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Abstract— In this paper we provide some analytical perfor-
mance bounds for different distributed estimation schemes for
stochastic discrete time linear systems where the communication
between the sensors and the estimation center is subject to
random packet loss. In particular, we analyze three different
strategies. The first, named measurement fusion (MF) optimally
fuses the raw measurements received so far from all sensors.
The second strategy, named infinite bandwidth filter (IBF),
computes the optimal mean square estimator assuming that
each node can send all measurements observed up to its
current time in a single packet. The last strategy, named open
loop partial estimate fusion (OLPEF), simply sums local state
estimates received from each sensor and replace the lost ones
with their open loop counterpart. In particular, we propose
novel mathematical tools to derive analytical upper and lower
bounds for expected estimation error covariance the MF and
the IBF strategies in the scenario of identical sensors and we
compare their values with the empirical performance obtained
via simulations.

I. INTRODUCTION

The rapid growth of large wireless sensor networks ca-
pable of sensing and computation promises the design of
novel applications, but it is also posing several challenges
due to the unavoidable lossy nature of the wireless channel.
These challenges are particularly evident in control and
estimation applications since packet loss and random delay
degrade the overall system performance, thus motivating the
development of novel tools and algorithms, as illustrated in
the survey [7]. In this work we focus on the problem of
estimating a stochastic discrete time linear system observed
by a number of sensors which can preprocess sensor data
and communicate this information to a central node via a
wireless lossy channel.

There is a vast literature regarding distributed estima-
tion and sensor fusion with perfect communication links.
In particular, there are two classes of problems that are
relevant to this work. The first class addresses the problem
of distributing computational burden from the central node,
where the decision process takes place, to the distributed
sensor, under the assumption of perfect communication, i.e.
packets arrive with no delay or at worst with a constant
delay. In this context, Willsky, Levy et al. [12] [8] showed
that it is possible to reconstruct the centralized Kalman filter
(CKF) estimate from local Kalman filter (LKF) estimates
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generated by each sensor. In particular, the CKF can be
obtained as the output of a linear filter which uses the
LKF estimates as inputs. More recently Wolfe et al. [13]
showed that the computational load of the central node can
be reduced even further by running on each sensor a local
filter which generates a partial estimate of the state so that
the central node just need to sum them together to recover
the CKF estimate. The main difference between [12] [8] and
[13] is that in the latter approach all local sensors need to
know the whole system dynamics including the other sensors,
while in the former approaches only the central node needs to
know the whole system dynamics. There are also dedicated
distributed estimation algorithms such as the federated filters
proposed by Carlson [4], which require a specific structure
in the systems dynamics.

The other class of works is related to estimation subject
to packet loss and variable delay between the sensor and the
estimation center. This problem is particularly relevant in
moving target tracking applications based on radar and GPS
measurements [3]. For example in [2] and [14] the authors
showed how to perform optimal estimation with time-varying
delay and out-of-order packets without requiring the storage
of large memory buffers and the inversion of many matrices.
More recently, in [11] the authors provided lower and upper
bounds for the optimal mean square estimator subject to
random measurement loss, and in [9] those results were
extended to multiple distributed sensors subject to simul-
taneous packet loss and random delay. Finally, the recent
papers [10][1] analyze some tradeoffs between communica-
tion, computation and estimation performance in multi-hop
tree networks.

However, there are only few scattered results concerned
with distributed estimation subject to packet loss in which
sensors are provided with computation capabilities and can
preprocess data before transmitting it to the estimation center.
A recent result in this direction is given by Gupta et al.
[6] who showed that when there is only one sensor, the
optimal strategy for the sensor in the presence of packet
loss is to send the local Kalman estimate rather than the
raw measurement. This is because the local estimate includes
the information about all previous measurements, therefore
as soon as the central node receives the local estimate it
can reconstruct the optimal estimate even if some previous
packets were lost. Unfortunately, this result does not gener-
alize to multiple sensors each provided with its own lossy
communication channel. We recently explored this problem
[5] and we numerically compared different preprocessing
strategies at sensor nodes and fusion strategies at the central
estimation node. In particular, we showed that the optimal
mean square estimation error that can be achieved under



packet loss, referred as infinite bandwidth filter (IBF), cannot
be achieved using a limited bandwidth channel, unless in
very special scenarios where there is no process noise, such
as in estimation of constant parameters. Therefore, in [5] we
proposed different suboptimal strategies with different com-
putational and communication requirements and we studied
their performance via simulations observing that no strategy
was superior to any other, since the performance depended
on the packet loss probability and noise scenarios. For
convenience, these results are briefly recalled in the following
of this paper.

The contribution of this work resides on the derivation of
analytical expressions to compute upper and lower bounds
of performance of these estimators assuming i.i.d. Bernoulli
packet loss probabilities. Finding bounds on performance
turns out to be particularly challenging due to the fact that
the estimation error covariance of the different estimator at
the central node depends nonlinearly on the specific packet
loss sequence of all sensors, therefore computing expected
error covariance a-priori given the packet loss statistics
becomes a combinatorial problem that explodes with time. In
particular, we derive upper and lower bounds in the scenario
where all sensors are identical for two specific strategies: the
measurement fusion (MF) strategy and the infinite bandwidth
filter (IBF) strategy. The MF strategy is based on optimally
fusing the raw measurements received by the central station
from the sensors, while the IBF strategy is based on the
assumption that each nodes sends to the base station not only
the current measurement but also all previous measurements
in a single packet. We also show through some simulations
that some of these bounds are rather tight and can be used
to estimate in advance the expected error of the different
strategies. We finally end this paper by discussing possible
future extensions.

II. PROBLEM FORMULATION

A. Modeling

We consider a discrete time linear stochastic systems
observed by N sensors:

xt+1 = Axt + wt

yi
t = Cixt + vi

t, i = 1, . . . , N
(1)

where x ∈ Rn, yi ∈ Rmi , wt and vi
t are uncorre-

lated, zero-mean, white Gaussian noises with covariances
E[wtw

T
t ] = Q, and E[vi

t(v
j
t )T ] = Rij , i.e. we also allow

for correlated measurement noise. More compactly, if we
define the compound measurement column noise vector vt =
(v1

t , . . . , vN
t ) ∈ Rm,m =

∑
i mi, we have E[vtv

T
s ] =

Rδ(t−s), where the (i, j)-th block of the matrix R ∈ Rm×m

is [R]ij = Rij ∈ Rmi×mj . The initial condition x0 is again
a zero-mean Gaussian random variable uncorrelated with
the noises and covariance E[x0x

T
0 ] = P0. We also assume

that R > 0, the pair (A,Q1/2) is reachable and (A,C)
is observable, where CT = [CT

1 CT
2 . . . CT

N ], which are
sufficient conditions for the existence of a stable estimator
under ideal conditions with no packet loss.

The sensors are not directly connected with each other and
can send messages to a common central node through a lossy
communication channel, i.e. there is a non zero probability

that the message is not delivered correctly. We model the
packet dropping events through a binary random variable
γi

t ∈ {0, 1} such that:

γi
t =

{
0 if packet sent at time t by node i is lost
1 otherwise (2)

Each sensor is provided with computational and memory
resources to (possibly) preprocess information before send-
ing it to the central node. More formally, at each time instant
t each sensor i sends the preprocessed information zi

t ∈ R`:

zi
t = f i

t (y
i
1, y

i
2, . . . , y

i
t) = f i

t (y
i
1:t) (3)

where ` is bounded and f i
t () are causal functions of the local

measurements. Natural choices are zi
t = yi

t, i.e. the latest
measurement, or the output of a (time varying) linear filter:

ξi
t = F i

t ξ
i
t−1 + Gi

ty
i
t

zi
t = Hi

tξ
i
t + Di

ty
i
t

as for example a local Kalman filter.
The objective is to design a state estimator at the central

node given the information arrived up to time t. More
formally, let us define the information set available at the
central node as

It =
N⋃

i=1

Ii
t , Ii

t = {zi
k | γi

k = 1, k = 1, . . . , t} (4)

Based on this set, we want to design an estimator as follows

x̂g
t|t = gt(It) (5)

such that its error P g
t|t = var(xt − x̂g

t|t | It) = E[(xt −
x̂g

t|t)(xt−x̂g
t|t)

T | It] is small. Depending on the choice of the
sensor preprocessing functions f i

t and the estimator functions
gt, we get different strategies. Note that the estimator error
covariance P g

t|t is a function of It, and therefore also on the
specific packet loss sequence, i.e. it is a random variable.
In the following of this section, we propose three different
strategies, based on natural choices for the functions f i

t and
gt. Other choices are obviously possible, as discussed in [5].

B. Infinite Bandwidth Filter
Here we propose the optimal filter in mean square sense

that we can obtain if we assume infinite bandwidth in the
communication channel when a packet is sent successfully,
i.e. each sensor sends to the central node all measurements
up to current time:

zi
t = yi

1:t

where yi
1:t = (yi

t, y
i
t−1, . . . , y

i
1). The estimator at the central

node is given by

x̂IBF
t|t = E[xt | It] = E[xt | y1

1:t−τ1
t
, . . . , yN

1:t−τN
t

]

where τ i
t is the delay of the most recent received packet.

This filter is optimal among all possible strategies since it is
easy to see that

P IBF
t|t ≤ P g

t|t, ∀f i
t (),∀γi

t , ∀gt()

where P IBF
t|t = var(xt − x̂IBF

t|t | It) is the error covariance
of the infinite bandwidth filter. In other words, this filter sets



a bound on the achievable performance of any other filter.
Unfortunately, as shown in [5], there is no hope to find a
strategy which achieves the same performance with a more
parsimonious use of the channel. This finding is formally
stated in the next theorem:

Theorem 1 ([5]): Let us consider the state estimate x̂g
t|t

and x̂IBF
t|t defined as above. Then there do not exist (possibly

nonlinear) functions zi
t = f i

t (y
i
1:t) ∈ R` with bounded size

` < ∞ such that P g
t|t = P IBF

t|t for any possible packet loss
sequence, i.e.

@f i
t () |P g

t|t = P IBF
t|t , ∀γi

t

The previous theorem states that there is no hope to find a
preprocessing with bounded message size which can achieve
the error covariance P IBF

t|t of the infinite bandwidth filter
(IBF) since it is not possible to know in advance what the
packet loss event will be. We will therefore propose two
suboptimal estimation strategies which provide the optimal
solution in the special case of perfect communication link,
i.e. when there is no packet loss.

C. Measurement Fusion
The first, referred as measurement fusion (MF), consists

in sending the raw measurements

zi
t = yi

t

from each sensor node, and to find the best mean square
state estimator with the arrived measurements at the central
node:

x̂MF
t|t = E[xt | It, i = 1, . . . , N ]

where the information set in this case corresponds to
Ii

t = {yi
k | γi

k = 1, k = 1, . . . , t}. This strategy has been
shown to provide good performance in simulations under
different noise regimes [5], however, intuitively, it should
provide almost optimal performance in a scenario with high
ratio between process noise and measurement noise. In fact,
if the process noise is large as compared to the measure-
ment noise only most recent measurements convey relevant
information, therefore there is no much gain in filtering the
past measurements at the sensors. Although this seems to be
case in many simulations, there are choices for the system
dynamics for which the MF strategy is not optimal even
under perfect measurements, as stated in the next theorem:

Theorem 2 ([5]): Let us consider R = 0 and Q > 0.
Then there exist scenarios in terms of packet loss sequences
and systems dynamics parameters A,C for which PMF

t|t >

P IBF
t|t .
It is possible to explicitly compute the MF filter as follows.

Let us first define the following variables:

C̄t =




γ1
t C1

...
γN

t CN


 , ȳt =




γ1
t y1

t
...

γN
t yN

t


 ,

R̄t = diag{γ1
t R11, γ

2
t R22, . . . γ

N
t RNN}

which can be obtained from the centralized matrices C and R
under the assumption of uncorrelated measurement noise, i.e.
Rij = 0, i 6= j, and from the lumped column measurement
vector yt = (y1

t y2
t . . . yN

t )T by replacing the rows and

columns corresponding to the lost packet with zeros. It was
shown in [9] that the state estimate for the measurement
fusion strategy is given by:

x̂MF
t|t = (I − L̄tC̄t)Ax̂MF

t−1|t−1 + L̄tȳt (6)

PMF
t|t = Pt|t−1−Pt|t−1C̄

T
t (C̄tPt|t−1C̄

T
t +R̄t)†C̄tPt|t−1(7)

L̄t = Pt|t−1C̄
T
t (C̄tPt|t−1C̄

T
t + R̄t)† (8)

Pt+1|t = APMF
t|t AT + Q (9)

where the symbol † indicates the Moore-Penrose pseudoin-
verse. The previous equations correspond to a time-varying
Kalman filter which depends on the packet loss sequence.
Note that only measurements that have arrived are used
to the computation of the estimate x̂MF

t|t , i.e. the dummy
zero measurement in ȳt are not used as if they were real
measurements, but are discarded.

The measurement fusion strategy has the advantage to be
computed recursively and exactly with the inversion of one
matrix of (at most) the size of the lumped measurement
vector yt. On the other hand, if a packet is lost, then the
information conveyed by the measurement in that packet
is lost forever, while sending filtered version of the output
as in the open loop partial estimate fusion (OLPEF) this
information might be partially recovered.

D. Open Loop Partial State Estimate Fusion

This strategy is suggested by the observation that, in the
absence of packet losses, one could compute the gains in a
centralized manner and distribute the computations to each
sensor. To be more precise, assume all measurements were
available to a common location, i.e. that there were no packet
losses. We shall denote with xCKF

t|t := E[xt|yi
1:t, i = 1, .., N ]

the centralized Kalman filter (CKF). Its evolution is governed
by the equations:

x̂CKF
t|t = Ftx̂

CKF
t−1|t−1 + Ltyt

Ft = (I − LtC)A

where the gain Lt = [L1
t L2

t · · · LN
t ] is the centralized

Kalman filter gain computed as

Pt+1 = (A−KtC)Pt(A−KtC)T + KtRKT
t + Q

Lt = PtC
T (CPtC

T + R)−1

Kt = ALt

Note now that, defining zi
t to be the solution of

zi
t = Ftz

i
t−1 + Li

ty
i
t, (10)

the CKF estimate x̂CKF
t|t is given by x̂CKF

t|t =
∑N

i=1 zi
t. For

this reason we shall call the zi
t’s “partial estimates”. This

strategy has been suggested in [13] for distributed estimation
with the purpose of reducing the power consumption. Since
zi
t correspond to a partial estimate, a naive strategy at the

central node for compensating the packet loss is to use the
open loop partial state estimate based on the latest received
packet from each node, i.e.:

xOLPEF
t|t =

N∑

i=1

Aτ i
t zi

t−τ i
t

(11)



where τ i
t is the delay of the most recent packet received

from node i at time instant t. Although this looks like a naive
solution, it was shown in [5] to provide optimal performance
in the small process noise to measurement noise regime as
formally stated in the following theorem:

Theorem 3 ([5]): Let Q = 0 and assume uncor-
related measurement noise among sensors, i.e. R =
block diag{R1, .., RN}. Then

P IBF
t|t = POLPEF

t|t < PMF
t|t

E. Simulations
In Figure 1 we report the empirical performance of MF,

IBF, and OLPEF for the system in (20), with Ew2
t =

µQ10−3, E
(
vi

t

)2 = 10 and the packet loss probability
λ = 0.5.

As expected OLPEF and IBF are indistinguishable1 for
small µQ , i.e. for small process noise, while OLPEF
becomes significantly worse ad µQ becomes large. Note also
that for small µQ, which gives a filter with “long” memory,
IBF is better than MF while for large µQ, and consequently a
short memory filter, MF and IBF become indistinguishable.
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Fig. 1. Error Variance vs. µQ.

III. BOUNDS ON ESTIMATION ERROR VARIANCE

Let us first introduce some notation. In order to simplify
the analysis we shall consider the case in which N identical
and independent sensors measure the same state, i.e. Ci do
not depend upon i and R = block diag{R11, ..., RNN},
Rii = Rjj , ∀(i, j).

Let us define:

Lf (P, L, `) := (I − LC)P (I − LC)> +
1
`
LRL> (12)

This is the state estimation (filtering) error using the gain
L when the initial state estimate has variance P and mea-
surements from ` sensors are utilized. The optimal (Kalman)

1Small differences are due to the sample variability of Montecarlo
estimates.

gain K := Lopt can be obtained by minimizing L(P, L, `)
with respect to L, obtaining

K = arg minLL(P, L, `) = PC>
(

CPC> +
1
`
R

)−1

(13)
The achieved optimal prediction error is given by

Φf (P, `) := L(P,K, `)
= (I −KC)P (I −KC)> + 1

` KRK>

= P − PC>
(
CPC> + 1

` R
)−1

CP
(14)

For future use we also define the prediction error variance
update

Φ(P, `) := AΦf (P, `)A> + Q (15)

Lemma 1: The functions Φf (P, `) and Φ(P, `) are con-
cave as a function of P and convex as a function of `.

Proof: Let us first consider Φf (P, `). Concavity in
P follows rather easily from the fact that Φf (P, `) =
minLL(P, L, `).

As far as convexity in `, the following argument can be
used: assume h is (positive) real variable and consider the
derivatives dΦf (P,`)

d` and d2Φf (P,`)
d`2 . It is easy to verify that

dΦf (P,`)
d` < 0 and d2Φf (P,`)

d`2 > 0. The conclusion for Φ(P, `)
follows from the fact that Φ(P, `) is an affine function of
Φf (P, `) This completes the proof.

In the following we shall also make extensive use of a
lower bound of the Riccati operator Φf (P, `) as follows.
Consider the convex set P := {P = P> : P ≥ Pm, P ≤
PM}. We would like to find a linear function of P , say
Gf (P, `) such that Gf (P, `) ≤ Φf (P, `) ∀P ∈ P . This linear
lower bound can be constructed in this way. For any P̄ ∈ P
one can take KP̄ := argminLL(P̄ , L, `). Then

L(P, KP̄ , `) ≥ Φ(P, `) ∀P = P> ≥ 0

holds. Among all such KP̄ we would like to find that which
minimizes the maximal difference

S(KP̄ ) := max
P∈P

L(P,KP̄ , `)− Φ(P, `)

choosing

Kopt := argmin
KP̄

S(KP̄ )

= arg min
KP̄

[
max
P∈P

L(P,KP̄ , `)− Φ(P, `)
]

.

It is obvious that Kopt is also the optimal (Kalman) gain for a
specific value of P ∈ P . At this point, since L(P, Kopt, `)−
Φ(P, `) ≤ S(Kopt), ∀P ∈ P
LLB

f (P, `) := L(P,Kopt, `)−S(Kopt) ≤ Φf (P, `) ∀P ∈ P.
(16)

The matrices Pm and PM define the set P over which
the linear lower bounds holds. In the rest of the paper we
shall always use Pm = Φ(Pm, N), i.e. the lowest achievable
(steady state) prediction error variance when all N sensors
are utilized, and PM = APMA> + Q, i.e. the steady state
variance, which is the upper bound of the state prediction



error when no information is available. It is a standard fact
to show that, provided P ∈ P , also Φ(P, `) ∈ P .

Remark 1: The problem of finding S(KP̄ ) boils down to
a convex optimization problem. In general one would like to
minimize S(KP̄ ) over KP̄ . This however might happen to be
difficult. However, finding S(KP̄ ) for some KP̄ is sufficient
to the purpose of finding a linear approximation which
bounds from below the Riccati update. When S(KP̄ ) has
not been minimized over KP̄ a less accurate approximation
is found, since S(KP̄ ) is the maximal difference between
L(P, KP̄ , `) and Φf (P, `).
We shall also need to consider a linear lower bound
LLB(P, `) for Φ(P, `). It is immediate to see that

LLB(P, `) = ALLB
f (P, `)A> + Q.
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Fig. 2. Graphical representation of bounding functions for scalar system
with A = 0.9, C = 1, Q = 1, R = 10, N = 6.

The following lemma gives a very simple expression
of this lower bound for scalar state space systems. The
corresponding functions are graphically portrayed in Fig. 2.

Lemma 2: For system with scalar state spaces, i.e. n =
dim{x} = 1, the function LLB

f (P, `) admits the very simple
closed form expression

LLB
f (P, `) =

Φf (PM , `)− Φf (Pm, `)
PM − Pm

(P−Pm)+Φf (Pm, `)
(17)

Proof: The proof is just based on the observation
that (17) is nothing but the line going through the points
of coordinates (Pm,Φf (Pm, `)) and (PM ,Φf (PM , `)). Of
course concavity of Φf (P, `) guarantees that this line is
below Φf (P, `) for all P ∈ P . This is indeed the “optimal”
approximation from below, i.e. the linear function in P which
minimizes the maximal difference Φf (P, `) − LLB

f (P, `)
P ∈ P .

A. Upper Bound for Measurement Fusion

In [9] it is proposed a suboptimal filter for the measure-
ment fusion where a constant gain L̄ is used rather than the
optimal one Lt of Eqn. (6)-(9), which is time varying. This
suboptimal filter can be written as:

x̌MF
t|t = (I − L̄C̄t)Ax̌MF

t−1|t−1 + L̄ȳt

It has been shown that the steady state minimum
expected error covariance for this filter, i.e. S =
minL̄ limt→∞ Eγ [var(xt+1 − x̌MF

t+1|t)] is given by the fixed
point of the following operator:

Ψλ(S) = ASAT + Q−
− λASCT (λCSCT + (1− λ)SC + R)−1CSAT

SC = diag(C1SCT
1 , . . . , CNSCT

N )

B. Lower Bound for Measurement Fusion

The following proposition gives a lower bound on the
expected (or average) state estimation error for the measure-
ment fusion approach.

Proposition 1: Let PMF and P f
MF respectively the steady

state (w.r.t. the measure induced by the loss mechanism)
prediction and filtering state estimation errors. Then

E[PMF ] ≥ P̄LB
MF E[P f

MF ] ≥ P̄ f,LB
MF

where P̄LB
MF is the unique stationary solution of P̄LB

MF =
LLB(P̄LB

MF ,E`) and P̄ f,LB
MF = LLB

f (P̄LB
MF ,E`).

Proof: The state estimation error (prediction) using the
measurement fusion approach satisfies the recursive equation
Pt+1 = Φ(Pt, `t). From convexity of Φ(P, `) in `, it follows
that

E[Pt+1|Pt] ≥ Φ(Pt,E`t)

where independence of `t and Pt has been used. Using the
lower bound Φ(P, `) ≥ LLB(P, `) it follows that

E[Pt+1|Pt] ≥ LLB(Pt,E`t).

Since LLB is linear in Pt, also

E[Pt+1] ≥ LLB(EPt,E`t) (18)

follows. Using the fact LLB(P, `) is non-decreasing as a
function of P , i.e. LLB(P2, `) ≥ LLB(P1, `) whenever P2 ≥
P1 and using stationarity of `t (implying E`t = E`), equation
(18) can be iterated yielding

E[PMF ] ≥ P̄LB
MF , P̄LB

MF = LLB(P̄LB
MF ,E`)

The bound for the filtering solution is easily obtained ob-
serving that P f

t = Φ(Pt, `t) ≥ LLB
f (Pt, `) so that

EP f
t ≥ LLB

f (EPt,E`t)

and therefore

EP f
MF ≥ P̄ f,LB

MF := LLB
f (P̄LB

MF ,E`).



C. Lower Bound for Infinite Bandwidth Filter
The estimator x̂IBF

t|t is characterized by the numbers
τ1
t , ..., τN

t , where τ i
t is the numbers of steps elapsed since

the last packet from node i has been received. Under the
assumption of identical sensors, these are in one to one
correspondence with the numbers ht, ht−1, ht−2, ... defined
as:

ht−i =
N∑

j=1

δ(τ j
t−i − i)

where δ(·) is the Kronecker delta. As mentioned above the
IBF can be though of as a measurement fusion filter where
the equivalent numbers of packets arrived at time t are
defined, recursively by the relation

{
`t = ht

`t−k = `t−k+1 + ht−k k = 1, 2, ...

It is fairly easy to see that the joint probabil-
ity density function of the variables variables `t−k

can be written in terms of the conditional densities
p(`t−k−1|`t−k, `t−k+1, ..., `t) = p(`t−k−1|`t−k), which
have the expression

p(`t−k−1 = `|`t−k) =
(

N − `t−k

`− `t−k

)
λN−`(1− λ)`−`t−k

where λ is the packet loss probability. Based on this we
shall now construct a sequence of lower bounds as follows.
Let us assume at time t− k all packets arrived. This means
that `t−k = N . Let P f

IBF and PIBF be the (steady state)
state filtering and prediction error variance using the IBF.
Let us denote with P f

IBF (t, k, `t−k+1, .., `t) the state filtering
error variance at time t and with PIBF (t+1, k, `t−k+1, .., `t)
the state prediction error variance at time t + 1 conditioned
on `t−k = N and with subsequent number of arrivals
`t−k+1, .., `t.

It is clear that

P̄ f
IBF (k) := E

[
P f

IBF (t, k, `t−k+1, .., `t)|`t−k = N
]

P̄IBF (k) := E [PIBF (t + 1, k, `t−k+1, .., `t)|`t−k = N ]
= AP̄ f

IBF (k)A> + Q
(19)

are increasing functions of k and provide a sequence of lower
bounds for E[P f

IBF ] and E[PIBF ], i.e.

E[P f
IBF ] = P̄ f

IBF (∞) ≥ P̄ f
IBF (k) ≥ P̄ f

IBF (1)
E[PIBF ] = P̄IBF (∞) ≥ P̄IBF (k) ≥ P̄IBF (1)

∀k.

The following proposition holds.
Proposition 2: The matrices P̄ f

IBF (k) and P̄IBF (k) in
(19) admits the lower bounds as P̄ f

IBF (k) ≥ P̄ f,LB
IBF (k) and

P̄IBF (k) ≥ P̄LB
IBF (k) the inequalities:

P̄ f,LB
IBF (1) = Φf (Pm,E`t) = Φf (Pm, N(1− λ))

P̄ f,LB
IBF (2) = E

[LLB
f (Φ(Pm,E[`t−1|`t]), `t)

]
P̄ f,LB

IBF (k) = E
[LLB

f ◦ · · · ◦ LLB ◦ Φ(Pm,E[`t−k+1|`t−k+2])
]
.

and

P̄ LB
IBF (1) = Φ(Pm,E`t) = Φ(Pm, N(1− λ))

P̄ LB
IBF (2) = E

[LLB(Φ(Pm,E[`t−1|`t]), `t)
]

P̄ LB
IBF (k) = E

[LLB ◦ · · · ◦ LLB ◦ Φ(Pm,E[`t−k+1|`t−k+2])
]
.

where E[`t−k|`t−k+1] = `t−k+1 + (1 − λ)(N − `t−k+1)
and Pm is the solution of Pm = Φ(Pm, N), i.e. the optimal
(steady state) error variance when measurements from N
sensors are received at all times. Similar equations hold for
k > 3.

Proof: For k = 1, PIBF (t + 1, 1, `t) = Φ(Pm, `t).
Then, using convexity of Φ in `t it follows that

P̄IBF (1) = EPIBF (t + 1, 1, `t) ≥ Φ(Pm,E`t).

When k = 2,

PIBF (t + 1, 2, `t−1, `t) = Φ(Φ(Pm, `t−1), `t)
≥ LMF (Φ(Pm, `t−1), `t)

holds. Using linearity of LLB and convexity of Φ in `t−1

one obtains that (a.s.)

E[PIBF (t + 1, 2, `t−1, `t)|`t] ≥ LMF (Φ(Pm,E`t−1|`t), `t)

from which,

P̄IBF (2) := E[E[PIBF (t, 2, `t−1, `t)|`t]]
≥ E

[LMF (Φ(Pm,E`t−1|`t), `t)
]

The proofs for k > 2 and for P f
IBF (k) follow the same lines

and are therefore omitted.
Remark 2: In practice one can compute P f,LB

IBF (k) for
increasing values of k until convergence. For the example
considered (see figure 3) we stopped at k = 3. Only marginal
improvements could be noticed increasing k further.
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Fig. 3. Error Variance vs. packet loss probability λ: Montecarlo simulations
(MF and IBF) vs. analytical bounds.

Remark 3: Note that the lower bound for the IBF provides
also a lower bound for MF. Therefore, one can use, as a lower
bound for MF whichever is larger among P̄ f,LB

MF and P̄ f,LB
IBF .

IV. SIMULATION RESULTS

In order to illustrate our results we consider a simple
(scalar) example described by the equations:

{
xt+1 = 0.9xt + wt

yi
t = xt + vi

t i = 1, .., N = 25 (20)



where wt is white and Gaussian zero mean and variance
10−4 and the vi

t’s are white, independent of each other and
of wt, Gaussian zero mean and variance 10−2. The packet
loss probability λ is varied in the range λ ∈ [0, 0.9].

The results of a simulation are reported in figure 3. The
variances for MF and IBF are computed by averaging over a
Montecarlo run of 1000 experiments the (filtering) variance
Pt|t which can be computed, in closed form, for a given
packet loss sequence.

In the specific example the performance of the MF algo-
rithm are indistinguishable from the upper bound.

V. CONCLUSIONS

In this paper we derived some analytical upper and lower
bounds for different strategies addressing the the problem of
distributed estimation subject to random packet loss between
the sensors and the central location where the best state
estimate is required. We proposed novel mathematical tools
to derive these bounds and we showed though numerical sim-
ulations the comparison with empirical performance based
on simulations. This is just a preliminary work and many
problems are still open such as the extension of our results
to multidimensional systems with different sensors and the
derivation of analytical bounds also for other strategies such
as the open loop partial estimate fusion (OLPEF).

REFERENCES

[1] A. Agnoli, A. Chiuso, P. D’Errico, A. Pegoraro, and L. Schenato,
“Sensor fusion and estimation strategies for data traffic reduction in
rooted wireless sensor networks,” in Proc. of IEEE ISCCSP’08, La
Valletta, Malta, 2008, pp. 677–682.

[2] Y. Bar-Shalom, H. Chen, and M. Mallick, “One-step solution for
the general out-of-sequence measurement problem in tracking,” IEEE
Transactions on Aerospace and Electronics Systems, vol. 40, no. 1,
pp. 27–37, 2004.

[3] Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation. John Wiley & Sons, Inc., 2001.

[4] N. Carlson, “Federated square root filter for decentralized parallel
processors,” IEEE Transactions on Aerospace and Electronics Systems,
vol. 26, no. 3, pp. 517–525, 1990.

[5] A. Chiuso and L. Schenato, “Information fusion strategies from
distributed filters in packet-drop networks,” in Proc. of CDC 08, 2008,
pp. 1079–1084.

[6] V. Gupta, D. Spanos, B. Hassibi, and R. M. Murray, “Optimal LQG
control across a packet-dropping link,” Systems and Control Letters,
vol. 56, no. 6, pp. 439–446, 2007.

[7] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, special issue,
vol. 95, no. 1, pp. 138–162, January 2007.
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