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Abstract: The present work aims to identify the predictors of COVID-19 in-hospital mortality testing
a set of Machine Learning Techniques (MLTs), comparing their ability to predict the outcome of
interest. The model with the best performance will be used to identify in-hospital mortality predictors
and to build an in-hospital mortality prediction tool. The study involved patients with COVID-19,
proved by PCR test, admitted to the “Ospedali Riuniti Padova Sud” COVID-19 referral center in
the Veneto region, Italy. The algorithms considered were the Recursive Partition Tree (RPART), the
Support Vector Machine (SVM), the Gradient Boosting Machine (GBM), and Random Forest. The
resampled performances were reported for each MLT, considering the sensitivity, specificity, and
the Receiving Operative Characteristic (ROC) curve measures. The study enrolled 341 patients.
The median age was 74 years, and the male gender was the most prevalent. The Random Forest
algorithm outperformed the other MLTs in predicting in-hospital mortality, with a ROC of 0.84
(95% C.I. 0.78-0.9). Age, together with vital signs (oxygen saturation and the quick SOFA) and
lab parameters (creatinine, AST, lymphocytes, platelets, and hemoglobin), were found to be the
strongest predictors of in-hospital mortality. The present work provides insights for the prediction of
in-hospital mortality of COVID-19 patients using a machine-learning algorithm.
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1. Introduction

The prognosis prediction of patients infected with SARS-CoV-2 is one of the most
relevant topics in COVID-19 research [1]. The pandemic poses a severe burden to the
healthcare system of countries worldwide given the long symptoms” duration [2], the
higher risk of severe complications requiring hospitalization/intensive care compared
to seasonal influenza [3], and the documented excess of mortality associated with the
virus spread [4]. Such conditions have led to a dramatic imbalance between healthcare
resources and hospital/Intensive Care Unit (ICU) bed demands [5]. Italy, the first and
most affected European country during the first COVID-19 wave [6], adopted emergency
solutions to face such imbalance [5]. However, the COVID-19 wave is still ongoing in
almost all European countries, including Italy. For these reasons, there is an urgent need
for strategies to prevent such an imbalance occurs again. With the adoption of public
health strategies to contain the virus spread [7] and the improvement of the health care
resources available, the development of tools to predict patients’ prognosis would be part
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of the solution to prevent resource imbalance [8]. Such tools would be helpful to assist
physicians” decision-making. Risk stratification is essential in this context to identify an
adequate referral pathway for each COVID-19 patient, allowing for an appropriate resource
allocation. Furthermore, such tools help the identification of the parameters that contribute
the most to the outcome, allowing physicians to monitor/treat such parameters.

Several tools have been proposed from the beginning of the pandemic, especially for
in-hospital mortality prediction [9]. A systematic review published at the beginning of the
pandemic, i.e., April 2020, identified several mortality risk prediction tools for COVID-19
patients [9], and several others have been proposed after that. Several methods have been
employed to develop such tools, from traditional statistical approaches, e.g., multivariable
analysis [10], to more advanced machine learning techniques (MLTs) [11-14]. MLTs are
increasingly used for outcome prediction in the clinical setting, since they present several
advantages over traditional methods [15]. They help disentangle complex relationships
between covariates and outcome of interest, even though a low number of events have
occurred in front of many variables to be tested. Not least, the MLT predictive ability may
improve as new data is provided.

Our study aims to identify predictors of COVID-19 in-hospital mortality testing a set
of MLTs, comparing their ability to predict the outcome of interest. The model estimation is
based on patients treated in a COVID-19 referral center in the Veneto region, Italy, during
the COVID-19 first wave. Together with Lombardia, Veneto was the first Italian region
affected by the COVID-19 outbreak at the beginning of the year [16].

2. Materials and Methods

The study involved patients with COVID-19, proved by PCR test, admitted to the
“Ospedali Riuniti Padova Sud” COVID-19 referral center in the Veneto region, Italy, in
March and April 2020.

2.1. Data Collection

Information on sociodemographic characteristics; medical history (comorbidities,
smoking habits, and weight status); clinical and instrumental parameters; and laboratory
data were collected at hospital admission. Furthermore, drug therapy was registered. The
outcome was represented by in-hospital mortality.

2.2. Statistical Analysis

Descriptive statistics were reported as I quartile/median/III quartile for continuous
variables and percentages (absolute numbers) for categorical variables. Wilcoxon-type
tests were performed for the continuous variables and the Pearson chi-square test, or
Fisher-exact test, whichever is appropriate, for the categorical variables.

A set of MLTs was tuned to identify the predictors of in-hospital mortality. The
predictive tools were tuned using a bootstrapping algorithm (50 runs). The algorithms
considered for the classification task were the Recursive Partition Tree (RPART), the Support
Vector Machine (SVM), the Gradient Boosting Machine (GBM), and Random Forest.

o  The RPARTs are classification models based on a top-down methodology in which,
starting from a root node, binary splits of data are generated until a certain criterion
(i.e., the minimization of the node impurity) is encountered [17]. This method is prone
to overfitting on training data. The cross-validation or bootstrapping procedure is a
useful method to limit the overfitting, leading to defining the proper tuning of the
Decision Tree (DT) parameters and optimizing the model accuracy [18].

e Random Forest is a tree-based algorithm, which involves the computation of hundreds
to thousands of RPART trees; the method merges the DT output to increase the model’s
generalizability [19].

e The GBM is based on a sequential boosting improvement of weak RPART classifiers
(high bias and low variance). The GBM idea is to add a classifier sequentially so that
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the next classifier is trained to improve the already trained RPART. A random forest
algorithm, instead, trains each classifier independently from the others [19].

e  The SVM algorithm’s main objective is to find an optimal hyperplane of the feature’s
N-dimensional space (N—the number of variables) that distinctly classify the data
points into a binary partition [20]. Several hyperplanes may separate the classes of
data points. The SVM algorithm considers the hyperplanes, which maximize the
margin (the distance between data points of classes).

The resampled performances were reported for each MLT, considering the sensitivity,
specificity, and the Receiving Operative Characteristic curve (ROC) measures, with 95%
confidence intervals (C.Ls).

Among the proposed MLTs, the tool with the best performance was chosen for the
classification task. ¢, pairwise differences were computed and tested to assess if the differ-
ence was equal to zero. The Bonferroni correction was used to calculate the p-values and
adjust the confidence interval limits for the reported differences. For the most promising
MLIT, the variable importance plot was reported together with the ROC curve and the
median balanced accuracy measure within the resampling.

The ROC and accuracy measures were also reported to evaluate the MLT tool’s
performance according to the increasing data availability during the study period. The
database was ordered according to the hospitalization date. The MLT was built on the
first 40, 60, 80,100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, and 340 hospitalized
patients. The ROC and accuracy measures were reported according to the different sample
sizes. The performance was computed, together with the variable importance measures,
by tuning and developing the tool for cumulative fractions of the sample.

A Shiny web application was developed based on the algorithm with the best performance.
The tool calculates the in-hospital death probability, according to the patients” characteristics.

Analyses were performed using R 3.4.2 [21] with the rms [22] and caret [23] packages.

3. Results

The study enrolled 341 patients admitted to the “Ospedali Riuniti Padova Sud”
COVID-19 referral center between March and April 2020. Table 1 presents the subjects’
baseline characteristics according to the admission date (before—after 21 March 2020, the
day on which the national lockdown was declared in Italy). Seventy-five patients out of
341 died while hospitalized.

Overall, the prevalence of the male gender was found to be higher than the female
one (57% in the sample overall), even though it was found to be higher in the first period
of admissions compared to the second one (65% vs. 51%; p-value 0.007). The median age
of the subjects enrolled was 74 years, and it was lower in the first period compared to the
second period (median of 70 vs. 78; p-value < 0.001). Subjects admitted to the hospital in
the first period were significantly more likely to suffer from diabetes (p-value 0.031) and
less likely to suffer from dementia (p-value < 0.001) and from cerebrovascular diseases
(p-value 0.019). No significant differences were detected in the distribution of the other
comorbidities. For what concerns the drug therapy, subjects admitted after March 21 were
found to be significantly more likely to be treated with low molecular weight heparin
(LMWH) (p-value 0.001) but less likely to be administered with antiviral drugs.

3.1. MLTs Performance

The Random Forest algorithm outperformed the other MLTs in predicting the in-
hospital mortality (Figure 1), with a ROC of 0.84 (95% C.I. 0.78-0.9). In addition to that,
looking at the values of sensitivity and specificity, Random Forest provided a better balance
than the other techniques between two such measures. Such results were confirmed when
the pairwise comparisons were made (Table S1 Supplementary Materials). Furthermore,
no class imbalance issues were detected (Figure S1, Supplementary Materials).
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Table 1. Subjects’ baseline characteristics according to the admission date (before—after 21 March 2020). Data are I quartile/Median/III quartile for continuous variables and percentages
(absolute numbers) for categorical variables.

Baseline Characteristics N Before March 21 (n = 149) After March 21 (n = 192) Overall (N = 341) p-Value
Gender: Female 341 35% (52) 49% (95) 43% (147) 0.007
Male 65% (97) 51% (97) 57% (194)
Age 341 58.0/70.0/82.0 62.5/78.0/87.0 60.0/74.0/85.0 <0.001
Smoking: No 237 79% (94) 85% (100) 82% (194) 0.25
Yes 21% (25) 15% (18) 18% (43)
Duration of Hospitalization (Days) 290 7.0/12.0/17.0 6.0/10.0/16.0 7.0/11.0/16.8 0.106
Comorbidities
Diabetes Mellitus: No 341 73% (109) 83% (159) 79% (268) 0.031
Yes 27% (40) 17% (33) 21% (73)
SHPT: No 341 48% (72) 53% (102) 51% (174) 0.379
Yes 52% (77) 47% (90) 49% (167)
Dyslipidemia: No 341 82% (122) 86% (165) 84% (287) 0.309
Yes 18% (27) 14% (27) 16% (54)
Ischemic heart disease: No 341 91% (136) 90% (172) 90% (308) 0.6
Yes 9% (13) 10% (20) 10% (33)
Obesity: No 341 93% (138) 94% (181) 94% (319) 0.538
Yes 7% (11) 6% (11) 6% (22)
Cerebrovascular disease: No 341 95% (142) 88% (169) 91% (311) 0.019
Yes 5% (7) 12% (23) 9% (30)
Dementia: No 341 87% (129) 69% (132) 77% (261) <0.001
Yes 13% (20) 31% (60) 23% (80)
Chronic Kidney Disease: No 331 93% (136) 89% (164) 91% (300) 0.293
Yes 7% (11) 11% (20) 9% (31)
Current cancer: No 341 96% (143) 91% (175) 93% (318) 0.078
Yes 4% (6) 9% (17) 7% (23)
Previous Cancer: No 340 95% (142) 95% (182) 95% (324) 0.995
Yes 5% (7) 5% (9) 5% (16)
COPD: No 340 95% (140) 90% (172) 92% (312) 0.096
Yes 5% (8) 10% (20) 8% (28)

Lab parameters & Vital Signs
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Table 1. Cont.

Baseline Characteristics N Before March 21 (n = 149) After March 21 (n = 192) Overall (N = 341) p-Value
Neutrophils (x10? /L) 339 3.16/4.38/6.56 3.24/4.57/7.23 3.17/4.50/6.72 0.235
Lymphocytes (x10? /L) 339 0.640/0.915/1.263 0.670/0.890/1.345 0.650/0.900/1.320 0.784
Neutrophils/Lymphocytes (x10° /L) 338 2.69/4.42/7.96 3.23/5.09/9.36 2.97/4.93/8.93 0.297
Hemoglobin (g/L) 339 116/130/142 116/128/140 116/128/140 0.586
D-dimer (ug/L) 124 134/192/416 148/301/675 142/227/636 0.089
Creatinine (umol /L) 337 67.8/84.0/104.2 63.0/78.0/96.0 67.0/81.0/102.0 0.075
Platelets (x10° /L) 338 148/189/234 150/198/246 148/196/244 0.445
AST (U/L) 292 25.2/35.5/49.0 26.0/37.0/60.0 26.0/36.5/55.2 0.265
ALT (U/L) 298 20.0/27.0/40.0 15.8/25.0/43.2 17.0/26.0/42.0 0.2
Procalcitonin (PCT) (ug/L) 208 0.0400/0.0800/0.1400 0.0500/0.1200/0.3950 0.0475/0.1000/0.2600 0.03
Troponine (ng/L) 31 6.0/25.0/90.0 10.5/26.5/64.5 9.5/25.0/68.0 0.848
Oxygen saturation (%) 244 93.8/96.0/98.0 93.0/95.0/97.0 93.0/95.5/98.0 0.541
Quick SOFA 341 0/0/1 0/0/1 0/0/1 0.048
pO2 (mmHg) 213 54.0/64.0/71.0 56.0/64.0/73.2 55.0/64.0/72.0 0.567
Glasgow Coma Scale >/=15: No 341 84% (125) 70% (135) 76% (260) 0.003
Yes 16% (24) 30% (57) 24% (81)
Drug therapy
ARIXTRA: No 111 59% (37) 35% (17) 49% (54) 0.015
Yes 41% (26) 65% (31) 51% (57)
LMWH: No 286 28% (35) 12% (20) 19% (55) 0.001
Yes 72% (88) 88% (143) 81% (231)
Antiviral: No 340 51% (76) 97% (186) 77% (262) <0.001
Yes 49% (73) 3% (5) 23% (78)
Plaquenil: No 340 24% (36) 18% (34) 21% (70) 0.15
Yes 76% (113) 82% (157) 79% (270)
Antibiotic: No 340 5% (7) 4% (8) 4% (15) 0.82
Yes 95% (142) 96% (183) 96% (325)
Tocilizumab: No 340 95% (141) 97% (186) 96% (327) 0.189
Yes 5% (8) 3% (5) 4% (13)




J. Pers. Med.

2021, 11, 343

60f11

PANEL A PANEL B
| | | | | | | |
L S . } ............ | - } .....
RPART R — . % ————————————— GBM A I
GBM E * SVM [ ]
SVM i * RFART +
| | | | | | | |
0.84 0.86 0.88 0.90 0.92 05 06 07 08
F ROC
RPART SVM GBM RANDOM FOREST
Score CI Score CI Score CI Score CI
SENSITIVITY 0.44 0.33-0.55 0.907 0.82-0.95 0.853 0.76-0.92 0.787 0.68-0.86
SPECIFICITY 0.936 0.9-0.96 0.583 0.52-0.64 0.662 0.6-0.72 0.774 0.72-0.82
ROC 0.64 0.57-0.71 0.78 0.71-0.85 0.81 0.75-0.87 0.84 0.78-0.9

Figure 1. Comparison of the performance of the MLT algorithms. Panel A presents the F-score measure. Panel B presents the ROC.
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3.2. Variable Importance in Predicting in-Hospital Mortality According to the Random Forest

Since Random Forest was found to be the MLT with the best performance, it was
chosen to identify the predictors of in-hospital mortality. The algorithm was tuned to
achieve the optimal performance in the correspondence of 500 trees and 6 mtry (number of
variables available for splitting each tree node).

Figure 2 reports the plots of the variable importance measures according to the mean
decrease accuracy. Age, together with vital signs (oxygen saturation and the quick SOFA)
and lab parameters (creatinine, AST, lymphocytes, platelets, and hemoglobin), were found
to be the strongest predictors of in-hospital mortality (Figure 2). Conversely, comorbidities
were found to provide only a small contribution in predicting the in-hospital mortality in
such patients.

Furthermore, the algorithm stability investigation as the availability of data increases
was performed to inform clinicians about the minimum number of cases required to obtain
areliable algorithm. Interestingly, the ROC parameter underwent stabilization after the first
100 patients (Figure 3). The variable importance plots calculated on cumulative fractions of
the sample are provided in Table S2 (Supplementary Materials).

The web application based on the algorithm developed is available at https:/ /r-ubesp.
dctv.unipd.it/shiny/Schiavonia/.
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Figure 2. Random Forest’s variable importance plot (Panel A) and ROC curve on the Random Forest predictions (Panel B). The median resampled accuracy is 0.86.
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Figure 3. Random Forest’s ROC and accuracy as the availability of the data increased. The database was ordered according
to the hospitalization date. Random Forests were built on the first 40, 60, 80,100, 120, 140, 160, 180,200, 220, 240, 260, 280,
300, 320, and 340 hospitalized patients. The ROC (blue line) and accuracy (red line) measures were reported according
to the different sample sizes. The performance was computed by tuning and developing the Random Forest tool for the

cumulative fractions of the sample.

4. Discussion

The present study showed that the Random Forest is a feasible machine-learning
algorithm to stratify the mortality risk in a sample of patients admitted to a COVID-19
referral center in the Veneto region, Italy, during the first COVID-19 wave.

The sample characteristics, in terms of gender and comorbidities distribution, are
consistent with those reported by previous studies on subjects admitted to the Italian
hospitals during the first wave of the pandemic [24], even though the median age of
the patients enrolled was about ten years higher than that previously reported [24]. For
what concerns drug therapy, the increasing use of LMWH documented between the first
and second study periods reflects the publication of the preliminary evidence about the
beneficial effects of LMWH in patients with COVID-19 [25].

Risk stratification is a hot topic in COVID-19 research, given the shortage of healthcare
resources for the management of COVID-19 patients. For this reason, an impressive
number of risk stratification tools for in-hospital mortality in COVID-19 patients has
been developed. Both traditional, i.e., logistic regression, and nontraditional, i.e., MLTs,
statistical techniques have been employed to create such tools [9], but the traditional ones
have been most frequently used, probably for the ease of use and interpretability in the
clinical setting. However, MLTs have been shown to be feasible to develop risk stratification
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tools in the COVID-19 research setting [11,13], with promising results underlying such
algorithms’ potentials to assist clinicians” decision-making in everyday clinical practice.

The present work showed an outperformance of Random Forest compared to the other
algorithms tested. Interestingly, the variables found to contribute to in-hospital mortality
were age and those related to hospital presentation (vital signs and lab parameters). At
the same time, the comorbidities played a minor role in the mortality risk prediction. Such
findings are only partially in-line with those of international studies, showing that, together
with clinical presentation, comorbidities also play a relevant role in risk prediction [11].
However, it is worth pointing out that it is difficult to compare results from the literature,
since each tool has been developed on different patient populations, e.g., hospitalized
patients, mechanically ventilated patients, elderly patients hospitalized, and the general
population. Furthermore, each tool has been developed using a different set of baseline
variables, including sociodemographic ones, laboratory data, instrumental parameters,
and clinical measures.

5. Conclusions

The present work provides a useful tool able to assist physicians’ decision-making
in facing the COVID-19 emergency. Furthermore, the feasibility of MLTs in this research
context has been shown, which represents an added value of the present work, since MLTs
are able to overcome the limitations of more traditional statistical techniques.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11050343 /s1: Table S1. Differences in ROC (Panel A) and F statistic (Panel B) among the
MLTs employed to predict in-hospital death. Table S2: Variable importance plots for each Random
Forest developed. Figure S1. ROC, sensitivity, and specificity measures of the null model and the
random forest.
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