n3)

Cholesky operation unless KX,X has a special structure that can be exploited. Matrix

inversion becomes more unstable due to the propagation of errors arising from fi-

nite machine precision, this problem being even more acute if KX,X is rank-deficient.

Moreover, storing KX,X (and KX∗,X∗ as well) requires O(n2) (O(n∗2)) dynamic mem-

ory. Once the inverse matrix has been computed, evaluation of E( f X∗ |y) is an O(n)
operation and evaluation of Var( f X∗ |y) is O(n2). The same holds for E(yX∗ |y) and

Var(yX∗ |y). Therefore, a simple exact implementation of (4.4) and (4.5) can be han-

dled efficiently with at most a few thousand observations. Many different proposals

have been developed during the years to yield efficient computations of GPR mod-

els in large-data settings, see e.g. Smola and Bartlett (2001), Csató and Opper (2002),

Quiñonero Candela and Rasmussen (2005), Chapter 8 of Rasmussen and Williams

(2006), Banerjee et al. (2013) and Heaton et al. (2019) for exhaustive reviews.

Regardless of the mean and covariance functions adopted for (4.1), they are both

usually defined in terms of proper parameters, which need to be estimated appropri-

ately for making predictions with either (4.4) or (4.5). This is the case, for example,

of the squared exponential covariance function (4.2) which is parametrized by τ2

and ℓ2. Moreover, the measurement errors variance σ2 is generally not known.

The usual approach for jointly estimating the generic parameter vector θ and σ2

is by performing maximum-likelihood (usually called type-II maximum likelihood to

highlight that we are doing maximum likelihood within a nonparametric Bayesian

model) over the model marginal log-likelihood:

log p(y; σ2, θ) = −n
2

log |KX,X + σ2I| − 1
2
(y−mX)

T(KX,X + σ2)−1(y−mX).
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Nevertheless, the presence of multiple modes can make the estimation process prone

to overfitting, especially when the number of parameters is not moderate. Further-

more, weakly identified parameters can manifest in flat ridges for the marginal

log-likelihood surface, making the optimization procedure extremely sensitive to

the starting values as shown by Warnes and Ripley (1987). Overall, maximum like-

lihood estimates are subject to high variability and underestimate prediction uncer-

tainty (Lalchand and Rasmussen, 2020).

4.2.2 Fully-Bayesian Inference

Taking a fully-Bayesian inferential approach to GPR requires specifying a prior

distribution for θ and σ2 instead of treating them as unknown quantities to be esti-

mated via maximum-likelihood. Therefore, the above formulas must be adequately

adapted to exploit the fact that each quantity is conditionally dependent on the

model parameters.

In particular, we specify y| f X , σ2 ∼ Nn( f X , σ2I) and f X |θ ∼ Nn(mX , KX,X), from

which y|σ2, θ ∼ Nn(mX , KX,X + σ2I) after marginalizing out f X . Given p(σ2, θ)

the generic joint prior density function for θ and σ2, the posterior density function

for the GPR model parameter is p(σ2, θ|y) ∝ p(y|σ2, θ)p(σ2, θ). In general it does

not admit an explicit expression, requiring efficient MCMC sampling schemes or

variational approximation procedures to be implemented.

Regarding the predictive aspect of GPR, a fully-Bayesian inferential approach

requires integrating out θ and σ2 from the posterior predictive expressions given

above, employing the model posterior distribution. Hence the posterior predictive

distribution for f X∗ now becomes:

p( f X∗ |y) =
∫︂

p( f X∗ |y, σ2, θ)p(σ2, θ|y) dσ2 dθ, (4.6)

where p( f X∗ |y, σ2, θ) is the density function of (4.4) and, equivalently, the posterior

predictive distribution for yX∗ now becomes:

p(yX∗ |y) =
∫︂

p(yX∗ |y, σ2, θ)p(σ2, θ|y) dσ2 dθ, (4.7)

where p(yX∗ |y, σ2, θ) is the density function of (4.5). In both cases the GPR poste-

rior predictive distribution can be interpreted as a mixture of multivariate Gaussian

distributions, with p(σ2, θ|y) acting as mixing density. If variational approximations

are employed, p(σ2, θ|y) is replaced by its optimal approximating density function
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q∗(σ2, θ). Although in general closed-form expressions do not exist, draws from

either (4.6) or (4.7) can be obtained via Monte-Carlo, see e.g. the recent work of

Lalchand and Rasmussen (2020).

4.3 Nonstationary Gaussian Process Regression

In absence of specific prior assumptions on the unknown regression function

f (·), it is common use to specify a GP prior for it as in (4.1) selecting k(x, x′) to

be stationary or, even more, isotropic. Reasons include their ability to accurately

model a wide set of data patterns within accounting for a very limited number of

parameters to be appropriately estimated (Stein, 1999).

Nonetheless, real data are often very far from the stationarity hypothesis: if sta-

tionary GPs are employed for data fitting and prediction in these scenarios, many

complications may arise. For example, the estimation algorithm (whether a type-II

maximum-likelihood or a Bayesian inferential approach is taken) could not converge

successfully, or the predictions may highlight intrinsic narrowness in accurately

grasping typical nonstationary changes in regime. Moreover, especially in spatial

data settings, it is typical to employ isotropic covariance functions for performing

GPR on data exhibiting inhomogeneous smoothness, i.e., exhibiting different de-

grees of smoothness in different subregions of X . When the true latent regression

function possesses heterogeneous behaviors or data indicates that stationary GP

priors could not be an adequate choice, it is sensible to depart from the stationary

hypothesis and consider nonstationary GP modeling strategies instead.

Many different approaches for nonstationarity GPR modeling have been pro-

posed, and most of them encompass nonstationary covariance function specifica-

tions for the associated GP prior. Examples include vertical scaling (MacKay, 1998),

input space warping (Sampson and Guttorp, 1992; Schmidt and O’Hagan, 2003),

Bayesian treed GPs (Gramacy and Lee, 2008), composite GPs (Ba and Joseph, 2012)

and convolution methods (e.g. Higdon et al., 1999). Along this chapter, we focus on

this latter attractive approach.

4.3.1 The Paciorek-Schervish Covariance Function

Convolution methods define a nonstationary covariance function k(x, x′) as

k(x, x′) =
∫︂
X

Kx(u)Kx′(u) du, x, x′, u ∈ X ⊆ Rd,
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for a kernel function Kx(·) centered in the generic predictor x. Paciorek (2003) and

Paciorek and Schervish (2006) showed this covariance function is symmetric and

positive definite for spatially-varying kernel functions of any form. Moreover, if

Kx(u) is selected as being the probability density function of a d-variate N(u, Σx)

random vector evaluated in x, they derived a simple closed-form expression:

k(x, x′) =
1

(2π)d/2|Σx + Σx′ |1/2 exp
{︃
−1

2
(x− x′)T(Σx + Σx′)

−1(x− x′)
}︃

.

Absorbing the necessary constants into the matrices in the quadratic form and di-

viding by
√︁

k(x, x)k(x′, x′), the following nonstationary correlation function arise:

ρ(x, x′) =
2d/2|Σx|1/4|Σx′ |1/4

|Σx + Σx′ |1/2 exp(−Qx,x′/2), x, x′ ∈ X

with Qx,x′ = (x− x′)T
(︃

Σx + Σx′

2

)︃−1

(x− x′).

The above correlation function has the form of an anisotropic squared exponen-

tial correlation function (that is, (4.3) with ∥x− x′∥2/ℓ2 replaced by the Mahalanobis

distance (x − x′)TΣ−1(x − x′), for a pre-specified Σ ∈ Sd
+), but with the spatially-

constant covariance matrix Σ replaced by the mean of two predictor-specific covari-

ance matrices: (Σx + Σx′)/2. Hence, it can be written concisely as:

ρ(x, x′) =
2d/2|Σx|1/4|Σx′ |1/4

|Σx + Σx′ |1/2 ρS.E.

(︂√︂
Qx,x′ ; 1

)︂
. (4.8)

Notice if Σx = Σx′ for any x, x′ ∈ X , then (4.8) reduces into the anisotropic – but sta-

tionary – squared exponential correlation function. Otherwise, the evolution of Σx

and Σx′ produces a nonstationary correlation function whose smoothness depends

on both x and x′.

Theorem 1 of Paciorek and Schervish (2006) extends (4.8) into a class of nonsta-

tionary correlation functions, later on called Paciorek-Schervish correlation functions,

having generic expression:

ρP.S.(x, x′) =
2d/2|Σx|1/4|Σx′ |1/4

|Σx + Σx′ |1/2 ρ
(︂√︂

Qx,x′
)︂

x, x′ ∈ X , (4.9)
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where ρ(r) is an isotropic correlation function with unit length-scale parameter.

Similarly, Paciorek-Schervish covariance functions have generic expression:

kP.S.(x, x′) =
2d/2|Σx|1/4|Σx′ |1/4

|Σx + Σx′ |1/2 k
(︂√︂

Qx,x′
)︂

x, x′ ∈ X (4.10)

where k(r) is an isotropic covariance function with unit length-scale parameter. In

both cases, Qx,x′ = (x − x′)T{(Σx + Σx′)/2}−1(x − x′). Although not directly ac-

counted in this chapter, Risser and Calder (2015) provided a slight generalization

of the Paciorek-Schervish correlation function including spatially-varying standard

deviations σx and σx′ to be pre-multiplied to (4.9), hence adding further flexibility.

Regardless of the stationary covariance (correlation) function over which the

Paciorek-Schervish covariance (correlation) function is built, the main challenge is

to adequately specify the kernel matrices Σx, for any x ∈ X . In fact, their evolution

determines how quickly the covariance structure changes over X and the degree to

which the model adapts to predictor-dependent smoothness in the unknown regres-

sion function. In practice, since they are defined over an infinite-dimensional space,

they must be parametrized in some way such that implementation is feasible: some

widely-adopted techniques have been recently reviewed by Risser and Turek (2020).

One common strategy is that of forcing Σx to be locally isotropic, i.e., specifying

Σx = Σ(x)Id for a proper Σ(x) : X −→ R+. Gibbs (1997) proposed a similar matrix

diagonal specification, Σx = diag(ℓ2
1(x), . . . , ℓ2

d(x)) for a proper set of ℓi : X −→ R+

functions, 1 ≤ i ≤ d, giving rise to the nonstationary Gibbs covariance function:

kGIBBS(x, x′) =
d

∏
i=1

(︄
2ℓi(x)ℓi(x′)
ℓ2

i (x) + ℓ2
i (x′)

)︄1/2

exp

{︄
− (xi − x′i)

2

ℓ2
i (x) + ℓ2

i (x′)

}︄
, x, x′ ∈ X . (4.11)

Each function ℓi works as a predictor-dependent length-scale parameter, one for

each dimension, which needs to be specified appropriately. One interesting proposal

is due to Plagemann et al. (2008), in which they assumed ℓi = ℓ(·) for each 1 ≤ i ≤ d

and modeled log ℓ(·) with an independent stationary GP prior. Similar latent GP

specifications have been proposed by, e.g., Paciorek and Schervish (2006), Tolvanen

et al. (2014), Heinonen et al. (2016), Roininen et al. (2019) and Monterrubio-Gómez

et al. (2020).

Interestingly, Dunlop et al. (2018) used (4.10) to propose a hierarchical construc-

tion of deep Gaussian processes (Damianou and Lawrence, 2013; Duvenaud et al., 2014),

i.e., deep belief networks (Hinton et al., 2006) based on recursive GP mappings. In

short words, they expressed a deep GP with L + 1 layers as a sequence of functions
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{ul(x)}L
l=0 such that:

ul(x)|ul+1 ∼ GP(m(x; ul+1); kP.S.(x, x′; ul+1)), 0 ≤ l ≤ (L− 1),

uL ∼ GP(m(x); k(x, x′)),
(4.12)

where uL takes a GP prior specification with a properly chosen mean function m(x)

and an isotropic covariance function k(x, x′). All the L remaining GPs are connected

one within the preceding one by specifying a Paciorek-Schervish covariance function

kP.S.(x, x′; ul+1) being built over the adopted k(x, x′), and specifying

Σx = F(ul+1(x))Id, x ∈ X (4.13)

for a properly chosen locally-bounded F : R −→ R≥0. Notation kP.S.(x, x′; ul+1)

highlights the dependency of the Paciorek-Schervish covariance function for the

lth GP prior from the (l + 1)th GP prior via (4.13). Similarly, notation m(x; ul+1)

explicitly accounts for possible strategies to introduce further dependency from the

(l + 1)th GP through its mean function specification, e.g., following the approach of

Park and Choi (2010).

This hierarchical construction has the following Markovian interpretation: a sta-

tionary GP prior for uL works as a generating seed over which L− 1 additional GP pri-

ors for ul|ul+1 are built sequentially, each conditioned on the nonstationary behavior

of the preceding one through the Paciorek-Schervish covariance function having Σx

specified as in (4.13). Lastly, the bottom GP prior for u0|u1 is the one embedding

the nonstationary construction of interest for the unknown regression function. The

same approach of Dunlop et al. (2018) has been recently successfully employed by

Zhao et al. (2021) to develop a hierarchical construction of deep state-space GPs, i.e.,

deep GPs also embedding a temporal dimension.

4.3.2 Model Specification

In this chapter, we propose a nonstationary GPR model which follows from the

deep GP construction of Dunlop et al. (2018), although with just two layers. Sim-

ulated data examples will show that even only one latent layer can be useful to

adequately account for a wide set of nonstationary patterns. Our specification ex-

tends the GPR model presented in Section 4.2 by replacing the stationary GP prior

(4.1) for the unknown regression function with the hierarchical construction of (4.12)
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having L = 1, namely:

y = f (x) + ϵ, ϵ ∼ N(0, σ2),

f (x)|u ∼ GP(m f (x; u), kP.S.–S.E.(x, x′; u, τ2
f )),

u(x) ∼ GP(mu(x), kS.E.(x, x′; τ2
u , ℓ2

u)).

Here kS.E.(x, x′; τ2
u , ℓ2

u) is specified as in (4.2) for any x, x′ ∈ X . Without loss of

generality, a generic deterministic mean function for the GP priors on both layers is

assumed, not depending on any additional model hyperparameter. Interestingly, we

adopt a Paciorek-Schervish covariance function (4.10) being built over the isotropic

squared exponential covariance function with fixed ℓ2 = 1. Following Dunlop et al.

(2018), we choose F(z) = z2 as the function mapping the latent stationary GP prior

into a length-scale component for Σx being specified as in (4.13). An explicit expres-

sion for any x, x′ ∈ X is the following:

kP.S.–S.E.(x, x′; u, τ2
f ) = τ2

f

(︃
2|u(x)||u(x′)|
u2(x) + u2(x′)

)︃d/2

exp
{︃
− ∥x− x′∥2

u2(x) + u2(x′)

}︃
. (4.14)

Notice this specification reduces into a particular case of the Gibbs covariance func-

tion (4.11) after setting ℓi(x) = ℓ(x) = |u(x)| for any 1 ≤ i ≤ d and multiplying by

an amplitude parameter τ2
f . The main conceptual difference is that |u(x)| can poten-

tially be equal to zero: Proposition 2 of Dunlop et al. (2018) ensures the covariance

function (4.14) – and any Paciorek-Schervish covariance function with kernel matrix

specified as in (4.13) – is still positive-definite. Our approach can be immediately ex-

tended to account for specifications of (4.10) being built over more general isotropic

covariance functions than the squared exponential, see Table 4.1 of Rasmussen and

Williams (2006) for possible alternative choices. In the following, we will often indi-

cate f (x)|u as the bottom layer (level) of our nonstationary GPR model, and u(x) as

its top layer (level) or, equivalently, the latent stationary GP prior.

Suppose we observed a dataset {(xi, yi) : 1 ≤ i ≤ n}, x ∈ X ⊆ Rd, y ∈ R and

define the following vectors and matrices:

y = (y1, . . . , yn)T, X = (xT
1 , . . . , xT

n )
T,

f X = ( f (x1), . . . , f (xn))T, uX = (u(x1), . . . , u(xn))T,

m f ;X = (m f (x1; u1), . . . , m f (xn; un))T, mu;X = (mu(x1), . . . , mu(xn))T,

K f ;X,X = (kP.S.–S.E.(xi, xi′ ; ui, ui′ , τ2
f ))1≤i,i′≤n, Ku;X,X = (kS.E.(xi, xi′ ; τ2

u , ℓ2
u))1≤i,i′≤n,
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Notice we explicitly indicated the unknown ui = u(xi) and ui′ = u(xi′) upon which

Σxi and Σxi′ are built, respectively. Then our nonstationary GPR model admits the

following convenient fully-Bayesian finite-sample representation:

y| f X , σ2 ∼ Nn( f X , σ2I), f X |uX , τ2
f ∼ Nn(m f ;X , K f ;X,X),

uX |τ2
u , ℓ2

u ∼ Nn(mu;X , Ku;X,X),

σ2 ∼ Inverse-Gamma(ξσ2 , λσ2),

τ2
f ∼ Inverse-Gamma(ξτ2

f
, λτ2

f
),

τ2
u ∼ Inverse-Gamma(ξτ2

u
, λτ2

u
), ℓ2

u ∼ Inverse-Gamma(ξℓ2
u
, λℓ2

u
).

(4.15)

A generic Inverse Gamma prior distribution is placed over all the variance and

length-scale parameters, with positive hyperparameters ξσ2 , λσ2 , ξτ2
f
, λτ2

f
, ξτ2

u
, λτ2

u
, ξℓ2

u

and λℓ2
u
. Subscripts f and u are associated to the mean function and covariance

function parameters for the bottom layer and top layer, respectively. Although not

made explicit by the notation, the top layer covariance matrix Ku;X,X depends upon

τ2
u and ℓ2

u, while the bottom layer covariance matrix K f ;X,X depends upon τ2
f and

the unknown finite-sample representation uX of u(x).

The posterior predictive distribution for such a model can be obtained following

similar arguments given in Section 4.2. What changes here is that the unknown vec-

tor uX is associated with X but we are instead interested in predicting over a set X∗

of new predictors. Therefore, uX∗ is required for computing m f ;X∗,X∗ and K f ;X∗,X∗

on the bottom layer, and we predict it with the top-layer specification employing

(4.4) after substituting y with uX and removing the σ2I addendum from both the

mean vector and covariance matrix expressions. Theoretical details and derivations

for the posterior predictive distribution on model (4.15) are given in Appendix D.1.

4.3.3 A Visualization of the Nonstationary GPR Model when d = 1

We now provide a concrete example of the vast heterogeneity of nonstationary

GP prior patterns that can be accommodated within model specification (4.15). A

zero mean function on both layers is specified, i.e. m f (x; u) = mu(x) = 0 for any

x ∈ X . We focus on the d = 1 case to better visually grasp their behaviors.

Figure 4.1 displays twenty independent data replicates of size n = 250 simulated

from the nonstationary GPR model over X = [−π, π]. Each of them is obtained

fixing the true parameter values σ2 = 0.025 and τ2
f = 1, the former embedding
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Figure 4.1: Twenty univariate data replicates simulated from the nonstationary GPR model
(4.15) having domain X = [−π, π], with fixed true parameter values σ2 = 0.025 and
τ2

f = 1. Each column corresponds to a different combination of true parameter values
(τ2

u , ℓ2
u) for the latent GP prior. For each of them, five possible realizations are displayed

vertically.
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simulated data points being very close to realizations from f (x)|u. The predictor

set X = (x1, . . . , x250)
T is composed by 250 equally-spaced points from X , sorted in

ascending order. Two different true values for the latent GP amplitude parameter τ2
u

are considered: τ2
u = 2.5 and τ2

u = 0.25. The same true values have been considered

for the latent GP length-scale parameter ℓ2
u. Choice of ℓ2

u = 2.5 leads to the specifica-

tion of GP priors for u(x) being very smooth, while ℓ2
u = 0.25 leads to specifications

exhibiting moderate oscillations around the x axis. Each column refers to one of the

four different combinations of the true parameter values adopted for τ2
u and ℓ2

u, as

denoted at the top of each column, and vertically displays five independent data

realizations. In each subfigure, the realization from the latent GP prior for u(x) is

represented with a solid red line, while that from the bottom GP prior for f (x)|u
with a solid blue line. Both are graphically displayed via linear interpolation of the

vectors uX and f X |uX , respectively, simulated accordingly to (4.15).

The behavior of the stationary GP prior for u(x), for each different combination

of parameters τ2
u and ℓ2

u, can be visually grasped having a look at the red line of

each subfigure. Similarly, the behavior of the nonstationary GP prior realizations

for f (x)|u can be visually grasped by looking at the blue line in each subfigure. An

intuition on how the latent GP prior for u(x) influences the irregular behavior of

the nonstationary GP prior for f (x)|u is facilitated by choosing to plot realizations

from both levels in the same subfigure. Therefore, it is immediate to notice that

nonstationary patterns for the GP prior on f (x)|u emerge in subintervals of X where

the associated realization of the GP prior for u(x) assumes values being very close

to zero.

The reason is easily guessed by examining the expression for the nonstation-

ary covariance function (4.14) when d = 1. For any x ∈ X and x′ ∈ X in its

closely-related neighborhood such that u(x), u(x′) ≈ 0, then a very small covariate-

dependent length-scale contribution is embedded. Figure 4.2 shows the twenty

heatmap representations for the covariance matrix K f ;X,X involved in the finite-

sample representation of the nonstationary GPR model (4.15), for each realization

of the nonstationary GP prior on f (x)|u displayed in Figure 4.1. A side-by-side

comparison of the two figures allows to appreciate the nonstationary pattern intro-

duced by (4.14), and how this reflects in the behavior for the realizations from the

bottom layer. Sub-blocks of K f ;X,X with behaviors different to the typical stationary

block-diagonal bands have the effect of introducing nonstationary oscillations in the

realizations from the GP prior over f (x)|u.

For clarity, consider the data replicate represented in the top-left subfigure of
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Figure 4.1. In that case, the realization from the GP prior for u(x) (red curve)

makes the realization from the GP prior for the associated f (x)|u(x) (blue curve)

oscillating sensibly in X , with a clear change in the regime of oscillation around

x ≈ 3, where u(x) ≈ 0. An opposite behavior emerges from the nonstationary GP

prior realization represented in the bottom-left subfigure of Figure 4.1. Here the

realization from the GP prior for u(x) is very smooth but oscillates very far from

the x axis in all X . Therefore, the realization from the GP prior for the associated

f (x)|u(x) preserves the same smooth behavior. Similar comments applies to all the

other eighteen subfigures reported in Figure 4.1.

4.4 Approximate Bayesian Inference via GVA

Our main goal is to perform Bayesian inference on the nonstationary GPR model

(4.15) and, as such, to obtain the posterior distribution over the model param-

eter vector. Standard MCMC sampling techniques cannot benefit from explicit

conditionally-conjugate Gibbs sampling steps, although user-friendly interfaces such

as Stan or Nimble can still be employed. For example, Risser and Turek (2020) re-

cently used Nimble for performing Bayesian inference in high-dimensional nonsta-

tionary GPs.

The main obstacle introduced by the Paciorek-Schervish covariance function

specification with Σx having expression (4.13) is that any finite representation of

the nonstationary GPR model (4.15) yields an unknown latent vector uX whose

dimension grows linearly with n. Therefore, the implementation of any MCMC

algorithm becomes computationally prohibitive and does not scale well even with

moderate data sample sizes. For this reason, we adopt GVA to obtain fast variational

approximations to the posterior distribution sacrificing some degree of accuracy.

Let then λ = (uX , σ2, τ2
u , ℓ2

u, τ2
f )

T be the (n + 4)-dimensional model parameter

vector, λ ∈ Λ ⊆ Rn ×R4
+, and define the following reparameterization map:

ψ : Λ −→ Θ ⊆ Rn+4

λ −→ θ = ψ(λ) = (uT
X , log σ2, log τ2

u , log ℓ2
u, log τ2

f )
T

(4.16)
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Figure 4.2: Heatmap representation of the covariance matrix K f ;X,X corresponding to the
bottom layer random vector f X |uX , for each of the twenty simulated data replications showed
in Figure 4.1. For each subfigure, the axis labels are not reported as they simply refer to the
first and second dimension of a squared matrix.
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such that now each element of θ takes values in the real line, as required by GVA.

We approximate the model posterior distribution having density function

p(θ|y) ∝ p(y|uX , log σ2, log τ2
f ) p(uX | log τ2

u , log ℓ2
u)

× p(log σ2) p(log τ2
u) p(log ℓ2

u) p(log τ2
f )

(4.17)

with q(θ) having covariance matrix Σq(θ) parametrized with the latent factor ap-

proach of Ong et al. (2018), namely:

q(θ) is the Nn+4

(︂
µq(θ), Bq(θ)B

T
q(θ) + diag(dq(θ))

2
)︂

density function . (4.18)

Here dq(θ) = (dq(θ),1, . . . , dq(θ),n+4)
T with dq(θ),i > 0 for each 1 ≤ i ≤ n + 4, while

Bq(θ) is a full rank matrix of dimensions (n+ 4)× p, for a pre-specified fixed number

of latent factors p≪ (n + 4) and subject to the identifiability restriction [Bq(θ)]ij = 0

for all i < j (Geweke and Zhou, 1996). Moreover, p(log σ2) in (4.17) is a nota-

tional artifact to express that it represents the probability density function of the

transformed random variable log σ2, where σ2 ∼ Inverse-Gamma(ξσ2 , λσ2). Similar

comment holds for p(log τ2
u), p(log ℓ2

u) and p(log τ2
f ).

Notice the generic approximating density (4.18) embeds a covariance matrix Σq(θ)

which is parametrized by (n+ 4)× (p+ 1) elements, a number which grows linearly

in n and indeed is more suitable than typical Cholesky-factor parameterizations

having a number of cells which, in our case, would grow quadratically in n. Ong

et al. (2018) showed both with simulated and real data examples that a very limited

number of latent factors p would assess optimal approximation performances.

An iterative scheme based on stochastic gradient ascent method for solving the

associated optimization problem is well summarized in Section 3 of Ong et al. (2018)

and adopted hereafter, following the same notation given in Section 1.4 of this PhD

thesis. In short words, it is based upon the iterative refinement of the approximating

density parameter vector ηq(θ) = (µT
q(θ), vec(Bq(θ))

T, dT
q(θ))

T with the update expres-

sion (1.22) until convergence. The resulting η∗
q(θ) then identifies the optimal approx-

imate posterior distribution. An unbiased estimate for ∇q(θ) log p(y; q(θ; ηq(θ))) is

given by (1.24) making use of the so-called reparameterization trick, after setting

ζ = (ϱT, ωT)T with ϱ having dimension (n + 4)× 1 and ω having dimension p× 1,

and noticing

θ = z(ζ; ηq(θ)) = µq(θ) + (ωT ⊗ I)vec(Bq(θ)) + dq(θ) ◦ ϱ.
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Algorithm 4.1 Gaussian Variational Approximation algorithm for determining the opti-
mal natural parameter vector of the approximating density function (4.18) for approximate
Bayesian inference of the nonstationary GPR model (4.15).
Data Inputs: y (n× 1), X (n× d).

Select the number of latent factors p, such that p ≤ n + 4.

Hyperparameter Inputs: ξσ2 , λσ2 , ξτ2
f
, λτ2

f
, ξτ2

u
, λτ2

u
, ξℓ2

u
and λℓ2

u
, all > 0.

Initialize: µq(θ), Bq(θ) and dq(θ) with appropriate values.

ηq(θ) ← (µT
q(θ), vec(Bq(θ))

T, dT
q(θ))

T.

E(∆2
ηq(θ)

)← 0, E(g2
ηq(θ)

)← 0, ε← 10−6, ν← 0.95.

Cycle until convergence:

1. Σq(θ) ←− Bq(θ)B
T
q(θ) + diag(dq(θ))

2;

2. Sample ϱ from a Nn+4(0, I) distribution and ω from a Np(0, I) distribution;

3. Build the single draw from q(θ; µq(θ), Σq(θ)) given ϱ and ω:

θ̃←− µq(θ) + Bq(θ)ω + diag(dq(θ))ϱ;

4. Compute the joint density gradient in θ̃:

∇θ log p(y, θ̃)←− {∇θ log p(y, θ)}
⃓⃓
θ=θ̃

;

5. Construct unbiased estimate of the gradient for the lower-bound:

ˆ︁∇ηq(θ)
log p(y; q(θ; ηq(θ)))←−

⎡⎢⎣ I

ω⊗ I

diag(ϱ)

⎤⎥⎦ (︂∇θ log p(y, θ̃) + (Σq(θ))
−1(θ̃− µq(θ))

)︂
;

6. Update the adaptive learning rate ρ with the ADADELTA method:

E(g2
ηq(θ)

)←− ν E(g2
ηq(θ)

) + (1− ν)
(︂ ˆ︁∇ηq(θ)

log p(y; q(θ; ηq(θ)))
)︂2

;

ρ←−
√︂

E(∆2
ηq(θ)

) + ε
/︂√︂

E(g2
ηq(θ)

) + ε ;

E(∆2
ηq(θ)

)←− ν E(∆2
ηq(θ)

) + (1− ν)
{︂

ρ ◦ ˆ︁∇ηq(θ)
log p(y; q(θ; ηq(θ)))

}︂2
;

7. Update ηq(θ):

ηq(θ) ←− ηq(θ) + ρ ◦ ˆ︁∇ηq(θ)
log p(y; q(θ; ηq(θ)));

8. Unpack ηq(θ) into µq(θ), Bq(θ), dq(θ):

µq(θ) ←− associated sub-vector of ηq(θ);

Bq(θ) ←− vec−1
(n+4)×p(associated sub-vector of ηq(θ)); [Bq(θ)]ij ←− 0 for all i < j;

dq(θ) ←− associated sub-vector of ηq(θ).

Outputs: µq(θ), Bq(θ), dq(θ).
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A summarization of the GVA algorithm for our nonstationary GPR model with

the above-mentioned parametrization for Σq(θ) is given in Algorithm 4.1, and follows

from Algorithm 1 of Ong et al. (2018). Derivation and further implementation details

are given in Appendix D.2. We adopt their same approach and use the ADADELTA

method (Zeiler, 2012) for adaptively updating the learning rates of the stochastic

gradient algorithm, with default tuning parameter choices ε = 10−6 and ν = 0.95.

Regarding the stopping criterion on which to establish the convergence of Algo-

rithm 4.1, the usual strategy of monitoring the evolution of the lower-bound cannot

be employed when solving GVA with stochastic gradient ascent methods. In fact,

the update is stochastic and so the lower bound is not guaranteed to increase mono-

tonically at each iteration. We adopt instead the approach described in Section 4.2

of Tan and Nott (2018): although computing the lower-bound explicitly requires

evaluating the expectations of log p(y, θ) and log q(θ), it is straightforward to obtain

an unbiased Monte-Carlo estimate at each iteration:

ˆ︂log p(y; q(θ; ηq(θ))) = log p(y, θ̃)− log q(θ̃; µq(θ), Bq(θ)B
T
q(θ) + diag(dq(θ))

2).

We consider the average of these estimates over the past F iterations of the al-

gorithm to minimize the variability, say log p(y; q(θ; ηq(θ))). We compute it af-

ter every F iterations and keep a record of its maximum value attained thus far,

say log p(y; q(θ; ηq(θ)))max
. The algorithm is assumed to have reached convergence

when log p(y; q(θ; ηq(θ))) falls below log p(y; q(θ; ηq(θ)))max
more than M consecu-

tive times, meaning that the lower bound estimates are just asymptotically bouncing

around to its maxima.

Once the convergence of Algorithm 4.1 has been successfully reached, the opti-

mal density function covariance matrix is Σ∗q(θ) = B∗q(θ)B
∗,T
q(θ)

+ diag(d∗q(θ))
2 and

q∗(θ) is the Nn+4(µ
∗
q(θ), Σ∗q(θ)) density function .

Consequently, the optimal approximating density function for the original model

parameter vector λ can be obtained from q∗(λ) = q∗(ψ−1(λ))|det Jψ−1(λ)|, where

q∗(ψ−1(λ)) expresses q∗(θ) evaluated in θ = ψ−1(λ) and Jψ−1(λ) is the Jacobian

matrix of the inverse reparameterization mapping (4.16). Nevertheless, in practical

applications it is not necessary to find a closed-form expression for q∗(λ): a generic

draw λ̃ from it can be simply obtained as λ̃ = ψ−1(θ̃), θ̃ being sampled from a

Nn+4(µ
∗
q(θ), Σ∗q(θ)) distribution.
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4.5 Numerical Investigations on Simulated Data

We now discuss the capabilities of our nonstationary GPR model (4.15) to obtain

precise and affordable predictions for simulated datasets exhibiting clear nonstation-

arity patterns. Unlike the previous chapters, we have left aside the assessment of

approximation accuracies and computational runtimes for obtaining GVA approx-

imations compared to standard MCMC sampling procedures. Instead, we focused

on investigating and evaluating the predictive ability of model (4.15) both visu-

ally and with typical error metrics, consistently with what is usually done in the

machine-learning field for handling regression problems.

To do so, we simulated different univariate (d = 1) data replicates from model

(4.15) fixing true parameter values σ2 = 0.025, τ2
f = 1, τ2

u = 1 and ℓ2
u = 1.5. Such

a small value for σ2 ensures generated observations to be very close to the true re-

gression function of interest and mimics a real-data nonstationary scenario. Without

loss of generality, all the other true parameter values have been chosen to avoid gen-

eration of data exhibiting clear stationary behaviors or too irregular nonstationary

patterns requiring a huge number of training data to be effectively captured. A zero

mean function on both layers is assumed, for which m f ;X = mu;X = 0 in (4.15).

For each simulated dataset {Xsim, ysim}, Xsim consists of nsim = 1000 equally-

spaced points from X = [−π, π] sorted in ascending order, and ysim is composed

by the associated response values generated accordingly to (4.15). We then sampled

without repetition n = 250 pairs (xi, yi)
n
i=1 from the simulated dataset to compose

the training dataset {X, y}, and n∗ = 500 pairs (x∗i , y∗i )
n∗
i=1 to compose the testing

dataset {X∗, y∗} over which to evaluate the prediction accuracy. We specifically set

a moderate value for n and doubled it for n∗ to replicate a possible univariate real-

data scenario in which few observed data points are available (but enough to capture

the hidden nonstationary regression function pattern) and GPR is used to obtain

predictions over a wide set of new predictors. We believe even better prediction

results could be exploited by the proposed class of nonstatonary GPR models if

enough training data are available such that they well describe the nonstationary

patterns of interest.

For each training data replicate, Algorithm 4.1 has been employed to obtain GVA

approximations for the model posterior distribution. Following advices from Ong

et al. (2018) a very low number of latent factors parametrizing Σq(θ) is selected,

and numerical experiments always reached optimal convergence with p = 5. More

ad-hoc procedures for adequately selecting p are firmly suggested if the obtained
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approximations are not reliable. Weakly uninformative priors have been specified

for the error variance and covariance functions parameters, setting ξσ2 = 0.5 and

λσ2 = 0.1 for σ2, while ξτ2
f
= ξτ2

u
= ξℓ2

u
= λτ2

f
= λτ2

u
= λℓ2

u
= 0.5 for τ2

f , τ2
u and ℓ2

u.

Without loss of generality, µq(θ) have been initialized to be the zero vector, Bq(θ) to

have each cell on and below its diagonal equal to 0.001, and dq(θ) to be the vector

full of ones. The convergence have always been assessed setting the default values

F = 500 and M = 3 used by Tan and Nott (2018). Algorithm 4.1 have been entirely

implemented and coded in R: nonetheless, evaluation of Step 4 requires automatic

differentiation routines to compute ∇θ log p(y, θ̃) and we resorted to TensorFlow ca-

pabilities for efficient computations. See Appendix A.3 for further details.

Once the optimal GVA approximation has been determined, the model posterior

predictive distribution p(yX∗ |y) is obtained substituting q∗(λ) to p(λ|y) in its ex-

pression derived in Appendix D.1. A generic sample from it represents a prediction

ỹX∗ = (ỹ1, . . . , ỹn∗)
T of the nonstationary GPR model (4.15) over the testing covari-

ates X∗. Therefore each ỹi can be compared with the true y∗i associated to x∗i , for

each 1 ≤ i ≤ n∗. Following a Monte-Carlo approach, we draw B = 1000 samples

from q∗(λ) and obtained a prediction ỹ(b)
X∗ from p(yX∗ |y), for each 1 ≤ b ≤ B. We

then compared each of them to the true y∗ in testing dataset both with the popular

root mean square error (MSE) and the mean absolute error (MAE) metrics, defined for a

generic prediction ỹX∗ as

RMSE(y∗, ỹX∗) =

⌜⃓⃓⎷ 1
n∗

n∗

∑
i=1

(y∗i − ỹi)
2 and MAE(y∗, ỹX∗) =

1
n∗

n∗

∑
i=1
|y∗i − ỹi|,

respectively. We ended up with a distribution of B scores for both the RMSE and

the MAE metrics, one for each simulated prediction.

To better grasp the advantages and possible limitations of our proposed nonsta-

tionary GPR model, we compared the obtained predictions to those produced by

fitting its stationary version on each data replicate. Conceptually, this means remov-

ing the hidden layer inducing nonstationarity from model specification (4.15) and

testing whether the stationary GP prior specified for its top layer can alone still han-

dle comparable prediction performances. To allow for a fair comparison between

the two predictions obtained, we computed GVA approximations with a modified
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version of Algorithm 4.1 to handle the following stationary version of model (4.15):

y|uX , σ2 ∼ Nn(uX , σ2I), uX |τ2
u , ℓ2

u ∼ Nn(mu;X , Ku;X,X),

σ2 ∼ Inverse-Gamma(ξσ2 , λσ2),

τ2
u ∼ Inverse-Gamma(ξτ2

u
, λτ2

u
), ℓ2

u ∼ Inverse-Gamma(ξℓ2
u
, λℓ2

u
).

(4.19)

Here mu;X and Ku;X,X exactly correspond to those specified in (4.15). The same hy-

perparameter values, initialization choices, and convergence criterion specified for

the nonstationary GPR model have also been adopted here. Removing the hidden

GP layer yields a generic approximating density function to be a multivariate Gaus-

sian distribution of dimension 3. Therefore, we fitted a modified version of Algo-

rithm 4.1 parametrizing Σq(θ) with the maximum possible number of latent factors:

p = 3. Coherently, B = 1000 predictions from p(yX∗ |y) having expression (4.5) have

been obtained and compared to y∗ using both the RMSE and MAE metrics.

Figures 4.3, 4.4, 4.5 and 4.6 displayed in the subsequent pages give a visual sim-

maruzation of the predictive results obtained for four different simulated data repli-

cates. They have been carefully selected to encompass different nonstationary data

patterns and therefore different prediction behaviors which allows us to highlight

advantages and drawbacks of the GVA approximation strategy for our proposed

nonstationary GPR model (4.15).



Chapter 4 - GVA for Nonstationary Gaussian Process Regression 129

-3 -2 -1 0 1 2 3

-2
-1

0
1

2
3

Nonstationary GPR

Training Data
Testing Data

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

Stationary GPR

Training Data
Testing Data

S
ta

ti
o
n
a
ry

 G
P

R
N

o
n
s
ta

ti
o
n
a
ry

 G
P

R

0.30 0.35 0.40 0.45 0.50 0.55

RMSE

S
ta

ti
o
n
a
ry

 G
P

R
N

o
n
s
ta

ti
o
n
a
ry

 G
P

R

0.25 0.30 0.35 0.40

MAE

Figure 4.3: Visual representation of the predictive behaviors for the nonstationary GPR
model (4.15) and its stationary GPR counterpart (4.19), both approximated via GVA. The
first two subfigures display the posterior predictive bands and the median posterior predictive
(thicker line) obtained by the two different models. The blue line represent the true regression
function f (x)|u; the filled points represent the training data, the empty points the testing
data. Both the blue line and the points are identical and repeated in the first two subfigures
for visualization purposes. The third and fourth subfigures display the RMSE and MAE
scores obtained from both models. This figure refers to the first simulated data replicate of
interest to be commented.
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Figure 4.4: Visual representation of the predictive behaviors for the nonstationary GPR
model (4.15) and its stationary GPR counterpart (4.19), both approximated via GVA. The
first two subfigures display the posterior predictive bands and the median posterior predictive
(thicker line) obtained by the two different models. The blue line represent the true regression
function f (x)|u; the filled points represent the training data, the empty points the testing
data. Both the blue line and the points are identical and repeated in the first two subfigures
for visualization purposes. The third and fourth subfigures display the RMSE and MAE
scores obtained from both models. This figure refers to the second simulated data replicate of
interest to be commented.
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Figure 4.5: Visual representation of the predictive behaviors for the nonstationary GPR
model (4.15) and its stationary GPR counterpart (4.19), both approximated via GVA. The
first two subfigures display the posterior predictive bands and the median posterior predictive
(thicker line) obtained by the two different models. The blue line represent the true regression
function f (x)|u; the filled points represent the training data, the empty points the testing
data. Both the blue line and the points are identical and repeated in the first two subfigures
for visualization purposes. The third and fourth subfigures display the RMSE and MAE
scores obtained from both models. This figure refers to the third simulated data replicate of
interest to be commented.
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Figure 4.6: Visual representation of the predictive behaviors for the nonstationary GPR
model (4.15) and its stationary GPR counterpart (4.19), both approximated via GVA. The
first two subfigures display the posterior predictive bands and the median posterior predictive
(thicker line) obtained by the two different models. The blue line represent the true regression
function f (x)|u; the filled points represent the training data, the empty points the testing
data. Both the blue line and the points are identical and repeated in the first two subfigures
for visualization purposes. The third and fourth subfigures display the RMSE and MAE
scores obtained from both models. This figure refers to the fourth simulated data replicate of
interest to be commented.
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Each figure consists of four subfigures. Starting from top, the first two show the

so-called posterior predictive band obtained from the nonstationary GPR model (4.15)

(first subfigure) and from its stationary GPR counterpart (4.19) (second subfigure).

Such bands have extremes obtained by linear interpolating the 95% HPD credible

predictive intervals computed over the distribution of predictions ỹ(1)i , . . . , ỹ(B)
i to x∗i ,

for each 1 ≤ i ≤ n∗ in the testing dataset. They allow to visually grasp within what

extremes a generic prediction ỹ from the associated model could be generated. In

principle, a good Bayesian fit would have such a band containing all the observed

data almost exactly, i.e., not being too narrow or too loose. Training observations are

represented with filled points, while data-points belonging to the testing set with an

empty point. The true unknown regression function f (x)|u of interest from which

data have been generated is displayed with a blue line. The thicker line results by

linear interpolating the median of predictions ỹ(1)i , . . . , ỹ(B)
i to x∗i , for each 1 ≤ i ≤ n∗,

and reflects the posterior predictive median Medianp(yX∗ |y)(yX∗) over X∗. We expect

such line superimposes the true regression function (blue line) if a good Bayesian fit

has been obtained. The third subfigure displays with a boxplot the distribution of

the RMSE scores for the B predictions obtained by the two GPR models considered.

The last subfigure does the same for the MAE scores.

We start by commenting on the results from the first simulated data replicate of

interest, as displayed in Figure 4.3. Data exhibit an evident change in the frequency

of oscillations and, especially in the subinterval [−2.5,−1.5], our nonstationary GPR

model seems to better correctly predict the trend of the true regression function.

In general, it also exhibits better prediction performances than the stationary GPR

model, as confirmed by the distribution of both the RMSE and MAE scores. The

reason is that the stationary GPR model accounts for a bigger variability in the

predictions, as it is clear by comparing the amplitude for the prediction bands on

the two subfigures, because we fit a stationary GPR model to nonstationary data.

Our nonstationary GPR model still faces come difficulties in correctly grasping the

amplitude of shocks on the true regression function, and we believe even better pre-

dictions could be obtained accounting for a bigger number of training and testing

units in subintervals of X where such shocks arise. In general, posterior predictive

bands for our nonstationary GPR model appear to be less smooth than those ob-

tained for the stationary GPR model because of the hierarchical construction of the

posterior predictive distribution.

Similar comments hold for all the other simulated data prediction results dis-

played. In particular, Figure 4.4 represents data following a stationary trend which
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is interrupted by two major breaks around x ≈ −1 and x ≈ 1.5. Our nonstationary

GPR model is able to capture that breaks and predictions correctly account for the

behavior of the true regression function (blue line), to the best of their ability with

such a limited number of testing units. On the contrary, the stationary GPR model

completely ignores them. Figure 4.5 is an example of a clear nonstationary data

pattern for which the stationary GPR model is moderately able to capture the true

unknown regression function, although producing predictions fluctuating around it

with a wider variability. RMSE and MAE summarize the more accurate predictions

obtainable with the nonstationary GPR specification in both simulated data settings.

Finally, Figure 4.6 is an example in which predictions obtained by our nonsta-

tionary GPR model are slightly deteriorated than those obtained by fitting the sta-

tionary GPR model. RMSE and MAE scores confirm that our nonstationary GPR

model provides no significant contribution in assessing more precise predictions

than its stationary version. Nonetheless, it seems to better correctly capture the

true regression function, especially in local subintervals in which it exhibits evident

shocks. We believe predictions obtained by our nonstationary GPR model suffer

both problems concerning numerical semi-definitive positiveness in the covariance

matrices necessary to produce the predictions and a false convergence of the GVA

algorithm towards an inaccurate approximation of the true posterior distribution.

4.6 Computational Bottlenecks and Possible Solutions

Despite its attractive prediction performances for fitting data exhibiting nonsta-

tionary patterns, model (4.15) is not exempt from computational bottlenecks involv-

ing both its specification and practical implementation of Algorithm 4.1.

As for any model involving GPs, data dimensionality is probably the most severe

problem which makes practical implementations particularly onerous. The reason is

that any finite representation of GPs, GPR models, and model (4.15) as well results

being a multivariate Gaussian distribution of dimension n. When training data

sample size has large dimensions, e.g., in spatial applications, even computing the

model marginal likelihood is an O(n3) operation which results in being extremely

expensive both in terms of temporary memory consumption and computational

runtime. Many proposals have been developed to yield efficient computations, as

already mentioned in Section 4.2, and can be immediately extended to fit into our

nonstationary GPR model specification.
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A second major limitation of model (4.15) is that its finite representation embeds

uX , which is a latent vector of length n that cannot be marginalized out explicitly

from the model specification unlike f X . As such, it belongs to the global model

parameter vector λ to all effects and makes the model posterior distribution to grow

in size asO(n). Actually uX is a finite representation for the latent GP level u(x) over

the training covariate set X, and we explicitly accounted for it on purpose because

the determination of K f ;X,X with the Paciorek-Schervish covariance function (4.14)

requires u1 = u(x1), u2 = u(x2), . . . , un = u(xn). Nonetheless we can select ñ ≪ n

predictors from X, say X̃, and consider the finite-sample representation of u(x) in

X̃ instead of X. Specifying[︄
uX

uX̃

]︄ ⃓⃓⃓
τ2

u , ℓ2
u ∼ Nn+ñ

(︄[︄
mu;X

mu;X̃

]︄
,

[︄
Ku;X,X Ku;X,X̃

Ku;X̃,X Ku;X̃,X̃

]︄)︄
,

we can approximate the unknown uX required for computing K f ;X,X as

uX ≈ E(uX |uX̃ , τ2
u , ℓ2

u) = mu;X + Ku;X;X̃ K−1
u;X̃;X̃(uX̃ −mu;X̃),

after substituting uX̃ |τ2
u , ℓ2

u ∼ Nñ(mu;X̃ , Ku;X̃,X̃) to the specification for u|τ2
u , ℓ2

u in

(4.15). Now the global model parameter vector λ has dimension ñ + 4 instead of

n + 4. Algorithm 4.1 can still be employed for obtaining the GVA approximation of

the model posterior distribution, with log p(y; θ) that has to be modified accordingly.

We believe this method could be particularly effective and precise if X̃ is accurately

chosen such that it contains a subset of training predictors from X placed all over

X . Alternatively, Titsias and Lawrence (2010) variationally integrate out the latent

variables using an expanded probability model in which the GP prior is augmented

to include auxiliary inducing variables.

Lastly, we suggest entirely implementing Algorithm 4.1 in Python, which in our

opinion better handles stochastic gradient ascent procedures than R and possesses

a wide range of excellent libraries for handling GP features efficiently. Moreover,

efficient usage of TensorFlow is guaranteed within a Python framework, where it

has been developed and is currently officially maintained. We instead employed

the Tensorflow API in R for doing fast automatic differentiation in Step 4 of Algo-

rithm 4.1. It requires log p(y; θ) to be written in Tensorflow-like code and recursively

computes it within R at each iteration: numerical experiments showed that this op-

eration requires significant time for continuously transforming objects from R to

Python and viceversa, and suggested us to switch into a full-Python implementation
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instead. Such a task is currently under development, and we believe it could help

to significatively speed up the overall runtime of Algorithm 4.1.

4.7 Concluding Remarks

Preliminary results obtained in this chapter motivate the attractiveness of study-

ing variational approximation procedures for nonstationary modeling via GPR. They

represent a fast alternative towards classical MCMC procedures and, to the best of

our knowledge, have not yet been employed for nonstationary GPR modeling with

Paciorek-Schervish covariance functions depending on fully-nonparametric latent

GP priors. Most of the work present in literature is inspired by Section 3.2.2 of Pa-

ciorek and Schervish (2006), in which they specify latent GP priors in terms of their

finite-basis function approximation (Kammann and Wand, 2003). Moreover, Dun-

lop et al. (2018) in their Section 5.1 mention variational approximations methods for

deep GP constructions have not yet been studied in depth, further motivating our

primitive work towards this direction. We are aware still lots of work has to be

done, mostly regarding comparing our proposed methodology against alternative

Bayesian approach for nonstationary regression diffuse in literature, and investigat-

ing its behavior in the d = 2 scenario. In particular, it will be fundamental to under-

stand whether GVA approximations allows to still obtain satisfactory results both

in terms of fitting and predictions, in comparison to classical Bayesian inferential

approaches founded upon MCMC sampling. Such issues constitutes the keystones

over which to expand this chapter.

The main focus for future work will also be on finding more adequate tech-

niques for breaking down the need of resorting to the finite-sample representation

of the latent uX vector. This issue becomes central if a cascade of latent GP layers is

added in (4.15), resorting to the characterization of deep GPs in terms of Paciorek-

Schervish covariance functions proposed by Dunlop et al. (2018). Our nonstationary

GPR model fits within the deep GP construction, although limiting the number of

latent layers to be L = 1. While considering L > 1 adds further flexibility to the

model specification and allows a broader set of nonstationary patterns to be fitted,

it comes with nL additional parameters to be estimated. Hebbal et al. (2018) sum-

marized alternative workarounds for dealing efficiently with deep GP expressed in

terms of latent finite-sample GP representations.

Our proposed nonstationary GPR model immediately extends to account for al-

ternative Paciorek-Schervish covariance functions in terms of more involved isotropic
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covariance functions, e.g., using the Matern covariance function employed by Pa-

ciorek and Schervish (2006) in place of the squared exponential function. We pre-

ferred to keep things simple as not to overparametrize the model with useless param-

eters which may end up challenging to estimate adequately. Moreover, the latent GP

layer can be connected within the bottom GP layer also through its mean function.

Although not directly experimented in our work, few references in which this idea

has been used are mentioned in the preceding pages.

Regarding the way we approximate the model posterior distribution, we believe

the latent factor parameterization of Ong et al. (2018) best lends itself to do GVA

in situations, as it is for our case, in which the model parameter vector dimension

grows linearly with the sample size. This comes with the need of manually imple-

menting the associated variational algorithm efficiently, with a particular emphasis

on the automatic differentiation procedures required for determining the gradient

of the log-joint posterior density function. An inexperienced user having few skills

with such machine-learning topics would better resort to the ADVI procedure of

Kucukelbir et al. (2017), which is completely automated and supported by Stan. It

only requires the user to specify the model structure manually, and automatically

sets up the approximating GVA procedure in a similar fashion of Algorithm 4.1,

although taking care of itself of issues concerning efficient automatic differentiation.

Nonetheless, it accounts for a Chokesly-factor decomposition of the approximating

covariance matrix having a number of cells to be determined scaling up quadrati-

cally with the number of model parameters.





Conclusions

Discussion

Variational approximation methods have proved remarkably successful in many

applicative fields and currently represent a popular alternative to MCMC sampling

in Bayesian literature. Although variational Bayes approximations and variational

approximation methods are frequently used as synonyms in the statistical field, the

latter comprises a wider family of techniques – including VB itself – for facing the

same optimization problem from different geometrical perspectives. Most of the

variational approximation methods emerged from the machine learning field and

are still mostly unexplored by the statistical community, because of the unattrac-

tive and often prohibitively difficult literature resources and the advanced program-

ming skills required for efficient implementations of the underlying optimization

schemes.

This PhD thesis studied some developments on the most popular variational

approximation techniques, always keeping a Bayesian statistical viewpoint. Fur-

thermore, we believe we have contributed to investigating currently open ques-

tions in the variational approximations literature in each chapter included in this

manuscript. The only exception is Chapter 1, which is devoted to reviewing the lit-

erature and associated technicalities involved in variational approximation methods

upon which the subsequent chapters are built.

In Chapter 2 we have developed explicit message-passing algorithms for finding

variational approximations resulting from the minimization of a divergence mea-

sure alternative to the popular Kullback-Leibler divergence, recasting EP and VB

approximations as opposite limiting cases and exploring the behavior of variational

approximations conceptually lying in between those two. Although little significa-

tive improvements emerged from Power-EP approximations in comparison to VB

and EP in all the statistical models considered, this allowed us to generalize – and
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in some cases to improve significantly the implementations of – existing EP approx-

imation algorithms proposed by Kim and Wand (2016) and Kim and Wand (2018).

The main research question addressed in Chapter 3 regards generalizing stream-

lined MFVB approximation techniques for multilevel models developed by Nolan

et al. (2020) to accommodate global-local prior specifications over the fixed-effects

vector. Besides, it seeks to experiment both with simulated and real data exam-

ples whether this more comprehensive set of priors effectively maintains the com-

putational benefits carried out by their streamlined implementation over the naïve

MFVB updating scheme. Global-local priors are particularly useful for implement-

ing Bayesian selection procedures when a rich set of possible fixed-effects covariates

is available, and it is of interest to discriminate between those effectively relevant

in predicting the response variable and those that are not. We showed that an au-

tomated procedure proposed by Ray and Bhattacharya (2018) could be applied to

the approximate posterior distributions obtained by our proposed algorithms for

performing the selection. In contrast to alternative selection procedures proposed in

Bayesian literature, it does not account for any hyperparameters tuning and, as far

as our experiments are concerned, results in excellent fixed-effects selection perfor-

mances.

Both Chapters 2 and 3 dedicate broad attention to studying the accuracy of the

obtained optimal posterior approximations in contrast to the true posterior distri-

bution of the model. This task is necessary to understand whether the obtained ap-

proximation is reliable or not but necessitates obtaining the true posterior distribu-

tion with MCMC sampling techniques. Therefore, it is not sustainable for practical

implementations because the primary reason motivating variational approximations

is to avoid recurring to MCMC sampling procedures.

With these considerations in mind, Chapter 4 follows a machine-learning ap-

proach and only focuses on investigating prediction performances obtained by GVA

approximations over fully-Bayesian GPR models with nonstationary covariance func-

tions specifications. We visually assessed the predictions obtained by this model

over different simulated datasets and compared them to those obtained adopting

a stationary GP specification with typical metrics employed in supervised regres-

sion learning. Keeping aside the accuracy investigation for the variational approx-

imations obtained, we showed that our nonstationary GPR model better handles

heterogeneous nonstationary patterns than standard stationary GPR models.
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Future Directions of Research

Many future research directions can be envisaged for each of the works presented

in this PhD thesis, and some possible extensions have been already pointed out in

the Closing Remarks section of each chapter. Nonetheless, some common practical

questions emerged from our work and we believe will guide research on variational

approximation methods in the following years.

The first topic regards the way convergence is assessed for the optimization

method employed to solve (1.1). The most theoretically-grounded strategy is mon-

itoring the evolution of the lower-bound and stopping whenever its relative incre-

ment falls below a pre-specified threshold. Nonetheless, the lower-bound is not al-

ways guaranteed to increase monotonically for each approximating method. More-

over, its explicit expression could be challenging to be derived analytically and/or

to compute without noticeably affecting the total runtime of each iteration. On the

other hand, more practical alternative strategies employed in this PhD thesis include

monitoring the relative absolute increment on the parameters for the approximating

densities or letting the algorithm run over a number of iterations fixed in advance.

Regardless of the strategy adopted, it is still not clear how to choose a coherent

threshold such that the relative change obtained by performing one further iteration

becomes negligible and, at the same time, the algorithm does not waste useless itera-

tions while not obtaining any significant improvement in the overall approximation

accuracy.

A second related topic is measuring the goodness of the proposed variational

approximation and the associated optimal approximating densities. In principle,

a suitable procedure would assess convergence in a very short time, scale with

large model dimensions and sample sizes, and obtain optimal approximation ac-

curacies to the true posterior distribution. As shown along with this PhD thesis,

these benchmarks are usually not easy to measure genuinely and satisfy simulta-

neously. Moreover, the importance of each benchmark may vary from application

to application and between different experimented approximating methods. We be-

lieve further research work has to be done towards understanding the accepted level

of balance between a variational approximation that satisfies all the aforementioned

benchmarks and one that sacrifices one or more of them in favor of a possibly more

practical strategy for avoiding resorting to MCMC sampling strategies.

A third trending topic we believe will become highly predominant in the fol-

lowing years regards developing automated procedures for performing variational
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approximations (Wingate and Weber, 2013), in a similar fashion to what popular

probabilistic programming languages such as JAGS, Stan and Nimble already do for

MCMC sampling. Deriving variational approximation procedures by hand often

requires advanced mathematical skills and a lot of tedious algebraic computations

to be handled manually or with numeric integrations methods; moreover, efficient

implementations are necessary to enjoy the benefits provided by variational ap-

proximations. This may discourage an inexperienced user from experimenting the

advantages of variational approximation methods in favor of relying to automated

MCMC sampling strategies. We believe the ADVI procedure of Kucukelbir et al.

(2017) represents the state of the art upon which to develop more flexible covariance

matrix parameterization strategies such as that of Ong et al. (2018) experimented in

Chapter 4. In addition, it should accommodate alternative approximations to GVA,

e.g., exploiting the modularization of message-passing for MFVB and EP as already

experimented by the Infer.NET software. With automated variational approximation

procedures, the user only needs to specify the model structure and the type of ap-

proximation required, further contributing to disseminate the benefits of variational

approximations into applicative fields in which they are still mostly unexplored.

Important theoretical research avenues for variational approximations have al-

ready been summarized in Chapter 1 as well as in popular review papers such as

Blei et al. (2017) and Zhang et al. (2019), to which we refer for further insights.



Appendix A

A.1 A Primer on Vector Differential Calculus

Many statistical operations benefit from differential calculus, e.g., optimization

of functions and calculation of information matrices. For multiparameter models,

vector and matrix differential calculus circumvent element-wise univariate calculus

and provide a concise way for expressing differential results on multivariate func-

tions in terms of matrices and vectors.

Let f be a scalar-valued function with argument x ∈ Rd. The derivative vector of

f , written ∇ f (x), is the d× 1 vector whose ith entry is

∂ f (x)
∂xi

.

The Hessian matrix of f , written H f (x), is the d × d matrix H f (x) = ∇(∇ f (x))T

whose (i, j)th entry is
∂2 f (x)
∂xi∂xj

.

As a shorthand notation, we usually denote with ∇x(x̃) the derivative vector of f (x)

with respect to x, evaluated in x̃, and equivalently Hx(x̃) denotes the Hessian matrix

of f (x) with respect to x, evaluated in x̃.

We refer to Wand (2002) and Magnus and Neudecker (1988) for useful results

concerning vector differential calculus.

A.2 Probability Distributions

We describe the probability distributions that are used or mentioned along with

this PhD thesis. We distinguish them depending on whether or not they belong to

the notable exponential family of distributions.
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A.2.1 Exponential Families

The exponential family is a set of probability distributions that have been ex-

tensively studied in statistics due to their appealing properties. In particular, ex-

ponential family representations of probability density functions for distributions

belonging to this family are commonly used in Bayesian statistics. They allow for

efficient derivations of practical algorithms for approximate variational inference.

For further theoretical insights, we refer to Barndorff-Nielsen (1978), Efron (1978)

and Brown (1986).

We say that a d× 1 random vector X has an exponential family distribution (mean-

ing that its distribution belongs to the exponential family) if its probability density

(or mass) function can be expressed as:

p(x; η) = h(x) exp
{︂

T(x)Tη− A(η)
}︂

, x ∈ Rd, η ∈H, (A.1)

where h(x) ≥ 0 is the base measure, T(x) is the d× 1 sufficient statistic vector, η is the

d × 1 natural parameter vector, A(η) is the log-partition function and H is the space

of allowable natural parameter values. The sufficient statistic and the log-partition

function are linked by the two following useful results:

E(T(X)) = DηA(η)T and Cov(T(X)) = HηA(η).

Many well-known distributions belong to the exponential family. We provide

details and associated results focusing on those used in this PhD thesis.

A.2.1.1 Bernoulli Distribution

A discrete random variable X has a Bernoulli distribution with probability of

success π ∈ (0, 1), written X ∼ Bernoulli(π), if its probability mass function is:

p(x; π) = πx(1− π)1−x, x ∈ {0, 1}.

The sufficient statistic and base measure are:

T(x) = x and h(x) = 1(x ∈ {0, 1}).

The natural parameter and its inverse mapping are:

η = log(π/(1− π) = logit(π) and π = eη/(1 + eη) = expit(η),
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and the log-partition function is:

A(η) = log(1 + eη).

Moreover,

E(T(X)) = 1/(1 + e−η).

A.2.1.2 Univariate Normal (Gaussian) Distribution

A continuous random variable X has a univariate Normal (Gaussian) distribution

with mean parameter µ ∈ R and variance parameter σ2 > 0, written X ∼ N(µ, σ2),

if its probability density function is:

p(x; µ, σ2) =
1√

2πσ2
exp

{︃
− (x− µ)2

2σ2

}︃
, x ∈ R.

When µ = 0 and σ = 1, we refer to it as the univariate standard Normal (Gaussian)

distribution, and indicate its probability density function with ϕ(x). The sufficient

statistic and base measure are:

T(x) =

[︄
x

x2

]︄
and h(x) = (2π)−1/2.

The natural parameter vector and its inverse mapping are:

η =

[︄
η1

η2

]︄
=

[︄
µ/σ2

−1/(2σ2)

]︄
and

[︄
µ

σ2

]︄
=

[︄
−η1/(2η2)

−1/(2η2)

]︄
,

and the log-partition function is:

A(η) = −1
4
(η2

1/η2)−
1
2

log(−2η2).

Moreover,

E(T(X)) =

[︄
−η1(2η2)

(η2
1 − 2η2)/(4η2

2)

]︄
.

A.2.1.3 Log-Normal Distribution

A continuous random variable X has a Log-Normal distribution with mean pa-

rameter µ ∈ R and variance parameter σ2 > 0, written X ∼ Log-N(µ, σ2), if its
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probability density function is:

p(x; µ, σ2) =
1√

2πσ2x
exp

{︃
− (log x− µ)2

2σ2

}︃
, x > 0.

If X ∼ Log-N(µ, σ2), then log(X) ∼ N(µ, σ2). The sufficient statistic and base

measure are:

T(x) =

[︄
log x

log2 x

]︄
and h(x) = (2π)−1/2.

The natural parameter vector, its inverse mapping and the log-partition function are

identical to those of a univariate Normal distribution. Therefore,

E(T(X)) =

[︄
−η1(2η2)

(η2
1 − 2η2)/(4η2

2)

]︄
.

A.2.1.4 Inverse Chi-Squared and Inverse Gamma Distributions

A continuous random variable X has an Inverse Chi-Squared distribution with

shape parameter ξ > 0 and scale parameter λ > 0, written X ∼ Inverse-χ2(ξ, λ), if

its probability density function is:

p(x; ξ, λ) =
(λ/2)ξ/2

Γ(ξ/2)
x−ξ/2−1 exp

{︃
−λ/2

x

}︃
, x > 0.

A continuous random variable X has an Inverse Gamma distribution with shape

parameter ξ̃ > 0 and scale parameter λ̃ > 0, written X ∼ Inverse-Gamma(ξ̃, λ̃), if

its probability density function is:

p(x; ξ̃, λ̃) =
λ̃

ξ̃

Γ(ξ̃)
x−ξ̃−1 exp

{︃
− λ̃

x

}︃
, x > 0.

The Inverse Chi-Squared is not well-known, differently from the Inverse-Gamma

distribution: just notice from their definitions that they both express the same prob-

ability distribution, just with a different parameterization. Explicitly,

X ∼ Inverse-χ2(ξ, λ) if and only if X ∼ Inverse-Gamma(ξ/2, λ/2)

or, equivalently,

X ∼ Inverse-Gamma(ξ̃, λ̃) if and only if X ∼ Inverse-χ2(2ξ, 2λ).
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The sufficient statistic and base measure are:

T(x) =

[︄
log x

1/x

]︄
and h(x) = 1(x > 0).

The natural parameter vector and its inverse mapping are:

η =

[︄
η1

η2

]︄
=

[︄
−(ξ + 2)/2

−λ/2

]︄
=

[︄
−(ξ̃ + 1)

−λ̃

]︄
,

[︄
ξ

λ

]︄
=

[︄
−2− 2η1

−2η2

]︄

and [︄
ξ̃

λ̃

]︄
=

[︄
−1− η1

−η2

]︄
and the log-partition function is:

A(η) = (η1 + 1) log(−η2) + log Γ(−η1 − 1).

Moreover,

E(T(X)) =

[︄
log(−η2)− ψ(−η1 − 1)

(η1 + 1)/η2

]︄
.

A.2.1.5 Gamma Distribution

A continuous random variable X has a Gamma distribution with shape parameter

ξ > 0 and scale parameter λ > 0, written X ∼ Gamma(ξ, λ), if its probability

density function is:

p(x; ξ, λ) =
λξ

Γ(ξ)
xξ−1 exp(−λx), x > 0.

The sufficient statistic and base measure are:

T(x) =

[︄
log x

1/x

]︄
and h(x) = 1(x > 0).

The natural parameter vector and its inverse mapping are:

η =

[︄
η1

η2

]︄
=

[︄
ξ − 1

−λ

]︄
and

[︄
ξ

λ

]︄
=

[︄
1 + η1

−η2

]︄



148 Appendix A

and the log-partition function is:

A(η) = −(η1 + 1) log(−η2) + log Γ(η1 + 1).

Moreover,

E(T(X)) =

[︄
− log(−η2) + ψ(η1 + 1)

−(η1 + 1)/η2

]︄
.

A.2.1.6 Poisson Distribution

A discrete random variable X has a Poisson distribution with rate parameter

λ > 0, written X ∼ Poisson(λ), if its probability mass function is:

p(x; λ) =
λxe−λ

x!
, x ∈N.

The sufficient statistic and base measure are:

T(x) = x and h(x) = 1/(x!).

The natural parameter and its inverse mapping are:

η = log λ and λ = eη

and the log-partition function is:

A(η) = eη.

Moreover,

E(T(X)) = eη.

A.2.1.7 Inverse Gaussian Distribution

A continuous random variable X has an Inverse Gaussian distribution with mean

parameter µ ∈ R and precision parameter λ > 0, written X ∼ Inverse-Gaussian(µ, λ),

if its probability density function is:

p(x; µ, λ) =

√︃
λ

2π x3 exp
{︃
−λ(x− µ)2

2µ2 x

}︃
, x > 0.
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The sufficient statistic and base measure are:

T(x) =

[︄
x

1/x

]︄
and h(x) = (2π x3)−1/2

1(x > 0).

The natural parameter vector and its inverse mapping are:

η =

[︄
η1

η2

]︄
=

[︄
−λ/(2µ2)

−λ/2

]︄
and

[︄
µ

λ

]︄
=

[︄
(η2/η1)

1/2

−2η2

]︄

and the log-partition function is:

A(η) = −2(η1η2)
1/2 − 1

2
log(−2η2).

Moreover,

E(T(X)) =

[︄
(η2/η1)

1/2

(η1/η2)
1/2 − 1/(2η2)

]︄
.

A.2.1.8 Multivariate Normal (Gaussian) Distribution

A d× 1 random vector X has a multivariate Normal (Gaussian) distribution with

mean vector parameter µ ∈ Rd and symmetric positive definite d × d covariance

matrix parameter Σ, written X ∼ N(µ, Σ), if its probability density function is:

p(x; µ, Σ) = (2π)−d/2|Σ|−1/2 exp
{︃
−1

2
(x− µ)TΣ−1(x− µ)

}︃
, x ∈ Rd.

When µ = 0 and Σ = I, we refer to it as the multivariate standard Normal (Gaus-

sian) distribution, and indicate its probability density function with ϕ(x). The suffi-

cient statistic and base measure are:

T(x) =

[︄
x

vech(xxT)

]︄
and h(x) = (2π)−d/2.

The natural parameter vector and its inverse mapping are:

η =

[︄
η1

η2

]︄
=

[︄
Σ−1µ

−1
2vech(Σ−1)

]︄
and

[︄
µ

Σ

]︄
=

[︄
−1

2{vech−1(η2)}−1η1

−1
2{vech−1(η2)}−1

]︄
,
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where η1 and η2 have dimensions d × 1 and d(d + 1)/2× 1, respectively, and the

log-partition function is:

A(η) = −1
4

ηT
1 {vech−1(η2)}−1η1 −

1
2

log | − 2vech−1(η2)|.

Moreover,

E(T(X)) =

⎡⎣ −1
2{vech−1(η2)}−1η1

1
4vech

(︂
{vech−1(η2)}−1

[︂
η1ηT

1 {vech−1(η2)}−1 − 2I
]︂)︂ ⎤⎦ .

A.2.1.9 Inverse Wishart and Inverse G-Wishart Distributions

A d × d symmetric positive definite random matrix X has an Inverse Wishart

distribution with κ > d− 1 degrees of freedom and symmetric and positive definite

d× d scale matrix parameter Λ, written X ∼ Inverse-Wishart(κ, Λ), if its probability

density function is:

p(X; κ, Λ) =
|Λ|κ/2

2dκ/2πd(d−1)/4 ∏d
j=1 Γ

(︂
κ+1−j

2

)︂ |X|−(κ+d+1)/2 exp
{︃
−1

2
tr(ΛX−1)

}︃
× 1(X is symmetric and positive definite).

When d = 1, it coincides with the Inverse Chi-Squared distribution. The sufficient

statistic and base measure are:

T(X) =

[︄
log |X|

vech(X−1)

]︄
and h(x) =

1(X is symmetric and positive definite)
πd(d−1)/4

.

The natural parameter vector and its inverse mapping are:

η =

[︄
η1

η2

]︄
=

[︄
−(κ + d + 1)/2

−1
2vech(Λ)

]︄
and

[︄
κ

Λ

]︄
=

[︄
−d− 1− 2η1

−2vech−1(η2)

]︄
,

where η2 has dimension d(d + 1)/2× 1, and the log-partition function is:

A(η) =

(︃
η1 +

d + 1
2

)︃
log | − vech−1(η2)|+

d

∑
j=1

log Γ
(︃
−η1 −

d + j
2

)︃
.
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Moreover,

E(T(X)) =

⎡⎢⎣ log | − vech−1(η2)| −∑d
j=1 ψ

(︂
−η1 − d+j

2

)︂
(︂

η1 +
d+1

2

)︂
vech

[︃(︂
vech−1(η1)

)︂−1
]︃ ⎤⎥⎦ .

Now consider the extension of the Inverse Wishart distribution corresponding to

the inverse of the d× d random matrix X having some off-diagonal entries forced

to equal zero. Such structure can be represented using undirected graphs and,

following the nomenclature of Atay-Kayis and Massam (2005), Letac and Massam

(2007) and Uhler et al. (2018) is referred to as the Inverse G-Wishart distribution.

Differently, Roverato (2000) used the term Hyper Inverse Wishart for the same family

of distributions. Let then G be an undirected graph with d nodes labelled 1, . . . , d

and E be the edge set consisting of pairs of nodes that are connected by an edge.

We say that the d× d matrix M respects G if:

M ij = 0 for all {i, j} /∈ E.

Then the d× d symmetric positive definite random matrix X has an Inverse G-Wishart

distribution with d-node undirected graph G, shape parameter ξ > 0 and symmetric

positive definite d× d scale matrix parameter Λ, written X ∼ Inverse-G-Wishart(G, ξ, Λ),

if its probability density function is:

p(X; ξ, Λ) ∝ |X|−(ξ+2)/2 exp
{︃
−1

2
tr(ΛX−1)

}︃
× 1(X is symmetric and positive definite and X−1 respects G).

The normalizing factor follows from formulae of Uhler et al. (2018), although it is

pretty complicated for a general graph G. Two notable special cases arise, depending

on the structure of G.

The G = Gfull and ξ > 2(d− 1) Case

If G = Gfull = totally connected d-node graph, symbolizing X−1 is a full ma-

trix, then the Inverse G-Wishart distribution coincides with the ordinary Inverse

Wishart distribution and X ∼ Inverse-G-Wishart(Gfull, ξ, Λ) if and only if X ∼
Inverse-Wishart(ξ − d + 1, Λ). Then, its probability density function is expressible
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as:

p(X; ξ, Λ) =
|Λ|(ξ−d+1)/2

2d(ξ−d+1)/2πd(d−1)/4 ∏d
j=1 Γ

(︂
ξ−d−j

2 + 1
)︂ |X|−(ξ+2)/2 exp

{︃
−1

2
tr(ΛX−1)

}︃
× 1(X is symmetric and positive definite and X−1 respects G),

and X effectively belongs to the exponential family. Its sufficient statistic, base

measure, natural parameter vector, inverse mapping and log-partition function can

be obtained from those of the Inverse Chi-Squared distribution, substituting κ =

ξ − d + 1. Also, E(X−1) = (ξ − d + 1)Λ−1.

The G = Gdiag Case

Conversely, if G = Gdiag = totally disconnected d-node graph, symbolizing X−1

is a diagonal matrix and E = ∅, then the Inverse G-Wishart distribution reduces

into a product of independent Inverse Chi-Squared distributions. This means X ∼
Inverse-G-Wishart(Gdiag, ξ, Λ) if and only if X = ∏d

j=1 Xjj, with Xjj
ind∼ Inverse-χ2(ξ, Λjj)

for all 1 ≤ j ≤ d. In fact, its probability density function is:

p(X; ξ, Λ) =
|Λ|ξ/2

2dξ/2Γ(ξ/2)d |X|
−(ξ+2)/2 exp

{︃
−1

2
tr(ΛX−1)

}︃ d

∏
j=1

1(Xjj > 0),

which can be expressed as:

p(X; ξ, Λ) =
d

∏
j=1

{︄
(Λjj/2)ξ/2

Γ(ξ/2)
X−ξ/2−1

jj exp

(︄
−1

2
Λjj

Xjj

)︄
1(Xjj > 0)

}︄
.

Then, X effectively belongs to the exponential family. Its sufficient statistic, base

measure, natural parameter vector, inverse mapping and log-partition function can

be obtained from that of the Inverse Chi-Squared distribution, substituting κ =

ξ − d + 1. Also, E(X−1) = ξΛ−1 = ξdiag(Λ−1
11 , . . . , Λ−1

dd ). See Maestrini and Wand

(2021) for further insights.

A.2.2 Other Useful Distributions

Other distributions not belonging to the exponential family are used throughout

this PhD thesis. We list them hereafter, together with associated results allowing for

their algebraic tractability.
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A.2.2.1 Uniform Distribution

A continuous random variable X has a Uniform distribution over the interval

[νmin, νmax], with −∞ < νmin < νmax < ∞, written X ∼ Unif[νmin, νmax], if its proba-

bility density function is:

p(x; νmin, νmax) = (νmax − νmin)
−1
1(x ∈ [νmin, νmax]).

A.2.2.2 Half-Cauchy Distribution

A continuous random variable X has a Half-Cauchy distribution with scale pa-

rameter s > 0, written X ∼ Half-Cauchy(s), if its probability density function is:

p(x; s) =
2

πs{1 + (x/s)2} , x > 0.

Proposition 1 in Armagan et al. (2011) showed that:

if X2|a ∼ Inverse-Gamma(1/2, 1/a) and a ∼ Inverse-χ2(1/2, 1/s2),

then X ∼ Half-Cauchy(s),

or alternatively, using the Inverse-χ2 parameterization:

if X2|a ∼ Inverse-χ2(1, 1/a) and a ∼ Inverse-χ2(1, 1/s2),

then X ∼ Half-Cauchy(s).

A.2.2.3 Half-t Distribution

A continuous random variable X has a Half-t distribution with ν > 0 degrees

of freedom and scale parameter s > 0, written X ∼ Half-t(s, ν), if its probability

density function is:

p(x; ν) =
2Γ
(︂

ν+1
2

)︂
√

πνΓ(ν/2)s{1 + (x/s)2/ν}(ν+1)/ν
, x > 0.

If ν = 1, then the Half-t distribution reduces into the Half-Cauchy distribution.

Result 5 of Wand et al. (2011) showed that:

if X2|a ∼ Inverse-Gamma(ν/2, ν/a) and a ∼ Inverse-χ2(1/2, 1/s2),

then X ∼ Half-t(s, ν),
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or alternatively, using the Inverse-χ2 parameterization:

if X2|a ∼ Inverse-χ2(ν, 1/a) and a ∼ Inverse-χ2(1, 1/(νs2)),

then X ∼ Half-t(s, ν).

A.2.2.4 Laplace Distribution

A continuous random variable X has a Laplace distribution (also known as double-

Exponential or two-tailed Exponential) with mean parameter µ ∈ R and scale parame-

ter σ > 0, written X ∼ Laplace(µ, σ), if its probability density function is:

p(x; µ, σ) =
1

2σ
exp

(︃
−|x− µ|

σ

)︃
, x ∈ R.

A useful result by Andrews and Mallows (1974) and West (1987) showed that:

if X|ζ ∼ N(µ, σ2/ζ) and ζ ∼ Inverse-χ2(2, 1),

then X ∼ Laplace(µ, σ).

A.2.2.5 Horseshoe Distribution

A continuous random variable X has a Horseshoe distribution with mean parame-

ter µ ∈ R and scale parameter σ > 0, written X ∼ Horseshoe(µ, σ), if its probability

density function is:

p(x; µ, σ) = (2π3)−1/2 1
σ

exp
{︃
(x− µ)2

2σ2

}︃
E1

{︃
(x− µ)2

2σ2

}︃
, x ∈ R,

where E1(x) =
∫︁ ∞

x t−1e−t dt for x ̸= 0 is the exponential integral function of order 1.

Integrating Carvalho et al. (2010) with results from the Half-Cauchy distribution, it

is possible to show that:

if X|ζ ∼ N(µ, σ2/ζ), ζ|aζ ∼ Gamma(1/2, aζ) and aζ ∼ Gamma(1/2, 1),

then X ∼ Horseshoe(µ, σ).

A.2.2.6 Normal-Exponential-Gamma Distribution

A continuous random variable X has a Normal-Exponential-Gamma distribution

with mean parameter µ ∈ R, scale parameter σ > 0 and shape parameter λ > 0,
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written X ∼ NEG(µ, σ, λ), if its probability density function is:

p(x; µ, σ, λ) = π−1/2λ2λΓ(λ + 1/2)
1
σ

exp
{︃
(x− µ)2

4σ2

}︃
D−2λ−1

{︃⃓⃓⃓⃓
x− µ

σ

⃓⃓⃓⃓}︃
, x ∈ R,

where Dν(x) = 2ν/2+1/4Wν/2+1/4,−1/4(x2/2)/
√︁
(x) for x > 0 is the parabolic cylinder

function of order ν ∈ R and Wk,m is a confluent hypergeometric function of order k and

m, as defined by Whittaker and Watson (1996). A useful result by Griffin and Brown

(2011) showed that:

if X|ζ ∼ N(µ, σ2/ζ), ζ|aζ ∼ Inverse-χ2(2, 2aζ) and aζ ∼ Gamma(λ/2, 1),

then X ∼ NEG(µ, σ, λ).

A.2.2.7 Huang-Wand Distribution

A d × d symmetric positive definite random matrix X has a Huang-Wand dis-

tribution with shape parameter ν > 0 and scale parameters s1, . . . , sd > 0, written

X ∼ Huang-Wand(ν, {s1, . . . , sd}), if its probability density function is:

p(X; ν, {s1, . . . , sd}) ∝ |X|−(ν+2d)/2
d

∏
j=1
{νX−1

jj + 1/s2
j }−(ν+d)/2}

× 1(X is symmetric and positive definite).

The name comes from the two authors who invented it and extensively studied its

appealing properties in Huang and Wand (2013). As highlighted in Section 3.1 of

Maestrini and Wand (2021), equation (2) of Huang and Wand (2013) with d rather

than p and sj rather than Aj for 1 ≤ j ≤ d allows to succinctly express it in terms of

tractable Inverse G-Wishart distributions:

if X|A ∼ Inverse-G-Wishart(Gfull, ν + 2d− 2, A−1)

and A ∼ Inverse-G-Wishart(Gdiag, 1, {ν diag(s2
1, . . . , s2

d)}−1),

then X ∼ Huang-Wand(ν, {s1, . . . , sd}).

As discussed in Huang and Wand (2013), the Huang-Wand distribution general-

izes the Half-t distribution for random matrices. In fact, (X jj)
1/2 ind∼ Half-t(sj, ν) for

each 1 ≤ j ≤ d and the choice ν = 2 induces:√︁
X jj′√︁

X jj X j′ j′
∼ Uniform(−1, 1) for each j ̸= j′.
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A.3 Hardware Setup, Programming Languages and Re-

lated Libraries

We briefly describe the hardware setup, programming languages, and associated

libraries that have been used for writing this PhD thesis.

A.3.1 Hardware Setup

All the figures, simulation studies, applications, and related computational tasks

presented in this PhD thesis have been executed into an R environment v4.0.3 and

performed on a MacBook Pro laptop having a 1.4 gigahertz processor and 8 giga-

bytes of random access memory, running a macOS Big Sur v11.6 operating system.

This manuscript has been written with LATEX using texpad1 v1.9.6 for macOS, and

typesetted with pdfTeX2 v3.14159265-2.6-1.40.21.

A.3.2 R

R (R Core Team, 2020) is a programming language and free software environ-

ment for statistical computing and graphics supported by the R Core Team and the

R Foundation for Statistical Computing. It was created and developed by Ross Ihaka

and Robert Gentleman during the 1990s, with its first stable version released in

2000. It is widely used among statisticians for developing statistical software and

data analysis. The official R software is written primarily in C, Fortran and R it-

self and is freely available under the GNU General Public License. Although R

has a command-line interface, several third-party graphical user interfaces are avail-

able, such as the popular RStudio (https://www.rstudio.com) and Jupyter (https:

//jupyter.org). Its popularity has increased rapidly over the last decades because

it is open-source, it is available both for Windows, Mac and Linux operating sys-

tems, has an expanding set of freely available libraries and packages to extend its

capabilities and has an extensive support network with numerous online and freely

available documentation. Additional information can be found on the official web-

site: https://www.r-project.org.

1see https://www.texpad.com.
2see https://www.tug.org/applications/pdftex/.

https://www.rstudio.com
https://jupyter.org
https://jupyter.org
https://www.r-project.org
https://www.texpad.com
https://www.tug.org/applications/pdftex/
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A.3.3 C++ and the Rcpp Package

C++ is a general-purpose programming language created by Bjarne Stroustrup

as an extension of the C programming language. It was primarily oriented toward

system programming, embedded resource-constrained software and large systems,

providing a wide efficiency and flexibility of use. C++ is not very popular among

statisticians if compared to R or Python programming languages but possess a wide

number of libraries accounting for linear algebra and scientific computing tasks that

are often required for implementing statistical software. Among those, in this PhD

thesis we used the Armadillo C++ library (Sanderson and Curtin, 2016). Additional

information can be found on the website: https://isocpp.org.

Sometimes, R code encounters bottlenecks that slow down the computational

time. Performances can be sometimes improved by rewriting functions in C++

code, and executing them into a pure R environment: the connection is made by

the fundamental Rcpp package (Eddelbuettel, 2013), which provides a user-friendly

framework for addressing typical R bottlenecks including loops that can’t be eas-

ily vectorized because subsequent iterations depend on previous ones, a typical

problem when performing e.g. MCMC sampling or variational approximation op-

timizations. Additionally, the Armadillo library is accommodated within the Rcpp

framework usage due to the RcppArmadillo package (Eddelbuettel and Sanderson,

2014). We refer to Eddelbuettel and Balamuta (2018) for an introductory tutorial.

A.3.4 Stan and the rstan Package

Stan (Carpenter et al., 2017) is a state-of-the-art platform and probabilistic pro-

gramming language for statistical modeling and high-performance statistical com-

putations. It efficiently implements methods for full Bayesian statistical inference

with MCMC (using the NUTS sampler of Hoffman and Gelman, 2014 and the

Hamiltonian Monte Carlo sampler, see e.g. Neal, 2011), approximate Bayesian in-

ference with variational approximations (employing the ADVI method of Kucukel-

bir et al., 2017) and penalized maximum likelihood estimation with L-BFGS opti-

mization. In all three cases, automatic differentiation is used to quickly and accu-

rately evaluate gradients without burdening the user with the need to derive the

partial derivatives. Additional information can be found on the official website:

https://mc-stan.org.

Its wide popularity in Bayesian statistics is motivated by the fact that it allows

sampling from the posterior distribution of a generic model, only requiring the

https://isocpp.org
https://mc-stan.org
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user to specify the model structure with a few simple lines of coding. The rstan

library (Stan Development Team, 2020) provides an excellent interface for R with

functions that parse, compile, test, estimate, and analyze Stan models by accessing

the associated StanHeaders package.

A.3.5 TensorFlow and the tensorflow Package

TensorFlow (Abadi et al., 2016) is an end-to-end open source platform for machine

learning. It has a comprehensive, flexible ecosystem of tools, libraries, and commu-

nity resources that lets researchers push the state-of-the-art in ML and developers

easily build and deploy ML-powered applications. It was originally developed by

researchers and engineers working on the Google Brain team within Google’s Ma-

chine Intelligence Research organization to conduct machine learning and deep neural

networks research. Additional information and resources can be found on the offi-

cial website https://www.tensorflow.org.

TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed

backward compatible API for other languages. In R, the tensorflow package (Al-

laire and Tang, 2020) provides access to the complete TensorFlow API, see https://

tensorflow.rstudio.com. Within this PhD thesis, we employ tensorflow to perform

fast automatic differentiation via the GradientTape API: an introductory tutorial is

given in https://tensorflow.rstudio.com/tutorials/advanced/customization/

autodiff/.

https://www.tensorflow.org
https://tensorflow.rstudio.com
https://tensorflow.rstudio.com
https://tensorflow.rstudio.com/tutorials/advanced/customization/autodiff/
https://tensorflow.rstudio.com/tutorials/advanced/customization/autodiff/


Appendix B

This appendix contains additional details on definitions and derivations for im-

plementing the algorithms described in Chapter 2. Some of them are adopted from

Kim and Wand (2016), Kim and Wand (2018), Chen and Wand (2020) and Hall et al.

(2020), to which we refer for further insights.

B.1 Function Definitions

B.1.1 Non-Analytic Integral Functions

Some integral-defined functions are required to express indefinite integrals as

functions of some pre-specified parameters. From Section 2.1 of Kim and Wand

(2016), we report

A(p, q, r, s, t, u) ≡
∫︂ ∞

−∞
xp exp(qx− rx2)

(x2 + sx + t)u dx,

which is defined for p ≥ 0, q ∈ R, r > 0, s ∈ R, t > 1/4s2, u > 0 and

B(p, q, r, s, t, u) ≡
∫︂ ∞

−∞
xp exp(qx− rex − sex/(t + ex))

(t + ex)u dx,

which is defined for p ≥ 0, q ∈ R, r > 0, s ∈ R, t > 0, u > 0. Following Appendix

2.4 of Kim and Wand (2016), such integral-defined functions can be expressed in

terms of this more convenient expressions:

α

⎛⎜⎜⎝k,

[︄
a1

a2

]︄
,

[︄
b1

b2

]︄
,

⎡⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎦
⎞⎟⎟⎠ ≡ A(︃k, a1,−a2,

−2c2

c1
,

c3− 2b2

c1
,

c1 − 2b1 − 2
2

)︃
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and

β

⎛⎜⎜⎝k, ℓ, v, w,

[︄
a1

a2

]︄
,

[︄
b1

b2

]︄
,

⎡⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎦
⎞⎟⎟⎠ ≡ B (︃k, ℓ+c1−1

2 − a1, c1c3−c2
2

2c1
− a2,−b2

(︂
c2
c1
+ b1

2b2

)︂2
, v, w

)︃
.

Moreover, from Kim and Wand (2018) we report here

Cb(p, q, r) ≡
∫︂ ∞

−∞
xp exp

(︂
qx− rx2 − b(x)

)︂
dx

which is defined for p ≥ 0, q ∈ R, r > 0 and b : R −→ R is any function for which

the resulting integral exists.

For the work presented in Chapter 2, we introduce:

γd

⎛⎜⎜⎜⎜⎝k,

[︄
a1

a2

]︄
,

[︄
b1

b2

]︄
,

⎡⎢⎢⎢⎢⎣
c1

c2

c3

c4

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ , k ∈ {0, 1, 2}

defined, for a1 and c3 of dimension d× 1 and a2 and c4 of dimension d(d+ 1)/2× 1,
as

γd (0, a, b, c) ≡
∫︂ ∞

−∞
exp

⎧⎨⎩
[︄
−x

ex

]︄T (︄[︄
b1

b2

]︄
− 1

2

[︄
c1

c2

]︄)︄
+ AMVN

(︄[︄
a1

a2

]︄
+ ex

[︄
c3

c4

]︄)︄
− x

⎫⎬⎭dx,

γd (1, a, b, c) ≡
∫︂ ∞

−∞
exp

⎧⎨⎩
[︄
−x

ex

]︄T (︄[︄
b1

b2

]︄
− 1

2

[︄
c1

c2

]︄)︄
+ AMVN

(︄[︄
a1

a2

]︄
+ ex

[︄
c3

c4

]︄)︄
− x

⎫⎬⎭
×
[︃
−1

2

{︂
vech−1 (a2 + exc4)

}︂−1
{︃

a1 +
ex

2
c3

}︃]︃d

1
dx

and

γd (2, a, b, c) ≡
∫︂ ∞

−∞
exp

⎧⎨⎩
[︄
−x

ex

]︄T (︄[︄
b1

b2

]︄
− 1

2

[︄
c1

c2

]︄)︄
+ AMVN

(︄[︄
a1

a2

]︄
+ ex

[︄
c3

c4

]︄)︄
− x

⎫⎬⎭
×
[︄

1
4

vech

{︄[︂
vech−1 (a2 + exc4)

]︂−1
{︄[︃

a1 +
ex

2
c3

]︃ [︃
a1 +

ex

2
c3

]︃T

×
[︂
vech−1 (a2 + exc4)

]︂−1
− 2I

}︄}︄]︄d(d+1)/2

1

dx,
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where AMVN(·) denotes the log-partition function of a multivariate d-dimensional

Normal distribution and [·]d1 is a shorthand notation emphasizing that the integral

is actually a vector of d different integrals, each evaluated considering one of the

d different elements of the vector contained in [·]. Hence γd (0, a, b, c) is a scalar,

γd (1, a, b, c) is a vector of length d and γd (2, a, b, c) is a vector of length d(d + 1)/2,

for suitably chosen vectors a, b and c.

Moreover, we introduce:

δd

⎛⎜⎜⎜⎜⎝k,

[︄
a1

a2

]︄
,

[︄
b1

b2

]︄
,

⎡⎢⎢⎢⎢⎣
c1

c2

c3

c4

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ , k ∈ {0, 1, 2}

defined, for a1 and c3 of dimension d× 1 and a2 and c4 of dimension d(d+ 1)/2× 1,
as

δd (0, a, b, c) ≡
∫︂ ∞

−∞
exp

⎧⎨⎩
[︄
−x

ex

]︄T (︄[︄
b1

b2

]︄
− 1

2

[︄
c1

c2

]︄)︄
+ AMVN

(︄[︄
a1

a2

]︄
+ ex

[︄
c3

c4

]︄)︄
− x

⎫⎬⎭dx,

δd (1, a, b, c) ≡
∫︂ ∞

−∞
x exp

⎧⎨⎩
[︄
−x

ex

]︄T (︄[︄
b1

b2

]︄
− 1

2

[︄
c1

c2

]︄)︄
+ AMVN

(︄[︄
a1

a2

]︄
+ ex

[︄
c3

c4

]︄)︄
− x

⎫⎬⎭dx,

and

δd (2, a, b, c) ≡
∫︂ ∞

−∞
exp

⎧⎨⎩
[︄
−x

ex

]︄T (︄[︄
b1

b2

]︄
− 1

2

[︄
c1

c2

]︄)︄
+ AMVN

(︄[︄
a1

a2

]︄
+ ex

[︄
c3

c4

]︄)︄⎫⎬⎭dx.

Practical R routines implementing numerical quadrature methods for comput-

ing A(p, q, r, s, t, u) and B(p, q, r, s, t, u) are given as supplementary material to Kim

and Wand (2016) and are freely available in Matt P. Wand’s personal webpage,

see http://matt-wand.utsacademics.info/KimWandCode.zip. Although not used

in our implementations, a recent work by Pogány and Nadarajah (2021) developed

explicit forms for both integrals involving special mathematical functions, which can

be computed with in-built routines available in classical programming languages.

Both Cb(p, q, r), γd(k, a, b, c) and δd(k, a, b, c) only involves univariate integrals,

and can be efficiently solved employing standard numerical quadrature methods.

Practical advices for stable and efficient implementations are given Appendix B of

Wand et al. (2011), bridging ideas of Laplace approximation and Gauss-Hermite

quadrature for numerical resolution of complex integrals (Liu and Pierce, 1994).

http://matt-wand.utsacademics.info/KimWandCode.zip
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B.1.2 Kullback-Leibler Projection Wrapper Functions

Kullback-Leibler projections are required in Chapter 2 for obtaining the natural

parameter vectors η∗(α)
p(µ)→µ

, η∗(α)
p(β)→β

, η∗(α)
p(y|µ,σ2)→µ

, η∗(α)
p(y|β,σ2)→β

, η∗(α)
p(yi|β)→β

, η∗(α)
p(y|µ,σ2)→σ2 ,

η∗(α)
p(y|β,σ2)→σ2 , η∗(α)

p(σ2|a)→σ2 , η∗(α)
p(σ2|a)→a and η∗(α)

p(a)→a. As it will be shown later on in this

Appendix, their computation usually involves univariate integrals to be solved nu-

merically. In order to make the associated Power-EP update expressions appear in

a more compact form, we illustrate hereafter some useful wrapper functions that

will associate the non-analytic functions defined in the previous pages with optimal

Kullback-Leibler projected natural parameter vectors.
From Appendix 2.4 of Kim and Wand (2016), we report below:

g(ℓ, v, w, a, b, c) ≡ (log–ψ)−1
(︃

log
{︃

β(0, ℓ+ 1, v, w, a, b, c)
β(0, ℓ− 1, v, w, a, b, c)

}︃
− β(1, ℓ− 1, v, w, a, b, c)

β(0, ℓ− 1, v, w, a, b, c)

)︃
,

GN(a, b; c) ≡
[︄

α(2, a, b, c)
α(0, a, b, c)

−
{︃

α(1, a, b, c)
α(0, a, b, c)

}︃2
]︄−1 [︄

α(1, a, b, c)/α(0, a, b, c)

−1/2

]︄
− a,

GIG1

⎛⎜⎜⎝a,

[︄
b1

b2

]︄
;

⎡⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎦
⎞⎟⎟⎠ ≡

⎡⎢⎢⎣
−1− g(0,−2b2/c1, 1/2, a, b, c)

−g(0,−2b2/c1, 1/2, a, b, c)β(0,−1,−2b2/c1, 1/2, a, b, c)
β(0, 1,−2b2/c1, 1/2, a, b, c)

⎤⎥⎥⎦− a

and

GIG2

(︄
a,

[︄
b1

b2

]︄
; k

)︄
≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1− g

⎛⎜⎜⎝k− 2,−b2, 1− k/2− b1, a,

[︄
0

b2

]︄
,

⎡⎢⎢⎣
2

0

0

⎤⎥⎥⎦
⎞⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−g

⎛⎜⎜⎝k− 2,−b2, 1− k/2− b1, a,

[︄
0

b2

]︄
,

⎡⎢⎢⎣
2

0

0

⎤⎥⎥⎦
⎞⎟⎟⎠

× β

⎛⎜⎜⎝0, k− 3,−b2, 1− k/2− b1, a,

[︄
0

b2

]︄
,

⎡⎢⎢⎣
2

0

0

⎤⎥⎥⎦
⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
β

⎛⎜⎜⎝0, k− 1,−b2, 1− k/2− b1, a,

[︄
0

b2

]︄
,

⎡⎢⎢⎣
2

0

0

⎤⎥⎥⎦
⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− a.
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For the work presented in Chapter 2, we introduce

GMVN
lm (a, b; c) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{︄
vech−1 (γd(2, a, b, c))

γd(0, a, b, c)
−
(︃

γd(1, a, b, c)
γd(0, a, b, c)

)︃(︃
γd(1, a, b, c)
γd(0, a, b, c)

)︃T
}︄−1

×
(︃

γd(1, a, bc)
γd(0, a, bc)

)︃

−1
2

vech

⎛⎜⎜⎜⎜⎜⎝
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vech−1 (γd(2, a, b, c))
γd(0, a, b, c)

−
(︃

γd(1, a, b, c)
γd(0, a, b, c)

)︃(︃
γd(1, a, b, c)
γd(0, a, b, c)

)︃T

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

−1
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− a

and

GIG4(a, b; c) ≡

⎡⎢⎢⎢⎣
−1− (log–ψ)−1

(︃
log
{︃

δd(2, a, b, c)
δd(0, a, b, c)

}︃
− δd(1, a, b, c)

δd(0, a, b, c)

)︃
−(log–ψ)−1

(︃
log
{︃

δd(2, a, b, c)
δd(0, a, b, c)

}︃
− δd(1, a, b, c)

δd(0, a, b, c)

)︃
δd(0, a, b, c)
δd(2, a, b, c)

⎤⎥⎥⎥⎦− a.

Moreover, we generalize the Kprobit(a; c0, c1) wrapper introduced in Definition 1 of

Hall et al. (2020) into:

GMVN
glm

(︄[︄
a1

a2

]︄
; c0, c1, c2, b

)︄
≡
[︄

RT
5 (a1 + r3c1)

vech(RT
5 A2)

]︄
− a,

where

A2 ≡ vech−1(a2), r1 ≡ cT
1 A−1

2 c1, r2 ≡ (2c0 − cT
1 A−1

2 a1)/r1,

r6 ≡ c2 − r2, r7 ≡ −r−1
1 , r3 ≡ r2 + 2r7

Cb(1, r6, r7)

Cb(0, r6, r7)
,

r4 ≡ −2r2
7

(︄
Cb(2, r6, r7)

Cb(0, r6, r7)
−
(︃Cb(1, r6, r7)

Cb(0, r6, r7)

)︃2

+
r1

2

)︄
, R5 ≡ (A2 + r4c1cT

1 )
−1A2.

B.2 Derivations

B.2.1 Updates for the Univariate Normal Random Sample Model

We give explicit derivations of η∗(α)
p(µ)→µ

, η∗(α)
p(y|µ,σ2)→µ

, η∗(α)
p(y|µ,σ2)→σ2 , η∗(α)

p(σ2|a)→σ2 ,

η∗(α)
p(σ2|a)→a and η∗(α)

p(a)→a, together with compact representation of the associated η(α)
p(µ)→µ

,

η(α)
p(y|µ,σ2)→µ

, η(α)
p(y|µ,σ2)→σ2 , η(α)

p(σ2|a)→σ2 , η(α)
p(σ2|a)→a and η(α)

p(a)→a updates required for im-

plementation of Algorithm 2.2. Derivations follow Appendix A.5 of Kim and Wand
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(2016) with minor modifications to admit Power-EP approximation extension.

Derivation of η∗(α)
p(µ)→µ

and η(α)
p(µ)→µ

Following algebraic steps presented in Appendix A.5.2 of Kim and Wand (2016),

the function of µ to be Kullback-Leibler-projected into the univariate Normal expo-

nential family is

h(µ) ∝
(︂
m(α)

p(µ)→µ
(µ)
)︂1−α

m(α)
µ→p(µ)

(µ) p(µ)α

∝ exp

⎧⎨⎩
[︄

µ

µ2

]︄T (︄
(1− α)η(α)

p(µ)→µ
+ η(α)

µ→p(µ)
+ α

[︄
µµ/σ2

µ

−1/(2σ2
µ)

]︄)︄⎫⎬⎭
∝ exp

⎧⎨⎩
[︄

µ

µ2

]︄T (︄
η(α)
p(µ)↔µ

+ α

[︄
µµ/σ2

µ

−1/(2σ2
µ)

]︄)︄⎫⎬⎭ .

Since it is proportional to a univariate Normal distribution, the Kullback-Leibler

projection returns the exact natural parameters of h(µ). Hence

η∗(α)
p(µ)→µ

←− η(α)
p(µ)↔µ

+ α

[︄
µµ/σ2

µ

−1/(2σ2
µ)

]︄

and

η(α)
p(µ)→µ

←− η(α)
p(µ)↔µ

+ α

[︄
µµ/σ2

µ

−1/(2σ2
µ)

]︄
− η(α)

µ→p(µ)
←−

[︄
µµ/σ2

µ

−1/(2σ2
µ)

]︄
.

Then η(α)
p(µ)→µ

is fixed at each iteration and corresponds to the natural parameter

vector ηp(µ) of p(µ).

Derivation of η∗(α)
p(y|µ,σ2)→µ

and η(α)
p(y|µ,σ2)→µ

Following algebraic steps presented in Appendix A.5.3 of Kim and Wand (2016),

the function of µ to be Kullback-Leibler-projected into the univariate Normal expo-

nential family is

h♦(µ) ∝
(︂
m(α)

p(y|µ,σ2)→µ
(µ)
)︂1−α

m(α)
µ→p(y|µ,σ2)

(µ)

×
∫︂ ∞

0
p(y|µ, σ2)α

(︂
m(α)

p(y|µ,σ2)→σ2(σ
2)
)︂1−α

m(α)
σ2→p(y|µ,σ2)

(σ2) dσ2.
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The integral can be solved analytically as

∫︂ ∞

0
p(y|µ, σ2)α

(︂
m(α)

p(y|µ,σ2)→σ2(σ
2)
)︂1−α

m(α)
σ2→p(y|µ,σ2)

(σ2) dσ2

∝
∫︂ ∞

0
exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T (︄
α

[︄
−n/2

−∥y− µ1∥2/2

]︄
+ (1− α)η(α)

p(y|µ,σ2)→σ2 + η(α)
σ2→p(y|µ,σ2)

)︄⎫⎬⎭ dσ2

∝
∫︂ ∞

0
exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T (︄
α

[︄
−n/2

−∥y− µ1∥2/2

]︄
+ η(α)

p(y|µ,σ2)↔σ2

)︄⎫⎬⎭ dσ2

∝ exp

{︄
AIG

(︄
α

[︄
−n/2

−∥y− µ1∥2/2

]︄
+ η(α)

p(y|µ,σ2)↔σ2

)︄}︄

∝
(︃

α
∥y− µ1∥2

2
−
[︂
η(α)
p(y|µ,σ2)↔σ2

]︂
2

)︃−α n
2 +
[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1
+1

,

where AIG(·) denotes the log-partition function of an Inverse Gamma distribution
(see Appendix A). Hence

h♦(µ) ∝ exp

⎧⎨⎩
[︄

µ

µ2

]︄T

η(α)
p(y|µ,σ2)↔µ

⎫⎬⎭
(︃

α
∥y− µ1∥2

2
−
[︂
η(α)
p(y|µ,σ2)↔σ2

]︂
2

)︃−α n
2 +
[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1
+1

and doing some little algebra it is possible to express

µ∗♦ ≡ Eh♦(µ)(µ) =

∫︁ ∞
−∞ µ h♦(µ) dµ∫︁ ∞
−∞ h♦(µ) dµ

=

A

⎛⎜⎜⎝1,
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
1

,−
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
2

,−2ȳ,

n
∑

i=1
y2

i−
2
[︃
η(α)

p(y|µ,σ2)↔σ2

]︃
2

α

n ,
αn−2

[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1
−2

2

⎞⎟⎟⎠

A

⎛⎜⎜⎝0,
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
1

,−
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
2

,−2ȳ,

n
∑

i=1
y2

i−
2
[︃
η(α)

p(y|µ,σ2)↔σ2

]︃
2

α

n ,
αn−2

[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1
−2

2

⎞⎟⎟⎠
and

(µ2)∗♦ ≡ Eh♦(µ)(µ
2) =

∫︁ ∞
−∞ µ2 h♦(µ) dµ∫︁ ∞
−∞ h♦(µ) dµ

=

A

⎛⎜⎜⎝2,
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
1

,−
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
2

,−2ȳ,

n
∑

i=1
y2

i−
2
[︃
η(α)

p(y|µ,σ2)↔σ2

]︃
2

α

n ,
αn−2

[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1
−2

2

⎞⎟⎟⎠

A

⎛⎜⎜⎝0,
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
1

,−
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
2

,−2ȳ,

n
∑

i=1
y2

i−
2
[︃
η(α)

p(y|µ,σ2)↔σ2

]︃
2

α

n ,
αn−2

[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1
−2

2

⎞⎟⎟⎠
.
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Straightforward application of Result 2.1 leads to

η∗(α)
p(y|µ,σ2)→µ

←−
[︄

µ∗♦/
(︁
(µ2)∗♦ − (µ∗♦)

2)︁
−1/

(︁
2(µ2)∗♦ − (µ∗♦)

2)︁
]︄

.

Finally, η(α)
p(y|µ,σ2)→µ

can be expressed in terms of the GN(a, b; c) wrapper function as

η(α)
p(y|µ,σ2)→µ

←− GN

⎛⎜⎜⎝η(α)
p(y|µ,σ2)↔µ

, η(α)
p(y|µ,σ2)↔σ2 ; α

⎡⎢⎢⎣
n

yT1

∥y∥2

⎤⎥⎥⎦
⎞⎟⎟⎠+ (1− α)η(α)

p(y|µ,σ2)→µ
,

where the η(α)
p(y|µ,σ2)→µ

vector appearing on the right hand side of the update expres-

sion refers to its value in the previous iteration.

Derivation of η∗(α)
p(y|µ,σ2)→σ2 and η(α)

p(y|µ,σ2)→σ2

Following algebraic steps presented in Appendix A.5.5 of Kim and Wand (2016),

the function of σ2 to be Kullback-Leibler-projected into the Inverse Gamma expo-

nential family is

h♣(σ2) ∝
(︂
m(α)

p(y|µ,σ2)→σ2(σ
2)
)︂1−α

m(α)
σ2→p(y|µ,σ2)

(σ2)

×
∫︂ ∞

−∞
p(y|µ, σ2)α

(︂
m(α)

p(y|µ,σ2)→µ
(µ)
)︂1−α

m(α)
µ→p(y|µ,σ2)

(µ) dµ.

With similar steps illustrated before, we get

h♣(σ2) ∝ exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T

η(α)
p(y|µ,σ2)↔σ2

⎫⎬⎭

× (σ2)(1−αn)/2 exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−α(n− 1)s2

2σ2 −

(︄
ȳ +

[︂
η(α)

p(y|µ,σ2)↔µ

]︂
1

2
[︂
η(α)

p(y|µ,σ2)↔µ

]︂
2

)︄2

2

(︄
σ2

αn − 1
2
[︂
η(α)

p(y|µ,σ2)↔µ

]︂
2

)︄
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⎛⎝ σ2

αn
− 1

2
[︂
η(α)
p(y|µ,σ2)↔µ

]︂
2

⎞⎠−1/2

,

and doing some little algebra it is possible to express

log(σ2)∗♣ ≡ Eh♣(σ2)(log σ2) =

∫︁ ∞
0 log σ2 h♣(σ2) dσ2∫︁ ∞

0 h♣(σ2) dσ2
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= −

B

⎛⎜⎝1, αn−2
2 −

[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1

, α(n−1)s2

2 −
[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
2

,−
[︂
η(α)

p(y|µ,σ2)↔µ

]︂
2

⎛⎝ȳ +

[︃
η(α)

p(y|µ,σ2)↔µ

]︃
1

2
[︃
η(α)

p(y|µ,σ2)↔µ

]︃
2

⎞⎠2

,−
2
[︃
η(α)

p(y|µ,σ2)↔µ

]︃
2

αn , 1
2

⎞⎟⎠
B

⎛⎜⎝0, αn−2
2 −

[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1

, α(n−1)s2

2 −
[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
2

,−
[︂
η(α)

p(y|µ,σ2)↔µ

]︂
2

⎛⎝ȳ +

[︃
η(α)

p(y|µ,σ2)↔µ

]︃
1

2
[︃
η(α)

p(y|µ,σ2)↔µ

]︃
2

⎞⎠2

,−
2
[︃
η(α)

p(y|µ,σ2)↔µ

]︃
2

αn , 1
2

⎞⎟⎠

and

(1/σ2)∗♣ ≡ Eh♣(σ2)(1/σ2) =

∫︁ ∞
0 1/σ2 h♣(σ2) dσ2∫︁ ∞

0 h♣(σ2) dσ2

=

B

⎛⎜⎝0, αn
2 −

[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1

, α(n−1)s2

2 −
[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
2

,−
[︂
η(α)

p(y|µ,σ2)↔µ

]︂
2

⎛⎝ȳ +

[︃
η(α)

p(y|µ,σ2)↔µ

]︃
1

2
[︃
η(α)

p(y|µ,σ2)↔µ

]︃
2

⎞⎠2

,−
2
[︃
η(α)

p(y|µ,σ2)↔µ

]︃
2

αn , 1
2

⎞⎟⎠
B

⎛⎜⎝0, αn−2
2 −

[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
1

, α(n−1)s2

2 −
[︂
η(α)

p(y|µ,σ2)↔σ2

]︂
2

,−
[︂
η(α)

p(y|µ,σ2)↔µ

]︂
2

⎛⎝ȳ +

[︃
η(α)

p(y|µ,σ2)↔µ

]︃
1

2
[︃
η(α)

p(y|µ,σ2)↔µ

]︃
2

⎞⎠2

,−
2
[︃
η(α)

p(y|µ,σ2)↔µ

]︃
2

αn , 1
2

⎞⎟⎠
.

Straightforward application of Result 2.2 leads to

η∗(α)
p(y|µ,σ2)→σ2 ←−

⎡⎣ −(log–ψ)−1
{︂

log((1/σ2)∗♣) + log(σ2)∗♣
}︂
− 1

−(log–ψ)−1
{︂

log((1/σ2)∗♣) + log(σ2)∗♣
}︂

/(1/σ2)∗♣

⎤⎦ .

Finally, η(α)
p(y|µ,σ2)→σ2 can be expressed in terms of the GIG1(a, b; c) wrapper function

as

η(α)
p(y|µ,σ2)→σ2 ←− GIG1

⎛⎜⎜⎝η(α)
p(y|µ,σ2)↔σ2 , η(α)

p(y|µ,σ2)↔µ
; α

⎡⎢⎢⎣
n

yT1

∥y∥2

⎤⎥⎥⎦
⎞⎟⎟⎠+ (1− α)η(α)

p(y|µ,σ2)→σ2 ,

where the η(α)
p(y|µ,σ2)→σ2 vector appearing on the right hand side of the update ex-

pression refers to its value in the previous iteration.

Derivation of η∗(α)
p(σ2|a)→σ2 and η(α)

p(σ2|a)→σ2

Following algebraic steps presented in Appendix A.5.4 of Kim and Wand (2016),

the function of σ2 to be Kullback-Leibler-projected into the Inverse Gamma expo-

nential family is

h♠(σ2) ∝
(︂
m(α)

p(σ2|a)→σ2(σ
2)
)︂1−α

m(α)
σ2→p(σ2|a)(σ

2)

×
∫︂ ∞

0
p(σ2|a)α

(︂
m(α)

p(σ2|a)→a(a)
)︂1−α

m(α)
a→p(σ2|a)(a) da.
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With similar steps illustrated before, we get

h♠(σ2) ∝ exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T

η(α)
p(σ2|a)↔σ2

⎫⎬⎭ (σ2)−3α/2
(︂ α

σ2 −
[︂
η(α)
p(σ2|a)↔a

]︂
2

)︂− α
2+

[︃
η(α)

p(σ2|a)↔a

]︃
1
+1

,

and doing some little algebra it is possible to express

log(σ2)∗♠ ≡ Eh♠(σ2)(log σ2) =

∫︁ ∞
0 log σ2 h♠(σ2) dσ2∫︁ ∞

0 h♠(σ2) dσ2

= −
B
(︄

1, 3α−2
2 −

[︂
η(α)
p(σ2|a)↔σ2

]︂
1

,−
[︂
η(α)
p(y|µ,σ2)↔σ2

]︂
2

, 0,−
[︂
η(α)

p(σ2 |a)↔a

]︂
2

α ,− 2−α
2 −

[︂
η(α)
p(σ2|a)↔a

]︂
1

)︄

B
(︄

0, 3α−2
2 −

[︂
η(α)
p(σ2|a)↔σ2

]︂
1

,−
[︂
η(α)
p(y|µ,σ2)↔σ2

]︂
2

, 0,−
[︂
η(α)

p(σ2 |a)↔a

]︂
2

α ,− 2−α
2 −

[︂
η(α)
p(σ2|a)↔a

]︂
1

)︄

and

(1/σ2)∗♠ ≡ Eh♠(σ2)(1/σ2) =

∫︁ ∞
0 1/σ2 h♠(σ2) dσ2∫︁ ∞

0 h♠(σ2) dσ2

=

B
(︄

0, 3α
2 −

[︂
η(α)
p(σ2|a)↔σ2

]︂
1

,−
[︂
η(α)
p(y|µ,σ2)↔σ2

]︂
2

, 0,−
[︂
η(α)

p(σ2 |a)↔a

]︂
2

α ,− 2−α
2 −

[︂
η(α)
p(σ2|a)↔a

]︂
1

)︄

B
(︄

0, 3α−2
2 −

[︂
η(α)
p(σ2|a)↔σ2

]︂
1

,−
[︂
η(α)
p(y|µ,σ2)↔σ2

]︂
2

, 0,−
[︂
η(α)

p(σ2 |a)↔a

]︂
2

α ,− 2−α
2 −

[︂
η(α)
p(σ2|a)↔a

]︂
1

)︄ .

Straightforward application of Result 2.2 leads to

η∗(α)
p(σ2|a)→σ2 ←−

⎡⎣ −(log–ψ)−1
{︂

log((1/σ2)∗♠) + log(σ2)∗♠
}︂
− 1

−(log–ψ)−1
{︂

log((1/σ2)∗♠) + log(σ2)∗♠
}︂

/(1/σ2)∗♠

⎤⎦ .

Finally, η(α)
p(σ2|a)→σ2 can be expressed in terms of the GIG2(a, b; k) wrapper function as

η(α)
p(σ2|a)→σ2 ←− GIG2

⎛⎝η(α)
p(σ2|a)↔σ2 ,

⎡⎣ [︂η(α)
p(σ2|a)↔a

]︂
1
+ 2(1− α)[︂

η(α)
p(σ2|a)↔a

]︂
2

/α

⎤⎦ ; 3α

⎞⎠+ (1− α)η(α)
p(σ2|a)→σ2 ,

where the η(α)
p(σ2|a)→σ2 vector appearing on the right hand side of the update expres-

sion refers to its value in the previous iteration.
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Derivation of η∗(α)
p(σ2|a)→a and η(α)

p(σ2|a)→a

Following algebraic steps presented in Appendix A.5.6 of Kim and Wand (2016),

the function of σ2 to be Kullback-Leibler-projected into the Inverse Gamma expo-

nential family is

h♥(a) ∝ exp

⎧⎨⎩
[︄

log a

1/a

]︄T

η(α)
p(σ2|a)↔a

⎫⎬⎭ a−α/2
(︂α

a
−
[︂
η(α)
p(σ2|a)↔σ2

]︂
2

)︂− 3α
2 +

[︃
η(α)

p(σ2|a)↔σ2

]︃
1
+1

,

and doing some little algebra it is possible to express

log(a)∗♥ ≡ Eh♥(a)(log a) =

∫︁ ∞
0 log a h♥(a) da∫︁ ∞

0 h♥(a) da

= −
B
(︄

1, α−2
2 −

[︂
η(α)
p(σ2|a)↔a

]︂
1

,−
[︂
η(α)
p(σ2|a)↔a

]︂
2

, 0,−
[︂
η(α)

p(σ2 |a)↔σ2

]︂
2

α , 3α−2
2 −

[︂
η(α)
p(σ2|a)↔σ2

]︂
1

)︄

B
(︄

0, α−2
2 −

[︂
η(α)
p(σ2|a)↔a

]︂
1

,−
[︂
η(α)
p(σ2|a)↔a

]︂
2

, 0,−
[︂
η(α)

p(σ2 |a)↔σ2

]︂
2

α , 3α−2
2 −

[︂
η(α)
p(σ2|a)↔σ2

]︂
1

)︄

and

(1/a)∗♥ ≡ Eh♥(a)(1/a) =

∫︁ ∞
0 1/a h♥(a) da∫︁ ∞

0 h♥(a) da

=

B
(︄

0, α
2 −

[︂
η(α)
p(σ2|a)↔a

]︂
1

,−
[︂
η(α)
p(σ2|a)↔a

]︂
2

, 0,−
[︂
η(α)

p(σ2 |a)↔σ2

]︂
2

α , 3α−2
2 −

[︂
η(α)
p(σ2|a)↔σ2

]︂
1

)︄

B
(︄

0, α−2
2 −

[︂
η(α)
p(σ2|a)↔a

]︂
1

,−
[︂
η(α)
p(σ2|a)↔a

]︂
2

, 0,−
[︂
η(α)

p(σ2 |a)↔σ2

]︂
2

α , 3α−2
2 −

[︂
η(α)
p(σ2|a)↔σ2

]︂
1

)︄ .

Straightforward application of Result 2.2 leads to

η∗(α)
p(σ2|a)→a ←−

[︄
−(log–ψ)−1 {︁log((1/a)∗♥) + log(a)∗♥

}︁
− 1

−(log–ψ)−1 {︁log((1/a)∗♥) + log(a)∗♥
}︁

/(1/a)∗♥

]︄
.

Finally, η(α)
p(σ2|a)→a can be expressed in terms of the GIG2(a, b; k) wrapper function as

η(α)
p(σ2|a)→a ←− GIG2

⎛⎝η(α)
p(σ2|a)↔a,

⎡⎣ [︂η(α)
p(σ2|a)↔σ2

]︂
1
+ 2(1− α)[︂

η(α)
p(σ2|a)↔σ2

]︂
2

/α

⎤⎦ ; α

⎞⎠+ (1− α)η(α)
p(σ2|a)→a,

where the η(α)
p(σ2|a)→a vector appearing on the right hand side of the update expres-

sion refers to its value in the previous iteration.
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Derivation of η∗(α)
p(a)→a and η(α)

p(a)→a

Following algebraic steps presented in Appendix A.5.7 of Kim and Wand (2016),

the function of a to be Kullback-Leibler-projected into the Inverse Gamma exponen-

tial family is

h(a) ∝
(︂
m(α)

p(a)→a(a)
)︂1−α

m(α)
a→p(a)(a) p(µ)α

∝ exp

⎧⎨⎩
[︄

log a

1/a

]︄T (︄
(1− α)η(α)

p(a)→a + η(α)
a→p(a) + α

[︄
−3/2

−1/s2

]︄)︄⎫⎬⎭
∝ exp

⎧⎨⎩
[︄

log a

1/a

]︄T (︄
η(α)
p(a)↔a + α

[︄
−3/2

−1/s2

]︄)︄⎫⎬⎭ .

Since it is proportional to an Inverse Gamma distribution, the Kullback-Leibler

projection returns the exact natural parameters of h(a). Hence

η∗(α)
p(a)→a ←− η(α)

p(a)↔a + α

[︄
−3/2

−1/s2

]︄

and

η(α)
p(a)→a ←− η(α)

p(a)↔a + α

[︄
−3/2

−1/s2

]︄
− η(α)

a→p(a) ←−
[︄
−3/2

−1/s2

]︄
.

Then η(α)
p(a)→a is fixed at each iteration, and corresponds to the natural parameter

vector ηp(a) of p(a).

B.2.2 Updates for the Normal Linear Regression Model

We give explicit derivations of η∗(α)
p(β)→β

, η∗(α)
p(y|β,σ2)→β

and η∗(α)
p(y|β,σ2)→σ2 , together

with compact representation of the associated η(α)
p(β)→β

, η(α)
p(y|β,σ2)→β

and η(α)
p(y|β,σ2)→σ2

updates required for implementation of Algorithm 2.3. Derivations of η∗(α)
p(σ2|a)→σ2 ,

η∗(α)
p(σ2|a)→a and η∗(α)

p(a)→a and compact representation of the associated η(α)
p(σ2|a)→σ2 ,

η(α)
p(σ2|a)→a and η(α)

p(a)→a updates are identical to those given for the univariate Normal

random sample model, to which we refer.
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Derivation of η∗(α)
p(β)→β

and η(α)
p(β)→β

The function of β to be Kullback-Leibler-projected into the multivariate Normal

exponential family is

h(β) ∝
(︂
m(α)

p(β)→β
(β)
)︂1−α

m(α)
β→p(β)

(β) p(β)α

∝ exp

⎧⎨⎩
[︄

β

vech(ββT)

]︄T (︄
(1− α)η(α)

p(β)→β
+ η(α)

β→p(β)
+ α

[︄
Σ−1

β µβ

−1
2vech(Σ−1

β )

]︄)︄⎫⎬⎭
∝ exp

⎧⎨⎩
[︄

µ

µ2

]︄T (︄
η(α)
p(β)↔β

+ α

[︄
Σ−1

β µβ

−1
2vech(Σ−1

β )

]︄)︄⎫⎬⎭ .

Since it is proportional to a multivariate Normal distribution, the Kullback-

Leibler projection returns the exact natural parameters of h(β). Hence

η∗(α)
p(β)→β

←− η(α)
p(β)↔β

+ α

[︄
Σ−1

β µβ

−1
2vech(Σ−1

β )

]︄

and

η(α)
p(β)→β

←− η(α)
p(β)↔β

+ α

[︄
Σ−1

β µβ

−1
2vech(Σ−1

β )

]︄
− η(α)

β→p(β)
←−

[︄
Σ−1

β µβ

−1
2vech(Σ−1

β )

]︄
.

Then η(α)
p(β)→β

is fixed at each iteration, and corresponds to the natural parameter

vector ηp(β) of p(β).

Derivation of η∗(α)
p(y|β,σ2)→β

and η(α)
p(y|β,σ2)→β

The function of β to be Kullback-Leibler-projected into the multivariate Normal

exponential family is

h▼(β) ∝
(︂
m(α)

p(y|β,σ2)→β
(β)
)︂1−α

m(α)
β→p(y|β,σ2)

(β)

×
∫︂ ∞

0
p(y|β, σ2)α

(︂
m(α)

p(y|β,σ2)→σ2(σ
2)
)︂1−α

m(α)
σ2→p(y|β,σ2)

(σ2) dσ2.

The integral can be solved analytically as

∫︂ ∞

0
p(y|β, σ2)α

(︂
m(α)

p(y|β,σ2)→σ2(σ
2)
)︂1−α

m(α)
σ2→p(y|β,σ2)

(σ2) dσ2
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∝
∫︂ ∞

0
exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T (︄
α

[︄
−n/2

−∥y− Xβ∥2/2

]︄
+ (1− α)η(α)

p(y|β,σ2)→σ2 + η(α)
σ2→p(y|β,σ2)

)︄⎫⎬⎭ dσ2

∝
∫︂ ∞

0
exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T (︄
α

[︄
−n/2

−∥y− Xβ∥2/2

]︄
+ η(α)

p(y|β,σ2)↔σ2

)︄⎫⎬⎭ dσ2

∝ exp

{︄
AIG

(︄
α

[︄
−n/2

−∥y− Xβ∥2/2

]︄
+ η(α)

p(y|β,σ2)↔σ2

)︄}︄

∝
(︃

α
∥y− Xβ∥2

2
−
[︂
η(α)
p(y|β,σ2)↔σ2

]︂
2

)︃−α n
2 +
[︂
η(α)

p(y|β,σ2)↔σ2

]︂
1
+1

,

and therefore

h▼(β) ∝ exp

⎧⎨⎩
[︄

β

vech(ββT)

]︄T

η(α)
p(y|β,σ2)↔β

⎫⎬⎭
(︃

α
∥y− Xβ∥2

2
−
[︂
η(α)
p(y|β,σ2)↔σ2

]︂
2

)︃−α n
2 +
[︂
η(α)

p(y|β,σ2)↔σ2

]︂
1
+1

.

Kullback-Leibler projection onto the multivariate Normal exponential family follow-

ing Result 2.3 would require the following three d-variate integrals to be computed,

being a computationally intractable task as already discussed in Section 2.4:∫︂
Rd

h▼(β) dβ,
∫︂
Rd

β h▼(β) dβ and
∫︂
Rd

vech(ββT) h▼(β) dβ.

Nevertheless, it is still possible to proceed inverting the integration order: first we

integrate over dβ, and then over dσ2. This yields univariate numerical integrals to

be solved, since all the d-divariate dβ integrals admit explicit solutions. Let

β⊗k ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if k = 0

β if k = 1

vech(ββT) if k = 2

,

then application of Result 2.3 requires the following quantities to be computed:

M▼
k =

∫︂
Rd

β⊗k h▼(β) dβ for k ∈ {0, 1, 2}.

With small algebraic steps, it is possible to show that

M▼
k ∝

∫︂ ∞

0
exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T (︄
η(α)
p(y|β,σ2)↔σ2 −

α

2

[︄
n

∥y∥2

]︄)︄⎫⎬⎭
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×
∫︂
Rd

β⊗k exp

⎧⎨⎩
[︄

β

vech(ββT)

]︄T (︄
η(α)
p(y|β,σ2)↔β

+
α

σ2

[︄
XTy

− 1
2 vech(XTX)

]︄)︄⎫⎬⎭dβ dσ2.

Now recall results from exponential family distributions recalled in Appendix A.2,
yielding explicit expressions for the expected value of the natural sufficient statistic
vector of a multivariate Normal distribution and for its normalizing constant. It
follows that

M▼
0 ∝

∫︂ ∞

0
exp

{︄[︄
log σ2

1/σ2

]︄T (︄
η(α)
p(y|β,σ2)↔σ2 −

α

2

[︄
n

∥y∥2

]︄)︄

+ AMVN

(︄
η(α)
p(y|β,σ2)↔β

+
α

σ2

[︄
XTy

− 1
2 vech(XTX)

]︄)︄}︄
dσ2

∝ γd

(︂
0, η(α)

p(y|β,σ2)↔β
, η(α)

p(y|β,σ2)↔σ2 , αD
)︂

,

M▼
1 ∝

∫︂ ∞

0
exp

{︄[︄
log σ2

1/σ2

]︄T (︄
η(α)
p(y|β,σ2)↔σ2 −

α

2

[︄
n

∥y∥2

]︄)︄
+ AMVN

(︄
η(α)
p(y|β,σ2)↔β

+
α

σ2

[︄
XTy

− 1
2 vech(XTX)

]︄)︄}︄

×
[︂
− 1

2

{︂
vech−1

(︂[︂
η(α)
p(y|β,σ2)↔β

]︂
2
− α

2σ2 vech(XTX)
)︂}︂−1 {︂[︂

η(α)
p(y|β,σ2)↔β

]︂
1
+

α

σ2 XTy
}︂ ]︂d

1
dσ2

∝ γd

(︂
1, η(α)

p(y|β,σ2)↔β
, η(α)

p(y|β,σ2)↔σ2 , αD
)︂

and

M▼
2 ∝

∫︂ ∞

0
exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T (︄
η(α)
p(y|β,σ2)↔σ2 −

α

2

[︄
n

∥y∥2

]︄)︄
+ AMVN

(︄
η(α)
p(y|β,σ2)↔β

+
α

σ2

[︄
XTy

− 1
2 vech(XTX)

]︄)︄⎫⎬⎭
×
[︄

1
4

vech

{︄[︂
vech−1

(︂[︂
η(α)
p(y|β,σ2)↔β

]︂
2
− α

2σ2 vech(XTX)
)︂]︂−1 {︂ [︂[︂

η(α)
p(y|β,σ2)↔β

]︂
1
+

α

σ2 XTy
]︂

×
[︂[︂

η(α)
p(y|β,σ2)↔β

]︂
1
+

α

σ2 XTy
]︂T [︂

vech−1
(︂[︂

η(α)
p(y|β,σ2)↔β

]︂
2
− α

2σ2 vech(XTX)
)︂]︂−1

− 2I
}︂}︄]︄ d(d+1)

2

1

dσ2

∝ γd

(︂
2, η(α)

p(y|β,σ2)↔β
, η(α)

p(y|β,σ2)↔σ2 , αD
)︂

,

where D = (n, ∥y∥2, (XTy)T,−1
2vech(XTX)T)T. Now, let

µ∗▼ =
M▼

1
M▼

0
and Σ∗▼ =

vech−1(M▼
2 )

M▼
0

−
(︃M▼

1
M▼

0

)︃(︃M▼
1

M▼
0

)︃T

.



174 Appendix B

Then, application of Result 2.3 leads to the natural parameter vector of the Kullback-

Leibler projection of h▼(β) into the multivariate Normal exponential family of dis-

tributions being:

η∗(α)
p(y|β,σ2)→β

←−
[︄

(Σ∗▼)
−1µ∗▼

−1
2vech

(︁
(Σ∗▼)

−1)︁
]︄

,

and from application of (2.10), we get

η(α)
p(y|β,σ2)→β

←− η∗p(y|β,σ2)→β − η(α)
β→p(y|β,σ2)

.

Finally, η(α)
p(y|β,σ2)→β

can be expressed in terms of the GMVN
lm (a, b, c) wrapper as

η(α)
p(y|β,σ2)→β

←− GMVN
lm

⎛⎜⎜⎜⎜⎜⎝η(α)
p(y|β,σ2)↔β

, η(α)
p(y|β,σ2)↔σ2 ; α

⎡⎢⎢⎢⎢⎢⎣
n

∥y∥2

XTy

− 1
2 vech(XTX)

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠+ (1− α)η(α)
p(y|β,σ2)→β

,

where the η(α)
p(y|β,σ2)→β

vector appearing on the right-hand side of the update expres-

sion refers to its value in the previous iteration.

Derivation of η∗(α)
p(y|β,σ2)→σ2 and η(α)

p(y|β,σ2)→σ2

The function of σ2 to be Kullback-Leibler-projected into the Inverse Gamma ex-
ponential family is

h▲(σ2) ∝
(︂
m(α)

p(y|β,σ2)→σ2(σ
2)
)︂1−α

m(α)
σ2→p(y|β,σ2)

(σ2)

×
∫︂ ∞

−∞
p(y|β, σ2)α

(︂
m(α)

p(y|β,σ2)→β
(β)
)︂1−α

m(α)
β→p(y|β,σ2)

(β) dβ

∝ exp

⎧⎨⎩
[︄

log σ2

1/σ2

]︄T

η(α)
p(y|β,σ2)↔σ2

⎫⎬⎭ (2π)−(nα−d)2
exp

{︄
AMVN

(︄
α

σ2

[︄
XTy

− 1
2 vech(XTX)

]︄)︄}︄
.

Doing some little algebra it is possible to express

log(σ2)∗▲ ≡ Eh▲(σ2)(log σ2) =

∫︁ ∞
0 log(σ2)h▲(σ2) dσ2∫︁ ∞

0 h▲(σ2) dσ2
= −

δd

(︂
1, η(α)

p(y|β,σ2)↔σ2 , η(α)
p(y|β,σ2)↔β

; αD
)︂

δd

(︂
0, η(α)

p(y|β,σ2)↔σ2 , η(α)
p(y|β,σ2)↔β

; αD
)︂
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and

(1/σ2)∗▲ ≡ Eh▲(σ2)(1/σ2) =

∫︁ ∞
0 (1/σ2)h▲(σ2) dσ2∫︁ ∞

0 h▲(σ2) dσ2
=

δd

(︂
2, η(α)

p(y|β,σ2)↔σ2 , η(α)
p(y|β,σ2)↔β

; αD
)︂

δd

(︂
0, η(α)

p(y|β,σ2)↔σ2 , η(α)
p(y|β,σ2)↔β

; αD
)︂

where again D = (n, ∥y∥2, (XTy)T,−1
2vech(XTX)T)T. Straightforward application

of Result 2.2 leads to

η∗(α)
p(y|β,σ2)→σ2 ←−

[︄
−(log–ψ)−1 {︁log((1/σ2)∗▲) + log(σ2)∗▲

}︁
− 1

−(log–ψ)−1 {︁log((1/σ2)∗▲) + log(σ2)∗▲
}︁

/(1/σ2)∗▲

]︄
.

Finally, η(α)
p(y|β,σ2)→σ2 can be expressed in terms of the GIG4(a, b; c) wrapper as

η(α)
p(y|β,σ2)→σ2 ←− GIG4

⎛⎜⎜⎜⎜⎜⎝η(α)
p(y|β,σ2)↔σ2 , η(α)

p(y|β,σ2)↔β
; α

⎡⎢⎢⎢⎢⎢⎣
n

∥y∥2

XTy

− 1
2 vech(XTX)

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠+ (1− α)η(α)
p(y|β,σ2)→σ2 ,

where the η(α)
p(y|β,σ2)→σ2 vector appearing on the right-hand side of the update ex-

pression refers to its value in the previous iteration.

B.2.3 Updates for Some Notable GLMs

We give explicit derivation of η∗(α)
p(yi|β)→β

, together with compact representation

of the associated η(α)
p(β)→β

update required for implementation of Algorithm 2.4, for

each of the three different notable GLMs selected, for any 1 ≤ i ≤ n. Derivation

of η∗(α)
p(β)→β

and compact representation of the associated η(α)
p(yi|β)→β

are identical to

those given for the Normal linear regression model regardless of the selected GLM

type, to which we refer.

Derivation of η∗(α)
p(yi|β)→β

and η(α)
p(β)→β

for the Probit Regression Model

The function of β to be Kullback-Leibler projected into the multivariate Normal

exponential family distribution is:

h⋆(β) ∝
(︂
m(α)

p(yi|β)→β
(β)
)︂1−α

m(α)
β→p(yi|β)(β) p(yi|β)α

∝ exp

⎧⎨⎩
[︄

β

vech(ββT)

]︄T

η(α)
p(yi|β)↔β

⎫⎬⎭Φ
(︂
(2yi − 1)xT

i β
)︂α
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= exp

⎧⎨⎩
[︄

β

vech(ββT)

]︄T

η(α)
p(yi|β)↔β

⎫⎬⎭Φ
(︂

c0i + cT
1iβ
)︂α

,

where we define c0i = 0 and c1i = (2yi − 1)xi. Let

β⊗k ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if k = 0

β if k = 1

ββT if k = 2

,

then Result 2.3 requires the following quantities to be computed

M⋆
k =

∫︂
Rd

β⊗k h⋆(β) dβ for k ∈ {0, 1, 2},

which are computationally intractable even for small values of d. Now, let define

Σ
(α)
p(yi|β)↔β

≡ −1
2

{︂
vech−1

(︂[︂
η(α)
p(yi|β)↔β

]︂
2

)︂}︂−1
and µ

(α)
p(yi|β)↔β

≡ Σ
(α)
p(yi|β)↔β

[︂
η(α)
p(yi|β)↔β

]︂
1

and operate the change of variable z =
(︂

Σ
(α)
p(yi|β)↔β

)︂−1/2 (︂
β− µ

(α)
p(yi|β)↔β

)︂
, from

whichM⋆
k can be rewritten in more convenient form as:

M⋆
k = (2π)d/2 exp

{︂
AMVN

(︂
η(α)
p(yi|β)↔β

)︂}︂ ∫︂
Rd

(︃
µ
(α)
p(yi|β)↔β

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2
z
)︃⊗k

×Φ

(︄
c0i + cT

1iµ
(α)
p(yi|β)↔β

+

{︃(︂
Σ
(α)
p(yi|β)↔β

)︂1/2
c1i

}︃T
z

)︄α

ϕ(z) dz.

After discarding the normalizing constant, which is the same for each k = 0, 1, 2, a

general expression reads:

M⋆
k ∝

∫︂
Rd

(︃
µ
(α)
p(yi|β)↔β

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2
z
)︃⊗k

×Φ

(︄
c0i + cT

1iµ
(α)
p(yi|β)↔β

+

{︃(︂
Σ
(α)
p(yi|β)↔β

)︂1/2
c1i

}︃T
z

)︄α

ϕ(z) dz.

The computation of this d-variate integrals can be boiled down into univariate inte-

grals employing Result 2.3, with

ai = c0i + cT
1iµ

(α)
p(yi|β)↔β

and bi =
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2
c1i.
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In particular,

M⋆
0 ∝

∫︂
Rd

Φ
(︂

ai + bT
i z
)︂α

ϕ(z) dz =
∫︂ ∞

−∞
Φ(ai + ∥bi∥z)αϕ(z) dz,

M⋆
1 ∝

∫︂
Rd

(︃
µ
(α)
p(yi|β)↔β

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2
z
)︃

Φ
(︂

ai + bT
i z
)︂α

ϕ(z) dz

= µ
(α)
p(yi|β)↔β

∫︂
Rd

Φ
(︂

ai + bT
i z
)︂α

ϕ(z) dz +
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2 ∫︂
Rd

z Φ
(︂

ai + bT
i z
)︂α

ϕ(z) dz

= µ
(α)
p(yi|β)↔β

∫︂ ∞

−∞
Φ(ai + ∥bi∥z)αϕ(z) dz

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2 bi

∥bi∥
∫︂ ∞

−∞
z Φ(ai + ∥bi∥z)αϕ(z) dz

and

M⋆
2 ∝

∫︂
Rd

(︃
µ
(α)
p(yi|β)↔β

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2
z
)︃(︃

µ
(α)
p(yi|β)↔β

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2
z
)︃T

×Φ
(︂

ai + bT
i z
)︂α

ϕ(z) dz

= µ
(α)
p(yi|β)↔β

(︂
µ
(α)
p(yi|β)↔β

)︂T ∫︂
Rd

Φ
(︂

ai + bT
i z
)︂α

ϕ(z) dz

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2
(︃∫︂

Rd
z Φ

(︂
ai + bT

i z
)︂α

ϕ(z) dz
)︃(︂

µ
(α)
p(yi|β)↔β

)︂T

+ µ
(α)
p(yi|β)↔β

(︃∫︂
Rd

z Φ
(︂

ai + bT
i z
)︂α

ϕ(z) dz
)︃T (︂

Σ
(α)
p(yi|β)↔β

)︂1/2

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2
(︃∫︂

Rd
zzT Φ

(︂
ai + bT

i z
)︂α

ϕ(z) dz
)︃(︂

Σ
(α)
p(yi|β)↔β

)︂1/2

= µ
(α)
p(yi|β)↔β

(︂
µ
(α)
p(yi|β)↔β

)︂T ∫︂ ∞

−∞
Φ(ai + ∥bi∥z)αϕ(z) dz+

+
2
∥bi∥

(︂
Σ
(α)
p(yi|β)↔β

)︂1/2
bi

(︂
µ
(α)
p(yi|β)↔β

)︂T ∫︂ ∞

−∞
z Φ(ai + ∥bi∥z)αϕ(z) dz

+ Σ
(α)
p(yi|β)↔β

∫︂ ∞

−∞
Φ(ai + ∥bi∥z)α ϕ(z) dz+

+
(︂

Σ
(α)
p(yi|β)↔β

)︂1/2 bib
T
i

∥bi∥2

(︂
Σ
(α)
p(yi|β)↔β

)︂1/2 ∫︂ ∞

−∞
(z2 − 1)Φ(ai + ∥bi∥z)α ϕ(z) dz.

Therefore, evaluation ofM⋆
0 ,M⋆

1 andM⋆
2 then only requires the computation of

three univariate integrals. Operating the change of variable x = ai + ∥bi∥z, they can

be expressed as:

∫︂ ∞

−∞
Φ(ai + ∥bi∥z)αϕ(z) dz =

(2π)−1/2

∥bi∥2 exp

{︄
− a2

i
2∥bi∥2

}︄
C−α log Φ(x)

(︃
0,

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
,
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∫︂ ∞

−∞
x Φ(ai + ∥bi∥z)αϕ(z) dz =

(2π)−1/2

∥bi∥3 exp

{︄
− a2

i
2∥bi∥2

}︄

×
(︃
C−α log Φ(x)

(︃
1,

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
− aiC−α log Φ(x)

(︃
0,

ai

∥bi∥2 ,
1

2∥bi∥2

)︃)︃
,

and

∫︂ ∞

−∞
x2 Φ(ai + ∥bi∥z)αϕ(z) dz =

(2π)−1/2

∥bi∥4 exp

{︄
− a2

i
2∥bi∥2

}︄

×
{︄
C−α log Φ(x)

(︃
2,

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
− 2aiC−α log Φ(x)

(︃
1,

ai

∥bi∥2 ,
1

2∥bi∥2

)︃

+ a2
i C−α log Φ(x)

(︃
0,

ai

∥bi∥2 ,
1

2∥bi∥2

)︃}︄
.

Their evaluation is straightforward once the univariate numerical integrals

C−α log Φ(x)

(︃
k,

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
are evaluated for each k = 0, 1, 2. Just recall the general definition of Cb(p, q, r).

Now, let

bα(x) = −α log Φ(x),

ri1 = −2∥bi∥2 = −2cT
1i Σ

(α)
p(yi|β)↔β

c1i,

ri2 = −ai/∥bi∥2 = 2(c0i + cT
1i µ

(α)
p(yi|β)↔β

)/ri1,

ri6 = ai/∥bi∥2 = −ri2, ri7 = 1/(2∥bi∥2) = −r−1
i1

and descard the normalizing constant (2π)−1/2 exp(−a2
i /(2∥bi∥2))/∥bi∥2 which is

the same for each k = 0, 1, 2. Simple algebraic manipulations allow to express M⋆
k

in terms of Cbα
(k, ri6, ri7) for each k = 0, 1, 2, namely:

M⋆
0 ∝ Cbα

(0, ri6, ri7) ,

M⋆
1 ∝ Cbα

(0, ri6, ri7) µ
(α)
p(yi|β)↔β

+ (2ri7 Cbα
(1, ri6, ri7) + ri2 Cbα

(0, ri6, ri7))Σ
(α)
p(yi|β)↔β

c1i,
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and

M⋆
2 ∝ Cbα

(0, ri6, ri7)

(︃
µ
(α)
p(yi|β)↔β

(︂
µ
(α)
p(yi|β)↔β

)︂T
+ Σ

(α)
p(yi|β)↔β

)︃
+ (ri2 Cbα

(0, ri6, ri7) + 2ri7 Cbα
(1, ri6, ri7))

×
(︃

Σ
(α)
p(yi|β)↔β

c1i

(︂
µ
(α)
p(yi|β)↔β

)︂T
+ µ

(α)
p(yi|β)↔β

cT
1i Σ

(α)
p(yi|β)↔β

)︃
+
(︂

4r2
i7 Cbα

(2, ri6, ri7) + 4ri7ri2 Cbα
(1, ri6, ri7) + (r2

i2 − ri7) Cbα
(0, ri6, ri7)

)︂
+
(︂

Σ
(α)
p(yi|β)↔β

c1icT
i1 Σ

(α)
p(yi|β)↔β

)︂
.

Now, let

µ∗⋆ =
M⋆

1

M⋆
0

= µ
(α)
p(yi|β)↔β

+

(︃
2ri7
Cbα

(1, ri6, ri7)

Cbα
(0, ri6, ri7)

+ ri2

)︃
Σ
(α)
p(yi|β)↔β

c1i

and

Σ∗⋆ =
M⋆

2

M⋆
0

−
(︄
M⋆

1

M⋆
0

)︄(︄
M⋆

1

M⋆
0

)︄T

= Σ
(α)
p(yi|β)↔β

+ (2ri7)
2

(︄
Cbα

(2, ri6, ri7)

Cbα
(0, ri6, ri7)

−
{︃Cbα

(1, ri6, ri7)

Cbα
(0, ri6, ri7)

}︃2

+
ri1

2

)︄
× Σ

(α)
p(yi|β)↔β

c1icT
1i Σ

(α)
p(yi|β)↔β

.

Then, application of Result 2.3 leads to the natural parameter vector of the Kullback-

Leibler projection of h⋆(β) into the multivariate Normal exponential family of dis-

tributions being:

η∗(α)
p(yi|β)→β

←−
⎡⎣ (Σ∗⋆)−1µ∗⋆
−1

2vech
(︂
(Σ∗⋆)−1

)︂ ⎤⎦ ,

and from application of (2.10), we get

η(α)
p(yi|β)→β

←− η∗(α)
p(yi|β)→β

− η(α)
β→p(yi|β).

Finally, η(α)
p(yi|β)→β

can be expressed in terms of the GMVN
glm (a; c0, c1, c2, b) wrapper func-

tion as

η(α)
p(yi|β)→β

←− GMVN
glm

(︂
η(α)
p(yi|β)↔β

; 0, (2yi − 1)xi, 0,−α log(Φ(x))
)︂
+ (1− α)η(α)

p(yi|β)→β
,
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where the η(α)
p(yi|β)→β

vector appearing on the right hand side of the update expres-

sion refers to its value in the previous iteration.

Derivation of η∗(α)
p(yi|β)→β

and η(α)
p(β)→β

for the Logistic Regression Model

Following similar steps showed before for the probit regression model, with
Φ((2yi − 1)xT

i β) replaced by the logistic regression marginal likelihood expit((2yi −
1)xT

i β), the following three integrals arise:

∫︂ ∞

−∞
expit(ai + ∥bi∥z)αϕ(z) dz =

(2π)−1/2

∥bi∥2 exp
{︃
− a2

i
2∥bi∥2

}︃
Cα log(1+ex)

(︃
0, α +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
,

∫︂ ∞

−∞
x expit(ai + ∥bi∥z)αϕ(z) dz =

(2π)−1/2

∥bi∥3 exp
{︃
− a2

i
2∥bi∥2

}︃
×
(︃
Cα log(1+ex)

(︃
1, α +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
− aiCα log(1+ex)

(︃
0, α +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃)︃
,

and

∫︂ ∞

−∞
x2 expit(ai + ∥bi∥z)αϕ(z) dz =

(2π)−1/2

∥bi∥4 exp
{︃
− a2

i
2∥bi∥2

}︃(︄
Cα log(1+ex)

(︃
2, α +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃

− 2aiCα log(1+ex)

(︃
1, α +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
+ a2

i Cα log(1+ex)

(︃
0, α +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃)︄
.

Their evaluation is straightforward one the univariate numerical integrals

Cα log(1+ex)

(︃
k, α +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
are evaluated for each k = 0, 1, 2. After substituting into the expressions given for

the derivation of the probit regression model natural parameter vector updates, with

bα(x) = α log(1 + ex) and ri6 = α− ri2, then η(α)
p(yi|β)→β

can be expressed in terms of

the GMVN
glm (a; c0, c1, c2, b) wrapper function as

η(α)
p(yi|β)→β

←− GMVN
glm

(︂
η(α)
p(yi|β)↔β

; 0, (2yi − 1)xi, α, α log(1 + ex)
)︂
+ (1− α)η(α)

p(yi|β)→β
,

where the η(α)
p(yi|β)→β

vector appearing on the right hand side of the update expres-

sion refers to its value in the previous iteration.



Appendix B 181

Derivation of η∗(α)
p(yi|β)→β

and η(α)
p(β)→β

for the Poisson Regression Model

Following similar steps showed before for the probit regression model, with
Φ((2yi− 1)xT

i β) replaced by the Poisson regression marginal likelihood exp{yixT
i β−

exp(xT
i β)− log(yi!)}, c1i = xi and c2i = yi, the following three integrals arise:

∫︂ ∞

−∞
exp{c2i(ai + ∥bi∥z)− exp(ai + ∥bi∥z)}αϕ(z) dz =

(2π)−1/2

∥bi∥2 exp
{︃
− a2

i
2∥bi∥2

}︃
× Cαex

(︃
0, αc2i +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
,

∫︂ ∞

−∞
x exp{c2i(ai + ∥bi∥z)− exp(ai + ∥bi∥z)}αϕ(z) dz =

(2π)−1/2

∥bi∥3 exp
{︃
− a2

i
2∥bi∥2

}︃
×
(︃
Cαex

(︃
1, αc2i +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
− aiCαex

(︃
0, αc2i +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃)︃
,

and ∫︂ ∞

−∞
x2 exp{c2i(ai + ∥bi∥z)− exp(ai + ∥bi∥z)}αϕ(z) dz =

(2π)−1/2

∥bi∥4 exp
{︃
− a2

i
2∥bi∥2

}︃

×
(︄
Cαex

(︃
2, αc2i +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
− 2aiCαex

(︃
1, αc2i +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃

+ a2
i Cαex

(︃
0, αc2i +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃)︄
.

Their evaluation is straightforward one the univariate numerical integrals

Cαex

(︃
k, αc2i +

ai

∥bi∥2 ,
1

2∥bi∥2

)︃
are evaluated for each k = 0, 1, 2. After substituting into the expressions given

for the derivation of the probit regression model natural parameter vector updates,

with bα(x) = αex and ri6 = αc2i − ri2, then η(α)
p(yi|β)→β

can be expressed in terms of

the GMVN
glm (a; c0, c1, c2, b) wrapper function as

η(α)
p(yi|β)→β

←− GMVN
glm

(︂
η(α)
p(yi|β)↔β

; 0, xi, αyi, αex
)︂
+ (1− α)η(α)

p(yi|β)→β
,

where the η(α)
p(yi|β)→β

vector appearing on the right hand side of the update expres-

sion refers to its value in the previous iteration.
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This appendix contains additional details on algorithmic routines and derivations

for implementing the algorithms described in Chapter 3. Some of them are adopted

and/or inspired from Neville et al. (2014), Nolan and Wand (2020) and Nolan et al.

(2020), to which we refer for further insights.

C.1 Multilevel Sparse Matrix Problems and Associated

Routines

Algorithms 3.2 and 3.3 described in Chapter 3 rely upon two matrix algebraic

routines for efficiently solving the two-level and three-level versions of the multilevel

sparse matrix problems defined in Nolan and Wand (2020). They correspond to the

SolveTwoLevelSparseMatrix and SolveThreeLevelSparseMatrix algorithms that we list

hereafter as Algorithms C.1 and C.2, respectively.

We briefly describe two-level and three-level sparse matrix structures and give

an explicit definition of the aforementioned routines for efficiently solving the asso-

ciated linear system problems, following Appendix A of Nolan et al. (2020).

C.1.1 Two-Level Sparse Matrix Problems

Two-level sparse matrix problems are described in Section 2 of Nolan and Wand

(2020). These problems are related to finding the vector x such that Ax = a, where

A ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12,1 A12,2 · · · A12,m

AT
12,1 A22,1 O · · · O

AT
12,2 O A22,2 · · · O
...

...
... . . . ...

AT
12,m O O · · · A22,m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, a ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2,1

a2,2
...

a2,m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2,1

x2,2
...

x2,m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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and obtaining the sub-blocks of A−1 corresponding to the non-zero blocks of A. The

structure of A−1 is

A−1 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12,1 A12,2 · · · A12,m

A12,1 T A22,1 × · · · ×
A12,2 T × A22,2 · · · ×

...
...

... . . . ...

A12,m × × · · · A22,m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The blocks represented by the× symbol are not of interest. Such problems are

efficiently solved by the SolveTwoLevelSparseMatrix routine, which is here listed as

Algorithm C.1 and is justified by Theorem 2.2 of Nolan and Wand (2020).

Algorithm C.1 The SolveTwoLevelSparseMatrix algorithm for solving the two-level sparse
matrix problem x = A−1a and sub-blocks of A−1 corresponding to the non-zero sub-blocks
of A.

Inputs: a1(p× 1), A11(p× p),
{︁(︁

a2,i(q× 1), A22,i(q× q), A12,i(p× q)
)︁

: 1 ≤ i ≤ m
}︁

ω←− a1 ; Ω←− A11

For i = 1, . . . , m:

ω←− ω− A12,i A−1
22,ia2,i ; Ω←− Ω− A12,i A−1

22,i A
T
12,i

A11 ←− Ω−1 ; x1 ←− A11ω

For i = 1, . . . , m:

x2,i ←− A−1
22,i(a2,i − AT

12,ix1) ; A12,i ←− −(A−1
22,i A

T
12,i A

11)T

A22,i ←− A−1
22,i

(︁
I − AT

12,i A
12,i)︁

Outputs: x1, A11,
{︁(︁

x2,i, A22,i, A12,i) : 1 ≤ i ≤ m
}︁

.
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C.1.2 Three-Level Sparse Matrix Problems

Three-level sparse matrix problems are described in Section 3 of Nolan and Wand

(2020). An illustrative three-level sparse matrix example is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

AT
12,1 A22,1 A12,1,1 A12,1,2 O O O O

AT
12,11 AT

12,1,1 A22,11 O O O O O

AT
12,12 AT

12,1,2 O A22,12 O O O O

AT
12,2 O O O A22,2 A12,2,1 A12,2,2 A12,2,3

AT
12,21 O O O AT

12,2,1 A22,21 O O

AT
12,22 O O O AT

12,2,2 O A22,22 O

AT
12,23 O O O AT

12,2,3 O O A22,23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which corresponds to level 2 group sizes n1 = 2 and n2 = 3, and a level 1 group size

m = 2. A generic three-level sparse matrix A consists of the following components:

• A p× p matrix A11, which is assigned the (1, 1)-block position.

• A set of partitioned matrices
{︂[︂

A12,i A12,ij . . . A12,ini

]︂
: 1 ≤ i ≤ m

}︂
, which

is assigned the (1, 2)-block position. For each 1 ≤ i ≤ m, A12,i is p× q1, and

for each 1 ≤ j ≤ ni, A12,ij is p× q2.

• A (2, 1)-block, which is simply the transpose of the (1, 2)-block.

• A block diagonal structure along the (2, 2)-block position, where each sub-

block is a two-level sparse matrix, as defined before. For each 1 ≤ i ≤ m, A22,i

is q1 × q1, and for each 1 ≤ j ≤ ni, A12,i,j is q1 × q2 and A22,ij is q2 × q2.

The three-level sparse matrix problem arising from the illustrative example above is

defined as finding the vector x such that A x = a, where:

a ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2,1

a2,11

a2,12

a2,2

a2,21

a2,22

a2,23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2,1

x2,11

x2,12

x2,2

x2,21

x2,22

x2,23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,



186 Appendix C

and determining the sub-blocks of A−1 corresponding to the non-zero sub-blocks of

A. The structure of A−1 is

A−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

A12,1 T A22,1 A12,1,1 A12,1,2 × × × ×
A12,11 T A12,1,1 T A22,11 × × × × ×
A12,12 T A12,1,2 T × A22,12 × × × ×
A12,2 T × × × A22,2 A12,2,1 A12,2,2 A12,2,3

A12,21 T × × × A12,2,1 T A22,21 × ×
A12,22 T × × × A12,2,2 T × A22,22 ×
A12,23 T × × × A12,2,3 T × × A22,23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For a general three-level sparse linear system problem, a1 and x1 are p× 1 vectors.

For each 1 ≤ i ≤ m, a2,i and x2,i are q1× 1 vectors. For each 1 ≤ i ≤ m and 1 ≤ j ≤ ni

the vectors a2,ij and x2,ij have dimension q2 × 1.

Such problems are efficiently solved by the SolveThreeLevelSparseMatrix routine,

which is here listed as Algorithm C.2 and is justified by Theorem 3.2 of Nolan and

Wand (2020).
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Algorithm C.2 The SolveThreeLevelSparseMatrix algorithm for solving the three-level
sparse matrix problem x = A−1a and sub-blocks of A−1 corresponding to the non-zero
sub-blocks of A.

Input: a1(p× 1), A11(p× p),
{︁(︁

a2,i(q1 × 1), A22,i(q1 × q1), A12,i(p× q1) : 1 ≤ i ≤ m
}︁

,{︁
a2,ij(q2 × 1), A22,ij(q2 × q2), A12,ij(p× q2), A12,i,j(q1 × q2)

)︁
: 1 ≤ i ≤ m, 1 ≤ j ≤ ni

}︁
.

ω←− a1 ; Ω←− A11

For i = 1, . . . , m:

h2,i ←− a2,i ; H12,i ←− A12,i ; H22,i ←− A22,i

For j = 1, . . . , ni:

h2,i ←− h2,i − A12,i,j A−1
22,ija2,ij ; H12,i ←− H12,i − A12,ij A−1

22,ij A
T
12,i,j

H22,i ←− H22,i − A12,i,j A−1
22,ij A

T
12,i,j

ω←− ω− A12,ij A−1
22,ija2,ij ; Ω←− Ω− A12,ij A−1

22,ij A
T
12,ij

ω←− ω− H12,i H−1
22,ih2,i ; Ω←− Ω− H12,i H−1

22,i H
T
12,i

A11 ←− Ω−1 ; x1 ←− A11ω

For i = 1, . . . , m:

x2,i ←− H−1
22,i(h2,i − HT

12,ix1) ; A12,i ←− −(H−1
22,i H

T
12,i A

11)T

A22,i ←− H−1
22,i(I − HT

12,i A
12,i)

For j = 1, . . . , ni:

x2,ij ←− A−1
22,ij

(︁
a2,ij − AT

12,ijx1 − AT
12,i,jx2,i

)︁
A12,ij ←− −

{︁
A−1

22,ij

(︁
AT

12,ij A
11 + AT

12,i,j A12,i T)︁}︁T

A12,i,j ←− −
{︁

A−1
22,ij

(︁
AT

12,ij A12,i + AT
12,i,j A22,i)︁}︁T

A22,ij ←− A−1
22,ij

(︁
I − AT

12,ij A
12,ij − AT

12,i,j A12,i,j)︁
Outputs: x1, A11,

{︁(︁
x2,i, A22,i, A12,i) : 1 ≤ i ≤ m

}︁
,{︁(︁

x2,ij, A22,ij, A12,ij, A12,i,j,
)︁

: 1 ≤ i ≤ m, 1 ≤ j ≤ ni
}︁

.
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C.2 Derivations

We derive explicit updates for the parameters of the optimal density functions

in (3.13) using arguments similar to those provided in Neville et al. (2014). Such

updates are then combined with the derivations given in Appendix B of Nolan et al.

(2020) for deriving the streamlined MFVB algorithms for our two- and three- level

linear mixed-effects models, i.e. Algorithms 3.2 and 3.3.

C.2.1 Derivation of q∗(β0, β) and Associated Parameter Updates

Given the model formulation (3.12), the full conditional density function for the

parameter vector (β0, β) is:

p(β0, β|rest) ∝ p(y|β0, β, σ2) p(β0) p(β|ζ, τ2)

∝ exp

{︄
− 1

2

[︄ [︄
β0

β

]︄T
⎛⎝ 1

σ2

[︁
1
⃓⃓

X
]︁T[︁ 1

⃓⃓
X
]︁
+

⎡⎣ σ−2
β0

0T

0 τ−2 diag(ζ)

⎤⎦⎞⎠[︄ β0

β

]︄

− 2

[︄
β0

β

]︄T
⎛⎝ 1

σ2

[︁
1
⃓⃓

X
]︁Ty +

⎡⎣ σ−2
β0

0T

0 τ−2 diag(ζ)

⎤⎦ [︄ µβ0

0

]︄⎞⎠]︄}︄

and application of (1.6) results in:

q∗(β0, β) ∝ exp {Eq{log p(β0, β|rest)}}

∝ exp

{︄
− 1

2

[︄ [︄
β0

β

]︄T
⎛⎝Eq{σ−2}

[︁
1
⃓⃓

X
]︁T[︁ 1

⃓⃓
X
]︁
+

⎡⎣ σ−2
β0

0T

0 Eq{τ−2} diag(Eq{ζ})

⎤⎦⎞⎠[︄ β0

β

]︄

− 2

[︄
β0

β

]︄T
⎛⎝Eq{σ−2}

[︁
1
⃓⃓

X
]︁Ty +

⎡⎣ σ−2
β0

0T

0 Eq{τ−2} diag(Eq{ζ})

⎤⎦ [︄ µβ0

0

]︄⎞⎠]︄}︄.

After completion of the square manipulations for the multivariate Gaussian distribu-

tion and standard algebraic manipulations, it follows immediately that:

q∗(β0, β) is a N
(︂

µq(β0,β), Σq(β0,β)

)︂
density function

with

Σq(β0,β) ←−
⎛⎝µq(1/σ2)

[︁
1
⃓⃓

X
]︁T[︁ 1

⃓⃓
X
]︁
+

⎡⎣ σ−2
β0

0T

0 µq(1/τ2) diag(µq(ζ))

⎤⎦⎞⎠−1
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and

µq(β0,β) ←− Σq(β0,β)

(︄
µq(1/σ2)

[︁
1
⃓⃓

X
]︁Ty +

[︄
µβ0/σ2

β0

0

]︄)︄
.

C.2.2 Derivation of q∗(σ2) and Associated Parameter Updates

Given the model formulation (3.12), the full conditional density function for pa-

rameter σ2 is:

p(σ2|rest) ∝ p(y|β0, β, σ2) p(σ2|aσ2)

∝ (σ2)−(νσ2+n)/2−1 exp

{︄
− 1

σ2

a−1
σ2 + ∥y− 1β0 − Xβ∥2

2

}︄

and application of (1.6) results in:

q∗(σ2) ∝ exp
{︂

Eq{log p(σ2|rest)}
}︂

∝ (σ2)−(νσ2+n)/2−1 exp

{︄
− 1

σ2

Eq{a−1
σ2 }+ Eq{∥y− 1β0 − Xβ∥2}

2

}︄
.

After standard algebraic manipulations, it follows immediately that:

q∗(σ2) is an Inverse-χ2
(︂

ξq(σ2), λq(σ2)

)︂
density function

with

ξq(σ2) ←− n + νσ2

and

λq(σ2) ←− µq(1/a
σ2 ) +

⃦⃦⃦
y−

[︁
1
⃓⃓

X
]︁
µq(β0,β)

⃦⃦⃦2
+ tr

{︂
Σq(β0,β)

[︁
1
⃓⃓

X
]︁T[︁ 1

⃓⃓
X
]︁}︂

.

C.2.3 Derivation of q∗(aσ2) and Associated Parameter Updates

Given the model formulation (3.12), the full conditional density function for pa-

rameter aσ2 is:

p(aσ2 |rest) ∝ p(σ2|aσ2) p(aσ2)

∝ (aσ2)−(νσ2+1)/2−1 exp

{︄
− 1

aσ2

σ−2 + (νσ2s2
σ2)
−1

2

}︄
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and application of (1.6) results in:

q∗(aσ2) ∝ exp {Eq{log p(aσ2 |rest)}}

∝ (aσ2)−(νσ2+1)/2−1 exp

{︄
− 1

aσ2

Eq{σ−2}+ (νσ2s2
σ2)
−1

2

}︄
.

After standard algebraic manipulations, it follows immediately that:

q∗(aσ2) is an Inverse-χ2
(︂

ξq(a
σ2 ), λq(a

σ2 )

)︂
density function

with

ξq(a
σ2 ) ←− 1 + νσ2 and λq(a

σ2 ) ←− µq(1/σ2) + (νσ2s2
σ2)
−1.

C.2.4 Derivation of q∗(τ2) and Associated Parameter Updates

Given the model formulation (3.12), the full conditional density function for pa-

rameter τ2 is:

p(τ2|rest) ∝

{︄
H

∏
h=1

p(βh|τ2)

}︄
p(τ2|aτ2)

∝ (τ2)−(H+1)/2−1 exp

{︄
− 1

τ2

a−1
τ2 + ∑H

h=1 ζh(βh)
2

2

}︄

and application of (1.6) results in:

q∗(τ2) ∝ exp
{︂

Eq{log p(τ2|rest)}
}︂

∝ (τ2)−(H+1)/2−1 exp

{︄
− 1

τ2

Eq{a−1
τ2 }+ ∑H

h=1 Eq{ζh}Eq{β2
h}

2

}︄
.

After standard algebraic manipulations, it follows immediately that:

q∗(τ2) is an Inverse-χ2
(︂

ξq(τ2), λq(τ2)

)︂
density function

with

ξq(τ2) ←− H + 1 and λq(τ2) ←− µq(1/a
τ2 ) + µT

q(ζ)µq((β)2).
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C.2.5 Derivation of q∗(aτ2) and Associated Parameter Updates

Given the model formulation (3.12), the full conditional density function for pa-

rameter aτ2 is:

p(aτ2 |rest) ∝ p(τ2|aτ2)p(aτ2)

∝ (aτ2)−2 exp

{︄
− 1

aτ2

τ−2 + s−2
τ2

2

}︄

and application of (1.6) results in:

q∗(aτ2) ∝ exp {Eq{log p(aτ2 |rest)}} ∝ (aτ2)−2 exp

{︄
− 1

aτ2

Eq{τ−2}+ s−2
τ2

2

}︄
.

After standard algebraic manipulations, it follows immediately that:

q∗(aτ2) is an Inverse-χ2
(︂

ξq(a
τ2 ), λq(a

τ2 )

)︂
density function

with

ξq(a
τ2 ) ←− 2 and λq(a

τ2 ) ←− µq(1/τ2) + s−2
τ2 .

C.2.6 Derivation of q∗(ζh) and Associated Parameter Updates

Given the model formulation (3.12), the full conditional density function for pa-

rameters ζh, 1 ≤ h ≤ H, is:

p(ζh|rest) ∝ p(βh|ζh, τ) p(ζh|aζh),

where p(βh|ζh) is the density function of a N(0, τ2/ζh) distribution, while p(ζh|aζh)

depends on the hierarchical specification given in Table 3.1 for each of the considered

global-local priors.

Laplace Global-Local Prior Specification

If βh|τ ∼ Laplace(0, τ) then:

p(ζh|rest) ∝ (ζh)
−3/2 exp

{︄
−ζh

β2
h

2τ2 −
1

2ζh

}︄
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and application of (1.6) results in:

q∗(ζh) ∝ exp {Eq{log p(ζh|rest)}} ∝ (ζh)
−3/2 exp

{︄
−ζh

Eq{β2
h}Eq{τ−2}

2
− 1

2ζh

}︄
.

After standard algebraic manipulations, it follows immediately that:

q∗(ζh) is an Inverse-Gaussian(µq(ζh)
, 1) density function

with

µq(ζh)
←−

√︃
1
/︂(︂

µq(1/τ2)µq(β2
h)

)︂
.

Horseshoe Global-Local Prior Specification

If βh|τ ∼ Horseshoe(0, τ) then:

p(ζh|rest) ∝ exp

{︄
−ζh

(︄
β2

h
2τ2 + aζh

)︄}︄

and application of (1.6) results in:

q∗(ζh) ∝ exp{Eq{log p(ζh|rest)}} ∝ exp

{︄
−ζh

(︄
Eq{β2

h}Eq{τ−2}
2

+ Eq{aζh}
)︄}︄

.

After standard algebraic manipulations, it follows immediately that:

q∗(ζh) is a Gamma(1, λq(ζh)
) density function

with

λq(ζh)
←−

µq(1/τ2)µq(β2
h)

2
+ µq(aζh

).

Normal-Exponential-Gamma Global-Local Prior Specification

If βh|τ ∼ NEG(0, τ, λ) then:

p(ζh|rest) ∝ (ζh)
−3/2 exp

{︄
−ζh

β2
h

2τ2 −
aζh

ζh

}︄
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and application of (1.6) results in:

q∗(ζh) ∝ exp {Eq{log p(ζh|rest)}} ∝ (ζh)
−3/2 exp

{︄
−ζh

Eq{β2
h}Eq{τ−2}

2
− Eq{aζh}

ζh

}︄
.

After standard algebraic manipulations, it follows immediately that:

q∗(ζh) is an Inverse-Gaussian(µq(ζh)
, λq(ζh)

) density function

with

µq(ζh)
←−

√︃
2µq(aζh

)

/︂(︂
µq(1/τ2)µq(β2

h)

)︂
and λq(ζh)

←− 2µq(aζh
).

C.2.7 Derivation of q∗(aζh) and Associated Parameter Updates

Given the model formulation (3.12), the full conditional density function for pa-

rameters ζh, 1 ≤ h ≤ H, is:

p(aζh |rest) ∝ p(ζh|aζh) p(aζh),

where both p(ζh|aζh) and p(aζh) depend on the hierarchical specification given in

Table 3.1 for each of the considered global-local priors.

Laplace Global-Local Prior Specification

According to Table 3.1, for the Laplace prior it is not necessary to introduce

the auxiliary variables aζh . Hence q(aζh) is not present and does not need to be

determined, for all 1 ≤ h ≤ H.

Horseshoe Global-Local Prior Specification

If βh|τ ∼ Horseshoe(0, τ) then:

p(aζh |rest) ∝ exp{−(ζh + 1)aζh}

and application of (1.6) results in:

q∗(aζh) ∝ exp{Eq{log p(aζh |rest)}} ∝ exp
{︁
−aζh (Eq{ζh}+ 1)

}︁
.
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After standard algebraic manipulations, it follows immediately that:

q∗(aζh) is a Gamma(1, λq(aζh
)) density function

with

λq(ζh)
←− µq(ζh)

+ 1.

Normal-Exponential-Gamma Global-Local Prior Specification

If βh|τ ∼ NEG(0, τ, λ) then:

p(aζh |rest) ∝ (aζh)
(λ+1)−1 exp{aζh(ζ

−1
h + 1)}

and application of (1.6) results in:

q∗(aζh) ∝ exp
{︁

Eq{log p(aζh |rest)}
}︁

∝ (aζh)
(λ+1)−1 exp{aζh(Eq{ζ−1

h }+ 1)}.

After standard algebraic manipulations, it follows immediately that:

q∗(ζh) is a Gamma(λ + 1, λq(aζh
)) density function

with

λq(ζh)
←− µq(1/ζh)

+ 1.
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This appendix contains additional details concerning the nonstationary HGP

model (4.15) described in Chapter 4.

D.1 Derivation of the Posterior Predictive Distribution

Given the nonstationary GPR model (4.15), it is of interest to predict f X∗ =

( f (x∗1), . . . , f (x∗n∗))
T over a set of n∗ new predictors X∗ = (x∗,T1 , . . . , x∗,Tn∗ )

T, exploiting

the knowledge about the unknown regression function supplied by the observed

data in D. As such, we need to determine the posterior predictive distributions

f X∗ |y and yX∗ |y, following similar arguments given in Section 4.2 for the generic

(stationary) GPR model.

Without loss of generality, let we assume for now that the model parameter vector

λ = (uX , σ2, τ2
u , ℓ2

u, τ2
f )

T is fixed and entirely known in advance. We will later con-

sider its Bayesian treatment. Due to its hierarchical construction, predicting from the

nonstationary GPR model requires first obtaining the prediction for the unknown

latent GP prior over X∗ and then to employ it together with uX for predicting f X∗ .

Let’s start from the top GP layer. Given the vectors uX∗ = (u(x∗1), . . . , u(x∗n∗))
T,

mu;X∗ = (mu(x∗1), . . . , mu(x∗n∗))
T and matrices Ku;X∗,X∗ = (kS.E.(x∗i , x∗i′ ; τ2

u , ℓ2
u))1≤i,i′≤n∗ ,

Ku;X,X∗ = (kS.E.(xi, x∗i′ ; τ2
u , ℓ2

u))1≤i≤n,1≤i′≤n∗ and Ku;X∗,X = KT
u;X,X∗ , it is possible to ex-

press the joint density function for uX and uX∗ as:[︄
uX

uX∗

]︄
∼ Nn+n∗

(︄[︄
mu;X

mu;X∗

]︄
,

[︄
Ku;X,X Ku;X,X∗

Ku;X∗,X Ku;X∗,X∗

]︄)︄
.

The posterior predictive distribution for the top GP layer follows by applying stan-

dard conditioning formulas for the multivariate Gaussian distribution:

uX∗ |uX ∼ Nn∗
(︂

mu;X∗ + Ku;X∗,X K−1
u;X,X(uX −mu;X),

Ku;X∗,X∗ − Ku;X∗,X K−1
u;X,X Ku;X,X∗

)︂
.

(D.1)
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A commonly-suggested advice is to add a very small nugget effect on the diagonal

of Ku;X,X , preventing ill-conditioning problem. Therefore, samples from uX∗ |uX can

be efficiently obtained substituting Ku;X,X with, e.g., Ku;X,X + 10−4I in the above

expression.

Now let define the vector m f ;X∗ = (m f (x∗1 , u∗1), . . . , m f (x∗n∗ , u∗n∗))
T and matrices

K f ;X∗,X∗ = (kP.S.–S.E.(x∗i , x∗i′ ; u∗i , u∗i′ , τ2
f ))1≤i,i′≤n∗ , K f ;X,X∗ = (kP.S.–S.E.(xi, x∗i′ ; ui, u∗i′ , τ2

f ))1≤i≤n,1≤i′≤n∗

and K f ;X∗,X = KT
f ;X∗,X , where we explicitly indicated the unknown ui = (uX)i

(1 ≤ i ≤ n) and u∗i = (uX∗)i (1 ≤ i ≤ n∗) upon which they are evaluated. With

arguments similar to those given in Section 4.2, the joint density function of y and

f X∗ , conditional on both uX and uX∗ , is expressible as:[︄
y

f X∗

]︄ ⃓⃓⃓
uX , uX∗ ∼ Nn+n∗

(︄[︄
m f ;X

m f ;X∗

]︄
,

[︄
K f ;X,X + σ2I K f ;X,X∗

K f ;X∗,X K f ;X∗,X∗

]︄)︄
.

Again, applying standard conditioning formulas for the multivariate Gaussian dis-

tribution it is immediate to obtain the posterior predictive distribution for the bot-

tom GP layer, conditional to both uX and uX∗ , having expression:

f X∗ |y, uX , uX∗ ∼ Nn∗
(︂

m f ;X∗ + K f ;X∗,X(K f ;X,X + σ2I)−1(y−m f ;X),

K f ;X∗,X∗ − K f ;X∗,X(K f ;X,X + σ2I)−1K f ;X,X∗
)︂

.
(D.2)

Combining both (D.1) and (D.2), the posterior predictive distribution for f X∗ ,

conditioned on uX , is:

p( f X∗ |y, uX) =
∫︂

p( f X∗ |y, uX , uX∗) p(uX∗ |uX) duX∗ . (D.3)

Nevertheless, an explicit closed-form expression is not available and it necessary to

resort to Monte-Carlo methods for sampling from it.

If a fully-Bayesian inferential treatment is adopted for our nonstationary HGP

model, as it is the case in Chapter 4, then each of the above expressions has to be

rewritten also accounting for their conditional dependence upon σ2, τ2
u , ℓ2

u and τ2
f .

Consequently, (D.3) has to be rewritten as:

p( f X∗ |y, λ) =
∫︂

p( f X∗ |y, uX , uX∗ , σ2, τ2
u) p(uX∗ |uX , τ2

u , ℓ2
u) duX∗
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and finally the posterior predictive distribution is defined integrating out λ from the

above expression with respect to its posterior distribution, yielding:

p( f X∗ |y) =
∫︂∫︂

p( f X∗ |y, uX , uX∗ , σ2, τ2
u) p(uX∗ |uX , τ2

u , ℓ2
u) p(λ|y) duX∗dλ. (D.4)

If it is of interest to predict yX∗ instead of f X∗ , the same derivation holds after

substituting K f ;X∗X∗ + σ2I to K f ;X∗X∗ in (D.2). The resulting posterior predictive

distribution is:

p(yX∗ |y) =
∫︂∫︂

p(yX∗ |y, uX , uX∗ , σ2, τ2
u) p(uX∗ |uX , τ2

u , ℓ2
u) p(λ|y) duX∗dλ. (D.5)

A prediction f̃ X∗ from (D.4) can be obtained via Monte-Carlo proceeding as follows:

1. Sample λ̃ = (ũX , σ2̃, τ̃2
u, ℓ̃2

u, τ̃2
f )

T from p(λ|y);

2. Sample ũX∗ from uX∗ |ũX , τ̃2
u, ℓ̃2

u having distribution (D.1);

3. Sample f̃ X∗ from f X∗ |y, ũX , ũX∗ , σ̃2, τ̃2
f having distribution (D.2);

4. Interpret f̃ X∗ as a draw from (D.4).

Similarly, a prediction ỹX∗ from (D.5) follows the same step but replaces Step 3 sam-

pling ỹX∗ from yX∗ |y, ũX , ũX∗ , σ̃2, τ̃2
f having distribution (D.2) with K f ;X∗X∗ replaced

by K f ;X∗X∗ + σ2I. Hence ỹX∗ is interpretable as being drawn from (D.5).

D.2 Derivation of Algorithm 4.1 and Implementation

Details

Algorithm 4.1 described in Chapter 4 performs GVA on the nonstationary GPR

model (4.15) employing the factor parametrization for the covariance matrix pro-

posed by Ong et al. (2018). As such, its algorithmic structure follows from the

stochastic gradient ascent algorithm proposed in Section 3 of Ong et al. (2018) and

summarized in their Algorithm 1, with minor modifications we describe hereafter.

Given the reparameterized parameter vector θ = (uT
X , log σ2, log τ2

u , log ℓ2
u, log τ2

f )
T

of dimension (n + 4)× 1, we are interested in approximating the posterior density

function p(θ|y) having expression (4.17) with a probability density function q(θ)

expressible as (4.18). Following the stochastic gradient ascent-based method for

solving GVA, summarized in Chapter 1, here ηq(θ) = (µT
q(θ), vec(Bq(θ))

T, dT
q(θ))

T de-

notes the parameter vector of q(θ) and GVA finds the optimal η∗
q(θ) for which the
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lower-bound

log p(y; q(θ; ηq(θ))) = log p(y, θ)− log q(θ; ηq(θ))

is maximal.

The stochastic gradient ascent method employing the reparametrization trick is

based upon the iterative computation of (1.24). Given that

z(ζ; ηq(θ)) = µq(θ) + (ωT ⊗ I)vec(Bq(θ)) + dq(θ) ◦ ϱ,

we can compute

d z(ζ; ηq(θ))

d ηq(θ)
=

[︄
d z(ζ; ηq(θ))

d µq(θ)

d z(ζ; ηq(θ))

d vec(Bq(θ))

d z(ζ; ηq(θ))

d dq(θ)

]︄

explicitly, since

d µq(θ) + (ωT ⊗ I)vec(Bq(θ)) + dq(θ) ◦ ϱ

d µq(θ)

= I

d µq(θ) + (ωT ⊗ I)vec(Bq(θ)) + dq(θ) ◦ ϱ

d vec(Bq(θ))
= ωT ⊗ I

and
d µq(θ) + (ωT ⊗ I)vec(Bq(θ)) + dq(θ) ◦ ϱ

d dq(θ)
= diag(ϱ).

Moreover, the first addendum of log p(y; q(θ; ηq(θ))) reads:

log p(y, θ) = log p(y|θ) + log p(θ)

= log p(y|uX , log σ2, log τ2
f ) + log p(uX | log τ2

u , log ℓ2
u)

+ log p(log σ2) + log p(log τ2
u) + log p(log ℓ2

u) + log p(log τ2
f ),

where:

• p(y|uX , log σ2, log τ2
f ) is the density function of a Nn(0, K f ;X,X + exp(log σ2)I)

distribution, uX and log τ2
f taking their contribution into the Paciorek-Schervish

covariance function specification for building K f ;X,X ;

• p(uX | log τ2
f , log ℓ2

f ) is the density function of a Nn(0, Ku;X,X) density function,

log τ2
f and log ℓ2

f taking their contribution into the squared exponential covari-

ance function specification for building Ku;X,X ;
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• p(log σ2) is the density function of the random variable log(σ2) built on σ2 ∼
Inverse-Gamma(ξσ2 , λσ2);

• similarly for the density functions p(log τ2
u), p(log ℓ2

u) and p(log τ2
f ) following

the prior specifications given in (4.15).

An explicit expression for ∇θ log p(y, θ) in (1.24) is generally not available for the

whole parameter vector θ, and we resort to automatic differentiation techniques

(Baydin et al., 2017) for computing it.

The second addendum of log p(y; q(θ; ηq(θ))) is simply the log-probability density

function of q(θ), which is a N(µq(θ); Bq(θ)B
T
q(θ) + diag(dq(θ))

2) density function in θ.

Therefore,

∇θ log q(θ; ηq(θ)) = −(Bq(θ)B
T
q(θ) + diag(dq(θ))

2)−1(θ− µq(θ)).

Notice Step 5 of Algorithm 4.1 requires the inverse for Σq(θ). It can be computed

efficiently in terms of both memory and computation time employing the Woodbury

identity:

(Σq(θ))
−1 = (Bq(θ)B

T
q(θ) + diag(dq(θ))

2)−1

= diag(dq(θ))
−2 − diag(dq(θ))

−2Bq(θ)(I + BT
q(θ)diag(dq(θ))

−2Bq(θ))
−1BT

q(θ)diag(dq(θ))
−2.
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