Multi–Objective Optimization of an Interior PM Motor for a High–Performance Drive

Nicola Bianchi

Dario Durello

Emanuele Fornasiero

Electric Drives Laboratory Department of Industrial Engineering University of Padova

ICEM 2012

International Conference on Electrical Machines Marseille, France, September 2-5, 2012

Finite elements computation

Optimization

Results

Conclusions

This presentation refers to the paper

Nicola Bianchi, Dario Durello and Emanuele Fornasiero

"Multi–Objective Optimization of an Interior PM Motor for a High–Performance Drive"

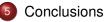
10th International Conference on Electrical Machines (ICEM 2012)

held in Marseille, France, September 2-5, 2012

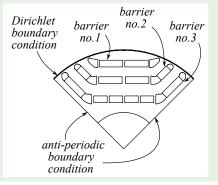
Outline

Introduction

Pinite elements computations



Optimization 3



Aim of the work

Optimization of a IPM Machine with genetic algorithm

- Introduction
- elements computation: Optimization Results
- Conclusions

ICEM 2012

- 48 slots, 4 poles machine;
- Anisotropic rotor;
- Three flux-barriers per pole.

elements computation Optimizatior Results

Conclusions

Variable	symbol	measure unity
Number of slots Number of poles External diameter D_e Air–gap diameter D_i Active length L_{stk}	48 4 460 298 500	– (<i>mm</i>) (<i>mm</i>) (<i>mm</i>)

Aim of the work

Objectives of the optimization

- Maximization of the torque (external dimensions and current density are fixed);
- Maximization of the high frequency magnetic saliency.

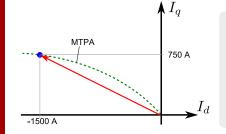
Optimization's steps

Introduction

Finite elements computation: Optimization Results

Conclusions

- Finite elements analysis to compute torque and saliency (four simulations are needed)
- Genetic algorithm, coupled with FE model, to optimize the rotor geometry



Finite elements computations

Optimization

Results

Conclusions

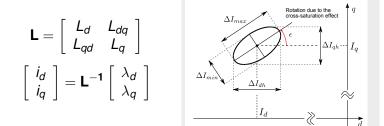
Torque computation

- The working point is chosen to be along the Maximum Torque Per Ampere (MTPA) trajectory
- The nominal current is imposed and *d*- and *q*-axis flux linkages, λ_{d,n} and λ_{q,n} are determined.

First Objective

• The torque is estimated by the following relationship

$$T_{em} = 3/2p(\lambda_{d,n}I_q - \lambda_{q,n}I_d)$$


Finite elements computations

Optimization

Results

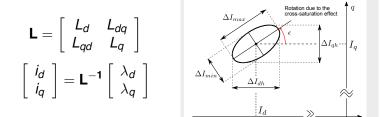
Conclusions

Differential Saliency computation

Second objective

• The ratio between the maximum and the minimum HF current variation determines the **HF saliency** ξ_{HF} :

$$\xi_{HF} \triangleq \frac{\Delta I_{max}}{\Delta I_{min}}$$


Finite elements computations

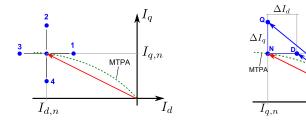
Optimization

Results

Conclusions

Differential Saliency computation

Second objective


• The saliency ξ_{HF} can be also expressed as

$$\xi_{HF} = rac{(L_d+L_q)+\sqrt{(L_d-L_q)^2+4L_{dq}^2}}{(L_d+L_q)-\sqrt{(L_d-L_q)^2+4L_{dq}^2}}$$

Multi-Objective Optimization of an Interior PM Motor for a High-Performance Drive

Differential Saliency computation

Two further simulations are necessary to determine the differential saliency

• First simulation:

$$L_{d} = \frac{\partial \lambda_{d}}{\partial i_{d}} \simeq \frac{\lambda_{d, \Delta I_{d}} - \lambda_{d, n}}{\Delta I_{d}} \qquad \qquad L_{qd} = \frac{\partial \lambda_{q}}{\partial i_{d}} \simeq \frac{\lambda_{q, \Delta I_{d}} - \lambda_{q, n}}{\Delta I_{d}}$$

Second simulation:

$$L_{dq} = \frac{\partial \lambda_d}{\partial i_q} \simeq \frac{\lambda_{d,\Delta I_q} - \lambda_{q,n}}{\Delta I_q} \qquad \qquad L_q = \frac{\partial \lambda_q}{\partial i_q} \simeq \frac{\lambda_{q,\Delta I_q} - \lambda_{q,n}}{\Delta I_q}$$

elements computations

Finite

.....

Conclusions

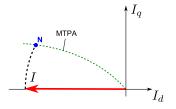
ICEM 2012

Multi-Objective Optimization of an Interior PM Motor for a High-Performance Drive

 I_q

 $I_{d,n}$

PM Demagnetization


Introduction

Finite elements computations

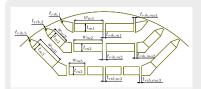
Optimization

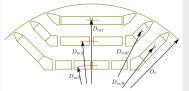
Results

Conclusions

- A minimum value of the PM flux density is fixed as a limit, so as to avoid the irreversible **demagnetization** of the permanent magnets.
- A further simulation is used to check the PM demagnetization

Design Variables





Finite elements computatior

Optimization

Results Conclusio

 a_{2}

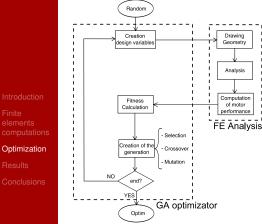
 $d\alpha_1$

- Several rotor geometric variables are modified in a established range
- PM thickness changes but is equal for all magnets
- External dimensions are fixed

ICEM 2012

Optimization constraints

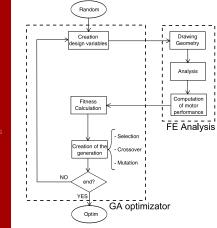
Geometrical constraints


Variable	symbol	measure unity
Number of slots	48	-
Number of poles External diameter <i>D_e</i>	460	(<i>mm</i>)
Air–gap diameter D_i	298	(<i>mm</i>)
Air–gap <i>g</i> Active length <i>L_{stk}</i>	500	(<i>mm</i>) (<i>mm</i>)
End winding length Lew	300	(mm)

Operating limit constraints

- Maximum losses of the motor (linked to the capability to dissipate the heat) are fixed;
- Minimum PMs flux density, $B_{min} = 0.4T$.

Optimization Scheme

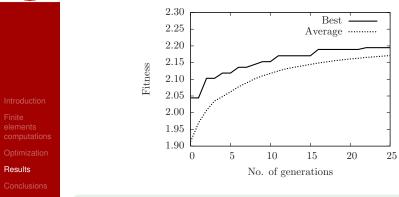


- The Genetic Algorithms (GA) are used in the optimization process.
- They include the wellknown natural selection, crossover and mutation procedures.
- These GA are linked with the FE model (analysis) of the motor

Optimization

Optimization Scheme

Fitness function

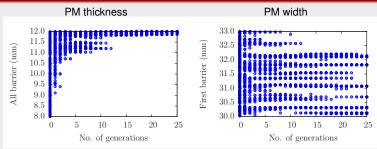

• The fitness function is calculated as follows:

$$obj = rac{\xi_{HF}}{\xi_{REF}} + rac{T_{em}}{T_{REF}}$$

(weighted sum method)

• The coefficients T_{REF} and ξ_{REF} are chosen in order to give the same weight to torque and saliency.

Optimization Results


Best and average fitness tend asymptotically to the same value.

ICEM 2012 Multi–Objective Optimization of an Interior PM Motor for a High–Performance Drive

Optimization Results

Population Distribution

ntroduction

elements computation

Optimization

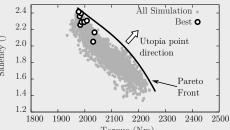
Results

Conclusions

With the increase of the generation number:

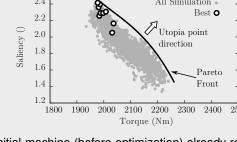
- some variables tend to assume values in a limited range ⇒ an optimal value exists
- other variables cover a wide range of values in each generation ⇒ low impact on optimization

ICEM 2012

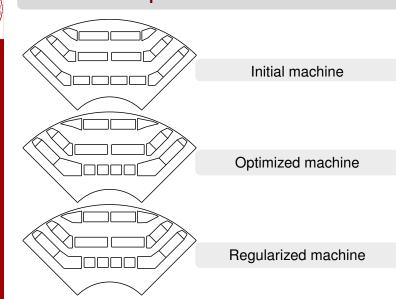

Multi-Objective Optimization of an Interior PM Motor for a High-Performance Drive

Results

ICEM 2012


Optimization Results

The plane $\xi_{HF} - T_{em}$ and Pareto Front



Objective frame

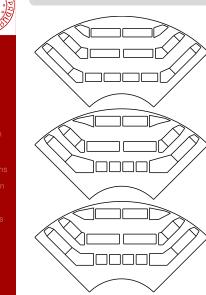
- ٠ The initial machine (before optimization) already represents a good design for the application under analysis.
- The optimization process moves the optimal solutions toward slightly lower torque (-2%) and higher HF saliency (+14%) (fitness increased of 10%)

Optimization Results

Introduction

Finite elements computatio

Optimization


Results

Conclusions

ICEM 2012

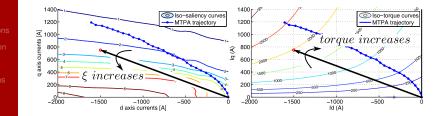
Multi-Objective Optimization of an Interior PM Motor for a High-Performance Drive

Optimization Results

Considerations on design variables

- The first and third barriers move toward the air gap.
- The magnet thickness tends to increase.
- The angle span of first barrier increases while the angle span of the third barrier tends to decrease.
- The magnet width has low influence in the fitness function computation. Only the third barrier width requests low value.

Results



Results

Optimization Results

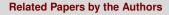
MTPA of the optimized machine

- The MTPA trajectory changes during optimization
- It moves toward the q-axis

Conclusions

Introduction

Finite elements computation


Optimization

Results

Conclusions

ICEM 2012

- A multi-objective optimization, with a GA coupled with FEA, is carried out on an IPM motor in order to maximize the nominal torque as well as the sensorless rotor position detection capability
- The optimization process is carried out considering both geometrical limits and PM demagnetization
- The two objectives are in opposition, so that the optimal machine is able to exhibit higher HF saliency with the disadvantage of a lower average torque respect to the initial design.
- Moving on the Pareto front, higher torque can be achieved, accepting a decrease of the saliency.

Finite elements computation

Optimization

Results

Conclusions

N. Bianchi and T. Jahns (editors),

"Design, Analysis, and Control of Interior PM Synchronous Machines", ser. IEEE IAS Tutorial Course notes, IAS'04 Annual Meeting. Seattle: CLEUP, Padova (Italy), October 3 2004, (info@cleup.it).

Bolognani, S.; Calligaro,S; Petrella, R.; Tursini, M. "Sensorless control of ipm motors in the low-speed range and at standstill by hf injection and dft processing," *IEEE Transactions on Industry Applications*, vol. 47, no. 1, pp. 96–104, Jan.-Feb. 2011.

Thank you for your attention

Introduction

Finite elements computation

Optimization

Results

Conclusions