
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica “Tullio Levi-Civita"

CORSO DI DOTTORATO DI RICERCA IN SCIENZE MATEMATICHE
CURRICOLO MATEMATICA
CICLO XXXIV

SPECTRAL SENSITIVITY ANALYSIS OF
ELECTROMAGNETIC CAVITIES

Coordinatore: Ch.mo Prof. Giovanni Colombo

Supervisore: Ch.mo Prof. Pier Domenico Lamberti

Dottorando: Michele Zaccaron





Riassunto

In questa tesi si studia la dipendenza degli autovalori per equazioni di Maxwell
stazionarie in cavità elettromagnetiche che fungono da conduttori perfetti in re-
lazione a perturbazioni del dominio e del parametro di permittività. Sfruttando
una tecnica generale sviluppata da P.D. Lamberti e M. Lanza de Cristoforis si
provano risultati di analiticità per la dipendenza delle funzioni simmetriche di
autovalori di molteplicità arbitraria; si dimostrano inoltre risultati alla Rellich-Nagy
che descrivono il fenomeno di biforcazione corrispondente, e si applicano ad alcuni
problemi di ottimizzazione di forma e di permittività. In particolare, si mostra
che le palle sono forme critiche per perturbazioni isovolumetriche ed isoperimet-
riche del dominio. Inoltre, nell’ipotesi che una certa disuguaglianza di Gaffney
uniforme valga, si provano risultati di stabilità per l’operatore curl curl assumendo
restrizioni piuttosto deboli sulla robustezza delle perturbazioni. Si studia anche la
validità della disuguaglianza di Gaffney, sfruttando risultati di V.G. Maz’ya e T.O.
Shaposhnikova che si basano sui moltiplicatori di Sobolev.

La tesi è organizzata come segue. Il Capitolo 1 è dedicato ad alcuni preliminari.
Si introducono spazi funzionali idonei e si fanno alcune considerazioni riguardo
la disuguaglianza di Gaffney. Nel Capitolo 2 si considera il problema di Maxwell
elettrico in una cavità elettromagnetica che funge da conduttore perfetto, e dove
sia la permittività elettrica che la permeabilità magnetica sono state normalizzate.
Si studia la dipendenza degli autovalori da perturbazioni di forma del dominio. In-
nanzitutto, si provano risultati di analiticità con conseguenti formule alla Hadamard
per le funzioni elementari simmetriche degli autovalori. Dopodiché, si fornisce una
caratterizzazione dei domini critici sotto il vincolo di volume o perimetro fissato, e
si dimostra che le palle sono domini critici per entrambi i vincoli. Per concludere, si
espongono formule note per gli autovalori e le autofunzioni nella palla, e si mostra
che nella palla il primo autovalore ha molteplicità 3. Il Capitolo 3 è dedicato allo
studio della stabilità spettrale del problema di Maxwell elettrico. Nella prima parte
si introduce la trasformata di Piola di atlante e si sviluppano alcuni strumenti
tecnici che servono a provare che, nell’ipotesi di una disuguaglianza di Gaffney uni-
forme, si ha la stabilità spettrale per famiglie di domini perturbati che convergono
ad un dominio limite in una certa maniera. Nella seconda parte si tratta il caso
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critico e, usando strumenti propri della teoria dell’omogeneizzazione, si mostra
che la stabilità spettrale è ancora da aspettarsi quando la frontiera del dominio
è soggetta ad una perturbazione di tipo oscillatorio. Nel Capitolo 4 si studia
il comportamento qualitativo degli autovalori del problema di Maxwell elettrico
rispetto a perturbazioni del parametro di permittività. Dapprima si prova che i
singoli autovalori sono localmente Lipschitziani, e se ne dimostra la dipendenza
continua anche rispetto alla topologia debole*. In seguito, si prova che le funzioni
elementari simmetriche degli autovalori dipendono in modo reale analitico dal
parametro di permittività, e si espongono formule per le loro derivate. Sfruttando
tali formule, da un lato si esamina l’ottimizzazione delle funzioni simmetriche sotto
un vincolo idoneo sulla permittività e si dimostra che esse non ammettono alcun
punto di massimo o minimo locale vincolato. Dall’altro lato, si mostra che per
una permittività generica tutti gli autovalori sono semplici. Infine, il Capitolo
5 è un’appendice dove vengono raccolti alcuni risultati noti in letteratura e che
sono usati nel resto della tesi. In particolar modo, essa contiene una dimostrazione
dettagliata di una decomposizione vettoriale di M.Sh. Birman e M.Z. Solomyak,
ed un’esposizione di lemmi tecnici e teoremi di regolarità per il Laplaciano con
condizioni al bordo di Dirichlet ripresi dalla monografia di V.G. Maz’ya e T.O.
Shaposhnikova riguardante i moltiplicatori di Sobolev. Questi sono gli strumenti
principali usati in una dimostrazione della disuguaglianza di Gaffney inserita nel
Capitolo 1. Nell’appendice si fa un’attenta descrizione di tutte le costanti in gioco,
e si giustifica la validità di disuguaglianze di Gaffney uniformi usate nel Capitolo 3.



Abstract

In this thesis we study the dependence of eigenvalues for stationary Maxwell’s
equations in perfectly conducting electromagnetic cavities upon perturbation of the
domain and of the permittivity parameter. Using a general technique developed
by P.D. Lamberti and M. Lanza de Cristoforis we provide analyticity results for
the dependence of the elementary symmetric functions of eigenvalues of arbitrary
multiplicity, as well as Rellich-Nagy-type results describing the corresponding
bifurcation phenomenon, and we apply them to certain shape and permittivity
optimization problems. In particular, we show that for isovolumetric or isoperimetric
perturbations, balls are critical shapes. Moreover, under the validity of a uniform
Gaffney inequality, we prove stability results for the curl curl operator imposing
weak restrictions on the strength of the perturbations. We also analyse the
validity of the Gaffney inequality, for which we exploit results of V. Maz’ya and T.
Shaposhnikova based on Sobolev multipliers.

The thesis is organized as follows. Chapter 1 is dedicated to notation and some
preliminaries. We introduce suitable function spaces and make some considerations
about the Gaffney inequality. In Chapter 2 we consider the electric Maxwell
problem in a cavity with perfect conductor boundary conditions, where both the
electric permittivity and magnetic permeability have been normalized. We study
the dependence of its eigenvalues upon variation of the shape of the cavity. First,
we provide analyticity results with the appropriate Hadamard formulas for the
elementary symmetric functions of the eigenvalues. We then characterize critical
domains for such functions under constraint of fixed volume or fixed perimeter,
and show that balls are critical shapes. Finally we provide known formulas for the
eigenpairs in the case of a ball, showing that the first eigenvalue has multiplicity
three. Chapter 3 is devoted to the study of the spectral stability the electric
Maxwell problem. In the first part we introduce the Atlas Piola transform and
develop some useful technical tools to show that, under the validity of a uniform
Gaffney inequality, there occurs spectral stability for families of perturbed domains
converging to a limit domain in a certain way. In the second part we treat the
critical threshold case, and using machinery from homogenization theory we show
that if a uniform Gaffney inequality holds, the spectral stability is still expected
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when the boundary of a domain undergoes a perturbation of oscillatory type. In
Chapter 4 we study the qualitative behaviour of the eigenvalues of the electric
Maxwell problem upon perturbation of the permittivity parameter. We first
prove the local Lipschitz continuity of single eigenvalues and we show that they
depend continuously with respect to the weak* topology. Then, we prove that
the elementary symmetric functions of the eigenvalues depend real-analytically on
the permittivity and provide formulas for their derivatives. Making use of these
formulas we first consider the optimization of the symmetric functions under a
suitable constraint on the permittivity and we show that they do not admit any point
of local minimum or maximum. Second, we show that for a generic permittivity
all the eigenvalues are simple. Finally, Chapter 5 is an appendix including known
results that are used in the rest of the thesis. Precisely, it contains a detailed proof
of a vector decomposition by M.Sh. Birman and M.Z. Solomyak, and an exposition
of technical lemmas and theorems on the regularity for the Dirichlet Laplacian
taken from the monograph by V.G. Maz’ya and T.O. Shaposhnikova on Sobolev
multipliers. These are the main tools used for a proof of the Gaffney inequality
presented in Chapter 1. We make a careful description of all the constants involved,
and we justify the validity of uniform Gaffney inequalities used in Chapter 3.



Introduction

Maxwell’s equations are a fundamental cornerstone of physics, and the foundation
of the classical theory of electromagnetism. They provide a mathematical model to
comprehend the behaviour and evolution of electromagnetic phenomena, describing
how the electric and magnetic field are generated and interact with each other.
They read as follows

∂B
∂t

+ curlE = 0 (Faraday’s Law of Induction),

∂D
∂t

− curlH = −J (Ampère’s Law),

divD = ρ (Gauss’s Electric Law),

divB = 0 (Gauss’s Magnetic Law).

Here E and D denote the electric field and the electric displacement, while H and
B denote the magnetic field and the magnetic flux density. Moreover, J is the
current density and ρ stands for the charge density of the medium.

Under the assumption that the vector fields admit a Fourier transform in the
time variable, or even if they behave periodically with respect to time with the
same frequency ω, the above system simplifies into the following form, known as
the “time-harmonic Maxwell’s equations"

−iωB + curlE = 0,

iωD + curlH = σE + Je,

divD = ρ,

divB = 0, (0.0.1)

which describes how the spatial parts (E,H) of electromagnetic waves behave if
they are oscillating at frequency ω

2π
. Here we have also made the assumption that

J = σE + Je (Ohm’s Law in a linear approximation), where Jϵ is the external
current density and σ the conductivity of the medium. The fields D and B are also
called the electric induction and magnetic induction respectively.
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The quantities D,E,B,H are linked by the following “constitutive relations":

D = εE, B = µH. (0.0.2)

The above identities, which specify the response of bound charge and current to the
applied fields, are physically reasonable if we ignore ferro-electric and ferro-magnetic
media and if the fields are relatively small. Here ε denotes the electric permittivity
of the medium. It measures how easily charged particles can flow through a
material, and is associated with the alignment of bound molecules electric dipole
moments within the medium. Analogously, µ denotes the magnetic permeability
of the medium. It measures how easily a magnetic field can pass through it and
relates to the orientation of bound magnetic particles within the material. Note
that from a mathematical point of view, the constitutive relations allow us to obtain
a well-posed system of differential equations, as system (0.0.1) is undetermined.

For a large class of real-world materials, in particular for linear anisotropic
dielectric media (the physical properties of these materials depend both on the
on the point and the direction taken at that point), the permittivity and the
permeability are modelled by second-rank tensors and are represented by 3 × 3-
matrix valued maps. In the special case the quantities ε and µ are scalar, the
material is called isotropic. If the material is also homogeneous, then ε and µ are
constants. For further details on the physical aspect of Maxwell’s equations we
mention the text book [71], while for an introduction to modern mathematical
methods in the theory of electromagnetism we refer to the extensive monographs
[31, 74, 99, 106].

Depending on the physical model under consideration, various boundary con-
ditions, radiation conditions at infinity and field continuity conditions can be
coupled with Maxwell’s differential equations. Therefore, various boundary value
problems can be formulated, and can be tackled using integral methods and tools
and techniques proper of potential theory, harmonic analysis, calculus of variations,
functional analysis etc. Among them, of great importance is the one related to
the perfectly conducting cavity, which models cases where the electric resistivity is
negligible (for example in superconductors). The study of electromagnetic cavities
has not only a pure interest for mathematicians and physicists, but has also several
applications from an engineering point of view: for example in the design of cavity
resonators or shielding structures for electronic circuits. We refer to [66, Ch. 10]
for a detailed introduction to this field of investigation. We cite the well-known
papers [38, 39, 40] by Costabel and Dauge, as well as the more recent papers
[6, 16, 27, 37, 83, 101, 114].

In our mathematical setting cavities are understood as bounded connected open
sets (domains) in the Euclidean space R3, and they are thought filled by a material
which in general is inhomogeneous and anisotropic. The eigenfrequency problem in
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a bounded domain Ω in R3 consists in finding two non-zero eigenfields E,H and a
non-zero eigenfrequency ω > 0 (also called angular frequency or pulsation) such
that the following coupled system of differential equations is satisfied:

curlE − iω µH = 0 , curlH + iω εE = 0 in Ω. (0.0.3)

We assume that ε (the electric permittivity) and µ (the magnetic permeability) are
represented by positive definite symmetric 3× 3 matrices which depend on x ∈ Ω
and whose entries are in L∞(Ω). In particular, since εE and µH are both curls,
then necessarily

div εE = 0, div µH = 0 in Ω.

Note that if we use the constitutive relations (0.0.2), system (0.0.3) corresponds to
the time-harmonic Maxwell’s equations (0.0.1) if we further assume that we are in
a region free of charges (ρ = 0) and external currents (Je = 0).

If the boundary of the cavity Ω represents perfectly conducting walls then we
couple the Maxwell differential system with the following boundary conditions

ν × E = 0, ν · µH = 0 on ∂Ω, (0.0.4)

where ν denotes the outer unit normal vector to the boundary of Ω. In other words,
the electric field is normal at the boundary while the magnetic field is tangential.

The cavity resonator problem is to find non-zero frequencies ω and non-zero
electromagnetic fields (E,H) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curlE − iωµH = 0 in Ω,

curlH + iωεE = 0 in Ω,

div εE = 0 and div µH = 0 in Ω,

ν × E = 0 and ν · µH = 0 on ∂Ω.

(0.0.5)

Applying the curl operator to the first two equations in (0.0.5) we get

curlµ−1 curlE = ω2εE, curl ε−1 curlH = ω2µH in Ω.

Hence, setting λ = ω2 > 0, we are presented with the two following eigenproblems:

(electric Maxwell)

⎧⎪⎪⎨⎪⎪⎩
ε−1 curlµ−1 curlE = λE in Ω,

div εE = 0 in Ω,

ν × E = 0 on ∂Ω,
(0.0.6)
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and

(magnetic Maxwell)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µ−1 curl ε−1 curlH = λH in Ω,

div µH = 0 in Ω,

ν · µH = 0 on ∂Ω,
ν × ε−1 curlH = 0 on ∂Ω.

(0.0.7)

Note that solutions of (0.0.6) automatically satisfy the condition ν · curlE = 0
on ∂Ω, hence we have omitted it (cf. Lemma 1.3.5). Moreover, for λ ̸= 0 the
conditions of null divergence can also be omitted, but we conveniently leave it since
it will be useful for clarity purposes. It is straightforward to see that the electric
and the magnetic problems give rise to the same eigenvalues (see also [41, Lemma
2.1] and [115]), hence the term Maxwell eigenvalues. Finally, note that in general a
monotonicity principle with respect to inclusion is not expected for the Maxwell
eigenvalues (see Remark 2.1.7 and Counterexample 2.1.8).

In the first part of the thesis, our goal is to make a qualitative analysis of the
Maxwell eigenvalues upon variation of the domain Ω. Since we are interested in
the dependence upon the shape of the cavity, we simplify the problem with the
normalization ε = µ = 1 to obtain the following Maxwell electric eigenproblem:⎧⎪⎪⎨⎪⎪⎩

curl curlE = λE in Ω,

divE = 0 in Ω,

ν × E = 0 on ∂Ω.
(0.0.8)

It is readily seen that the eigenvalues of (0.0.8) can be arranged in a non-decreasing,
divergent sequence

0 < λ1[Ω] ≤ λ2[Ω] ≤ · · · ≤ λn[Ω] ≤ · · · ↗ +∞,

where each eigenvalue is repeated according to its multiplicity (that is, the dimension
of the corresponding eigenspace). We study the dependence of λn[Ω] on the shape
of Ω, and we aim at proving analyticity results for all eigenvalues, both simple and
multiple, and we address an optimization problem concerning the role of balls in
isovolumetric or isoperimetric domain perturbations.

We point out that the behaviour of the spectrum of problem (0.0.8) upon
domain perturbation is not much discussed in the literature. We are aware only of
the paper [72] by S. Jimbo which provides a Hadamard-type formula for the shape
derivative of simple eigenvalues and quotes the book [70] by K. Hirakawa where an
analogous but different formula is provided on the base of heuristic computations.
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We also quote the recent papers [64, 65, 69] concerning the use of domain derivatives
in inverse electromagnetic scattering.

On the contrary, the amount of scientific works concerning domain perturbations
for other type of differential operators arising in elasticity theory, is vast and
these types of issues have been largely investigated in the literature. We cite
the classical book [68] by D. Henry, and [19, 67] for more information about
the variational approach. We also mention the monograph [47] by Dalla Riva,
Lanza de Cristoforis and Musolino for a functional analytic approach to stability
problem. In particular, it appears that for classical boundary value problems
involving rotational invariant operators, a kind of principle holds, namely, all
simple eigenvalues and the elementary symmetric functions of multiple eigenvalues
depend real analytically on the domain, and balls are corresponding critical domains
with respect to isovolumetric and isoperimetric domain perturbations, see [22].
In this thesis we prove that the eigenvalue problem (0.0.8) obeys this principle,
proving the analytic dependence and providing appropriate Hadamard-type formulas
(see Theorem 2.3.5). From that, we show in Theorem 2.4.10 that an open set
is a critical domain, under the volume constraint Vol(Ω) = constant, for the
elementary symmetric functions of the eigenvalues bifurcating from an eigenvalue λ
of multiplicity m if and only if the following extra boundary condition is satisfied:

m∑
l=1

(
|E(l)|2 − |H(l)|2

)
= c on ∂Ω, (0.0.9)

where c is a constant, E(l), l = 1, . . .m, is an orthonormal basis in (L2(Ω))3 of the
(electric) eigenspace associated with λ, and H(l) = −i curlE(l)/

√
λ is the magnetic

field associated with E(l) (cf. (0.0.3)). Similarly, in the case of isoperimetric domain
perturbations and perimeter constraint Per(Ω) = constant, the extra boundary
condition reads

m∑
l=1

(
|E(l)|2 − |H(l)|2

)
= cH on ∂Ω, (0.0.10)

where c is a constant and H is the mean curvature of ∂Ω (the sum of the principal
curvatures). We then prove in Theorem 2.4.13 that both conditions (0.0.9) and
(0.0.10) are satisfied if Ω is a ball. Note that this does not say that the ball is an
extremizer among isovolumetric or isoperimetric shapes, since criticality is a more
general property. It would be interesting to characterise all domains for which the
above conditions are satisfied.

We remark that using the elementary symmetric functions of multiple eigenvalue,
rather than the eigenvalues themselves, is quite natural since domain perturba-
tions typically split the multiplicities of the eigenvalues and produce bifurcation
phenomena responsible for corner points in the corresponding diagrams. Moreover,
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we believe that in the specific case of Maxwell equations, being able to deal with
multiple eigenvalues is quite important since all eigenvalues of the Maxwell system
in a ball are multiple.

We want to stress that our method is based on the theoretical results obtained
in [78], which concerns the case of general families of compact self-adjoint operators
in Hilbert spaces with variable inner product, and which was applied for the case
of the Laplace operator with Dirichlet and Neumann boundary conditions in [79]
and [80] respectively. The same method was further adopted in other works such
as [21, 22, 24, 81, 87]. In particular we mention the work [20] by Buoso, where the
author proves shape differentiability results for second order elliptic systems with
constant coefficients satisfying the Legendre-Hadamard conditions, providing also
optimality conditions within the class of isovolumetric shape perturbations. We
also mention the paper [23] where the Reissner-Mindlin system is studied.

Here we consider a class of open sets Φ(Ω) identified by a class of diffeomorphisms
Φ defined on a fixed reference domain Ω. Then our problem is set on Φ(Ω) and
pulled-back to Ω by means of the covariant Piola transform associated with Φ(cf.
(2.2.3)). This allows to recast the problem on Ω and to reduce it to the study of a
curl-div problem with parameters depending on Φ, the eigenvalues of which are
exactly λn[Φ(Ω)]. Then, passing to the analysis of the corresponding resolvents
defined in (L2(Ω))3 (with an appropriate equivalent inner product depending on Φ)
we can prove our analyticity results for the maps Φ ↦→ λn[Φ(Ω)] and study their
critical points under volume constraint Vol (Φ(Ω)) = const. or perimeter constraint
PerΦ(Ω) = const.

We also note that the families of compact self-adjoint operators under consider-
ation are obtained by following the method of [39] which consists in adding the
penalty term −τ∇ divE in the eigenvalue equation of (0.0.8), depending on an
arbitrary positive number τ . Then it is enough to observe that the eigenvalues of
the penalized problem are given by the union of the eigenvalues of problem (0.0.8)
and the eigenvalues of the Dirichlet Laplacian −∆ in Ω, multiplied by τ , see [40,
Theorem 1.1]. In particular, it follows that our analyticity result regarding problem
(0.0.8) yields (in the case of regular domains) also the analyticity result proved in
[79] for the eigenvalues of the Dirichlet Laplacian.

Besides the results described above, we would like to highlight two by-pass
products of our analysis. First, in Theorem 2.3.17 we prove a Rellich-Nagy-type
result describing the bifurcation phenomenon mentioned above. Namely, given an
eigenvalue λ of multiplicity m, say λ = λn = · · · = λn+m−1, and a perturbation of
Ω of the form Φϵ(Ω) with Φϵ(x) = x+ ϵV (x) for all x ∈ Ω where V is a C1,1 vector
field defined on Ω, we prove that the set of right derivatives at ϵ = 0 of λn+k[Φϵ(Ω)]
for all k = 0, . . . ,m− 1 (which coincides with the set of left derivatives, although
each right and left derivative may be different) are given by the eigenvalues of the
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matrix (Mi,j)i,j=1,...,m where

Mi,j =

∫
∂Ω

(
λE(i) · E(j) − curlE(i) · curlE(j)

)
V · ν dσ , (0.0.11)

and E(i), i = 1, . . .m, is a (real) orthonormal basis in (L2(Ω))3 of the (electric)
eigenspace associated with λ. In particular, if λn is a simple eigenvalue we get the
Hadamard formula

d

dϵ
λn[Φϵ(Ω)]

⏐⏐⏐⏐
ϵ=0

=

∫
∂Ω

(
λ|E|2 − | curlE|2

)
V · ν dσ = λ

∫
∂Ω

(
|E|2 − |H|2

)
V · ν dσ ,

(0.0.12)
where E is an eigenvector normalized in (L2(Ω))3 and H = −i curlE/

√
λ as above.

Second, by using these formulas we prove a Rellich-Pohozaev formula for the
Maxwell eigenvalues, namely any eigenvalue λ can be represented by the formula

λ =
1

2

∫
∂Ω

(
| curlE|2 − | curlH|2

)
x · ν dσ , (0.0.13)

where E is any (electric) eigenvector associated with λ normalized in (L2(Ω))3 and
H = −i curlE/

√
λ (see Theorem 2.3.19). In particular, we have the identity∫

∂Ω

(
|H|2 − |E|2

)
x · ν dσ = 2. (0.0.14)

We note that our formulas are proved under the assumption that the eigenvectors
under consideration are of class H2 (which means that they have square summable
derivatives up to the second order) and that this assumption is satisfied if the
corresponding domain is sufficiently regular, for example of class C2,1 (see [5, 113]).

We then focus on the study of the spectral stability for problem (0.0.8). Given
a fixed domain Ω, we consider a family {Ωϵ}ϵ>0 of perturbed domains converging to
Ω as ϵ→ 0. The convergence of Ωϵ to Ω will be described by means of a fixed atlas
A, that is a finite collection of rotated parallelepipeds Vj, j = 1, . . . , s covering
the domains under consideration and such that if Vj touches the boundaries of the
domains then Ω∩Vj and Ωϵ∩Vj are given by the subgraphs of two functions gj, gϵ,j
in two variables, say x̄ = (x1, x2). Thus the convergence of Ωϵ to Ω is understood
in terms of the convergence of gϵ,j to gj as ϵ→ 0.

Since we are dealing with a differential operator of the second order, it is not
surprising that if gϵ,j converges uniformly to gj together with its first and second
derivatives as ϵ → 0 (in which case one talks of C2-convergence) then we have
spectral stability of the curlcurl operator, which means that the eigenvalues and
eigenfunctions of problem (0.0.8) in Ωϵ converge to those in Ω as ϵ→ 0. It is also
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not surprising that if gϵ,j converges uniformly to gj together with its first derivatives
and

sup
ϵ>0

sup
x̄∈R2

|D2gϵ,j(x̄)| ≠ ∞ (0.0.15)

then we have spectral stability again. These results are also immediate consequences
of the results of the present thesis. The main question here is whether it is possible
to relax condition (0.0.15). For example, if we assume that gϵ,j is of the form

gϵ,j = ϵαbj(x̄/ϵ) (0.0.16)

where α > 0 and bj is a fixed C2 function, condition (0.0.15) is encoded by the
inequality α ≥ 2. In this model case, the question is whether one can get spectral
stability for α < 2. Note that a profile of the form (0.0.16) is typical in the
study of boundary homogenization problems and thin domains, see for example
[9, 10, 11, 12, 28, 30, 53, 54, 55].

This problem was solved for the biharmonic operator with intermediate boundary
conditions (modelling an elastic hinged plate) in [11] where condition (0.0.15) is
relaxed by introducing a suitable notion of weighted convergence which allows to
prove spectral stability for α > 3/2 in the model problem above. That condition is
analogous to the one we use in (3.1.15). Namely we assume that for all ϵ > 0 there
exists κϵ > 0 such that

(i) κϵ > max
j=1,...,s′

gϵ,j − gj

L∞(Wj)

;

(ii) lim
ϵ→0

κϵ = 0;

(iii) lim
ϵ→0

maxj=1,...,s′
Dβ(gϵ,j − gj)


L∞(Wj)

κ
3/2−|β|
ϵ

= 0 for all β ∈ N3 with |β| ≤ 2.

(0.0.17)

It is remarkable that the threshold 3/2 is sharp since for α ≤ 3/2 spectral stability
does not occur for the probelm discussed in [11] (in particular, it is proved in [11]
that for α < 3/2 a degeneration phenomenon occurs and for α = 3/2 a strange
term in the limit appears, as in many homogenization problems). An analogous
trichotomy is found in [54] for the biharmonic operator subject to certain Steklov
type boundary conditions. We also mention the paper [91] where a Babushka-
type paradox, appearing in homogenization theory when thin circular plates are
approximated by regular polygons, is studied on plates with convex holes.

We would like to point out that, throughout the whole thesis, a fundamental
result we use in order to guarantee the validity of a number of facts is the celebrated
Gaffney (or Gaffney-Friedrichs) inequality. In its standard form in the Euclidean
space R3 it reads

∥u∥H1(Ω)3 ≤ C
(
∥u∥L2(Ω)3 +∥curlu∥L2(Ω)3 +∥div u∥L2(Ω)

)
(0.0.18)
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for all vector fields u ∈ L2(Ω)3 with distributional curlu ∈ L2(Ω)3 and div u ∈
L2(Ω), and such that they are normal to the boundary of Ω, namely ν × u = 0 on
∂Ω (ν is the outer unit normal to Ω). The Gaffney inequality traces back to the
seminal works of Gaffney [58, 59, 60] and Friedrichs [57], and it is classical that it
holds for domains of class C2, or even piecewise C1,1-boundaries (see [14, 15]). As
we will show, the regularity of the boundary can be significantly weakened in order
to include boundaries of class C1,β with β > 1/2 (see also [56, 102]).

In this thesis, specifically in Theorem 3.2.30, we prove that the relaxed con-
vergence (0.0.17) guarantees the spectral stability of the curlcurl operator for
problem (0.0.8). Our result requires that the Gaffney inequality (0.0.18) holds for
all domains Ωϵ with a constant C independent of ϵ > 0. Again, if one does not
assume the validity of the uniform bound (0.0.15), then proving that a uniform
Gaffney inequality holds is highly non-trivial. Here we manage to do this, by
exploting the approach of [92, Ch. 14] based on the use of Sobolev multipliers and
the notion of domains of class M3/2

2 (δ). In particular, if we assume that

|∇gϵ,j(x̄)−∇gϵ,j(ȳ)| ≤M |x̄− ȳ|β (0.0.19)

for all x̄, ȳ ∈ R2, with β ∈ [1/2, 1] and M independent of ϵ, and we also assume that
the sup-norms of functions |∇gϵ,j| are sufficienlty small, then our domains belong
to the class M3/2

2 (δ) with δ small enough. This allows to apply [92, Thm. 14.5.1]
which guarantees the validity of a uniform H2- a priori estimate for the Dirichlet
Laplacian which, in turn, is equivalent to the uniform Gaffney inequality.

In conclusion, the convergence of the domains Ωϵ to Ω in the sense of (0.0.17)
combined with the validity of (0.0.19) and the smallness of the gradients of the
profile functions gϵ,j guarantees the spectral stability of the curlcurl operator for
problem (0.0.8). Note that, in principle, since Ω is of class C1 one may think of
choosing from the very beginning an atlas which guarantees that the gradients of
the profile functions are as small as required (indeed, it is enough to adapt the
atlas to the tangent planes of a sufficiently big number of boundary points of Ω).
Then the convergence in the sense of (0.0.17) would imply the smallness of the
gradients of the profile functions of Ωϵ as well.

By setting β = α− 1, we deduce that a uniform Gaffney inequality holds for the
model example provided by (0.0.16) if α ≥ 3/2. Moreover, if α > 3/2 then spectral
stability occurs for the same example since in this case also the convergence (0.0.17)
occurs.

The case α ≤ 3/2 is more involved. In Section 3.4 of the thesis we also study
the threshold case α = 3/2 for the model example (0.0.16), managing to show
that, still under the validity of a uniform Gaffney inequality, there still occurs
the spectral stability. Moreover, we prove an analogous result for the magnetic
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counterpart of (0.0.8), namely for the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl curlH = λH in Ω,

divH = 0 in Ω,

ν ·H = 0 on ∂Ω,
ν × curlH = 0 on ∂Ω.

(0.0.20)

In order to achieve these results we make a fundamental use of techniques from
homogenization theory. In particular, we exploit the so-called unfolding method,
introduced by Cioranescu, Damlamian and Griso in [34] (see also [35, 48]), which
is in turn based on the two-scale convergence, one of the first methods developed
in order to study homogenization and multi-scale problems. For a general reading
on homogenization theory we refer to the monograph [36]. We also mention the
survey work by Vainikko [111] where fundamental concepts about the convergence
of operators are summarized, and the paper [9] where these concepts are applied to
study the spectral behaviour of the biharmonic operator subject to homogeneous
boundary conditions of Neumann type on dumbell domains.

We note that if α < 3/2 one cannot expect a uniform Gaffney inequalities to
hold, in particular because the regularity assumptions C1,β for any β > 1/2 is
optimal for the validity of the Gaffney inequality itself, see [56, 102].

Finally, in the last part of this thesis we consider the following problem⎧⎪⎪⎨⎪⎪⎩
curl curlE = λ εE in Ω,

div εE = 0 in Ω,

ν × E = 0 on ∂Ω,
(0.0.21)

involving a non-unitary permittivity parameter ε. To a certain extent, this study is
inspired by the papers [76, 82] where the authors investigate the behaviour of the
eigenvalues of the Laplacian and of a general elliptic operators upon perturbations
of mass density.

Again, it is readily seen that the spectrum of problem (0.0.21) is discrete and
made of (ε-dependent) eigenvalues that can be arranged in an infinite, divergent
sequence

0 < λ1[ε] ≤ λ2[ε] ≤ · · · ≤ λn[ε] ≤ · · · ↗ +∞,

where each eigenvalue is repeated in accordance with its multiplicity. Here we
consider permittivities ε as symmetric matrix-valued functions whose entries are in
W 1,∞(Ω). Moreover we assume that there exist a positive constant mε > 0 such
that

ε ζ · ζ ≥ mε|ζ|2
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for all ζ ∈ R3 and almost all x ∈ Ω. In Theorem 4.2.11 we prove that the eigenvalues
λn[ε] are locally Lipschitz continuous with respect to the parameter ε. Moreover,
we show that they depend continuously also with respect to the weak* topology on
W 1,∞(Ω) induced by its ambient space L∞(Ω)4, see Theorem 4.3.6.

At this point we pass to consider higher regularity properties. Again, we
follow the approach by Lamberti and Lanza de Cristoforis in [78, 79], and consider
the elementary symmetric functions of the eigenvalues, since in general multiple
eigenvalues may present bifurcation phenomena when the parameters are perturbed.
We prove an analyticity result for those functions of the eigenvalues, and provide an
explicit formula for their (Frèchet) differential with respect to ε (see Theorem 4.4.7).
We also consider the case of one-parameter families of perturbations of ε and prove
in Theorem 4.4.11 a Rellich-Nagy-type theorem which describes the bifurcation
phenomenon of multiple eigenvalues, showing that all the branches of the eigenvalues
splitting from a multiple eigenvalue of multiplicity m can be described by m real
analytic functions of the scalar parameter of the family of perturbations, and
provide formulas for their right and left derivatives.

As a first application of the above result, we consider a constrained optimization
problem for the symmetric functions of the eigenvalues. Inspired by the analogous
optimization problem for the eigenvalues of the Dirichlet Laplacian with mass
density modeling a vibrating membrane with fixed mass (see [82]), we prove that
the symmetric functions of Maxwell’s eigenvalues have no critical points under the
constraint that the integral of the permittivity is constant (cf. Theorem 4.5.1).

Finally, as a second application, in Section 4.6 we show that all the eigenvalues
of problem (0.0.21) are simple for a generic permittivity. That is, in few words,
given any permittivity ε it is always possible to find a small perturbation ε̃, as
close to ε as desired, such that the eigenvalues {λj[ε̃]}j∈N are all simple.

The thesis is organized as follows. Chapter 1 is dedicated to notation and
some preliminaries. We introduce the appropriate function spaces suitable for the
study of problems (0.0.8) and (0.0.21), and we make some considerations about the
Gaffney inequality, presenting two known proofs. One is more direct and exploits
L2-estimates for first-order derivatives involving the curvature tensor B. The other
one makes use of a special decomposition of vector fields, developed by Birman
and Solomyak in [17], paired with regularity results for the Dirichlet Laplacian.

In Chapter 2 we consider problem (0.0.8) and study the dependence of its
eigenvalues upon variation of the shape Ω. In the same spirit of [79], we provide
analyticity results with the appropriate Hadamard formulas for the elementary
symmetric functions of the eigenvalues. We then characterize critical domains for
such functions under constraint of fixed volume or fixed perimeter, and show that
balls are critical shapes. Then we provide known formulas for the eigenpairs in the
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case Ω is a ball, showing that the first eigenvalue has multiplicity three.
Chapter 3 is devoted to the study of the spectral stability of eigenvalues and

eigenfunctions of problem (0.0.8). In the first part we introduce what we call “Atlas
Piola transform" and develop some useful technical tools to show that, under the
validity of a uniform Gaffney inequality, there occurs spectral stability for families
of perturbed domains converging in the sense of (0.0.17). In the second part we
treat the case with α = 3/2, and using machinery from homogenization theory
we show that if a uniform Gaffney inequality holds, the spectral stability is still
expected when the boundary of a domain undergoes a perturbation of oscillatory
type.

In Chapter 4 we study the qualitative behaviour of the eigenvalues of prob-
lem (0.0.21) upon perturbation of the permittivity parameter ε. We first prove
the local Lipschitz continuity of the single eigenvalues. We also show that they
depend continuously with respect to the weak* topology on W 1,∞(Ω). Then, using
techniques adapted from [79], we prove that the elementary symmetric functions of
the eigenvalues depend real-analytically on ε and provide formulas for their deriva-
tives. Making use of these formulas we then prove a result concerning permittivity
optimization, and the generic simplicity of the spectrum of problem (0.0.21).

Finally, Chapter 5 is an appendix including known results that are used in
the rest of the thesis. Precisely, it contains a detailed proof of the Birman and
Solomyak [17] vector decomposition, and an exposition of technical lemmas and
theorems on the regularity for the Dirichlet Laplacian taken from the monograph
[92] . These are the main tools used in the second proof of the Gaffney inequality
present in Chapter 1. In this appendix we pay attention to the constants involved
and make a careful description of all the quantities they depend on, ultimately
allowing us to justify the uniform Gaffney inequalities used in Chapter 3.

The results in Chapter 2 on the qualitative analysis of the Maxwell eigenvalues
upon domain perturbation have been published in [84] in collaboration with Prof.
Pier Domenico Lamberti. The spectral stability results for α > 3/2 present in
Chapter 3 is included in the paper [85], also in collaboration with Prof. Pier
Domenico Lamberti, and is currently submitted for publication in an international
scientific journal. Finally, part of the results of Chapter 4 will be published in the
forthcoming paper [90] in collaboration with Dr. Paolo Luzzini.



List of symbols

N natural numbers

N0 natural numbers including 0

|α|, Dαf multi-index notation

Df Jacobian matrix of f

D2f Hessian matrix of f

f(z) = O(g(z))
as z → 0

big-O notation: lim sup
z→0

f(z)

g(z)
<∞

f(z) = o(g(z))
as z → 0

little-o notation: lim
z→0

f(z)

g(z)
= 0

σm surface area of the unit m-sphere

dσ standard surface measure

H mean curvature of a surface

ν outer unit normal vector field of a surface

D(Ω) or C∞
c (Ω) smooth functions with compact support in Ω

Ω̄ closure of the set Ω

xix



xx

IN identity N ×N matrix

MT ,vT transpose of the matrix M , transpose of the vector v
respectively

Mi,j (i, j)-entry of the matrix M

δi,j Kronecker delta

ξijk Levi-Civita symbol

sgn sign function

(a, b) or ]a, b[ open interval

[a, b] closed interval

n! (factorial) (n− 1)(n− 2) . . . 3 · 2 · 1

n!! (double factorial) n(n− 2)(n− 4) . . . 4 · 2 for even n
n(n− 2)(n− 4) . . . 3 · 1 for odd n

RN
+ (open) upper half-space

RN
+ =

{
z = (x, y) : x ∈ RN−1, y > 0

}



Contents

Riassunto iii

Abstract v

Introduction vii

List of symbols xix

1 Preliminaries 3
1.1 The div operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The case of non-unitary permittivity . . . . . . . . . . . . . 7
1.2 The curl operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The spaces XN and XT . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 The Gaffney inequality . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Direct proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Necessary condition for the validity of the Gaffney inequality 21
1.4.3 H2-regularity approach . . . . . . . . . . . . . . . . . . . . . 23

2 Shape perturbation 29
2.1 Main problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Domain transplantation . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Analyticity results and Hadamard-type formulas . . . . . . . . . . . 43
2.4 Criticality for symmetric functions of the eigenvalues . . . . . . . . 53
2.5 Maxwell eigenfunctions on the ball . . . . . . . . . . . . . . . . . . 57

3 Stability 61
3.1 A Piola-type approximation of the identity . . . . . . . . . . . . . . 62
3.2 Spectral stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Uniform Gaffney Inequalities and applications to families of oscillat-

ing boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Critical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Electric case . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1



2 Contents

3.4.2 Magnetic case . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Permittivity perturbation 113
4.1 Some preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2 Locally Lipschitz continuity of the eigenvalues . . . . . . . . . . . . 119
4.3 Weak* continuity of the Maxwell eigenvalues . . . . . . . . . . . . . 124
4.4 Analiticity and the ε-derivative . . . . . . . . . . . . . . . . . . . . 130
4.5 Non-existence of critical permittivities . . . . . . . . . . . . . . . . 135
4.6 Simplicity of the spectrum for generic permittivities . . . . . . . . . 138
4.7 Useful facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7.1 Auchmuty principle . . . . . . . . . . . . . . . . . . . . . . . 143

5 Appendix 147
5.1 Birman and Solomyak’s decomposition of XN . . . . . . . . . . . . . 147
5.2 More details on the regularity of elliptic boundary value problems . 152

5.2.1 Regularity of the Dirichlet laplacian . . . . . . . . . . . . . . 155
5.2.2 The condition M3/2

2 (δ) . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 167

Acknowledgments 177



Chapter 1

Preliminaries

In this chapter we set the notation and introduce some known results which will
be useful in the sequel

Let N ≥ 2 be a natural number. If X is any Hilbert space of scalar functions
with inner product ⟨·, ·⟩X , by XN we denote the Hilbert space of vector-valued
functions whose components belong to X , endowed with inner product

⟨u, v⟩XN =
N∑
i=1

⟨ui, vi⟩X

for all u = (u1, . . . , uN), v = (v1, . . . , vN) ∈ XN . Moreover, the Banach spaces
we introduce shall be interpreted as vector spaces over the field of real numbers
R, since we will deal with self-adjoint operators. In this sense, e.g., if Ω is a
measurable subset of R3 and L2(Ω) is the standard Lebesgue space of square
integrable real-valued functions, the space L2(Ω)3 is endowed with the following
inner product

⟨u, v⟩L2(Ω)3 =

∫
Ω

u · v dx =

∫
Ω

(u1v1 + u2v2 + u3v3) dx ∀u, v ∈ L2(Ω)3.

Let Ω be an open set in RN . Let k ∈ N and 1 ≤ p ≤ ∞. By W k,p(Ω) we denote
the standard Sobolev spaces of functions in Lp(Ω) possessing weak derivatives in
Lp(Ω) up to the order k ∈ N. We denote the space W k,2(Ω) also by Hk(Ω). If in
addition Ω ⊂ RN is bounded and of class C1, by H1/2(∂Ω) we denote the trace
space of H1(Ω).

As usual, we use the same symbol to denote weak and classical derivatives.
Also, the terms weak and distributional will be interchangeable.

We define D(Ω) to be the linear space of infinitely (smooth) differentiable
functions with compact support in Ω. We shall often denote it also by C∞

c (Ω).

3
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Then we set
D(Ω̄) :=

{
ϕ|Ω : ϕ ∈ D(RN)

}
,

which is the space of smooth compactly supported functions restricted to Ω.

In this thesis we will repeatedly need to consider the (boundary) regularity
of the set Ω. This means that Ω can be described in a neighbourhood of any
point of its boundary as the subgraph of a sufficiently regular function g defined
in a local system of orthogonal coordinates. The regularity of Ω depends on
the regularity of the function g. Following [26] and [54], we find convenient to
introduce the notion of atlas. Given a set V ⊂ RN and a parameter ρ > 0, we write
Vρ : =

{
x ∈ V : d(x, ∂V ) > ρ

}
, where d(x, S) is the Euclidean distance from x to

the set S.

Definition 1.0.1. Let N ≥ 2 be a natural number. Let ρ > 0, s, s′ ∈ N, s′ ≤ s
and {Vj}sj=1 be a family of bounded open cuboids (i.e. rotations of rectangle
parallelepipeds in RN ) and {rj}sj=1 be a family of rotations in RN . We say that A =
(ρ, s, s′, {Vj}sj=1, {rj}sj=1) is an atlas in RN with parameters ρ, s, s′, {Vj}sj=1, {rj}sj=1,
briefly an atlas in RN .

A bounded domain Ω in RN is said to be of class Ck,γ
M (A) with k ∈ N, γ ∈ [0, 1]

and M > 0 if it satisfies the following conditions:

(i) Ω ⊂
⋃s

j=1(Vj)ρ and (Vj)ρ ∩ Ω ̸= ∅;

(ii) Vj ∩ ∂Ω ̸= ∅ for j = 1, . . . , s′ and Vj ∩ ∂Ω = ∅ for s′ + 1 ≤ j ≤ s;

(iii) for j = 1, . . . , s we have

rj(Vj) =
{
x ∈ RN : aij < xi < bij, i = 1, . . . , N

}
,

for j = 1, . . . , s′ we have

rj(Vj ∩ Ω) =
{
x = (x̄, xN) ∈ RN : x̄ ∈ Wj, aNj < xN < gj(x̄)

}
,

where x̄ = (x1, x2),

Wj =
{
x̄ ∈ RN−1, aij < xi < bij, i = 1, . . . , N − 1

}
and the functions gj ∈ Ck,γ(Wj) for any j = 1, . . . , s′. Moreover, for j =
1, . . . , s′

aNj + ρ ≤ gj(x̄) ≤ bNj − ρ

for all x̄ ∈ Wj.
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(iv)

sup
|α|≤k

∥Dαgj∥L∞(Wj) + sup
|α|=k

sup
x̄,ȳ∈Wj

x̄ ̸=ȳ

|Dαgj(x̄)−Dαgj(ȳ)|
|x̄− ȳ|γ

≤M

for j = 1, . . . , s′.

We say that Ω is of class Ck,γ(A) if it is of class Ck,γ
M (A) for some M > 0; we say

that Ω is of class Ck,γ if it is of class Ck,γ(A) for some atlas A.

We shall often use the terminology “Lipschitz continuous" (or simply Lipschitz )
instead of “of class C0,1".

In the following sections we will introduce some useful tools, spaces and known
results; we will mainly follow Chapters 2 and 3 of [62]. More details can also be
found in [31], [49], [62], [106].

From now on, unless otherwise specified, the set Ω is assumed to be a bounded
open set in R3.

1.1 The div operator

If v = (v1, v2, v3) is a smooth vector field defined in Ω, then the divergence of v is
the (smooth) scalar function defined in Ω as follows

div v =
3∑

i=1

∂v

∂xi
.

Using integration by parts we can define the more general notion of weak (or
distributional) divergence for a more generic vector field, in the same way one
can define the standard weak derivatives when dealing with Sobolev spaces. Let
v ∈ L1

loc(Ω)
3; we say that the vector field v has a weak divergence if there exists a

function g ∈ L1
loc(Ω) such that the following integration by parts formula∫

Ω

v · ∇ϕdx = −
∫
Ω

g ϕ dx

holds for all ϕ ∈ D(Ω). The function g is called the weak divergence of v, and it is
denoted by div v. Thus we can write∫

Ω

v · ∇ϕdx = −
∫
Ω

div v ϕ dx for all ϕ ∈ D(Ω).

Obviously, the weak divergence is uniquely defined up to sets of zero measure.
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We can now introduce the space of square integrable vector fields with distribu-
tional divergence in L2(Ω), namely

H(div,Ω) :=
{
v ∈ L2(Ω)3 : there exists div v ∈ L2(Ω)

}
.

This space becomes a Hilbert space when endowed with the following inner product:

⟨u, v⟩div :=
∫
Ω

u · v dx+
∫
Ω

div u div v dx for all u, v ∈ H(div,Ω).

The norm associated with the inner product is denoted by ||u||H(div,Ω) and it is
defined as follows

∥u∥H(div,Ω) :=
(
∥u∥2L2(Ω)3 +∥div u∥2L2(Ω)

)1/2
.

The following theorem provides a density result for the space H(div,Ω).

Theorem 1.1.1 ([62, Thm. 2.4]). Let Ω be a Lipschitz open set in R3 (not
necessarily bounded). Then the space D(Ω̄)3 is dense in H(div,Ω).

We also introduce the subspace H0(div,Ω) defined as the closure in H(div,Ω)
of smooth compactly supported vector fields, namely

H0(div,Ω) := D(Ω)3H(div,Ω).

In order to better characterize the above defined space, we need to introduce the
concept of normal trace for vector fields in H(div,Ω). By γn we denote the normal
trace operator, which for smooth vector fields ϕ ∈ D(Ω̄)3 is defined by γnϕ := ν ·ϕ|Ω.
The following theorem allows us to define the normal trace for general vector fields
in H(div,Ω).

Theorem 1.1.2. Let Ω be a bounded Lipschitz open set in R3. The mapping γn
can be extended by continuity to a linear continuous mapping, still denoted γn, from
H(div,Ω) to H−1/2(∂Ω). Moreover, the following Green’s formula∫

Ω

v · ∇ϕdx+
∫
Ω

div v ϕ dx = ⟨γnv, ϕ⟩∂Ω (1.1.3)

holds for all v ∈ H(div,Ω) and ϕ ∈ H1(Ω). Here ⟨·, ·⟩∂Ω denotes the pairing between
H−1/2(∂Ω) and H1/2(∂Ω), which in the case v ∈ H1(Ω)3 reads

⟨γnv, ϕ⟩∂Ω = ⟨ν · v, ϕ⟩∂Ω =

∫
∂Ω

(ν · v)ϕdσ.
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Proof. To see the validity of the extension one can look up the proof of Thm. 2.5
of [62].

Formula (1.1.3) is easily deduced from the standard Gauss theorem for smooth
functions and using the density of D(Ω̄) in H1(Ω) together with Theorem 1.1.1.

For the sake of simplicity and to avoid confusion, we denote the normal compo-
nent γnv of v by ν · v|∂Ω. Moreover, the notation for the restriction to ∂Ω of the
function shall be often omitted, since it will be clear from the context.

If Ω is a bounded Lipschitz open set in R3, it turns out that the space H0(div,Ω)
is exactly the kernel in H(div,Ω) of the normal trace γn (see e.g. [62, Thm. 2.6]),
so that we can write

H0(div,Ω) =
{
v ∈ H(div,Ω) : γnv = ν · v|∂Ω = 0

}
.

1.1.1 The case of non-unitary permittivity

Let ε = (εij(x))1≤i,j≤3, x ∈ Ω be a symmetric positive definite 3 × 3 real matrix-
valued function, and let mε,Mε > 0 be two positive constants such that

mε|ζ|2 ≤ ε(x)ζ · ζ ≤Mε|ζ|2 (1.1.4)

for all (x, ζ) ∈ Ω × R3. By (1.1.4) it follows that the standard inner product of
L2(Ω)3 and ∫

Ω

εu · v dx for all u, v ∈ L2(Ω)3

give rise to equivalent norms in L2(Ω)3.
A vector field v ∈ L1

loc(Ω)
3 has a weak ε-divergence if there exists a function in

L1
loc(Ω), denoted by div(εv), such that∫

Ω

εu · ∇ϕdx = −
∫
Ω

div(εv)ϕdx for all ϕ ∈ D(Ω)3.

The set H(div ε,Ω) is defined to be the space of all vector fields in L2(Ω)3 with
weak ε-divergence in L2(Ω)3 and is endowed with the following inner product

⟨u, v⟩div ε :=

∫
Ω

εu · v dx+
∫
Ω

div(εu) div(εv) dx for all u, v ∈ H(div ε,Ω),

which makes it a Hilbert space.
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1.2 The curl operator
Given a smooth vector field v = (v1, v2, v3) defined in Ω, the curl (or rotor) of v is
the (smooth) vector field defined in Ω by

curl v :=

(
∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)
.

Using a more compact notation, the k-th component of the curl of v can be written
as follows

(curl v)k =
3∑

i,j=1

∂vj
∂xi

ξijk =
3∑

i,j=1

∂ivj ξijk, (1.2.1)

for any k = 1, 2, 3, where ξijk is the Levi-Civita symbol defined by

ξijk :=

⎧⎪⎨⎪⎩
+1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if (i, j, k) is an odd permutation of (1, 2, 3),
0 if i = j, or j = k, or i = k.

Similarly to what we have done for the divergence, we can define the weak (or
distributional) curl for a generic vector field. Given v ∈ L1

loc(Ω)
3, we say that that

the vector field v has a weak curl if there exists a vector field w ∈ L1
loc(Ω)

3 such
that the following integration by parts formula∫

Ω

v · curlϕdx =

∫
Ω

w · ϕdx

holds for all ϕ ∈ D(Ω)3. The vector field w is called the weak curl of v, and it is
denoted by curl v. Thus we can write∫

Ω

v · curlϕdx =

∫
Ω

curl v · ϕdx for all ϕ ∈ D(Ω)3.

Again, the weak curl is uniquely defined up to sets of zero measure.
We now introduce the space H(curl,Ω), containing all vector fields in L2(Ω)3

with distributional curl in L2(Ω)3:

H(curl,Ω) :=
{
v ∈ L2(Ω) : there exists curl v ∈ L2(Ω)3

}
.

If we endow it with the following inner product

⟨u, v⟩curl :=
∫
Ω

u · v dx+
∫
Ω

curlu · curl v dx for all u, v,∈ H(curl,Ω)

it becomes a Hilbert space, and the associated norm is

∥u∥H(curl,Ω) =
(
∥u∥2L2(Ω)3 +∥curlu∥2L2(Ω)3

)1/2
.

Similarly to the case of the divergence, we also have the following density result.
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Theorem 1.2.2 ([62, Thm. 2.10]). Let Ω be a Lipschitz open set in R3 (not
necessarily bounded). Then the space D(Ω̄)3 is dense in H(curl,Ω).

We define the space

H0(curl,Ω) := D(Ω)3H(curl,Ω)

to be the closure in H(curl,Ω) of smooth compactly supported vector fields. A
useful characterization of this space is given by the following lemma.

Lemma 1.2.3 ([62, Lemma 2.4]). Let Ω be a bounded Lipschitz open set in R3. If
a vector field v ∈ H(curl,Ω) is such that∫

Ω

v · curlϕdx =

∫
Ω

curl v · ϕdx for all ϕ ∈ D(Ω̄)3,

then v ∈ H0(curl,Ω).

Remark 1.2.4. Assume Ω is an arbitrary open set in R3. Consider the densely
defined unbounded operator A : D(A) = H0(curl,Ω) ⊂ L2(Ω)3 → L2(Ω)3, Av =
curl v for any v ∈ D(A). It is easy to see that the adjoint A∗ has domain D(A∗) =
H(curl,Ω) ⊂ L2(Ω)3 and it is such that A∗v = curl v for any v ∈ D(A∗). At this
point, observing that A∗∗ = A since A is closed, one realizes that H0(curl,Ω) is
exactly composed by those vector fields v ∈ H(curl,Ω) such that∫

Ω

v · curlu dx =

∫
Ω

curl v · u dx for all u ∈ H(curl,Ω).

Thus, Lemma 1.2.3 holds for any open set such that D(Ω̄)3 is dense in H(curl,Ω).
However, for our purposes it is enough to assume that Ω has a Lipschitz boundary.

The following proposition provides another characterization of the spaceH0(curl,Ω)
and is analogous to the well-known characterization of the Sobolev space H1

0 (Ω) (see
e.g., [18, Prop. 9.18]). We include here two proofs: one makes use of Lemma 1.2.3,
while the other one is based directly on the argument in [18, Prop. 9.18]. By v0 we
denote the extension-by-zero of a vector field v, that is

v0 :=

⎧⎨⎩v if x ∈ Ω,

0 if x ∈ R3 \ Ω .

Proposition 1.2.5. Let Ω be a bounded open set of class C0,1 and u ∈ H(curl,Ω).
Then the following are equivalent:

(i) u ∈ H0(curl,Ω);
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(ii) the function

u0 =

{
u if x ∈ Ω,

0 if x ∈ R3 \ Ω,

belongs to H(curl,R3).

In this case curl(u0) = (curlu)0.

Proof. The implication (i)⇒(ii) is trivial and does not need any regularity re-
quirement on the boundary of Ω. Indeed, if u ∈ H0(curl,Ω) then there exists a
sequence of (C∞

c (Ω))3 functions that converges strongly in H(curl,Ω) to u. Then
the same sequence converges strongly to the function u0 in H(curl,R3), hence
u0 ∈ H(curl,R3).

The other implication is more involved. We first present a rather simple
argument which exploits Lemma 1.2.3. Suppose that u0 belongs to H(curl,R3).
Hence, there exists w ∈ L2(R3)3 such that∫

Ω

u · curlϕdx =

∫
R3

w · ϕdx for all ϕ ∈ D(R3)3. (1.2.6)

Since it holds in particular for all test functions ϕ ∈ D(Ω)3, then necessarily
w = curlu on Ω. On the other hand, since we can take any ϕ ∈ D(R3 \Ω)3, we see
that w = 0 outside Ω. Thus we can rewrite (1.2.6) as follows∫

Ω

u · curlϕdx =

∫
Ω

curlu · ϕdx for all ϕ ∈ D(Ω̄)3. (1.2.7)

By Lemma 1.2.3 it follows that u ∈ H0(curl,Ω).
It is worthy to note that in the above argument the difficulty is hidden in the

proof of Lemma 1.2.3.

Alternative proof of Proposition 1.2.5. The second argument which we propose
here to prove the implication (ii)⇒(i) is adapted from the proof of Proposition 9.18
of [18]. Set

R3
− :=

{
x = (x̄, x3) ∈ R2 × R : x3 < 0

}
,

Q :=
{
x = (x̄, x3) ∈ R3 : |x̄| < 1, |x3| < 1

}
and Q− := Q ∩ R3

−. By using a standard partition of unity and passing to local
charts one is reduced to solve the following problem. Let u ∈ L2(Q−)

3 be such that
the function

u0 =

{
u if x ∈ Q, x3 < 0,

0 if x ∈ Q, x3 > 0,
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belongs to H(curl, Q); prove that

βu ∈ H0(curl, Q) for all β ∈ C∞
c (Q). (1.2.8)

Indeed, following the notation used in Definition 1.0.1, let {ψj}sj=1 denote a partition
of unity associated with the open cover {Vj}sj=1 of Ω. Write u as

u =
s∑

j=1

uψj =
s∑

j=1

uj,

with uj = uψj ∈ H(curl,Ω). Then for every j = 1, . . . , s we flatten the part
of the boundary of Ω that affects ψj, i.e. the one relative to the cuboid Vj,
through the local coordinate chart. Namely, we first straighten up the cuboid
Vj using the rotation rj, to get the new cuboid rj(Vj) and write rj(Vj ∩ Ω) ={
x = (x̄, x3) ∈ R3 : x̄ ∈ Wj, a3j < x3 < gj(x̄)

}
. We assume without loss of general-

ity that a3j +ρ < 0, b3j −ρ > 0, and gj is a non-negative function of class C0,1(W j).
We can then define a diffeomorphism of class C0,1 that flattens the boundary, for
example Φj : rj(Vj ∩ Ω) → rj(Vj ∩ Ω), Φj(x) = (x̄, x3 − hj(x̄, x3)), with

hj(x̄, x3) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if |a3j − x3| ≤ ρ or |b3j − x3| ≤ ρ,

gj(x̄)
(

x3−(a3j+ρ)

gj(x̄)−(a3j+ρ)

)2
, if a3j + ρ < x3 ≤ gj(x̄),

gj(x̄)
(

(b3j−ρ)−x3

(b3j−ρ)−gj(x̄)

)2
, if gj(x̄) < x3 < b3j − ρ.

rj(Vj)

∂Ω

Ω

suppuj

a

a+ ρ

0

b− ρ

b

Ω̃

supp ũj

a

a+ ρ

0

b− ρ

b

Φj

Flattening of the boundary.

We can then work with the push-forward ũj of uj under the covariant Piola
transform associated with the diffeomorphism Φj ◦ rj (cf. (2.2.3)). Observe that
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ũj ∈ H(curl, rj(Vj ∩ Ω)) since Φj ◦ rj is of class C0,1 (see Theorem 2.2.4 and
Remark 2.2.8). Moreover, note that the push-forward of the extension-by-zero
u0j of uj is exactly the extension-by-zero of the push-forward ũj of uj, and thus
belongs to H(curl,R3 by hypothesis. Hence, supposing that we managed to prove
(1.2.8), we have that ũj ∈ H0(curl, rj(Vj ∩ Ωj)), and thus we find a sequence of
functions in C∞

c (rj(Vj ∩ Ωj))
3 approximating ũj in H(curl, (rj(Vj ∩ Ωj)). Then,

pulling back these sequence via the covariant Piola transform, we get a sequence
{ζjn}n∈N ⊂ H(curl,Ω) of functions approximating uj in H(curl,Ω), with compact
support in Ω (to be precise in Vj ∩ Ω). We can do this for every j = 1, . . . , s and
finally, setting ζn :=

∑
j ζ

j
n for all n ∈ N, we get that ζn ∈ H(curl,Ω) with compact

support in Ω and

ζn
H(curl,Ω)−−−−−→
n→∞

s∑
j=1

uj = u. (1.2.9)

Since C∞
c (Ω̄)3 is dense in H(curl,Ω) (see Theorem 1.2.2) and ζn has compact

support in Ω, the limit (1.2.9) is sufficient to guarantee that u ∈ H0(curl,Ω).
Let us prove (1.2.8). If ρ ∈ C∞

c (R3) is a mollifier and f ∈ H(curl,R3), denoting
with ρ the vector field (ρ, ρ, ρ), we have that ρ ∗ f ∈ C∞(R3)3 ∩H(curl,R3) with
curl(ρ ∗ f) = ρ ∗ curl f . We introduce now a sequence {ρn}n∈N ⊂ C∞

c (R3) of
mollifiers such that

supp ρn ⊂
{
x ∈ R3 : − 1

n
< x3 < − 1

2n

}
.

For example we can set ρn(x) = n3ρ(nx), where the kernel of mollification ρ is such
that supp ρ ⊂

{
x ∈ R3 : −1 < x3 < −1/2

}
.

Let β be in C∞
c (Q). By hypothesis u0 ∈ H(curl, Q), and obviously curlu0 =

(curlu)0. By an approximation argument (using Theorem 1.2.2), it is not difficult
to see that the vector field βu0 belongs to H(curl, Q) as well, with curl(βu0) =
∇β × u0 + β(curlu)0. Note that since supp(β) ⊂⊂ Q, then βu0 extended by
0 outside Q belongs to H(curl,R3). We have that ρn ∗ βu0 ∈ C∞

c (R3)3 with
curl(ρn ∗ (βu0)) = ρn ∗ curl(βu0) for all n ∈ N. Since βu0 and curl(βu0) are in
L2(R3)3, then ρn ∗ (βu0) → βu0 in L2(R3)3 and curl(ρn ∗ (βu0)) → curl(βu0) in
L2(R3)3 (see, e.g., [18, Thm. 4.22]). Hence ρn ∗ (βu0) → βu0 in H(curl,R3).
Moreover

supp(ρn ∗ βu0) ⊂ suppρn + supp(βu0) ⊂⊂ Q−

for n large enough. It follows that for n large enough

ρn ∗ (βu0) ∈ C∞
c (Q−)

3

and thus βu0 ∈ H0(curl, Q−).
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In order to further characterize the space H0(curl,Ω), we need to introduce
the tangential trace of a vector field in R3. By γt we denote the tangential trace
operator which for smooth vector fields ϕ ∈ D(Ω̄)3 is defined by γt ϕ := ν × ϕ|∂Ω.
We have the following theorem.

Theorem 1.2.10 ([62, Thm. 2.11]). Let Ω be a bounded Lipschitz open set in R3.
The mapping γt can be extended by continuity to a linear and continuous mapping,
still denoted by γt, from H(curl,Ω) to H−1/2(∂Ω)3. Moreover, the following Green’s
formula holds ∫

Ω

curl v · ϕdx−
∫
Ω

v · curlϕdx = ⟨γtv, ϕ⟩∂Ω (1.2.11)

for all v ∈ H(curl,Ω) and ϕ ∈ H1(Ω)3. Here ⟨·, ·⟩∂Ω denotes the pairing between
H−1/2(Ω)3 and H1/2(Ω)3, which in the case v ∈ H1(Ω)3 reads

⟨γtv, ϕ⟩∂Ω = ⟨ν × v, ϕ⟩∂Ω =

∫
∂Ω

(ν × u) · ϕdσ.

For an easier reading, we shall denote γt v by ν × v|∂Ω, often omitting the
restriction notation.

Therefore, in the case Ω is a bounded a Lipschitz open set in R3, by Lemma 1.2.3
and Theorem 1.2.10 one can deduce that H0(curl,Ω) is the kernel in H(curl,Ω) of
the map γt (cf. [62, Thm. 2.12]), i.e.

H0(curl,Ω) = Ker(γt) =
{
u ∈ H(curl,Ω) : γt v = ν × v|∂Ω = 0

}
.

Proposition 1.2.12. Let Ω be a bounded open set in R3. The following statements
hold.

(i) If v ∈ H(curl,Ω), then curl v ∈ H(div,Ω) and div curl v = 0 a.e. in Ω.

(ii) If q ∈ H1(Ω), then ∇q ∈ H(curl,Ω) and curl∇q = 0 a.e. in Ω. Moreover, if
q ∈ H1

0 (Ω), then ∇q ∈ H0(curl,Ω).

Proof. Let us begin with the first point. Let ϕ ∈ D(Ω) be a test function. Then,
using formula (1.2.11) we get∫

Ω

curl v · ∇ϕdx =

∫
Ω

v · curl(∇ϕ) dx = 0,

where the last equality if trivial since the curl of a gradient is always zero. Hence,
by definition, there exists the distributional divergence of curl v, and it is equal to
zero.
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Now let us move to the second statement. Let now ϕ be a test function in
D(Ω)3. Then, using formula (1.1.3) we get∫

Ω

∇q · curlϕdx = −
∫
Ω

q div curlϕdx = 0,

where the last equality is due to the fact that the divergence of a curl is always
zero. Thus we can conclude that there exists the distributional curl of ∇q, which
is equal to zero in Ω.

Note that in both cases we have used results (formulas (1.1.3) and (1.2.11)) that
require Ω to be Lipschitz. This is not a problem since ϕ is compactly supported in
Ω.

Finally, if q ∈ H1
0 (Ω), then there exist a sequence of smooth functions {ϕn}n∈N

with compact support in Ω such that ϕn → q in H1(Ω) as n → ∞. Hence in
particular ∇ϕn → ∇q in L2(Ω)3 as n→ ∞. Since curl∇ϕn = 0 for all n ∈ N, we
have that the sequence of compactly supported vector fields {∇ϕn}n∈N converges
to ∇q in H(curl,Ω), hence by definition ∇q ∈ H0(curl,Ω).

If Ω is a bounded Lipschitz domain in R3, its boundary ∂Ω can be decomposed
into a finite number of connected components, which we denote by Γi, 0 ≤ i ≤ I,
with Γ0 being the boundary of the only unbounded connected component of R3 \Ω.
Hence

∂Ω =
I⨆

i=0

Γi . (1.2.13)

Theorem 1.2.14 ([62, Thm. 3.4]). Let Ω be a bounded Lipschitz domain in R3.
For 0 ≤ i ≤ I we denote by 1Γi

the indicator function for Γi. A vector field
v ∈ L2(Ω)3 satisfies

div v = 0 in Ω, ⟨γnv,1Γi
⟩∂Ω = 0 for 0 ≤ i ≤ I

if and only if there exists a vector potential φ ∈ H1(Ω)3 such that

v = curlφ.

Furthermore, this vector potential can be taken divergence-free, i.e. such that
div φ = 0 in Ω.

1.3 The spaces XN and XT

Unless otherwise indicated, in this section we assume Ω to be a bounded open set
in R3 of class C0,1.



1.3. The spaces XN and XT 15

We introduce the spaces

XN(Ω) := H0(curl,Ω) ∩H(div,Ω),

and
XT(Ω) := H(curl,Ω) ∩H0(div,Ω),

or more explicitely

XN(Ω) =
{
u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3, div u ∈ L2(Ω) and ν × u|∂Ω = 0

}
,

and

XT(Ω) =
{
u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3, div u ∈ L2(Ω) and ν · u|∂Ω = 0

}
.

Both spaces are endowed with the following inner product

⟨u, v⟩X :=

∫
Ω

u · v dx+
∫
Ω

curlu · curl v dx+
∫
Ω

div u div v dx,

for all u, v ∈ H(curl,Ω) ∩H(div,Ω). The associated norm is

∥u∥X =
(
∥u∥2L2(Ω)3 +∥curlu∥2L2(Ω)3 +∥div u∥2L2(Ω)

)1/2
,

and it will be denoted ||u||XN(Ω) or ||u||XT(Ω) depending on which space we are
dealing with.

Under more regularity assumptions on Ω, we have density results also for these
spaces.

Theorem 1.3.1 ([7, Lemmas 2.10 and 2.13]). Let Ω be a bounded domain set in
R3 of class C1,1. Then the space H1(Ω)3 ∩XN(Ω) is dense in the space XN(Ω), and
the space H1(Ω)3 ∩XT(Ω) is dense in XT(Ω).

Following Section 1.1.1, we consider symmetric positive definite 3 × 3 real
matrix-valued functions ε such that (1.1.4) holds, and introduce the space

Xε
N(Ω) := H(curl,Ω) ∩H(div ε,Ω).

We endow it with inner product

⟨u, v⟩Xε :=

∫
Ω

εu · v dx+
∫
Ω

curlu · curl v +

∫
Ω

div(εu) div(εv) dx

for all u, v ∈ Xε
N(Ω).
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Finally, we set

XN(div 0,Ω) := {u ∈ XT(Ω) : divu = 0 in Ω}

and
Xε

N(div ε 0,Ω) := {u ∈ XT(Ω) : div(εu) = 0 in Ω}.

A key difference between the spacesH1(Ω)3 andH(curl,Ω) is that the embedding
of H(curl,Ω) or H(div,Ω) into L2(Ω)3 is not compact. Hence, the determination
of suitable spaces that are compactly embedded in L2(Ω)3 is an important issue.

If Ω is sufficiently regular, say of class C1,1, the spaces XN(Ω) and XT(Ω) are
continuously embedded into the space H1(Ω)3 of vector fields with components
in the standard Sobolev space H1(Ω). On the other hand, since H1(Ω) is com-
pactly embedded into L2(Ω), it follows that also XN(Ω) and XT(Ω) are compactly
embedded into L2(Ω)3.

We note that the compactness of the embeddings holds under weaker assump-
tions on the regularity of Ω. Indeed for a very large class of sets, for example for
bounded domains satisfying the “restricted cone property" (see Definition 1.1 of
[113]), the spaces XN(Ω) and XT(Ω) are compactly embedded in L2(Ω)3.

The proof of following theorem can be found in [62, Lemma 3.4, Theorem 3.7].

Theorem 1.3.2. The following statements hold.

(i) If Ω is a bounded, simply connected open set in R3 of class C0,1 and ∂Ω has
only one connected component then there exists C > 0 such that

∥u∥L2(Ω)3 ≤ C ∥curlu∥L2(Ω)3 ,

for all u ∈ XN(div 0,Ω), and

∥u∥L2(Ω)3 ≤ C
(
∥curlu∥L2(Ω)3 + ∥divu∥L2(Ω)

)
,

for all u ∈ XN(Ω). Moreover, the embedding XN(Ω) ⊂ L2(Ω)3 is compact.

(ii) If Ω is a bounded open set in R3 of class C1,1 then XN(Ω) is continuously
embedded into H1(Ω)3, and there exists C > 0 such that the Gaffney inequality

∥u∥H1(Ω)3 ≤ C
(
∥u∥L2(Ω)3 + ∥curlu∥L2(Ω)3 + ∥divu∥L2(Ω)

)
, (1.3.3)

holds for all u ∈ XN(Ω). In particular, the embedding XN(Ω)) ⊂ L2(Ω)3 is
compact.

A completely analogous result holds if we replace XN(Ω) by XT(Ω) in Theo-
rem 1.3.2 (see [62, Lemma 3.6, Thm. 3.8]). Point (ii) of the above statement is
particularly important for the study of boundary value problems for Maxwell’s
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equations, and it will be discussed in the next section which focuses on the Gaffney
inequality.

As one can expect, vector fields whose tangential and normal traces vanish, are
null on the boundary.

Lemma 1.3.4 ([62, Lemma 2.5]). Let Ω be a bounded open set in R3 of class C0,1.
The following equality holds algebraically and topologically:

H1
0 (Ω)

3 = H0(curl,Ω) ∩H0(div,Ω).

At some point, we shall also need the following

Lemma 1.3.5. Let Ω be a bounded open set in R3 of class C0,1 and u ∈ H0(curl,Ω).
Then the normal trace of curlu exists and it is zero.

Proof. By point (i) of Proposition 1.2.12 we have that curlu ∈ H(div,Ω) and
div curlu = 0 in Ω. Hence, by Theorem 1.1.2, its normal trace γn(curlu) exists
and belongs to H−1/2(∂Ω).

By integrating by parts using formulas (1.1.3) and (1.2.11), we get∫
∂Ω

(ν · curlu)ϕdσ =

∫
∂Ω

(ν · curlu)ϕdσ −
∫
Ω

div curluϕdx

=

∫
Ω

curlu · ∇ϕdx =

∫
Ω

u · curl∇ϕdx+
∫
∂Ω

(ν × u) · ∇ϕdσ = 0,

for all ϕ ∈ H2(Ω), where in the right-hand side of the first equality we have added
the term −

∫
Ω
div curluϕdx, which is zero. Note that curl∇ϕ = 0 in Ω (see point

(ii) of Proposition 1.2.12) and
∫
∂Ω
(ν × u) · ∇ϕdσ = 0 because u ∈ H0(curl,Ω) and

thus has zero tangential trace. Hence by a standard approximation argument, we
deduce that ∫

∂Ω

(ν · curlu)ϕdσ = 0 for all ϕ ∈ H1(Ω),

which proves that the normal trace of curlu is zero.

A useful tool when dealing with vector fields is the celebrated Helmholtz
decomposition, where any vector field in L2(Ω)3 can be decomposed in the sum of
a gradient (scalar potential) and a curl (vector potential).

Proposition 1.3.6 ([62, Coroll. 3.4]). Let Ω be a bounded Lipschitz domain in R3.
Then every vector field v ∈ L2(Ω)3 can be orthogonally decomposed (in L2(Ω)3) as
follows

v = ∇q + curlφ,
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where q ∈ H1(Ω)/R is the unique solution of∫
Ω

∇q · ∇η dx =

∫
Ω

v · ∇η dx for all η ∈ H1(Ω)

and φ ∈ H1(Ω)3 is such that curlφ ∈ H0(div,Ω) and div φ = 0.

We also have this more specific decomposition.

Proposition 1.3.7. Let Ω be a bounded Lipschitz domain in R3 whose boundary has
only one connected component. Then every function v ∈ XN(Ω) can be orthogonally
decomposed as follows

v = ∇q + curlφ,

where the orthogonality is with respect to the inner product of L2(Ω)3. Here
q ∈ H1

0 (Ω), φ ∈ H1(Ω)3 with div φ = 0, and they are such that both ∇q and curlφ
belong to XN(Ω).

Proof. Let v ∈ XN(Ω). Let q ∈ H1
0 (Ω) be the (weak) solution to the following

Dirichlet problem {
∆q = div v ∈ L2(Ω), in Ω,

q = 0, on ∂Ω,

which in weak form reads as

−
∫
Ω

∇q · ∇ϕdx =

∫
Ω

div v ϕ dx for all ϕ ∈ D(Ω).

It is standard to see that ∇q ∈ XN(Ω) and div∇q = div v. Set now w := v −∇q.
By Proposition 1.2.12, we have that w ∈ XN(Ω) with divw = 0 and curlw = curl v.
Finally, by Theorem 1.2.14 there exists a divergence-free vector field φ ∈ H1(Ω)3

such that w = curlφ, hence the proof is concluded.

1.4 The Gaffney inequality
In this section we focus on the celebrated Gaffney (or Gaffney-Friedrichs) inequality,
which was introduced in Theorem 1.3.2. The set Ω is assumed to be a bounded set
in R3, with boundary of class at least C0,1.

The inequality states that there exists a constant C > 0 dependingon Ω such
that

∥u∥H1(Ω)3 ≤ C
(
∥u∥L2(Ω)3 +∥curlu∥L2(Ω)3 +∥div u∥L2(Ω)

)
(1.4.1)

for all vector fields u ∈ L2(Ω)3 with distributional curlu ∈ L2(Ω)3 and div u ∈
L2(Ω), and having either vanishing tangential trace or vanishing normal trace on the
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boundary ∂Ω. These estimates were proved, in the more general cases of Riemannian
manifolds, first by Gaffney (see [58, 59, 60]) for manifolds without boundary, and
by Friedrichs [57] for manifolds with boundary. We also recommend the book [108]
by Schwarz , especially Section 2.1, and the papers [5, 45, 97, 101, 107].

We also mention the paper [38] by Costabel, where it is shown that if a vector
field u has square integrable divergence and curl and is such that either the normal
or the tangential component of u is square integrable over the boundary, then it
belongs to the Sobolev space H1/2 on the domain. In particular one recovers the
compact embedding into L2 of solution to Maxwell’s equations (see also [7, Prop.
3.7]).

For the general case of a Gaffney inequality involving non-unitary permittivity
parameters ε we refer to Prokhorov and Filonov [102, Thm. 1.1].

There exists a very close relation between Gaffney-type inequalities and a priori
estimates for the Laplacian. Indeed, on bounded Lipschitz sets of R3 the two
notions are equivalent.

We will focus on the case of vector fields with vanishing tangential trace: in
this case we need to consider the Poisson problem for the Laplacian with Dirichlet
boundary conditions. One of the two implications (namely, the validity of the
Gaffney inequality implies the validity of the a priori estimate) is quite standard.
The other one is a bit more involved and relies on a method by Birman and
Solomyak [17].

In particular, as we shall see, the regularity assumptions on Ω in Theorem 1.3.2
part (ii) can be relaxed since the inequality holds for domains of class C1,α with
α ∈]1/2, 1], but some care is required.

Before doing so, following [7], we present a direct proof of the Gaffney inequality
under the assumption of C1,1 regularity of the boundary. The idea is to explicitly
write down the difference between the L2-norm of the whole gradient and the
L2-norms of the curl and the divergence, and estimate it via the curvature tensor
of the boundary.

1.4.1 Direct proof

In this section, we will assume Ω to be a bounded domain in R3 of class C1,1.
Following Section 3.1 of [63], we introduce the curvature tensor B, which is

nothing but the second fundamental form relative to the surface ∂Ω. In the notation
of Definition 1.0.1, the form B coincides with the Hessian matrix of the local profile
function of the boundary. Indeed, let P ∈ ∂Ω and let g be the function locally
describing ∂Ω around P , so that there exists a cuboid V such that in the rotated
coordinates

V ∩ Ω =
{
x = (ȳ, yN) ∈ V : yN ≤ g(ȳ)

}
,
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with g(0) = P and ∇g(0) = 0 (i.e. the new coordinates are chosen in such a way
that the hyperplane yN = 0 is tangent to ∂Ω at P ). Then B is the bilinear form
that coincides with

B(ξ, η) =
∑ ∂2g

∂yk∂yi
(0)ζkηi,

for all ζ, η tangent vectors to ∂Ω at P . Note that this makes sense since we have
assumed Ω to be of class C1,1, hence the second derivatives exist for almost all
P ∈ ∂Ω.

It is worthy to note that if Ω has C1,1 boundary, or equivalently the outer unit
normal ν is C0,1-regular, then

trB = − div ν = −2H

a.e. on ∂Ω, where H is the mean curvature of Ω. Moreover, observe that if Ω is
C1,1 then the form B is uniformly bounded on ∂Ω; in other words there exists a
constant C > 0 independent of P ∈ ∂Ω such that⏐⏐B(ζ, η)

⏐⏐ ≤ C|ζ||η|

for all ζ, η ∈ RN−1. We then have the following theorem.

Theorem 1.4.2 ([63, Thm. 3.1.1.1]). Let Ω a bounded open set in R3 of class C1,1.
Then for all v ∈ H2(Ω)3∫

Ω

|div v|2 dx−
N∑

i,j=1

∫
Ω

∂vi
∂xj

∂vj
∂xi

dx

= −2

∫
∂Ω

vt · ∇t(ν · v) dσ −
∫
∂Ω

(
B(vt, vt) + (trB) (ν · v)2

)
dσ,

where vt and ∇t denote the projection on the tangent hyperplane to ∂Ω of v and
the gradient operator respectively, namely

vt = v − (ν · v)ν = ν × (v × ν), ∇tf = ∇f − ∂f

∂ν
ν.

From the previous theorem it is not difficult to deduce the following

Lemma 1.4.3. Let Ω ⊂ R3 be a bounded open set of class C1,1. Then

∥Dv∥2L2(Ω)3×3 =∥curl v∥2L2(Ω)3 +∥div v∥2L2(Ω)3 +

∫
∂Ω

(trB) (ν · v)2dσ (1.4.4)

for all v ∈ H1(Ω)3 ∩XN(Ω).
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We can finally prove

Theorem 1.4.5 ([7, Thm 2.12]). Let Ω ⊂ R3 be a bounded open set of class C1,1.
Then the Gaffney inequality (1.4.1) holds for all u ∈ XN(Ω).

Moreover, if Ω is also convex, the stronger inequality

∥Dv∥2L2(Ω)3 ≤∥curl v∥2L2(Ω)3 +∥div v∥2L2(Ω)3

holds for all v ∈ XN(Ω).

Proof. Let v ∈ H1(Ω)3 ∩XN(Ω). Since under the assumptions for Ω, the curvature
tensor B is bounded, using [63, Thm. 1.5.1.10] we get that∫

∂Ω

(trB) (ν · v)2dσ ≤ c∥v∥2L2(∂Ω)3 ≤
1

2
∥Dv∥2L2(Ω)3×3 + c̃∥v∥2L2(Ω)3 ,

hence from (1.4.4) we recover the Gaffney inequality (1.4.1) for all v ∈ H1(Ω)3 ∩
XN(Ω).

From this, to deduce the validity for all v ∈ XN(Ω), one just needs to use the
density result of Theorem 1.3.1.

Finally, if Ω is convex, it is sufficient to observe that the mean curvature H is
non-negative.

Using the same ideas, these results can be adapted to the case of XT(Ω) for
vector fields with vanishing normal trace. Further details can be found in [7, Thm.
2.9].

1.4.2 Necessary condition for the validity of the Gaffney in-
equality

Recall that in general the permittivity tensor ε is represented by a symmetric
3× 3 real matrix-valued function. We also assume that there exist two constants
mε,Mε > 0 for which

mε|ζ|2 ≤ ε(x)ζ · ζ ≤Mε|ζ|2

for all (x, ζ) ∈ Ω× R3.
In this section we will show that for any open set Ω ⊂ R3, the H2-regularity of

the solution to the following classical elliptic problem{
− div(ε∇w) = f ∈ L2(Ω) in Ω,

w = 0 on ∂Ω
(1.4.6)
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is a necessary condition for the validity of the Gaffney inequality. The above
problem has to be interpreted in the following weak variational sense:∫

Ω

(ε∇w) · ∇ϕdx =

∫
Ω

fϕ dx for all ϕ ∈ H1
0 (Ω), (1.4.7)

in the unknown w ∈ H1
0 (Ω).

Define

D(ε) :=
{
w ∈ H1

0 (Ω) : ∃f ∈ L2(Ω) such that w satisfies (1.4.7) ∀ϕ ∈ H1
0 (Ω)

}
and

Xε
N(Ω) := H0(curl,Ω) ∩H(div ε,Ω).

Of course, when ε = I3 is the 3×3 identity matrix we recover the standard Dirichlet
Laplacian, and the space XN(Ω).

We have the following

Proposition 1.4.8. Let Ω be a bounded Lipschitz open set in R3. Suppose that
Xε

N(Ω) ⊂ H1(Ω)3 and there exists a constant C = C(Ω) > 0 such that

∥u∥H1(Ω)3 ≤ C
(
∥u∥L2(Ω)3 +∥curlu∥L2(Ω)3 +

div(εu)
L2(Ω)

)
(1.4.9)

for all u ∈ Xε
N(Ω). Then D(ε) ⊂ H2(Ω), and if w is a solution of problem (1.4.6)

with datum f , we have
∥w∥H2(Ω)3 ≤ C∥f∥L2(Ω) , (1.4.10)

where C > 0 is a constant depending only on ε and Ω.

Proof. Consider a solution w ∈ D(ε) to problem (1.4.6), and take u = ∇w. Then,
by definition, u ∈ H(div ε,Ω) and div(εu) = f . Moreover, recalling Proposi-
tion 1.2.12, we have that u also belongs to H0(curl,Ω) and curlu = 0. Thus
u ∈ Xε

N(Ω). Hence using inequality (1.4.9) we have that u = ∇w is in H1(Ω)3 and

∥∇w∥H1(Ω)3 ≤ C
(
∥∇w∥L2(Ω)3 +∥f∥L2(Ω)

)
. (1.4.11)

Moreover, using Hölder ([18, Thm. 4.6]) and Poincaré ([18, Coroll. 9.19]) in-
equalities, and denoting with cP = cP(Ω) > 0 the Poincaré constant, we have
that

mε∥∇w∥2L2(Ω) ≤
∫
Ω

ε∇w · ∇w dx =

∫
Ω

f w dx ≤∥f∥L2(Ω)∥w∥L2(Ω)

≤ cP∥f∥L2(Ω)∥∇w∥L2(Ω) ,

which in turn implies that

∥∇w∥L2(Ω) ≤
cP
mε

∥f∥L2(Ω) . (1.4.12)

Finally, combining (1.4.11) and (1.4.12) we obtain (1.4.10).
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The converse statement, that is the sufficiency of the H2-regularity for the valid-
ity of the Gaffney inequality, is not so obvious. Some notable work in this direction
has been done by Saranen in [107] in the case of bounded convex domains, and by
Birman and Solomyak in [17] for regions with Lipschitz continuous boundaries. We
also note the work by Filonov and Prokhorov [102], where the authors prove the
validity of the more general Gaffney inequality (1.4.9) involving the permittivity
parameter for a large class of domains, which includes convex domains or in general
domains satisfying the exterior ball condition, with the additional assumptions of ε
to be in W 1,3(Ω).

Following the approach of [17], we will present now a proof in the case of unitary
permittivity ε = I3. Then, we will draw our attention to some results of Maz’ya
and Shaposhnikova in [92] concerning the regularity of elliptic problems. We will
see that in domains with C3/2+δ-Hölder continuous boundary the H2-regularity for
solutions of the Dirichlet Laplacian is valid, and a consequent a priori estimate
holds. In this regard, an interesting read is [56], where it is shown that the exponent
3/2 is in some sense sharp for the argument presented by Birman and Solomyak in
[17] when dealing with the Gaffney inequality by means of the Dirichlet Laplacian.

1.4.3 H2-regularity approach

Let Ω be a bounded Lipschitz open set in R3. Following [17] we introduce the
spaces

H1
N(Ω) := XN(Ω) ∩H1(Ω)3

and
E(Ω) :=

{
∇ϕ : ϕ ∈ H1

0 (Ω),∆ϕ ∈ L2(Ω)
}
.

The following theorem was proved by Birman and Solomyak in [17]: it allows
to split a vector field in XN(Ω) in a “good part” in H1

N(Ω), and a “bad part” in
E(Ω) (not necessarily divergence-free, thus we cannot really talk about the theorem
below as a Helmholtz decomposition). Note that E(Ω) ⊂ H(div,Ω). A detailed
proof can be found in the appendix of the thesis.

Theorem 1.4.13 ([17, Thm. 4.1]). Let Ω be a bounded Lipschitz open set in R3.
Then there exist two linear continuous operators P and Q

P : XN(Ω) →
(
H1

N(Ω), ∥ · ∥H1(Ω)3

)
, Q : XN(Ω) →

(
E(Ω), ∥ · ∥H(div,Ω)

)
,

such that u = Pu+Qu for any u ∈ XN(Ω). In particular there exists a constant
CBS > 0 such that

∥Pu∥2H1(Ω) +∥Qu∥2L2(Ω) +∥divQu∥2L2(Ω) ≤ CBS∥u∥2XN(Ω) (1.4.14)

for all u ∈ XN(Ω).
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Then we can state the following

Theorem 1.4.15. Let Ω be a bounded domain in R3 of class C0,1
M (A). Then the

Gaffney inequality (1.4.1) holds for all u ∈ XN(Ω) and a constant C > 0 independent
of u if and only if (the weak, variational) solutions ϕ ∈ H1

0 (Ω) to the Poisson
problem {

−∆ϕ = f, in Ω,
ϕ = 0, on ∂Ω,

(1.4.16)

satisfy the a priori estimate

∥ϕ∥H2(Ω) ≤ C̃∥f∥L2(Ω) (1.4.17)

for all f ∈ L2(Ω) and a constant C̃ > 0 independent of f . In particular, the
constants C and C̃ depend on each other, M and A.

Proof. One implication was already proved in Proposition 1.4.8.
Conversely, assume now that the a priori estimate (1.4.17) holds, and let

u ∈ XN(Ω). Let P and Q be the two operators introduced by Theorem 1.4.13. A
careful inspection of the proof of Theorem 1.4.13 reveals that CBS depends only on
M , A. By definition, Qu = ∇ϕ with ϕ ∈ H1

0 (Ω) and ∆ϕ ∈ L2(Ω). Since we have
assumed that (1.4.17) holds, then

∥ϕ∥H2(Ω) ≤ C̃∥∆ϕ∥L2(Ω) = C̃∥ divQu∥L2(Ω) ≤ C̃CBS∥u∥XN(Ω)

Thus, since ∥Qu∥H1(Ω)3 is obviously controlled by ∥ϕ∥H2(Ω), by (1.4.14) we deduce
that

∥u∥H1(Ω)3 ≤ ∥Pu∥H1(Ω)3 + ∥Qu∥H1(Ω)3 ≤ C∥u∥XN(Ω),

for all u ∈ XN(Ω), and (1.4.1) is proved.

Example 1.4.18. Let N ≥ 2. Let Ω be a bounded domain in RN of class C1 such
that around a boundary point (identified here with the origin) is described by the
subgraph xN < g(x̄) of the C1 function defined by

g(x1, . . . , xN−1) = |x1|/ log |x1|

It is proved in [92, §14.6.1] that for this domain the a priori estimate (1.4.17) does
not hold. Thus, by Theorem 1.4.15 it follows that not even the Gaffney inequality
holds for this domain for N = 3.

Theorem 1.4.15 highlights the importance of proving the a priori estimate
(1.4.17) and getting information on the constant C̃. We do this by following the
approach of Maz’ya and Shaposhnikova [92] and using the notion of domains Ω
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with boundaries ∂Ω of class M
3
2 (δ). We re-formulate the definition in Maz’ya and

Shaposhnikova [92, § 14.3.1] by using the atlas classes. Here we can treat the
general case of domains in RN with N ≥ 2.

Note that in this section, following [92] we find it convenient to assume directly
that the functions gj describing the boundary of Ω as in Definition 1.0.1 are
extended to the whole of RN−1 and belong to the corresponding function spaces
defined on RN−1.

Definition 1.4.19. Let A be an atlas in RN and δ > 0. We say that a bounded
domain Ω in RN is of class M

3
2 (δ,A) if Ω is of class C0,1(A) and the gradients ∇gj

of the functions gj describing the boundary of Ω as in Definition 1.0.1 belong to
the space MW

1/2
2 (RN−1) of Sobolev multipliers with

∥∇gj∥MW
1/2
2 (RN−1)

≤ δ (1.4.20)

for all j = 1, . . . s′. We say that a bounded domain Ω in RN is of class M
3
2 (δ) if it

is of class M
3
2 (δ,A) for some atlas A.

Recall thatMW
1/2
2 (RN−1) = {f ∈ W

1/2
2,loc(RN−1) : fϕ ∈ W

1/2
2 (RN−1) for all ϕ ∈

W
1/2
2 (RN−1)} and that ∥f∥

MW
1/2
2 (RN−1)

= sup{∥fϕ∥
W

1/2
2 (RN−1)

: ∥ϕ∥
W

1/2
2 (RN−1)

=

1}, where W 1/2
2 (RN−1) denotes the standard Sobolev space with fractional order of

smoothness 1/2 and index of summability 2 (for simplicity, in (1.4.20) we use the
the same symbol for the norm of a vector field).

Remark 1.4.21. We note that by [92, Thm. 4.1.1], there exists c > 0 depending
only on N such that the functions gj in Definition 1.4.19 satisfy the estimate
∥∇gj∥∞ ≤ c∥∇gj∥MW

1/2
2 (RN−1)

≤ cδ, see also [92, Thm. 14.6.4]. Thus if Ω is of

class M
3
2 (δ,A) then it is also of class C0,1

M (A) with M = cδ.

The following theorem is a reformulation of [92, Thm. 14.5.1]

Theorem 1.4.22. Let A be an atlas in RN . If Ω is a bounded domain of class
M

3
2 (δ,A) for some δ sufficiently small (depending only on N) then the a priori

estimate (1.4.17) holds for some constant C̃ depending only on N and A.

By [92, Corollaries 14.6.1, 14.6.2] it is possible to prove the following the-
orem based on the condition (1.4.25) from [92, (14.6.9)] . Here, by a refine-
ment of an atlas A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1), we mean an atlas of the type
Ã = (ρ̃, s̃, s̃′, {Ṽj}s̃j=1, {r̃j}s̃j=1) where ρ̃ ≤ ρ, s ≤ s̃, s′ ≤ s̃′, ∪s̃

j=1Ṽj = ∪ s
j=1Vj,

{r̃j}s̃j=1 ⊂ {rj}sj=1, which can be thought as an atlas constructed from A by replac-
ing each cuboid Vj = rj(Wj×]aN,j, bN,j[) by a finite number of cuboids of the form
Ṽj,l = rj(W̃j,l×]aN,j, bN,j[), l = 1, . . .mj, where Wj = ∪mj

l=1W̃j,l.
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Theorem 1.4.23. Let A be an atlas in RN and let Ω be a bounded domain of class
C0,1

M (A). Let ω be a (non-decreasing) modulus of continuity for the gradients ∇gj
of the functions gj describing the boundary of Ω, that is

|∇gj(x̄)−∇gj(ȳ)| ≤ ω(|x̄− ȳ|) (1.4.24)

for all x̄, ȳ ∈ RN−1. Assume that there exists D > 0 such that the function ω
satisfies the following condition1∫ ∞

0

(
ω(t)

t

)2

dt ≤ D . (1.4.25)

Then there exists C > 0 depending only on N , A, D such that if M ≤ Cδ then,
possibly replacing the atlas A with a refinement of A, Ω is of class of class M

3
2 (A, δ).

Proof. We begin with the case N ≥ 3. By [92, Cor. 14.6.1] there exists c > 0
depending only on N such that if x = (x̄, gj(x̄)) ∈ ∂Ω is any point of the boundary
represented in local charts by a profile function gj and the following inequality

lim
ρ→0

(
sup

E⊂Bρ(x̄)

∥D3/2(gj, Bρ)∥L2(E)

|E|
N−2

2(N−1)

+ ∥∇gj∥L∞(Bρ(x̄))

)
≤ cδ (1.4.26)

is satisfied, then, possibly replacing the atlas A with a refinement of its, Ω is of
class M

3
2 (δ,A). Here |E| denotes the N − 1-dimensional Lebesgue measure of the

set E,

D3/2(gj, Bρ)(x̄) =

(∫
Bρ(x̄)

|∇gj(x̄)−∇gj(ȳ)|2|x̄− ȳ|−Ndȳ

)1/2

,

and Bρ(x̄) the ball in RN−1 of radius ρ and centre x̄. We refer to [92, §14.7.2] for
the local characterization of the boundaries of domains of class M

3
2 (δ,A).

We have∫
E

∫
Bρ(x̄)

|∇gj(x̄)−∇gj(ȳ)|2|x̄− ȳ|−Ndȳdx̄ ≤
∫
E

∫
Bρ(x̄)

ω2(|x̄− ȳ|)
|x̄− ȳ|N

dȳdx̄

=

∫
E

∫
Bρ(0)

ω2(|h̄|)
|h̄|N

dh̄dx̄ = σN−2|E|
∫ ρ

0

⏐⏐⏐⏐ω(t)t
⏐⏐⏐⏐2 dt ≤ σN−2D|E| .(1.4.27)

Here σm denotes the m-dimensional measure of the m-dimensional unit sphere.
Thus

∥D3/2(gj, Bρ)∥L2(E)

|E|
N−2

2(N−1)

≤ (σN−2D)1/2|E|
1

2(N−1) = O(ρ1/2),

1Here only the integrability at zero really matters and one could consider integrals defined in
a neigborhhood of zero.
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hence
∥D3/2(gj, Bρ)∥L2(E)

|E|
N−2

2(N−1)

≤ cδ, (1.4.28)

provided ρ is sufficiently small. Thus, inequality (1.4.26) follows if we assume
directly that ∥∇gj∥L∞(Bρ) ≤ cδ.

In the case N = 2, by [92, Cor. 14.6.1] it suffices to replace (1.4.26) by the
following inequality

lim
ρ→0

(
sup

E⊂Bρ(x̄)

∥D3/2(gj, Bρ)∥L2(E)| log |E||1/2 + ∥∇gj∥L∞(Bρ(x̄))

)
≤ cδ (1.4.29)

and use the same argument as above.

By combining Theorems 1.4.22 and 1.4.23, we deduce the validity of the following
result

Corollary 1.4.30. Under the same assumptions of Theorem 1.4.23, there exists
C̃ > 0 depending only on N , A, D such that if M < C̃−1 then the a priori estimate
(1.4.17) holds.

Finally, by Theorem 1.4.15 and Corollary 1.4.30 we deduce the following result
ensuring the validity of uniform Gaffney inequality that can be used in our spectral
stability results.

Corollary 1.4.31. Under the same assumptions of Theorem 1.4.23, there exists
C > 0 depending only on N , A, D such that if M < C−1 then the Gaffney inequality
(1.4.1) holds.
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Chapter 2

Shape perturbation

In this chapter we study the dependence of the eigenvalues of the electric Maxwell
problem (2.1.1) upon the variation of the domain Ω. The main theorem is The-
orem 2.3.5, which provides a real-analytic result for the elementary symmetric
functions of the eigenvalues as well as formulas for their Hadamard derivatives.
Then, we prove a Rellich-Nagy-type theorem (see Theorem 2.3.17) and a Rellich-
Pohozaev formula for the eigenvalues (cf. Theorem 2.3.19) . In Theorem 2.4.10
we provide a characterization for critical domains under the constraint of fixed
volume and fixed perimeter, and in Theorem 2.4.13 we show that balls satisfy both
conditions. Finally, in Section 2.5 we provide known formulas for the eigenvalues
and eigenvectors of problem (2.1.1) in the case Ω is a ball, showing that the first
Maxwell eigenvalue in the ball has multiplicity 3.

Note that in the present chapter we consider row vectors.

2.1 Main problem
Let Ω be a bounded Lipschitz domain (connected open set) in R3. Consider the
following boundary value problem for the curl curl operator subject to electric
boundary conditions: ⎧⎪⎨⎪⎩

curl curlu = λu, in Ω,
divu = 0, in Ω,
ν × u = 0, on ∂Ω.

(2.1.1)

Using formula (1.2.11), it is easy to see that the weak formulation of problem
(2.1.1) is∫

Ω

curlu · curlϕdx = λ

∫
Ω

u · ϕdx, for all ϕ ∈ XN(div 0,Ω), (2.1.2)

29
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in the unknowns u ∈ XN(div 0,Ω) and λ ∈ R. Observe that λ ≥ 0, as one can see
by testing u in equation (2.1.2).

Since for our purposes we prefer to work in the space XN(Ω) rather than in the
space XN(div 0,Ω), following [39, 40], we introduce a penalty term in the equation
and we replace problem (2.1.2) with the problem∫

Ω

curlu · curlϕdx+ τ

∫
Ω

divu divϕdx = λ

∫
Ω

u ·ϕdx, for all ϕ ∈ XN(Ω), (2.1.3)

in the unknowns u ∈ XN(Ω) and λ ∈ R. Here τ > 0 is any fixed positive real
number.

Since the eigenvalues λ of (2.1.1) coincide with the square of the angular
frequency ω > 0 appearing in the time-harmonic Maxwell system (0.0.3), we are
interested only in the positive eigenvalues. Still, the zero eigenspace KN(Ω) of
problem (2.1.3) (and problem (2.1.2)) has an interest of its own. It is composed by
all those vector fields in XN(Ω) whose curl and divergence vanish in Ω, namely

KN(Ω) =
{
u ∈ XN(Ω) : curlu = 0 and Ω, div u = 0, in Ω

}
.

Note that in literature a vector field which is both irrotational (i.e. curl-free) and
solenoidal (i.e. divergence-free) is called a Laplacian vector field, due to the vector
calculus identity

∆v ≡ ∇ div v − curl curl v,

where ∆ denotes the vector Laplacian. Therefore, KN(Ω) is the set of all Laplacian
vector fields whose tangential trace vanish on the boundary of Ω.

Since Ω is a bounded Lipschitz domain then its boundary ∂Ω can be decomposed
into a finite number of connected components, which we will denote by Γi, 0 ≤ i ≤ I,
with Γ0 being the boundary of the only unbounded connected component of R3 \Ω.
Hence

∂Ω =
I⨆

i=0

Γi .

In this case, Proposition 3.18 of [7] provides a characterization of the space KN(Ω):
it has dimension exactly equal to I, and it is spanned by gradients of the harmonic
functions which are zero on Γ0 and constant on the components Γi, 1 ≤ i ≤ I.
In particular, if the domain Ω is such that the boundary has only one connected
component, the kernel KN(Ω) becomes trivial and the bilinear form on the left
hand-side of formula (2.1.3) is coercive on XN(Ω), becoming equivalent to the
standard inner product of XN(Ω).

A similar result exists for the case of Laplacian vector fields with vanishing
normal trace. For example one can look at Proposition 3.14 of [7], where a
characterization of the set

KT(Ω) :=
{
u ∈ XT(Ω) : curlu = 0 and div u = 0 in Ω

}
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in terms of gradients of harmonic functions, satisfying Neumann-type boundary
conditions on ∂Ω, is given. In this case, the dimension of the space coincides with
the first Betti number of the set Ω, and the space KT(Ω) itself is isomorphic to the
first cohomolgy space of Ω. The vector fields in KN(Ω) and KT(Ω) are also known
as Dirichlet fields and Neumann fields, respectively. For more general details on
these kernels we refer to Chapter IX-A, Section 3 of [49].

It is obvious that the solutions of problem (2.1.2) are the divergence free
solutions of (2.1.3). On the other hand, it is also not difficult to see that the
solutions of problem (2.1.3) which are not divergence free are given by the vector
fields u = ∇f of the gradients of the solutions f to the Helmohltz equation with
Dirichlet boundary conditions, that is{

−∆f = λ
τ
f, in Ω,

f = 0, on ∂Ω.
(2.1.4)

In fact, we have the following result from [40]

Lemma 2.1.5. Let Ω be a bounded domain in R3 of class C0,1. A vector field u ∈
XN(Ω) is a solution of problem (2.1.3) with divu = 0 if and only if u ∈ XN(div 0,Ω)
is a solution of problem (2.1.2). Moreover, a vector field u ∈ XN(Ω) with divu ̸= 0
is a solution of problem (2.1.3) if and only if u = ∇f where f ∈ H1

0 (Ω) is a solution
of problem (2.1.4). In particular, the set of eigenvalues of problem (2.1.3) are given
by the union of the set of eigenvalues of problem (2.1.2) and the set of eigenvalues
of the Dirichlet Laplacian in Ω multiplied by τ .

In view of the previous lemma, in order to distinguish the solutions arising
from the original Maxwell system from the spurious solutions associated with the
Helmohltz equation, we give the following definition.

Definition 2.1.6. We say that a couple (u, λ) in XN(Ω)×R is a (electric) Maxwell
eigenpair if λ ̸= 0 and (u, λ) is an eigenpair of equation (2.1.3) with div u = 0
in Ω, in which case u is called a (electric) Maxwell eigenvector and λ a Maxwell
eigenvalue.

A first important remark on the Maxwell eigenvalues is the following one.

Remark 2.1.7. In general there is no monotonicity principle with respect to
inclusion for the Maxwell eigenvalues.

The following example shows that in general one should not expect a mono-
tonicity principle with respect to inclusion for the Maxwell eigenvalues. Here we
consider rectangular parallelepipeds.
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Counterexample 2.1.8. Let ℓ1, ℓ2, ℓ3 > 0 be three positive real numbers and
consider the following rectangular parallelepiped

Ω := (0, ℓ1)× (0, ℓ2)× (0, ℓ3).

The Maxwell eigenvalues in Ω are given by

(
k1π

ℓ1

)2

+

(
k2π

ℓ2

)2

+

(
k3π

ℓ3

)2

,

counted one time for all integers k1, k2, k3 ≥ 0 with exactly one index j ∈ {1, 2, 3}
such that kj = 0, and counted twice for all integers k1, k2, k3 ≥ 1 (see [41] for more
details, especially Theorem 3.6 and Section 6).

The smallest eigenvalue λ1 is given by the case k1, k2, k3 ≥ 0 with kj = 0 for
the index j ∈ {1, 2, 3} corresponding to the smallest side ℓj of the parallelepiped
Ω. Without loss of generality we can suppose that ℓ1 > ℓ2 > ℓ3. In this case λ1 is
given by k1 = k2 = 1 and k3 = 0, and it is equal to

λ1 =

(
1

ℓ 21
+

1

ℓ 22

)
π2.

If we consider the halved parallelepiped

Ω̂ := (0, ℓ1/2)× (0, ℓ2/2)× (0, ℓ3/2),

which is obviously contained in Ω, and denote the smallest Maxwell eigenvalue in
Ω̂ by λ̂1, then

λ̂1 = 4

(
1

ℓ 21
+

1

ℓ 22

)
π2,

which is strictly larger than λ1.
Now we consider a parallelepiped Ω̃ and, with a slight abuse of notation, by

ℓ̃i, i = 1, 2, 3 we denote both its sides and their respective length. We suppose
that Ω̃ ⊂ Ω, with ℓ̃1 > ℓ1 and ℓ̃2 = ℓ2. Note that this is always possible, and one
can modify the parallelepiped Ω̃ in order to tweak the length of the bigger side
ℓ̃1 as close as desired to

√
ℓ21 + ℓ23, and making ℓ̃3 small enough to guarantee the

inclusion of Ω̃ in Ω (see Figure 2.1).
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Figure 2.1: The parallelepipeds Ω (in gray) and Ω̃ (in red).

Then the smallest Maxwell eigenvalue λ̃1 in Ω̃ is equal to

λ̃1 =

(
1

ℓ̃ 21
+

1

ℓ 22

)
π2,

which is strictly smaller than λ1.
We have thus found two subsets Ω̂, Ω̃ ⊂ Ω such that

λ̃1 < λ1 < λ̂1.

We note that for the second Maxwell eigenvalues λ2 and λ̃2 in Ω and Ω̃ respec-
tively, we have that

λ2 =

(
1

ℓ 21
+

1

ℓ 23

)
π2 <

(
1

ℓ̃ 21
+

1

ℓ̃ 23

)
π2 = λ̃2,

provided ℓ̃3 is small enough.

Remark 2.1.9. In this chapter, it will be understood that the value of τ in (2.1.3)
is fixed. It is important to note that in applying our results one is free to choose
τ > 0 in order to avoid the overlapping of Maxwell and Helmholtz eigenvalues.
In fact, since the set of eigenvalues of problem (2.1.3) are given by the union of
the set of eigenvalues of problem (2.1.2) and the set of eigenvalues of the Dirichlet
Laplacian in Ω multiplied by τ , one cannot exclude that a Maxwell eigenvalue
could coincide with an eigenvalue of the Dirichlet Laplacian multiplied by some
τ ∈]0,∞[. However, if λ is a fixed Maxwell eigenvalue it is possible to choose
τ ∈]0,∞[ such that λ ̸= τϑ for all eigenvalues ϑ of the Dirichlet Laplacian, in other
words one can choose τ in order to avoid ‘resonance’. It is also useful to recall that
the eigenvalues of the Dirichlet Laplacian depend with continuity upon sufficiently
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regular perturbations of Ω, as those considered in this thesis (see e.g., [79]), hence
it is possible to avoid ‘resonance’ around a fixed Maxwell eigenvalue λ(Ω), possibly
multiple, and all those eigenvalues bifurcating from it when Ω is slightly perturbed.
This can obviously be done also to avoid resonances for a finite subset of of Maxwell
eigenvalues.

We now describe a standard procedure that allows us to recast the eigenvalue
problem (2.1.3) as an eigenvalue problem for a compact self-adjoint operator in
Hilbert space. We consider the operator T from XN(Ω) to its dual (XN(Ω))

′ defined
by the pairing

< Tu, ϕ >= T [u][ϕ] = T [ϕ][u] :=

∫
Ω

curlu · curlϕdx+ τ

∫
Ω

divu divϕdx, (2.1.10)

for all u, ϕ ∈ XN(Ω). Then, we consider the map J from L2(Ω)3 to (XN(Ω))
′ defined

by the pairing

< Ju, ϕ >= J [u][ϕ] :=

∫
Ω

u · ϕdx,

for all u ∈ L2(Ω)3 and ϕ ∈ XN(Ω). Note that the operator J is essentially the
standard inner product ⟨·, ·⟩L2(Ω)3 of L2(Ω)3. Moreover, observe that by the Riesz
Theorem the operator T + J is a homeomorphism from XN(Ω) to its dual.

Lemma 2.1.11. Let Ω be a bounded Lipschitz domain in R3. The operator S from
L2(Ω)3 to itself defined by

Su = ι ◦ (T + J)−1 ◦ J

where ι denotes the embedding of XN(Ω) into L2(Ω)3, is a non-negative self-adjoint
operator in L2(Ω)3. Moreover, λ is an eigenvalue of problem (2.1.3) if and only if
µ = (λ+1)−1 is an eigenvalue of the operator S, the eigenfunctions being the same.

Proof. Let u, ϕ ∈ L2(Ω)3. We want to show that

⟨Su, ϕ⟩L2(Ω)3 = ⟨u, Sϕ⟩L2(Ω)3 .

Using the natural symmetry present in the definition of the operators T and J we
have that

⟨Su, ϕ⟩L2(Ω)3 = J [ϕ]
[
(T + J)−1 ◦ J [u]

]
=
(
(T + J) ◦ (T + J)−1 ◦ J

)
[ϕ]
[
(T + J)−1 ◦ J [u]

]
= (T + J)

[
(T + J)−1 ◦ J [ϕ]

] [
(T + J)−1 ◦ J [u]

]
= (T + J)

[
(T + J)−1 ◦ J [u]

] [
(T + J)−1 ◦ J [ϕ]

]
= J [u]

[
(T + J)−1 ◦ J [ϕ]

]
= ⟨u, Sϕ⟩L2(Ω)3 .
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Hence S is self-adjoint.
To see that S is non-negative, if u ∈ L2(Ω)3\{0} then the function (T+J)−1◦J [u]

is not zero, and consequently by the above formula we have that

(Su, u)L2(Ω)3 = (T + J)
[
(T + J)−1 ◦ J [u]

] [
(T + J)−1 ◦ J [u]

]
> 0. (2.1.12)

This actually proves that S is positive-definite.
Finally, suppose that λ is an eigenvalue of problem (2.1.3) with associated

eigenfunction u ∈ XN(Ω). This exactly means that T [u] = λJ [u]. Hence (λ+1)Su =
u, meaning that u is an eigenfunction of S with associated eigenvalue µ = (λ+1)−1.
Viceversa, if Su = µu, by the same reasoning one deduces that T [u] = λJ [u], with
λ = µ−1 − 1. Observe that µ cannot be zero by formula (2.1.12).

If the space XN(Ω) is compactly embedded into L2(Ω)3, that is, ι is a compact
map, then the operator S is compact, hence the spectrum σ(S) of S can be
represented as σ(S) = {0} ∪ {µn(Ω)}n∈N where µn(Ω), n ∈ N is a decreasing
sequence of positive eigenvalues of finite multiplicity, which converges to zero.
Accordingly, the eigenvalues of problem (2.1.3) are given by the sequence λn(Ω),
n ∈ N defined by λn(Ω) = µ−1

n (Ω) − 1. As customary, we agree to repeat each
eigenvalue in the sequence as many times as its multiplicity. Thus, we have the
following result where formula (2.1.14) can be proved by applying the classical
Min-Max Principle (see, e.g., Section 4.5 of [50]) to the operator S.

Theorem 2.1.13. Let Ω be a bounded Lipschitz domain in R3 such that the
embedding XN(Ω) ⊂ L2(Ω)3 is compact. The eigenvalues of problem (2.1.3) have
finite multiplicity and are given by a divergent sequence λn(Ω), n ∈ N which can be
represented by means of the following min-max formula:

λn(Ω) = min
V⊂XN(Ω)
dimV=n

max
u∈V \{0}

∫
Ω

(
|curlu|2 + τ |divu|2

)
dx∫

Ω
|u|2 dx

. (2.1.14)

2.2 Domain transplantation
Given a bounded Lipschitz domain Ω in R3, we consider problem (2.1.3) on a class
of domains Φ(Ω) obtained as diffeomorphic images of Ω. Namely, we consider the
family of diffeomorphisms

AΩ :=
{
Φ ∈ C1,1(Ω,R3) : Φ is injective, detDΦ(x) ̸= 0 ∀x ∈ Ω

}
. (2.2.1)

Here C1,1(Ω,R3) is the Banach space of C1,1 functions from Ω to R3 endowed
with its standard norm defined by ∥Φ∥C1,1 = ∥Φ∥∞ + ∥∇Φ∥∞ + |∇Φ|0,1 for all
Φ ∈ C1,1(Ω,R3), where | · |0,1 denotes the Lipschitz seminorm. We first make some
observations regarding this set of admissible diffeomorphisms and their properties.
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Lemma 2.2.2. Let Ω be a bounded domain in R3. Then the following statements
hold:

(i) If Ω is sufficiently regular, say of class C1, then the set AΩ defined in (2.2.1)
is open in C1,1(Ω,R3).

(ii) If Φ ∈ AΩ, then Φ(Ω) is a bounded domain in R3, such that ∂Φ(Ω) = Φ(∂Ω) =
∂Φ(Ω), and Φ(Ω) is the interior of Φ(Ω). The map Φ is a homeomorphism
of Ω onto Φ(Ω).

(iii) Let k ∈ N, α ∈ [0, 1]. Let Ω be of class Ck,α and Φ ∈ Ck,α(Ω,R3)∩AΩ. Then
Φ(Ω) is of class Ck,α.

For more details on this type of diffeomorphisms and for a proof of the lemma
as well, one can consult [78], [79] and [86].

In order to study problem (2.1.3) on Φ(Ω), it is convenient to pull it back to Ω
by means of a change of variables. As is known, in order to transform the curl in
a natural way and preserve the boundary conditions in (2.1.1), it is necessary to
pull back any vector field v defined on Φ(Ω) to the vector field u defined on Ω by
means of the covariant Piola transform (see e.g., [98]) defined by

u(x) =
(
(v ◦ Φ)DΦ

)
(x), for all x ∈ Ω. (2.2.3)

By setting
y = Φ(x), for all x ∈ Ω,

equality (2.2.3) can be rewritten in the form

v(y) =
(
u(DΦ)−1

)
◦ Φ(−1)(y) =

(
u ◦ Φ(−1)

)
D(Φ(−1))(y), y ∈ Φ(Ω).

Note that in the sequel we shall often use the following notation

∂jui(x) =
∂ui
∂xj

(x) and ∂′avb(y) =
∂vb
∂ya

(y).

Then we have the following known result, which can be found for example in
[98, Corollary 3.58]. For the convenience of the reader, we include a proof (which
differs from that of [98, Corollary 3.58]). Note that the assumption Φ ∈ C1,1 can
be relaxed, but some care is required, see Remark 2.2.8.

Theorem 2.2.4. Let Ω be a bounded domain in R3 and Φ ∈ AΩ. Then a function
v belongs to H(curl,Φ(Ω)) (H0(curl,Φ(Ω)), respectively), if and only if the function
u defined by (2.2.3) belongs to H(curl,Ω) (H0(curl,Ω), respectively), in which case

(curly v(y)) ◦ Φ =
curlx u(x)

(
DΦ(x)

)T
det
(
DΦ(x)

) . (2.2.5)
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Proof. Assume for the time being that u is a vector field of class C0,1. The chain
rule yields

∂vb
∂ya

(y) =
∂[(ui ◦ Φ(−1))∂′bΦ

(−1)
i ]

∂ya
(y)

=
∂ui
∂xj

(Φ(−1)(y))
∂Φ

(−1)
j

∂ya
(y)

∂Φ
(−1)
i

∂yb
(y) + ui(Φ

(−1)(y))
∂2Φ

(−1)
i

∂ya∂yb
(y).

Note that summation symbols are omitted here and in the sequel. Recall that the
c-component of the curl of v is given by[

curly v(y)
]
c
= ∂′avb(y) ξabc ,

where ξabc is the Levi-Civita symbol defined by

ξabc =

⎧⎪⎨⎪⎩
+1 if (a, b, c) is an even permutation of (1, 2, 3),
−1 if (a, b, c) is an odd permutation of (1, 2, 3),
0 if a = b, or b = c, or a = c.

Then [
curly v(y)

]
c
= ∂jui(Φ

(−1)(y)) ∂′aΦ
(−1)
j (y) ∂′bΦ

(−1)
i (y) ξabc

+ ui(Φ
(−1)(y))∂′a∂

′
bΦ

(−1)
i (y) ξabc.

Since ξabc = −ξbac we have that for all i = 1, 2, 3

3∑
a,b=1

∂′a∂
′
bΦ

(−1)
i (y) ξabc = 0.

Thus[
curly v(y)

(
DΦ(−1)(y)

)T]
k

=
[
curly v(y)

]
c

∂Φ
(−1)
k

∂yc
(y)

= ∂jui(Φ
(−1)(y)) ∂′aΦ

(−1)
j (y) ∂′bΦ

(−1)
i (y) ∂′cΦ

(−1)
k (y) ξabc

= ∂jui(Φ
(−1)(y)) ξjik det

(
DΦ(−1)(y)

)
=
(
curlx u(Φ

(−1))
)
k
det
(
DΦ(−1)(y)

)
,

where we have used the fact that ∂′aFj ∂
′
bFi ∂

′
cFk ξabc = ξjik det (DF ), for any vector

field F of class C1, which follows from the definition of determinant of a 3 × 3
matrix.
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Therefore

curly v(y) = curlx u(Φ
(−1)(y))

(
DΦ(−1)(y)

)−T

det
(
DΦ(−1)(y)

)
,

and formula (2.2.5) follows.
We now prove the validity of formula (2.2.5) in the weak sense. We begin with

proving that if v ∈ H(curl,Φ(Ω)) then the distributional curl of the function u
defined above belongs to L2(Ω)3 and satisfies formula (2.2.5). To do so, it suffices
to prove that for∫

Ω

u (curlϕ)Tdx =

∫
Ω

(curly v(y))(Φ(x))
(
DΦ(x)

)−T
detDΦ(x)ϕT (x) dx, (2.2.6)

for all ϕ ∈ C∞
c (Ω). Following formula (2.2.3), we define a function ψ on Φ(Ω) by

setting
ϕ(x) =

(
(ψ ◦ Φ)DΦ

)
(x) . (2.2.7)

By formula (2.2.5) we get

curlxϕ(x) = (curly ψ(y))(Φ(x))
(
DΦ(x)

)−T
detDΦ(x)

and this implies that∫
Ω

u (curlϕ)Tdx =

∫
Ω

u
(
DΦ(x)

)−1
(curly ψ(y))

T (Φ(x)) detDΦ(x) dx

=

∫
Ω

v(Φ(x))(curly ψ(y))
T (Φ(x)) detDΦ(x) dx

=

∫
Φ(Ω)

v(y)(curly ψ(y))
T sgn(detDΦ(−1)(y)) dy

=

∫
Φ(Ω)

(curly v(y))ψ
T sgn(detDΦ(−1)(y)) dy

=

∫
Ω

(curly v(y))(Φ(x))
(
DΦ(x)

)−T
detDΦ(x)ϕT (x) dx,

as required. In the same way, one can prove that if u ∈ H(curl,Ω) then the
distributional curl of the function v belongs to L2(Φ(Ω))3, which completes the
first part of the proof.

In order to prove that v belongs to H0(curl,Φ(Ω)) if and only u belongs to
H0(curl,Ω) one can use the definition of these spaces and smooth vector fields
compactly supported in Ω, for which formula (2.2.5) is valid, and conclude by
density arguments.
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Remark 2.2.8. Theorem 2.2.4 holds also under weaker assumptions on the diffeo-
morphism Φ. Namely, assume that Φ ∈ C1(Ω,R3) is injective and that detDΦ(x)
is different from zero for all x ∈ Ω. Then the thesis of Theorem 2.2.4 holds. Indeed,
given any smooth domain U with U ⊂ Ω, one can find an approximating sequence
Φn, n ∈ N of smooth functions converging to Φ in C1(U,R3). This can be done
by using standard mollifiers. Then, since the set of functions C1(U,R3) which
are injective and such that detDΦ(x) ̸= 0 ∀x ∈ U , is an open set in C1(U,R3)
(cfr., [86, Lemma 5.2]), it follows that Φn ∈ AU for all n sufficiently large, hence
Theorem 2.2.4 is applicable to Φn. Passing to the limit as n → ∞ we get the
validity of formula (2.2.5) in U , and since U is arbitrary, formula (2.2.5) holds also
in the whole of Ω. The preservation of the spaces easily follows by formula (2.2.5)
itself and changing variables in integrals.

Formula (2.2.5) also suggests that the regularity assumptions could be further
relaxed to include the case of bi-Lipschitz transformations as in the case of the
classical chain rule for functions in the Sobolev space (see e.g., [105, p. 23]).
However, we shall not discuss this issue here.

Remark 2.2.9. The fact that v belongs to H0(curl,Φ(Ω)) if and only if the
function u defined by (2.2.3) belongs to H0(curl,Ω) as stated in Theorem 2.2.4 has
an immediate explanation by using traces in the classical sense as follows. It is not
difficult to realise that the unit outer normals to ∂Ω and ∂Φ(Ω) satisfy the relation

ν∂Φ(Ω) ◦ Φ = ± ν∂Ω(DΦ)−1⏐⏐ν∂Ω(DΦ)−1
⏐⏐ .

Then, using the fact that aM × bM = det(M)(a× b)(M)−1 for all vectors a, b ∈ R3

and for all invertible matrices M ∈ GL3(R), we immediately deduce that

v × ν∂Φ(Ω) = 0 on ∂Φ(Ω) if and only if u× ν∂Ω = 0 on ∂Ω, (2.2.10)

for all vector fields admitting boundary values in the classical sense.

In order to transplant problem (2.1.3) from Φ(Ω) to Ω we also need a formula
for the transformation of the divergence under the action of the pull-back operator
defined in (2.2.3). Note that in this case we need to assume more regularity on
the pulled-back function because the covariant Piola transform does not behave
well for the divergence, contrary to the curl, and consequently the formula for the
transformed divergence is more involved. Namely, we will need the function to
have square integrable first order partial derivatives.

Theorem 2.2.11. Let Ω be a bounded domain in R3 and Φ ∈ AΩ. Then a function
v belongs to H1(Φ(Ω))3 if and only if the function u defined by (2.2.3) belongs to
H1(Ω)3, in which case

(divy v) ◦ Φ(x) =
divx

[
u(x)(DΦ(x))−1(DΦ(x))−T det(DΦ(x))

]
det(DΦ(x))

. (2.2.12)
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Proof. The first part of the statement is standard and can be proved by using the
chain rule and changing variables in integrals. We now provide a proof of formula
(2.2.12) in the same spirit of the one carried out for the curl. To simplify notation,
we set M = DΦ(−1), so that ∂′a = Mi,a∂i, where Mi,a = ∂Φ

(−1)
i /∂ya. Note that

Mj,a =
∑3

m,k=1Mj,mMk,m(M
−1)a,k simply because Mj,a = (MMTM−T )j,a. Since

va = (uj ◦ Φ(−1)) ∂′aΦ
(−1)
j = (uj ◦ Φ(−1))Mj,a we have that

divy v = ∂′ava = ∂′a[
(
uj ◦ Φ(−1)

)
Mj,a]

= ∂′a[(uj ◦ Φ(−1))Mj,mMk,m(M
−1)a,k]

= ∂′a[(uj ◦ Φ(−1))(∂′mΦ
(−1)
j )(∂′mΦ

(−1)
k )((∂kΦa) ◦ Φ(−1))]

= ∂′a[PkQka] = (∂′aPk)Qka + Pk(∂
′
aQka)

where we have set Pk =
∑3

j,m=1(uj ◦ Φ
(−1))(∂′mΦ

(−1)
j )(∂′mΦ

(−1)
k ) det−1(DΦ(−1)) and

Qka = ((∂kΦa) ◦ Φ(−1)) det(DΦ(−1)).

We claim that
∑3

a=1 ∂
′
aQka = 0. Indeed, if by C we denote the cofactor matrix

of M , we have that (see [93], p.12)

Ck,a =
1

2

3∑
n,m,i,j=1

ξanm ξkijMi,nMj,m ,

hence

∂′a

(
(M−1)a,k det(DΦ(−1))

)
= ∂′a(Ck,a) =

1

2
∂′a(ξanm ξkijMi,nMj,m)

=
1

2
ξkijMj,m

(
∂′aMi,n

)
ξanm +

1

2
ξanmMi,n

(
∂′aMj,m

)
ξkij.

Moreover

3∑
a,n=1

ξanm ∂
′
aMi,n=

3∑
a,n=1

ξanm ∂
′
nMi,a=

3∑
a,n=1

ξnam ∂
′
aMi,n=−

3∑
a,n=1

ξanm ∂
′
aMi,n.

Thus
∑3

a,n=1 ξanm ∂
′
aMi,n = 0. Similarly

∑3
a,m=1 ξanm ∂

′
aMj,m = 0 and the claim is

proved.
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Then

divy v = (∂′aPk)Qka = det
(
DΦ(−1)

)
(M)−1

a,k∂
′
aPk

= det
(
DΦ(−1)

)
(M)−1

a,kMi,a[∂i(Pk ◦ Φ)] ◦ Φ(−1)

= det
(
DΦ(−1)

)
δi,k[∂i(Pk ◦ Φ)] ◦ Φ(−1)

= det
(
DΦ(−1)

)
∂i

⎡⎢⎣
(
uj ◦ Φ(−1)

)
(∂′mΦ

(−1)
j )(∂′mΦ

(−1)
i )

det
(
DΦ(−1)

) ◦ Φ

⎤⎥⎦ ◦ Φ(−1)

=

⎡⎢⎣∂i
[
uj
(
(DΦ)−1(DΦ)−T

)
j,i
det(DΦ)

]
det(DΦ)

⎤⎥⎦ ◦ Φ(−1)

=

⎡⎢⎣∂i
[(
u(DΦ)−1(DΦ)−T

)
i
det(DΦ)

]
det(DΦ)

⎤⎥⎦ ◦ Φ(−1)

=
divx

[
u(DΦ)−1(DΦ)−T det(DΦ)

]
det(DΦ)

◦ Φ(−1),

hence formula (2.2.12) is proved.

From now on until the end of the chapter, we assume Ω to be a bounded domain
in R3 of class C1,1, unless explicitly stated otherwise. Recall that thanks to the
Gaffney inequality (cf. Theorem 1.3.2),under these assumptions the space XN(Ω) is
continuously embedded into H1(Ω)3. Moreover, by Statement (iii) of Lemma 2.2.2,
if Φ ∈ AΩ, then Φ(Ω) is also of class C1,1.

We fix Φ ∈ AΩ and consider equation (2.1.3) on Φ(Ω), that is∫
Φ(Ω)

curlv · curlψ dy

+ τ

∫
Φ(Ω)

divv divψ dx = λ

∫
Φ(Ω)

v · ψ dx for all ψ ∈ XN(Φ(Ω)),

(2.2.13)

in the unknowns v ∈ XN(Φ(Ω)) and λ ∈ R. Let u be the function defined in Ω by
formula (2.2.3) and, analogously, ϕ the function defined by (2.2.7). By changing
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variables in (2.2.13) and using Theorem 2.2.4 and Theorem 2.2.11 we get∫
Ω

curlu (DΦ)TDΦ(curlϕ)T⏐⏐det(DΦ)
⏐⏐ dx

+ τ

∫
Ω

divx
(
u(DΦ)−1(DΦ)−T det(DΦ)

)
divx

(
ϕ(DΦ)−1(DΦ)−T det(DΦ)

)⏐⏐det(DΦ)
⏐⏐ dx

= λ

∫
Ω

u(DΦ)−1(DΦ)−TϕT |detDΦ| dx . (2.2.14)

By construction we have that v ∈ XN(Φ(Ω)) is a solution to (2.2.13) associated
with an eigenvalue λ if and only if u = (v ◦Φ)DΦ ∈ XN(Ω) is a solution to (2.2.14),
the eigenvalue being the same. Thus, instead of studying problem (2.2.13) in the
varying domain Φ(Ω), we can study problem (2.2.14) where the unknown u ∈ XN(Ω)
and the test functions ϕ ∈ XN(Ω) are defined on the fixed domain Ω.

It is clear that the natural L2-space for problem (2.2.14) is the usual L2-space
endowed with the inner product ⟨·, ·⟩Φ defined by

⟨u, ϕ⟩Φ :=

∫
Ω

u(DΦ)−1(DΦ)−TϕT |detDΦ| dx , (2.2.15)

for all u, ϕ ∈ L2(Ω)3, which is equivalent to the usual one (cf. Theorem 3.18 of
[79]). We denote by L2

Φ(Ω) the space L2(Ω)3 endowed with inner product (2.2.15).
As we have done for equation (2.1.3) we recast problem (2.2.14) as a problem for
a compact self-adjoint operator. To do so, we consider the operator TΦ from the
space XN(Ω) to its dual by setting ⟨TΦu, ϕ⟩ equal to the left-hand side of equation
(2.2.14). In the same way, we define the operator JΦ from L2

Φ(Ω) to the dual of
XN(Ω) by setting ⟨JΦu, ϕ⟩ equal to the right-hand side of equation (2.2.14) divided
by λ. Obviously, the operator JΦ can be also interpreted as a coercive bilinear form
from L2(Ω)3 × L2(Ω)3 to R, equivalent to the inner product ⟨·, ·⟩Φ of L2

Φ(Ω). We
will often use the notation TΦ[u][ϕ] and JΦ[u][ϕ] instead of ⟨TΦu, ϕ⟩ and ⟨JΦu, ϕ⟩
respectively.

We have the following result, whose proof can be carried out in a similar way
to that one of Lemma 2.1.11.

Lemma 2.2.16. Let Ω be a bounded domain in R3. The operator SΦ from L2
Φ(Ω)

to itself defined by
SΦu = ι ◦ (TΦ + JΦ)

−1 ◦ JΦ
where ι denotes the embedding of XN(Ω) into L2

Φ(Ω), is a non-negative self-adjoint
operator in L2

Φ(Ω). Moreover, λ is an eigenvalue of problem (2.2.14) if and only
if µ = (λ+ 1)−1 is an eigenvalue of the operator SΦ, the eigenfunctions being the
same.
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Clearly, if the space XN(Ω) is compactly embedded into L2(Ω)3 then the operator
SΦ is compact and its spectrum is given by σ(SΦ) = {0} ∪ {µn(Φ)}n∈N where

µn[Φ] = (λn[Φ] + 1)−1

and λn[Φ] := λn(Φ(Ω)) are the eigenvalues of problem (2.2.13).

2.3 Analyticity results and Hadamard-type formu-
las

Given a finite non-empty set of indices F ⊂ N, we consider

AΩ[F ] : =
{
Φ ∈ AΩ : λj[Φ] ̸= λl[Φ], ∀j ∈ F, l ∈ N \ F

}
and the elementary symmetric functions of the corresponding eigenvalues

ΛF,s[Φ] =
∑

j1,...,js∈F
j1<···<js

λj1 [Φ] · · · λjs [Φ], s = 1, . . . ,|F | . (2.3.1)

It is also convenient to consider

Λ̂F,s[Φ] =
∑

j1,...,js∈F
j1<···<js

(λj1 [Φ] + 1) · · · (λjs [Φ] + 1), (2.3.2)

for all Φ ∈ AΩ[F ] and to note that

ΛF,s[Φ] =
s∑

k=0

(−1)s−k

(
|F | − k

s− k

)
Λ̂F,k[Φ], (2.3.3)

where we have set ΛF,0 = Λ̂F,0 = 1.
Finally, we set

ΘΩ[F ] : =
{
Φ ∈ AΩ[F ] : λj[Φ] have a common value λF [Φ] ∀j ∈ F

}
.

Then, we can state the main theorem of this chapter, the proof of which is also
based on Lemma 2.3.7 below. Concerning the assumption on the summability of
the second order derivatives of the eigenvectors, we include the following remark.

Remark 2.3.4. If Ω is of class C2,1 (which means that locally at the boundary
Ω can be described by the subgraphs of functions of class C2 with Lipschitz
continuous second order derivatives), hence in particular if Ω is of class C3, then
the eigenvectors of problem (2.1.2) belong to the standard Sobolev space H2(Ω) of
functions in L2(Ω) with weak derivatives up to the second order in L2(Ω). See e.g.,
[112] or the more recent paper [5].
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Theorem 2.3.5. Let Ω be a bounded domain in R3 of class C1,1. Let F be a finite
non-empty subset of N. Then AΩ[F ] is an open set in C1,1(Ω,R3) and ΛF,s[Φ]
depends real-analytically on Φ ∈ AΩ[F ].

Suppose in addition that Φ̃ ∈ ΘΩ[F ] is fixed. Assume that λF [Φ̃] is a Maxwell
eigenvalue and Ẽ(1), . . . ,Ẽ(|F |)∈XN(div0, Φ̃(Ω)) is an orthonormal basis of Maxwell
eigenvectors for the corresponding eigenspace, where the orthonormality is taken in
L2(Φ̃(Ω))3, and assume that those eigenvectors belong to H2(Φ̃(Ω)). Then for any
s ∈

{
1, . . . ,|F |

}
, we have

d|Φ=Φ̃(ΛF,s)[Ψ] =

(
|F | − 1

s− 1

)
(λF [Φ̃])

s−1

·
|F |∑
l=1

∫
∂Φ̃(Ω)

(
λF [Φ̃]

⏐⏐⏐Ẽ(l)
⏐⏐⏐2 −⏐⏐⏐curl Ẽ(l)

⏐⏐⏐2)((Ψ ◦ Φ̃(−1)) · ν
)
dσ

(2.3.6)

for all Ψ ∈ C1,1(Ω,R3).

Proof. Recall that µj [Φ] = (λj [Φ] + 1)−1, j ∈ N, are the eigenvalues of the operator
SΦ, hence the set AΩ[F ] coincides with the set {Φ ∈ AΩ : µj [Φ] ̸= µl[Φ], ∀j ∈ F, l ∈
N \ F}. Moreover, SΦ is a compact self-adjoint operator in L2

Φ(Ω). Since both the
operator SΦ and the inner product ⟨·, ·⟩Φ defined in (2.2.15) depend real-analytically
on Φ, being obtained by compositions and inversions of real-analytic maps (such
as linear and multilinear continuous maps), we can apply the general result [79,
Thm. 2.30]. Thus, the set

{
Φ ∈ AΩ : µj[Φ] ̸= µl[Φ], ∀j ∈ F, l ∈ N \ F

}
is open in

C1,1(Ω,R3) as required, and the functions

MF,s[Φ] : =
∑

j1,...,js∈F
j1<···<js

µj1 [Φ] · · ·µjs [Φ],

depend real-analytically on Φ ∈ AΩ[F ]. Since

Λ̂F,s[Φ] =
MF,|F |−s[Φ]

MF,|F |[Φ]
, s = 1, . . . ,|F | ,

we deduce that Λ̂F,s[Φ] depend real-analytically on Φ ∈ AΩ[F ]. Finally, by formula
(2.3.3) we conclude that ΛF,s[Φ] depend real-analytically on Φ ∈ AΩ[F ].

We now prove formula (2.3.6). We set ũ(l) = (Ẽ(l) ◦ Φ̃)DΦ̃ for all l = 1, . . . , |F |
and we observe that ũ(l), l ∈ 1, . . . , |F | is an orthonormal basis in L2

Φ̃
(Ω) of the

eigenspace associated with the eigenvalue µF [Φ̃] := (λF [Φ̃] + 1)−1 of the operator
SΦ̃. By applying [79, Thm. 2.30], we have that

d|Φ=Φ̃MF,s[Ψ] =

(
|F | − 1

s− 1

)
(λF [Φ̃] + 1)1−s

|F |∑
l=1

⟨d|Φ=Φ̃ SΦ[Ψ][ũ(l)], ũ(l)⟩Φ̃,
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where we recall that ⟨·, ·⟩Φ̃ is the inner product of L2
Φ̃
(Ω) (cf. (2.2.15)). Therefore,

by Lemma 2.3.7

d|Φ=Φ̃(Λ̂F,s)[Ψ]

= {d|Φ=Φ̃MF,|F |−s [Φ][Ψ]MF,|F | [Φ̃]−MF,|F |−s [Φ̃] d|Φ=Φ̃MF,|F | [Φ][Ψ]}
· (λF [Φ̃] + 1)2|F |

=

[(
|F | − 1

|F | − s− 1

)
(λF [Φ̃] + 1)s+1−2|F | −

(
|F |
s

)(
|F | − 1

|F | − 1

)

· (λF [Φ̃] + 1)s+1−2|F |

]
(λF [Φ̃] + 1)2|F |

|F |∑
l=1

⟨d|Φ=Φ̃ SΦ[Ψ][ũ(l)], ũ(l)⟩Φ̃

= (λF [Φ̃] + 1)s−1

(
|F | − 1

s− 1

)
·

|F |∑
l=1

∫
∂Φ̃(Ω)

(
λF [Φ̃]

⏐⏐⏐Ẽ(l)
⏐⏐⏐2 −⏐⏐⏐curl Ẽ(l)

⏐⏐⏐2)((Ψ ◦ Φ̃(−1)) · ν
)
dσ.

Thus, using (2.3.3), we get

d|Φ=Φ̃(ΛF,s)[Ψ]

=
s∑

k=1

(−1)s−k(λF [Φ̃] + 1)k−1

(
|F | − k

s− k

)(
|F | − 1

k − 1

)

·
|F |∑
l=1

∫
∂Φ̃(Ω)

(
λF [Φ̃]

⏐⏐⏐Ẽ(l)
⏐⏐⏐2 −⏐⏐⏐curl Ẽ(l)

⏐⏐⏐2)((Ψ ◦ Φ̃(−1)) · ν
)
dσ

=

(
|F | − 1

s− 1

) s−1∑
k=0

(
s− 1

k

)
(λF [Φ̃] + 1)k(−1)s−k−1

·
|F |∑
l=1

∫
∂Φ̃(Ω)

(
λF [Φ̃]

⏐⏐⏐Ẽ(l)
⏐⏐⏐2 −⏐⏐⏐curl Ẽ(l)

⏐⏐⏐2)((Ψ ◦ Φ̃(−1)) · ν
)
dσ

=

(
|F | − 1

s− 1

)
(λF [Φ̃])

s−1

·
|F |∑
l=1

∫
∂Φ̃(Ω)

(
λF [Φ̃]

⏐⏐⏐Ẽ(l)
⏐⏐⏐2 −⏐⏐⏐curl Ẽ(l)

⏐⏐⏐2)((Ψ ◦ Φ̃(−1)) · ν
)
dσ

which proves formula (2.3.6).

Lemma 2.3.7. Let Ω be a bounded domain in R3 of class C1,1 and Φ̃ ∈ AΩ. Let
ṽ, w̃ ∈ XN(div 0, Φ̃(Ω)) be two Maxwell eigenvectors associated with a Maxwell
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eigenvalue λ̃. Assume that ṽ, w̃ ∈ H2(Φ̃(Ω)). Let ũ = (ṽ ◦ Φ̃)DΦ̃, ϕ̃ = (w̃ ◦ Φ̃)DΦ̃.
Then

⟨d|Φ=Φ̃SΦ[Ψ][ũ], ϕ̃⟩Φ̃

= (λ̃+ 1)−2

∫
∂Φ̃(Ω)

(
curl ṽ · curl w̃ − λ̃ ṽ · w̃

)(
(Ψ ◦ Φ̃(−1)) · ν

)
dσ ,

(2.3.8)

for all Ψ ∈ C1,1(Ω,R3).

Proof. To shorten our notation, we set ΥΦ = TΦ+JΦ. Since JΦ̃[ũ] = (λ̃+1)−1ΥΦ̃[ũ],
JΦ̃[ϕ̃] = (λ̃+ 1)−1ΥΦ̃[ϕ̃] (cf. Lemma 2.2.16), and ΥΦ̃ is symmetric, we have that

⟨d|Φ=Φ̃SΦ[Ψ][ũ], ϕ̃⟩Φ̃
= ⟨ι ◦Υ−1

Φ̃
◦ d|Φ=Φ̃JΦ[Ψ][ũ], ϕ̃⟩Φ̃ + ⟨ι ◦ d|Φ=Φ̃Υ

−1
Φ [Ψ] ◦ JΦ̃[ũ], ϕ̃⟩Φ̃

= JΦ̃[ϕ̃]
[
ι ◦Υ−1

Φ̃
◦ d|Φ=Φ̃JΦ[Ψ][ũ]

]
+ JΦ̃[ϕ̃]

[
ι ◦ d|Φ=Φ̃Υ

−1
Φ [Ψ] ◦ JΦ̃[ũ]

]
= (λ̃+ 1)−1ΥΦ̃[ϕ̃]

·
[
Υ−1

Φ̃
◦ d|Φ=Φ̃JΦ[Ψ][ũ]−Υ−1

Φ̃
◦ d|Φ=Φ̃ΥΦ[Ψ] ◦Υ−1

Φ̃
◦ JΦ̃[ũ]

]
= (λ̃+ 1)−1ΥΦ̃

·
[
Υ−1

Φ̃
◦ d|Φ=Φ̃JΦ[Ψ][ũ]−Υ−1

Φ̃
◦ d|Φ=Φ̃ΥΦ[Ψ] ◦Υ−1

Φ̃
◦ (λ̃+ 1)−1ΥΦ̃[ũ]

]
[ϕ̃]

= (λ̃+ 1)−1
(
d|Φ=Φ̃JΦ[Ψ][ũ][ϕ̃]− (λ̃+ 1)−1d|Φ=Φ̃ΥΦ[Ψ][ũ][ϕ̃]

)
= (λ̃+ 1)−1

(
λ̃(λ̃+ 1)−1 d|Φ=Φ̃JΦ[Ψ][ũ][ϕ̃]− (λ̃+ 1)−1d|Φ=Φ̃TΦ[Ψ][ũ][ϕ̃]

)
= (λ̃+ 1)−2

(
λ̃ d|Φ=Φ̃JΦ[Ψ][ũ][ϕ̃]− d|Φ=Φ̃TΦ[Ψ][ũ][ϕ̃]

)
. (2.3.9)

We begin by computing the second term in the right-hand side of (2.3.9). Obviously,
we have that

d|Φ=Φ̃TΦ[Ψ][ũ][ϕ̃]

=

∫
Ω

curl ũ
(
d|Φ=Φ̃GΦ[Ψ]

)
(curl ϕ̃)T dx+ τ d|Φ=Φ̃

(∫
Ω

N(Φ, ũ, ϕ̃)⏐⏐det(DΦ)
⏐⏐ dx

)
[Ψ],

where we have set GΦ =
(DΦ)TDΦ⏐⏐det(DΦ)

⏐⏐ and N(Φ, ũ, ϕ̃) = N(Φ, ũ)N(Φ, ϕ̃) with

N(Φ, η) = divx

(
η(DΦ)−1(DΦ)−T det(DΦ)

)
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for any vector field η. To shorten our notation, we also set ζ = Ψ ◦ Φ̃(−1). By a
change of variables one can see that∫

Ω

curl ũ d|Φ=Φ̃GΦ[Ψ] (curl ϕ̃)T dx =

=

∫
Ω

curl ũ
(DΨ)TDΦ̃ + (DΦ̃)TDΨ⏐⏐det(DΦ̃)

⏐⏐ (curl ϕ̃)T dx

−
∫
Ω

curl ũ
(DΦ̃)TDΦ̃ d|Φ=Φ̃

⏐⏐det(DΦ)
⏐⏐ [Ψ](

det(DΦ̃)
)2 (curl ϕ̃)T dx

=

∫
Φ̃(Ω)

curl ṽ
(
Dζ + (Dζ)T

)
(curl w̃)T dy −

∫
Φ̃(Ω)

curl ṽ (curl w̃)T div(ζ) dy.

Now by standard calculus we have

d|Φ=Φ̃

(∫
Ω

N(Φ, ũ, ϕ̃)⏐⏐det(DΦ)
⏐⏐ dx

)
[Ψ] =

∫
Ω

d

dt

(
N(Φ̃ + tΨ, ũ, ϕ̃)⏐⏐det(D(Φ̃ + tΨ)

⏐⏐
)⏐⏐⏐⏐

t=0

dx

=

∫
Ω

d
dt
(N(Φ̃ + tΨ, ũ, ϕ̃)

⏐⏐
t=0

⏐⏐det(DΦ̃)
⏐⏐−N(Φ̃, ũ, ϕ̃) d|Φ=Φ̃

⏐⏐det(DΦ)
⏐⏐[Ψ]

(det(DΦ̃))2
dx

=

∫
Ω

(
d

dt
(N(Φ̃ + tΨ, ũ)

⏐⏐
t=0
N(Φ̃, ϕ̃)

+N(Φ̃, ũ)
d

dt
(N(Φ̃ + tΨ, ϕ̃)

⏐⏐
t=0

) ⏐⏐detDΦ̃
⏐⏐−1

dx

−
∫
Φ̃(Ω)

divy(ṽ) divy(w̃) divy(ζ) dy = 0.

Here we have used the fact that

N(Φ̃, ũ)(x)

det(DΦ̃(x))
=

divx

[
ϕ̃(x)(DΦ̃(x))−1(DΦ̃(x))−T det(DΦ̃(x))

]
det(DΦ̃(x))

= divy w̃(Φ̃(x)) = 0,

and

N(Φ̃, ũ)(x)

det(DΦ̃(x))
=

divx

[
ũ(x)(DΦ̃(x))−1(DΦ̃(x))−T det(DΦ̃(x))

]
det(DΦ̃(x))

= divy ṽ(Φ̃(x)) = 0.
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We conclude that

d|Φ=Φ̃TΦ[Ψ][ũ][ϕ̃] =

∫
Φ̃(Ω)

curl ṽ
(
Dζ + (Dζ)T

)
(curl w̃)T dy

−
∫
Φ̃(Ω)

curl ṽ (curl w̃)T div(ζ) dy.

(2.3.10)

We now compute the first term in the right-hand side of (2.3.9). We claim that

d|Φ=Φ̃JΦ[Ψ][ũ][ϕ̃] = −
∫
Φ̃(Ω)

ṽ
(
Dζ +DζT

)
w̃Tdy +

∫
Φ̃(Ω)

ṽw̃T div ζdy, (2.3.11)

where we recall that ζ = Ψ ◦ Φ̃(−1). Indeed, it is easy to see that[[
d|Φ=Φ̃(det(DΦ))[Ψ]

]
◦ Φ̃(−1)

]
detDΦ̃(−1) = div

(
Ψ ◦ Φ̃(−1)

)
. (2.3.12)

Moreover, since

JΦ[ũ][ϕ̃] =

∫
Ω

ũ RΦ ϕ̃
T |detDΦ| dx,

where RΦ = (DΦ)−1(DΦ)−T , then

d|Φ=Φ̃JΦ[Ψ][ũ][ϕ̃]

=

∫
Ω

ũ d|Φ=Φ̃RΦ[Ψ] ϕ̃T |detDΦ| dx+
∫
Ω

ũ RΦ̃ ϕ̃
Td|Φ=Φ̃|detDΦ| [Ψ] dx.

(2.3.13)

Note that[
d|Φ=Φ̃RΦ[Ψ]

]
◦ Φ̃(−1)=−DΦ̃(−1)

[
D(Ψ ◦ Φ̃(−1))+(D(Ψ ◦ Φ̃(−1)))T

]
(DΦ̃(−1))T.

(2.3.14)
Therefore by equalities (2.3.12), (2.3.13), (2.3.14) and a change of variables, equality
(2.3.11) follows.

We now consider the first term in the right-hand side of (2.3.11). By integrating
by parts we obtain that

−
∫
Φ̃(Ω)

ṽ
(
Dζ + (Dζ)T

)
w̃T dy = −

∫
Φ̃(Ω)

ṽi(∂jζi)w̃j dy −
∫
Φ̃(Ω)

ṽi(∂iζj)w̃j dy

=

∫
Φ̃(Ω)

(∂j ṽi)w̃jζi dy +

∫
Φ̃(Ω)

(ṽ · ζ) div(w̃) dy −
∫
∂Φ̃(Ω)

(ṽ · ζ)(w̃ · ν) dσ

+

∫
Φ̃(Ω)

(w̃ · ζ) div(ṽ) dy +
∫
Φ̃(Ω)

(∂iw̃j)ṽiζj dy −
∫
∂Φ̃(Ω)

(ṽ · ν)(w̃ · ζ) dσ

=

∫
Φ̃(Ω)

(∂j ṽi)w̃jζi dy +

∫
Φ̃(Ω)

(∂iw̃j)ṽiζj dy +

∫
Φ̃(Ω)

(ṽ · ζ) div(w̃) dy

+

∫
Φ̃(Ω)

(w̃ · ζ) div(ṽ) dy − 2

∫
∂Φ̃(Ω)

(ṽ · w̃)(ζ · ν) dσ,
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where we have used the fact that ṽ × ν = 0 = w̃ × ν hence

(ṽ · ν)(w̃ · ζ) = (ṽ · ζ)(w̃ · ν) = (ṽ · ν)(w̃ · ν)(ζ · ν) = (ṽ · w̃)(ζ · ν)

on ∂Φ̃(Ω). Now, since

3∑
i,j=1

(∂j ṽi)w̃jζi − (∂iṽj)w̃jζi = curl ṽ · (w̃ × ζ)

and
3∑

i,j=1

(∂iw̃j)ṽiζj − (∂jw̃i)ṽiζj = curl w̃ · (ṽ × ζ),

we deduce that∫
Φ̃(Ω)

(∂j ṽi)w̃jζi dy +

∫
Φ̃(Ω)

(∂iw̃j)ṽiζj dy

=

∫
Φ̃(Ω)

(∂j ṽi)w̃jζi dy +

∫
Φ̃(Ω)

(∂iw̃j)ṽiζj dy −
∫
Φ̃(Ω)

(∂iṽj)w̃jζi dy

−
∫
Φ̃(Ω)

(∂jw̃i)ṽiζj dy +

∫
Φ̃(Ω)

∇(ṽ · w̃) · ζ dy

=

∫
Φ̃(Ω)

curl ṽ · (w̃ × ζ) dy +

∫
Φ̃(Ω)

curl w̃ · (ṽ × ζ) dy +

∫
Φ̃(Ω)

∇(ṽ · w̃) · ζ dy.

Thus, since for any triple of vectors a, b, c ∈ R3 we have that a · (b×c) = b · (c×a) =
c · (a× b), we get

−
∫
Φ̃(Ω)

ṽ
(
Dζ + (Dζ)T

)
w̃T dy

=

∫
Φ̃(Ω)

ṽ · (ζ × curl w̃) dy +

∫
Φ̃(Ω)

w̃ · (ζ × curl ṽ) dy +

∫
Φ̃(Ω)

∇(ṽ · w̃) · ζ dy

+

∫
Φ̃(Ω)

(ṽ · ζ) div w̃ dy +
∫
Φ̃(Ω)

(w̃ · ζ) div ṽ dy − 2

∫
∂Φ̃(Ω)

(ṽ · w̃)(ζ · ν) dσ.

Since v and w satisfy the equation in (2.1.3) on Φ̃(Ω), we have∫
Φ̃(Ω)

ṽ · (ζ × curl w̃) dy

= λ−1

∫
Φ̃(Ω)

curl curl ṽ · (ζ × curl w̃) dy − λ−1τ

∫
Φ̃(Ω)

∇ div ṽ · (ζ × curl w̃) dy
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= −λ−1

∫
Φ̃(Ω)

(curl w̃ · curl ṽ) div(ζ) dy + λ−1

∫
Φ̃(Ω)

curl ṽDζ (curl w̃)T dy

− λ−1

∫
Φ̃(Ω)

curl ṽD(curl w̃) ζT dy − λ−1τ

∫
Φ̃(Ω)

∇ div ṽ · (ζ × curl w̃) dy

+ λ−1

∫
∂Φ̃(Ω)

(ζ · ν)(curl w̃ · curl ṽ) dσ − λ−1

∫
∂Φ̃(Ω)

(ζ · curl ṽ)(ν · curl w̃) dσ,

(2.3.15)

where, in order to compute the boundary integrals, we have used the following
formula

(ν × curl ṽ) · (ζ × curl w̃)

= ξijkνj(curl ṽ)kξilmζl(curl w̃)m = (δjlδkm − δjmδkl)νjζl(curl ṽ)k(curl w̃)m

= (ζ · ν)(curl w̃ · curl ṽ)− (ν · curl w̃)(ζ · curl ṽ).

Note that the last boundary term in formula (2.3.15) vanishes by Lemma 1.3.5.
Then

− λ̃

∫
Φ̃(Ω)

ṽ
(
Dζ + (Dζ)T

)
w̃T dy

= −2

∫
Φ̃(Ω)

(curl w̃ · curl ṽ) div ζ dy +
∫
Φ̃(Ω)

curl w̃
(
Dζ + (Dζ)T

)
(curl ṽ)T dy

−
∫
Φ̃(Ω)

∇(curl w̃ · curl ṽ) · ζ dy − τ

∫
Φ̃(Ω)

∇ div ṽ · (ζ × curl w̃) dy

− τ

∫
Φ̃(Ω)

∇ div w̃ · (ζ × curl ṽ) dy + 2

∫
∂Φ̃(Ω)

(ζ · ν)(curl w̃ · curl ṽ) dσ

+ λ̃

∫
Φ̃(Ω)

∇(ṽ · w̃) · ζ dy + λ̃

∫
Φ̃(Ω)

(w̃ · ζ) div ṽ dy + λ̃

∫
Φ̃(Ω)

(ṽ · ζ) div w̃ dy

− 2λ̃

∫
∂Φ̃(Ω)

(ṽ · w̃)(ζ · ν) dσ

= −
∫
Φ̃(Ω)

(curl w̃ · curl ṽ) div ζ dy +
∫
Φ̃(Ω)

curl w̃
(
Dζ + (Dζ)T

)
(curl ṽ)T dy

− τ

∫
Φ̃(Ω)

∇ div ṽ · (ζ × curl w̃) dy − τ

∫
Φ̃(Ω)

∇ div w̃ · (ζ × curl ṽ) dy

− λ̃

∫
Φ̃(Ω)

(ṽ · w̃) div ζ dy + λ̃

∫
Φ̃(Ω)

(w̃ · ζ) div ṽ dy + λ̃

∫
Φ̃(Ω)

(ṽ · ζ) div w̃ dy

− λ̃

∫
∂Φ̃(Ω)

(ṽ · w̃)(ζ · ν) dσ +

∫
∂Φ̃(Ω)

(curl w̃ · curl ṽ)(ζ · ν) dσ. (2.3.16)
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Hence, by (2.3.9), (2.3.10) and (2.3.16) we get

(λ̃+ 1)2⟨d|Φ=Φ̃SΦ[Ψ][ũ], ϕ̃⟩Φ̃

= −λ̃
∫
Φ̃(Ω)

ṽ
(
Dζ + (Dζ)T

)
w̃T dy + λ̃

∫
Φ̃(Ω)

ṽw̃T div(ζ) dy

−
∫
Φ̃(Ω)

curl ṽ
(
Dζ + (Dζ)T

)
(curl w̃)T dy +

∫
Φ̃(Ω)

curl ṽ(curl w̃)T div(ζ) dy

=

∫
∂Φ̃(Ω)

(
curl ṽ · curl w̃ − λ̃ ṽ · w̃

)
(ζ · ν) dσ

− τ

∫
Φ̃(Ω)

∇ div ṽ · (ζ × curl w̃) dy − τ

∫
Φ̃(Ω)

∇ div w̃ · (ζ × curl ṽ) dy

+ λ̃

∫
Φ̃(Ω)

(w̃ · ζ) div(ṽ) dy + λ̃

∫
Φ̃(Ω)

(ṽ · ζ) div(w̃) dy

=

∫
∂Φ̃(Ω)

(
curl ṽ · curl w̃ − λ̃ ṽ · w̃

)
(ζ · ν) dσ,

and the proof is complete.

In the case of domain perturbations depending real analytically on one scalar
parameter, it is possible to prove a Rellich-Nagy-type theorem and describe all
the eigenvalues splitting from a multiple eigenvalue of multiplicity m by means
of m real-analytic functions. One can also check [73] for more details, specifically
Theorem 3.9.

Theorem 2.3.17. Let Ω be a bounded domain in RN of class C1,1. Let Φ̃ ∈ AΩ

and {Φϵ}ϵ∈R ⊂ AΩ be a family depending real-analytically on ϵ such that Φ0 = Φ̃.
Assume that λ̃ is a Maxwell eigenvalue on Φ̃(Ω) of multiplicity m, λ̃ = λn[Φ̃] =
· · · = λn+m−1[Φ̃] for some n ∈ N and that Ẽ(1), . . . , Ẽ(m) ∈ XN(div 0, Φ̃(Ω)) is
an orthonormal basis of the eigenspace of λ̃, the orthonormality being taken in
L2(Φ̃(Ω))3. Moreover, assume that Ẽ(k) ∈ H2(Φ̃(Ω)) for all k = 1, . . . ,m.

Then there exists an open interval I containing zero and m real-
analytic functions g1, . . . , gm defined on I such that {λn[Φϵ], . . . , λn+m−1[Φϵ]} =
{g1(ϵ), . . . , gm(ϵ)} coincide for all ϵ ∈ I.

Furthermore, the derivatives g′1(0), . . . , g′m(0) of the functions g1, . . . , gm at zero
coincide with the eigenvalues of the matrix(∫

∂Φ̃(Ω)

(
λ̃ Ẽ(i) · Ẽ(j) − curl Ẽ(i) · curl Ẽ(j)

)
ζ · ν dσ

)
i,j=1,...,m

(2.3.18)

where ζ = Φ̇0 ◦ Φ̃(−1), and Φ̇0 denotes the derivative at zero of the map ϵ ↦→ Φϵ.
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Proof. First of all, we note that by our assumptions, λ̃ does not coincide with any
of the eigenvalues of the Dirichlet Laplacian in Ω multiplied by τ , see Remark 2.1.9,
and by the well-known continuity of the eigenvalues of the Dirichlet Laplacian, this
implies that for all ϵ in a sufficiently small neighbourhood of zero, the eigenvalues
{λn[Φϵ], . . . , λn+m−1[Φϵ]} satisfy the same property. By applying [79, Theorem 2.27,
Corollary 2.28] to the family of operators SΦϵ we deduce that there exists an open
interval I containing zero and m real-analytic functions g̃1, . . . , g̃m from I to R such
that {(1 + λn[Φϵ])

−1, . . . , (1 + λn+m−1[Φϵ])
−1} = {g̃1(ϵ), . . . , g̃m(ϵ)} for all ϵ ∈ I;

moreover, the derivatives of those functions at zero are given by the eigenvalues of
the matrix (

⟨d|Φ=Φ̃SΦ[Φ̇0][ũ
(i)], ũ(j)⟩Φ̃

)
i,j=1,...,m

,

where ũ(k) = (Ẽ(k) ◦ Φ̃)DΦ̃ for all k = 1, . . . ,m. The proof follows by setting

gk(ϵ) :=
1

g̃k(ϵ)
− 1, k = 1, . . . ,m, and using Lemma 2.3.7.

We conclude this section by proving an immediate consequence of our results,
namely the Rellich-Pohozaev identity for Maxwell eigenvalues.

Theorem 2.3.19 (Rellich-Pohozaev Identity). Let Ω be a bounded domain in R3

of class C1,1. Let λ be a Maxwell eigenvalue and E ∈ XN(div, 0,Ω) a corresponding
non-trivial eigenvector normalized in L2(Ω)3. Assume that E ∈ H2(Ω). Then

λ =
1

2

∫
∂Ω

(
|curlE|2 − λ|E|2

)
(x · ν) dσ .

Proof. Assume that λ = λn(Ω) = · · · = λn+m−1(Ω) is a Maxwell eigenvalue with
multiplicity m (with the understanding that the corresponding m-dimensional
eigenspace is made of Maxwell eigenvectors, see Remark 2.1.9). We consider a
family of dilations (1+ϵ)Ω of Ω which can viewed as a family of diffeomorphisms Φϵ =
Id+ ϵ Id, ϵ ∈ R, where Id denotes the identity map. It is obvious that λn+i[Φϵ] =
(1 + ϵ)−2 λ for all i = 0, . . . ,m− 1. In particular, the domain perturbation under
consideration preserves the multiplicity of λ and the matrix (2.3.18) is a multiple
of the identity. By differentiating with respect to ϵ and applying Theorem 2.3.17
with ζ = Id we obtain

d

dϵ
λn[Φϵ]

⏐⏐⏐⏐
ϵ=0

=

∫
∂Ω

(
λ
⏐⏐E(x)⏐⏐2 −⏐⏐curlE(x)⏐⏐2) (x · ν(x)) dσ(x), (2.3.20)

where the given normalized eigenvector E is serving as an element of the orthonormal
basis of the eigenspace. If we differentiate the equality λn[Φϵ] = (1 + ϵ)−2 λ with
respect to ϵ, we obtain

d

dϵ
λn[Φϵ]

⏐⏐⏐⏐
ϵ=0

=
d

dϵ

(
(1 + ϵ)−2 λ

)⏐⏐⏐⏐
ϵ=0

= −2λ. (2.3.21)
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By combining (2.3.20) and (2.3.21) we conclude.

2.4 Criticality for symmetric functions of the eigen-
values

In this section we apply the previous results in order to find a characterization of
critical points, thus including maxima or minima, for the symmetric function of
the eigenvalues, upon volume or perimeter constraint for the perturbed domains.
We denote by V [Φ] the measure of Φ(Ω), that is

V [Φ] : =

∫
Φ(Ω)

dx =

∫
Ω

|detDΦ| dx, (2.4.1)

and by P [Φ] the perimeter of Φ(Ω) that is

P [Φ] :=

∫
∂Φ(Ω)

dσ =

∫
∂Ω

⏐⏐ν(DΦ)−1
⏐⏐ |detDΦ| dσ . (2.4.2)

We are interested in extremum problems of the type

min
V[Φ]=const.

ΛF,s[Φ] or max
V[Φ]=const.

ΛF,s[Φ], (2.4.3)

as well as problems of the type

min
P[Φ]=const.

ΛF,s[Φ] or max
P[Φ]=const.

ΛF,s[Φ]. (2.4.4)

It is convenient to recall the following lemma from [77], where H = divν denotes
the mean curvature of Ω, that is, the sum of the principal curvatures.

Lemma 2.4.5. Let Ω be a bounded domain in RN of class C1,1. Then the maps
V, P from AΩ to R defined in (2.4.1),(2.4.2) are real-analytic. Moreover, the
differentials of V and P at any point Φ̃ ∈ AΩ are given by the formulas

d|Φ=Φ̃V [Φ][Ψ] =

∫
∂Φ̃(Ω)

(Ψ ◦ Φ̃(−1)(x)) · ν(x) dσ, (2.4.6)

and
d|Φ=Φ̃P [Φ][Ψ] =

∫
∂Φ̃(Ω)

H(x) (Ψ ◦ Φ̃(−1)(x)) · ν(x)dσ, (2.4.7)

for all Ψ ∈ C1,1(Ω,R3).
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For α ∈]0,+∞[, we set

V (α) :=
{
Φ ∈ AΩ : V(Φ) = α

}
, P (α) :=

{
Φ ∈ AΩ : P(Φ) = α

}
.

Keeping in mind the Lagrange Multiplier Theorem (which holds also in infinite
dimensional spaces), we note that if Φ̃ ∈ AΩ[F ] is a minimizer/maximizer in (2.4.3)
or (2.4.4) respectively, then it is a critical point for the function Φ ↦→ ΛF,s[Φ] under
the constraint Φ ∈ V (α̃) or the constraint Φ ∈ P (β̃) respectively, where α̃ = V(Φ̃)
and β̃ = P(Φ̃), which means that

Ker d|Φ=Φ̃V [Φ] ⊂ Ker d|Φ=Φ̃ΛF,s[Φ], (2.4.8)

or
Ker d|Φ=Φ̃P [Φ] ⊂ Ker d|Φ=Φ̃ΛF,s[Φ], (2.4.9)

respectively.
The following theorem provides a characterization of those points Φ̃ ∈ AΩ[F ]

satisfying (2.4.8) or (2.4.9).

Theorem 2.4.10. Let Ω be a bounded domain in RN of class C1,1. Let F be a
non-empty finite subset of N and α̃ ∈]0,+∞[. The following statements hold:

(i) Assume that Φ̃ ∈ ΘΩ[F ] ∩ V (α̃) is such that λj[Φ̃] are Maxwell eigenvalues
with common value λF [Φ̃] for all j ∈ F . Assume that Ẽ(1), . . . , Ẽ(|F |) ∈
XN(div 0, Φ̃(Ω)) is an orthonormal basis of the eigenspace corresponding to
λF [Φ̃] and that those eigenvectors belong to H2(Φ̃(Ω)).

For s = 1, . . . ,|F | the function Φ̃ is a critical point for ΛF,s with volume
constraint Φ ∈ V (α̃) (that is, condition (2.4.8) is satisfied) if and only if there
exists a constant c ∈ R such that

|F |∑
l=1

(
λF [Φ̃]

⏐⏐⏐Ẽ(l)
⏐⏐⏐2 −⏐⏐⏐curl Ẽ(l)

⏐⏐⏐2) = c, on ∂Φ̃(Ω). (2.4.11)

(ii) Assume that Φ̃ ∈ ΘΩ[F ] ∩ P (α̃) is such that λj[Φ̃] are Maxwell eigenvalues
with common value λF [Φ̃] for all j ∈ F . Assume that Ẽ(1), . . . , Ẽ(|F |) ∈
XN(div 0, Φ̃(Ω)) is an orthonormal basis of the eigenspace corresponding to
λF [Φ̃] and that those eigenvectors belong to H2(Φ̃(Ω)). For s = 1, . . . ,|F | the
function Φ̃ is a critical point for ΛF,s with perimeter constraint Φ ∈ P (α̃)
(that is, condition (2.4.9) is satisfied) if and only if there exists a constant
c ∈ R such that

|F |∑
l=1

(
λF [Φ̃]

⏐⏐⏐Ẽ(l)
⏐⏐⏐2 −⏐⏐⏐curl Ẽ(l)

⏐⏐⏐2) = cH, on ∂Φ̃(Ω). (2.4.12)
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Proof. It suffices to observe that by standard linear algebra condition (2.4.8) or
condition (2.4.9) is satisfied if and only if there exists a constant l ∈ R such
that d|Φ=Φ̃ΛF,s[Φ] = l d|Φ=Φ̃V[Φ] or d|Φ=Φ̃ΛF,s[Φ] = l d|Φ=Φ̃P[Φ] respectively . By
formulas (2.3.6), (2.4.6), (2.4.7) and the Fundamental Lemma of the Calculus of
Variations, we conclude.

In the next theorem, we show that balls are critical domains.

Theorem 2.4.13. Let Ω be a bounded domain in R3 of class C1,1. Let Φ̃ ∈ AΩ be
such that Φ̃(Ω) is a ball. Let λ̃ be a Maxwell eigenvalue in Φ̃(Ω) with an eigenspace
of dimension m in XN(div 0, Φ̃(Ω)). Assume that λn−1[Φ̃(Ω)] < λn[Φ̃(Ω)] = · · · =
λn+m−1[Φ̃(Ω)] < λn+m[Φ̃(Ω)] for some n ∈ N, and let F = {n, . . . , n + m − 1}.
Then Φ̃ is both a critical point for ΛF,s with volume constraint Φ ∈ V (V(Φ̃)) and a
critical point for ΛF,s with perimeter constraint Φ ∈ P (P(Φ̃)), for all s = 1, . . . ,|F |.

Proof. Conditions (2.4.11) and (2.4.12) are satisfied thanks to Lemma 2.4.14 below.

We highlight the fact that the proof of the next lemma is based on the rotational
invariance of the curlcurl operator which means that for any orthogonal matrix
A ∈ O3(R) we have

curl curl(E(Ax)A) =
(
(curl curlE)(Ax)

)
A

where E is any vector filed defined on a radially symmetric domain, an eigenvector
in our case, see below. We refer e.g., to [20, Definition 3] for the a definition of
rotational invariance for a large class of partial differential operators. We also
note that a similar method has been used in [23, Lemma 5.3, Theorem 5.4] for the
Reissner-Mindlin system.

Lemma 2.4.14. Let B be a ball in R3 centered at zero. Let λ be a Maxwell eigen-
value in B with an eigenspace of dimension m in XN(div 0, B) and let E(1), . . . , E(m)

be a corresponding orthonormal basis. Then, the functions

m∑
l=1

⏐⏐⏐E(l)
⏐⏐⏐2 , m∑

l=1

⏐⏐⏐curlE(l)
⏐⏐⏐2

are radial.

Proof. Let E be an eigenvector of problem (2.1.1) with eigenvalue λ. Take an
orthogonal matrixA ∈ O3(R) and consider the vector field u defined by u = (E◦A)A.
Then the Jacobian matrix Du of u is

Du(x) = ATDE(Ax)A.
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Note that in this proof, for simplicity, we denote by Ax the row vector (AxT )T

which is identified with the image of x via the linear transformation associated
with the matrix A. Thus

div u (x) = Tr(Du(x)) = Tr(ATDE(Ax)A) = Tr(DE(x)) = divE (Ax) .

Moreover, we have that

∆ui(x) =
∂

∂xk

∂ui
∂xk

(x) =
∂

∂xk
[Ark(∂rEj)(Ax)Aji]

= Ark(∂s∂rEj)(Ax)AskAji = (∂s∂rEj)(Ax)δrsAji = ∂2rEj(Ax)Aji

=
[
∆E(Ax)A

]
i
.

Therefore the vector laplacian of u satisfies

∆u(x) = ∆E(Ax)A .

Finally, we get that

curl curlu(x) = D div u(x)−∆u(x) =
[
(D divE)(Ax)− (∆E)(Ax)

]
A

=
[
(curl curlE)(Ax)

]
A = λE(Ax)A = λu(x).

This proves that if E(1), . . . , E(m) is an orthonormal basis of the eigenspace asso-
ciated with the eigenvalue λ, then

{
u(j) = (E(j) ◦ A)A : j = 1, . . . ,m

}
is another

orthonormal basis for the eigenspace associate with λ. Since both {E(j)}j=1,...,m

and {u(j)}j=1,...,m are orthonormal bases, then there exists R[A] ∈ Om(R) with
matrix (Rij[A])i, j = 1, . . . , m such that

u(j) =
m∑
l=1

Rjl[A]E
(l).

Therefore
m∑
j=1

⏐⏐⏐E(j)
⏐⏐⏐2 ◦ A =

m∑
j=1

⏐⏐⏐⏐(E(j) ◦ A
)
A

⏐⏐⏐⏐2 = m∑
j=1

⏐⏐⏐u(j)⏐⏐⏐2
=

m∑
j=1

⎛⎝ m∑
l=1

Rjl[A]E
(l)

⎞⎠ ·

⎛⎝ m∑
h=1

Rjh[A]E
(h)

⎞⎠
=

m∑
j=1

m∑
l,h=1

Rjl[A]Rjh[A](E
(l) · E(h)) =

m∑
l=1

⏐⏐⏐E(l)
⏐⏐⏐2 ,
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which proves that
∑m

l=1

⏐⏐⏐E(l)
⏐⏐⏐2 is a radial function.

Note that curlu(j) =
m∑
l=1

Rjl[A] curlE
(l). By formula (2.2.5) we have that

curlE ◦ A =
curluAT

detA
.

Thus
m∑
j=1

⏐⏐⏐curlE(j)
⏐⏐⏐2◦A =

m∑
j=1

(
curlE(j) ◦ A

)
·
(
curlE(j) ◦ A

)
=

m∑
j=1

(
curlu(j)AT

)
·
(
curlu(j)AT

) 1

det(A)2
=

m∑
j=1

⏐⏐⏐curlu(j)⏐⏐⏐2
=

m∑
j=1

⎛⎝ m∑
l=1

Rjl[A] curlE
(l)

⎞⎠ ·

⎛⎝ m∑
h=1

Rjh[A] curlE
(h)

⎞⎠
=

m∑
l=1

δlh curlE
(l) · curlE(h) =

m∑
l=1

⏐⏐⏐curlE(l)
⏐⏐⏐2 ,

which proves that
∑m

l=1 | curlE(l)|2 is also a radial function.

2.5 Maxwell eigenfunctions on the ball
Throughout this section, by B we denote the ball in R3 of radius R > 0 centred
at zero. We use the spherical coordinates (ρ, θ, ϕ) ∈ [0, R]× [0, π]× [0, 2π] where
θ is the polar angle (θ = 0 at the north pole) and ϕ is the azimuthal angle. It is
also convenient to use the standard local orthonormal base (ρ̂, θ̂, ϕ̂) canonically
associated with (ρ, θ, ϕ), namely

ρ̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)

θ̂ = (cos θ cosϕ, cos θ sinϕ,− sin θ)
ϕ̂ = (− sinϕ, cosϕ, 0).

The eigenpairs (λ, u) of problem (2.1.1) in B can be expressed in terms of
the Riccati-Bessel functions ψn and the spherical harmonics Y m

n . Recall that
ψn(z) =

√
πz
2
Jn+ 1

2
(z), where Jn+ 1

2
denote the Bessel functions of the first kind and

half-integer order, and that the functions ψn satisfy the differential equation

z2f ′′(z) + (z2 − n(n+ 1))f(z) = 0.
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Recall also that the spherical harmonics Y m
n (θ, ϕ), with |m| ≤ n, are eigenfunctions

of the Laplace-Beltrami operator ∆S2 on the unit sphere S2, namely

∆S2Y
m
n + n(n+ 1)Y m

n = 0.

For more details on these functions we refer to [1].
It it known (see e.g. [41, §8] or [66]) that the eigenpairs (λ, u) of problem (2.1.1)

in B are given by the union of the two families{
k2nh, curl[Y

m
n (θ, ϕ)ψn(knhρ)ρ̂]

}
nmh

,
{
(k′nl)

2, curl curl[Y m
n (θ, ϕ)ψn(k

′
nlρ)ρ̂]

}
nml
(2.5.1)

where n, h, l ∈ N, m ∈ Z with |m| ≤ n. Here knh, h ∈ N denote the positive zeros
of the function k ↦→ ψn(kR), arranged in increasing order and k′nl, l ∈ N denote
the positive zeros of the function k ↦→ ψ′

n(kR), arranged in the same way.
Now, we compute explicitly the eigenvectors in (2.5.1). Recalling the formula

curl(qρ̂) = ∇q × ρ̂ we have that

curl[Y m
n (θ, ϕ)ψn(knhρ)ρ̂]

=
1

ρ

(
1

sin θ
∂ϕ
(
Y m
n (θ, ϕ)

)
ψn(knhρ)θ̂ − ∂θ

(
Y m
n (θ, ϕ)

)
ψn(knhρ)ϕ̂

)
.

(2.5.2)

Observe that the vector in (2.5.2) is zero if and only if n = 0. Similarly, using the
formula curl curl(qρ̂) = ∇(∂ρq)− ρ∆( q

ρ
)ρ̂ and the fact that

−ρ∆(Y m
n (θ, ϕ)ψn(k ρ)/ρ) = k2Y m

n (θ, ϕ)ψn(k ρ),

see [41], we have that

curl curl[Y m
n (θ, ϕ)ψn(k

′
nlρ)ρ̂]

= (k′nl)
2Y m

n (θ, ϕ)
[
ψ′′
n(k

′
nlρ) + ψn(k

′
nlρ)
]
ρ̂+

1

ρ
k′nl∂θ

(
Y m
n (θ, ϕ)

)
ψ′
n(k

′
nlρ)θ̂

1

ρ sin θ
k′nl∂ϕ

(
Y m
n (θ, ϕ)

)
ψ′
n(k

′
nlρ)ϕ̂ =

1

ρ

(
n(n+ 1)

ρ
Y m
n (θ, ϕ)ψn(k

′
nlρ)ρ̂

+ k′nl∂θ
(
Y m
n (θ, ϕ)

)
ψ′
n(k

′
nlρ)θ̂ +

1

sin θ
k′nl∂ϕ

(
Y m
n (θ, ϕ)

)
ψ′
n(k

′
nlρ)ϕ̂

)
.

(2.5.3)

Again, this vector is zero if and only if n = 0. Then, we are ready to prove
the following theorem. Recall that the Riccati-Bessel function ψ1 is given by
ψ1(z) =

sin z
z

− cos z.
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Theorem 2.5.4. The first Maxwell eigenvalue in a ball of radius R centred at
zero is (k′11)

2 where k′11 is the first positive zero of the derivative of the rescaled
Riccati-Bessel function k ↦→ ψ′

1(Rk). Its multiplicity is three and the corresponding
Electric eigenspace is generated by the three Electric fields

E(m)(ρ, θ, ϕ) =
1

ρ

(
2

ρ
Y m
1 (θ, ϕ)ψ1(k

′
11ρ)ρ̂+ k′11∂θ

(
Y m
1 (θ, ϕ)

)
ψ′
1(k

′
11ρ)θ̂

+
1

sin θ
k′11∂ϕ

(
Y m
1 (θ, ϕ)

)
ψ′
1(k

′
11ρ)ϕ̂

)
,

(2.5.5)

for m = −1, 0, 1. The associated magnetic fields are given by

H(m)(ρ, θ, ϕ) = − i

k′11
curlE(m)(ρ, θ, ϕ)

=
ik′11
ρ

(
1

sin θ
∂ϕ
(
Y m
1 (θ, ϕ)

)
ψ1(k

′
11ρ)θ̂ − ∂θ

(
Y m
1 (θ, ϕ)

)
ψ1(k

′
11ρ)ϕ̂

)
.

(2.5.6)

Proof. Recall that ψn(z) = zjn(z) where jn are the spherical Bessel functions of
the first kind. Due to the above observations, we need to find the smallest positive
number z̄ > 0 such that there exists n ≥ 1 with either ψn(z̄) = 0 or ψ′

n(z̄) = 0;
the first eigenvalue would then be (z̄/R)2. Observe that the positive zeros of ψn

coincide with the zeros of jn. First, we recall a useful result about the zeros of the
spherical Bessel functions and their derivatives. Denote by an,s and by a′n,s the s-th
positive zero of the function jn and j′n respectively, for all n ∈ N; then we have the
following interlacing relations:

an,1 < an+1,1 < an,2 < an+1,2 < an,3 < · · ·

and
a′n,1 < a′n+1,1 < a′n,2 < a′n+1,2 < a′n,3 < · · · .

For a proof of these relations we refer to [89]. From this we can easily deduce that
for each s ∈ N, the sequences {an,s}∞n=1 and {a′n,s}∞n=1 are strictly monotonically
increasing.

Observe that since the functions ψn are smooth and ψn(0) = 0 for all n ∈ N,
the number z̄ we are looking for is the first positive zero of ψ′

n for some n ∈ N. We
claim that it is the first positive zero of the function

ψ′
1(z) =

cos z

z
+ sin z − sin z

z2
,

i.e. z̄ ∼ 2.74± 0.01. To prove this, note that

ψ′
n(z) = jn(z) + zj′n(z). (2.5.7)
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Since

jn(z) = zn
∞∑

m=0

(−1)m

m!(2m+ 2n+ 1)!!

(
z2

2

)m

,

then jn(0) = 0 and jn(z) > 0 for all n ∈ N and for all z between zero and an,1. Then
by (2.5.7), we have that ψ′

n(z) > 0 for all z ∈]0, a′n,1[. Due to the monotonicity of
the sequence a′n,1, n ∈ N, it is then sufficient to prove that z̄ ∈]0, a′2,1[, because in
this way the first positive zero of all other functions ψ′

n, n ≥ 2, will be necessarily
larger. Since a′2,1 ∼ 3.34 ± 0.01, the claim is proved, and the first eigenvalue is
k′11 = (z̄/R)2, where z̄ is the first positive zero of the function ψ′

1. The eigenvectors
and their curls are computed by using formulas (2.5.2) and (2.5.3) above and it is
easily seen that the multiplicity is three.



Chapter 3

Stability

In this chapter we study the spectral stability for the electric Maxwell problem. Note
that we will actually study the more general (penalized) problem (3.0.1), already
introduced in its weak formulation in the previous chapter. In Definition 3.1.12
we introduce the “Atlas Piola transform" and in Theorem 3.1.16 we prove some
properties. In Section 3.2 we prove the main result, concerning the spectral stability
(cf. Theorem 3.2.30). Then, in Section 3.3 we show that under the hypotheses on
the domains involved and on their rate of convergence (cf. (3.1.15)), a uniform
Gaffney inequality is valid, which in turn justifies the previous result on spectral
stability. Finally, in Section 3.4 we study the critical threshold case α = 3/2, which
is not covered by the previous theorems. Here α stands for the rate of oscillation
of the perturbed boundary (see also (3.3.3)). We prove a stability result for the
electric case (see Theorem 3.4.57) and, for the sake of completeness, we also provide
an analogous result for the magnetic case (see Theorem 3.4.109).

Consider the following penalized boundary value problem for the curl curl
operator subject to electric boundary conditions:⎧⎪⎨⎪⎩

curl curlu− τ∇divu = λu, in Ω,
divu = 0, on ∂Ω,
ν × u = 0, on ∂Ω,

(3.0.1)

where τ > 0 is any fixed positive real number.
The weak formulation of problem (3.0.1) is the following (cf. (2.1.3)):∫

Ω

curlu · curlϕdx+ τ

∫
Ω

divu divϕdx = λ

∫
Ω

u ·ϕdx, for all ϕ ∈ XN(Ω), (3.0.2)

in the unknowns u ∈ XN(Ω) and λ ∈ R.
As we have done in the previous chapter, we recast the eigenvalue problems

under consideration in the form of eigenvalue problems for compact self-adjoint

61
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operators and this can be done by passing to the analysis of the corresponding
resolvent operators. Hence we recall the following operator T from XN(Ω) to its
dual (XN(Ω))

′

< Tu, ϕ >=

∫
Ω

curlu · curlϕdx+ τ

∫
Ω

divu divϕdx for all u, ϕ ∈ XN(Ω),

and the map J from L2(Ω)3 to (XN(Ω))
′

< Ju, ϕ >=

∫
Ω

u · ϕdx for all u ∈ L2(Ω)3, ϕ ∈ XN(Ω).

Observe that the operator T + J is a homeomorphism from XN(Ω) to its dual by
the Riesz Theorem. Then we have the following (cf. (2.1.11))

Lemma 3.0.3. If Ω is a bounded domain in R3 such that the embedding ι of XN(Ω)
into L2(Ω)3 is compact , then the operator SΩ from L2(Ω)3 to itself defined by

SΩu := ι ◦ (T + J)−1 ◦ J

is a non-negative compact self-adjoint operator in L2(Ω)3 whose eigenvalues µ are
related to the eigenvalues λ of problem (3.0.2) by the equality µ = (λ+ 1)−1.

By the previous lemma and standard spectral theory it follows that the eigen-
values of problem (3.0.2) can be represented by the sequence λn(Ω), n ∈ N defined
by λn(Ω) = µ−1

n (Ω) − 1. Moreover, the classical Min-Max Principle yields the
following variational representation

λn(Ω) = min
V⊂XN(Ω)
dimV=n

max
u∈V \{0}

∫
Ω

(
|curlu|2 + τ |divu|2

)
dx∫

Ω
|u|2 dx

. (3.0.4)

3.1 A Piola-type approximation of the identity
As we have seen in Chapter 2, given two domains Ω and Ω̃ in R3 and a diffeomor-
phism Φ : Ω̃ → Ω of class C1,1, the standard way to pull-back vector fields from
XN(Ω) to XN(Ω̃) consists in using the (covariant) Piola transform defined by

u(x) =
(
(v ◦ Φ)DΦ

)
(x), for all x ∈ Ω̃, (3.1.1)

for all v ∈ XN(Ω). By Theorem 2.2.4 we have that v ∈ H0(curl,Ω) if and only if
u ∈ H0(curl, Ω̃), in which case we have

(curl v) ◦ Φ =
curlu (DΦ)T

det (DΦ)
. (3.1.2)
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Moreover, note that by Theorem 2.2.11, for functions u, v in H1 we also have

(div v) ◦ Φ =
div
[
u(DΦ)−1(DΦ)−T det(DΦ)

]
det(DΦ)

, (3.1.3)

and in this case v ∈ XN(Ω) ∩H1(Ω)3 if and only if u ∈ XN(Ω̃) ∩H1(Ω̃)3. Unfortu-
nately, given two domains Ω and Ω̃, in general it is not possible to define explicitly a
diffeomorphism between Ω and Ω̃ (even if it is known a priori that the two domains
are diffeomorphic). Nevertheless, it is important for our purposes to define an
operator which allows to pass from XN(Ω) to XN(Ω̃) as the Piola transform does.
This can be done by assuming that Ω and Ω̃ belongs to the same atlas class and
using a partition of unity in order to paste together Piola transforms defined locally,
as described in the following. Note that the specific choice of local Piola transforms
reflects our need for a transformation close to the identity.

Let A be a fixed atlas in R3 and let Ω, Ω̃ be two domains of class C1,1(A). Let
gj, g̃j be the profile functions of Ω and Ω̃ as in Definition 1.0.1.Assume that k > 0
is such that

k > max
j=1,...,s′

∥g̃j − gj∥∞, and g̃j − k > a3,j + ρ, ∀j = 1, . . . , s′. (3.1.4)

For any j = 1, . . . , s′ we set
ĝj := g̃j − k (3.1.5)

and we define the map hj : rj(Ω̃ ∩ Vj) → R

hj(x̄, x3) :=

⎧⎨⎩ 0, if a3j ≤ x3 ≤ ĝj(x̄),

(g̃j(x̄)− gj(x̄))
(

x3−ĝj(x̄)

g̃j(x̄)−ĝj(x̄)

)3
, if ĝj(x̄) < x3 ≤ g̃j(x̄),

(3.1.6)

and the map

Φj : rj(Ω̃ ∩ Vj) → rj(Ω ∩ Vj), Φj(x̄, x3) := (x̄, x3 − hj(x̄, x3)). (3.1.7)

Note that Φj coincides with the identity map on the set

Kj :=
{
(x̄, x3) ∈ Wj×]a3j, b3j[ : a3j < x3 < ĝj(x̄)

}
. (3.1.8)

Finally, if s′ + 1 ≤ j ≤ s we define Φj : rj(Vj) → rj(Vj) to be the identity map.
Observe that since hj ∈ C1,1(rj(Ω̃ ∩ Vj)), then Φj is of class C1,1, and so is the

following map

Ψj : Ω̃ ∩ Vj → Ω ∩ Vj, Ψj := r−1
j ◦ Φj ◦ rj. (3.1.9)
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An easy computation shows that if

k >
3

α
max

j=1,...,s′
∥g̃j − gj∥∞ (3.1.10)

for some constant α ∈]0, 1[ then

0 < 1− α ≤ det(DΨj(x)) ≤ 1 + α for any x ∈ Ω̃ ∩ Vj. (3.1.11)

Let {ψj}sj=1 be a C∞-partition of unity associated with the open cover {Vj}sj=1

of the compact set ∪s
j=1(Vj)ρ that is 0 ≤ ψj ≤ 1, supp(ψj) ⊂ Vj for all j = 1, . . . , s,

and
∑s

j=1 ψj ≡ 1 in ∪s
j=1(Vj)ρ, in particular also in Ω ∪ Ω̃. Note that this is a

partition of unity is independent of Ω, Ω̃ in the atlas class under consideration.
Since for any ϕ ∈ XN(Ω) we have ϕ =

∑s
j=1 ϕj where ϕj := ψjϕ, then it is

natural to give the following (note that here we consider open sets of class C1,1

hence the spaces XN are embedded into H1).

Definition 3.1.12. Let A be an atlas in R3 and Ω, Ω̃ be two domains of class
C1,1(A). Assume that k > 0 satisfies (3.1.4), and {ψj}sj=1 is a partition of unity as
above. The Atlas Piola transform from Ω to Ω̃, with parameters A, k, and {ψj}sj=1,
is the map from XN(Ω) to XN(Ω̃) defined by

Pϕ :=
s′∑

j=1

ϕ̃j +
s∑

j=s′+1

ϕj (3.1.13)

for all ϕ ∈ XN(Ω), where

ϕ̃j(x) :=

{
(ϕj ◦Ψj(x))DΨj(x), if x ∈ Ω̃ ∩ Vj,
0, if x ∈ Ω̃ \ Vj,

(3.1.14)

for any j = 1, . . . , s′.

This Atlas Piola transform will be used in the following for a family Ωϵ, ϵ > 0
of domains of class C1,1(A), converging in some sense to a domain Ω of class
C1,1(A). In this case, Ωϵ will play the role of the domain Ω̃ and the corresponding
transformation will allow us to pass from XN(Ω) to XN(Ωϵ).

Given a family of domains Ωϵ, ϵ > 0, and a fixed domain Ω, all of class C1,1(A),
we shall denote by gϵ,j and gj the corresponding profile functions (defined on Wj) of
Ωϵ and Ω respectively, as in Definition 1.0.1. Following [11, 54], we use a notion of
convergence for the open sets Ωϵ to Ω, which is expressed in terms of convergence
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of the the profile functions gϵ,j to gj. Namely, we assume that for any ϵ > 0 there
exists κϵ > 0 such that for any j ∈ {1, . . . , s′}

(i) κϵ > max
j=1,...,s′

gϵ,j − gj

L∞(Wj)

;

(ii) lim
ϵ→0

κϵ = 0;

(iii) lim
ϵ→0

maxj=1,...,s′
Dβ(gϵ,j − gj)


L∞(Wj)

κ
3/2−|β|
ϵ

= 0 for all β ∈ N3 with |β| ≤ 2.

(3.1.15)

Note that if every function gϵ,j converges to gj uniformly together with the first
order derivatives and

sup
ϵ>0

sup
x̄∈R2

|D2gϵ,j(x̄)| <∞

is satisfied (in particular, if the second order derivatives of gϵ,j converge uniformly
to those of gj), then conditions (3.1.15) are fulfilled, see [11].

We now fix a partition of unity {ψj}sj=1 associated with the covering of cuboids
of the atlas A as above, and independent of Ωϵ and Ω. We also choose k = 6κϵ and
we denote by Pϵ the Atlas Piola transform from Ω to Ωϵ (with parameters A, k,
{ψj}sj=1 ). Note that conditions (3.1.4), (3.1.10) (3.1.11) are satisfied with α = 1/2
if ϵ is sufficiently small.

In the following, we shall denote by ĝϵ,j, hϵ,j, Φϵ,j, Kϵ,j, Ψϵ,j, ϕ̃ϵ,j all quantities
defined in (3.1.5), (3.1.6), (3.1.7), (3.1.8), (3.1.9), (3.1.14) respectively, with Ω̃ = Ωϵ

and k = 6κϵ.
Then we can prove the following theorem. We note that in the proof, some

technical issues related to pasting together functions defined in different charts are
treated in the spirit of the arguments used in [54] for the Sobolev spaces H2(Ω).

Theorem 3.1.16. Let Ωϵ, ϵ > 0, and Ω be bounded domains of class C1,1(A).
Assume that Ωϵ converges to Ω as ϵ → 0 in the sense of (3.1.15). Let Pϵ be the
Atlas Piola transform from Ω to Ωϵ defined for ϵ sufficiently small as above. Then
the following statements hold:

(i) for any ε > 0 the function Pϵ maps XN(Ω) to XN(Ωϵ) with continuity;

(ii) for any compact set K contained in Ω there exists ϵK > 0 such that

(Pϵϕ)(x) = ϕ(x), ∀x ∈ K (3.1.17)

for all ϵ ∈]0, ϵK[ and ϕ ∈ XN(Ω);

(iii) the limit
∥Pϵϕ∥XN(Ωϵ)

−−→
ϵ→0

∥ϕ∥XN(Ω) , (3.1.18)

holds for all ϕ ∈ XN(Ω);
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(iv) the limit
∥Pϵϕ− ϕ∥X(Ωϵ∩Ω) −−→ϵ→0

0, (3.1.19)

holds for all ϕ ∈ XN(Ω).

Proof. Let ϕ ∈ XN(Ω) be fixed. Note that Ω is of class C1,1 hence the Gaffney
inequality holds and ϕ ∈ H1(Ω)3. Moreover, ϕj ∈ XN(Ω) ∩ H1(Ω)3 for all j =
1, . . . , s′ hence ϕ̃ϵ,j belongs to XN(Ωϵ)∩H1(Ωϵ)

3 for all j = 1, . . . , s′. It follows that
Pϵϕ ∈ XN(Ωϵ). The continuity of the operator Pϵ will be addressed at the end of
the proof.

Let us proceed and prove (ii). For any fixed compact set K contained in Ω,
since ĝϵ,j converges uniformly to gj, we have

K ∩ Vj ⊂ r−1
j (Kϵ,j)

for all j = 1, . . . , s′ and ϵ sufficiently small; this, combined with the fact that
Φϵ,j coincides with the identity on Kϵ,j, it follows that ϕ̃ϵ,j = ϕj on K for all ϵ
sufficiently small and (3.1.17) follows.

We now prove statement (iii). We have to prove the following limiting relations:

lim
ϵ→0

∫
Ωϵ

|Pϵϕ|2 =
∫
Ω

|ϕ|2 , (3.1.20)

lim
ϵ→0

∫
Ωϵ

|curlPϵϕ|2 =
∫
Ω

|curlϕ|2 , (3.1.21)

lim
ϵ→0

∫
Ωϵ

|divPϵϕ|2 =
∫
Ω

|divϕ|2 . (3.1.22)

We begin by proving (3.1.20). To see this, it just suffices to show that

lim
ϵ→0

∫
Ωϵ

ϕ̃ϵ,j · ϕ̃ϵ,h =

∫
Ω

ϕj · ϕh, (3.1.23)

and
lim
ϵ→0

∫
Ωϵ

ϕ̃ϵ,j · ϕi =

∫
Ω

ϕj · ϕi (3.1.24)

for any j, h ∈ {1, . . . , s′} and i ∈ {s′ + 1, . . . , s}. We will only show (3.1.23), since
the computations to prove (3.1.24) are similar. We will first see that

lim
ϵ→0

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕ̃ϵ,j

⏐⏐2 = 0. (3.1.25)

Notice that for any j ∈ {1, . . . , s′} we have
⏐⏐⏐(Ω ∩ Vj) \ r−1

j (Kϵ,j)
⏐⏐⏐→ 0 as ϵ goes to

0. Moreover, if w ∈ R3 is a vector, then
⏐⏐wDΨϵ,j

⏐⏐ = ⏐⏐wDΦϵ,j

⏐⏐ ≤ C|w| for some
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C > 0 independent of ϵ, since

DΦϵ,j =

⎛⎜⎝ 1 0 0
0 1 0

−∂hϵ,j

∂x1
−∂hϵ,j

∂x2
1− ∂hϵ,j

∂x3

⎞⎟⎠
and the first derivatives of hϵ,j are all bounded due to the hypothesis on the
functions gϵ,j (see also (3.1.40)). Note that here and in what follows, by c we denote
a constant independent of ϵ which may vary from line to line. Then by using also
(3.1.11), we have∫

(Ωϵ∩Vj)\r−1
j (Kϵ,j)

⏐⏐ϕ̃ϵ,j

⏐⏐2 dy =

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐(ϕj ◦Ψϵ,j)DΨϵ,j

⏐⏐2 dy
≤ c

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕj ◦Ψϵ,j

⏐⏐2 dy
= c

∫
(Ω∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕj

⏐⏐2⏐⏐⏐det(DΨϵ,j) ◦Ψ(−1)
ϵ,j

⏐⏐⏐ dx
≤ c

∫
(Ω∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕj

⏐⏐2 dx −−→
ϵ→0

0.

By (3.1.25) we deduce that

lim
ϵ→0

∫
Ωϵ

⏐⏐ϕ̃ϵ,j

⏐⏐2 = ∫
Ω

⏐⏐ϕj

⏐⏐2 . (3.1.26)

Indeed, since Ψϵ,j is the identity on r−1
j (Kϵ,j) ⊂ Ω ∩ Ωϵ, using (3.1.25) yields∫

Ωϵ

⏐⏐ϕ̃ϵ,j

⏐⏐2 = ∫
r−1
j (Kϵ,j)

⏐⏐ϕ̃ϵ,j

⏐⏐2 + ∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕ̃ϵ,j

⏐⏐2 −−→
ϵ→0

∫
Ω∩Vj

⏐⏐ϕj

⏐⏐2 = ∫
Ω

⏐⏐ϕj

⏐⏐2 .
Observe now that∫

Ωϵ

ϕ̃ϵ,j · ϕ̃ϵ,h =

∫
Ωϵ∩Vj∩Vh

ϕ̃ϵ,j · ϕ̃ϵ,h

=

∫
r−1
j (Kϵ,j)∩r−1

h (Kϵ,h)

ϕ̃ϵ,j · ϕ̃ϵ,h +

∫
(Ωϵ∩Vj∩Vh)\(r−1

j (Kϵ,j)∩r−1
h (Kϵ,h))

ϕ̃ϵ,j · ϕ̃ϵ,h.

(3.1.27)

It is obvious that

lim
ϵ→0

∫
r−1
j (Kϵ,j)∩r−1

h (Kϵ,h)

ϕ̃ϵ,j ·ϕ̃ϵ,h = lim
ϵ→0

∫
r−1
j (Kϵ,j)∩r−1

h (Kϵ,h)

ϕj ·ϕh =

∫
Ω

ϕj ·ϕh. (3.1.28)
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Here and in the following we will make use of the identity

(Ωϵ ∩ Vj ∩ Vh) \ (r−1
j (Kϵ,j) ∩ r−1

h (Kϵ,h)) =

[(Ωϵ ∩ Vj ∩ Vh) \ r−1
j (Kϵ,j)] ∪ [(r−1

j (Kϵ,j) \ r−1
h (Kϵ,h)) ∩ Vh].

(3.1.29)

Observe that by (3.1.25), (3.1.26) we get⏐⏐⏐⏐⏐
∫
(Ωϵ∩Vj∩Vh)\r−1

j (Kϵ,j)

ϕ̃ϵ,j · ϕ̃ϵ,h

⏐⏐⏐⏐⏐
≤

(∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕ̃ϵ,j

⏐⏐2) 1
2
(∫

Ωϵ∩Vh

⏐⏐ϕ̃ϵ,h

⏐⏐2) 1
2

−−→
ϵ→0

0,

(3.1.30)

and ⏐⏐⏐⏐⏐
∫
(r−1

j (Kϵ,j)\r−1
h (Kϵ,h))∩Vh

ϕ̃ϵ,j · ϕ̃ϵ,h

⏐⏐⏐⏐⏐
≤

(∫
r−1
j (Kϵ,j)

⏐⏐ϕ̃ϵ,j

⏐⏐2) 1
2
(∫

(Ωϵ∩Vh)\r−1
h (Kϵ,h)

⏐⏐ϕ̃ϵ,h

⏐⏐2) 1
2

−−→
ϵ→0

0.

(3.1.31)

Hence, by formula (3.1.29), we see that the second term of the sum in (3.1.27)
vanishes as ϵ goes to zero, hence we deduce the validity of (3.1.23) from (3.1.27)
and (3.1.28).

We now prove (3.1.21). Again, we need to check that

lim
ϵ→0

∫
Ωϵ

curl ϕ̃ϵ,j · curl ϕ̃ϵ,h =

∫
Ω

curlϕj · curlϕh (3.1.32)

for any j, h ∈ {1, . . . , s′}. Note that

DΦ
(−1)
ϵ,j =

1

det(DΦϵ,j)

⎛⎜⎜⎝1− ∂hϵ,j

∂x3
0 0

0 1− ∂hϵ,j

∂x3
0

∂hϵ,j

∂x1

∂hϵ,j

∂x2
1

⎞⎟⎟⎠ ◦ Φ(−1)
ϵ,j ,

and recall that Ψϵ,j = r−1
j ◦ Φϵ,j ◦ rj. Moreover, by (3.1.2) we have

curl ϕ̃ϵ,j =
(
curlϕj ◦Ψϵ,j

)
(DΨϵ,j)

−T detD(Ψϵ,j) on Ωϵ ∩ Vj (3.1.33)

so that ⏐⏐curl ϕ̃ϵ,j

⏐⏐ ≤ c
⏐⏐curlϕj ◦Ψϵ,j

⏐⏐ .
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Then, with computations analogous to those performed above, we get

lim
ϵ→0

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐curl ϕ̃ϵ,j

⏐⏐2 = 0. (3.1.34)

It is also obvious that

lim
ϵ→0

∫
r−1
j (Kϵ,j)

⏐⏐curl ϕ̃ϵ,j

⏐⏐2 = ∫
Ω

⏐⏐curlϕj

⏐⏐2 (3.1.35)

and thus
lim
ϵ→0

∫
Ωϵ

⏐⏐curl ϕ̃ϵ,j

⏐⏐2 = ∫
Ω

⏐⏐curlϕj

⏐⏐2 . (3.1.36)

By using the same argument above, formula (3.1.29) together with the new identities
(3.1.34), (3.1.35) and (3.1.36), we obtain (3.1.32) .

Finally, we prove (3.1.22). To do so, we need to prove that

lim
ϵ→0

∫
Ωϵ

div ϕ̃ϵ,j div ϕ̃ϵ,h =

∫
Ω

divϕj divϕh (3.1.37)

for any j, h ∈ {1, . . . , s′}. Here and in the rest of the proof, the vectors under consid-
eration will be represented as follows: ϕj = (ϕ1

j , ϕ
2
j , ϕ

3
j) and Ψϵ,j = (Ψ1

ϵ,j,Ψ
2
ϵ,j,Ψ

3
ϵ,j).

Since ϕ ∈ XN(Ω) and the Gaffney inequality holds on Ω, it follows that ϕ ∈
H1(Ω)3. Thus, recalling that ϕ̃ϵ,j(x) = (ϕj ◦Ψϵ,j(x))DΨϵ,j(x) for all x ∈ Ωϵ ∩ Vj , it
is possible to apply the chain rule and obtain that

div(ϕ̃ϵ,j) =
3∑

m,n,i=1

(
∂ϕm

j

∂xn
(Ψϵ,j)

∂Ψn
ϵ,j

∂xi

∂Ψm
ϵ,j

∂xi

)
  

type A

+
3∑

m,i=1

ϕm
j (Ψϵ,j)

∂2Ψm
ϵ,j

∂x2i  
type B

in Ωϵ ∩ Vj.

(3.1.38)
where the terms in the first sum are called of type A and the others are called
terms of type B.

Recall that hϵ,j are the functions in (3.1.6) used to define the diffeomorphisms
Φϵ,j. We note that by the Leibniz rule we have

Dαhϵ,j(x) =
∑

0≤γ≤α

(
α

γ

)
Dγ
(
gϵ,j(x̄)− gj(x̄)

)
Dα−γ

(
x3 − ĝϵ,j(x̄)

gϵ,j(x̄)− ĝϵ,j(x̄)

)3

for all x = (x̄, x3) ∈ Wj×]a3j, b3j [ with ĝε,j(x) < x3 < gε,j(x). Moreover by standard
calculus⏐⏐⏐⏐⏐⏐Dα−γ

(
x3 − ĝϵ,j(x̄)

gϵ,j(x̄)− ĝϵ,j(x̄)

)3
⏐⏐⏐⏐⏐⏐ ≤ c⏐⏐gϵ,j(x̄)− ĝϵ,j(x̄)

⏐⏐|α|−|γ| ≤
c

κ
|α|−|γ|
ϵ

. (3.1.39)
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Therefore

Dαhϵ,j

∞ ≤ c

∑
0≤γ≤α

Dγ(gϵ,j − gj)

∞

κ
|α|−|γ|
ϵ

(3.1.40)

for all ϵ > 0 sufficiently small. It follows by the definitions of Ψϵ,j,Φϵ,j, by (3.1.40)
and part (iii) of condition (3.1.15), that for all m, i = 1, 2, 3

∂2Ψm
ϵ,j

∂x2i


L∞(Ωϵ∩Vj)

= o(κ−1/2
ϵ ), as ϵ→ 0. (3.1.41)

We claim that

lim
ϵ→0

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐div ϕ̃ϵ,j

⏐⏐2 = 0. (3.1.42)

To prove that, we analyse first the terms of type A in (3.1.38). By changing
variables in integrals we get:

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐⏐⏐⏐∂ϕm
j

∂xn
◦Ψϵ,j

⏐⏐⏐⏐⏐
2⏐⏐⏐⏐⏐∂Ψn

ϵ,j

∂xi

⏐⏐⏐⏐⏐
2⏐⏐⏐⏐⏐∂Ψm

ϵ,j

∂xi

⏐⏐⏐⏐⏐
2

dy

≤ c

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐⏐⏐⏐∂ϕm
j

∂xn
◦Ψϵ,j

⏐⏐⏐⏐⏐
2

dy

= c

∫
(Ω∩Vj)\r−1

j (Kϵ,j)

⏐⏐⏐⏐⏐∂ϕm
j

∂xn

⏐⏐⏐⏐⏐
2

1⏐⏐⏐det(DΨϵ,j) ◦Ψ(−1)
ϵ,j

⏐⏐⏐ dx
≤ c

∫
(Ω∩Vj)\r−1

j (Kϵ,j)

⏐⏐⏐⏐⏐∂ϕm
j

∂xn

⏐⏐⏐⏐⏐
2

dx −−→
ϵ→0

0.

(3.1.43)

We now consider the terms of type B. By setting ηj(z) := ϕj(r
−1
j (z)) and recalling
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(3.1.41) we have that∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐⏐⏐⏐ϕm
j (Ψϵ,j)

∂2Ψm
ϵ,j

∂x2i

⏐⏐⏐⏐⏐
2

dy

≤

∂2Ψm
ϵ,j

∂x2i


2

L∞(Ωϵ∩Vj)

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕj(Ψϵ,j)
⏐⏐2 dy

= o(κ−1
ϵ )

∫
(Ω∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕj

⏐⏐2 1⏐⏐⏐det(DΨϵ,j) ◦Ψ(−1)
ϵ,j

⏐⏐⏐ dx
≤ o(κ−1

ϵ )

∫
(Ω∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕj(x)
⏐⏐2 dx

= o(κ−1
ϵ )

∫
rj(Ω∩Vj)\Kϵ,j

⏐⏐ηj(z)⏐⏐2 dz
= o(κ−1

ϵ )

∫
Wj

(∫ gj(z̄)

ĝϵ,j(z̄)

⏐⏐ηj(z̄, z3)⏐⏐2 dz3) dz̄
≤ o(κ−1

ϵ )

∫
Wj

⏐⏐gj(z̄)− ĝϵ,j(z̄)
⏐⏐ηj(z̄, ·)2L∞(a3j ,gj(z̄))3

dz̄

≤ o(κ−1
ϵ )
gj − ĝϵ,j


L∞(Wj)

∫
Wj

ηj(z̄, ·)2H1(a3j ,gj(z̄))3
dz̄

≤ o(κ−1
ϵ )κϵ

ηj2H1(rj(Ω∩Vj))3
−−→
ϵ→0

0.

(3.1.44)

Here we have used the following one dimensional embedding estimate for functions
in Sobolev space (see e.g., Burenkov [25]):

∥f∥L∞(a,b) ≤ c∥f∥H1(a,b)

for all f ∈ H1(a, b), where the constant c = c(d) is uniformly bounded for|b− a| > d.
We conclude that (3.1.42) holds.

Using (3.1.42), the fact that Ψϵ,j in r−1
j (Kϵ,j) coincides with the identity and

that⏐⏐⏐(Ω ∩ Vj) \ r−1
j (Kϵ,j)

⏐⏐⏐→ 0 as ϵ goes to 0, we deduce that

lim
ϵ→0

∫
r−1
j (Kϵ,j)

⏐⏐div ϕ̃ϵ,j

⏐⏐2 = ∫
Ω

⏐⏐divϕj

⏐⏐2 , (3.1.45)

and
lim
ϵ→0

∫
Ωϵ

⏐⏐div ϕ̃ϵ,j

⏐⏐2 = ∫
Ω

⏐⏐divϕj

⏐⏐2 . (3.1.46)
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With (3.1.42), (3.1.45) and (3.1.46) in mind, in order to prove (3.1.37), it suffices
to reproduce the same argument used before starting from (3.1.27) combined with
formula (3.1.29). We omit the details. Thus statement (iii) is proved.

The proof of statement (iv) follows by the same considerations above. First
of all, for any j = 1, . . . , s′ the function ϕ̃ϵ,j coincides with ϕj on r−1

j (Kϵ,j). Thus
Pϵϕ = ϕ on (∪j=1,...,s′r

−1
j (Kϵ,j)) ∪ (∪j=s′+1,...,sVj). It follows that

∥Pϵϕ− ϕ∥X(Ωϵ∩Ω) ≤ ∥Pϵϕ− ϕ∥X(∪j=1,...,s′ (Ωϵ∩Vj)\r−1
j (Kϵ,j))

This combined with by the limiting relations (3.1.25), (3.1.34) and (3.1.42) yields
the validity of statement (iv).

We finish by proving the continuity of the operator Pϵ : XN(Ω) → XN(Ωϵ), where
ϵ > 0 is fixed. In order to do that we will show that if a sequence {ϕk}k∈N ⊂ XN(Ω)
converges to ϕ in XN(Ω), then {Pϵϕk}k∈N converges to Pϵϕ in XN(Ωϵ) as k goes to
infinity. This in turn boils down to show that

Pϵϕk −−−→
k→∞

Pϵϕ, curlPϵϕk −−−→
k→∞

curlPϵϕ, divPϵϕk −−−→
k→∞

divPϵϕ

in L2(Ωϵ)
3. We will prove only the first limit since the other limiting relations can

be proved in the same way.
Consider∫

Ωϵ

|Pϵϕk − Pϵϕ|2 dx =

∫
Ωϵ

⏐⏐⏐⏐ s′∑
j=1

(
(ϕ̃k)ϵ,j − ϕ̃ϵ,j

)
+

s∑
j=s′+1

(
(ϕk)j − ϕj

) ⏐⏐⏐⏐2dx
≤ 2s

s′∑
j=1

∫
Ωϵ

⏐⏐(ϕ̃k)ϵ,j − ϕ̃ϵ,j

⏐⏐2 dx+ 2s
s∑

j=s′+1

∫
Ωϵ

⏐⏐(ϕk)j − ϕj

⏐⏐2 dx.
(3.1.47)

By changing variables in the integral we have that∫
Ωϵ

⏐⏐(ϕ̃k)ϵ,j − ϕ̃
⏐⏐2 dx =

∫
Ωϵ

⏐⏐⏐⏐(((ϕk)j − ϕj

)
◦Ψϵ,j

)
DΨϵ,j

⏐⏐⏐⏐2 dx
≤ C

∫
Ω

⏐⏐(ϕk)j − ϕj

⏐⏐2 dx,
where C > 0 is independent of k ∈ N. Moreover, since 0 ≤ ψj ≤ 1,∫

Ωϵ

⏐⏐(ϕk)j − ϕj

⏐⏐2 dx =

∫
Ωϵ

|ϕk − ϕ|2
⏐⏐ψj

⏐⏐2 dx ≤∥ϕk − ϕ∥2L2(Ωϵ)3
−−−→
k→∞

0

for any j = 1, . . . , s. Hence we proved that the right-hand side of (3.1.47) goes to
0 as k goes to infinity.
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The cases for the curl and the divergence are similar: one just needs to make use
of formulas (3.1.33), (3.1.38) and remember that thanks to the Gaffney inequality,
which holds in Ω, the sequence ϕk converges to ϕ in H1(Ω)3. We skip the details.

3.2 Spectral stability
Let Ωϵ, ϵ > 0, and Ω be bounded domains of class C1,1(A). For simplicity, it is
convenient to set Ω0 = Ω. In this section, we prove that if Ωϵ converges to Ω
as ϵ → 0 in the sense of (3.1.15), and a uniform Gaffney inequality holds on the
domains Ωϵ then we have spectral stability for the curlcurl operator defined on the
domains Ωϵ with respect to the reference domain Ω. By uniform Gaffney inequality,
we mean that the spaces XN(Ωϵ) are embedded into H1(Ωϵ)

3 and there exists a
positive constant C independent of ϵ such that

∥u∥H1(Ωϵ)3 ≤ C∥u∥XN(Ωϵ) , (3.2.1)

for all u ∈ XN(Ωϵ) and ϵ > 0. (Note that by Theorem 1.3.2, for every ϵ > 0 there
exists a positive constant Cϵ, possibly depending on ϵ, such that (3.2.1) holds, but
here we need a constant independent of ϵ).

To do so, for any ϵ ≥ 0, we denote by Sϵ the operator SΩϵ from L2(Ωϵ) to itself
defined in Lemma 3.0.3. Recall that if fϵ ∈ L2(Ωϵ)

3 is the datum of the following
Poisson problem⎧⎪⎨⎪⎩

curl curl vϵ − τ∇ div vϵ + vϵ = fϵ, in Ωϵ,
div vϵ = 0, on ∂Ωϵ,
vϵ × ν = 0, on ∂Ωϵ,

(3.2.2)

then the unique solution vϵ ∈ XN(Ωϵ) is precisely Sϵfϵ, that is vϵ = Sϵfϵ. Recall
that τ is a fixed positive constant (one could normalise it by setting τ = 1 but we
prefer to keep it as it is also with reference to other papers where it is important to
have the possibility to use different values of τ , see for example Remark 2.1.9). In
this section we prove that Sϵ compactly converges to S0 as ϵ→ 0, and this implies
spectra stability. This has to be understood in the following sense.

We denote by E = {Eϵ}ϵ>0 the family of the extension-by-zero operators
Eϵ : L

2(Ω)3 → L2(Ωϵ)
3 defined by

Eϵϕ = ϕ0 =

{
ϕ, if x ∈ Ωϵ ∩ Ω,

0, if x ∈ Ωϵ \ Ω,
(3.2.3)

for all ϕ ∈ L2(Ω)3. Note that under our assumptions we have that for all ϕ ∈ L2(Ω)3

lim
ϵ→0

∥Eϵϕ∥L2(Ωϵ)3
=∥ϕ∥L2(Ω)3 ,
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since
⏐⏐Ω \ (Ωϵ ∩ Ω)

⏐⏐ → 0 as ϵ goes to 0. We recall the following definition from
[111], see also [8] and [29].

Definition 3.2.4. Let uϵ ∈ L2(Ωϵ), for ϵ > 0, be a family of functions. We say
that uϵ E-converges to u0 ∈ L2(Ω) as ϵ→ 0 and we write uϵ

E−→ u0 if

∥uϵ − Eϵu0∥L2(Ωϵ) → 0, as ϵ→ 0 .

We also say that Sϵ E-converges to S0 as ϵ→ 0 and we write Sϵ
EE−−→ S0 if for any

family of functions fϵ ∈ L2(Ωϵ), we have

fϵ
E−→ f0 =⇒ Sϵfϵ

E−→ S0f0 .

Finally, we say that Sϵ E-compact converges to S0 as ϵ → 0 and we write
Sϵ

C−→ S0 if Sϵ
EE−−→ S0 and for any family of functions fϵ ∈ L2(Ωϵ), with ∥fϵ∥L2(Ωϵ) = 1

and any sequence of positive numbers ϵn with ϵn → 0, there exists a subsequence
ϵnk

and u ∈ L2(Ω) such that Sϵnk
fnk

E−→ u.

The following theorem from [111, Thm. 6.3] holds.

Theorem 3.2.5. If Sϵ
C−→ S0 then the eigenvalues of the operator Sϵ converge to the

eigenvalues of the operator S0, and the eigenfunctions of the operator Sϵ E-converge
to the eigenfunctions of the operator S0 as ϵ→ 0.

If we denote by µn(ϵ), n ∈ N the sequence of eigenvalues of Sϵ and by un(ϵ),
n ∈ N a corresponding orthonormal sequence of eigenfunctions, then the stability of
eigenvalues and eigenfunctions stated above has to be interpreted in the following
sense:

(i) For every n ∈ N we have µn(ϵ) → µn(0) as ϵ→ 0.

(ii) For any sequence ϵk, k ∈ N, converging to zero there exists an orthonormal
sequence of eigenfunctions un(0), n ∈ N in L2(Ω)3 associated with µn(0),
n ∈ N such that, possibly passing to a subsequence of ϵk, un(ϵk)

E−→ un(0).

(iii) Given m eigenvalues µn(0), . . . , µn+m−1(0) with

µn(0) ̸= µn−1(0) and µn+m−1(0) ̸= µn+m(0)

and corresponding orthonormal eigenfunctions un(0), . . . , un+m−1(0), there
exist m orthonormal generalized eigenfunctions (i.e. linear combinations
of eigenfunctions) vn(ϵ), . . . , vn+m−1(ϵ) associated with µn(ϵ), . . . , µn+m−1(ϵ)

such that vn+i(ϵ)
E−→ un+i(0) for all i = 0, 1, . . . ,m− 1.
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Recall that µ is an eigenvalue of Sϵ if and only if λ = µ−1 is an eigenvalue of
the problem ⎧⎪⎪⎨⎪⎪⎩

curl curl vϵ − τ∇ div vϵ + vϵ = λvϵ, in Ωϵ,

div vϵ = 0, on ∂Ωϵ,

vϵ × ν = 0, on ∂Ωϵ.

(3.2.6)

and that the corresponding eigenfunctions are the same. Note that the eigenvalues
of (3.2.6) differ from those of (3.0.1) just by a translation. Thus, studying the
stability of eigenvalues and eigenfunctions of the problem (3.2.6) or (3.0.1), is
equivalent to studying the spectral stability of the family of operators Sϵ. To do
so, we recall that the weak formulation of problem (3.2.2) reads as follows: find
vϵ ∈ XN(Ωϵ) such that∫

Ωϵ

vϵ · η dx+
∫
Ωϵ

curl vϵ · curl η dx+ τ

∫
Ωϵ

div vϵ div η dx =

∫
Ωϵ

fϵ · η dx (3.2.7)

for all η ∈ XN(Ωϵ).
Suppose that for every ϵ > 0 we have that ∥fϵ∥L2(Ωϵ)3

≤ C for some C > 0.
Then, setting η = vϵ in (3.2.7) and observing that

∫
Ωϵ
fϵ · vϵ dx ≤ 1

2

∫
Ωϵ
|fϵ|2 dx +

1
2

∫
Ωϵ
|vϵ|2 dx, we get

1

2

∫
Ωϵ

|vϵ|2 dx+
∫
Ωϵ

|curl vϵ|2 dx+ τ

∫
Ωϵ

|div vϵ|2 dx ≤ 1

2

∫
Ωϵ

|fϵ|2 dx.

This in turn implies that for all ϵ > 0

∥vϵ∥XN(Ωϵ)
=
(
∥vϵ∥2L2(Ωϵ)3

+ ∥curl vϵ∥2L2(Ωϵ)3
+ ∥div vϵ∥2L2(Ωϵ)

)1/2
≤ c∥fϵ∥L2(Ωϵ)

= O(1).
(3.2.8)

In order to prove the E-convergence of the operators Sϵ, it is necessary to
consider the limit of functions vϵ. We note that if Ω ⊂ Ωϵ for all ϵ > 0 then it
would suffice to consider the restriction of vϵ to Ω and pass to the weak limit in Ω.
Otherwise, it is convenient to extend functions vϵ to the whole of R3. To do so, we
observe that by the uniform Gaffney inequality combined with inequality (3.2.8) it
follows that ∥vϵ∥H1(Ωϵ)3 is uniformly bounded. Moreover, the domains Ωϵ belongs
to the same Lipschitz class C0,1

M (A) for some M > 0 hence the functions vϵ can be
extended to the whole of R3 with a uniformly bounded norm, see e.g., [25]. Thus,
in the sequel we shall directly make the following assumption:

vϵ ∈ H1(R3)3 ∩XN(Ωϵ), sup
ϵ>0

∥vϵ∥∈H1(R3)3 ̸= ∞ . (3.2.9)
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Thus the family {vϵ|Ω}ϵ>0 is bounded in H(curl; Ω)∩H(div; Ω) and we can extract
a sequence {vϵn|Ω}n∈N, with ϵn → 0 as n goes to ∞, such that

vϵn|Ω ⇀
n→∞

v weakly in H(curl; Ω) ∩H(div; Ω) (3.2.10)

for some v ∈ H(curl; Ω) ∩H(div; Ω). It turns out that v preserves the boundary
conditions as the following lemma clarifies.

Lemma 3.2.11. Assume that for some ϵn > 0 with ϵn → 0, there exists v ∈
H(curl,Ω) ∩H(div,Ω) such that {vϵn|Ω}n∈N weakly converges to v in H(curl,Ω) ∩
H(div,Ω). Then v ∈ XN(Ω).

Proof. To prove that v ∈ XN(Ω) we just need to make sure that v ∈ H0(curl,Ω).
Since vϵn ∈ H0(curl,Ωϵ) for all n ∈ N, by Proposition 1.2.5 we know that the
extension-by-zero v0ϵn of vϵn belongs to H(curl,R3) for all n ∈ N. By the reflexivity
of H(curl,R3) and the boundedness of the sequence

{
v0ϵn
}
n∈N, we deduce that

possibly passing to a subsequence, there exists a function ṽ ∈ H(curl,R3) such
that v0ϵn ⇀ ṽ weakly in H(curl,R3) as n goes to ∞. It suffices to show that ṽ = v0.
Since v0ϵn is equal to zero outside of Ωϵn , it is clear that ṽ = 0 a.e. in R3 \ Ω.
Moreover, since vϵn|Ω ⇀ v, ṽ in H(curl,Ω), we have that v = ṽ a.e. in Ω. Thus the
extension by zero of v to the whole of R3 is precisely ṽ and belongs to H(curl,R3).
Using Proposition 1.2.5 again, we see that v ∈ H0(curl,Ω).

Lemma 3.2.12. Assume that condition (3.1.15) and the uniform Gaffney inequality
(3.2.1) hold. For any ϵ > 0 let fϵ ∈ L2(Ωϵ)

3. Suppose that supϵ>0∥fϵ∥L2(Ωϵ)3
̸= ∞

and that the extension-by-zero of the functions fϵ converge weakly in L2(Ω)3 to
some function f ∈ L2(Ω)3 as ϵ → 0. For all ϵ > 0, let vϵ := Sϵfϵ the (unique)
weak solution in XN(Ωϵ) of (3.2.7) with datum fϵ. Assume (3.2.9) and suppose
that vϵ ⇀ v weakly in H(curl,Ω) ∩H(div,Ω) to some v ∈ H(curl,Ω) ∩H(div,Ω).
Then v = S0f .

Proof. First of all, we note that by Lemma 3.2.11 the function v belongs to XN(Ω).
Define for u,w ∈ H(curl,Ωϵ) ∩H(div,Ωϵ)

QΩϵ(u,w) :=

∫
Ωϵ

u · w dx+
∫
Ωϵ

curlu · curlw dx+ τ

∫
Ωϵ

div u · divw dx,

which is equivalent to the inner product of the space H(curl,Ωϵ)∩H(div,Ωϵ). The
square of the induced norm will be denoted by QΩϵ(·). Note that since vϵ is the
solution with datum fϵ, then we have that

QΩϵ(vϵ, η) =

∫
Ωϵ

fϵ · η
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for all η ∈ XN(Ωϵ).
Let ϕ be any function in XN(Ω) and let Pϵϕ the Atlas Piola trasform of ϕ.

Since Pϵϕ ∈ XN(Ωϵ), we deduce that

QΩϵ(vϵ,Pϵϕ) =

∫
Ωϵ

fϵ · Pϵϕ (3.2.13)

for all ϵ > 0. We now show that

lim
ϵ→0

∫
Ωϵ

fϵ · Pϵϕ =

∫
Ω

f · ϕ (3.2.14)

and
lim
ϵ→0

QΩϵ(vϵ,Pϵϕ) = QΩ(v, ϕ) (3.2.15)

In order to prove the first limit, it suffices to prove that∫
Ωϵ∩Vj

fϵ · ϕ̃ϵ,j −−→
ϵ→0

∫
Ω∩Vj

f · ϕj (3.2.16)

for any j = 1, . . . , s′, where ϕ̃ϵ,j is defined in (3.1.14) (with Ω̃ replaced by Ωϵ), since
it is obvious that ∫

Ωϵ∩Vj

fϵ · ϕj −−→
ϵ→0

∫
Ω∩Vj

f · ϕj (3.2.17)

for any j = s′ + 1, . . . , s. We have that∫
Ωϵ∩Vj

fϵ · ϕ̃ϵ,j =

∫
r−1
j (Kϵ,j)

fϵ · ϕj +

∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

fϵ · ϕ̃ϵ,j. (3.2.18)

Obviously

lim
ϵ→0

∫
r−1
j (Kϵ,j)

fϵ · ϕj =

∫
Ω∩Vj

f · ϕj (3.2.19)

since the extension-by-zero of the functions fϵ weakly converge to f in L2(Ω)3,
supϵ>0∥fϵ∥L2(Ωϵ)3

<∞ and
⏐⏐⏐(Ω ∩ Vj) \ r−1

j (Kϵ,j)
⏐⏐⏐ goes to 0 as ϵ→ 0. Meanwhile

⏐⏐⏐⏐⏐
∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

fϵ · ϕ̃ϵ,j

⏐⏐⏐⏐⏐ ≤∥fϵ∥L2(Ωϵ)3

(∫
(Ωϵ∩Vj)\r−1

j (Kϵ,j)

⏐⏐ϕ̃ϵ,j

⏐⏐2) 1
2

−−→
ϵ→0

0

(3.2.20)

by (3.1.25) and the hypothesis that supϵ>0∥fϵ∥L2(Ωϵ)3
̸= ∞. From (3.2.18), (3.2.19)

and (3.2.20) we immediately deduce (3.2.16). Hence we have proved (3.2.14).
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Let us now focus on (3.2.15). We write

QΩϵ(vϵ,Pϵϕ) = QΩϵ∩Ω(vϵ,Pϵϕ) +QΩϵ\Ω(vϵ,Pϵϕ)

= QΩϵ∩Ω(vϵ,Pϵϕ− ϕ) +QΩϵ∩Ω(vϵ, ϕ) +QΩϵ\Ω(vϵ,Pϵϕ)

= QΩ(vϵ, ϕ)−QΩ\Ωϵ(vϵ, ϕ) +QΩϵ∩Ω(vϵ,Pϵϕ− ϕ) +QΩϵ\Ω(vϵ,Pϵϕ)(3.2.21)

By the weak convergence of vϵ to v we have that

QΩ(vϵ, ϕ) → QΩ(v, ϕ), as ϵ→ 0. (3.2.22)

By the Cauchy-Schwarz inequality and Theorem 3.1.16, (iv) we get that

QΩϵ∩Ω(vϵ,Pϵϕ−ϕ) ≤ (QΩϵ∩Ω(vϵ))
1/2(QΩϵ∩Ω(Pϵϕ−ϕ))1/2 → 0, as ϵ→ 0. (3.2.23)

Similarly,

QΩ\Ωϵ(vϵ, ϕ) ≤ (QΩ\Ωϵ(vϵ))
1/2(QΩ\Ωϵ(ϕ))

1/2 → 0 as ϵ→ 0. (3.2.24)

Finally,

QΩϵ\Ω(vϵ,Pϵϕ) ≤ (QΩϵ\Ω(vϵ))
1/2(QΩϵ\Ω(Pϵϕ))

1/2 → 0 as ϵ→ 0, (3.2.25)

since by (3.1.25), (3.1.34) and (3.1.42) it follows that QΩϵ\Ω(Pϵϕ) → 0 as ϵ → 0.
By combining (3.2.22)-(3.2.25), we deduce that limit (3.2.15) holds.

In conclusion, by using the limiting relations (3.2.14) and (3.2.15) in equation
(3.2.13) we conclude that

QΩ(v, ϕ) =

∫
Ω

f · ϕ

which means exactly that v is the solution in XN(Ω) of the given problem with
datum f ∈ L2(Ω), as required.

Remark 3.2.26. A careful inspection of the proof of Lemma 3.2.12 reveals that
the uniform Gaffney inequality has been used only to prove the limiting relations
(3.2.22) and (3.2.24) since the functions vϵ are required here to be defined on Ω
and to have uniformly bounded norms. This problem does not occur if Ω ⊂ Ωϵ in
which case only the Gaffney inequality in Ω is necessary. However, the uniform
Gaffney inequality will be used in an essential way in the following statements also
in the particular case Ω ⊂ Ωϵ

In the next lemma we prove that Sϵ E-converges to S0 as ϵ→ 0.
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Lemma 3.2.27. Assume that condition (3.1.15) and the uniform Gaffney inequality
(3.2.1) hold. Let fϵ ∈ L2(Ωϵ)

3, ϵ > 0 be such that fϵ
E−−→

ϵ→0
f ∈ L2(Ω)3 for some

function f ∈ L2(Ω)3. Set vϵ := Sϵfϵ and v := S0f . Then vϵ
E−−→

ϵ→0
v, hence

Sϵ
EE−−→
ϵ→0

S0.

Proof. Since fϵ
E−−→

ϵ→0
f , then ∥fϵ∥L2(Ωϵ)3

≤ C for all ϵ > 0 sufficiently small and
consequently∥vϵ∥XN(Ωϵ)

is uniformly bounded with respect to ϵ, as shown in (3.2.8).
By the uniform Gaffney inequality it follows that also ∥vϵ∥H1(Ωϵ)3

is uniformly
bounded. In particular

lim
ϵ→0

∥vϵ∥L2(Ωϵ\Ω)3 = 0

because
⏐⏐Ωϵ \ Ω

⏐⏐→ 0 as ϵ goes to 0. This can be proved using the same argument
used for (3.1.44) as follows:∫

(Ωϵ∩Vj)\r−1
j (Kϵ,j)

⏐⏐vϵ(x)⏐⏐2 dx =

∫
rj(Ωϵ∩Vj)\Kϵ,j

⏐⏐⏐vϵ ◦ r−1
j (z)

⏐⏐⏐2 dz
=

∫
Wj

(∫ gϵ,j(z̄)

ĝϵ,j(z̄)

⏐⏐⏐vϵ ◦ r−1
j (z̄, z3)

⏐⏐⏐2 dz3) dz̄
≤
∫
Wj

⏐⏐gϵ,j(z̄)− ĝϵ,j(z̄)
⏐⏐vϵ ◦ r−1

j (z̄, ·)
2
L∞(a3j ,gϵ,j(z̄))3

dz̄

≤
gϵ,j − ĝϵ,j


L∞(Wj)

∫
Wj

vϵ ◦ r−1
j (z̄, ·)

2
H1(a3j ,gϵ,j(z̄))3

dz̄

≤ κϵ

vϵ ◦ r−1
j

2
H1(rj(Ωϵ∩Vj))3

−−→
ϵ→0

0.

Hence to prove that vϵ
E−−→

ϵ→0
v we just have to show that

lim
ϵ→0

vϵ|Ω − v

L2(Ω)3

= 0. (3.2.28)

Recall that {vϵ|Ω} ⊂ H1(Ω)3 is bounded in H1-norm. Select now a sequence
{vϵn}n∈N from the family. By the compact embedding of H1(Ω)3 into L2(Ω)3

we have that, up to choosing a subsequence, vϵn|Ω → v∗ strongly in L2(Ω)3 and
vϵn|Ω ⇀ v∗ weakly in H1(Ω)3 for some v∗ ∈ H1(Ω)3. By Lemma 3.2.12 we have
that v∗ = S0f = v ∈ XN(Ω). This shows that for any extracted sequence of the
family {vϵ|Ω− v}ϵ>0, there exist a subsequence such that

vϵnk
|Ω − v


L2(Ω)3

−−−→
k→∞

0.

Thus we can conclude that
vϵ|Ω − v


L2(Ω)3

−−→
ϵ→0

0, which is exactly (3.2.28).
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Remark 3.2.29. The hypothesis of Lemma 3.2.27 concerning the functions fϵ can
be weakened to only require that ∥fϵ∥L2(Ωϵ)3

are uniformly bounded and that the
extension-by-zero of fϵ (restricted to Ω) weakly converges to f in L2(Ω)3 as ϵ goes
to 0, as it can be easily seen from the proof, which is a weaker assumption than
fϵ

E−−→
ϵ→0

f .

Finally we can state and prove the main theorem of this chapter.

Theorem 3.2.30. Let A be an atlas and {Ωϵ}ϵ>0 be a family of bounded domains
of class C1,1(A) converging to a bounded domain Ω of class C1,1(A) as ϵ→ 0, in
the sense that condition (3.1.15) holds. Suppose that the uniform Gaffney inequality
(3.2.1) holds. Then Sϵ

C−→ S0 as ϵ → 0. In particular, spectral stability occurs:
the eigenvalues of the operator Sϵ converge to the eigenvalues of the operator S0,
and the eigenfunctions of the operator Sϵ E-converge to the eigenfunctions of the
operator S0 as ϵ→ 0.

Proof. By Lemma 3.2.27 we have that Sϵ
EE−−→
ϵ→0

S. Now, suppose that we are given a
family of data {fϵ}ϵ>0 such that∥fϵ∥L2(Ωϵ)3

≤ 1 for all ϵ > 0, and extract a sequence
{fϵn}n∈N from it. We have to show that we can always find a subsequence ϵnk

→ 0
and a function v ∈ L2(Ω)3 such that

Sϵnk
fϵnk

E−−−→
k→∞

v. (3.2.31)

Possibly passing to a subsequence, we can find a function f to which the restriction
to Ω of the extension-by-zero of {fϵn}n∈N weakly converge in L2(Ω)3. Setting
v := S0f , we can apply Lemma 3.2.27 and Remark 3.2.29 to find out that (3.2.31)
holds.

Finally, the spectral stability is a consequence of the compact convergence of
compact operators as stated in Theorem 3.2.5.

3.3 Uniform Gaffney Inequalities and applications
to families of oscillating boundaries

In this section we want to apply the results regarding the Gaffney inequality pre-
sented in Section 1.4 of Chapter 1. It is clear that in order to apply Theorem 1.4.23
and Corollaries 1.4.30, 1.4.31, it suffices to assume that the gradients ∇gj of the
functions gj describing the boundary of a domain Ω as in Definition 1.0.1 are of
class C0,β with β ∈]1/2, 1], that is

|∇gj(x̄)−∇gj(ȳ)| ≤ K|x̄− ȳ|β (3.3.1)
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for some positive constant K and all x̄, ȳ ∈ Wj, and that the functions gj have
sufficiently small Lipschitz constants. As we have already mentioned, in principle,
the second condition is not a big obstruction to the application of these results,
since for a domain of class C1 one can find a sufficiently refined atlas, adapted to
the tangent planes of a finite number of boundary points, such that the C1 norms,
hence the Lipschitz constants, of the profile functions gj are arbitrarily close to
zero. Thus, we can apply our results to uniform classes of domains of class C1,β

since condition (1.4.25) would be satisfied exactly because β > 1/2 (as we have
said, here what matters is the behaviour of the modulus of continuity ω(t) for t
close to zero and one can assume directly that ω(t) is constant for t big enough).

Thus, we can prove the following result. Note that here the domains Ωϵ are
assumed to be of class C1,1 and that they belong to the uniform class C1,β

K (A) with
K > 0 fixed, which in particular implies the validity of (3.3.1) for all functions
gϵ,j and all ϵ > 0. (Recall that the operators Sϵ are defined in the beginning of
Section 3.2.)

Theorem 3.3.2. Let A be an atlas and {Ωϵ}ϵ>0 be a family of bounded domains
of class C1,1(A) converging to a bounded domain Ω of class C1,1(A) as ϵ→ 0, in
the sense that condition (3.1.15) holds. Suppose that Ω is of class C0,1

M (A) with
M small enough as in Corollary 1.4.31. Suppose also that all domains Ωϵ are of
class C1,β

L (A) with the same parameters β ∈]1/2, 1] and L > 0. Then the uniform
Gaffney inequality (3.2.1) holds provided ϵ is small enough. Moreover, Sϵ

C−→ S
as ϵ → 0. In particular, spectral stability occurs: the eigenvalues of the operator
Sϵ converge to the eigenvalues of the operator S0, and the eigenfunctions of the
operator Sϵ E-converge to the eigenfunctions of the operator S0 as ϵ→ 0.

Proof. Since Ωϵ converges to Ω as ϵ→ 0 in the sense that condition (3.1.15) holds,
it follows that the gradients of the functions gϵ,j describing the boundary of Ωϵ

converge uniformly to the gradients of the functions gj describing the boundary
of Ω. Thus, Ωϵ is of class C0,1

M (A) provided ϵ is small enough. By the discussion
above, Corollary 1.4.31 is applicable and the uniform Gaffney inequality (3.2.1)
holds provided ϵ is small enough. Then the last part of the statement follows by
Theorem 3.2.30.

A prototype for the classes of domains under discussion is given by domains
designed by profile functions often used in homogenization theory, in particular in
the study of thin domains. Namely, assume that one of the profile functions gϵ,j,
call it gϵ, is of the form

gϵ(x̄) = ϵαb(x̄/ϵ) (3.3.3)

for some function b of class C1,1(RN−1) and α > 0, and assume that the gradient
of b is bounded. If ω∇b is a (non-decreasing) modulus of continuity of ∇b then we
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have

|∇gϵ(x̄)−∇gϵ(ȳ)| = ϵα−1|∇b(x̄/ϵ)−∇b(ȳ/ϵ)| ≤ ϵα−1ω∇b

(
x̄− ȳ

ϵ

)
,

hence the function ω to be considered in (1.4.24) is given by ω(t) = ϵα−1ω∇b(t/ϵ).
Observe that∫ ∞

0

(
ω(t)

t

)2

dt = ϵ2α−2

∫ ∞

0

(
ω∇b(t/ϵ)

t

)2

dt = ϵ2α−3

∫ ∞

0

(
ω∇b(s)

s

)2

ds . (3.3.4)

Moreover, since b is assumed to be of class C1,1, we have that ω∇b(t) ≤ ct for t in a
neighborhhood of zero. Thus, if α ≥ 3/2 and ϵ0 is any fixed positive constant, it
follows that that

sup
ϵ∈]0,ϵ0]

ϵ2α−3

∫ ∞

0

(
ω∇b(s)

s

)2

ds ̸= ∞ . (3.3.5)

Since the gradient of gϵ is arbitrarily close to zero for ϵ sufficiently small, we
have that Theorem 1.4.23 and Corollaries 1.4.30, 1.4.31 are applicable and the
Gaffney inequality (3.2.1) holds for all ϵ sufficiently small, with a constant C > 0
independent of ϵ. The same arguments can be applied to families of profile functions
of the type

gϵ(x̄) = ϵαb(x̄/ϵ)ψ(x̄)

where b is as above and ψ is a fixed C1,1 function with bounded gradient. Thus, we
can state the following stability result concerning a local perturbation of a domain
Ω.

Theorem 3.3.6. Let W be a bounded open rectangle in R2, b ∈ C1,1(R2) with
bounded gradient, b ≥ 0, and ψ ∈ C1,1

c (W ), α ∈]3/2, 2]. Assume that Ω and Ωϵ,
ϵ > 0 are domains of class C1,1 in R3 satisfying the following condition:

(i) Ω ∩ (W×]− 1, 1[) = {(x̄, x3) ∈ R3 : x̄ ∈ W, −1 < x3 < 0};

(ii) Ωϵ∩ (W×]−1, 1[) = {(x̄, x3) ∈ R3 : x̄ ∈ W, −1 < x3 < ϵαb(x̄/ϵ)ψ(x̄)} where
b ∈ C1,1(R2) has bounded gradient, and ψ ∈ C1,1

c (W );

(iii) Ω \ (W×]− 1, 1[) = Ωϵ \ (W×]− 1, 1[);

Then the family {Ωϵ}ϵ>0 converges to Ω in the sense that condition (3.1.15) holds.
Moreover, the uniform Gaffney inequality (3.2.1) holds and Sϵ

C−→ S as ϵ→ 0. In
particular, spectral stability occurs: the eigenvalues of the operator Sϵ converge
to the eigenvalues of the operator S0, and the eigenfunctions of the operator Sϵ

E-converge to the eigenfunctions of the operator S0 as ϵ→ 0.
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Proof. By assumptions, the domains Ω and Ωϵ belong to the same atlas class
C1,1(A) for a suitable atlas A, and W×]− 1, 1[ is one of the local charts of A. In
particular, the profile functions describing the boundaries of Ω and Ωϵ in that chart
are given by g(x̄) = 0 and gϵ = ϵαb(x̄/ϵ)ψ(x̄) for all x̄ ∈ W .

As in the proof of [11, Thm. 7.4], if α̃ ∈]3/2, α[ is fixed then one can easily
check that conditions (3.1.15) are satisfied with kϵ = ϵ2α̃/3. By 1.4.31 and the
discussion above, it follows that the Gaffney inequality (1.4.1) holds with a constant
C independent of ϵ, provided ϵ is sufficiently small. To complete the proof it suffices
to apply Theorem 3.2.30.

3.4 Critical case

It is clear that condition (3.3.5) is satisfied also in the case α = 3/2. Thus the
uniform Gaffney inequality (3.2.1) holds also in the case α = 3/2 in Theorem 3.3.6.
However, in this case the convergence of Ωϵ to Ω in the sense of (3.1.15) is not
guaranteed hence we cannot directly deduce that we have spectral stability. Thus,
another method has to be used in the analysis of the stability problem for α = 3/2.
For example, in the case of non-constant periodic functions b one could use the
unfolding method as in [30], adopted also in [10, 11, 53, 54]: in those papers,
polyharmonic operators with various boundary conditions are addressed, and for
α = 3/2 we have spectral instability in the sense that the limiting problem differs
from the given problem in Ω by a strange term appearing in the boundary conditions
(as often happens in homogenization problems).

In this last section we plan to do that for the curlcurl operator, and as one
can see from Theorems 3.4.57 and 3.4.109 a preliminary analysis would indicate
that no strange limit appears in the limiting problem for α = 3/2. On the other
hand, at the moment we are not able to formulate any conjecture for the case
α < 3/2 although, on the base of the results of [30] concerning the Navier-Stokes
system, a degeneration phenomenon (to Dirichlet boundary conditions) could not
be excluded.

We will follow Section 8 of [11]. The variables in R3 will be denoted in
the following way: x = (x1, x2, x3) = (x̄, x3) ∈ R3 where x̄ = (x1, x2) ∈ R2

denotes the projection in the first two variables. To simplify the exposition, we
restrict ourselves to particular family of domains with oscillating boundaries; in
particular we assume the domain Ω ⊂ R3 to be of the form Ω = W×]− 1, 0[, where
W =

{
x̄ ∈ R2 : a1 < x1 < b1, a2 < x2 < b2

}
is a rectangle in R2. We denote by g, gϵ

the upper boundary profile functions for Ω,Ωϵ respectively, that is

Ωϵ =
{
(x̄, x3) ∈ W×]− 1, 0[ : −1 < x3 < gϵ(x̄)

}
.
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Obviously g ≡ 0 in W , while we set

gϵ(x̄) := ϵ3/2b(x̄/ϵ) (3.4.1)

for all x̄ ∈ W , where b ∈ C2(R2) is a Y -periodic non-negative fixed function. Note
that since b ≥ 0 then Ω ⊂ Ωϵ for any ϵ > 0. We denote by Γ and Γϵ the upper
boundaries of Ω and Ωϵ respectively, namely

Γ := W × {0} and Γϵ :=
{
(x̄, x3) : x̄ ∈ W,x3 = gϵ(x̄)

}
.

For the sake of clarity, we will use νϵ to denote the outer unit normal to Ωϵ in Γϵ.
We define Y := (−1

2
, 1
2
)× (−1

2
, 1
2
) to be the basic cell in R2, and we consider the

cell Ck
ϵ := ϵk + ϵY for any k ∈ Z2 and any ϵ > 0. We set

Ŵϵ :=
⋃

k∈IW,ϵ

Ck
ϵ ⊂ W,

where IW,ϵ :=
{
k ∈ Z2 : Ck

ϵ ⊂ W
}
. Observe that Ŵϵ ⊂ W . Finally, for any

0 < ϵ ≤ 1 we set

Kϵ := W×]− 1,−ϵ[⊂ Ω and Qϵ := Ŵϵ×]− ϵ, 0[⊂ Ω. (3.4.2)

In order to prove our results, we will make use of the unfolding operator
introduced in [35]. We recall some of its properties in what follows.

Definition 3.4.3. Let u be a real-valued function defined on Ω. For any ϵ >
0 sufficiently small the unfolding û of u is the real-valued function defined on
Ŵϵ × Y×]− 1/ϵ, 0[ by

û(x̄, ȳ, y3) := u

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)
, (3.4.4)

for all (x̄, ȳ, y3) ∈ Ŵϵ × Y×] − 1/ϵ, 0[, where
⌊
x̄
ϵ

⌋
denotes the integer part of the

vector x̄
ϵ

with respect to the unit cell Y , meaning that
⌊
x̄
ϵ

⌋
= k ∈ Z2 if and only if

x̄ ∈ Ck
ϵ .

We recall a useful lemma that will be used later in computations.

Lemma 3.4.5 (Lemma 8.7 of [11]). Let t ∈ [−1, 0[ be fixed. Then∫
Ŵϵ×]t,0[

u(x) dx = ϵ

∫
Ŵϵ×Y×]t/ϵ,0[

û(x̄, y) dx̄dy (3.4.6)

for all u ∈ L1(Ω) and ϵ > 0 sufficiently small.
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We also introduce some function spaces that will be useful in what follows
and later on. We say that a function u belongs to the space W 1,2

PerY ,loc(Y ×
(−∞, 0)) if u ∈ W 1,2

loc (R2 × (−∞, 0)) and moreover u is Y -periodic in the first two
variables ȳ ∈ R2. There will be no notational difference when writing a function in
W 1,2

PerY ,loc(Y × (−∞, 0)) or its restriction to Y × (−∞, 0). We also introduce the set

w1,2
PerY ,loc(Y × (−∞, 0)) :=

{
u ∈ W 1,2

PerY ,loc(Y × (−∞, 0)) :

∥Dγu∥L2(Y×(−∞,0)) <∞ for all |γ| = 1
}
.

For the sake of simplicity, we will always omit the vectorial notation for these
spaces, and whether we are dealing with a scalar function or a vector field will be
clear from the context.

Similarly, we say that a vector field u belongs to the space XPerY ,loc(Y ×(−∞, 0))
if u ∈ Hloc(curl,R2×(−∞, 0))∩Hloc(div,R2×(−∞, 0)) and moreover u is Y -periodic
in the first two variables ȳ ∈ R2. Again, there will be no notational difference
when writing a function in XPerY ,loc(Y × (−∞, 0)) or its restriction to Y × (−∞, 0).
Finally we set

xPerY (Y × (−∞, 0)) :=
{
u ∈ XPerY ,loc(Y × (−∞, 0)) :

∥curlu∥L2(Y×(−∞,0))3 ,∥div u∥L2(Y×(−∞,0)) <∞
}
.

The following lemma is directly inspired by [11, Lemma 8.9].

Lemma 3.4.7. Let vϵ ∈ H1(Ω)3 with ∥vϵ∥H1(Ω)3 ≤ M for all ϵ > 0, for some
M > 0. Let Vϵ be defined by

Vϵ(x̄, y) := v̂ϵ(x̄, y)−
∫
Y

v̂ϵ(x̄, ȳ, 0)dȳ (3.4.8)

for (x̄, y) ∈ Ŵϵ × Y × (−1/ϵ, 0). Then there exists v̂ ∈ L2(W,w1,2
PerY

(Y × (−∞, 0)))
such that

Vϵ
ϵ1/2

⇀
ϵ→0

v̂ and
DyVϵ
ϵ1/2

⇀
ϵ→0

Dyv̂ in L2(W × Y × (d, 0)) for any d < 0. (3.4.9)

In addition, if div vϵ = 0 in Ω, then

divy v̂ = 0 in W × Y × (−∞, 0). (3.4.10)

Moreover, for any v ∈ H1(Ω)3

(v ◦ Φϵ)|Ω
⋀

−−→
ϵ→0

v(x̄, 0) in L2(W × Y × (−1, 0)).
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Proof. Observe that DyVϵ = Dyv̂ϵ. By Lemma 3.4.5 and the chain rule we have
that ∫

Ŵϵ×Y×(−1/ϵ,0)

⏐⏐⏐⏐DyVϵ
ϵ1/2

⏐⏐⏐⏐2 dx̄dy =

∫
Ŵϵ×Y×(−1/ϵ,0)

ϵ
⏐⏐⏐D̂vϵ⏐⏐⏐2 dx̄dy

=

∫
Ŵϵ×(−1,0)

|Dvϵ|2 dx ≤
∫
Ω

|Dvϵ|2 dx ≤M2

for all ϵ > 0, hence
DyVϵ

ϵ1/2


L2(W×Y×(−∞,0))

is uniformly bounded with respect to ϵ.

Moreover, we can apply the Poincaré-Wirtinger inequality to Vϵ, so that we obtain
that for any d < 0 there exists a constant Cd > 0 such that Vϵϵ1/2


L2(W×Y×(d,0))

≤ Cd

DyVϵ
ϵ1/2


L2(W×Y×(d,0))

≤ CdM

for all ϵ > 0. Then we can conclude that there exists a function v̂ defined on
W × Y × (d, 0), admitting weak first order derivatives in the variable y, with
v̂ ∈ L2(W × Y × (d, 0)) for any d < 0, Dyv̂ ∈ L2(W × Y × (−∞, 0)), such that
(3.4.9) holds. Moreover, since div vϵ = 0 in Ω for all ϵ > 0, by (3.4.4) we deduce
that divy v̂ϵ(x̄, ȳ, y3) = ϵ d̂iv vϵ(x̄, ȳ, y3) = 0, which together with (3.4.9) proves that

divy v̂ = 0 in W × Y × (−∞, 0).

For the proof of the Y -periodicity of v̂ with respect to the variables ȳ and the
last statement of the Lemma 3.4.7, we refer to Lemma 4.3 of [30] (in particular the
argument in Step 3).

Lemma 3.4.11 ([30, Lemma 4.3]). Let vϵ be a bounded sequence in H1(Ωϵ)
3 such

that vϵ · νϵ = 0 on Γϵ and suppose that their restrictions to Ω weakly converge in
H1(Ω)3 to some v ∈ H1(Ω)3 as ϵ→ 0. Then the third component v3 of v vanishes
on Γ.

Moreover, let v̂ : W ×Y ×(−∞, 0) → R3 be the weak limit in L2(W ×Y ×(d, 0))
for any d < 0, of the sequence of functions

v̂ϵ(x̄, y)−
∫
Y
v̂ϵ(x̄, ȳ, 0) dȳ

ϵ1/2
,

introduced in Lemma 3.4.7. Then

v̂3(x̄, ȳ, 0) = ∇b(ȳ) ·
(
v1(x̄, 0), v2(x̄, 0)

)
for a.e. (x̄, ȳ) ∈ W × Y. (3.4.12)

Remark 3.4.13. Observe that the sign in formula (3.4.12) is different from the
one in formula (4.11) of [30] since in the latter the authors consider supergraphs,
while we consider subgraphs.
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We define the transformation Φϵ from Ωϵ to Ω with Φϵ(x̄, x3) := (x̄, x3−hϵ(x̄, x3))
for all (x̄, x3) ∈ Ωϵ, where

hϵ(x̄, x3) =

⎧⎨⎩ 0, if − 1 < x3 ≤ −ϵ,
gϵ(x̄)

(
x3+ϵ

gϵ(x̄)+ϵ

)3
, if − ϵ < x3 ≤ gϵ(x̄).

Observe that Φϵ coincides with the identity in Kϵ, where Kϵ was defined in (3.4.2).
Moreover

DΦϵ =

⎛⎜⎝ 1 0 0
0 1 0

− ∂hϵ

∂x1
− ∂hϵ

∂x2
1− ∂hϵ

∂x3

⎞⎟⎠ . (3.4.14)

By standard calculus one can easily deduce the following

Lemma 3.4.15. The map Φϵ is a diffeomorphism of class C2 and for all ϵ > 0
sufficiently small

|hϵ| ≤ cϵ3/2,

⏐⏐⏐⏐∂hϵ∂xi

⏐⏐⏐⏐ ≤ cϵ1/2,

⏐⏐⏐⏐⏐ ∂2hϵ∂xi∂xj

⏐⏐⏐⏐⏐ ≤ cϵ−1/2,

where c > 0 is a constant independent of ϵ.

We also recall the following technical lemma from [11].

Lemma 3.4.16 ([11, Lemma 8.27]). For all y ∈ Y × (−1, 0) and i, j = 1, 2, 3, the

functions ĥϵ(x̄, y),
∂̂hϵ
∂xi

(x̄, y) and
∂̂2hϵ
∂xi∂xj

(x̄, y) are independent of x̄ ∈ W . Moreover,

ĥϵ(x̄, y) = O(ϵ3/2),
∂̂hϵ
∂xi

(x̄, y) = O(ϵ1/2) as ϵ→ 0 and

ϵ1/2
∂̂2hϵ
∂xi∂xj

(x̄, y) −−→
ϵ→0

∂2
(
b(ȳ)(y3 + 1)3

)
∂yi∂yj

, (3.4.17)

for all i, j = 1, 2, 3, uniformly in y ∈ Y × (−1, 0).

3.4.1 Electric case

From now on until the end of this section we will assume that there holds a uniform
Gaffney inequality, that is XN(Ωϵ) ⊂ H1(Ωϵ)

3 for all ϵ > 0 and

∥u∥H1(Ωϵ)3
≤ C∥u∥XN(Ωϵ)

for all u ∈ XN(Ωϵ),
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where C > 0 is independent of ϵ > 0.
Recall the controvariant Piola pull-back transform associated with the diffeo-

morphism Φϵ, that is for any function ϕ ∈ XN(Ω)

Pϵϕ : = (ϕ ◦ Φϵ)DΦϵ. (3.4.18)

This defines a map
Pϵ : XN(Ω) → XN(Ωϵ).

For all ϵ > 0 let vϵ be the unique weak solution to⎧⎪⎨⎪⎩
curl curl vϵ −∇ div vϵ + vϵ = fϵ, in Ωϵ,
div vϵ = 0, in ∂Ωϵ,
ν × vϵ = 0, on ∂Ωϵ,

(3.4.19)

that is vϵ ∈ XN(Ωϵ) and∫
Ωϵ

vϵ ·ψ dx+
∫
Ωϵ

curl vϵ · curlψ dx+
∫
Ωϵ

div(vϵ) div(ψ) dx =

∫
Ωϵ

fϵ ·ψ dx (3.4.20)

for all ψ ∈ XN(Ωϵ). Note that contrary to (3.2.6), here we have set τ = 1 for the
sake of simplicity.

Again, under the assumption that ∥fϵ∥L2(Ωϵ)3
≤ C for every ϵ > 0, we have that

the norms in XN(Ωϵ) of the functions vϵ are bounded (cf. (3.2.8)). Moreover, since
by hypothesis there holds a uniform Gaffney inequality, also the H1(Ωϵ)

3-norms
are bounded. Thus in particular the restrictions of the functions vϵ to Ω (which is
a subset of Ωϵ for any ϵ > 0) are bounded in H1(Ω)3. Denote by v ∈ H1(Ω)3 their
weak limit in H1(Ω)3.

Let now ϕ ∈ XN(Ω) be a fixed test function. Note that since Ω is convex (it is
a parallelepiped in R3), there holds the Gaffney inequality and thus in particular
ϕ ∈ H1(Ω)3 (see, e.g., [107]). Since Pϵϕ ∈ XN(Ωϵ), then we have that∫

Ωϵ

vϵ · Pϵϕdx+

∫
Ωϵ

curl vϵ · curlPϵϕdx+

∫
Ωϵ

div vϵ divPϵϕdx =

∫
Ωϵ

fϵ · Pϵϕdx.

(3.4.21)
Since the first two integrals of the left-hand side of (3.4.21) only involve first order
derivatives of the function hϵ (cf. (3.1.2)), using Lemma 3.4.15 it is easy to see that∫
Ωϵ

vϵ ·Pϵϕdx −−→
ϵ→0

∫
Ω

v ·ϕdx and
∫
Ωϵ

curl vϵ ·curlPϵϕdx −−→
ϵ→0

∫
Ω

curl v ·curlϕdx.

We now focus on the last term in the left hand-side of (3.4.21). We can write it in
the following way∫

Ωϵ

div vϵ divPϵϕdx =

∫
Ωϵ\Ω

div vϵ divPϵϕdx+

∫
Ω\Kϵ

div vϵ divPϵϕdx

+

∫
Kϵ

div vϵ divPϵϕdx.

(3.4.22)
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As in (3.1.38), we compute

divPϵϕ =
3∑

m,n,i=1

(
∂ϕm

∂xn
(Φϵ)

∂(Φϵ)n
∂xi

∂(Φϵ)m
∂xi

)
+

3∑
m,i=1

ϕm(Φϵ)
∂2(Φϵ)m
∂x2i

=
3∑

m,n,i=1

(
∂ϕm

∂xn
(Φϵ)

∂(Φϵ)n
∂xi

∂(Φϵ)m
∂xi

)
  

type A

− ϕ3(Φϵ)∆hϵ  
type B

.
(3.4.23)

We call the first addends of type A, the last addends of type B. We will first show
that ∫

Ωϵ\Ω
div vϵ divPϵϕdx −−→

ϵ→0
0. (3.4.24)

Indeed(∫
Ωϵ\Ω

div vϵ divPϵϕdx

)2

≤ C

∫
Ωϵ\Ω

|divPϵϕ|2 dx

≤ C
3∑

m,n,i=1

∫
Ωϵ\Ω

⏐⏐⏐⏐∂ϕm

∂xn
(Φϵ)

∂(Φϵ)n
∂xi

∂(Φϵ)m
∂xi

⏐⏐⏐⏐2 + ∫
Ωϵ\Ω

⏐⏐ϕ3(Φϵ)∆hϵ
⏐⏐2 dx

≤ C
3∑

m,n=1

∫
Ωϵ\Ω

⏐⏐⏐⏐∂ϕm

∂xn
(Φϵ)

⏐⏐⏐⏐2 dx+ Cϵ−1

∫
Ωϵ\Ω

⏐⏐ϕ3(Φϵ)
⏐⏐2 dx

≤ C
3∑

m,n=1

∫
Φϵ(Ωϵ\Ω)

⏐⏐⏐⏐∂ϕm

∂xn

⏐⏐⏐⏐2 dx+ Cϵ−1

∫
Φϵ(Ωϵ\Ω)

|ϕ3|2 dx.

Observe that

Φϵ(Ωϵ \ Ω) =
{
(x̄, x3 − hϵ(x̄, x3)) : x̄ ∈ W, 0 < x3 < gϵ(x̄)

}
⊂
{
(x̄, z3) : x̄ ∈ W,−gϵ(x̄) < z3 < 0

}
⊂
{
(x̄, z3) : x̄ ∈ W,−ϵ3/2b0 < z3 < 0

}
,

(3.4.25)

where b0 =
b(·)

L∞(W )
. Thus we have that

⏐⏐Φϵ(Ωϵ \ Ω)
⏐⏐→ 0 as ϵ goes to 0, hence∫

Φϵ(Ωϵ\Ω)

⏐⏐⏐⏐∂ϕm

∂xn

⏐⏐⏐⏐2 dx −−→
ϵ→0

0. (3.4.26)

Moreover, by the one dimensional embedding estimate for Sobolev functions, we
have that ϕ(x̄, ·)2

L∞(−1,0)
≤ C

ϕ(x̄, ·)2
H1(−1,0)

,
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for almost every x̄ ∈ W . Thus

ϵ−1

∫
Φϵ(Ωϵ\Ω)

|ϕ3|2 dx ≤ ϵ−1ϵ3/2b0

∫
W

ϕ(x̄, ·)2
L∞(−1,0)

dx̄

≤ Cϵ1/2
∫
W

ϕ(x̄, ·)2
H1(−1,0)

dx̄ ≤ Cϵ1/2∥ϕ∥2H1(Ω)3 −−→ϵ→0
0.

We now study the second term in the right-hand side of (3.4.22). To begin, recall
that Qϵ = Ŵϵ × (−ϵ, 0) and write∫

Ω\Kϵ

div vϵ divPϵϕdx =

∫
Qϵ

div vϵ divPϵϕdx+

∫
Ω\(Kϵ∪Qϵ)

div vϵ divPϵϕdx.

(3.4.27)
Using the same argument as before, we can show that(∫

Ω\(Kϵ∪Qϵ)

div vϵ divPϵϕdx

)2

≤ C
3∑

m,n=1

∫
Φϵ(Ω\(Kϵ∪Qϵ))

⏐⏐⏐⏐∂ϕm

∂xn

⏐⏐⏐⏐2 dx+ Cϵ−1

∫
Φϵ(Ω\(Kϵ∪Qϵ))

|ϕ3|2 dx.

Since Φϵ(Ω \ (Kϵ ∪Qϵ)) ⊂ Φϵ(Ω \Kϵ) ⊂ Ω \Kϵ, it is clear that∫
Φϵ(Ω\(Kϵ∪Qϵ))

⏐⏐⏐⏐∂ϕm

∂xn

⏐⏐⏐⏐2 dx −−→
ϵ→0

0.

Again using the one dimensional embedding for Sobolev functions and observing
that, in this case, the diameter of the set Φϵ(Ω \ (Kϵ ∪Qϵ)) in the direction x3 is
O(ϵ), we deduce that

ϵ−1

∫
Φϵ(Ω\(Kϵ∪Qϵ))

|ϕ3|2 dx ≤ C∥ϕ∥2
H1(Ω\(Ŵϵ×(−1,0))

−−→
ϵ→0

0,

where the last limit is a consequence of the fact that
⏐⏐⏐Ω \ (Ŵϵ × (−1, 0))

⏐⏐⏐→ 0 as ϵ
goes to 0. Thus we proved that∫

Ω\(Kϵ∪Qϵ)

div vϵ divPϵϕdx −−→
ϵ→0

0. (3.4.28)

We now study the first term in the right hand side of (3.4.27).
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Lemma 3.4.29. Let v̂ ∈ L2(W,w1,2
PerY

(Y × (−∞, 0))) be as in Lemma 3.4.7. Then∫
Qϵ

div vϵ divPϵϕdx −−→
ϵ→0

−
∫
W

∫
Y×(−1,0)

divy v̂ ∆y

(
b(ȳ)(y3 + 1)3

)
dy ϕ3(x̄, 0) dx̄.

(3.4.30)

Proof. From (3.4.23) we write∫
Qϵ

div vϵ divPϵϕdx

=
3∑

m,n,i=1

∫
Qϵ

div vϵ

(
∂ϕm

∂xn
(Φϵ)

∂(Φϵ)n
∂xi

∂(Φϵ)m
∂xi

)
dx−

∫
Qϵ

div vϵ ϕ3(Φϵ)∆hϵ dx.

The first order derivatives of Φϵ are bounded in L∞-norm, as one can see using
Lemma 3.4.15. Moreover, observing that Φϵ(Qϵ) ⊂ Ω \Kϵ = W × (−ϵ, 0), it is easy
to see that(∫

Qϵ

div vϵ

(
∂ϕm

∂xn
(Φϵ)

∂(Φϵ)n
∂xi

∂(Φϵ)m
∂xi

)
dx

)2

≤ C

∫
Φϵ(Qϵ)

⏐⏐⏐⏐∂ϕm

∂xn

⏐⏐⏐⏐2 dx −−→
ϵ→0

0.

Using Lemma 3.4.5 we get

−
∫
Qϵ

div vϵ ϕ3(Φϵ) ∆hϵ dx = −ϵ
∫
Wϵ

∫
Y×(−1,0)

d̂iv vϵ ˆϕ3(Φϵ(x)) ∆̂hϵ dydx

− ϵ

∫
Wϵ

∫
Y×(−1,0)

divy v̂ϵ
ϵ

ˆϕ3(Φϵ(x)) ∆̂hϵ dydx

−
∫
Wϵ

∫
Y×(−1,0)

divy v̂ϵ

ϵ
1
2

ˆϕ3(Φϵ(x)) ϵ
1
2 ∆̂hϵ dydx.

(3.4.31)

Applying Lemma 3.4.7 we have that there exists v̂ ∈ L2
(
W,w1,2

PerY
(Y × (−∞, 0) )

)
such that in particular

divy v̂ϵ

ϵ
1
2

⇀ divy v̂ in L2(W × Y × (−1, 0)) as ϵ goes to 0.

Moreover, from (3.4.17) we have that ϵ
1
2 ∆̂hϵ(x̄, y) −−→

ϵ→0
∆y

(
b(ȳ)(y3 + 1)3

)
uniformly

in y ∈ Y × (−1, 0). Again using Lemma 3.4.7 , we get

ˆϕ3(Φϵ(x)) −−→
ϵ→0

ϕ3(x̄, 0)

in L2(W × Y × (−1, 0)). Then it follows that∫
Qϵ

div vϵ divPϵϕdx −−→
ϵ→0

−
∫
W

∫
Y×(−1,0)

divy v̂ ∆y

(
b(ȳ)(y3 + 1)3

)
dy ϕ3(x̄, 0) dx̄.
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We have thus proved the following theorem.

Theorem 3.4.32. Let fϵ ∈ L2(Ωϵ)
3, ϵ > 0 be a family of functions and let f ∈

L2(Ω)3 be their weak limit in L2(Ω). Let vϵ ∈ XN(Ωϵ) ∩H1(Ωϵ)
3 be the (unique)

solution of (3.4.20) corrisponding to the Poisson datum fϵ for every ϵ > 0. Then,
possibly passing to a subsequence, there exist v ∈ H1(Ω)3 and v̂ ∈ L2(W,w1,2

PerY
(Y ×

(−∞, 0))) such that vϵ|Ω ⇀ v weakly in H1(Ω)3, vϵ|Ω → v strongly in L2(Ω)3 and∫
Ω

(v · ϕ+ curl v · curlϕ+ div v divϕ) dx

−
∫
W

∫
Y×(−1,0)

divy v̂∆y

(
b(ȳ)(y3 + 1)3

)
dyϕ3(x̄, 0) dx̄ =

∫
Ω

f · ϕdx

(3.4.33)

for all ϕ ∈ XN(Ω).

We now want to characterize the function v̂ via a weak microscopic problem.
To do so we proceed as in Section 8.4 of [11].

Take η ∈
(
C∞(W × Y × (−∞, 0])

)3
a function periodic in Y with support

contained in C × Y × [d, 0] for some compact set C ⊂ W and d ∈ (−∞, 0), and
such that η1(x̄, ȳ, 0) = η2(x̄, ȳ, 0) = 0 for all (x̄, ȳ) ∈ W × Y . Set

ηϵ(x) := ϵ1/2η

(
x̄,
x̄

ϵ
,
x3
ϵ

)
for all ϵ > 0 and x ∈ W × (−∞, 0]. Observe that ηϵ is admissible for sufficiently
small ϵ, and its (controvariant) Piola transform can thus be used as test function in
the weak formulation (3.4.20) of the problem under consideration. Thus, we write∫

Ωϵ

(vϵ · Pϵηϵ + curl vϵ · curlPϵηϵ + div vϵ divPϵηϵ) dx =

∫
Ωϵ

fϵ · Pϵηϵ dx. (3.4.34)

One can see that∫
Ωϵ

vϵ · Pϵηϵ dx −−→
ϵ→0

0,

∫
Ωϵ

curl vϵ · curlPϵηϵ dx −−→
ϵ→0

0 and
∫
Ωϵ

fϵ · Pϵηϵ dx −−→
ϵ→0

0.

(3.4.35)
We now consider the term with the divergence and write∫

Ωϵ

div vϵ divPϵηϵ dx =

∫
Ωϵ\Ω

div vϵ divPϵηϵ dx+

∫
Ω

div vϵ divPϵηϵ dx. (3.4.36)
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It is easy to see that ∫
Ωϵ\Ω

div vϵ divPϵηϵ dx −−→
ϵ→0

0. (3.4.37)

Additionally, the next lemma gives us the limit of the second term in the right-hand
side of (3.4.36).

Lemma 3.4.38. There holds the following limit∫
Ω

div vϵ divPϵηϵ dx −−→
ϵ→0

∫
W×Y×(−∞,0)

divy v̂(x̄, y) divy η(x̄, y) dx̄dy. (3.4.39)

Proof. Due to the Y -periodicity of η we have that

P̂ϵηϵ(x̄, y) = ϵ1/2η

⎛⎝ϵ⌊ x̄
ϵ

⌋
+ ϵȳ, ȳ, y3 − ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠ D̂Φϵ(x̄, y)

Note that since

hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)
=

{
ϵ3/2b(ȳ)(y3+1)3

(ϵ1/2b(ȳ)+1)3
, if − 1 ≤ y3 < 0,

0, if − 1/ϵ < y3 < −1,

we have that

Dβ
y

⎛⎝ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠ −−→
ϵ→0

0 uniformly on W × Y × (−∞, 0] (3.4.40)

for all |β| ≤ 2. Observe that

D̂Φϵ(x̄, y) =

⎛⎜⎝ 1 0 0
0 1 0

−ϵ−1 ∂ĥϵ

∂y1
(x̄, y) −ϵ−1 ∂ĥϵ

∂y2
(x̄, y) 1− ϵ−1 ∂ĥϵ

∂y3
(x̄, y)

⎞⎟⎠ .

Hence, from (3.4.40) we deduce that

D̂Φϵ(x̄, y) −−→
ϵ→0

I3 and
∂

∂yi
D̂Φϵ(x̄, y) −−→

ϵ→0
O3 (3.4.41)

uniformly in W × Y × (−∞, 0], for all i = 1, 2, 3. Since η is smooth and compactly
supported, it is Lipschitz continuous together with its derivatives, and thus(Dγη)

⎛⎝ϵ⌊ x̄
ϵ

⌋
+ ϵȳ, ȳ, y3 − ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠−Dγη(x̄, y)


L2(Ŵϵ×Y×(−∞,0))

−−→
ϵ→0

0

(3.4.42)
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for any |γ| ≤ 1 (see also (8.51) in [11]). Consider

∂

∂yi
P̂ϵηϵ(x̄, y)

= ϵ1/2
∂

∂yi

⎛⎜⎝η
⎛⎝ϵ⌊ x̄

ϵ

⌋
+ ϵȳ, ȳ, y3 − ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠
⎞⎟⎠ D̂Φϵ(x̄, y)

+ ϵ1/2η

⎛⎝ϵ⌊ x̄
ϵ

⌋
+ ϵȳ, ȳ, y3 − ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠ ∂

∂yi
D̂Φϵ(x̄, y).

Then, using (3.4.41) and (3.4.42) and the chain rule, we can see that for all i = 1, 2, 3

ϵ−1/2 ∂

∂yi
P̂ϵηϵ(x̄, y) −−→

ϵ→0

∂η

∂yi
(x̄, y) (3.4.43)

in L2(W × Y × (−∞, 0)). At this point, using Lemma 3.4.5, Lemma 3.4.7 and
(3.4.43) we conclude that

lim
ϵ→0

∫
Ŵϵ×(−1,0)

div vϵ divPϵηϵ dx = lim
ϵ→0

∫
Ŵϵ×Y×(−1/ϵ,0)

divy v̂ϵ
ϵ1/2

divy P̂ϵηϵ
ϵ1/2

dx̄dy

=

∫
W×Y×(−∞,0)

divy v̂(x̄, y) divy η(x̄, y) dx̄dy.

Finally, we observe that the function ηϵ is zero outside Ŵϵ × (−1, 0)) for ϵ small
enough, by the definition of Ŵϵ and the fact that ηϵ(x̄, x3) = ϵ1/2η

(
x̄, x̄

ϵ
, x3

ϵ

)
= 0 if

x̄ /∈ C, C compact subset of W . Hence trivially∫
Ω\(Ŵϵ×(−1,0))

div vϵ div(Pϵηϵ) −−→
ϵ→0

0.

Theorem 3.4.44. Let v̂ ∈ L2(W,w1,2
PerY

(Y × (−∞, 0))) be the function from Theo-
rem 3.4.32. Then ∫

W×Y×(−∞,0)

divy v̂(x̄, y) divy η(x̄, y) = 0, (3.4.45)

for all η ∈ L2(W,xPerY (Y × (−∞, 0))) such that η1(x̄, ȳ, 0) = η2(x̄, ȳ, 0) = 0 for all
(x̄, ȳ) ∈ W × Y . Moreover, we have that

ν ×
(
v̂(x̄, ȳ, 0)× ν

)
=
(
−∇b(ȳ) v3(x̄, 0), 0

)
(3.4.46)

for a.e. (x̄, ȳ) ∈ W × Y .
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Proof. In the case the test function η is smooth, one can take the limit in equation
(3.4.34) and combine (3.4.34)-(3.4.39). Then reasoning with an approximation
argument one can recover the general case for a generic function in L2(W,xPerY (Y ×
(−∞, 0))) satisfying the same boundary conditions.

Now we turn to prove formula (3.4.46). We have that νϵ × vϵ = 0 on Γϵ for all
ϵ > 0. Writing the cross product explicitly we get (for the sake of simplicity in the
next formulas we put the index denoting the vector component at the top)

• ν2ϵ v
3
ϵ − ν3ϵ v

2
ϵ = 0 ⇐⇒ (0, v3ϵ ,−v2ϵ ) ⊥ νϵ;

• ν3ϵ v
1
ϵ − ν1ϵ v

3
ϵ = 0 ⇐⇒ (−v3ϵ , 0, v1ϵ ) ⊥ νϵ; (3.4.47)

• ν1ϵ v
2
ϵ − ν2ϵ v

1
ϵ = 0 ⇐⇒ (v2ϵ ,−v1ϵ , 0) ⊥ νϵ.

Note that this analysis is justified since by hypothesis for every ϵ > 0 the vector
field vϵ belongs to H1(Ωϵ)

3 and thus it can be traced as a function in L2(∂Ωϵ)
3

defined on the boundary. Let v ∈ H1(Ω)3 be the function of Theorem 3.4.32, which
is the weak limit in H1(Ω)3 of the functions vϵ. Thus, in particular, we have that
(vϵ)i|Ω ⇀ vi in H1(Ω) for i = 1, 2, 3, and so we can apply Lemma 3.4.11 to each of
the three vector fields in (3.4.47) to get that

v1(x̄, 0) = v2(x̄, 0) = 0 a.e. in W, (3.4.48)

thus ν × v = 0 on Γ, and

• v̂2(x̄, ȳ, 0) = −∇b(ȳ) · (0, v3)(x̄, 0) = − ∂b

∂y2
(ȳ)v3(x̄, 0),

• v̂1(x̄, ȳ, 0) = ∇b(ȳ) · (−v3, 0)(x̄, 0) = − ∂b

∂y1
(ȳ)v3(x̄, 0),

for a.e. (x̄, ȳ) ∈ W × Y . Therefore(
v̂1(x̄, ȳ, 0), v̂2(x̄, ȳ, 0)

)
= −∇b(ȳ) v3(x̄, 0) a.e. on W × Y.

Observing that ν = (0, 0, 1) on Γ, we recover that

ν ×
(
v̂(x̄, ȳ, 0)× ν

)
=
(
−∇b(ȳ) v3(x̄, 0), 0

)
a.e. on W × Y.

We also have the following
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Lemma 3.4.49. There exists a solution ṽ ∈ L2(W,xPerY (Y × (−∞, 0))) to the
following problem: ∫

W×Y×(−∞,0)

divy ṽ(x̄, y) divy η(x̄, y) = 0, (3.4.50)

for all η ∈ L2(W,xPerY (Y × (−∞, 0))) with η1(x̄, ȳ, 0) = η2(x̄, ȳ, 0) = 0 for all
(x̄, ȳ) ∈ W × Y , such that

ν ×
(
ṽ(x̄, ȳ, 0)× ν

)
=
(
−∇b(ȳ) v3(x̄, 0), 0

)
on W × Y .

Proof. Consider a function u ∈ w1,2
PerY

(Y × (−∞, 0)) such that u(ȳ, 0) = −b(ȳ) on
Y and ∫

Y×(−∞,0)

∇u · ∇ϕ = 0 (3.4.51)

for all ϕ ∈ w1,2
PerY

(Y × (−∞, 0)) such that ϕ(ȳ, 0) = 0 for all ȳ ∈ Y . Its existence
can be proved using the same argument in [11, Lemma 8.65]. In particular, testing
against functions ϕ ∈ C∞

c (Y × (−∞, 0)) one can see that u is harmonic. Then the
gradient ∇u belongs to XPerY ,loc(Y × (−∞, 0)) and both its curl and divergence
vanish. Considering

ṽ(x̄, y) := ∇u(y) v3(x̄, 0),

we observe that ṽ ∈ L2(W,xPerY (Y × (−∞, 0))) is such that

divy ṽ(x̄, y) = ∆u(y) v3(x̄, 0) = 0

in Y ×(−∞, 0). Hence ṽ satisfies equation (3.4.50) trivially. Moreover, the boundary
condition is also trivially satisfied.

Remark 3.4.52. Let us now consider the difference w := v̂ − ṽ, with v̂ being
the function from Theorem 3.4.32 and ṽ the function from Lemma 3.4.49. It is
obvious that w ∈ L2(W,xPerY (Y × (−∞, 0))) satisfies (3.4.50), and moreover it
can be tested against itself since it has null tangential trace on W × Y × {0}. We
immediately deduce that divy w = 0 in W × Y × (−∞, 0). Thus

v̂(x̄, y) = ∇u(y) v3(x̄, 0) + curly g(x̄, y)

for some function g, whose regularity is such that it guarantees the above sum to
be in L2(W,w1,2

PerY
(Y × (−∞, 0))), and with u ∈ w1,2

PerY
(Y × (−∞, 0)) the function

satisfying (3.4.51).
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Lemma 3.4.53. Let u ∈ w1,2
PerY

(Y × (−∞, 0)) be the solution of (3.4.51), and v, v̂
be as in Theorem 3.4.32. Then v̂(x̄, y) = ∇u(y) v3(x̄, 0)+curly g(x̄, y) for almost all
(x̄, y) ∈ W × Y × (−∞, 0), with g such that curly g ∈ L2(W,xPerY (Y × (−∞, 0))).

Moreover, the second integral in the left-hand side of (3.4.33) vanishes, that is

−
∫
W

∫
Y×(−1,0)

divy v̂∆y

(
b(ȳ)(y3 + 1)3

)
dy ϕ3(x̄, 0) dx̄ = 0. (3.4.54)

Proof. The explicit form of v̂ is explained by remark (3.4.52), and thus the first
part of the theorem is proved.

Using the fact that v̂(x̄, y) = −∇u(y) v3(x̄, 0) + curly g(x̄, y) one can see that

−
∫
W

∫
Y×]−1,0[

divy v̂(x̄, y) ∆y

(
b(ȳ)(y3 + 1)3

)
dy ϕ3(x̄, 0) dx̄

=

∫
W

∫
Y×]−1,0[

∆u(y) ∆y

(
b(ȳ)(y3 + 1)3

)
dy v3(x̄, 0)ϕ3(x̄, 0)dx̄ = 0,

(3.4.55)

since u is harmonic.

Before stating the main theorem, we make the following remark.

Remark 3.4.56. Formula (3.4.48) effectively state that the limit function v ∈
H1(Ω)3 of Theorem 3.4.32 is such that ν × v = 0 on the upper profile Γ of Ω.

Theorem 3.4.57. Let fϵ ∈ L2(Ωϵ)
3, ϵ > 0 be a family of functions and let f ∈

L2(Ω)3 be their weak limit in L2(Ω). Let vϵ ∈ XN(Ωϵ) ∩H1(Ωϵ)
3 be the (unique)

solution of (3.4.20) corrisponding to the Poisson datum fϵ for every ϵ > 0. Then,
possibly passing to a subsequence, there exist v ∈ H1(Ω)3 with ν × v = 0 on Γ such
that vϵ|Ω ⇀ v weakly in H1(Ω)3, vϵ|Ω → v strongly in L2(Ω)3 and∫

Ω

(v · ϕ+ curl v · curlϕ+ div v divϕ) dx =

∫
Ω

f · ϕdx (3.4.58)

for all ϕ ∈ XN(Ω).

Proof. Use Theorem 3.4.32 and Lemma 3.4.53.

3.4.2 Magnetic case

In this final section of the chapter, for the sake of completeness, we study the
magnetic case for the threshold critical case of α = 3/2, which has an interest on
its own.

As we will see in Theorem 3.4.109, even the magnetic case seems to be stable
at the threshold of α = 3/2, analogously to Theorem 3.4.57.
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We will suppose the validity uniform Gaffney (magnetic) inequality, that is
XT(Ωϵ) ⊂ H1(Ωϵ)

3 for all ϵ > 0, and there exists C > 0 (independent of ϵ) such
that

∥u∥H1(Ωϵ)3
≤ C∥u∥XT(Ωϵ)

for all u ∈ XT(Ωϵ). (3.4.59)

Let {fϵ}ϵ>0 ∈ L2(Ωϵ)
3 be a family of data such that∥fϵ∥L2(Ωϵ)3

≤ C for all ϵ > 0,
for some C > 0, and let f ∈ L2(Ω)3 its weak limit in L2(Ω)3, namely fϵ|Ω ⇀ f
weakly in L2(Ω)3 as ϵ→ 0. The magnetic Maxwell Poisson problem reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

curl curl vϵ = fϵ, in Ωϵ,
div vϵ = 0, in Ωϵ,
νϵ · vϵ = 0, on ∂Ωϵ,
νϵ × curl vϵ = 0, on ∂Ωϵ.

(3.4.60)

Its weak formulation is∫
Ωϵ

curl vϵ · curlψ dx =

∫
Ωϵ

fϵ · ψ dx for all ψ ∈ XT(div 0,Ωϵ) (3.4.61)

in the unknown vϵ ∈ XT(div 0,Ωϵ).
We will not study problem (3.4.61) but instead the following:∫
Ωϵ

vϵ · ψ dx+
∫
Ωϵ

curl vϵ · curlψ dx+
∫
Ωϵ

div vϵ divψ dx

=

∫
Ωϵ

fϵ · ψ dx for all ψ ∈ XT(Ωϵ),

(3.4.62)

in the unknown vϵ ∈ XT(Ωϵ).
In the magnetic case the appropriate push-back for the vector fields is not the

controvariant Piola transform (cf. (3.4.18)), as it does not preserve the magnetic
boundary condition of being tangent to the boundary. Instead, we consider the
so-called covariant Piola transform Pϵ : XT(Ω) → XT(Ωϵ), associated with the
diffeomorphism Φϵ, defined by

Pϵϕ := (ϕ ◦ Φϵ)(DΦϵ)
−T detDΦϵ = (ϕ ◦ Φϵ)cofDΦϵ ,

where cofDΦϵ denotes the cofactor matrix of DΦϵ.
We now fix a generic vector field ϕ ∈ XT(Ω). Observe that by the Gaffney

inequality, which holds also in Ω since it is convex (see e.g. [107]), we have that
ϕ ∈ H1(Ω)3. Since Pϵϕ ∈ XT(Ωϵ) we have that∫

Ωϵ

vϵ · Pϵϕdx+

∫
Ωϵ

curl vϵ · curlPϵϕdx+

∫
Ωϵ

div vϵ divPϵϕdx

=

∫
Ωϵ

fϵ · Pϵϕdx for all ψ ∈ XT(Ωϵ).
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Note that in the following until the end of the chapter, vectors will always be
understood to be row vectors. If v is a vector in R3 we denote its coordinate entries
by v(i), thus writing v = (v(1),v(2),v(3)). In the case the vector is made of a more
complex expression we will use the subscript notation together with the use of
round brackets, e.g. (v ×w)i with v,w vectors in R3 or (vM)i with M a 3× 3
matrix.

Using the Levi-Civita symbols (and the Einstein notation for sums), if F =

(F (1), F (2), F (3)) is a vector field then (curlF )k = ∂F (j)

∂xi
ξijk, and that if M is a 3× 3

matrix then
(cofM)sj =

1

2
ξss2s3 ξjj2j3 Ms2j2Ms3j3 .

Using the chain rule for the derivatives, we can write the curl of Pϵϕ explicitly in
the following way

(curlPϵϕ)
(k) =

1

2
ξijkξss2s3ξjj2j3

∂ϕ(s)

∂xh
◦ Φϵ

∂Φ
(h)
ϵ

∂xi

∂Φ
(s2)
ϵ

∂xj2

∂Φ
(s3)
ϵ

∂xj3

+ ξijkξss2s3ξjj2j3 ϕ
(s) ◦ Φϵ

∂2Φ
(s2)
ϵ

∂xi∂xj2

∂Φ
(s3)
ϵ

∂xj3
.

(3.4.63)

As in the electric case, since ∥fϵ∥L2(Ωϵ)3
≤ C for all ϵ > 0, using a similar

argument to the one used to prove (3.2.8) and the validity of the uniform inequality
(3.4.59), we can see that the norms in H1(Ωϵ)

3 of the functions vϵ are bounded for
every ϵ > 0. Hence, let v ∈ H1(Ω)3 be the weak limit in H1(Ω)3 of the functions
vϵ|Ω. Observe that thanks to Lemma 3.4.11 the function v is such that v · ν = 0 on
the upper profile Γ.

Lemma 3.4.64. We have the following limits:∫
Ωϵ

fϵ · Pϵϕdx −−→
ϵ→0

∫
Ω

f · ϕdx; (3.4.65)

∫
Ωϵ

div vϵ · divPϵϕdx −−→
ϵ→0

∫
Ω

div v · divϕdx; (3.4.66)∫
Kϵ

curl vϵ · curlPϵϕdx −−→
ϵ→0

∫
Ω

curl v · curlϕdx, (3.4.67)∫
Ωϵ\Ω

curl vϵ · curlPϵϕdx −−→
ϵ→0

0. (3.4.68)

Proof. The proof of limits (3.4.65) and (3.4.67) is easy and left to the reader. To
see limit (3.4.66) one needs to observe that the divergence is transformed via the
covariant Piola transform in the following way

divPϵϕ = (divϕ) ◦ Φϵ detDΦϵ,



100 Chapter 3. Stability

which is an expression that involves only first order derivatives of Φϵ, and use
Lemma 3.4.15. We will only prove limit (3.4.68) in details. Proceeding similarly
to the electric case, by Hölder’s inequality, formula (3.4.63) and Lemma 3.4.15 we
have that(∫

Ωϵ\Ω
curl vϵ · curlPϵϕdx

)2

≤∥curl vϵ∥2L2(Ωϵ\Ω)3

∫
Ωϵ\Ω

|curlPϵϕ|2 dx

≤ C

∫
Ωϵ\Ω

⏐⏐⏐⏐⏐12ξijkξss2s3ξjj2j3 ∂ϕ(s)

∂xh
◦ Φϵ

∂Φ
(h)
ϵ

∂xi

∂Φ
(s2)
ϵ

∂xj2

∂Φ
(s3)
ϵ

∂xj3

⏐⏐⏐⏐⏐
2

dx

+ C

∫
Ωϵ\Ω

⏐⏐⏐⏐⏐ξijkξss2s3ξjj2j3 ϕ(s) ◦ Φϵ
∂2Φ

(s2)
ϵ

∂xi∂xj2

∂Φ
(s3)
ϵ

∂xj3

⏐⏐⏐⏐⏐
2

dx

≤ C

∫
Ωϵ\Ω

|Dϕ ◦ Φϵ|2 dx+ Cϵ−1

∫
Ωϵ\Ω

|ϕ ◦ Φϵ|2 dx

≤ C

∫
Φϵ(Ωϵ\Ω)

|Dϕ|2 dx+ Cϵ−1

∫
Φϵ(Ωϵ\Ω)

|ϕ|2 dx.

(3.4.69)

Observe that

Φϵ(Ωϵ \ Ω) =
{
(x̄, x3 − hϵ(x̄, x3)) : x̄ ∈ W, 0 < x3 < gϵ(x̄)

}
⊂
{
(x̄, z3) : x̄ ∈ W,−gϵ(x̄) < z3 < 0

}
⊂
{
(x̄, z3) : x̄ ∈ W,−ϵ3/2b0 < z3 < 0

}
,

where b0 =
b(·)

L∞(W )
. Thus we have that

⏐⏐Φϵ(Ωϵ \ Ω)
⏐⏐→ 0 as ϵ goes to 0, hence∫

Φϵ(Ωϵ\Ω)

|Dϕ|2 dx −−→
ϵ→0

0. (3.4.70)

Moreover, by the one dimensional embedding estimate for Sobolev functions, we
have that ϕ(x̄, ·)2

L∞(−1,0)
≤ C

ϕ(x̄, ·)2
H1(−1,0)

,

for almost every x̄ ∈ W . Thus

Cϵ−1

∫
Φϵ(Ωϵ\Ω)

|ϕ|2 dx ≤ Cϵ−1ϵ3/2b0

∫
W

ϕ(x̄, ·)2
L∞(−1,0)

dx̄

≤ Cϵ1/2
∫
W

ϕ(x̄, ·)2
H1(−1,0)

dx̄ ≤ Cϵ1/2∥ϕ∥2H1(Ω)3 −−→ϵ→0
0,

and the proof is concluded.
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Recall that Qϵ := Ŵϵ × (−ϵ, 0). We study the following integrals∫
Ω\Kϵ

curl vϵ·curlPϵϕdx =

∫
Qϵ

curl vϵ·curlPϵϕdx+

∫
Ω\(Kϵ∪Qϵ)

curl vϵ·curlPϵϕdx.

(3.4.71)
By the same argument used in (3.4.69), we get(∫

Ω\(Kϵ∪Qϵ)

curl vϵ · curlPϵϕdx

)2

≤ C

∫
Φϵ(Ω\(Kϵ∪Qϵ))

|Dϕ|2 dx+ Cϵ−1

∫
Φϵ(Ω\(Kϵ∪Qϵ))

|ϕ|2 dx.

Since Φϵ(Ω \ (Kϵ ∪Qϵ)) ⊂ Φϵ(Ω \Kϵ) ⊂ Ω \Kϵ, it is clear that∫
Φϵ(Ω\(Kϵ∪Qϵ))

|Dϕ|2 dx −−→
ϵ→0

0.

Again using the one dimensional embedding for Sobolev functions and observing
that in this case the diameter of the set Φϵ(Ω \ (Kϵ ∪ Qϵ)) in the direction x3 is
less or equal than ϵ, we have that

ϵ−1

∫
Φϵ(Ω\(Kϵ∪Qϵ))

|ϕ|2 dx ≤ C∥ϕ∥2
H1(Ω\(Ŵϵ×(−1,0))

−−→
ϵ→0

0,

where the last limit is a consequence of the fact that
⏐⏐⏐Ω \ (Ŵϵ × (−1, 0))

⏐⏐⏐→ 0 as ϵ
goes to 0. Thus we proved that∫

Ω\(Kϵ∪Qϵ)

curl vϵ · curlPϵϕdx −−→
ϵ→0

0. (3.4.72)

We now study ∫
Qϵ

curl vϵ · curlPϵϕdx.

The terms of the first type in the sum of the right-hand side of (3.4.63) go to 0 as
ϵ goes to 0, since they involve only derivatives of Φϵ of the first order. Thus we
focus on the terms of the second type. Before doing so, we present the following
lemma, which sums up Lemma 3.4.7 and Lemma 3.4.11 applied to the magnetic
case. Recall also that we are under the assumption that the uniform inequality
(3.4.59) is valid.
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Lemma 3.4.73. For all ϵ > 0 let vϵ ∈ XT(Ωϵ) be the (unique) solution of (3.4.62),
and suppose that vϵ|Ω ⇀

ϵ→0
v weakly in H1(Ω)3. Then the third component v(3) of v

vanishes on Γ. Moreover, if by Vϵ we denote the following vector field

Vϵ(x̄, y) = v̂ϵ(x̄, y)−
∫
Y

v̂ϵ(x̄, ȳ, 0)dȳ for (x̄, y) ∈ Ŵϵ × Y × (−1/ϵ, 0),

then there exists v̂ ∈ L2(W,w1,2
PerY

(Y × (−∞, 0))) such that

Vϵ
ϵ1/2

⇀
ϵ→0

v̂ and
DyVϵ
ϵ1/2

=
Dyv̂ϵ
ϵ1/2

⇀
ϵ→0

Dyv̂ in L2(W × Y × (d, 0)) for any d < 0,

and the following relation holds

v̂ (3)(x̄, ȳ, 0) = − ∂b

∂y1
(ȳ)v(1)(x̄, 0)− ∂b

∂y2
(ȳ)v(2)(x̄, 0).

Moreover, for any u ∈ H1(Ω)3

(u ◦ Φϵ)|Ω
⋀

−−→
ϵ→0

u(x̄, 0) in L2(W × Y × (−1, 0)).

By definition (3.4.4), Lemma 3.4.5, Lemma 3.4.16, Lemma 3.4.73, and observing
that by formula (3.4.14)

ξss2s3
∂2Φ

(s2)
ϵ

∂xi∂xj2

∂Φ
(s3)
ϵ

∂xj3
= −ξss2s3 δs23δs3j3

∂2hϵ
∂xi∂xj2

,

we get that

lim
ϵ→0

∫
Qϵ

∂v
(b)
ϵ

∂xa
ξabkξijkξss2s3ξjj2j3 ϕ

(s) ◦ Φϵ
∂2Φ

(s2)
ϵ

∂xi∂xj2

∂Φ
(s3)
ϵ

∂xj3
dx

= − lim
ϵ→0

∫
Ŵϵ

∫
Y×(−1,0)

(
ϵ−1/2∂ v̂

(b)
ϵ

∂ya
(x̄, y) ξabkξijkξs3s3ξjj2s3 ϕ

(s) ◦ Φϵ

⋀

(x̄, y)

· ϵ1/2 ∂2hϵ
⋀

∂xi∂xj2
(x̄, y)

)
dx̄dy

= −
∫
W

∫
Y×(−1,0)

∂ v̂ (b)

∂ya
(x̄, y) ϕ(s)(x̄, 0)

∂2[b(ȳ)(y3 + 1)3]

∂yi∂yj2
ξabkξijkξs3s3ξjj2s3 dx̄dy.
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Furthermore, since
∑3

j=1 ξijkξjj2s3 = δis3δkj2 − δij2δks3 , we have that

− ∂ v̂ (b)

∂ya
(x̄, y) ϕ(s)(x̄, 0)

∂2[b(ȳ)(y3 + 1)3]

∂yi∂yj2
ξabkξijkξs3s3ξjj2s3

=
∂ v̂ (b)

∂ya
(x̄, y) ξabk ϕ

(s)(x̄, 0) ξks3
∂2[b(ȳ)(y3 + 1)3]

∂yi∂yi

− ∂ v̂ (b)

∂ya
(x̄, y) ξabk

∂2[b(ȳ)(y3 + 1)3]

∂yi∂yk
ϕ(s)(x̄, 0) ξis3

=
(
curly v̂(x̄, y)× ϕ(x̄, 0)

)
3
∆y[b(ȳ)(y3 + 1)3]

−
(
curly v̂(x̄, y) D

2
y[b(ȳ)(y3 + 1)3]× ϕ(x̄, 0)

)
3
,

where D2
y denotes the Hessian matrix with respect to the variable y = (ȳ, y3). We

have thus proved the following

Lemma 3.4.74. Let v̂ ∈ L2(W,w1,2
PerY

(Y × (−∞, 0))) be as in Lemma 3.4.73, and
set

M : Y × [−1, 0] → Sym3(R), M(y) := ∆[b(ȳ)(y3 + 1)3] I3 −D2[b(ȳ)(y3 + 1)3].
(3.4.75)

Then

lim
ϵ→0

∫
Qϵ

curl vϵ · curlPϵϕdx =

∫
W

∫
Y×(−1,0)

(
curly v̂(x̄, y)M(y)× ϕ(x̄, 0)

)
3
dx̄dy.

(3.4.76)

The next theorem is a consequence of (3.4.72) and Lemmas 3.4.64 and 3.4.74.

Theorem 3.4.77. Let fϵ ∈ L2(Ωϵ)
3, ϵ > 0 be a family of functions weakly con-

verging in L2(Ω)3 to f ∈ L2(Ω)3. Let vϵ ∈ XT(Ω) ∩ H1(Ω)3 be the solution of
(3.4.62) corresponding to the Poisson datum fϵ for every ϵ > 0. Then, possi-
bly passing to a subsequence, there exists v ∈ H1(Ω)3 with v · ν = 0 on Γ, and
v̂ ∈ L2(W,w1,2

PerY
(Y ×(−∞, 0))) such that vϵ ⇀ v weakly in H1(Ω)3, vϵ → v strongly

in L2(Ω)3 and∫
Ω

(v · ϕ+ div v divϕ+ curl v · curlϕ) dx

+

∫
W

∫
Y×(−1,0)

(
curly v̂(x̄, y)M(y)× ϕ(x̄, 0)

)
3
dx̄dy =

∫
Ω

f · ϕdx

(3.4.78)

for all ϕ ∈ XT(Ω), with M ∈ C(Y × [−1, 0], Sym3(R)) being the matrix-valued
function defined in (3.4.75).
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We now want to characterize the function v̂ introduced in Lemma 3.4.73.
Proceeding as in [11, Section 8.4], we take η ∈ C∞

(
W × Y×]−∞, 0]

)3
periodic

in Y with compact support contained in C × Y × [d, 0], for some compact C ⊂ W
and d < 0, and such that η(3)(x̄, ȳ, 0) = 0 in W × Y . Set

ηϵ(x) = ϵ1/2η

(
x̄,
x̄

ϵ
,
x3
ϵ

)
.

Observe that for ϵ > 0 small enough the function ηϵ is admissible, and thus we can
consider Pϵηϵ ∈ XT(Ωϵ) as a test function in (3.4.62), yielding∫
Ωϵ

vϵ ·Pϵηϵ dx+

∫
Ωϵ

curl vϵ ·curlPϵηϵ dx+

∫
Ωϵ

div vϵ divPϵηϵ dx =

∫
Ωϵ

fϵ ·Pϵηϵ dx.

(3.4.79)
Due to the presence of the factor ϵ1/2 it is not difficult to see that∫

Ωϵ

vϵ · Pϵηϵ dx −−→
ϵ→0

0,

∫
Ωϵ

div vϵ divPϵηϵ dx −−→
ϵ→0

0,

∫
Ωϵ

fϵ · Pϵηϵ dx −−→
ϵ→0

0.

(3.4.80)
Moreover, there holds the following

Lemma 3.4.81. We have that∫
Ωϵ\Ω

curl vϵ · curlPϵηϵ dx −−→
ϵ→0

0 (3.4.82)

and∫
Ω

curl vϵ ·curlPϵηϵ dx −−→
ϵ→0

∫
W×Y×(−∞,0)

curly v̂(x̄, y) ·curly η(x̄, y) dx̄dy. (3.4.83)

Proof. Recalling formula (3.4.63) and using Lemma 3.4.15 we get(∫
Ωϵ\Ω

curl vϵ · curlPϵηϵ dx

)2

≤ C

∫
Ωϵ\Ω

|curlPϵηϵ|2 dx

≤ C

∫
Ωϵ\Ω

⏐⏐⏐⏐⏐12ξijkξss2s3ξjj2j3 ∂η
(s)
ϵ

∂xh
◦ Φϵ

∂Φ
(h)
ϵ

∂xi

∂Φ
(s2)
ϵ

∂xj2

∂Φ
(s3)
ϵ

∂xj3

⏐⏐⏐⏐⏐
2

dx

+ C

∫
Ωϵ\Ω

⏐⏐⏐⏐⏐ξijkξss2s3ξjj2j3 η(s)ϵ ◦ Φϵ
∂2Φ

(s2)
ϵ

∂xi∂xj2

∂Φ
(s3)
ϵ

∂xj3

⏐⏐⏐⏐⏐
2

dx

≤ C

∫
Ωϵ\Ω

|Dηϵ ◦ Φϵ|2 dx+ Cϵ−1

∫
Ωϵ\Ω

|ηϵ ◦ Φϵ|2 dx

≤ C

∫
Φϵ(Ωϵ\Ω)

|Dηϵ|2 dx+ Cϵ−1

∫
Φϵ(Ωϵ\Ω)

|ηϵ|2 dx.

(3.4.84)
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The rate of convergence for the domain of integration is
⏐⏐Φϵ(Ωϵ \ Ω)

⏐⏐ = O(ϵ3/2) (cf.
(3.4.25)). Since ∥ηϵ∥L∞(Ω) ≤ Cϵ1/2 and ∥Dηϵ∥L∞(Ω) ≤ Cϵ−1/2, both integrals in the
above sum go to 0 as ϵ goes to 0. Thus we have proved (3.4.82).

We now prove (3.4.83). Due to the Y -periodicity of η we have that

P̂ϵηϵ(x̄, y) = ϵ1/2η

⎛⎝ϵ⌊ x̄
ϵ

⌋
+ ϵȳ, ȳ, y3 − ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠ ĉofDΦϵ(x̄, y)

From (3.4.41) we get that

ĉofDΦϵ −−→
ϵ→0

I3 and
∂

∂yi
ĉofDΦϵ −−→

ϵ→0
O3, (3.4.85)

uniformly in W × Y × (−∞, 0], for all i = 1, 2, 3. Since η is smooth and compactly
supported, it is Lipschitz continuous together with its derivatives, and thus(Dγη)

⎛⎝ϵ⌊ x̄
ϵ

⌋
+ ϵȳ, ȳ, y3 − ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠−Dγη(x̄, y)


L2(Ŵϵ×Y×(−∞,0))

−−→
ϵ→0

0

(3.4.86)
for any |γ| ≤ 1 (cf. formula (8.51) of [11]). Consider

∂

∂yi
P̂ϵηϵ(x̄, y)

= ϵ1/2
∂

∂yi

⎛⎜⎝η
⎛⎝ϵ⌊ x̄

ϵ

⌋
+ ϵȳ, ȳ, y3 − ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠
⎞⎟⎠ ĉofDΦϵ(x̄, y)

+ ϵ1/2η

⎛⎝ϵ⌊ x̄
ϵ

⌋
+ ϵȳ, ȳ, y3 − ϵ−1hϵ

(
ϵ

⌊
x̄

ϵ

⌋
+ ϵȳ, ϵy3

)⎞⎠ ∂

∂yi
ĉofDΦϵ(x̄, y).

From (3.4.85), (3.4.86) and using the chain rule we have that for all i = 1, 2, 3

ϵ−1/2 ∂

∂yi
P̂ϵηϵ(x̄, y) −−→

ϵ→0

∂η

∂yi
(x̄, y) (3.4.87)

in L2(W × Y × (−∞, 0)). By Lemma 3.4.5, Lemma 3.4.73 and (3.4.87) we get

lim
ϵ→0

∫
Ŵϵ×(−1,0)

curl vϵ · curlPϵηϵ dx = lim
ϵ→0

∫
Ŵϵ×Y×(−1/ϵ,0)

curly v̂ϵ
ϵ1/2

· curly P̂ϵηϵ
ϵ1/2

dx̄dy

=

∫
W×Y×(−∞,0)

curly v̂(x̄, y) · curly η(x̄, y) dx̄dy.
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Finally, by the definition of Ŵϵ and the fact that η has compact support in the
first two variables, it is not difficult to see that∫

Ω\(Ŵϵ×(−1,0))

curl vϵ · curlPϵηϵ dx −−→
ϵ→0

0,

which concludes the proof.

Recall that a vector field u belongs to the space XPerY ,loc(Y × (−∞, 0)) if
u ∈ Hloc(curl,R2×(−∞, 0))∩Hloc(div,R2×(−∞, 0)) and moreover u is Y -periodic
in the first two variables ȳ ∈ R2. There will be no notational difference when
writing a function in XPerY ,loc(Y × (−∞, 0)) or its restriction to Y × (−∞, 0). Then

xPerY (Y × (−∞, 0)) =
{
u ∈ XPerY ,loc(Y × (−∞, 0)) :

∥curlu∥L2(Y×(−∞,0))3 ,∥div u∥L2(Y×(−∞,0)) <∞
}
.

Theorem 3.4.88. Let v̂ ∈ L2(W,w1,2
PerY

(Y × (−∞, 0))) be the function introduced
in Lemma 3.4.73. Then∫

W×Y×(−∞,0)

curly v̂(x̄, y) · curly η(x̄, y) dx̄dy = 0 (3.4.89)

for all η ∈ L2(W,x1,2PerY
(Y × (−∞, 0))) such that η(3)(x̄, ȳ, 0) = 0 in W × Y .

Moreover
v̂ (3)(x̄, ȳ, 0) = − ∂b

∂y1
(ȳ)v(1)(x̄, 0)− ∂b

∂y2
(ȳ)v(2)(x̄, 0), (3.4.90)

where v is the function introduced in Theorem 3.4.77.

Proof. To see (3.4.89), in the case of smooth test functions, one simply takes the
limit in equation (3.4.79) and using limits (3.4.80)-(3.4.83). To get the general
case, one can reason via an approximation argument.

The boundary condition (3.4.90) is a direct consequence of Lemma 3.4.11.

We now want to describe the function v̂ in a more explicit way, separating the
variables x̄ and y. The natural microscopic problem related to (3.4.89) is described
in the following lemma.

Lemma 3.4.91. Assume that the function b introduced in (3.4.1) is of class C3.
Then, for i = 1, 2 there exist vector fields Vi(y) ∈ xPerY (Y × (−∞, 0))) satisfying∫

Y×(−∞,0)

curlVi · curl η dy = 0 (3.4.92)
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for all η ∈ xPerY (Y × (−∞, 0))) such that η(3)(ȳ, 0) = 0 on Y , together with the
boundary condition

V
(3)
i (ȳ, 0) = − ∂b

∂yi
(ȳ) for all ȳ ∈ Y. (3.4.93)

Moreover, if there are two solutions Vi and Ṽi of (3.4.92), (3.4.93) then Vi−Ṽi = ∇q
for some q ∈ W 1,2

PerY ,loc(Y × (−∞, 0)).
Finally, if Vi is of class W 2,2

PerY
(Y × (d, 0)) for some d < 0, then curl curlVi = 0

in (Y × (d, 0)) and it satisfies the boundary condition

(ν × curlVi)(ȳ, 0) = 0 on Y.

Proof. We provide an explicit solution of problem (3.4.92)–(3.4.93), assuming b to
be of class C3. Consider the function defined by

ui(y) :=

{
− ∂b

∂yi
(ȳ)(y3 + 1)3, −1 ≤ y3 ≤ 0,

0, −∞ < y3 ≤ −1,

and take its gradient Vi(y) := ∇ui(y). Clearly curlVi = 0 and thus it trivially solves
(3.4.92), and its third component on Y × {0} coincides with − ∂b

∂yi
(ȳ). Moreover its

divergence is well defined and it is equal to

ui(y) :=

⎧⎨⎩−∆
(

∂b
∂yi

(ȳ)(y3 + 1)3
)
, −1 ≤ y3 ≤ 0,

0, −∞ < y3 ≤ −1,

which is clearly square summable over the whole semi-infinite strip, since it is equal
to zero if y3 < −1. Thus Vi belongs to xPerY (Y × (−∞, 0))).

To see uniqueness, suppose V ∈ xPerY (Y × (−∞, 0))) satisfies (3.4.92) and
the boundary condition V (3)(ȳ, 0) = 0. Testing V against itself in (3.4.92) yields
curlV = 0. Hence by the Poincaré’s Lemma we can conclude that V = ∇q for
some scalar potential function q ∈ W 1,2

PerY ,loc(Y × (−∞, 0)).

Remark 3.4.94. Consider the vector field − ∂b
∂y1

(ȳ) ê3. Then obviously it satisfies
condition (3.4.93) for i = 1. Let r < 0 and introduce a smooth cut-off function
ρr :]−∞, 0] → R such that 0 ≤ ρr ≤ 1 and{

ρr(z) ≡ 1, for r
2
≤ z ≤ 0,

ρr(z) ≡ 0, for z ≤ r.
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Consider now the modified vector field −ρr(y3) ∂b
∂y1

(ȳ) ê3. It belongs to xPerY (Y ×
(−∞, 0))) and again it satisfies (3.4.93) for i = 1, with curl equal to

curl

(
−ρr(y3)

∂b

∂y1
(ȳ) ê3

)
= −∇

(
ρr(y3)

∂b

∂y1
(ȳ)

)
× ê3

= ρr(y3)

(
− ∂2b

∂y2∂y1
(ȳ)ê1 +

∂2b

∂y1∂y1
(ȳ)ê2

)
.

(3.4.95)

Thus we can use η(y) = V1 − ρr(y3)
∂b
∂y1

(ȳ) ê3 as a test function in (3.4.92). Hence∫
Y×(−∞,0)

curlV1 · curlV2 dy

=

∫
Y×(r,0)

ρr(y3) curlV1(y) ·

(
− ∂2b

∂y2∂y1
(ȳ)ê1 +

∂2b

∂y1∂y1
(ȳ)ê2

)
dy,

and∫
Y×(−∞,0)

|curlV2|2dy

=

∫
Y×(r,0)

ρr(y3) curlV2(y) ·

(
− ∂2b

∂y2∂y1
(ȳ)ê1 +

∂2b

∂y1∂y1
(ȳ)ê2

)
dy.

Analogously, using V2 − ρr(y3)
∂b
∂y2

(ȳ) ê3 we find out that∫
Y×(−∞,0)

curlV1 · curlV2 dy

=

∫
Y×(r,0)

ρr(y3) curlV2(y) ·

(
− ∂2b

∂y2∂y2
(ȳ)ê1 +

∂2b

∂y1∂y2
(ȳ)ê2

)
dy,

and∫
Y×(−∞,0)

|curlV1|2dy

=

∫
Y×(r,0)

ρr(y3) curlV1(y) ·

(
− ∂2b

∂y2∂y2
(ȳ)ê1 +

∂2b

∂y1∂y2
(ȳ)ê2

)
dy.

Passing to the limits for r → 0− in the above equalities we find out that all the
expressions on the left are null.
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Remark 3.4.96. If pi ∈ W 1,2
PerY

(Y × (−∞, 0)) is a solution to the following Neu-
mann problem {

∆pi = 0, in Y × (−∞, 0),
∂pi
∂ν

= − ∂b
∂yi
, on Y × {0},

(3.4.97)

then Vi := ∇pi ∈ xPerY (Y × (−∞, 0))) is a solution of⎧⎪⎪⎨⎪⎪⎩
curlVi = 0, in Y × (−∞, 0),

div Vi = 0, in Y × (−∞, 0),

Vi · ν = − ∂b
∂yi
, on Y × {0},

(3.4.98)

hence it trivially solves (3.4.92), (3.4.93).

Lemma 3.4.99. Let V1, V2 be as in Lemma 3.4.91. Then∫
Y×(−1,0)

(
curlV1(y)M(y)

)
2
dy =

∫
Y×(−∞,0)

⏐⏐curlV1(y)⏐⏐2 dy, (3.4.100)

∫
Y×(−1,0)

(
curlV2(y)M(y)

)
1
dy = −

∫
Y×(−∞,0)

⏐⏐curlV2(y)⏐⏐2 dy, (3.4.101)

and

−
∫
Y×(−1,0)

(
curlV1(y)M(y)

)
1
dy =

∫
Y×(−1,0)

(
curlV2(y)M(y)

)
2
dy

=

∫
Y×(−∞,0)

curlV1(y) · curlV2(y)dy.
(3.4.102)

Moreover for both i = 1, 2∫
Y×(−∞,0)

(
curlVi(y)M(y)

)
3
dy = 0. (3.4.103)

Proof. Let ê1 = (1, 0, 0), ê2 = (0, 1, 0), ê3 = (0, 0, 1) be the standard unit coordinate
vectors in R3. Define

η2(y) =

{
∇[b(ȳ)(y3 + 1)3]× ê1, if (ȳ, y3) ∈ Y × [−1, 0),

0, if (ȳ, y3) ∈ Y×]−∞,−1),

η1(y) =

{
ê2 ×∇[b(ȳ)(y3 + 1)3], if (ȳ, y3) ∈ Y × [−1, 0),

0, if (ȳ, y3) ∈ Y×]−∞,−1),
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and

η3(y) =

{
±ê3 ×∇[b(ȳ)(y3 + 1)3], if (ȳ, y3) ∈ Y × [−1, 0),

0, if (ȳ, y3) ∈ Y×]−∞,−1).

The vector fields ηj ∈ C1
PerY

(Y × (−∞, 0])3 are such that η(3)j (ȳ, 0) = − ∂b
∂yi

(ȳ) for
j = 1, 2 and η(3)3 ≡ 0. Moreover, computing their curl we find out that

curl η2(y) =

{
−ê1M(y), if (ȳ, y3) ∈ Y × [−1, 0),

0, if (ȳ, y3) ∈ Y×]−∞,−1),

curl η1(y) =

{
ê2M(y), if (ȳ, y3) ∈ Y × [−1, 0),

0, if (ȳ, y3) ∈ Y×]−∞,−1),

and

curl η3(y) =

{
±ê3M(y), if (ȳ, y3) ∈ Y × [−1, 0),

0, if (ȳ, y3) ∈ Y×]−∞,−1)

Setting η̃j = Vj − ηj for j = 1, 2 and η̃3 = η3, we have that η̃(3)j (ȳ, 0) = 0 for all
j = 1, 2, 3, hence we can test them in (3.4.92). Recalling that M(y) is symmetric
for all y ∈ Y × [−1, 0], we obtain the desired equalities.

Remark 3.4.104. The last two equalities (3.4.103) are superfluous for our purpose.

We now have all the ingredients to prove the next theorem.

Lemma 3.4.105. Let V1, V2 be as in Lemma 3.4.91. Let v, v̂ be the functions
defined in Lemma 3.4.73. Then there exist a scalar function q harmonic in y such
that

v̂(x̄, y) = V1(y)v
(1)(x̄, 0) + V2(y)v

(2)(x̄, 0) +∇yq(x̄, y) (3.4.106)

for almost all (x̄, y) ∈ W × Y × (−∞, 0).
Moreover, the second integral in the left-hand side of (3.4.78) is equal to∫
W

∫
Y×(−1,0)

(
curly v̂(x̄, y)M(y)× ϕ(x̄, 0)

)
3
dx̄dy = −

∫
W

v(x̄, 0)M · ϕ(x̄, 0) dx̄,

(3.4.107)
where M is a constant symmetric matrix defined as follows

M =

⎛⎜⎝
∫
Y×(−1,0)

|curlV1|2 dy
∫
Y×(−1,0)

curlV1 · curlV2 dy 0∫
Y×(−1,0)

curlV1 · curlV2
∫
Y×(−1,0)

|curlV2|2 dy 0

0 0 0

⎞⎟⎠ .
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Proof. The function v̂ satisfies problem (3.4.89) together with the boundary condi-
tion (3.4.90). Arguing as in the proof of Lemma 3.4.91, and observing that the vector
field V1(y)v(1)(x̄, 0)+V2(y)v(2)(x̄, 0) also satisfies the two conditions (3.4.89),(3.4.90),
we immediately deduce that the curl in y of the difference vanish in W ×Y × (∞, 0),
and using Poincaré’s Lemma we have that the function v̂ is of the type described
in (3.4.106). Hence curly v̂(x̄, y) = curlV1(y)v

(1)(x̄, 0) + curlV2(y)v
(2)(x̄, 0) and so∫

W

∫
Y×(−1,0)

(
curly v̂(x̄, y)M(y)× ϕ(x̄, 0)

)
3
dx̄dy

=

(∫
Y×(−1,0)

curlV1(y)M(y) dy ×
∫
W

v(1)(x̄, 0)ϕ(x̄, 0) dx̄

)
3

+

(∫
Y×(−1,0)

curlV2(y)M(y) dy ×
∫
W

v(2)(x̄, 0)ϕ(x̄, 0) dx̄

)
3

=

∫
Y×(−1,0)

(
curlV1(y)M(y)

)
1
dy

∫
W

v(1)(x̄, 0)ϕ(2)(x̄, 0) dx̄

−
∫
Y×(−1,0)

(
curlV1(y)M(y)

)
2
dy

∫
W

v(1)(x̄, 0)ϕ(1)(x̄, 0) dx̄

+

∫
Y×(−1,0)

(
curlV2(y)M(y)

)
1
dy

∫
W

v(2)(x̄, 0)ϕ(2)(x̄, 0) dx̄

−
∫
Y×(−1,0)

(
curlV2(y)M(y)

)
2
dy

∫
W

v(2)(x̄, 0)ϕ(1)(x̄, 0) dx̄

= −
∫
Y×(−1,0)

|curlV1|2 dy
∫
W

v(1)(x̄, 0)ϕ(1)(x̄, 0) dx̄

−
∫
Y×(−1,0)

|curlV2|2 dy
∫
W

v(2)(x̄, 0)ϕ(2)(x̄, 0) dx̄

−
∫
Y×(−1,0)

curlV1 · curlV2 dy
∫
W

(
v(1)(x̄, 0)ϕ(2)(x̄, 0) + v(2)(x̄, 0)ϕ(1)(x̄, 0)

)
dx̄,

where in the last equality we used (3.4.100), (3.4.101) and (3.4.102). Computing
v(x̄, 0)M · ϕ and integrating in x̄ over W we conclude.

We have thus proved that∫
Ωϵ

(vϵ · ϕdx+ curl vϵ · curlPϵϕdx+ div vϵ divϕ) dx =
∫
Ω
fϵ · Pϵϕdx

∫
Ω
(v · ϕ+ curl v · curlϕ+ div v divϕ) dx−

∫
Γ
vM · ϕdσ =

∫
Ω
f · ϕdx.

ϵ→0 ϵ→0
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This means that the problem that the limit function v of Theorem 3.4.77 satisfies
is ⎧⎪⎪⎪⎨⎪⎪⎪⎩

curl curl v = f, in Ω,
div v = 0, in Ω,
ν · v = 0, on ∂Ω,
ν × curl v + vM = 0, on Γ.

(3.4.108)

Then we can state the following theorem.

Theorem 3.4.109. Let fϵ ∈ L2(Ωϵ)
3, ϵ > 0 be a family of functions weakly con-

verging in L2(Ω)3 to f ∈ L2(Ω)3. Let vϵ ∈ XT(Ω)∩H1(Ω)3 be the (unique) solution
of (3.4.62) corresponding to the Poisson datum fϵ for every ϵ > 0. Then, possibly
passing to a subsequence, there exists v ∈ H1(Ω)3 with v · ν = 0 on Γ, such that
vϵ ⇀ v weakly in H1(Ω)3, vϵ → v strongly in L2(Ω)3 and∫

Ω

(v · ϕ+ div v divϕ+ curl v · curlϕ) dx =

∫
Ω

f · ϕdx

for all ϕ ∈ XT(Ω).

Proof. One just needs to observe that the matrix M is null, since the microscopic
solutions Vi, i = 1, 2 in the proof of Lemma 3.4.91, since they are gradients, are
irrotational (see also Remark 3.4.94 and Remark 3.4.96).



Chapter 4

Permittivity perturbation

In this chapter we study the dependence of the eigenvalues of the electric Maxwell
problem (4.1.1) upon the variation of the permittivity parameter. Note that the
permeability µ has been normalized. We show the local Lipschitz continuity of
single eigenvalues (see Theorem 4.2.11), as well as their continuity with respect
to the weak* topology (see Theorem 4.3.6) . Then, in Section 4.4, we prove an
analyticity result for the elementary symmetric functions of the eigenvalues and
provide formulas for the derivatives. We use such formulas to prove a Rellich-
Nagy-type result (see Theorem 4.4.11), and to study a constrained permittivity
optimization problem (see Theorem 4.5.1). Finally, in Section 4.6 we prove the
generic simplicity of the spectrum of problem (4.1.1).

4.1 Some preliminaries

For the sake of simplicity and to ease the notation, in the present chapter we
consider column vectors. In particular, given a 3× 3 matrix M and a vector v ∈ R3

the matrix-vector product is indicated as Mv.
Let Ω be a bounded domain of R3. In this chapter we study the following

eigenvalue problem ⎧⎪⎪⎨⎪⎪⎩
curl curlu = λ ε u in Ω,

div(εu) = 0 in Ω,

ν × u = 0 on ∂Ω,
(4.1.1)

upon variation of the permittivity parameter ε.
We denote by L∞(Ω)3×3 and W 1,∞(Ω)3×3 the spaces of real matrix-valued

functions M =
(
Mij

)
1≤i,j≤3

: Ω → R3×3 whose components are in L∞(Ω) and

113
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W 1,∞(Ω), respectively. We endow these spaces with the norms

∥M∥L∞(Ω)3×3 := max
1≤i,j≤3

Mij


L∞(Ω)

and
∥M∥W 1,∞(Ω)3×3 := max

1≤i,j≤3

Mij


W 1,∞(Ω)

. (4.1.2)

Moreover, for the sake of simplicity and to ease the notation, we will often write
L∞(Ω) and W 1,∞(Ω) respectively instead of L∞(Ω)3×3 and W 1,∞(Ω)3×3, whenever
it is clear from the context if we are referring to scalar or matrix-valued functions.

Let M ∈ L∞(Ω)3×3. In this sequel we will exploit the following trivial inequali-
ties:

|Mζ · ζ| ≤ 3∥M∥L∞(Ω)|ζ|
2

and
|Mζ| ≤ 3∥M∥L∞(Ω) |ζ|

for all ζ ∈ R3 and a.e. in Ω. Here |ζ| denotes the standard Euclidean vector norm
in R3, namely |ζ|2 =

∑3
i=1 ζ

2
i . Throughout this chapter, unless otherwise specified,

we will assume the following:

Ω is a bounded domain of R3 of class C1,1. (4.1.3)

In order to study the eigenvalue problem (4.1.1), we first need to specify where
we take the parameter ε. Therefore we introduce the following set of admissible
permittivities

E :=
{
ε ∈ W 1,∞(Ω) ∩ Sym3(Ω) :

∃ c > 0 s.t. ε(x) ζ · ζ ≥ c |ζ|2 for a.a. x ∈ Ω, for all ζ ∈ R3
}
,

(4.1.4)

endowed with the norm defined in (4.1.2). Here Sym3(Ω) denotes the set of (3× 3)-
symmetric matrix-valued functions in Ω. Given ε ∈ E , we denote by mε > 0 the
greatest positive constant that guarantees the coercivity condition in the above
definition, that is

mε := max
{
c > 0 : ε(x) ζ · ζ ≥ c |ζ|2 for a.a. x ∈ Ω, for all ζ ∈ R3

}
. (4.1.5)

Observe that the set E is open in W 1,∞(Ω) ∩ Sym3(Ω). This is implied by the
continuity of the map (

E , ∥ · ∥L∞(Ω)

)
→ R+, ε ↦→ mε.
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Indeed let ε1, ε2 ∈ E . Since
⏐⏐(ε2 − ε1) ζ · ζ

⏐⏐ ≤ 3∥ε2 − ε1∥L∞(Ω)|ζ|
2 a.e. in Ω, then

ε2 ζ · ζ = ε1 ζ · ζ + (ε2 − ε1) ζ · ζ ≥
(
mε1 − 3∥ε2 − ε1∥L∞(Ω)

)
|ζ|2 .

Hence mε2 ≥ mε1 − 3∥ε2− ε1∥L∞(Ω). Exchanging the role of ε1 and ε2 one can show
that mε2 ≤ mε1 + 3∥ε2 − ε1∥L∞(Ω), thus

|mε2 −mε1| ≤ 3∥ε2 − ε1∥L∞(Ω) , (4.1.6)

which ensures the (Lipschitz) continuity of the map defined above.

Let ε ∈ E . We denote by L2
ε(Ω) the space L2(Ω)3 endowed with the inner

product

⟨u, v⟩ε = Jε[u][v] :=

∫
Ω

εu · v dx ∀u, v ∈ L2(Ω)3. (4.1.7)

Note that the above inner product induces a norm equivalent to the standard
L2-norm since

mε

∫
Ω

|u|2 dx ≤
∫
Ω

εu · u dx ≤ 3∥ε∥L∞(Ω)

∫
Ω

|u|2 dx ∀u ∈ L2(Ω)3.

Recall from Chapter 1 the space

Xε
N(Ω) = H0(curl,Ω) ∩H(div ε,Ω)

equipped with inner product

⟨u, v⟩Xε
N(Ω) :=

∫
Ω

εu · v dx+
∫
Ω

curlu · curl v dx+
∫
Ω

div(εu) div(εv) dx

for all u, v ∈ Xε
N(Ω). Recall from Chapter 1 the following closed linear subspace of

Xε
N(Ω)

Xε
N(div ε0,Ω) =

{
u ∈ Xε

N(Ω) : div (εu) = 0
}

=
{
u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3, div(εu) = 0, ν × u|∂Ω = 0

}
.

If ε ∈ E and assumption (4.1.3) is valid, the space Xε
N(Ω) is continuously embedded

into H1(Ω)3 and there holds the following Gaffney inequality

∥u∥2H1(Ω)3 ≤ Cε

(
∥u∥L2

ε(Ω) +∥curlu∥2L2(Ω)3 + ∥ div εu∥2L2(Ω)

)
= Cε∥u∥Xε

N(Ω) (4.1.8)

for all u ∈ Xε
N(Ω), where Cε > 0 is a constant independent of u ∈ XN(Ω) but

possibly depending on ε. In Section 1.4 we showed a complete proof in the particular
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case ε = 1. For this more general case involving a non-unitary permittivity ε we
refer to Prokhorov and Filonov [102, Thm. 1.1].

It is easy to realize that the weak formulation of problem (4.1.1) is∫
Ω

curlu · curl v dx = λ

∫
Ω

εu · v dx ∀v ∈ Xε
N(div ε0,Ω), (4.1.9)

in the unknowns λ ∈ R (the eigenvalues) and u ∈ Xε
N(div ε0,Ω) (the eigenvectors).

The eigenvalues of problem (4.1.9) are non-negative, as one can easily see by testing
the eigenfunction u against itself.

Analogously to Chapter 2, for our purposes it is convenient to work in the
space Xε

N(Ω) rather than Xε
N(div ε0,Ω). Hence, again, following Costabel [39] and

Costabel and Dauge [40], we consider the following eigenvalue problem which
presents an additional penalty term:∫

Ω

curlu · curl v dx+ τ

∫
Ω

div(εu) div(εv) dx = σ

∫
Ω

εu · v dx ∀v ∈ Xε
N(Ω),

(4.1.10)
in the unknowns u ∈ Xε

N(Ω) and σ ∈ R. Here τ > 0 is any fixed positive real number.
Solutions of problem (4.1.9) will then corresponds to solutions u of (4.1.10) with
div εu = 0 in Ω (see also Theorem 4.1.15 below). Observe that also the eigenvalues
σ of problem (4.1.10) are non-negative. We will only consider positive eigenvalues
(cf. also Definition 4.1.19) and forget about the zero eigenvalue. In any case, to be
thorough, the zero eigenspace Kε

N(Ω) of problem (4.1.10) (and of problem (4.1.9))
is composed of those curl-free vector fields which are normal to the boundary and
such that div εu = 0 in Ω, namely

Kε
N(Ω) =

{
u ∈ L2(Ω)3 : curlu = 0 in Ω, div εu = 0 in Ω, ν × u = 0 on ∂Ω

}
.

Slightly modifying the proof of [7, Prop. 3.18], we can deduce that if m ∈ N is the
number of connected components of the boundary of Ω, then dimRK

ε
N(Ω) = m− 1.

In particular, if ∂Ω has only one connected component, Kε
N(Ω) = {0}.

Via a standard procedure, we can convert problem (4.1.10) into an eigenvalue
problem for a compact self-adjoint operator. Recall the map Jε defined in (4.1.7),
which is nothing but the bilinear form corresponding to the inner product of L2

ε(Ω).
Obviously Jε can be thought as an operator acting from L2

ε(Ω) to (Xε
N(Ω))

′. We
define the operator Tε from Xε

N(Ω) to (Xε
N(Ω))

′ by

Tε[u][v] :=

∫
Ω

εu·v dx+
∫
Ω

curlu·curl v dx+τ
∫
Ω

div(εu) div(εv) dx ∀u, v ∈ Xε
N(Ω).

(4.1.11)
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Observe that by the Riesz Theorem, Tε is a homeomorphism from Xε
N(Ω) to its

dual and can thus be inverted. We can therefore define the operator Sε, acting
from L2

ε(Ω) to itself, by setting

Sε := ιε ◦ T−1
ε ◦ Jε : L2

ε(Ω) → L2
ε(Ω), (4.1.12)

where ιε denotes the embedding of Xε
N(Ω) into L2

ε(Ω). We then have the following

Lemma 4.1.13. Let ε ∈ E. Then the operator Sε is a self-adjoint operator from
L2
ε(Ω) to itself. Moreover, σ is an eigenvalue of problem (4.1.10) if and only if

µ = (σ + 1)−1 is an eigenvalue of the operator Sε, the eigenvectors being the same.

The proof is completely analogous to the one of Lemma 2.1.11, thus we skip it.
If the space Xε

N(Ω) is compactly embedded into L2(Ω)3, which is true under our
assumptions on ε and Ω, the operator Sε is compact and its spectrum consists of
{0}∪{µn}n∈N with µn being a decreasing sequence composed of positive eigenvalues
of Sε of finite multiplicity converging to zero. Accordingly, by Lemma 4.1.13, the
spectrum of problem (4.1.10) is composed possibly by zero and by ε-dependent
positive eigenvalues of finite multiplicity which can be arranged in an increasing
sequence

0 < σ1[ε] ≤ σ2[ε] ≤ · · · ≤ σn[ε] ≤ · · · ↗ +∞.

Here each eigenvalue is repeated in accordance with its multiplicity. Note that the
zero eigenvalue (whose multiplicity is fixed and depending only on the geometry of
Ω) is present only if the boundary ∂Ω has more than one connected component.

By the min-max formula every eigenvalue can be variationally characterized as
follows

σj[ε] = min
Vj⊂Xε

N(Ω),
dimVj=j

max
u∈Vj ,
u̸=0

∫
Ω
|curlu|2 dx+ τ

∫
Ω

⏐⏐div(εu)⏐⏐2 dx∫
Ω
εu · u dx

. (4.1.14)

Moreover, we have the following lemma whose proof, which we present here for the
sake of completeness, is a minor adaptation of the one of [40, Thm 1.1].

Lemma 4.1.15. Let Ω be as in (4.1.3). Let ε ∈ E. Then the eigenpairs (σ, u) ∈
R×Xε

N(Ω) of problem (4.1.10) are spanned by the following two disjoint families:

i) the pairs (λ, u) ∈ R×Xε
N(divε0,Ω) solutions of problem (4.1.9);

ii) the pairs (τρ,∇f) where (ρ, f) ∈ R×H1
0 (Ω) is an eigenpair of the problem{

− div(ε∇f) = ρf in Ω,

f = 0 on ∂Ω.
(4.1.16)
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In particular, the set of eigenvalues of problem (4.1.10) are given by the union of
the set of eigenvalues of problem (4.1.9) and the set of eigenvalues of the operator
div(ε∇·) with Dirichlet boundary conditions in Ω multiplied by τ .

Proof. It is easily seen that if (λ, u) ∈ R×Xε
N(divε0,Ω) is an eigenpair of problem

(4.1.9), then it is an eigenpair of problem (4.1.10). Moreover, if u = ∇f , where
f ∈ H1

0 (Ω) is a solution of problem (4.1.16), then u is in Xε
N(Ω) and solves (4.1.10)

with σ = τρ.
Conversely, suppose that (σ, u) ∈ R×Xε

N(Ω) is an eigenpair of problem (4.1.10).
If

p := div(εu) = 0,

then clearly u ∈ Xε
N(divε0,Ω) and solves (4.1.9). Suppose now that p ̸= 0. We set

H1
0 (Ω, div(ε∇·)) := {u ∈ H1

0 (Ω) : div(ε∇u) ∈ L2(Ω)}.

Then for all ψ ∈ H1
0 (Ω, div(ε∇·)), by taking ∇ψ as test functions in (4.1.10) we

get ∫
Ω

τ p div(ε∇ψ) dx = σ

∫
Ω

εu · ∇ψ dx = −σ
∫
Ω

pψ dx,

thus ∫
Ω

p
(
τ div(ε∇ψ) + σψ

)
dx = 0. (4.1.17)

Necessarily σ/τ belongs to the spectrum of the operator − div(ε∇·) with Dirichlet
boundary conditions, because if not we could find a ψ̂ such that div(ε∇ψ̂)+ σ

τ
ψ̂ = p,

hence from (4.1.17) we would get p = 0, which is a contradiction. From the
Fredholm alternative we deduce that p belongs to the associated eigenspace, thus
p ∈ H1

0 (Ω, div(ε∇·)) and
div(ε∇p) + σ

τ
p = 0. (4.1.18)

Now, we define the field

w := u+
τ

σ
∇p ∈ Xε

N(Ω).

If w = 0 then u = − τ
σ
∇p, and recalling (4.1.18) one deduces that (σ, u) is of the

form in ii). Therefore, suppose that w ̸= 0. Observe that w satisfies

div(εw) = p+
τ

σ
div(ε∇p) = 0 and curlw = curlu.

Hence for any v ∈ Xε
N(Ω)∫

Ω

curlw · curl v dx =

∫
Ω

(
σ εu · v − τ p div(εv)

)
dx =

∫
Ω

(σ εu+ τ ε∇p) · v dx

= σ

∫
Ω

εw · v dx.
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Thus the pair (σ,w) belongs to the family in i) and σ is a multiple eigenvalue of
(4.1.10). In this case we can split the eigenspace corresponding to σ according to
the two families in i) and ii).

In view of the previous lemma, we introduce the following definition valid for
the present chapter, which is analogous to Definition 2.1.6.

Definition 4.1.19. Let Ω be as in (4.1.3). Let ε ∈ E . An eigenvalue σ of problem
(4.1.10) is said to be a Maxwell eigenvalue if σ ̸= 0 and there exists u ∈ Xε

N(divε0,Ω),
u ̸= 0, such that (σ, u) is an eigenpair of problem (4.1.9). In this case, we say that
u is a Maxwell eigenvector. We denote the set of Maxwell eigenvalues by:

0 < λ1[ε] ≤ λ2[ε] ≤ · · · ≤ λn[ε] ≤ · · · ↗ +∞,

where we repeat the eigenvalues in accordance with their (Maxwell) multiplicity, i.e.
the dimension of the space generated by the corresponding Maxwell eigenvectors.

We stress that the introduction of problem (4.1.10) is of technical nature, but
in this chapter we are mostly interested in the behavior of Maxwell eigenvalues.
Accordingly, we will focus more on the behaviour of {λj [ε]}j∈N ⊂ {σ[ε]}j∈N than on
the behaviour of all {σ[ε]}j∈N. Note also that the Maxwell eigenvalues {λj[ε]}j∈N
do not depend upon the choice of the parameter τ > 0 introduced with the penalty
term in (4.1.10), meaning that different values of τ provide exactly the same
Maxwell spectrum.

4.2 Locally Lipschitz continuity of the eigenvalues
We first focus on the continuity of the eigenvalues σj[ε] of problem (4.1.10), which
in particular implies the continuity of the Maxwell eigenvalues λj[ε]. For the sake
of simplicity, in this section we will fix τ = 1. Note that the results presented below
remain valid independently of the value of τ > 0.

We find it convenient to recall the space

H1
N(Ω) =

{
u ∈ H1(Ω)3 : ν × u = 0 on ∂Ω

}
(4.2.1)

endowed with the usual H1-norm, first introduced in Section 1.4.3. Note that in
view of the Gaffney inequality (4.1.8), valid under our assumptions (4.1.3), for every
ε ∈ E the spaces Xε

N(Ω) and H1
N(Ω) coincide as sets, and their respective norms are

equivalent. Hence one can use the space H1
N(Ω) for the variational characterization

of the eigenvalues: the benefit lies in the fact that in this way we do not have to
deal with Hilbert spaces that may depend on the permittivity parameter ε, allowing
us to compare Rayleigh quotients relative to different permittivities. The trick of
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identifying the spaces Xε
N(Ω) and H1

N(Ω) will be used several times throughout this
chapter.

Hence, instead of formula (4.1.14), we will make use of the following min-max
formula

σj[ε] = min
Vj⊂H1

N(Ω),
dimVj=j

max
u∈Vj ,
u̸=0

∫
Ω
|curlu|2 dx+

∫
Ω

⏐⏐div(εu)⏐⏐2 dx∫
Ω
εu · u dx

(4.2.2)

in order to prove our continuity result. Before doing so, we first prove a locally
uniform Gaffney inequality, that can be obtained exploiting the standard inequality
(4.1.8) for a fixed permittivity.

Proposition 4.2.3. Let Ω be as in (4.1.3). Let ε̃ ∈ E. Then there exist two
constants δ, CG > 0 such that

∥u∥2H1(Ω)3 ≤ CG

(
⟨εu, u⟩L2(Ω)3 + ∥ curlu∥2L2(Ω)3 + ∥ div εu∥2L2(Ω)

)
(4.2.4)

for all u ∈ H1
N(Ω) and for all ε ∈ E with ∥ε− ε̃∥W 1,∞(Ω) < δ.

Proof. First of all, we observe that if ε̂ ∈ E then by Lemma 4.7.1 we have that

div(ε̂u) = tr(ε̂Du) + (div ε̂) · u, (4.2.5)

where tr(·) denotes the trace operator, and if ε̂ =
(
ε̂(1)| ε̂(2)| ε̂(3)

)
with ε̂(k) denoting

the k-th column, then div ε̂ is the vector field defined by

div ε̂ =
(
div ε̂(1), div ε̂(2), div ε̂(3)

)
.

Moreover, if M is a 3× 3 matrix then the following inequalities

| tr(ε̂(x)M)| ≤ 9∥ε̂∥L∞(Ω) |M |, (4.2.6)

| div ε̂(x)| ≤ 3
√
3∥ε̂∥W 1,∞(Ω) (4.2.7)

hold for a.e. x ∈ Ω, where |M | denotes the matrix norm |M | := maxi,j |Mij|.
Now we fix u ∈ H1

N(Ω) and ε ∈ E . From (4.1.8) we know that the Gaffney
inequality holds for ε̃, that is there exists a constant Cε̃ > 0 independent of u such
that

∥u∥2H1(Ω)3 ≤ Cε̃

(
⟨ε̃u, u⟩L2(Ω)3 + ∥ curlu∥2L2(Ω)3 + ∥ div ε̃u∥2L2(Ω)

)
. (4.2.8)

Moreover ⏐⏐tr(ε̃Du)2 − tr(εDu)2
⏐⏐ = ⏐⏐⏐tr ((ε̃+ ε)Du

)
tr
(
(ε̃− ε)Du)

)⏐⏐⏐
≤ 92 ∥ε̃+ ε∥L∞(Ω)∥ε̃− ε∥L∞(Ω) |Du|

2
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and ⏐⏐⏐(div ε̃ · u)2 − (div ε · u)2
⏐⏐⏐ ≤ ⏐⏐⏐(div(ε̃− ε) · u

) (
div(ε̃+ ε) · u

)⏐⏐⏐
≤ (3

√
3)2 ∥ε̃+ ε∥W 1,∞(Ω)∥ε̃− ε∥W 1,∞(Ω) |u|

2.

We also have that

2
⏐⏐tr(ε̃Du) div ε̃ · u− tr(εDu) div ε · u

⏐⏐
≤ 2
⏐⏐tr(ε̃Du) div(ε̃− ε) · u

⏐⏐+ 2
⏐⏐⏐tr ((ε̃− ε)Du

)
div ε · u

⏐⏐⏐
≤ 2 · 9 · 3

√
3
(
∥ε̃∥W 1,∞(Ω) +∥ε̃− ε∥W 1,∞(Ω)

)
∥ε̃− ε∥W 1,∞(Ω) 2 |u| |Du|

≤ 54
√
3
(
∥ε̃∥W 1,∞(Ω) +∥ε̃− ε∥W 1,∞(Ω)

)
∥ε̃− ε∥W 1,∞(Ω) ( |u|

2 + |Du|2).

Thus ⏐⏐⏐div(ε̃u)2
L2(Ω)

−
div(εu)2

L2(Ω)

⏐⏐⏐
≤ 54

√
3
(
∥ε̃∥W 1,∞(Ω) +∥ε̃− ε∥W 1,∞(Ω) +∥ε̃+ ε∥W 1,∞(Ω)

)
·∥ε̃− ε∥W 1,∞(Ω)

(∫
Ω

|u|2dx+
∫
Ω

|Du|2dx
)
.

(4.2.9)

Furthermore, we have that⏐⏐⟨ε̃u, u⟩L2(Ω)3 − ⟨εu, u⟩L2(Ω)3
⏐⏐ ≤ 3∥ε̃− ε∥L∞(Ω)∥u∥

2
L2(Ω)3 . (4.2.10)

Therefore, making use of (4.2.9) and (4.2.10) in (4.2.8) we obtain that

∥u∥2H1(Ω)3

≤ Cε̃

(
⟨εu, u⟩L2(Ω)3 +∥curlu∥2L2(Ω)3 +∥div εu∥2L2(Ω)

)
+

(
Cε̃ 54

√
3
(
∥ε̃∥W 1,∞(Ω) +∥ε̃− ε∥W 1,∞(Ω) +∥ε̃+ ε∥W 1,∞(Ω)

)
+ 3

)
·∥ε̃− ε∥W 1,∞(Ω)∥u∥

2
H1(Ω)3

≤ Cε̃

(
⟨εu, u⟩L2(Ω)3 +∥curlu∥2L2(Ω)3 +∥div εu∥2L2(Ω)

)
+

(
Cε̃ 2 · 54

√
3
(
∥ε̃∥W 1,∞(Ω) +∥ε̃− ε∥W 1,∞(Ω)

)
+ 3

)
∥ε̃− ε∥W 1,∞(Ω)∥u∥

2
H1(Ω)3 .

Hence, taking δ > 0 small enough such that for all ε ∈ E with ∥ε̃− ε∥W 1,∞(Ω) < δ
we have that

1−
(
Cε̃ 108

√
3
(
∥ε̃∥W 1,∞(Ω) +∥ε̃− ε∥W 1,∞(Ω)

)
+ 3

)
∥ε̃− ε∥W 1,∞(Ω) > 0.
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Hence we get that formula (4.2.4) holds with

CG :=
Cε̃

1− δ

(
Cε̃ 108

√
3
(
∥ε̃∥W 1,∞(Ω) + δ

)
+ 3

) .

We are now ready to show that the eigenvalues σj[ε] of problem (4.1.10) are
locally Lipschitz continuous in ε.

Theorem 4.2.11. Let Ω be as in (4.1.3). Let j ∈ N and ε1 ∈ E . Then there exist
two constants δ, C̃ > 0 such that⏐⏐σj[ε1]− σj[ε2]

⏐⏐ ≤ C̃∥ε1 − ε2∥W 1,∞(Ω) (4.2.12)

for all ε2 ∈ E such that ∥ε1 − ε2∥W 1,∞(Ω) < δ.

Proof. For the sake of simplicity in this proof, given ε ∈ E and u ∈ H1
N(Ω) we set

R[u] :=

∫
Ω

| curlu|2dx, Dε[u] :=

∫
Ω

| div(εu)|2dx.

Let be δ > 0 be as in Proposition 4.2.3 with ε̃ = ε1. Let ε2 ∈ E be such that
∥ε1 − ε2∥W 1,∞(Ω) < δ and recall that mε1 , mε2 denote the constants associated with
the coercivity of ε1, ε2 respectively (see (4.1.5)). Fix u ∈ H1

N(Ω). Then⏐⏐⏐⏐⏐R[u] +Dε1 [u]∫
Ω
ε1u · u dx

− R[u] +Dε2 [u]∫
Ω
ε2u · u dx

⏐⏐⏐⏐⏐ (4.2.13)

≤
R[u]

⏐⏐∫
Ω
(ε2 − ε1)u · u dx

⏐⏐+⏐⏐Dε1 [u]
∫
Ω
ε2 u · u dx−Dε2 [u]

∫
Ω
ε1 u · u dx

⏐⏐
(
∫
Ω
ε1u · u dx)(

∫
Ω
ε2u · u dx)

≤
3 ∥ε2 − ε1∥L∞(Ω)R[u]

∫
Ω
|u|2 dx

(
∫
Ω
ε1u · u dx)(

∫
Ω
ε2u · u dx)

+

⏐⏐Dε1 [u]
∫
Ω
ε2u·u dx−Dε1 [u]

∫
Ω
ε1u·u dx+Dε1 [u]

∫
Ω
ε1u·u dx−Dε2 [u]

∫
Ω
ε1u·u dx

⏐⏐
(
∫
Ω
ε1u · u dx)(

∫
Ω
ε2u · u dx)

≤
3 ∥ε1 − ε2∥W 1,∞(Ω)

mε2

R[u] +Dε1 [u]∫
Ω
ε1u · u dx

+

⏐⏐Dε1 [u]−Dε2 [u]
⏐⏐∫

Ω
ε2u · u dx

.

We now focus on the second term in the right hand side of the above inequality.
Arguing in the same way as in inequality (4.2.9) we deduce that there exist a
constant C > 0 not depending on ε1, ε2 and u such that⏐⏐Dε1 [u]−Dε2 [u]

⏐⏐ ≤ Cmax
i=1,2

{
∥εi∥W 1,∞(Ω)

}
∥ε1−ε2∥W 1,∞(Ω)

(∫
Ω

|u|2dx+
∫
Ω

|Du|2dx
)
.

(4.2.14)
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Moreover, thanks to the locally uniform Gaffney inequality (4.2.4) there exists a
constant CG > 0 such that for i = 1, 2∫

Ω

|Du|2dx ≤ CG

∫
Ω

(
εiu · u+ | curlu|2 + | div(εiu)|2

)
dx.

Using the above inequality with i = 2 we get∫
Ω
|Du|2dx∫

Ω
ε2u · u dx

≤ CG

(
1 +

R[u] +Dε2 [u]∫
Ω
ε2u · u dx

)
,

which applied to (4.2.14) yields⏐⏐Dε1 [u]−Dε2 [u]
⏐⏐∫

Ω
ε2u · u dx

≤ C max
i=1,2

{
∥εi∥W 1,∞(Ω)

}
∥ε1 − ε2∥W 1,∞(Ω) (4.2.15)

·

⎛⎝ 1

mε2

+ CG

(
1 +

R[u] +Dε2 [u]∫
Ω
ε2u · u dx

)⎞⎠ .

Thus it follows from (4.2.13) and (4.2.15) that

R[u] +Dε1 [u]∫
Ω
ε1u · u dx

(
1− 3

∥ε2 − ε1∥W 1,∞(Ω)

mε2

)

≤ R[u] +Dε2 [u]∫
Ω
ε2u · u dx

(
1 + CG Cmax

i=1,2

{
∥εi∥W 1,∞(Ω)

}
∥ε1 − ε2∥W 1,∞(Ω)

)
+ Cmax

i=1,2

{
∥εi∥W 1,∞(Ω)

}
∥ε1 − ε2∥W 1,∞(Ω)

(
1

mε2

+ CG

)
.

(4.2.16)

Eventually taking a smaller δ > 0, and taking the appropriate supremum and
infimum in (4.2.16), the min-max formula (4.2.2) yields

σj[ε1]− σj[ε2] ≤

(
3

mε2

σj[ε1] + CG Cmax
i=1,2

{
∥εi∥W 1,∞(Ω)

}
σj[ε2]

+ Cmax
i=1,2

{
∥εi∥W 1,∞(Ω)

}( 1

mε2

+ CG

))
∥ε1 − ε2∥W 1,∞(Ω).

(4.2.17)

Exchanging the role of ε1 and ε2, we can therefore get the inequality (4.2.12) but
with a constant possibly depending also on ε2, that can be taken as follows

Ĉ(ε2) := 3max

{
σj[ε1]

mε2

,
σj[ε2]

mε1

}
(4.2.18)

+ Cmax
i=1,2

{
∥εi∥W 1,∞(Ω)

}(
CGmax

i=1,2

{
σj[εi]

}
+max

i=1,2

{
1

mεi

}
+ CG

)
.
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In order to finish the proof, it only remains to show that this constant can be
chosen uniform in ε2. Up to taking a smaller δ, we note that by (4.1.6) the constant
mε2 is uniformly bounded away from zero in ε2. Indeed by (4.1.6) one has that

mε2 ≥ mε1 − 3δ.

Moreover, σj[ε2] is also locally uniformly bounded in ε2. Indeed, from (4.2.5),
(4.2.6) and (4.2.7) it is not difficult to see that there exists a constant C ′ > 0 not
depending on ε2 such that for all u ∈ H1

N(Ω) one has∫
Ω

⏐⏐div(ε2u)⏐⏐2 dx ≤ C ′∥ε2∥2W 1,∞(Ω)

∫
Ω

(
|u|2 + |Du|2

)
dx.

Then, applying the standard Gaffney inequality (with unitary permittivity, cf.
(1.4.1)), which we know it is valid under our assumptions and involves a geometric
constant, we get that, possibly changing the value of C ′ > 0, for all u ∈ H1

N(Ω)∫
Ω

⏐⏐div(ε2u)⏐⏐2 dx ≤ C ′∥ε2∥2W 1,∞(Ω)

∫
Ω

(
|u|2 + | curlu|2 + | div u|2

)
dx.

Hence, using the min-max formula (4.2.2) for σj[ε2] we have that

σj[ε2] = min
Vj⊂H1

N(Ω),
dimVj=j

max
u∈Vj ,
u̸=0

∫
Ω
| curlu|2dx+

∫
Ω
| div(ε2u)|2dx∫

Ω
ε2 u · u dx

≤ (C ′ + 1)
∥ε2∥2W 1,∞(Ω)

mε2

min
Vj⊂H1

N(Ω),
dimVj=j

max
u∈Vj ,
u̸=0

(∫
Ω
| curlu|2dx+

∫
Ω
| div u|2dx∫

Ω
|u|2dx

+ 1

)

= (C ′ + 1)
∥ε2∥2W 1,∞(Ω)

mε2

(σj[I3] + 1)

≤ (C ′ + 1)

(
∥ε1∥W 1,∞(Ω) + δ

)2
mε1 − 3δ

(σj[I3] + 1),

where σj[I3] is the j-th eigenvalue of problem (4.1.10) with unitary permittivity.
Accordingly, the constant Ĉ(ε2) defined in (4.2.18) is bounded above by a constant
independent of ε2 for all ε2 ∈ E such that ∥ε1− ε2∥W 1,∞(Ω) < δ. Thus the inequality
(4.2.12) is proved.

4.3 Weak* continuity of the Maxwell eigenvalues
It turns out that the Maxwell eigenvalues λj[ε] depends with continuity on ε not
only with respect to the strong topology of W 1,∞(Ω), but also with respect to its
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weak* topology. Here we prove it only for scalar permittivities, but we plan to
address the more general case of matrix-valued ε in the future.

Let α, β, γ be positive real numbers and assume that 0 < α ≤ β. We introduce
the class of admissible permittivities

Aα,β,γ :=
{
ε ∈ W 1,∞(Ω) : ε is scalar, α ≤ ε(x) ≤ β a.e. in Ω, ∥∇ε∥L∞(Ω)3 ≤ γ

}
.

(4.3.1)
Observe that Aα,β,γ ⊂ E . If ε ∈ Aα,β,γ, with a slight abuse of notation, by ε we
denote both the scalar function ε(x) and the matrix-valued function ε(x)I3. Before
proceeding any further, we first prove the following lemma.

Lemma 4.3.2. Let Ω be as in (4.1.3), and let ε ∈ Aα,β,γ. Then there exists a
constant C > 0, depending on α, β and γ, such that

σj[ε] ≤ C(σj[I3] + 1)

for each j ∈ N. Here σj[I3] is the j-th eigenvalue of problem (4.1.10) with unitary
permittivity.

Proof. Let u ∈ Xε
N(Ω). Since the Gaffney inequality (4.1.8) holds, then div u ∈

L2(Ω) and by formula (4.7.6) we have that

div(εu) = ε div u+∇ε · u

a.e. in Ω. Thus it is not difficult to see that∫
Ω

| div(εu)|2dx ≤ 2∥ε∥2W 1,∞(Ω)

∫
Ω

(
|u|2 +|div u|2

)
dx.

Hence, using the min-max formula (4.2.2) we get

σj[ε] ≤ max{1, 2∥ε∥2W 1,∞(Ω)} min
Vj⊂H1

N(Ω),
dimVj=j

max
u∈Vj ,
u̸=0

∫
Ω
|u|2dx+

∫
Ω
|curlu|2 dx+

∫
Ω
|div u|2 dx

α
∫
Ω
|u|2dx

≤ C
(
σj[I3] + 1

)
,

with C depending on α, β and γ.

We consider W 1,∞(Ω) as a subspace of L∞(Ω)4. The inclusion is interpreted by
identifying a function f ∈ W 1,∞(Ω) as the quadruple (f, ∂1f, ∂2f, ∂3f) = (f,∇f) ∈
L1(Ω)×L1(Ω)3 = L∞(Ω)4. Then we endow W 1,∞(Ω) with the topology induced by
L∞(Ω)4, where we consider the weak* topology on L∞(Ω)4, the (topological) dual
space of L1(Ω)4. We call this topology the (induced) weak* topology on W 1,∞(Ω).
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Note that the subspace W 1,∞(Ω) is sequentially weakly* closed in L∞(Ω)4.
Indeed it is not difficult to see that if fk ∈ W 1,∞(Ω) converges weakly* in L∞(Ω)4

to some quadruple (f, f) ∈ L∞(Ω)4, that is∫
Ω

fkg dx+

∫
Ω

∇fk · h dx −−−→
k→∞

∫
Ω

fg dx+

∫
Ω

f · h dx

for all (g,h) ∈ L1(Ω)4, then f ∈ W 1,∞(Ω) with f being the (weak) gradient of f .
Sequential weak* closedness is sufficient for our purposes, since we will work with
bounded sets in W 1,∞(Ω) (cf. definition (4.3.1)), that is bounded sets in L∞(Ω)4,
which are metrizable with respect to the weak* topology due to the fact that
L1(Ω)4 is separable (see e.g. [94, Thm. 2.6.23]). Hence in the sequel the notions of
sequentially weakly* closed and weakly* closed coincide. We are thus motivated to
give the following

Definition 4.3.3. We say that a sequence of (scalar) functions fk ∈ W 1,∞(Ω)
weakly* converges to a function f ∈ W 1,∞(Ω), denoting it by fk ⇀∗ f , if∫

Ω

fkg dx+

∫
Ω

∇fk · h dx −−−→
k→∞

∫
Ω

fg dx+

∫
Ω

∇f · h dx for all (g,h) ∈ L1(Ω)4.

(4.3.4)

In particular (4.3.4) implies that fk converges weakly* to f in L∞(Ω), and ∇fk
converges weakly* to ∇f in L∞(Ω)3.

Remark 4.3.5. Observe that if {fk}k∈N ⊂ W 1,∞(Ω) is such that fk ⇀∗ f , then
the sequence is bounded in W 1,∞(Ω). Since Ω ⊂ R3 is bounded, then W 1,∞(Ω) is
contained in W 1,p(Ω) for any p ≥ 1. Taking p > 3 and observing that under our
assumptions (4.1.3) on Ω we can use the Rellich-Kondrachov embedding theorem
(see, e.g., [2, Thm. 6.3]), we have that we can also assume that fk → f strongly in
L∞(Ω).

We can now state the main result of this section. The following theorem
is inspired by [67, Thm. 9.1.3], which deals with the eigenvalues of a Dirichlet
Laplacian problem where a density function parameter models the study of non-
homogeneous membranes. The proof is in the same spirit of that one of [82,
Thm. 3.1], where the authors prove a similar result for general elliptic operators of
arbitrary order subject to homogeneous boundary conditions, upon variation of
the mass density. We also refer to the works by Cox and McLaughlin [43, 44] for
further details.

Theorem 4.3.6. Let Ω be a bounded domain of R3 of class C1,1. For all j ∈ N,
the map ε ↦→ λj [ε] from Aα,β,γ to R is weakly* continuous for all j ∈ N, where λj [ε]
is the j-th Maxwell eigenvalue of problem (4.1.10).
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Proof. Let {εk}k∈N ⊂ Aα,β,γ. We need to show that if εk ⇀∗ ε in W 1,∞(Ω) as
k → ∞ (in the sense of (4.3.4)), then λj[εk] → λj[ε] for all j ∈ N.

Observe that for any j ∈ N, thanks to Lemma 4.3.2, we have that the sequence
{λj[εk]}k∈N is bounded in R. Let Lj := supk∈N{λj[εk]} <∞ so that

λj[εk] ≤ Lj for all k ∈ N. (4.3.7)

Let uj [εk] be the Maxwell eigenfunctions associated with the the Maxwell eigenvalues
λj [εk]. In particular, their εk-divergence is null, hence the weak formulation (4.1.10)
reads as follows:∫

Ω

curluj[εk] · curl v dx = λj[εk]

∫
Ω

εk uk[εk] · v dx for all v ∈ Xεk
N (Ω). (4.3.8)

Assume that the eigenfunctions {uj[εk]}j∈N form an L2
εk
(Ω)-orthonormal sequence,

that is they are such that Jεk [uj[εk]][ul[εk]] =
∫
Ω
εk uj[εk] · ul[εk] dx = δjl for all

j, l ∈ N. Thus ∫
Ω

⏐⏐uj[εk]⏐⏐2 dx ≤ 1

α

∫
Ω

εk
⏐⏐uj[εk]⏐⏐2 dx ≤ 1

α
(4.3.9)

and ∫
Ω

⏐⏐curluj[εk]⏐⏐2 dx = λj[εk]

∫
Ω

εk
⏐⏐uj[εk]⏐⏐2 dx ≤ Lj (4.3.10)

for all k ∈ N.
Observe that by Remark 4.7.5 for any k ∈ N the Maxwell eigenvectors uj[εk]

also belong to XN(Ω) and

div uj[εk] =
div(εkuj[εk])−∇εk · uj[εk]

εk
= −∇εk · uj[εk]

εk
. (4.3.11)

In particular∫
Ω

⏐⏐div uj[εk]⏐⏐2 dx ≤
∥∇εk∥2L∞(Ω)3

α2

∫
Ω

⏐⏐uj[εk]⏐⏐2 dx ≤ γ2

α3
<∞

for all k ∈ N, hence the sequence {uj[εk]}k∈N is bounded in XN(Ω). It follows that,
possibly passing to a subsequence, there exists ūj ∈ XN(Ω) such that uj [εk] weakly
converges to ūj as k → ∞ in XN(Ω), and by (4.3.7) there exists λ̄j ∈ R such that
λj[εk] → λ̄j as k → ∞. Moreover, since the embedding of XN(Ω) into L2(Ω)3 is
compact (see e.g. [113]) we can also assume that uj [εk] → ūj strongly in L2(Ω)3 as
k → ∞.

Now, observing that by Remark 4.7.5 also the test functions v ∈ Xεk
N (Ω) belongs

to XN(Ω) (cf. also (4.3.11)), passing to the limit in (4.3.8) we get that∫
Ω

curl ūj · curl v dx = λ̄j

∫
Ω

ε ūj · v dx for all v ∈ XN(Ω). (4.3.12)
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The limit in the left-hand side is obvious since uj[εk] ⇀ ūj weakly in XN(Ω) as
k → ∞. In order to see the limit in the right-hand side, one computes⏐⏐⏐⏐∫

Ω

(εkuj[εk]− εūj) · ϕdx
⏐⏐⏐⏐ ≤ ⏐⏐⏐⏐∫

Ω

εk(uj[εk]− ūj) · ϕdx
⏐⏐⏐⏐+⏐⏐⏐⏐∫

Ω

(εk − ε) ūj · ϕdx
⏐⏐⏐⏐

≤∥εk∥L∞(Ω)

uj[εk]− ūj

L2(Ω)3

∥ϕ∥L2(Ω)3 +

⏐⏐⏐⏐∫
Ω

(εk − ε) ūj · ϕdx
⏐⏐⏐⏐ .

The first term of the sum goes to 0 as k → ∞ since uj [εk] converges to ūj strongly
in L2(Ω)3, while the second term goes to 0 since εk ⇀∗ ε and ūj · ϕ ∈ L1(Ω).

Furthermore, we have that div(εūj) = 0. Indeed fix any η ∈ C∞
c (Ω). Then for

all k ∈ N ∫
Ω

εk uj[εk] · ∇η dx = 0.

since div(εkuj [εk]) = 0. Taking the limit as k → ∞ and reasoning as above, we get
that ∫

Ω

ε ūj · ∇η = 0,

which means exactly that div(εūj) = 0 in Ω. Therefore from (4.3.12) it follows that
ūj is a Maxwell eigenfunction of problem (4.1.10) corresponding to the Maxwell
eigenvalue λ̄j.

Observe that since Jε[ūj][ūl] = δjl for all j, l ∈ N, then {λ̄j}j∈N is a divergent
sequence.

In order to prove that λ̄j = λj[ε] for all j ∈ N, we assume by contradiction
that there exists a Maxwell eigenfunction ū ∈ Xε

N(Ω) of problem (4.1.10), with
div(εū) = 0, corresponding to a Maxwell eigenvalue λ̄, such that it is orthogonal in
L2
ε(Ω) to all the ūj, j ∈ N, namely that ⟨ū, ūj⟩ε = Jε[ū][ūj] = 0 for all j ∈ N.

Before proceeding any further, we make a clarification. In the sequel, we fix
τ > 0 big enough so that the first j eigenvalues of problem (4.1.10) are all of pure
Maxwell type, i.e. without resonances with eigenfunctions deriving from problem
(4.1.16) (cf. also Remark 2.1.9). This is done in order to avoid complications in
the argument that follows, especially in the use of Theorem 4.7.14. The aim is to
get a contradiction: in particular we show that inequality (4.3.19), which does not
depend on τ , holds for every j ∈ N. This is achieved by fixing the value of τ > 0
depending on j ∈ N on every iteration.

Assume that ū is such that ∥ū∥L2
ε(Ω) = 1/(λ̄ + 1). By Theorem 4.7.14 we get

that
− 1

2(λj[εk] + 1)
≤ 1

2
Tεk [u][u]−

u− Pj−1,εku

L2
εk

(Ω)
(4.3.13)

for all u ∈ Xεk
N (Ω) and j, k ∈ N. Here Tε is the operator defined in (4.1.11) and

Pj−1,εk denotes the orthogonal projection in L2
εk
(Ω) of u onto the linear span of

u1[εk], . . . , uj−1[εk].
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Note that by Remark 4.7.5 the limit function ū ∈ XN(Ω) also belongs to Xεk
N (Ω)

for any k ∈ N. Since εk ⇀∗ ε as k → ∞ then∫
Ω

εkū · ū dx −−−→
k→∞

∫
Ω

εū · ū dx. (4.3.14)

Moreover we also have that∫
Ω

((
div(εkū)

)2 − (div(εū))2) dx =

∫
Ω

(
div(εkū)

)2
dx −−−→

k→∞
0. (4.3.15)

To see the limit above, thanks to formula (4.7.6) we just need to see that∫
Ω

(
(εk div ū)

2 − (ε div ū)2
)
dx −−−→

k→∞
0, (4.3.16)

∫
Ω

(εk div ū ∇εk · ū− ε div ū ∇ε · ū) dx −−−→
k→∞

0, (4.3.17)

and ∫
Ω

(
(∇εk · ū)2 − (∇ε · ū)2

)
dx −−−→

k→∞
0. (4.3.18)

We will only show limit (4.3.18), since the other two limits are similar. We have
that ∫

Ω

(
(∇εk · ū)2 − (∇ε · ū)2

)
dx ≤

∫
Ω

(
∇(εk + ε) · ū

)
(∇εk · ū−∇ε · ū) dx

≤ C

∫
Ω

∇(εk − ε) · ū|ū| dx −−−→
k→∞

0,

since ε ⇀∗ ε as k → ∞ and the vector field ū|ū| is in L1(Ω)3. Here C > 0 is a
constant depending on γ.

Limits (4.3.14) and (4.3.15) show that Tεk [ū][ū] −−−→
k→∞

Tε[ū][ū]. Hence, putting
u = ū in (4.3.13) and passing to the limit as k → ∞ we get that for all j ∈ N

− 1

2(λ̄j + 1)
≤ 1

2
Tε[ū][ū]−∥ū∥L2

ε(Ω) = − 1

2(λ̄+ 1)
< 0. (4.3.19)

Indeed from the fact that εk ⇀∗ ε, uj[εk] → ūj strongly in L2(Ω)3 as k → ∞, and
that ⟨ū, ūi⟩ε = 0 for all i ∈ N, we get that ⟨ū, ui[εk]⟩εk −−−→

k→∞
0 and thusPj−1,εk ū


L2
εk

(Ω)
−−−→
k→∞

0.

Inequality (4.3.19) in turn implies that the sequence {λ̄j}j∈N is bounded, hence the
contradiction. Therefore necessarily λ̄j = λj[ε] for every j ∈ N and the theorem is
proved.
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4.4 Analiticity and the ε-derivative

In the previous section we have showed that the eigenvalues σj[ε] of the modified
problem (4.1.10), and then in particular the Maxwell eigenvalues λj[ε], are locally
Lipschitz continuous in E . Here instead we are interested in proving higher regularity
properties. More in detail we plan to show that the eigenvalues depend analytically
upon ε when the permittivity varies in a specific (open) subset of the admissible
set E . We also provide an explicit formula for their ε-derivative, which will be
useful later on to prove Theorem 4.5.1 and in Section 4.6 to prove the generic
simplicity of the Maxwell spectrum. As already mentioned in the introduction,
if we consider a multiple eigenvalue, a perturbation of the permittivity can in
principle split the eigenvalue into different eigenvalues of lower multiplicity and
thus the corresponding branches can have a corner at the splitting point. In this
case we will not even have differentiability. Our strategy in order to bypass this
problem is to consider the symmetric functions of multiple eigenvalues. This point
of view has been first introduced by Lamberti and Lanza de Cristoforis in [79] and
later successfully adopted in many other works (see, e.g., [21, 23, 84, 81, 87]).

Recall that

0 < σ1[ε] ≤ σ2[ε] ≤ · · · ≤ σn[ε] ≤ · · · ↗ +∞.

are the eigenvalues of problem (4.1.10), while instead

0 < λ1[ε] ≤ λ2[ε] ≤ · · · ≤ λn[ε] ≤ · · · ↗ +∞.

are the subset of Maxwell eigenvalues of problem (4.1.10) (see Definition 4.1.19).
Also recall that, by Lemma 4.1.13, {σj[ε]}j∈N coincide with the reciprocal minus
one of the eigenvalues of the operator Sε defined in (4.1.12). In order to obtain an
explicit formula for the derivatives of the Maxwell eigenvalues with respect to the
permittivity ε we need the following technical lemma.

Lemma 4.4.1. Let Ω be as in (4.1.3). Let ε̃ ∈ E and ũ, ṽ ∈ X ε̃
N(div ε̃0,Ω) be two

Maxwell eigenvectors associated with a Maxwell eigenvalue λ̃ with permittivity ε̃.
Then

⟨d|ε=ε̃Sε[η][ũ], ṽ⟩ε̃ = λ̃(λ̃+ 1)−2

∫
Ω

ηũ · ṽ dx (4.4.2)

for all η ∈ W 1,∞ (Ω) ∩ Sym3(Ω).

Proof. Under our assumptions on Ω, the space Xε
N(Ω) coincides with the space

H1
N(Ω) introduced in (4.2.1) and their norm are equivalent thanks to the Gaffney

inequality (4.1.8). Then, it is easily seen that the compact self-adjoint operator
Sε in L2(Ω)3 is obtained by compositions and inversions of real-analytic maps in ε
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(such as linear and multilinear continuous maps). As a consequence Sε depends
real analytically upon ε.

Let now η ∈ W 1,∞ (Ω) ∩ Sym3(Ω). Since Jε̃[ũ] = (λ̃ + 1)−1Tε̃[ũ], Jε[ṽ] =
(λ̃+ 1)−1Tε̃[ṽ], and Sε̃ is symmetric, we have that

⟨d|ε=ε̃Sε[η][ũ], ṽ⟩ε̃
= ⟨ιε ◦ T−1

ε̃ ◦ d|ε=ε̃Jε[η][ũ], ṽ⟩ε̃ + ⟨ιε ◦ d|ε=ε̃T
−1
ε [η] ◦ Jε̃[ũ], ṽ⟩ε̃

= Jε̃[ṽ]
[
ιε ◦ T−1

ε̃ ◦ d|ε=ε̃Jε[η][ũ]
]
+ Jε̃[ṽ]

[
ιε ◦ d|ε=ε̃T

−1
ε [η] ◦ Jε̃[ũ]

]
= (λ̃+ 1)−1Tε̃[ṽ]

[
T−1
ε̃ ◦ d|ε=ε̃Jε[η][ũ]− T−1

ε̃ ◦ d|ε=ε̃Tε[η] ◦ T−1
ε̃ ◦ Jε̃[ũ]

]
= (λ̃+ 1)−1Tε̃

[
T−1
ε̃ ◦ d|ε=ε̃Jε[η][ũ]− T−1

ε̃ ◦ d|ε=ε̃Tε[η] ◦ T−1
ε̃ ◦ (λ̃+ 1)−1Tε̃[ũ]

]
[ṽ]

= (λ̃+ 1)−1
(
d|ε=ε̃Jε[η][ũ][ṽ]− (λ̃+ 1)−1d|ε=ε̃Tε[η][ũ][ṽ]

)
.

(4.4.3)

Moreover, by standard calculus,

d|ε=ε̃Jε[η][ũ][ṽ] =

∫
Ω

ηũ · ṽ dx (4.4.4)

and

d|ε=ε̃Tε[η][ũ][ṽ] =

∫
Ω

ηũ · ṽ dx+
∫
Ω

(
div(ε̃ũ) div(ηṽ) + div(ηũ) div(ε̃ṽ)

)
dx.

(4.4.5)

Since div(ε̃ũ) = 0 = div(ε̃ṽ) in Ω, using (4.4.3), (4.4.4) and (4.4.5), we get
(4.4.2).

Following [79], given a finite set of indices F ⊂ N, we consider those permittivi-
ties ε ∈ E for which Maxwell eigenvalues with indices in F do not coincide with
Maxwell eigenvalues with indices outiside F . We then introduce the following sets:

E [F ] :=
{
ε ∈ E : λj[ε] ̸= λl[ε] ∀j ∈ F, l ∈ N \ F

}
(4.4.6)

and

Θ[F ] :=
{
ε ∈ E [F ] : λj[ε] have a common value λF [ε] for all j ∈ F

}
.

Let ε ∈ E [F ]. The elementary symmetric function of degree s ∈ {1, . . . ,|F |} of the
Maxwell eigenvalues with indexes in F is defined by

ΛF,s[ε] :=
∑

j1,...,js∈F
j1<···<js

λj1 [ε] · · ·λjs [ε].

In the following theorem we show that the maps ε ↦→ ΛF,s[ε] are real analytical on
E [F ] and we compute their Fréchet derivatives with respect to ε.



132 Chapter 4. Permittivity perturbation

Theorem 4.4.7. Let Ω be as in (4.1.3). Let F be a finite subset of N and
s ∈ {1, . . . , |F |}. Then E [F ] is open in W 1,∞ (Ω) ∩ Sym3(Ω) and the elementary
symmetric function ΛF,s depend real analytically upon ε ∈ E [F ].

Moreover, if {F1, . . . , Fn} is a partition of F and ε̃ ∈
⋂n

k=1 Θ[F ] is such that for
each k = 1, . . . , n the Maxwell eigenvalues λj[ε̃] assume the common value λFk

[ε̃]
for all j ∈ Fk, then the differential of the function ΛF,s at the point ε̃ are given by
the formula

d|ε=ε̃ΛF,s[η] = −
n∑

k=1

ck
∑
l∈Fk

∫
Ω

ηẼ(l) · Ẽ(l) dx, (4.4.8)

for all η ∈ W 1,∞ (Ω) ∩ Sym3(Ω), where

ck :=
∑

0≤s1≤|F1|
...

0≤sn≤|Fn|
s1+...+sn=s

(
|Fk| − 1

sk − 1

)
(λFk

[ε̃])sk
n∏

j=1
j ̸=k

(⏐⏐Fj

⏐⏐
sj

)
(λFj

[ε̃])sj , (4.4.9)

and for each k = 1, . . . , n, {Ẽ(l)}l∈Fk
is an orthonormal basis in L2

ε̃(Ω) of Maxwell
eigenvectors for the eigenspace associated with λFk

[ε̃].

Proof. Let ε̃ ∈ E . As we have already pointed out, Maxwell eigenvalues are
independent on the choice of the parameter τ > 0 in (4.1.10). Thus, to avoid
problems of different enumeration between Maxwell eigenvalues and the eigenvalues
of Sε, we can fix τ big enough such that all the Maxwell eigenvalues {λj[ε̃]}j∈F
are strictly smaller than any other eigenvalue of (4.1.10) which is not a Maxwell
eigenvalue (i.e. an eigenvalue belonging to the family ii) in Theorem 4.1.15). In
this way σj[ε̃] = λj[ε̃] for all j ∈ F .

The eigenvalues µj of the operator Sε and the eigenvalues σj of (4.1.10) satisfy
µj = (σj + 1)−1. Then the sets E [F ] and

{
ε ∈ E : µj[ε] ̸= µl[ε] ∀j ∈ F, l ∈ N \ F

}
coincide locally around ε̃. By Lemma 4.1.13, Sε is a compact self-adjoint operator
acting on L2

ε(Ω). Furthermore, as already pointed out in the proof of Lemma 4.4.1,
the operator Sε depends real analytically on ε. In the same way one shows that also
the inner product ⟨·, ·⟩ε on L2(Ω)3 depends real analytically on ε. Therefore, by the
abstract result of Lamberti and Lanza de Cristoforis [79, Thm. 2.30], we have that
the set

{
ε ∈ E : µj[ε] ̸= µl[ε] ∀j ∈ F, l ∈ N \ F

}
is open in W 1,∞ (Ω) ∩ Sym3(Ω)

and that the function

MF,s[ε] :=
∑

j1,...,js∈F
j1<···<js

µj1 [ε] · · ·µjs [ε]

depend real analytically on ε ∈ E [F ]. From this, to infer the real analyticity of the
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functions ΛF,s on ε ∈ E [F ], one can just observe that if we set

Λ̂F,s[ε] :=
∑

j1,...,js∈F
j1<···<js

(λj1 [ε] + 1) · · · (λjs [ε] + 1),

then we have

Λ̂F,s[ε] =
MF, |F |−s[ε]

MF, |F |[ε]

and by elementary combinatorics

ΛF,s[ε] =
s∑

k=0

(−1)s−k

(
|F | − k

s− k

)
Λ̂F,k[ε], (4.4.10)

where we have set Λ̂F,0 = 1. Then we can deduce that locally around ε̃ the maps
ΛF,s[ε] are real analytic and accordingly the analyticity part of the statement follows
since ε̃ is arbitrary.

Next, we turn to prove formula (4.4.8). We start by the case n = 1, that is
F1 = F and ε̃ ∈ Θ[F ]. Let η ∈ W 1,∞ (Ω) ∩ Sym3(Ω). By [79, Thm. 2.30] we get
that

d|ε=ε̃MF,s[η] =

(
|F | − 1

s− 1

)
(λF [ε̃] + 1)1−s

∑
l∈F

⟨d|ε=ε̃ Sε[η][Ẽ
(l)], Ẽ(l)⟩ε̃.

Moreover, by using formula (4.4.2) of Lemma 4.4.1, we have that

d|ε=ε̃Λ̂F,s[η]

=
(
d|ε=ε̃MF,|F |−s[η]MF,|F | [ε̃]−MF,|F |−s [ε̃] d|ε=ε̃MF,|F | [η]

)
(λF [ε̃] + 1)2|F |

=

((
|F | − 1

|F | − s− 1

)
(λF [ε̃] + 1)s+1−2|F | −

(
|F |
s

)(
|F | − 1

|F | − 1

)
(λF [ε̃] + 1)s+1−2|F |

)
· (λF [ε̃] + 1)2|F |

∑
l∈F

⟨d|ε=ε̃ Sε[η][Ẽ
(l)], Ẽ(l)⟩ε̃

= −λF [ε̃](λF [ε̃] + 1)s−1

(
|F | − 1

s− 1

)∑
l∈F

∫
Ω

ηẼ(l) · Ẽ(l) dx.
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Finally, recalling (4.4.10), we get

d|ε=ε̃ΛF,s[η]

= −λF [ε̃]
s∑

k=1

(−1)s−k(λF [ε̃] + 1)k−1

(
|F | − k

s− k

)(
|F | − 1

k − 1

)∑
l∈F

∫
Ω

ηẼ(l) · Ẽ(l) dx

= −
(
|F | − 1

s− 1

)
λF [ε̃]

s−1∑
k=0

(
s− 1

k

)
(λF [ε̃] + 1)k(−1)s−k−1

∑
l∈F

∫
Ω

ηẼ(l) · Ẽ(l) dx

= −
(
|F | − 1

s− 1

)
(λF [ε̃])

s
∑
l∈F

∫
Ω

ηẼ(l) · Ẽ(l) dx.

Next we consider the case n ≥ 2. By means of a continuity argument, one
can easily see that there exists an open neighborhood W of ε̃ in E [F ] such that
W ⊂

⋂n
k=1 E [Fk]. Thus

ΛF,s[ε] =
∑

0≤s1≤|F1|
...

0≤sn≤|Fn|
s1+...+sn=s

n∏
k=1

ΛFk,sk [ε]

Differentiating the above equality at the point ε̃ and using formula (4.4.8) with
n = 1 to each function ΛFk,sk , one can see that formula (4.4.8) holds true for any
n ∈ N.

We conclude this section by studying the case of one-parametric families of
permittivities. Using Lemma 4.4.1 and classical analytic perturbation theory we can
recover a Rellich-Nagy-type theorem which allows us to describe all the eigenvalues
splitting from a multiple eigenvalue of multiplicity m by means of m real-analytic
functions. For classical results in analytic perturbation theory we refer to the
seminal works of Rellich [103] and Nagy [109]. More up do date formulations can
be found in Chow and Hale [33, Theorem 5.2, p. 487], Kato [73, Theorem 3.9, p.
393], Lamberti and Lanza de Cristoforis [79, Theorem 2.27], Rellich [104, Theorem
1, p. 33].

Theorem 4.4.11. Let Ω be as in (4.1.3). Let ε̃ ∈ E and let {εt}t∈R ⊂ E be a
family depending real analytically on t and such that ε0 = ε̃. Let λ̃ be a Maxwell
eigenvalue of multiplicity m ∈ N and Ẽ(1), . . . , Ẽ(m) a corresponding orthonormal
basis of Maxwell eigenvectors in L2

ε̃(Ω) with ε = ε̃. Let λ̃ = λn[ε̃] = · · · = λn+m−1[ε̃]
for some n ∈ N. Then there exist an open interval I ⊂ R containing zero and m
real-analytic functions g1, . . . , gm from I to R such that

{λn[εt], . . . , λn+m−1[εt]} = {g1(t), . . . , gm(t)} ∀t ∈ I.
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Moreover, the derivatives g′1(0), . . . , g′m(0) of the functions g1, . . . , gm at zero coin-
cide with the eigenvalues of the matrix(

−λ̃
∫
Ω

ε̇0 Ẽ
(i) · Ẽ(j) dx

)
i,j=1,...,m

,

where ε̇0 denotes the derivative at t = 0 of the map t ↦→ εt.

Proof. Again, we can assume that τ is big enough such that λ̃ is strictly smaller
than any eigenvalue of (4.1.10) which is not a Maxwell eigenvalue. By applying [79,
Thm. 2.27, Cor. 2.28] to the operator Sε defined in (4.1.12) we get that there exist
an open interval I of R containing zero and m real-analytic functions h1, . . . , hm
from I to R such that {(λn[εt] + 1)−1, . . . , (λn+m−1[εt] + 1)−1} = {h1(t), . . . , hm(t)}
for all t ∈ I. Furthermore, the derivatives at zero of the functions hi, i = 1, . . . ,m
coincide with the eigenvalues of the matrix(

⟨d|ε=ε̃Sε[ε̇0]Ẽ
(i), Ẽ(j)⟩ε̃

)
i,j=1,...,m

.

By continuity we have that, eventually further restricting the interval I, the
functions hi are away from zero for all t ∈ I. Then, setting

gi(t) :=
1

hi(t)
− 1

we have that {λn[εt], . . . , λn+m−1[εt]} = {g1(t), . . . , gm(t)}. Finally, noticing that

d

dt
gi(t)|t=0 = −(λ̃+ 1)2

d

dt
hi(t)|t=0,

we deduce that the derivatives at zero of the functions gi coincide with the eigen-
values of the matrix

−(λ̃+ 1)2
(
⟨d|ε=ε̃Sε[ε̇0]Ẽ

(i), Ẽ(j)⟩ε̃
)
i,j=1,...,m

=

(
−λ̃
∫
Ω

ε̇0 Ẽ
(i) · Ẽ(j) dx

)
i,j=1,...,m

,

where this last equality is justified by Lemma 4.4.1.

4.5 Non-existence of critical permittivities
In this section we consider the problem of finding those densities which maximize
or either minimize the symmetric functions of Maxwell eigenvalues under a suitable
constraint of the permittivities. Let Ω be as in (4.1.3) and M a real symmetric
positive definite 3× 3 matrix. We introduce

LM :=

{
ε ∈ E :

∫
Ω

ε dx =M

}
,
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where by
∫
Ω
ε dx we mean the (3× 3)-matrix defined by(∫

Ω

ε dx

)
ij

:=

∫
Ω

εij dx ∀i, j = 1, 2, 3.

In the following Theorem 4.5.1 we show that the symmetric functions of Maxwell
eigenvalues do not admit points of local extremum under the constraint ε ∈ LM .
Note that Theorem 4.5.1 is in the same spirit of the analog optimization problem
for the eigenvalues of the Dirichlet Laplacian with mass constraint, that is for a
vibrating membrane with a fixed total mass (see Lamberti [76]). Further results on
the optimization of the eigenvalues of the Dirichlet Laplacian and of more general
elliptic operators with respect to the mass density can be found in Cox [42], Cox
and McLaughlin [43, 44], Henrot [67], Krein [75], and Lamberti and Provenzano
[82].

Theorem 4.5.1. Let Ω be as in (4.1.3). Let F be a finite subset of N. Let
s ∈ {1, . . . , |F |}. Let M be a real symmetric positive definite 3× 3 matrix. Then
the map from E [F ]∩LM to R which takes ε to ΛF,s[ε] has no points of local minimum
or maximum.

Proof. Let I be the map from E to the set of symmetric 3× 3 matrices defined by

I[ε] :=
∫
Ω

ε dx ∀ε ∈ E .

We proceed by contradiction. Assume that there exists a local minimum or
maximum ε̃ ∈ E . Clearly, there exists n ∈ N and a partition {F1, . . . , Fn} of F
such that ε̃ ∈

⋂n
k=1 Θ[Fk]. Since ε̃ is a local extremum, it is a critical point for the

function ΛF,s[ε] subject to the constraint

I[ε] =M.

This implies the existence of a Langrange multiplier, which means that there exists
a matrix Ñ ∈ R3×3 such that

d|ε=ε̃ΛF,s = −Tr
(
d|ε=ε̃I Ñ

)
.

(see, e.g., Deimling [51, Thm. 26.1]). By formula (4.4.8) for the differential of ΛF,s

we have that
n∑

k=1

ck
∑
l∈Fk

∫
Ω

ηẼ(l) · Ẽ(l) dx =
1

|∂Ω|

∫
Ω

Tr
(
ηÑ
)
dx ∀η ∈ W 1,∞ (Ω) ∩ Sym3(Ω),
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where for each k = 1, . . . , n, {E(l)}l∈Fk
⊂ X ε̃

N(Ω)
3 is an orthonormal basis in L2

ε̃(Ω)
of Maxwell eigenvectors for the eigenspace associated with λFk

[ε̃]. Moreover, by
the Gaffney inequality (4.1.8), we also have that {E(l)}l∈Fk

⊂ H1(Ω)3. Recall that
ck, k = 1, . . . , n, are the constants defined in (4.4.9). Since η is arbitrary, one can
easily see that there exist three constants a1, a2, a3 ≥ 0 such that⎛⎝ n∑

k=1

ck
∑
l∈Fk

(
Ẽ

(l)
j

)2⎞⎠ = aj a.e in Ω, j = 1, 2, 3. (4.5.2)

In particular, since E(l) are not null being eigenvectors, (4.5.2) implies that the
three constants a1, a2, a3 cannot all be zero. We also note that since the vectors
Ẽ(l) are in H1(Ω)3 they can be traced on the boundary as vector fields in L2(∂Ω)3.
Furthermore, on ∂Ω they are parallel to the outer unit normal ν, hence there exist
scalar functions Al ∈ L2(∂Ω) such that

Ẽ(l) = Alν on ∂Ω,

that is
Ẽ

(l)
j = Alνj on ∂Ω for j = 1, 2, 3. (4.5.3)

Then, by using (4.5.3) in (4.5.2) we obtain that

(νj)
2

⎛⎝ n∑
k=1

ck
∑
l∈Fk

(Al)2

⎞⎠ =

⎛⎝ n∑
k=1

ck
∑
l∈Fk

(
Ẽ

(l)
j

)2⎞⎠ = aj on ∂Ω

for j = 1, 2, 3. Taking the square root we deduce that⎛⎜⎜⎝|νj(x)|

⎛⎝ n∑
k=1

ck
∑
l∈Fk

(Al(x))2

⎞⎠ 1
2

⎞⎟⎟⎠
j=1,2,3

=
(√

aj
)
j=1,2,3

on ∂Ω. (4.5.4)

Define now the vector

B(x) :=

⎛⎜⎜⎝|νj(x)|

⎛⎝ n∑
k=1

ck
∑
l∈Fk

(Al(x))2

⎞⎠ 1
2

⎞⎟⎟⎠
j=1,2,3

=

⎛⎝ n∑
k=1

ck
∑
l∈Fk

(Al(x))2

⎞⎠ 1
2 (

|νj(x)|
)
j=1,2,3

.
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Observe that since the three constants a1, a2, a3 are not all zero, by (4.5.4) the
vector B is constant and different from zero. In particular this implies that for
almost every x ∈ ∂Ω the vector(

sign (νj(x))νj(x)
)
j=1,2,3

must point in the same direction of
(√

aj

)
j=1,2,3

. Since Ω is bounded and of

class C1,1 (in particular it is C1), it is not difficult to see that this leads to a
contradiction.

4.6 Simplicity of the spectrum for generic permit-
tivities

The issue of understanding if the eigenvalues of a parameter dependent problem
can be made all simple by an arbitrarily small perturbation of the parameter is a
natural question and has been already investigated by several authors for different
problems. For example, Albert [4] proved the generic simplicity of the spectrum of
an elliptic operator with respect to the perturbation of the zeroth order term.

Moreover, the generic simplicity of the spectrum has been also considered
with respect to the domain perturbation in various papers. We mention, e.g,
Micheletti [95, 96] for the Laplacian and for a general elliptic operator and Ortega
and Zuazua [100] and Chitour, Kateb and Long [32] for the Stokes system in two
and three dimension, respectively. Finally, we also mention the more recent paper
by Dabrowski [46] where the authors analyze the Laplacian with different boundary
conditions and consider also singular perturbations of the domain.

A first step, as we will show in the next proposition, we prove that it is always
possible to find a small perturbation of the permittivity that splits a multiple
Maxwell eigenvalue into simple eigenvalues.

Proposition 4.6.1. Let Ω be as in (4.1.3). Let ε̃ ∈ E, λ̃ a Maxwell eigenvalue
of multiplicity m ∈ N and Ẽ(1), . . . , Ẽ(m) a corresponding orthonormal basis of
Maxwell eigenvectors in L2

ε̃(Ω) with ε = ε̃. Let λ̃ = λn[ε̃] = · · · = λn+m−1[ε̃] for
some n ∈ N. Define

ε̃t,η := ε̃+ tη ∀t ∈ R,

for all η ∈ W 1,∞ (Ω) ∩ Sym3(Ω), ∥η∥W 1,∞(Ω) ≤ 1. Then for all T > 0 there exist
η ∈ W 1,∞ (Ω)∩ Sym3(Ω) with ∥η∥W 1,∞(Ω) ≤ 1, and t ∈ ]0, T [ such that ε̃t,η ∈ E and
the eigenvalues λn[ε̃t,η], . . . , λn+m−1[ε̃t,η] are all simple.

Proof. We will prove that there exist η ∈ W 1,∞ (Ω)∩ Sym3(Ω) with∥η∥W 1,∞(Ω) ≤ 1
and t > 0 as small as desired such that the eigenvalues λn[ε̃t,η], . . . , λn+m−1[ε̃t,η] are
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not all equal. Then, repeating the same argument for the eigenvalues that have still
a multiplicity strictly greater than one, in a finite number of steps we are done. Note
that by the continuity of the eigenvalues with respect to permittivity variations
and by choosing t small enough we can avoid that the eigenvalues splitting from a
multiple eigenvalue could overlap or switch position with other eigenvalues.

Hence, suppose by contradiction that there exists T > 0 such that for all
η ∈ W 1,∞ (Ω)∩Sym3(Ω) with∥η∥W 1,∞(Ω) ≤ 1 and for all t ∈ ]0, T [, all the eigenvalues
λn[ε̃t,η], . . . , λn+m−1[ε̃t,η] coincide. As a consequence, all the right derivatives at
t = 0 of the branches coincide. Then, if we fix η and use Theorem 4.4.11, we get
that all the eigenvalues of the matrix

M :=

(
−λ̃
∫
Ω

ηẼ(i) · Ẽ(j) dx

)
i,j=1,...,m

(4.6.2)

coincide. Since the above matrix is a real symmetric matrix with only one eigenvalue,
it is a scalar matrix. In other words, there exists µ[η] ∈ R such that

M = µ[η] Im, (4.6.3)

where Im denotes the (m×m)-identity matrix. For h = 1, 2, 3 we set

ηh :=∥ξ∥−1
W 1,∞(Ω) ξ ehh

with 0 ̸= ξ ∈ C1
c (Ω) arbitrary and ehh the (3× 3)-matrix with (h, h)-entry equal to

1 and zeros elsewhere. By (4.6.2), (4.6.3) and using the above defined ηh we can
recover that for all ξ ∈ C1

c (Ω)∫
Ω

ξ E
(i)
h E

(j)
h dx = 0 ∀i, j ∈ {1, . . . ,m}, i ̸= j, ∀h = 1, 2, 3,

and ∫
Ω

ξ
(
(E

(i)
h )2 − (E

(j)
h )2

)
dx = 0 ∀i, j ∈ {1, . . . ,m}, ∀h = 1, 2, 3.

By the fundamental lemma of calculus of variations we get that a.e. in Ω

E
(i)
h E

(j)
h = 0 ∀i, j ∈ {1, . . . ,m}, i ̸= j, ∀h = 1, 2, 3,

and
(E

(i)
h )2 − (E

(j)
h )2 = 0 ∀i, j ∈ {1, . . . ,m}, ∀h = 1, 2, 3.

The above relations clearly implies that Ei = 0 for all i ∈ {1, . . . ,m}, which is a
contradiction since they are not identically zero, being eigenfunctions.
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Remark 4.6.4. The constraint ∥η∥W 1,∞(Ω) ≤ 1 in the above proposition can be
replaced by ∥η∥W 1,∞(Ω) ≤ δ for any δ > 0.

Remark 4.6.5. The argument we have used to split a multiple eigenvalue into
several eigenvalues of lower multiplicity uses that η is a general symmetric matrix
and not a scalar matrix. However, noticing in which way ηh is defined, one can
easily realize that such an argument still works if η varies in the class of diagonal
matrices. Instead, in the case that we restrict ourselves to scalar matrices, what
we can recover by arguing in the same way is that

E(i) · E(j) = 0 ∀i, j ∈ {1, . . . ,m}, i ̸= j.

and
|E(i)|2 − |E(j)|2 = 0 ∀i, j ∈ {1, . . . ,m}.

This does not immediately lead to a contradiction. Thus, it would be interesting
to investigate wether it is still possible to split the whole spectrum when the
permittivies are scalar.

We are now ready to show that the whole Maxwell spectrum is generically
simple with respect to the permittivity. We note that our proof is inspired by the
methods of Albert [4]

Theorem 4.6.6. Let Ω be as in (4.1.3). Let ε̃ ∈ E and let δ > 0 be small enough
such that

ε̃+ η ∈ E

for all η ∈ W 1,∞ (Ω) ∩ Sym3(Ω) with ∥η∥W 1,∞(Ω) ≤ δ. Let

B0 :=
{
η ∈ W 1,∞ (Ω) ∩ Sym3(Ω) : ∥η∥W 1,∞(Ω) ≤ δ

}
and

Bn := {η ∈ B0 : the first n Maxwell eigenvalues with ε = ε̃+ η are simple}

for n ∈ N. Then

B :=
⋂
n∈N

Bn = {η ∈ B0 : all the Maxwell eigenvalues with ε = ε̃+ η are simple}

is dense in B0.

Proof. The proof follows by applying the Baire’s Lemma in the complete metric
space B0. In order to do this, we have to show that

i) Bn is open in B0 for all n ∈ N,
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ii) Bn+1 is dense in Bn for all n ∈ N.

Statement i) follows from the continuity of the eigenvalues with respect to the
permittivity parameter. Next we prove statement ii) by contradiction. Assume
that Bn+1 is not dense in Bn for some n ∈ N. Then there exists η ∈ Bn \Bn+1 and
a neighborhood U of η in B0 such that

U ⊂ Bn \Bn+1.

Since η ∈ Bn \Bn+1 then

• the first n Maxwell eigenvalues of (Pε̃+η) are simple,

• the (n+1)-th Maxwell eigenvalue of (Pε̃+η) has multiplicity k for some k ∈ N,
k ≥ 2.

Moreover, we note that for all ρ ∈ U ⊂ Bn \Bn+1 we have:

• the first n Maxwell eigenvalues of (Pε̃+ρ) are simple,

• the (n+ 1)-th Maxwell eigenvalue of (Pε̃+ρ) is not simple.

By Proposition 4.6.1 there exist ρ̂ ∈ W 1,∞ (Ω)∩ Sym3(Ω) with ∥ρ̂∥W 1,∞(Ω) ≤ 1 and
t > 0 arbitrarily small such that η + tρ̂ ∈ U and all the Maxwell eigenvalues of
(Pε̃+η+tρ̂) with indices from (n+ 1) to (n+ k) are simple, therefore we deduce that
in particular η + tρ̂ ∈ Bn+1. This is a contradiction since U ⊂ Bn \Bn+1.

4.7 Useful facts

In the present section we collect some technical results that we exploited in this
chapter.

Lemma 4.7.1. Let Ω be an open Lipschitz subset of R3 of finite measure. Let
u ∈ H1(Ω)3 and let ε be a matrix-valued function in W 1,∞ (Ω) ∩ Sym3(Ω). Then
there exists div(εu) ∈ L2(Ω) and

div(εu) = tr(εDu) + div ε · u (4.7.2)

a.e. in Ω. Here above if ε =
(
ε(1)|ε(2)|ε(3)

)
, with ε(k) denoting the k-th column of

the matrix ε, then div ε is the vector defined as

div ε =
(
div ε(1), div ε(2), div ε(3)

)
.
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Proof. By density there exists a sequence of smooth vector functions ψn ∈ C∞
c (R3)3

such that ψn → u in H1(Ω)3 as n→ +∞. Moreover, although the Meyers-Serrin
theorem is not valid for the space W 1,∞, we have that for any matrix ε ∈ W 1,∞(Ω)
there exists a sequence {εk}k∈N ⊂ C∞(Ω)3×3 ∩W 1,∞(Ω) such that

∥εk − ε∥L∞(Ω) → 0 (4.7.3)

and

∥Dεk∥L∞(Ω) →∥Dε∥L∞(Ω) , Dεk(x) → Dε(x) for a.e. x ∈ Ω (4.7.4)

as k → ∞.
For any k, n ∈ N the vector field εkψn belongs to C∞(Ω)3, hence the equality

div(εkψn) = tr(εkDψn) + div εk · ψn

is valid in Ω by standard calculus. Therefore if ϕ ∈ C∞
c (Ω) is any test function, we

have that ∫
Ω

εk ψn · ∇ϕdx = −
∫
Ω

(tr(εkDψn) + div εk · ψn)ϕdx.

As k → +∞, from (4.7.3) we get that the left-hand side goes to
∫
Ω
ε ψn·∇ϕdx, while

thanks to (4.7.3), (4.7.4) and the dominated convergence theorem, the right-hand
side goes to −

∫
Ω
(tr(εDψn) + div ε · ψn)ϕdx. Hence∫
Ω

ε ψn · ∇ϕdx = −
∫
Ω

(tr(εDψn) + div ε · ψn)ϕdx.

Taking the limit for n→ ∞ we get∫
Ω

ε u · ∇ϕdx = −
∫
Ω

(tr(εDu) + div ε · u)ϕdx.

The above formula holds for all ϕ ∈ C∞
c (Ω), and by definition of weak ε-divergence

formula (4.7.2) is valid.

Remark 4.7.5. Note that in the case that the matrix-valued permittivity parame-
ter ε is scalar, the function u can be taken in H(div,Ω) and formula (4.7.2) reads
as follows

div(εu) = ε div u+∇ε · u. (4.7.6)
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4.7.1 Auchmuty principle

The following part is an adaptation to problem (4.1.10) of arguments from [13].
It is worthy to note that for these results we would only require Xε

N(Ω) to be
compactly embedded in L2

ε(Ω), with possibly less assumptions on the permittivity
parameter ε and on the set Ω. Nonetheless, we will assume ε to be in E (defined in
(4.1.4)) and Ω to be a bounded domain of R3 of class C1,1 (as in (4.1.3)).

Define f̂ : Xε
N(Ω) → R as follows

f̂(u) :=
1

2
Tε[u][u] =

1

2

∫
Ω

ε u · u dx+ 1

2

∫
Ω

|curlu|2 dx+ τ

2

∫
Ω

⏐⏐div(εu)⏐⏐2 dx, (4.7.7)

where Tε is the operator defined in (4.1.11), equivalent to the inner product of
Xε

N(Ω). Let M ≥ 1 be a natural number and suppose σ1[ε], . . . , σM [ε] are the first
M eigenvalues of (4.1.10) (repeated according to their multiplicity) with u1, . . . , uM
the corresponding orthonormal eigenfunctions (where the orthonormality is taken
in L2

ε(Ω)). Let PM be the orthogonal projection (with respect to the inner product
in L2

ε(Ω)) of Xε
N(Ω) onto the subspace spanned by {u1, . . . , uM}, that is

PMu =
M∑
i=1

⟨u, ui⟩εui for all u ∈ Xε
N(Ω).

Define fM+1 : X
ε
N(Ω) → R as follows

fM+1(u) := f̂(u)−
(I − PM)u


L2
ε(Ω)

. (4.7.8)

Remark 4.7.9. If ũ ∈ Xε
N(Ω) is an eigenfunction of (4.1.10) with eigenvalue σ̃[ε],

then
T [ũ][v] = (σ̃[ε] + 1)Jε[ũ][v]

for all v ∈ Xε
N(Ω), where Jε is defined in (4.1.7). Thus

fM+1(ũ) =
1 + σ̃[ε]

2
∥ũ∥2L2

ε(Ω) −
(I − PM)ũ


L2
ε(Ω)

. (4.7.10)

Lemma 4.7.11. The functional fM+1 is weakly lower semi-continuous and coercive
on Xε

N(Ω). It is Gâteaux-differentiable on Xε
N(Ω) \ {0} and

⟨D fM+1(u), v⟩ = Tε[u][v]−
(I − PM)u

−1

L2
ε(Ω)

Jε[(I − PM)u][(I − PM)v] (4.7.12)

for all v ∈ Xε
N(Ω).
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Proof. Since
(I − PM)u


L2
ε(Ω)

≤∥u∥L2
ε(Ω) ≤∥u∥Xε

N(Ω), then

fM+1(u)

∥u∥Xε
N(Ω)

≥ 1

2

Tε[u][u]

∥u∥Xε
N(Ω)

− 1 → +∞ as ∥u∥Xε
N(Ω) → +∞,

i.e. fM+1 is coercive.
It is not difficult to see that the functional f̂ = 1

2
Tε is strictly convex, that is

for any u, v ∈ Xε
N(Ω), u ̸= v, we have that

f̂

(
u+ v

2

)
<
f̂(u) + f̂(v)

2
.

Moreover, since f̂ is strongly continuous on Xε
N(Ω), it is also weakly lower semi-

continuous. Additionally, the embedding ιε : Xε
N(Ω) → L2

ε(Ω) is compact, therefore
the L2

ε-norm is sequentially weakly continuous on Xε
N(Ω). Since the orthogonal

projection PM is also weakly continuous, we have that fM+1 is sequentially weakly
lower semi-continuous, which in turn implies the weakly lower semi-continuity
because fM+1 is coercive.

Finally, the Gâteaux derivative is just a simple computation; we omit the
details.

In the sequel we shall also need the following

Corollary 4.7.13. Let û ∈ ⟨u1, . . . , uM⟩⊥L2
ε(Ω) be in the orthogonal space in L2

ε(Ω)

of the span of {u1, . . . , uM}. Suppose moreover that û is a non-zero critical point
of fM+1 on Xε

N(Ω). Then û solves problem (4.1.10) with associated eigenvalue
σ[ε] =∥û∥−1

L2
ε(Ω) − 1.

Proof. If 0 ̸= û ∈ Xε
N(Ω) is a critical point of fM+1 then ⟨D fM+1(û), v⟩ = 0

for all v ∈ Xε
N(Ω). By formula (4.7.12) and the fact that û is L2

ε-orthogonal to
ui, i = 1, . . . ,M , which in turns implies that PM û = 0 and Jε[û][PMv] = 0 for any
v ∈ Xε

N(Ω), we see that û solves problem (4.1.10) with σ[ε] =∥û∥−1
L2
ε(Ω) − 1.

We can finally prove the following theorem. (cf. also [13, Thm. 7.4]).

Theorem 4.7.14 (Auchmuty Principle). The functional fM+1 defined in (4.7.8)
attains its minimum −1

2
(σM+1[ε] + 1)−1 on Xε

N(Ω), where σM+1[ε] is the (M +1)-th
eigenvalue of problem (4.1.10). This minimum is attained at ±uM+1 where uM+1

is a solution of (4.1.10) corresponding to the eigenvalue σM+1[ε] and such that
∥uM+1∥L2

ε(Ω) = (σM+1[ε] + 1)−1.

Proof. Since Xε
N(Ω) is reflexive, its bounded subsets are weakly pre-compact. Hence,

by Lemma 4.7.11 we have that fM+1 attains a finite minimum on Xε
N(Ω).
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Observe that fM+1(0) = 0. We complete the orthonormal set of eigenfunctions
u1, . . . , uM to a L2

ε-orthonormal basis {ui}i∈N ⊂ Xε
N(Ω). Now, for any u ∈ Xε

N(Ω)
write u = PMu+ w, where

PMu =
M∑
i=1

Jε[u][ui]ui and w = (I − PM)u =
+∞∑

i=M+1

Jε[u][ui]ui .

Observe that w ∈ ⟨u1, . . . , uM⟩⊥L2
ε(Ω), thus the vector fields PMu and w are orthogonal

in L2
ε(Ω), i.e. Jε[PMu][w] = 0. Moreover, observe that for all i = 1, . . . ,M∫

Ω

curlui · curl v dx+
∫
Ω

div(εui) div(εv) dx = σi[ε]Jε[ui][v] for all v ∈ Xε
N(Ω).

(4.7.15)
Since for all i = 1, . . . ,M we have that Jε[ui][w] = 0 then, setting v = w in (4.7.15),
we see that

∫
Ω
curlui · curlw dx+

∫
Ω
div(εui) div(εv) dx = 0. Hence∫

Ω

curlPMu · curlw dx+
∫
Ω

div(εPMu) div(εv) dx = 0.

Therefore Tε[u][u] = Tε[PMu][PMu] + Tε[w][w] and

fM+1(u) =
1

2
Tε[u][u]−∥w∥L2

ε(Ω) ≥ Tε[w][w]−∥w∥L2
ε(Ω) = fM+1(w).

Thus the minimum of fM+1 occurs in the orthogonal space ⟨u1, . . . , uM⟩⊥L2
ε(Ω). If

û ∈ ⟨u1, . . . , uM⟩⊥L2
ε(Ω) is a non-zero critical point of fM+1, by Corollary 4.7.13 one

has that û is an eigenfunction of problem (4.1.10) associated to the eigenvalue
σ[ε] =∥û∥−1

L2
ε(Ω) − 1. Hence, observing that PM û = 0 and using (4.7.10) we get that

fM+1(û) = −1

2
∥û∥L2

ε(Ω) = −1

2
(σ[ε] + 1)−1 < 0.

The last inequality is justified because the eigenvalues σ[ε] are non-negative. In
particular fM+1 is minimized when σ[ε] is the smallest eigenvalue of problem (4.1.10)
corresponding to an eigenfunction û which is orthogonal to u1, . . . , uM , that is when
σ[ε] = σM+1[ε], and in this case û = ±ûM+1 with∥ûM+1∥L2

ε(Ω) = (σM+1[ε]+1)−1.
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Appendix

The present chapter is divided as follows. Section 5.1 contains the detailed proof
of the vector decomposition from [17]. Meanwhile, Section 5.2 contains regularity
results for the Laplace operator subject to Dirichlet boundary conditions taken
from the monograph [92].

We make a careful tracking of all the constants involved in Theorem 5.1.3 and
Theorem 5.2.39.

5.1 Birman and Solomyak’s decomposition of XN

Recall that
H1

N(Ω) = XN(Ω) ∩H1(Ω)3

and
E(Ω) =

{
∇ϕ : ϕ ∈ H1

0 (Ω),∆ϕ ∈ L2(Ω)
}
.

Define also
∇H1

0 (Ω) :=
{
∇ψ : ψ ∈ H1

0 (Ω)
}
,

and denote by J(Ω) the orthogonal space of ∇H1
0 (Ω) in L2(Ω)3, so that we can

write
L2(Ω)3 = ∇H1

0 (Ω)⊕L2 J(Ω).

It is straightforward to see that J(Ω) is the set of divergence-free vector fields,
namely

J(Ω) =
{
u ∈ H(div,Ω) : div u = 0

}
.

Remark 5.1.1. By Proposition 1.3.7 it follows that if Ω is a bounded Lipschitz
subset of R3 whose boundary has only one connected component, the following
decomposition

XN(Ω) = E(Ω)⊕L2

(
XN(Ω) ∩ J(Ω)

)
.

147
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holds. In other words, it is possible to split any vector field ũ ∈ XN(Ω) as follows

ũ = ∇q + u,

where u ∈ XN(div 0,Ω) and q ∈ H1
0 (Ω) is the (weak) solution to the following

problem {
∆q = div ũ, in Ω,

q = 0, on ∂Ω.
(5.1.2)

Theorem 5.1.3 ([17, Thm. 4.1]). Let Ω be a bounded Lipschitz open set in R3.
Then there exist two linear continuous operators P and Q

P : XN(Ω) →
(
H1

N(Ω), ∥ · ∥H1(Ω)3

)
, Q : XN(Ω) →

(
E(Ω), ∥ · ∥H(div,Ω)

)
,

such that u = Pu + Qu for any u ∈ XN(Ω). In particular there exist a constant
CBS > 0 such that

∥Pu∥2H1(Ω) +∥Qu∥2L2(Ω) +∥divQu∥2L2(Ω) ≤ CBS∥u∥2XN(Ω) (5.1.4)

for all u ∈ XN(Ω).

Proof. We shall prove the theorem only for the case Ω homeomorphic to a ball;
the general case of a bounded Lipschitz open set in R3 can be then recovered by
means of a partition of unity.

We will first prove it for u ∈ XN(Ω) with div u = 0. Therefore, take any
u ∈ XN(Ω) ∩H(div 0,Ω), and let f = curlu. Then f ∈ J(Ω); in order to see this
we just need to show that for any ψ ∈ H1

0 (Ω),
∫
Ω
f · ∇ψ dx = 0. In particular this

implies that f ∈ H(div,Ω) and div f = 0. We will actually show a stronger result,
i.e. that the vector field f is in the orthogonal of ∇H1(Ω) in L2(Ω)3. Indeed, let
ψ ∈ H1(Ω). Then ∇ψ ∈ H(curl,Ω) with curl∇ψ = 0, so that∫

Ω

f · ∇ψ dx =

∫
Ω

curlu · ∇ψ dx = −
∫
Ω

u · curl∇ψ dx+
∫
∂Ω

(ν × u) · ∇ψ dx = 0,

(5.1.5)
where we recall that the boundary integral in the above formula is zero due to the
electric boundary condition the vector field u ∈ XN(Ω) satisfies. Therefore, not
only f is a divergence-free vector field, but also the normal trace γνf of f is zero on
the boundary ∂Ω. To see this, by (5.1.5) and the fact that div f = 0, we get that∫

∂Ω

(f · ν)ψ dx =

∫
∂Ω

(curlu · ν)ψ dσ =

∫
Ω

curlu · ∇ψ dx+
∫
Ω

div curluψ dx = 0
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for any ψ ∈ H1(Ω). Since H1/2(∂Ω) is dense in L2(∂Ω), we can conclude that
γνf = 0. Thus the function u solves the following problem:⎧⎪⎨⎪⎩

curlu = f, in Ω,
div u = 0, in Ω,
u× ν = 0, on ∂Ω.

(5.1.6)

The function u is uniquely characterized by (5.1.6), since the homogenous problem
(i.e. with f = 0) has only zero as a solution, due to the fact Ω is homeomorphic
to a ball. Indeed, suppose that u solves (5.1.6) with f = 0. Then curlu = 0 in Ω,
and so u = ∇η for some η ∈ H1(Ω) (see e.g. Th.2.9 of [62]). Since div u = 0 in Ω,
then η is a harmonic function, and due to the boundary condition u × ν = 0, η
must be constant on the boundary ∂Ω, which has only one connected component
because we assumed Ω homeomorphic to a ball. Hence η is constant in all of Ω,
and consequently u ≡ 0.

Let now B be an open ball such that Ω ⊂ B, and extend f by zero to the whole
B. Then we still have that f̃ ∈ J(B), where f̃ is the extension-by-zero of f . Indeed
for any test function ψ ∈ H1

0 (B) we have that ψ ∈ H1(Ω), thus by (5.1.5)∫
B

f̃ · ∇ψ =

∫
Ω

f · ∇ψ = 0.

Hence f̃ ∈ H(div, B) with div f̃ = 0.
Recall the Newtonian potential N g ∈ L2(R3) of a square integrable function

g ∈ L2(R3), namely

N g(x) :=
1

4π

∫
R3

g(y)

|x− y|
dy.

It is such that −∆N g = g. We then use a particular solution in H1(Ω)3 of the
system curlw = f̃ , divw = 0 as the curl of the (vector) Newtonian potential of f̃ ,
that is

w(x) := curlN f̃(x) =
1

4π
curl

∫
B

f̃(y)

|x− y|
dy. (5.1.7)

Since w is a curl, then it is obviously divergence free. Moreover w is a divergence-free
vector field, as shown below:

divx

(∫
B

f̃(y)

|x− y|
dy

)
=

∫
B

divx

(
f̃(y)

|x− y|

)
dy =

3∑
i=1

∫
B

− f̃i(y)

|x− y|3
(xi − yi)dy

=
3∑

i=1

∫
B

f̃i(y)∂yi

(
1

|x− y|

)
dy

= −
∫
B

(divy f̃)
1

|x− y|
dy +

∫
∂B

(f̃ · ν) 1

|x− y|
dy = 0,
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where the last passage is justified because div f̃ = 0 in B and f̃ = 0 on ∂B.
Recalling that ∆ = − curl curl +∇ div, then one can see

curlw = −∆N f̃ = f̃ .

Then in particular curlw = f in Ω and

∥w∥H1(B)3 ≤ CN∥f∥L2(Ω)3 , (5.1.8)

where we can choose the constant CN in a way that does not depend on Ω, but
just on the fixed ball B containing Ω (the operator N is a bounded linear operator
from L2(R3) to H2(R3): for these and other properties of the Newtonian potential
one can see [61]). Since curlw = f̃ = 0 in A = B \ Ω, whose fundamental group
is trivial, there exists a function ΦA ∈ H2(A) such that w = ∇ΦA in A (see e.g.
Thm. 2.9 of [62]). Moreover, we can choose ΦA such that

∫
A
ΦA = 0. Since the

boundary of Ω is Lipschitz, there exists a continuous linear extension operator
E : H2(A) → H2(B). Set

Φ := E ΦA. (5.1.9)

Moreover, we have that γτ (w−∇Φ) = 0 on ∂Ω. To see this it suffices to show that∫
Ω

curl(w −∇Φ) · z dx =

∫
Ω

(w −∇Φ) · curl z dx (5.1.10)

for all z ∈ H1(Ω)3. In order to see that, consider compact set K such that
Ω ⊂ K ⊂ B and consider a smooth function ζ ∈ C∞

c (B) such that supp ζ ⊂ K
and ζ ≡ 1 in Ω. Define ẑ := ζz. It is obvious that ẑ ≡ z in Ω and that ẑ ∈ H1

0 (B).
Thus, since both w and Φ are actually defined on B, with w = ∇Φ in A, we proceed
as follows:∫

Ω

(w −∇Φ) · curl z dx =

∫
B

(w −∇Φ) · curl ẑ dx

=

∫
B

curl(w −∇Φ) · ẑ dx+
∫
∂B

(w −∇Φ) · (ν × ẑ) dσ

=

∫
B

curl(w −∇Φ) · ẑ dx

=

∫
Ω

curl(w −∇Φ) · z dx.

Observe that (see remark after the proof)

∥∇Φ∥H1(Ω)3 ≤ C̃∥f∥L2(Ω)3 . (5.1.11)
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Now let ϕ ∈ H1
0 (Ω) be a function defined by the equation∫

Ω

∇ϕ · ∇η dx = −
∫
Ω

∆Φ η dx for all η ∈ H1
0 (Ω),

that is, ϕ is the (unique) weak solution of{
∆ϕ = ∆Φ, in Ω,
ϕ = 0, on ∂Ω. (5.1.12)

Then w −∇Φ +∇ϕ solves (5.1.6): the electric boundary condition to have null
tangential trace is verified because (5.1.10) holds and the fact that ϕ is null at the
boundary. Therefore w −∇Φ +∇ϕ is equal to u, and we have that u = Pu+Qu
with Pu = w−∇Φ and Qu = ∇ϕ. Finally, using (5.1.8) and (5.1.11) we have that
(5.1.4) is valid. Indeed

∥Pu∥H1(Ω) ≤∥w∥H1(Ω)3 +∥∇Φ∥H1(Ω)3 ≤ (CN + C̃)∥f∥L2(Ω)3 .

Moreover ∇ϕ = u− Pu and ∆ϕ = ∆Φ, so that

∥∇ϕ∥L2(Ω)3 ≤∥u∥L2(Ω)3 +∥Pu∥L2(Ω)3 ≤∥u∥L2(Ω)3 + (CN + C̃)∥f∥L2(Ω)3

and
∥∆ϕ∥L2(Ω) =∥∆Φ∥L2(Ω) ≤ C̃∥f∥L2(Ω)3 .

Remebering that f = curlu, we get (5.1.4). We have thus proved the theorem in
the case of u ∈ XN(div 0,Ω).

If now we take a generic ũ ∈ XN(Ω), as said in Remark 5.1.1 it is possible to
write ũ = ∇q + u with u ∈ XN(div 0,Ω) and q ∈ H1

0 (Ω) such that ∇q ∈ H(div,Ω),
since Ω is homeomorphic to a ball and thus its boundary has only one connected
component. Observe that curl ũ = curlu and div ũ = ∆q. Then ũ = Pu+Qu+∇q,
thus ũ = Pũ+Qũ = Pu+Qũ, where Qũ = Qu+∇q. We now have that

∥Qũ∥L2(Ω)3 ≤∥ũ∥L2(Ω)3 +∥Pu∥L2(Ω)3 ≤∥ũ∥L2(Ω)3 + (CN + C̃)∥curl ũ∥L2(Ω)3 .

Moreover

∥divQũ∥L2(Ω) ≤∥divQu∥L2(Ω) +∥div ũ∥L2(Ω) ≤ C̃∥curl ũ∥L2(Ω)3 +∥div ũ∥L2(Ω) .

Therefore we recover (5.1.4) also in the general case of ũ ∈ XN(Ω).

Remark 5.1.13 (Regarding inequality (5.1.11)). Let CN be a positive constant
such that ∥N f∥H2(Ω) ≤ CN∥f∥L2(Ω) for all f ∈ L2(Ω), where N is the Newtonian
potential of f . Since the fundamental group for A is trivial and curlw = 0 in A,
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there exists ΦA ∈ H2(A) such that w = ∇ΦA in A. Moreover we can choose ΦA

such that
∫
A
ΦA = 0. Hence, denoting with CE the operator norm of the extension

E : H2(A) → H2(B), we get

∥∇Φ∥H1(Ω)3 ≤∥∇Φ∥H1(B)3 ≤∥Φ∥H2(B) ≤ CE∥ΦA∥H2(A)

≤ CE cP∥∇ΦA∥H1(A)3 = CE cP∥w∥H1(A)3

≤ CE cP CN∥f∥L2(Ω)3 .

(5.1.14)

Here cP is the constant of the Poincaré-Wirtinger inequality (see, e.g., [88, Thm.
13.27]), that we can apply since A is a bounded connected open set with Lipschitz
boundary. Thus the constant C̃ in (5.1.11) is such that C̃ = CE cP CN .

Remark 5.1.15. Since ∂A = ∂Ω∪ ∂B is Lipschitz, the extension operator E from
H2(A) to H2(B) exists, and it is just the restriction to B composed with the usual
extension operator E : H2(A) → H2(R3). Moreover, we have that

∥Eg∥H2(R3) ≤ CE∥g∥H2(A) for all g ∈ H2(R3) (5.1.16)

where the constant CE depends only on the Lipschitz character of the boundary of
Ω. See [25] for more details.

Remark 5.1.17. As one can see from the proof in Theorem 5.1.3 and the previous
remarks, the constant CBS of (5.1.4) depends on the Newtonian constant CN in
(5.1.8), the constant CE in (5.1.16), and on the Poincaré constant cP of the set Ω.
We can therefore conclude that CBS depends on the Lipschitz character of ∂Ω and
on the Lebesgue measure of Ω.

5.2 More details on the regularity of elliptic bound-
ary value problems

In this section we restrict our attention on some aspects of the regularity theory
for solutions of the Poisson problem for the Laplacian with Dirichlet boundary
conditions. We will present in detail results taken from the monograph [92] by
Maz’ya and Shaposhnikova which are useful for our purposes, specifically for
Section 1.4.3 and Section 3.3.

We will work in RN with N ≥ 2. For the sake of simplicity, we will often omit
RN in the notation of function spaces or norms, as it will be clear from the context.
In general, if S is a Banach space of functions defined on RN , by Sloc we denote
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the space of functions (defined on RN) that belong to S whenever multiplied by a
smooth compactly supported function, namely

Sloc =
{
u : ηu ∈ S for all η ∈ C∞

c (RN)
}
.

Let V be an open set of RN , p ∈ [1,∞) and l > 0 be a non-integer. Define

(Dp,lu)(x) :=

(∫
V

|∇[l]u(x)−∇[l]u(y)|p

|x− y|N+p{l} dy,

)1/p

,

where [l], {l} denote the integer and fractional parts of l respectively, and ∇k stands
for the gradient of order k ∈ N ∪ {0}. The fractional Sobolev space W l

p(V ) is the
space of functions in W [l]

p (V ) with the finite norm

∥u∥W l
p(V ) :=∥u∥

W
[l]
p (V )

+
Dp,lu


Lp(V )

.

By multiplier multiplier acting from one function space S1 into another S2 we
mean a function which defines a bounded linear mapping of S1 into S2 by point-wise
multiplication. In the next definition we will give the precise notion of a multiplier
acting in pairs of fractional Sobolev spaces.

Definition 5.2.1. A function γ defined on V belongs to M(Wm
p (V ) → W l

p(V )) if
γu ∈ W l

p(V ) for all u ∈ Wm
p (V ), where m ≥ l ≥ 0 and p ∈ [1,∞). The norm in

M(Wm
p (V ) → W l

p) is defined as the norm of the operator of multiplication

∥γ∥M(Wm
p (V )→W l

p(V )) := sup
{
∥γu∥W l

p(V ) :∥u∥Wm
p (V ) ≤ 1

}
.

We will use the notation MW l
p(V ) instead of M(W l

p(V ) → W l
p(V )).

Remark 5.2.2. Observe that the case m < l is not interesting since, under these
circumstances, M(Wm

p (V ) → W l
p(V )) = {0}. To see this, suppose m < l and let

γ ∈M(Wm
p (V ) → W l

p(V )). Then

∥γ∥M(Wm
p (V )→W l

p(V )) ≥

γ eitx1 η

W l

p(V )

∥eitx1η∥Wm
p (V )

,

where t > 0 and η is an arbitrary non-zero function in C∞
c (V ). Therefore

∥γ∥M(Wm
p (V )→W l

p(V )) ≥ tl−m

(
∥γη∥Lp(V )

∥η∥Lp(V )

+ o(1)

)
as t→ +∞, and this is possible only if γ = 0.
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We introduce the notion of Besov space Bl
p (cf. also Definition 5.2.54). Let

l = k + α where α ∈ (0, 1] and k is a non-negative integer. Set

∆hu(x) := u(x+ h)− u(x) (5.2.3)

and
∆

(2)
h u(x) := ∆h∆hu(x) = u(x+ 2h)− 2u(x+ h) + u(x). (5.2.4)

Define

(Dp,lu)(x) :=

(∫
RN

⏐⏐⏐∆(2)
h ∇ku(x)

⏐⏐⏐p |h|−N−pαdh

)1/p

, (5.2.5)

where ∇k stands for the gradient of order k ∈ N ∪ {0}. Then, the space Bl
p(RN ) is

defined as the completion of C∞
c (RN) with respect to the norm

∥u∥Bl
p(RN ) :=

Dp,lu

Lp(RN )

+∥u∥Lp(RN ) . (5.2.6)

Note that for {l} > 0, the spaces Bl
p(RN) and W l

p(RN) have the same elements
and their norms are equivalent since

(2− 2{l})Dp,lu ≤ Dp,lu ≤ (2 + 2{l})Dp,lu. (5.2.7)

See also [92, Ch.4]
As in the case of fractional Sobolev spaces, we introduce the space of multipliers

acting between Besov spaces.

Definition 5.2.8. A function γ defined on RN belongs to M(Bm
p → Bl

p) if γu ∈ Bl
p

for all u ∈ Bm
p , where m ≥ l ≥ 0 and p ∈ [1,∞). The norm in M(Bm

p → Bl
p) is

defined as the norm of the operator of multiplication

∥γ∥M(Bm
p →Bl

p)
:= sup

{
∥γu∥Bl

p
:∥u∥Bm

p
≤ 1
}
.

If m = l, we denote the space M(Bl
p → Bl

p) simply by MBl
p.

A useful characterization of multipliers in pairs of Besov spaces is given by the
next theorem. Note that here and in the sequel, two values are a and b are called
equivalent (a ∼ b) if there exist positive constants c and C, depending only on
m, l, p,N (and analogous parameters), such that

ca ≤ b ≤ Cb.

Theorem 5.2.9 ([92, Thm. 4.1.1]). Let l > 0 and p ∈ (1,∞). A function γ
belongs to MBl

p if and only if γ ∈ Bl
p,loc, Dp,lγ ∈M(Bl

p → Lp), and γ ∈ L∞. The
equivalence relation

∥γ∥M(Bl
p→Bl

p)
∼ sup

E

Dp,lγ

Lp(E)

[Cp,l(E)]1/p
+∥γ∥L∞ (5.2.10)

holds, where E is an arbitrary compact set in RN . The equivalence relation (5.2.10)
remains valid if the condition d(E) ≤ 1 is added, where d(E) is the diameter of E.
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For the definition of (p, l)-capacity Cp,l(E) of a compact set E ⊂ RN one can
see section 1.2.2 of [92]. We only observe that it is equivalent to the following
quantity

inf
{
∥u∥p

W l
p
: u ∈ C∞

c (RN), u ≥ 1 on E
}
.

5.2.1 Regularity of the Dirichlet laplacian

In the present section we will mainly follow Chapter 14 of [92]. Much of the results
in [92] are more general than the ones we present here, in the sense that they deal
with a more general class of operators arising from elliptic boundary value problem
in a bounded domain. Here we are mainly interested in the Poisson problem for
the Laplace operator subject to Dirichlet boundary conditions.

In the following we consider Ω to be a bounded domain in RN . The Poisson
problem for the Dirichlet Laplacian with datum f ∈ L2(Ω) reads as follows{

−∆u = f, in Ω,

u = 0, on ∂Ω.
(5.2.11)

A function u ∈ H1
0 (Ω) is a (weak) solution of (5.2.11) if∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx

for all v ∈ H1
0 (Ω). It is a standard fact that if the boundary of Ω is sufficiently

smooth (say of class C2), the solution u belongs to H2(Ω)∩H1
0 (Ω) and the following

a priori estimate
∥u∥H2(Ω) ≤ c

(
∥∆u∥L2(Ω) +∥u∥L1(Ω)

)
(5.2.12)

holds, where c > 0 is a constant depending only on Ω. We refer to Section 6.3.2 of
[52] or to Section 5.3.3 of the monograph [110] for further details. Observe that
since the solution to (5.2.11) is unique, then the last norm on the right-hand side
of (5.2.12) can be omitted (see e.g. [52, Thm. 6, §6.2]), yielding

∥u∥H2(Ω) ≤ c∥∆u∥L2(Ω) .

See also the following remark.

Remark 5.2.13 (cf. [54, Lemma 1]). If Ω is bounded domain in RN , then for any
u ∈ H2(Ω) ∩H1

0 (Ω)

∥u∥L1(Ω) ≤|Ω|
1
2∥u∥L2(Ω) ≤ c2P |Ω|

1
2∥∆u∥L2(Ω) ,

where cP denotes the Poincaré constant (see, e.g., [88, Thm. 13.27]).
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It turns out that the H2-regularity for solutions of (5.2.11) and the consequent
a priori estimate (5.2.12) is valid for a larger class of domains than those with
boundary of class C2 (see Theorems 5.2.16 and 5.2.39).

In what follows we will deal with parameters l, p, with l ≥ 2 a natural number
and p ∈ (1,∞). The parameter l stands for the order of the differential operator
while p denotes the order of integrability. For problem (5.2.11) one has that l = 2
and p = 2.

Moreover, to ease the notation and to be more clear, we will denote the multiplier
norm of a function γ by ∥γ;V ∥MW l

p
instead of ∥γ∥MW l

p(V ).
The following definition can be found in Section 14.3.1 of [92]. Recall also

Definition 1.4.19.

Definition 5.2.14 (Class M l−1/p
p (δ)). Let Ω be a bounded domain in RN and

δ > 0. If p(l−1) ≤ N we say that ∂Ω belongs to the class M l−1/p
p (δ) if for each point

O ∈ ∂Ω there exists a coordinate y := xj for some j ∈ {1, . . . , n}, a neighbourhood
U and a special Lipschitz domain of the form

G =
{
z = (x, y) : x ∈ RN−1, y > ϕ(x)

}
such that U ∩ Ω = U ∩G and

∇ϕ ∈MW l−1−1/p
p (RN−1) with

∇ϕ;RN−1

MW

l−1−1/p
p

≤ δ. (5.2.15)

Note that the class M l−1/p
p (δ) is contained in the class C0,1 of Lipschitz domains.

Moreover, observe that if ∂Ω ∈M
l−1/p
p (δ) for some δ > 0 then ∂Ω ∈ W

l−1/p
p , i.e. it

can be locally described by a function in W l−1/p
p (RN−1). This is because

MW l−1−1/p
p (RN−1) ⊂ W

l−1−1/p
p,loc (RN−1).

The next theorem concerns the H2-regularity for the solutions of (5.2.11). It is a
particular case of [92, Thm. 14.5.3]. Observe that if l = p = 2 then l−1−1/p = 3/2.

Theorem 5.2.16. Let Ω be a bounded domain in R3 such that ∂Ω ∈M
3/2
2 (δ) for

some δ > 0, and let f ∈ L2(Ω). Then the solution u ∈ H1
0 (Ω) of (5.2.11) belongs

to H1
0 (Ω) ∩H2(Ω).

Note that the index 3/2 is somewhat sharp, as the following proposition shows.
It is a particular case of [92, Theorem 14.6.3].
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Proposition 5.2.17. Let Ω be a bounded domain in R3 such that ∂Ω ∈ C1. Assume
the normal to ∂Ω satisfies the Dini condition, namely∫ 1

0

ω(t)

t
dt <∞,

where ω is the modulus of continuity of the normal. If, for a function f ∈ C∞
c (Ω),

there exists a solution u ∈ H2(Ω) ∩H1
0 (Ω) of the problem{

−∆u = f, in Ω,

u = 0, on ∂Ω,

then ∂Ω ∈ W
3/2
2 .

For our purposes we are interested in a better understanding of the validity of
(5.2.12). In Theorem 5.2.39 we will eventually see that a sufficient condition for
the a priori estimate to hold is that the boundary ∂Ω belongs to the class M3/2

2 (δ)
for a sufficiently small δ > 0. We first need to introduce some machinery.

In the sequel we write a generic point in RN as (x, y) with x ∈ RN−1 and y > 0.

Definition 5.2.18 (see section 9.4.1 of [92]). Let p ∈ (1,∞), l ≥ 1, and let U, V
be open subsets of RN . A quasi-isometric mapping κ : U → V is called a (p, l)-
diffeomorphism if all elements of its Jacobi matrix ∂κ belong to the space of
multipliers MW l−1

p (U). By ∥∂κ;U∥MW l−1
p

we denote the sum of the norms of the
elements of ∂κ in MW l−1

p (U).

Let ϕ : RN−1 → R be a Lipschitz function with Lipschitz constant L > 0. Given
a function ζ ∈ C∞

c (RN−1) such that ζ ≥ 0 and
∫
RN−1 ζ(t) dt = 1, we introduce the

operator T by the formula

(T ϕ)(x, y) :=
∫
RN−1

ζ(t)ϕ(x+ ty) dt, y > 0. (5.2.19)

The function T ϕ is an extension of ϕ onto RN
+ .

Lemma 5.2.20 ([92, Thm. 8.7.2]). Suppose ∇ϕ ∈ MW
l−1−1/p
p (RN−1). Then

∇(T ϕ) ∈MW l−1
p (RN

+ ) and∇(T ϕ);RN
+


MW l−1

p

≤ c1

∇ϕ;RN−1

MW

l−1−1/p
p

, (5.2.21)

where c1 > 0 is a constant depending only on l, p and N .
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Let
G =

{
(x, y) ∈ RN : x ∈ RN−1, y > ϕ(x)

}
, (5.2.22)

and let K be a sufficiently large constant depending on L. We define the mapping

λ : RN
+ → G, λ(ξ, η) ↦→ (x, y) := (ξ,Kη + (T ϕ)(ξ, η)), (5.2.23)

with ξ ∈ RN−1 and η > 0. The codomain of λ is G provided K is large enough.
Indeed we need to check that

Kη + (T ϕ)(ξ, η)− ϕ(ξ) > 0.

Since ϕ is Lipschitz with constant L then

ϕ(ξ + tη)− ϕ(ξ) ≥ −Lη|t| .

Hence

Kη + (T ϕ)(ξ, η)− ϕ(ξ) = Kη +

∫
RN−1

ζ(t)
(
ϕ(ξ + tη)− ϕ(ξ)

)
dt

≥
(
K − L

∫
RN−1

ζ(t)|t| dt
)
η > 0

provided that K > L
∫
RN−1 ζ(t)|t| dt > 0.

The following lemma also explains why we need the constant K to be sufficiently
larger than L.

Lemma 5.2.24 ([92, Lemma 9.4.5]). For any ξ ∈ RN the mapping

αξ : R+ → R, αξ(η) ↦→ y = Kη + (T ϕ)(ξ, η)

is one to one, and the inverse is Lipschitz. Moreover the Lipschitz constant of α−1
ξ

is not greater than (K − L)−1 and⏐⏐⏐α−1
ξ1
(y)− α−1

ξ2
(y)
⏐⏐⏐ ≤ cL(K − cL)−1∥ξ1 − ξ2∥RN−1 , (5.2.25)

where c > 0 is a constant depending on N .

With the previous lemma one can prove the following one.

Lemma 5.2.26 ([92, Lemma 9.4.6]). Let l ≥ 2 be an integer and p ∈ (1,∞).
Further, let G be as in (5.2.22) with ϕ a Lipschitz function defined on RN−1

such that ∇ϕ ∈ MW
l−1−1/p
p (RN−1). Then the mapping λ defined in (5.2.23) is a

(p, l)-diffeomorphism of RN
+ onto G, whose Jacobi matrix ∂λ is given by

∂λ =

(
IN−1 0

∇ξ(T ϕ) K + ∂(T ϕ)
∂η

)
, (5.2.27)

where IN−1 is the identity (N − 1)× (N − 1) matrix.
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Lemma 5.2.28 ([92, Lemma 9.4.2]). If κ is a (p, l)-diffeomorphism, then κ−1 is
also a (p, l)-diffeomorphism.

From now on we set l = p = 2, focusing our attention to problem (5.2.11).
Observe that the if Ω belongs to the class M3/2

2 (δ), then its profile function ϕ is
such that ∇ϕ ∈MW

1/2
2 (RN−1). By the Lemma 5.2.26 and Lemma 5.2.28 we have

that λ and λ−1 are both (2, 2)-diffeomorphisms, hence ∂λ ∈M1
2 (RN

+ ).
Let S be the differential operator characterized by the following relation

Sv :=
[
∆(v ◦ λ−1)

]
◦ λ, (5.2.29)

The differential operator S is the transformation of the Laplacian ∆ under the
change of variables given by λ. It operates on functions v defined on RN

+ and gives
back a function still defined on RN

+ .

Lemma 5.2.30 (Lemma 14.4.8 of [92]). For all v ∈ (H2 ∩H1
0 )(RN

+ )(S −∆)v;RN
+


L2

≤ c2

IN − ∂λ;RN
+


MW 1

2

v;RN
+


H2
, (5.2.31)

where c2 is a continuous function of the norm of ∂λ in MW 1
2 (RN

+ ) independent of
v.

If the Lipschitz constant L of the function ϕ is small enough, then we can put
K = 1 in the definition (5.2.23). Consequently the Jacobian matrix ∂λ of λ is

∂λ =

⎛⎜⎜⎜⎜⎜⎝
IN−1

0
...
0

∂(T ϕ)
∂ξ1

. . . ∂(T ϕ)
∂ξN−1

1 + ∂(T ϕ)
∂η

⎞⎟⎟⎟⎟⎟⎠ , (5.2.32)

Moreover we have thatIN − ∂λ;RN
+


MW 1

2

∼
∇(T ϕ);RN

+


MW 1

2

,

and by Lemma 5.2.20 we also have that∇(T ϕ);RN
+


MW 1

2

≤ c1

∇ϕ;RN−1

MW

1/2
2

, (5.2.33)

with c1 > 0 depending only on N . Hence the following inequalityIN − ∂λ;RN
+


MW 1

2

≤ ĉ
∇ϕ;RN−1


MW

1/2
2

(5.2.34)

holds, where ĉ > 0 is a dimensional constant.
From Lemmas 14.4.4 and 14.4.5 of [92] one can deduce the next result. See also

[92, Coroll. 14.4.2].
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Lemma 5.2.35. The map λ : RN
+ → G is bi-Lipschitz and there exists a constant

c̃ > 0 such thatu ◦ λ;RN
+


L2

≤ c̃∥u;G∥L2 ,
v ◦ λ−1;G


L2 ≤ c̃

v;RN
+


L2

(5.2.36)

for all u ∈ L2(G), v ∈ L2(RN
+ ),u ◦ λ;RN

+


H2

≤ c̃∥u;G∥H2 (5.2.37)

for all u ∈ H2(G) ∩H1
0 (G), andv ◦ λ−1;G


H2 ≤ c̃

v;RN
+


H2

(5.2.38)

for all v ∈ H2(RN
+ )∩H1

0 (RN
+ ). The constant c̃ depends only N and on the MW

1/2
2 -

multiplier norm of ∇ϕ in a continuous way.

Finally, we can prove the main theorem about the a priori estimate (5.2.12).

Theorem 5.2.39 ([92, Thm. 14.5.1]). If ∂Ω belongs to the class M3/2
2 (δ) for some

δ sufficientyl small (depending only on N), then

∥u∥H2(Ω) ≤ CM

(
∥∆u∥L2(Ω) +∥u∥L1(Ω)

)
(5.2.40)

for all u ∈ H2(Ω) ∩H1
0 (Ω). Here CM > 0 is a constant that depends on N, δ and

on a suitable atlas of Ω.

Proof. Let O ∈ ∂Ω. By the M3/2
2 (δ) condition there exists a coordinate y := xj

for some j ∈ {1, . . . , n}, a neighbourhood U and a special Lipschitz domain
G =

{
z = (x, y) : x ∈ RN−1, y > ϕ(x)

}
such that U ∩ Ω = U ∩G and∇ϕ;RN−1

MW

1/2
2

≤ δ. (5.2.41)

In particular we have that the Lipschitz constant of the profile function ϕ is small
(see Theorem 5.2.9). Thus we can put K = 1 in the definition (5.2.23) of the
mapping λ, and consequently inequality (5.2.34) holds.

It is a standard result (see e.g. [3] or Section 5.3.3 of [110]) that for all
v ∈ H2(RN

+ ) with support in B1 ∩ RN
+ , where B1 denotes the open unit ball in RN ,

there exists a constant cADN > 0 depending on N such thatv;RN
+


H2

≤ cADN

∆v;RN
+


L2
. (5.2.42)
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Choose now a smooth compactly supported function σ ∈ C∞
c (U). Let u be a

function in H2(Ω) ∩H1
0 (Ω) and set v := σu ◦ λ. Note that v belongs to H2(RN

+ ) ∩
H1

0 (RN
+ ) precisely because u ∈ H2(Ω) ∩ H1

0 (Ω) and λ is a (2, 2)-diffeomorphism,
thus its Jacobian matrix entries are multipliers in MW 1

2 . Moreover, choosing
the localizing function σ appropriately, we have that supp v ⊂ B1 ∩ RN

+ . By
Lemma 5.2.35 we have that

∥σu;U ∩ Ω∥H2 ≤ c̃
v;RN

+


H2

≤ c̃ cADN

∆v;RN
+


L2
. (5.2.43)

Moreover, recalling that Sv = [∆(v◦λ−1)]◦λ (see (5.2.29)) and using Lemma 5.2.30
together with inequality (5.2.34) we get∆v;RN

+


L2

≤
Sv;RN

+


L2

+
(∆− S)v;RN

+


L2

≤
Sv;RN

+


L2

+ c2 ĉ δ
v;RN

+


H2

≤ c̃
∆(σu);U ∩ Ω

+ c̃ c2 ĉ δ∥σu;U ∩ Ω∥H2 ,

(5.2.44)

where in the last passage we again made use of Lemma 5.2.35. Combining (5.2.43)
and (5.2.44) yields

∥σu;U ∩ Ω∥H2 ≤ c̃ 2cADN

(∆(σu);U ∩ Ω
+ c2 ĉ δ∥σu;U ∩ Ω∥H2

)
,

from which we get that

∥σu∥H2(Ω) ≤
c̃ 2cADN

1− c̃ 2cADNc2 ĉ δ

∆(σu)

L2(Ω)

. (5.2.45)

The last passage is justified if δ is small enough so that c̃ 2cADN c2 ĉ δ < 1.
We have thus obtained the (local) a priori inequality (5.2.45). To conclude,

we consider sufficiently small neighbourhoods Uj, j = 1, . . . , s that generate a
(finite) open covering of Ω, and take a partition of unity {σj}j=1,...,s subject to that
open cover. Denoting uj := σju we have that u =

∑
j uj. We have that for any

j = 1, . . . , s we have that (5.2.45) holds. Moreover

∆uj = (∆σj)u+∇σj · ∇u+ σj(∆u),

thus ∆ujL2(Ω)
≤ C

(
∥∆u∥L2(Ω) +∥u∥H1(Ω)

)
(5.2.46)

for any j = 1, . . . , s, where C = supj∈{1,...,s}
σjC2(Ω)

. Hence

∥u∥H2(Ω) ≤
s∑

j=1

ujH2(Ω)
≤

s∑
j=1

c̃ 2cADN

1− c̃ 2cADN c2 c δ

∆ujL2(Ω)

≤ C c̃ 2cADN

1− c̃ 2cADN c2 ĉ δ
s
(
∥∆u∥L2(Ω) +∥u∥H1(Ω)

)
.

(5.2.47)
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Finally, it remains to apply Proposition 5.2.50 with τ > 0 such that

τ <
1− c̃ 2cADN c2 ĉ δ

s C c̃ 2cADN

to obtain

∥u∥H2(Ω) ≤ sC

(
1

c̃2 cADN

− c2 ĉ δ − C τ s

)−1 (
∥∆u∥L2(Ω) + c(τ)∥u∥L1(Ω)

)
.

(5.2.48)

Remark 5.2.49. Taking a closer look at the constants appearing in the inequal-
ity (5.2.47), we have that the constant cADN and the constant ĉ (from (5.2.34))
are dimensional. The constant C and the parameter s (the number of cuboids
composing a suitable open covering of Ω) depend on the atlas associated to Ω
(cf. Definition 1.0.1). Finally, the constants c̃ and c2 depends on the dimension
N and are continuous functions of the MW

1/2
2 multiplier norm of ∇ϕ, hence they

eventually depend on δ (cf. Definition 5.2.14).
The detailed analysis done until now is what ultimately motivated Defini-

tion 1.4.19 and effectively proves Theorem 1.4.22.

Proposition 5.2.50. Let k,N ∈ N be natural numbers and p ∈ [1, N). Let Ω be a
bounded Lipschitz set in RN . Then for every τ > 0 there exists c(τ) > 0 such that

∥f∥Wk−1,p(Ω) ≤ τ∥f∥Wk,p(Ω) + c(τ)∥f∥L1(Ω)

for any function f ∈ W k,p(Ω).

Proof. Let τ > 0 and suppose by contradiction that there exists a sequence
{fj}j∈N ⊂ W k,p(Ω) such thatfjWk−1,p(Ω)

≥ τ
fjWk,p(Ω)

+ j
fjL1(Ω)

.

We can directly assume that
fjWk−1,p(Ω)

= 1 for all j ∈ N. Hence
fjWk,p(Ω)

≤
τ−1, thus by the Rellich-Kondrachov embedding theorem (see, e.g., [2, Thm. 6.3])
we can extract a subsequence that converges to some f strongly in W k−1,p(Ω). In
particular ∥f∥Wk−1,p(Ω) = 1. At the same time, since

fjL1(Ω)
≤ j−1 for all j ∈ N,

we have that fj → 0 in L1(Ω). Thus necessarily f = 0, a contradiction.
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5.2.2 The condition M
3/2
2 (δ)

Let Ω be a bounded Lipschitz domain in RN . In this last section we briefly
focus on a local characterization of the class M l−1/p

p (δ), ultimately deducing a
simpler sufficient condition for the inclusion of the boundary ∂Ω into M l−1/p

p (δ) (cf.
(5.2.56)). These results, presented in their general form, are taken from Section
14.6.3 of [92].

Note that by Theorem 5.2.9 and by (5.2.7), the multiplier norm of ∇ϕ in
MW

l−1−1/p
p (RN−1) is equivalent to

sup
E⊂RN−1

d(E)≤1

Dp,l−1/p ϕ

Lp(E)

[Cp,l−1−1/p(E)]1/p
+∥∇ϕ∥L∞(RN−1) .

The following theorem gives a local characterization of the class M l−1/p(δ).

Theorem 5.2.51 ([92, Thm. 14.6.4]). Let p(l − 1) ≤ N . The class M l−1/p
p (δ) has

the following equivalent description. For any point O ∈ ∂Ω there exists a neigh-
bourhood U and a special Lipschitz domain G =

{
z = (x, y) : x ∈ RN−1, y > ϕ(x)

}
such that U ∩ Ω = U ∩G and

lim
ρ→0

⎛⎝ sup
E⊂Bρ

Dl−1/p(ϕ;Bρ)

Lp(E)

[Cp,l−1−1/p(E)]1/p
+∥∇ϕ∥L∞(Bρ)

⎞⎠ ≤ c δ. (5.2.52)

Here Bρ denotes the ball in RN−1 centred in O and of radius ρ, c > 0 is a constant
which depends only on l, p,N . The term Dj−1/p(ϕ;Bρ), with j ≥ 2 a natural
number, has the following definition

Dj−1/p(ϕ;Bρ)(x) :=

(∫
Bρ

⏐⏐∇j−1ϕ(x)−∇j−1ϕ(y)
⏐⏐p

|x− y|N+p−2
dy

)1/p

.

Using Theorem 5.2.51 and properties of the capacity Cp,l(e) (see [92, §9.6.1])
we get the following result.

Corollary 5.2.53 ([92, Coroll. 14.6.1]). The following statements hold.

(i) If p(l − 1) < N and

lim
ρ→0

⎛⎝ sup
E⊂Bρ

Dl−1/p(ϕ;Bρ)

Lp(E)

|E|
N−p(l−1)
(N−1)p

+∥∇ϕ∥L∞(Bρ)

⎞⎠ < c δ,

then ∂Ω ∈M
l−1/p
p (δ).
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(ii) If p(l − 1) = N and

lim
ρ→0

(
sup
E⊂Bρ

Dl−1/p(ϕ;Bρ)

Lp(E)

⏐⏐log |E|⏐⏐ p−1
p +∥∇ϕ∥L∞(Bρ)

)
< c δ,

then ∂Ω ∈M
l−1/p
p (δ).

Here |E| denotes the N − 1-dimensional Lebesgue measure of the set E, and c > 0
is the same constant of Theorem 5.2.51.

Recall that l ≥ 2 is an integer and p ∈ (1,∞). We now want to give a final
characterization of the class M l−1/p

p (δ) in terms of Besov spaces Bµ
q,θ. Note that the

spaces Bl
p introduced in (5.2.6) coincide with Bl

p,p. Recall the notion ∆h introduced
in (5.2.3) and that ∇k denotes the gradient of order k ∈ N ∪ {0}.

Definition 5.2.54. Let µ > 0 be such that its fractional part {µ} > 0 is positive,
and let q, θ ≥ 1. By Bµ

q,θ(RN ) we denote the space of functions in RN having finite
norm

∥u∥Bµ
q,θ(RN ) =

(∫
RN

∆h∇[µ]u
θ
Lq |h|

−N−θ{µ} dh

) 1
θ

+∥u∥
W

[µ]
q (RN )

.

If θ = ∞, we define the space Bµ
q,∞(RN) of functions in RN with the norm

∥u∥Bµ
q,∞(RN ) = sup

h∈RN

|h|−{µ}∆h∇[µ]u

Lq(RN )

+∥u∥
W

[µ]
q (RN )

.

For more details on Besov spaces (and thus fractional Sobolev spaces) we refer
to [88, §17].

We say that the boundary of the bounded Lipschitz domain Ω belongs to Bl−1/p
q,p

if for any point of ∂Ω there exists a neighbourhood in which ∂Ω is specified in
Cartesian coordinates by a functions ϕ satisfying (cf. Definition 5.2.54)∫

RN−1

(∫
RN−1

⏐⏐∇l−1ϕ(x+ h)−∇l−1ϕ(x)
⏐⏐q dx)p/q

|h|2−N−pdh <∞.

Corollary 5.2.55 ([92, Coroll. 14.6.2]). Let p(l − 1) ≤ N and let Ω be a bounded
Lipschitz domain with ∂Ω ∈ B

l−1/p
q,p , where

q ∈ [p(n− 1)/p(l − 1)−,∞] if p(l − 1) < N

and
q ∈ (p,∞] if p(l − 1) = N.

Further, let ∂Ω be locally defined in Cartesian coordinates by y = ϕ(x), where ϕ is
a function with a Lipschitz constant les than c δ. Here c > 0 is the same constant
of Theorem 5.2.51. Then ∂Ω ∈M

l−1/p
p (δ).
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Setting q = ∞ in Corollary 5.2.55 we obtain a simple sufficient condition for
the inclusion in the class M l−1/p

p (δ), that is the integrability at zero of the following
integral ∫

0

(
ωl−1(t)

t

)p

dt <∞, (5.2.56)

where ωl−1 is the modulus of continuity of ∇l−1ϕ. From this, it is not difficult to
see that bounded Lipschitz domains of class C1+β with β > 1/2 are in the class
M

3/2
2 (δ) for any δ > 0 , and therefore they are such that Theorems 5.2.16 and

5.2.39 both hold.
Condition (5.2.56) is what we use in Theorem 1.4.23, and, via Corollary 1.4.30

and Corollary 1.4.31, ultimately what we need in order to justify the results in
Section 3.3 regarding families of oscillating boundaries.
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