
Computing from LaTeX : automated numerical computing
from LaTeX expressions

Silvia Crafa, Fabio Marcuzzi, Marco Virgulin

Department of Mathematics, University of Padova,
Via Trieste 63, 35131 Padova, Italy. E-mail: crafa,marcuzzi@math.unipd.it

June 5, 2014

Abstract
We present CFL (Computing from LaTeX), a software tool that allows the user to automatically

perform numerical computation without any programming activity. The user has just to express his
computational problem in the usual mathematical language found in written books, and to typeset it
using LaTeX for a well-formatted printout.

CFL is designed so that it parses a LaTeX document to recognize well-defined computational prob-
lems. An executable Python script is then automatically generated so that mathematical objects are
encoded as Python data objects, and the script’s logic reflects an appropriate numerical solution pat-
tern for the recognized computational problem. The results of the numerical computations can also be
automatically inserted in a resulting LaTeX document so to be displayed by means of tables and graphics.

Therefore, CFL is a numerical problem-solving environment that converts the specification of a math-
ematical problem into an appropriate resolution pattern that can be directly executed. The use of high-
level mathematical abstractions, the familiar LaTeX typesetting and the automated code generation are
key design choices that provide ease-of-use and explorative computation, with a negligible overhead.

1 Introduction
The development of efficient and expressive software capable of solving numerical problems is an impor-
tant issue in order to support simulation scientists and engineers in modeling complex physical phenomena.
Usually, the resulting software turns out to be a complex programming exercise since it requires the coding
of various mathematical aspects. To be specific, it involves the description of the problem (equations, pa-
rameters and known data in general), its analysis (e.g. residual tests, error indicators, etc.), the numerical
solution method and the validation tests (of the numerical results and the theoretical properties that should
be satisfied by the problem solution or by its discretization, etc.). The state of the art shows a tension be-
tween advanced numerical software libraries (possibly optimized for given architectures) and their usability
by a mathematically trained user. Indeed, the transformation of a well-defined mathematical problem into
an executable computer code is a major difficulty in the context of computational maths. In this paper we
propose a software tool, called CFL (Computing from LaTeX), that aims at bridging this gap by leveraging
an interacting problem-solving environment to expose the benefits of modern computational libraries up to
the mathematical user level.

Our key observation is that LaTeX is a significant setting where maths and computing actually meet.
Indeed, LaTeX is a programming language (a document markup language) that is widely used for a well-
formatted printout of a mathematical problem as it is found in written books. Encoding a mathematical
object into a (set of) LaTeX expressions is a familiar practice, especially in academia. We then require the
user to simply specify the numerical problem as a familiar LaTeX document, which will represent the actual
input of the CFL tool. In addition, we rely on the Python programming language, whose high level syntax
allows a clean definition of mathematical abstractions. As a consequence, the (LaTeX) specification of the
mathematical problem and its automated translation in the (Python-coded) numerical solution are pretty
similar.

1

The core of CFL consists of a parser, a code generator and an engine. The parser scans a LaTeX
document in order to recognize well-defined mathematical problems such as functions evaluation, linear
algebraic problems, initial value problems for DLTI systems and for systems of ODEs, initial/boundary
value problems for PDEs, feedback control problems, etc. . As a result, the parser automatically generates
an executable simulation code, written in the Python programming language, according to a predetermined
set of resolution patterns. More precisely, the generated code is structured into (i) the definition of a set
of data and (ii) a list of instructions defining the execution logic of the program. Data are Python objects
encoding the mathematical objects into which the problem is decomposed. On the other hand, the generated
instructions correspond to the computational steps of an appropriate numerical solution pattern for the given
computational problem. Finally, the engine contains the class definitions for both the numerical methods
used by the resolution patterns and the mathematical objects, from algebraic equations, PDEs, control
equations, etc.. down to (un)known variables and functions of unknown variables.

In other terms, CFL can be seen as a numerical problem-solving environment that converts the speci-
fication of a mathematical problem into a corresponding resolution pattern that can be directly executed.
The gap between the mathematical definition of a numerical problem and the computation of its solution is
covered by relying on high-level mathematical abstractions, which can be expressed both in LaTeX and in
Python, helping both in problem recognition and in the generation of the code for the involved resolution
pattern. Besides generating the executable simulation code, CFL allows to automatically insert the numer-
ical results in an output LaTeX document, so that they can be displayed by means of tables or graphics.
As a consequence, CFL can be easily used as a tool for explorative computation where parameters can be
iteratively refined. As far as CFL efficiency is concerned, we observe that, apart from trivial problems,
the parsing and the generation of the Python code represents a negligible overhead with respect to the
computation of the numerical solution.

In the literature there exist various papers and related software projects with excellent contributions
towards a better readability of mathematical software and its prototyping, but they aim at the creation of
a new domain-specific language (DSL) [1] [2], which means to introduce a new programming language
in the user operational framework (see Mathematica [3], Matlab [4], R [5], Maxima [6], Modelica [7],
freefem++ [8], getfem++ [9], DOLFIN [10]).

Here we follow a different approach, taking into consideration two existing languages that are widely
used and versatile: LaTeX and Python. We take advantage of the way they support mathematical talking
and we let them interoperate by forming an execution chain that starts from the mathematical problem
written in the LaTeX text and ends with the automatic execution of the numerical experiment that solves it.
We did rely mainly in the creation of appropriate LaTeX definitions and on the definition of Python classes
where the operators are conveniently overloaded, in such a way that the written formulation of the math-
ematical problem and its Python representation are as similar as possible. In practice, with Python it has
been possible to write a library that remains Python but has the feeling of a DSL. Moreover, the approach
adopted is applicable in general and therefore, although we will here make only a few meaningful examples
of differential problems, it can be extended to different families of problems in scientific computing.

The structure of the paper is as follows: Section 2 begins with an overview of CFL and shows a few
examples of mathematical problems CFL can deal with. In Section 3 we define a few requirements for a
correct parsing of the LaTeX document, and the LaTeX commands needed in CFL computing. In Section 4
we explain how CFL converts mathematical problems into the Python code that implements the appropriate
resolution patterns and the main design issues for their object oriented implementation. In sections 5 and 6
we give a few examples and draw conclusions and perspectives of this work.

2 An overview of CFL

CFL is a software tool that takes as input a LaTeX document containing the specification of a mathemat-
ical problem together with a few ad hoc commands dealing with the execution of the involved numerical
experiments, that is to set the desired numerical methods and parameters to be used. The output is the same
LaTeX document enriched with the obtained numerical results, represented by means of tables and figures.

A fundamental characteristic of CFL is that the details of the resolution methods are abstracted, not
hidden. Therefore, they are within the control of the user but are independent from a specific numerical

2

library. The aim is to generate expressive Python code that implements the required resolution pattern and
can be linked to the preferred library.

2.1 CFL architecture
CFL is a software package is composed of the following modules:

1. a LaTeX package named computable, containing the definition of the new computable_expression
environment which must be used to delimit the portion of a LaTeX document containing the spec-
ification of the problem (see Section 3.1). This package also contains the definitions of few handy
LaTeX commands available to user to control the numerical experiments;

2. a parser of the LaTeX text (see Section 3) which extracts the mathematical problem(s) contained in
the LaTeX text;

3. a Python code generator (see Section. 4) which generates the code that implements the resolution
pattern associated to the recognized mathematical problem(s);

4. the Python modules containing the class definitions that implement the mathematical objects declared
in the resolution patterns (see Section 4.2).

The CFL approach can be applied to a quite general family of problems. To illustrate, we present in the
following a few basic families of mathematical problems that can be currently solved with CFL . However,
its modular architecture has been designed taking into account the extensibility of CFL to new family of
problems (see section 4.3).

2.2 Initial value problem for a system of ODEs
Initial value problems for ODEs are usually formulated in an abstract form: be x ∈ R n, n is given, solve

ẋ = f(t,x), x(t0) = 0, t ∈ [t0, t f] (1)

but this is not the best expression to formulate a specific problem; the vector function f (t,x) must be
specified and usually it is preferred to describe each single differential equation in the system:

ẋ1 = f1(t,x), x1(t0) = 0
. . .

ẋn = fn(t,x), xn(t0) = 0

We assume the writer express the computational problem in this second way. Therefore, CFL here consid-
ers the explicit writing of each equation of the ODE system.

The format of the ODE system is quite general (see the examples of sec. 5): each equation is supposed
to have associated an independent variable, say xi(t), and one or more of the following terms:

• a first order derivative multiplied by a coefficient, e.g.: Ci
dxi(t)

dt , dRẋi(t), etc.

• (optional) one linear term for each independent variable in the system: Ri(x, t)xi(t)

• a forcing term: fi(t)

• (optional) a nonlinear term Ni(x, t)

3

2.3 Initial-boundary value problem for a second order PDE
Let Ω = [xa,xb]× [ya,yb] be a rectangular domain, whose boundary is ∂Ω = ΓD ∪ΓN , where ΓD and ΓN
are supposed to be two sets of segments of Ω in which we want to apply Dirichlet and Neumann boundary
conditions, respectively. Let us consider the well-known class of initial-boundary value problems:

d ∂c
∂t −µ∆c+b ·∇c+σc = f , in [0, t f]×Ω

c = c0, on {0}×Ω

c = cD, on (0, t f]×ΓD

µ ∂c
∂n = cN , on (0, t f]×ΓN

(2)

where c is the solution of the convection-reaction-diffusion equation, with initial condition c0 and boundary
conditions cD e cN on Dirichlet and Neumann boundaries.

2.4 Feedback Control
Both model problems previously considered can be coupled with a control law. For example, if we want to
control a functional F of the solution c of problem (2) with respect to a reference value Fre f , we define the
error function:

e(c) = Fre f −F(c) (3)

and a simple Proportional-Integrative-Derivative (PID) control law that, for example, modifies the Dirichlet
boundary conditions trying to zero the error:

cD = KD
de(c)

dt
+KPe(c)+KI

∫
e(c) (4)

3 Parsing a well-defined LaTeX document
In this section, we define the simple requirements we impose on the input LaTeX text to allow a correct
parsing without restricting the expressiveness of the overall document.

1. We require the computational problem to be unambiguously defined in a clearly delimited portion of
the text, leaving a total freedom of expression in the remaining part of the latex document.

2. We introduce a few novel LaTeX commands specifically for CFL . These commands transform a
typesetting language like LaTeX in a programming language for the computing environment CFL ,
maintaining the mathematical typesetting appearance.

3.1 The computable expression environment
The new LaTeX environment computable_expression allows to specify a mathematical problem, a nu-
merical experiment on it and to automatically execute it with CFL . More precisely, a LaTex document can
contain one or more blocks of type:

\begin{computable_expression}
...

\end{computable_expression}

containing free text, formulas, and specific CFL commands. Each block is elaborated separately, i.e. each
computable_expression is assumed to be independent form the others.

We observe that the specification of the mathematical problem inside a computable_expression in-
volves mathematical objects of different kinds, that can be expressed in a number of ways. First, they can
be written within the standard LaTeX tags like $... $, $$... $$, \[... \] and \begin{equation}
... \end{equation}, as usually done by mathematicians. Notice that the text written between these tags
is constrained by the LaTeX syntax, but allows to define the same mathematical object in different ways.

4

It is a matter of style, which can depend upon the personal feeling of the writer, or has its origin in the
notation adopted by an influencing group of mathematicians or books. A different approach would be to
define a set of specific CFL commands, enforcing a programming language, namely a DSL, into LaTeX .

We preferred to adopt the first approach as much as possible, that is to rely on the usual LaTeX writing
apart from situations where an ad hoc command simplifies the job. In fact, in the same spirit new com-
mands/macros are frequently used by LaTeX writers. We think that this is a good compromise between
simplicity of the parser and of the mathematical text. It stays between two extrema: from one side, a math-
ematical problem written with a lot of pre-built commands demands a simple parser. From the other side,
a mathematical problem written in a too abstract notation may demand a parser very complicated or even
impossible to be realized.

Finally, remind that in the past valuable attempts to define a unique notation for mathematicians (e.g.
Householder notation in linear algebra) has gone only a little bit faraway. Therefore, CFL takes into
account flexibility and contemplates the possibility to encounter different writing styles for the same object.
Nevertheless, CFL documentation enforces a few templates for the more common mathematical objects.
For instance, we introduce the \setfuncase{...}{...}{...} command to simplify the definition of
piecewise functions.

Technically speaking, the CFL parser uses a widely used text pattern recognition tool, called regular
expressions, or regexp: “A regular expression specifies a set of strings that matches it”. The intrinsic vari-
ability in different writing styles of the various mathematical objects has required quite an effort in fine
tuning the regexps. Indeed, the mathematical text does not contain specific delimiters for each mathemat-
ical object; for example, rounded brackets can be used in a variety of objects with a different meaning
and purpose. Instead, it has been much easier to recognize the mathematical objects coded as ad-hoc
commands, like \setfuncase{...}{...}{...}.

The flexibility offered by CFL in the writing style has obviously a fundamental limit: in order to
be represented in a computer program, a mathematical object must be fully defined, leaving no implicit
meaning. The parser must recognize various kinds of mathematical objects, e.g. operators, variables
and functions. A full mathematical definition of such objects (at the text level) actually contains all the
necessary information, allowing the translation of the LaTeX text into an executable computer program.
Any incomplete or ambiguous definition of the input mathematical problem leads to an error in the CFL
execution.

In the following we illustrate how CFL recognizes a few mathematical objects involved in the specifi-
cation of the problems introduced in Section 2. For a detailed description we refer to [13].

3.2 LaTeX commands and mathematical objects
In all the problems considered in Section 2, i.e., (1), (2) and (4), there are several combinations of mathe-
matical objects (terms and expressions) that satisfy, but a few variants, a precise notation and syntax. These
combinations cover a variety of situations of practical interest, in applications.

Let us see a LaTeX example of a mathematical problem taken from the class (1), that is ready for CFL
computing. It is a system of three ordinary differential equations (ODEs), the well known Lorenz system.
At the beginning there is the definition of the ODEs coefficients, which are in this case constant, and of the
three independent variables, which will be the solution of the initial-value problem:

Let $p = 10$, $r = 64$, $b = 8/3$.
Let $x_1(t)$, $x_2(t)$ and $x_3(t)$ be the convection
intensity, the maximum temperature difference and the
stratification change respectively.

Then, the differential equations are written, as usually done:

The system equations are:
$$\dot{x_1}(t) = p x_2(t) - p x_1(t)$$
$$\dot{x_2}(t) = r x_1(t) - x_2(t) - x_1(t) x_3(t)$$
$$\dot{x_3}(t) = x_1(t) x_2(t) - b x_3(t)$$

5

Now, something must be written about which discretization method in time to adopt, a piece of infor-
mation required by CFL to solve numerically the differential problem and usually documented also in pure
LaTeX documents. To this aim the user must use the \setTimeDiscrMethod command. Then, the time
interval in which the problem is defined must be also specified:

The discretization in time is made with the
\setTimeDiscrMethod{Implicit Euler} method. Simulation
duration is set being $t_0=0$,$T = 2$ with $dt = 0.01$s.

The initial conditions must be specified to solve an initial value problem:

The system initial conditions are the following:
$x_1(0) = 1$, $x_2(0) = 2$ and $x_3(0) = 3$.

and this is enough for CFL to understand the problem to be solved, and actually solve it. The results
can be retrieved in a graphical form with a command like \createFigure:

Results are shown in Figure
\createFigure{x_1(t)}{x_2(t);x_3(t):’r--’}.

4 Automatic generation and execution of the solution program
We designed the code generator so that the generated computer code

• implements an appropriate resolution pattern and contains all the information of a quite complex
mathematical problem (as those in Section 2), and

• allows a good readability of mathematical equations in terms of a restricted number of code instruc-
tions.

For this reason we used the Python language, which enjoys operator overloading, is an easily extensible
object-oriented language, possesses an API for the integration of C/C++ code and a proper set of modules
for numerical computing. Python has attracted a lot of attention in the scientific computing community in
the last ten years, and there are now available a lot of wrappers to well reputed C/C++ numerical libraries.

Therefore, besides the code generator, the CFL engine comprises a set of Python modules that deliver
the classes for the formalization of problems with ordinary and partial differential equations, and methods
to solve these problems with a variety of numerical methods. Let us see an example. The problem (2) with
d = 0, i.e. in the stationary case, is translated into the instructions shown in Table 1:

- mu * laplacian(c) + (b) * grad(c) + sigma * c == f in Omega_h
c == c_D in Gamma_D(Omega_h)
c == c_N in Gamma_N(Omega_h)

Table 1: Python code for a boundary value problem. Note that we use the operator ”==”, that in Python is
the operator of comparison between the left and the right side.

We observe that this generated code, together with the class definitions provided by the CFL engine, can
be interpreted by the standard Python interpreter. Indeed, the Python classes defined in CFL carefully rely
on well suited identifiers and on the overloading of the operators so that the three instructions of Table 1 are
regular Python instructions. Therefore, they are parsed, interpreted and executed by the standard Python
runtime. Moreover, these instructions still represent the problem expressed in an abstract form. Then, the

6

execution of these instructions actually produces a collection of objects which are capable of solving the
problem they express. These objects are instances of classes contained in the CFL engine, see subsection
4.2 for a brief description; for the details, see the on-line documentation [13].

Finally, we point out here that while mathematical objects can be written with freedom of expression,
the expressivity of the CFL generated code is more restricted: different styles of writing a mathematical
expression (e.g. different orderings of terms) can lead to the same code (e.g. with the same ordering of the
terms). This helps the design of the CFL engine in the construction of the overloading scheme adopted for
the operators and allows to think at the problem independently from the user’s writing style.

In section 4.1 we briefly describe the Python implementation of the mathematical objects recognized
by CFL , and the Python code generation of the resolution pattern for the mathematical problems of section
2; then we describe the CFL engine operation for these problems, see section 4.2. Finally, we outline the
extension process of CFL to new families of problems (sec. 4.3).

4.1 Mathematical objects and Mathematical problems
4.1.1 Mathematical objects

Let us see the Python implementation of various mathematical objects defined in the families of problem
here considered. They can be grouped as:

• known variables, that can be used without prior solving a mathematical problem. They are repre-
sented in two different ways, according to the fact that they contain numerical data, like:

– known constants, independent variables (typically time, space, etc.), time-series or discrete-
time signals, and piecewise constant/linear functions; they are declared as Python variables of
type scalar/vector/matrix of double;

or possess an analytical expression, like:

– known functions of independent variables; they are defined with the standard Python functions
construct “def” and return a string containing the analytical definition of the function that,
when evaluated (by means of the eval construct), returns a value of type scalar/vector/matrix
of double.

• unknown variables, that must be related to a precise mathematical problem and their values are
known only after its solution. They are unknown constants and unknown functions of independent
variables (e.g. ODEs solutions), and can be represented in two different ways, depending on we want
to generate code directly for a specific solver library or for a general CFL solver:

– for a specific solver library they are represented by Python variables of type scalar/vector/matrix
of double (generally NumPy [12] arrays. Indeed, we assume that the library has a Python
wrapper that uses NumPy arrays for its API.

– for a general CFL solver they must be specific objects for that family of problems, e.g. of type
PdeSolution or OdeSolution for the problems of sec. 2.

• Known functions of unknown variables are defined with the standard Python functions construct
“def” and return a string containing the analytical definition of the function that, when evaluated (by
means of the eval construct), returns a value of type scalar/vector/matrix of double, supposing that
the unknown variables has been already computed.

• differential operators on those unknown variables appearing in problems (1) e (2), and therefore:
partial time derivative, first order and second order partial space derivatives, ordinary time derivative;
they become objects of classes specifically designed in CFL for these operators.

• the problem domain, which is space-temporal, and therefore it is necessary to define space and time
intervals, and their specific use in ODES and PDEs. For example, the class I represents a space
interval and its constructor allows to define a 1-d interval; the product of two objects from this class,

7

I1 * I2, implements the Cartesian product of the two 1-d intervals and returns an object of the same
type, but that represents an interval of dimension dim(I1)+dim(I2).
The problem domain is defined in the continuum and then discretized. The discretization in time is
managed implicitly, and therefore not explicitly represented. The discretization in space is instead
represented by the class Mesh. For problems (2) it contains a grid of nodes if the discretization
method is the Finite Differences or a mesh of Finite Elements if the chosen method is the FEM.

• differential equations: the class PdeEquation contains a field with a dictionary of coefficients, i.e.
those defined in problem (2). This is a useful feature given by Python dictionaries, to use the co-
efficient name as the index, instead of an anonymous numerical index in a vector of coefficients.
The class OdeSystem contains a matrix of coefficients (for the linear part of the system), a vector of
nonlinear terms and a vector of forcing terms.

4.1.2 Mathematical problems

Each family of mathematical problems has a related resolution pattern that CFL implements in Python.
When the parser has finished his job, CFL has a list of mathematical objects recognized by the parser.
From this list, the code generator understands which is the resolution pattern to be applied. Here we see
the Python implementations of a few significant resolution patterns:

• evaluation of some nested functions and or linear algebraic problems: the resolution pattern becomes
a sequence of Python instructions that evaluate the defined functions respecting the correct sequence;

• Initial value problems for systems of ODEs:
<unknown function of independent variables> = OdeSolution()
x_CfL = [float(ic) for ic in OdeSystem.current.initcond]
for t_CfL in np.arange(t_0_CfL,t_f_CfL,dt_CfL):

<definition/update of ODEs>
pr.method.set_tDiscr(<chosen method>,timeInterval(0.0,dt_CfL),dt_CfL)
x_CfL = pr.method.solve(t_CfL)

#endfor

• Initial/Boundary value problems for PDEs:
<unknown function of independent variables, e.g.: T = PdeSolution()>
<PDE, e.g.: d * tDer(T) + -mu * laplacian(T) +b * xder(T,0) +sigma * T == f in Omega>
<initial conditions, e.g.: T == T_0 in t(0)>
<boundary conditions, e.g.: T == g_1 in Gamma_D_1, gradn(T) == c_N in Gamma_N>
pr.method = <chosen method, e.g.: builtInFEM()>
pr.method.set_tDiscr(<chosen method, e.g.: ’IEuler’>,t,dt)
Omega_h = <space discretization, e.g.: Mesh.build_structured_rectangular_mesh(Omega,h)>
pr.method.set_mesh(Omega_h)
pr.method.solve()

4.2 Design and implementation of the execution engine
In figure 1 it is shown the UML scheme of the main classes involved for the solution of problems (1) and
(2).

The module Problems contains one Python class for each family of problems recognized by CFL . Each
of them is a subclass of the Problem class. Each run of the code generated by CFL for the solution of the
input mathematical problem, works with the global object from this class, that the Python environment
creates by default. In particular, the field Problem.current will contain a list of objects from some
classes of the module Problems, that describe the input mathematical problem. The creation process of
such objects is here briefly described.

Let us consider the model problems of section 2; at the beginning of the generated code, it is called
the constructor of some objects of type PdeSolution or OdeSolution, corresponding to the unknown

8

Figure 1: Diagram of the main classes in the CFL engine.

variables, which are subclasses of PdeEquation and OdeSystem, that are the fundamental classes for these
two model problems. Note that there is an entire module dedicated to each of these classes. In this way,
when the Python interpreter executes the instructions containing the differential equations (see Table 1),
the overloaded operators defined in various classes of these modules will return an object PdeEquation
or OdeSystem more and more rich of details about the differential equations to be solved. For exam-
ple, the expression - mu * laplacian(c) will return an object of type laplacian with a coefficient
set to - mu. When the operator “==” is evaluated, the equation is completed and it is added to the field
PdeEquation.current or OdeSystem.current. Objects like these are created for each PDE and system
of ODEs present in the mathematical problem.

After the instructions containing the differential equations, those specifying the initial and boundary
conditions follow to satisfy the mathematical well-posedness of the problem. They contain objects of
type PdeSolution or OdeSolution (e.g. c in Table 1). When the Python interpreter executes these
instructions, the overloaded operators of these objects create an object PdeProblem or OdeProblem and
add to its field current the object PdeEquation.current or OdeSystem.current and these initial and
boundary conditions. Then, these new objects are inserted in the list contained in Problem.current.

4.3 Extension to new classes of problems
The aim of this research has been to create a software tool capable of automatically translating the specifi-
cation of a mathematical problem belonging to one specific family of problems into an executable computer
code inspired to an appropriate resolution pattern for that family. The tractable number of families is un-
limited, but it is not conceivable to predetermine the whole set of mathematical problems which can be
solved by a computer; it is evolving continuously. Therefore, we consider the extension of CFL a funda-

9

mental issue: given an initial configuration of CFL , which recognizes the families of problems presented
in section 2, extend it to a new family without remaking the things already done.

It turns out that the steps to be done to introduce in CFL a new family of problems are always the same;
the difference is the creation of new entities specific to the class added, that are:

• new mathematical objects (terms and expressions), written in LaTeX , and new LaTeX commands
added to the package computable (sec. 2.1); they must contain all the information required to specify
a mathematical program of this new family.

• the corresponding parsing rules; they must recognize all the new objects without confusing them
with the objects of the previously defined families of problems;

• new Python classes, corresponding to the new mathematical objects;

• a new resolution pattern for the generation of the solution code in Python.

Let us see the main rules to follow to extend CFL to a new family of problems.

4.3.1 Adding a new class of problems

Assuming that a new family of problems has been defined, all the necessary LaTeX expressions (and the
corresponding regexp) can be either comprised in previously existing families of problems, or be new. The
latter must be defined without interfere with the parsing of the existing ones. In particular, there is one
main rule that must be kept in mind, leaving to the documentation [13] for other minor rules:

• the parser of CFL accepts different styles for the same mathematical object and the text items that
participate to the construction of the object can be put in arbitrary order. For example, it accepts
Let $p=1.3$ and define $f(t)=p t$, but also Let us define $f(t)=p t$, where $p=1.3$.

This means that old and new mathematical objects can be mixed arbitrarily. A correct and unambiguous
formulation of the new mathematical problem in the LaTeX text is sufficient for the parser to recognize the
mathematical objects described.

For the creation of new Python classes corresponding to the new mathematical objects, it should be
analysed if and how they interact with existing ones: if the mathematical objects of the new family of
problems are all new there are no interactions, otherwise it must be checked that the overloading of the
operators in the existing reused classes is not incompatible with the new family of problems, which is
likely. Reusing existing classes may be subtle, and therefore we stated a general rule that can help in
compatibility

• all the variables and functions, known and unknown, return a value of type scalar/vector/matrix of
double or a string that, when evaluated, returns a value of type scalar/vector/matrix of double.

For the creation of a new resolution pattern according to which generate the Python code, i.e. the
problem solver, it is necessary to understand the mechanism that builds the solver, starting from the problem
in the LaTeX text recognized as a member of a determined family of problems. This mechanism, reflects
the structure of an abstract resolution pattern, made for being generic and therefore allowing the addition
of new resolution patterns to the existing ones. It can be described as a list of code blocks, where each is
present only if required by the specific problem:

1. import of external Python modules
2. assignment of: - known variables/functions,

- spatial/temporal domains of the problem
3. set an iteration on subproblems
4. compute the unknown variables of the sequence of algebraic problems
6. compute the functions of these unknown variables
5. compute the unknown variables of the differential problems
6. compute the functions of these unknown variables
7. end the iteration on subproblems

10

8. print the results.
A new resolution pattern can be added by extending (i.e. adding instructions to) each of these code blocks
in the solver code generator.

4.3.2 Using a new solution library

The aim of this work is to reuse as much as possible the existing numerical libraries and not to create
necessarily new ones. The module CodeGeneration, independent from the parser, can be used to generate
code for any existing library, be it native in Python or wrapped.

An interesting aspect of this work is that in this way different libraries can cooperate even to the solution
of the same problem, and their interface is abstracted to the mathematical problem level.

5 An example
Let us consider the example presented at section 3.2:

Let p = 10, r = 64, b = 8/3. Let y1(t), y2(t) and y3(t) be the convection intensity, the maximum
temperature difference and the stratification change respectively.

The system equations are:
ẏ1(t) = py2(t)− py1(t)

ẏ2(t) = ry1(t)− y2(t)− y1(t)y3(t)

ẏ3(t) = y1(t)y2(t)−by3(t)

The discretization in time is made with the \setTimeDiscrMethod{Implicit Euler} method. Sim-
ulation duration is set being t0 = 0,T = 2 with dt = 0.005s.

The system initial conditions are the following: y1(0) = 1, y2(0) = 2 and y3(0) = 3.
Results are shown in Figure \createFigure{y_1(t)}{y_2(t);y_3(t):’r--’}.
When CFL executes this example, it generates and executes this Python code:

declaration of known variables:
p = 10
b = 8/3
r = 64
defintion of the time domain of the problem:
T = 2
dt = 0.005
t_0 = 0
initialization of the problem unknown variables:
y_1 = OdeSolution(Function(’1’))
y_2 = OdeSolution(Function(’2’))
y_3 = OdeSolution(Function(’3’))
y_1_hist1 = [0 for i in np.arange(t_0,T,dt)]
y_2_hist1 = [0 for i in np.arange(t_0,T,dt)]
y_3_hist1 = [0 for i in np.arange(t_0,T,dt)]
setting of initial conditions:
x = [float(ic) for ic in OdeSystem.current.initcond]
x_cfl_past = np.copy(x)
dtmin = dt
it = 0
solution of the initial-value problem:
for t in np.arange(t_0,T,dtmin):

1*tder(y_1) == p*y_2 - nnl_term(p*nonLinear(y_1))
1*tder(y_2) == r*y_1 - 1*y_2 - nnl_term(nonLinear(y_1)*nonLinear(y_3))
1*tder(y_3) == y_1*y_2 - nnl_term(b*nonLinear(y_3))

11

pr = Problem.current[0]
pr.method.set_tDiscr(’IEuler’,timeInterval(0.0,dtmin),dtmin)
x = pr.method.solve(t)
Problem.current = []

y_1_hist1[it] = x[0]
y_2_hist1[it] = x[1]
y_3_hist1[it] = x[2]

y_1 = OdeSolution(Function(str(x[0])))
y_1.SetPastValue(x_cfl_past[0])
y_2 = OdeSolution(Function(str(x[1])))
y_2.SetPastValue(x_cfl_past[1])
y_3 = OdeSolution(Function(str(x[2])))
y_3.SetPastValue(x_cfl_past[2])

x_cfl_past = np.copy(x)
it += 1

#endfor
print of the results:
import pylab as p
p.clf()
pfig=p.figure(1); p.hold(True); p.title(’figure $(y_{1}(t),y_{2}(t);y_{3}(t))$’);
pfig.set_size_inches(12,8)
p.plot(y_1_hist1,y_2_hist1,label=’y_2’);
p.plot(y_1_hist1,y_3_hist1,’r--’,label=’y_3’);
p.legend();
p.savefig(’ce0test1m1fig1.png’,bbox_inches=0,dpi=100);

and generates Figure 2 with the computed results.

6 Conclusions and related work
Even with a simple example like that of sec. 5, the overhead required by CFL for parsing and code
generation is a small percentage of the total time, and this is a big advantage considering the time required
to write manually the solver code. With examples that are more computational demanding, the overhead
becomes even more negligible.

CFL is a natural tool for people doing computational mathematics: we have not created a new DSL; we
have used the existing “mathematical language” in a computing system. The mathematical language is not
strictly tied to a grammar, like computer languages are, but it is sufficiently formalized and abstract that a
mathematical problem can be automatically translated in a computer language implementation of its solu-
tion. Moreover, the mathematicians use naturally the overloading of the operators, e.g. the multiplication
operator is used with different mathematical object types.

CFL offers a serie of practical advantages:

• it allows an automatic verification that the problem written in the LaTeX text is well defined and
complete, since it is executed by a computer;

• it guarantees that the results reported in the LaTeX text are corresponding to the algorithms described
therein, since they are automatically generated from the text;

• it allows to do numerical experiments even to whom does not possess any programming skills, with-
out the need of complicated graphical user interfaces, since CFL interfaces directly the LaTeX text
with the computing system.

12

Figure 2: Computed solution for the Lorenz example.

References
[1] Domain-Specific Languages, A Theoretical Survey - CoRTA09DSLsurvey vf.pdf

[2] C.PRUD’HOMME, A Domain Specific Embedded Language in C++ for Automatic Differentiation,
Projection, Integration and Variational Formulations, 2006.

[3] Mathematica website, http://www.wolfram.com/mathematica/

[4] Matlab website http://www.mathworks.it/products/matlab/

[5] R Project website, http://www.r-project.org/

[6] Maxima website, http://maxima.sourceforge.net/

[7] Modelica website, https://www.modelica.org/

[8] Freefem++ website, http://www.freefem.org/ff++/

[9] Getfem++ website, http://download.gna.org/getfem/html/homepage/

[10] Logg A., Wells G.N., “DOLFIN: automated finite element computing”, ACM Trans. Math. Software
37 (2010), no. 2, Art. 20, 28 pp.

[11] A. Hindmarsh et al., “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers”,
ACM Trans. Math. Software 31 (2005), no. 3, pp. 363-396

[12] NumPy website, http://www.numpy.org/

[13] http://www.math.unipd.it/̃ marcuzzi/Computing from LaTex.html

13

