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Abstract

Differential geometry is the set of tools that allows to perform the usual
mathematical tasks of algebra and calculus on spaces that do not behave
like Euclidean vector spaces, for instance points on a curved surface. This
field ofmathematics is becomingmore andmore relevant inmultiple fields,
statistics andmachine learning among those, due to the enormous availabil-
ity of data belonging to increasingly complex domains. An example among
many of such complex domains is the set of Symmetric and Positive Defi-
nite matrices, i.e. the set of covariance matrices, that appears frequently
in medical imaging but is also used often as parameter space in statistical
modeling scenarios.

The aim of this thesis is to collect and organize the scattered knowledge
on the Riemannian geometry of the symmetric and positive definite matri-
ces, and to build practical techniques using the tools of differential geome-
try that can be readily applied within a pipeline of statistical analysis. This
has been achieved with two different methods: the first is a quasi-Newton
algorithm for Riemannian optimization that can be plugged in any situ-
ation in which maximization of a function of symmetric and positive defi-
nite matrices is required, such as those that arise in the context of likelihood
inference and variational approximation. The second is a Riemannian reg-
istration algorithm to perform a pre-processing of symmetric and positive
definite data such as those arising frommedical imaging or brain computer
interface. This algorithm, among other properties, provides a theoretical
framework to focus the analysis on the eigenvalues of the analyzed matri-
ces, allowing the employment of Euclideanmethods for statistical inference
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also in a Riemannian context.



Sommario

La geometria differenziale è un insieme di strumenti che permette di com-
piere le tipiche operazioni di algebra e calcolo anche in spazi che non seguo-
no le normali regole Euclidee degli spazi vettoriali, ad esempio come i pun-
ti di una superficie curva. Questo campo della matematica sta assumendo
sempre maggiore rilevanza in vari ambiti, fra cui statistica e machine lear-
ning, a causa dell’enorme disponibilità di dati che appartengono a domini
sempre più complessi. Un esempio di dominio di questo tipo è l’insieme
delle matrici simmetriche e definite positive, ovvero le matrici di covarian-
za, che compaiono frequentemente nella diagnostica medica per immagini
e sono spesso usate come spazio parametrico nei modelli statistici.

Lo scopo di questa tesi è quello di raccogliere e organizzare la conoscen-
za sparsa sulla geometria Riemanniana delle matrici simmetriche e definite
positive e di costruire delle tecniche pratiche, usando gli strumenti della
geometria differenziale, che possano essere applicate direttamente in con-
testi di analisi statistica. Questo obiettivo è stato perseguito attraverso lo svi-
luppo di duemetodi: il primo è un algoritmo di tipo quasi-Newton per l’ot-
timizzazione Riemanniana che può essere utilizzato in qualsiasi situazione
in cui sia necessaria la massimizzazione di funzioni di matrici simmetriche
e definite positive, come quelle che emergono nel contesto della inferenza
di verosimiglianza e nella approssimazione variazionale. Il secondo è un
algoritmo di registrazione Riemanniana per eseguire il pre-processamento
di dati simmetrici e definiti positivi come quelli che si ottengono nella dia-
gnostica medica per immagini o nelle interfacce cervello-computer. Questo
algoritmo, fra le altre sue proprietà, fornisce una struttura teorica che con-
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sente di concentrare l’analisi sugli autovalori delle matrici analizzate, per-
mettendo l’utilizzo di metodi Euclidei per l’inferenza statistica anche in un
contesto Riemanniano.
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Introduction

Overview

Differential geometry was born as a mathematical description of curved
spaces and smooth shapes, and it can be dated back to the ancient Greeks
and their study of the geometry of the Earth. Modern differential geom-
etry, introduced mainly after the surge of the new challenges brought by
Einstein’s General Relativity and by Quantum Field Theory, came around
in the first half of the XX century and focused on a more general discus-
sion of geometric structures on differentiable manifolds, usually described
as smooth, curved subspaces of the Euclidean space. In modernmathemat-
ics, differential geometry lives at the intersection between algebra, calculus,
group theory and geometry, merging elements from each of this fields to
build a more general framework.

Themain idea of differential geometry (andRiemannian geometry specif-
ically, which is the main topic of this work) is that a smooth but not flat
surface can still locally resemble an Euclidean space, and thus the standard
tools of linear algebra and calculus can still be employed locally to perform
the necessary computations. The main point, thus, becomes how to extend
this local behavior to the global scale, and this is made through the intro-
duction of concepts such as geodesics, affine connections and curvature.

Since the early ’60s, statisticians have started to look at differential geom-
etry with interest, spearheaded by the work of Rao (Rao 1945) and others
that has culminated in the creation of the field called information geometry
andmostly developed byAmari (in themonographies Amari andNagaoka
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2 introduction

2000; Amari 2016). After this first intuition, many others have started ap-
plying concepts from differential geometry to applied statistical or machine
learning problems, with examples ranging from techniques for dimension-
ality reduction to inference methods and deep learning architectures: a
short overview of this broad interest is given in the following paragraphs,
that details some examples of interests.

In general, differential geometric techniques and tools can be applied to
the statistical problem fromdifferent point of view, identified bywhat space
between those of interest exhibit a non-Euclidean behavior. For instance, in-
formation geometry deals with the consequences of considering the space
of parametric distributions as a smooth manifold, and thus using results
fromdifferential geometry to rethink the process of statistical inference (see
Nielsen 2020, for amodern review). Similar in principle is the recently born
field of Geometric Deep Learning (Bronstein et al. 2021), where the simi-
larity between deep learning architectures is investigated with techniques
from the differential geometry of graphs. Similar principles are applied
also in recent works from Malagò and Pistone 2015 to perform optimiza-
tion over the exponential family.

Instead, if the data are defined on a non-Euclidean manifold, techniques
such as manifold learning (Tenenbaum et al. 2000; Lin and Zha 2008) or
manifold classification are usually employed (Bhattacharya and Dunson
2010; Barachant et al. 2012; Li and Dunson 2020). In a similar fashion,
manifold-based methods are employed when the parameter space is non
Euclidean, such as the Markov ChainMonte Carlo (MCMC) methods devel-
oped in Holbrook et al. 2018 and similar works.

Such particular techniques are a particular examples of a larger scenario
that concerns the development of statistical methods on manifold-valued
data. Indeed, much work have been done in recent years on this topic, both
from a non-parametric (Dryden et al. 2009; Patrangenaru and Ellingson
2016) and from a more distributional (Said et al. 2017) point of view.

A last example of the use of differential geometry for statistical applica-
tions is again related to the class of MCMC methods, with the development
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of the Riemannian manifold Hamiltonian Monte Carlo algorithm by Giro-
lami and Calderhead 2011; Betancourt et al. 2017, which exploits a metric
on the parameter space induced by the Fisher information metric, as defined
in the setting of information geometry, to improve the sampling efficiency
of the usual Hamiltonian sampler.

In this work, we will deal with a single example of manifold, i.e. the
manifold of Symmetric and Positive-Definite (SPD) matrices, widely used
in statistics as it is the space of full-rank covariance matrices. Indeed, the
manifold of SPD matrices is relevant both as a parameter space (for instance
in Holbrook et al. 2018; Lan et al. 2020) and as a sample space (mainly in
medical imaging, such as in Pennec et al. 2006; Barachant et al. 2012).

After a technical introduction to review and organize the formal notation
of differential geometry and the geometry of SPD matrices in Chapter 1, we
will explore both scenarios respectively in Chapters 2 and 3.

Main contributions of the thesis

The twomain contributions of this thesis are related to two of themain uses
of differential geometry for statistical applications. In Chapter 2, we focus
on the problem of optimization over the space of SPD manifold, showing an
example of use in the context of Bayesian Variational Approximation (VA).
Chapter 3 instead is devoted to the proposal of a pre-processingmethod for
SPD data, similar in spirit to Procrustes analysis, that focus on the underly-
ing eigenvalue structure of amatrix. This method, named Riemannian Reg-
istration (RR) algorithm for SPD matrices, is then applied to examples with
Electroencephalography (EEG) and functional Magnetic Resonance Imag-
ing (fMRI) data.
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Riemannian optimization

Section 2.i is devoted to the development of a novel algorithm to perform
optimization over the space of SPD matrices. In short, the focus of this chap-
ter is to obtain an elegant and efficient solution to the problem

min
Σ∈𝒮+

f(Σ),

where the symbol 𝒮+ denotes the manifold of SPD matrices.

To do this, instead of performing a constrained optimization or trying to
parameterize the function f in order to remove the constrains, we exploit the
notions of geodesics and parallel transport to construct an implementation
of standard Newton and quasi-Newton optimization algorithm that search
the optimal matrix directly over the manifold 𝒮+. This allows to radically
improve the computational performances with respect to a Cholesky-based
Euclidean method as the problem’s dimension increases. Indeed, as the
efficiency of traversing the manifold when using a geodesic path is approx-
imately constant, the use of a Cholesky decomposition produces a 𝒪(n2)
Euclidean optimization problem, which quickly incurs in the curse of di-
mensionality. This gain in performances is shown through simulations dis-
cussed in Section 2.ii.

Finally, an example of use of this method in the context of Bayesian VA

is shown in Section 2.iii. Specifically, we discuss the Skew-Normal Varia-
tional Approximation (SNVA) method presented in Ormerod 2011, where
optimization over the covariance parameter of the approximating distribu-
tion is required and is particularly challenging.

Riemannian registration

Statistical analysis of SPD data has diverse applications ranging from med-
ical diagnostics (Pennec et al. 2006) to computer vision (Huang and Van
Gool 2017) and brain-computing interfaces (Barachant et al. 2012). Pre-
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processing these data, despite being crucial for almost all statistical pur-
poses, remains a delicate issue that is typically tackledwith domain specific
techniques that may depend on the data collection mechanism or the goal
of the statistical analysis.

Thus, in Chapter 3 we present a novel registration method based on ge-
ometric considerations on the SPD manifold that is inspired by the orthog-
onal Procrustes analysis of matrices (Goodall 1991). In short, our method
consists in finding a reference matrix that minimizes the quantity

argmin
M∈𝒮+

n
∑
i=1

dAI (M, T(Σi))

where T(⋅) is a transformation that depends on the reference matrix M. We
show that, under an appropriate choice of the transformation (the equiv-
alent for the SPD manifold of the orthogonal transformation for usual ma-
trices, discussed in Remark 1.2 in Chapter 1), this equation has an analytic
solution for the eigenvalues of M. Moreover, we discuss how to implement
this transformation such that it preserves the spatial structure of the ma-
trices through the introduction of a rotational effort (introducing a sort of
variational principle, Hamilton 1835). To observe the implications of the
RR algorithm, we perform a simulation and discuss two applications to EEG

and fMRI data.





1 Riemannian geometry of the
Symmetric Positive Definite manifold

In this chapter we will review some results on differential geometry and,
specifically, on the riemannian properties of themanifold of Symmetric and
Positive-Definite (SPD) matrices. The results presented here are well estab-
lished, and can be found in any book that tackles the subject (for instance
Bhatia 2007). The notation that we are going to use (and the general frame-
work employed to present the concepts) is mainly taken from Moakher
2005, slightly tweaked for consistency and convenience. Results not avail-
able in any of this two sources are cited specifically.

There are many beautiful and rich textbooks on differential geometry,
such as the more classics Lee 2003; Lee 2009 or the modern Sussman and
Wisdom 2013, and thus we direct the interested reader to any of these for a
solid background.

The first section dealswith a general introduction to differential geometry
and to Riemannian metrics. Section 1.ii precise these notations with respect
to the SPDmanifold, introducing all the quantities required for the following
chapters of this work.

i Manifold notation and Riemannian geometry

In brief, a manifoldℳ is a topological space that locally resembles Euclidean
space at each point, i.e. for a topological neighborhood of each point of
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8 riemannian geometry of the spd manifold

the manifold exists an isomorphism with an appropriate subset of the Eu-
clidean space and is called smooth when, provided any pair of isomor-
phisms from the manifold and its appropriate Euclidean subset, if there is
overlap then the map between the isomorphisms is smooth (see Figure 1.1
for a graphical explanation).

Figure 1.1: A schematic representation of a smooth manifold. Both U and V are
topological neighborhood on the manifold which are isomorphic to a
certain subset of ℝp for an appropriate p (through the isomorphisms
ϕ∶ ℳ → ℝp and ψ∶ ℳ → ℝp). A smooth manifold is such if for any
such pair U and V with a non empty intersection, the map ψ ∘ ϕ−1 is
smooth (differentiable with differentiable inverse).

This simple structure allows a simple study of functions defined over
manifolds, thanks to the mapping to open sets of ℝp, but to be able to per-
form calculus it is necessary to introduce some quantity able to deal with
derivatives. This can be done through the concepts of tangent vector, tan-
gent space, tangent bundle and vector field, defined in the following defi-
nition (See Lee 2003).

Definition 1.1 (Tangent space and tangent bundle): Given a point x ∈ ℳ
and the set of all smooth functions C∞ ∶ ℳ → ℝ, a linear map v∶ C∞(ℳ) → ℝ is
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a derivation at x if it satisfies

v(fg) = fv(g) + gv(f) ∀f, g ∈ C∞(ℳ) (1.1)

The set of all derivation at x is the tangent space ofℳ at x and is denoted by Txℳ,
while an element of this space is called a tangent vector of ℳ at x. The tangent
bundle Tℳ is the disjoint union of tangent spaces attached to each point in ℳ,
Tℳ = ⨆x Txℳ.
Finally, a vector field X is a section of the tangent bundle Tℳ, which can be

thought as selecting a single element of the tangent space Txℳ for every point of
the manifold x.

This definition, which looks abstract, can be intuitively understood by
thinking to an actual geometric vector space attached to a point of the man-
ifold, whose elements are the tangent vector to all possible curves pass-
ing for that point, thus imagining something similar to Figure 1.2, where
w ∈ Tx1ℳ is a tangent vector of ℳ at x1. Then, the tangent bundle is the
union of the tangent spaces for each point and a vector field is the union of
a single vector for each point.

ℳ

Tx1ℳ
x1

x2

w

Figure 1.2: Depiction of the exponential and logarithm map on a manifoldℳ. The
exponential map (expx1

(w) = x2) pulls the vector w of the tangent
space on to the manifold, while the logarithm map (logx1

(x2) = w)
does the inverse by pushing the element x2 to the tangent space.

Two important mathematical operations that relates the tangent space
and the manifold itself are the exponential and logarithm map. Indeed,
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given a point x ∈ ℳ on the manifold and a vector w ∈ Txℳ in the tangent
space of x, the exponential map expx ∶ Txℳ → ℳ pulls the vector w on the
manifold, while the logarithm map logx ∶ ℳ → Txℳ does the inverse (a
graphical representation is provided in Figure 1.2). This mapping between
the tangent space and the manifold itself is sometimes called linearization of
themanifold and it will be quite useful when defining the relations between
points on the manifold.

Indeed, following the useful approach of Pennec et al. 2006, we can use
thismapping to define someof themost useful operatorswhendealingwith
usual euclidean spaces, the subtraction and the addition operators between
elements of the space

Linear space Manifold

Subtraction ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗xy = y − x ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗xy = logx(y)
Addition y = x + ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗xy y = expx(⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗xy)

Table 1.1: Comparison of standard operators as usually definedwhen dealingwith
linear vector space and as defined over manifolds.

i.i Riemannian structure

The Riemannian structure of a manifold is given by the Riemannian met-
ric tensor, a smooth bi-linear map over the tangent bundle that is positive
definite for each point

gx(v, w) ≡ ⟨v, w⟩g ≥ 0 ∀v, w ∈ Txℳ and x ∈ ℳ (1.2)

Once the manifold and its tangent space are equipped with an appropri-
ate metric, it is natural to define other concepts that derive from that. An
example of such a quantity is the norm of a vector, defined in the following
definition.

Definition 1.2 (Norm): Let v, w ∈ Txℳ be two vectors in the tangent space of
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a point x and let gx be the metric evaluated in that point. Then the norm (length)
of w is

‖w‖g = ⟨w, w⟩1/2
g . (1.3)

Another important quantity that comes from the definition of a metric
on a manifold is the concept of length of a curve. Let γ∶ [a, b] → ℳ be a
smooth curve segment on themanifold, its lengthwith respect to themetric
g is

Lg(γ) = ∫
b

a
∥γ′(t)∥g dt, (1.4)

where γ′(t) is the vector in Tγ(t)ℳ tangent to the curve γ in γ(t). From this
it is immediate to define a notion of distance between points on a manifold,
as in the following definition.

Definition 1.3 (Riemannian distance): For any x, y ∈ ℳ the (Riemannian)
distance from x to y (denoted by dg(x, y)) is the infimum of Lg(γ) over all the
smooth curve segments γ from x to y.

Notice that this definition of distance actually requires the manifoldℳ to
be connected, which for the SPD manifold is directly satisfied.

Remark 1.1 (On the relation between distance and Logarithmic map): It
is interesting to observe that, from the notation of Table 1.1, we can directly relate
the distance, the metric g and the logarithm maps as

dg(x, y)2 = ∥⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗xy∥2
g = ∥logx(y)∥

2

g
= ⟨logx(y), logx(y)⟩

g
(1.5)

FromDefinition 1.3 it is natural to ask if the particular γ that produces the
shortest length (and thus that correspond to the concept of distance) can be
found in a direct manner, as also the interesting fact from Remark 1.1 only
provides an expression for the distance, but not for the curve.

Indeed, this quantity is the geodesic, which in words can be defined as the
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shortest path that connects two points on the manifold. The formal defi-
nition requires the notion of affine connection and its Christoffel symbols
over a manifold, which is a way to represent how to connect different tan-
gent space, but as we will not need it for our work, we will not enter that
discussion. The interested reader can look to specialized texts on the sub-
ject such as Petersen 2016 or the already mentioned Sussman and Wisdom
2013.

Finally, the last concept required for the remaining exposition is the paral-
lel transport: indeed, how is it possible to compare vectors belonging to dif-
ferent tangent spaces? This is exemplified by the graphical representation
of Figure 1.3 and in general is based upon the concept of affine connection
already named in the previous paragraph.

y

x

Vy

Vx

Ṽx

Figure 1.3: Depiction of the idea behind parallel transport: how to compare an el-
ement of the tangent space in y with an element of the tangent space of
x.

Luckily, themanifold of SPDmatrices equippedwith the appropriatemet-
ric is actually one of the very fewmanifolds for which an easily computable
expression of both the geodesic and the parallel transport exists, as we will
see in the following section.



ii the spd manifold and its properties 13

ii The SPD manifold and its properties

Let 𝒮+
p denote the set of SPD matrices of dimension p, a subset of the set of

Symmetric matrices which can be defined through one of the following two
equivalent characterizations:

𝒮+
p = {Σ ∈ ℝp×p ∣ Σ = Σ⊺, x⊤Σx > 0 ∀ x ∈ ℝp} , (1.6)

𝒮+
p = {Σ ∈ ℝp×p ∣ Σ = Σ⊺, λmin(Σ) > 0} (1.7)

where λmin(Σ) is the smallest eigenvalue of Σ1.
Yet another useful characterization is that each matrix Σ ∈ 𝒮+

p can be ob-
tained as a product GG⊺ for some element G ∈ GLp of the General Linear
group. Interestingly, this characterization can be further refined by observ-
ing that an isomorphism 𝒮+

p ≅ GLp/𝕆p exists, as is easy to observe that
𝒮+

p ∋ Σ = GG⊺ with G ∈ GLn then, given any O ∈ 𝕆p, Σ = GOO⊺G⊺.
This isomorphism is important in the context of this work as it induces

a Riemannian structure from the quotient group GLp/𝕆p (which is a Lie
group). This Riemannian structure – usually referred to as the cone of SPD
matrices and represented in Figure 1.4 for p = 2 – will be the main object of
interest in this work.

Moreover, a final characterization (similar to the one provided in Equa-
tion (1.7)), is the one provided by the polar representation, obtained thanks
to the eigenvalue decomposition as

Σ = Σ(r, U) = UerU⊺ with
⎧{{
⎨{{⎩

U ∈ 𝕆p

r ∈ ℝp.
(1.8)

The tangent space to each point of themanifold (recall Definition 1.1) can
be represented as the set of Symmetric matrices 𝒮p. This is an easy way to
compute the dimension of the manifold, which appears as a sub-manifold

1Recall that, due to the spectral theorem for real symmetric matrices, the Eigenvalue De-
composition (ED) of a p × p symmetric matrix has exactly p real eigenvalues (Axler
2015).



14 riemannian geometry of the spd manifold

1

0.0

0.5

1.0

2

0.0

0.5

1.0

12

1

0

1

Figure 1.4: The cone of SPD matrices with p = 2 shown as an embedding in ℝ3.
On the z axis the off-diagonal element is represented, which satisfies
∣ρ12∣ < √σ1σ2.

of ℝp(p+1)/2.

In the following we will omit the subscript p that indicate the dimension
of the matrix, as it is usually clear from the context, unless necessary.

ii.i The Affine-Invariant metric

The Riemannian invariant metric on 𝒮+, i. e. the inner product between
vectors on the tangent space TΣ𝒮+, is called Affine-Invariant (AI) metric
and can be defined as (Atkinson andMitchell 1981; Förstner andMoonen
2003)

gΣ(W1, W2) = ⟨W1, W2⟩Σ = Tr (Σ−1W1Σ−1W2) (1.9)

‖W‖Σ = ⟨W, W⟩Σ . (1.10)
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Note that this metric is quite different than the euclidean (and flat) one: in-
deed, the euclideanmetric for the general linear manifold is simply defined
by the Frobenius product ⟨A, B⟩X = Tr (A⊺B), clearly independent on the
point X on whose tangent space the vectors A and B resides.

Before continuing, let’s recall that the matrix exponential (Exp) and ma-
trix logarithm (Log), for an SPD matrix, can be defined starting from the
ED and, thanks to the spectral theorem and to characterization (1.7), both
definitions

Exp [Σ] = Udiag(expλ)U⊺ Log [Σ] = Udiag(logλ)U⊺

are well behaved, where expλ and logλ are the component-wise natural
exponential and logarithm of the vector of eigenvalues. Moreover, thanks
to the same properties of SPD matrices it can be proved that the square root
exists and is the unique matrix

Σ1/2 = Udiag(λ1/2)U⊺.

Following Pennec et al. 2006, to define the geodesic starting from a point
on the manifold and that moves along the direction provided by a vector in
the tangent space we require the invariance of the metric under congruent
transformation. This enable us to use a result from the classical differential
geometry (Lee 2003) that allows us to skip the computation of the Christof-
fel symbols for the metric, permitting to obtain

γΣ,W(t) = Σ1/2 Exp [tΣ−1/2WΣ−1/2] Σ1/2. (1.11)

i.e. the matrix Σ(t) ∈ 𝒮+ obtained by evolving the matrix Σ ∈ 𝒮+ along the
direction W ∈ TΣ𝒮+ for a time t ∈ ℝ. The geodesic path that evolves from
a point along a tangent direction is also called retraction.

Remark 1.2 (On the congruent transformation): Notice that the congruent
transformation that we are exploiting to obtain the geodesic Equation (1.11) are of
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the form

A ⋆ Σ = AΣA⊺ ∀ A ∈ GL and Σ ∈ 𝒮+.

This kind of transformation makes sense from a statistical point of view as it is
related to the affine transformation of a random variable. Indeed, consider a random
variable X ∈ ℝp and let the covariance matrix Σxx = 𝔼 [(X − X) (X − X)

⊺
] ∈

𝒮+
p . If we apply a transformation Y = AX + b with A ∈ GLp and b ∈ ℝp, then

the covariance matrix for Y is

Σyy = 𝔼 [(Y − Y) (Y − Y)
⊺

] = AΣxxA⊺ = A ⋆ Σxx.

As there is a well-known relation between the geodesic and the exponen-
tial map, we are able to obtain the expression for the exponential map as

expΣ ∶ TΣ𝒮+ → 𝒮+

W ↦ expΣ W = Σ1/2 Exp [Σ−1/2WΣ−1/2] Σ1/2. (1.12)

Finally, this enables also an explicit expression for the inverse of this map,
i.e. the logarithm map

logΣ ∶ 𝒮+ → TΣ𝒮+

Ω ↦ logΣ Ω = Σ1/2 Log [Σ−1/2ΩΣ−1/2] Σ1/2, (1.13)

which, in turn, finally enable an explicit expression for the distance between
two geodesics, using the observation from Remark 1.1:

dai (Σ1, Σ2)2 = ∥logΣ1
(Σ2)∥

2

ai

= Tr [Σ−1
1 logΣ1

Σ2Σ−1
1 logΣ1

Σ2]

= Tr [Log2 Σ−1/2

1 Σ2Σ−1/2

1 ]

=
p

∑
i
log2 λi (Σ−1/2

1 Σ2Σ−1/2

1 ) . (1.14)
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Remark 1.3 (On the interpretation of the AI metric): It is useful, for an
interpretation of the AI metric, to observe that Equation (1.14) implies that the
distance of any matrix from the identity matrix increase more and more when one
of the eigenvalues of the matrix gets close to zero. Getting back to Figure 1.4, this
means that the matrices on the shown border that have at least one eigenvalue equal
to zero are infinitely far from all the matrix in the interior of the manifold.

ii.ii Other useful quantities

We discuss here briefly some other Riemannian quantities of the SPD mani-
fold. First, it is simple to write the geodesic between two points Σ1, Σ2 ∈ 𝒮+

γ̃ ∶ [0, 1] → 𝒮+

t ↦ γ̃Σ1Σ2(t) = Σ1/2

1 (Σ−1/2

1 Σ2Σ−1/2

1 )
t
Σ1/2

1 (1.15)

Another important quantity is the parallel transport, explained intuitively
in Figure 1.3 and of which we provide here two alternative definitions. The
first one is related conceptually to Equation (1.11) and provide the expres-
sion to transport a vector V ∈ TΣ𝒮+ from the tangent space to the point Σ
along the geodesic with initial direction W ∈ TΣ𝒮+ and length t:

ΠΣ,W(t)(V) = γΣW ( t
2) Σ−1VΣ−1γΣW ( t

2) . (1.16)

Similarly, one can define the parallel transport of V ∈ TΣ1𝒮
+ from the tan-

gent space at the point Σ1 to the tangent space at the point Σ2 as

Π̃Σ1,Σ2(V) = (Σ−1/2

1 Σ2Σ−1/2

1 )
1
2 V (Σ−1/2

1 Σ2Σ−1/2

1 )
1
2 . (1.17)





2 Riemannian optimization on the SPD
manifold

In different modern statistical applications, mostly enabled by the recent
availability of new data sources, the main difficulties are not only related to
the large scale of the problem but also from the complex constrains that the
data or themodel’s parameters require. A primer example is the Symmetric
and Positive-Definite (SPD)manifold, discussed extensively from a geomet-
ric point of view in Chapter 1 and that appears in statistics in various con-
text, both when dealing with covariance matrix-valued data (see for in-
stance the data in Barachant et al. 2012) or when tackling problems with
covariance matrix parameters.

In this chapter we will focus on the latter, and more specifically we will
focus on how to solve the general problem of optimization

min
Σ∈𝒮+

f(Σ) (2.1)

where𝒮+ is the SPDmanifold and f ∶ 𝒮+ → ℝ is an at least once-differentiable,
convex function. Notice that the concept of convex function has to be inter-
preted in the sense of geodesic convexity such as described byRapcsák 1991.

To solve this problem, an Euclidean approach is to transform the matrix
Σ with a Cholesky decomposition such that Σ = LL⊤ and, after a vector-
ization procedure to create a p(p + 1) dimensional vector by stacking the
columns below the diagonal, to perform a standard Euclidean optimization.
Of course, depending on the specific problem to be solved other procedures

19
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might be used, such as the Expectation-Maximization algorithm (Dempster
et al. 1977) or in specific examples a fixed point procedure (Burden et al.
1985).

In this chapter, instead, we will describe and implement a general alter-
native approach that leverages the properties of the Riemannian manifold
𝒮+. This procedure is comparable (and an alternative to) the Cholesky-
Euclidean approach broadly described above, which is generally applica-
ble whenever it is required to optimize a function of a covariance matrix. In
the next section we describe some implementation detail of the algorithms,
while in Section 2.ii a simulation study on the performance of this algorithm
compared to the Cholesky-Euclidean one is presented.

Our approach is inserted in the general field of manifold and specifically
matrix manifold optimization (Gabay 1982; Absil et al. 2008), which have
been in development for several years. Various attempt have been made to
solve this specific problem (see for instance Pennec et al. 2006; Bini and Ian-
nazzo 2013), but in our opinion a thorough investigation and formalization
is still lacking.

i Optimization algorithms

Line search optimization methods are basically constructed by means of
an optimization iterative scheme usually constructed as shown in Algo-
rithm 2.1. More details on how this kind of numerical optimization schemes
works in general can be found on the widely known Nocedal and Wright
2006.

The function FindDirection in Line 3 is used to find the appropriate di-
rection for the evolution of the algorithm, and is in general related to the
gradient of the objective function f evaluated in xk, while the actual func-
tional form depends on the specific version of the algorithm. The basic
Steepest Descent algorithm, indeed, uses simply dk = −Gradx f(xk) = −∇fk

as the descent direction, thus updating along the direction of maximal de-
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Algorithm 2.1: Standard Newton-like optimization procedure.

Input: f ∶ ℝp → ℝ ▷ Objective Function
1: function NewtonLike(x0) ▷ Starting point
2: for k = 0, … do
3: dk ← FindDirection(xk)
4: ηk ← FindStepLength(xk,dk)
5: xk+1 ← xk + ηkdk
6: if Convergence then Break
7: return xk

crease of the function.
The function FindStepLength of Line 4, instead, is used to select an ap-

propriate step length. In its most naïve version, it is a fixed length (for in-
stance ηk = 1) for every step. In our work we used an implementation of
algorithms 3.5 and 3.6 from Nocedal and Wright 2006, which provide a
step length that satisfies the strong Wolfe conditions

f(xk + ηkdk) ≤ fk + c1ηk∇f⊺
k dk, (2.2a)

∣∇f(xk + ηkdk)⊺dk∣ ≤ c2 ∣∇f⊺
k dk∣ , (2.2b)

where 0 < c1 < c2 < 1 are two hyperparameters of the algorithm.
This general structure, though, is only applicable when the parameter

space to be explored by the optimization procedure corresponds to the flat
Euclidean vector space, as the Riemannian structure of a non-flat manifold
introduces some changes.

The first is the fact that, as we have discussed in Section 1.i and more
specifically as shown in Table 1.1, the translation of an element of the mani-
fold along the direction provided by an element of the tangent space to the
manifold in that point is not simply the sum, but the exponential map has
to be used.

Thus, Line 5 of Algorithm 2.1 (and also every time that a translation ap-
pears, such as in Equation (2.2)) has to become xk+1 ← expxk

(ηkdk) for
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an appropriate definition of the exponential map, which for the Affine-
Invariant (AI) metric is provided in Equation (1.12)

expxk
(ηkdk) = x1/2

k Exp [ηkx−1/2

k dkx−1/2

k ] x1/2

k (2.3)

where Exp [M] is the matrix exponential which for SPD matrices can be ex-
pressed simply by obtaining the exponential of the eigenvalues from the
Eigenvalue Decomposition (ED).

Moreover, in Equation (2.2) and in many of the computation of the de-
scent direction, inner products between derivations of the function f ap-
pears, such as ∇f⊺

k dk. In a Riemannian context, as discussed in Section 1.i
and specifically in Definition 1.1, this objects are elements of the tangent
space Txkℳ, and thus their inner product is induced by the metric g that
equips thatmanifold. In the context of the SPDmanifold, as defined in Equa-
tion (1.9), the inner product becomes

⟨∇fk, dk⟩xk
= Tr (x−1

k ∇fk x−1
k dk) (2.4)

Finally, also the gradient has to be adapted, as its definition is on the Eu-
clidean space: following the definition ofAmari 2016, we introduce theNat-
ural Gradient on the SPD manifold as

∇fk = xk
(∇fk + ∇f⊺

k )
2 xk. (2.5)

In the following, as we will only use the natural gradient to perform our
computations, we will drop the underline and reserve the symbol ∇fk to
define the natural gradient of the function f evaluated in xk.

i.i Newton and quasi-Newton methods

A first generalization of this method is to consider a more elaborate expres-
sion for dk. Indeed, the steepest descent algorithm discussed earlier is most
of the time very slow to converge for complex problems and amore suitable
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descent direction is required. The most important direction to be consid-
ered is the Newton direction, that requires the computation of the Hessian
function Hessx f(xk) = 𝖧fk and is expressed as

dk = −(𝖧fk)−1∇fk.

In most cases, though, computing explicitly the full Hessian matrix is a
daunting task, both analytical and computational. In our scenario, where
the function is matrix valued, computing the Hessian matrix without re-
sorting to complicated parametrization is almost impossible, and thus an
appealing solution is offered by the so called quasi-Newton family of algo-
rithm, of which we will discuss only the Limited memory BFGS (L-BFGS)
algorithm.

In almost all the algorithms of this family, the inverse hessian factor is
approximated using information on the gradient at past steps. To do so,
though, one need to compare vectors that, in the case of a non-Euclidean
manifold, are defined in different vector spaces (i.e. in the tangent space
to different point of the manifold). To do so, as discussed in Sections 1.i
and 1.ii.ii, we define the vector transport for a generic vector V ∈ Txk𝒮

+ as

Πxk,dk(ηk)(V) = expxk
(

ηk
2 dk) x−1

k Vx−1
k expxk

(
ηk
2 dk) (2.6)

The general theory behind such algorithms are found in many classical
textbook on numerical optimization (we followed Nocedal and Wright
2006 for our implementations), while in Algorithm 2.2 we report only the
general scheme adopted. In Appendix A details on the procedures FindDi-
rection, FindStepLength and UpdateHistory for our Riemannian Limited
memory BFGS (R-L-BFGS).

i.ii Approximate retraction and vector transport

Notice that, from a numerical standpoint, both Equations (2.3) and (2.6)
present the repeated computation of a matrix exponential which requires



24 riemannian optimization

Algorithm 2.2: Riemannian quasi-Newton optimization procedure.

Input: f ∶ 𝒮+ → ℝ ▷ Objective Function
1: function R-quasiNewton(x0) ▷ Starting point
2: for k = 0, … do
3: dk ← FindDirection(xk, History)
4: ηk ← FindStepLength(xk,dk)
5: xk+1 ← expxk

(ηkdk)
6: History ← UpdateHistory(xk, dk, ηk, …)
7: if Convergence then Break
8: return xk

around 𝒪(n3) operations and, moreover, is highly unstable for long step-
size or large gradient values.

Aworkaround is to use an approximate version of these two expressions,
based on the second order Taylor expansion of the exponential

expxk
(ηkdk) ≈ xk + ηkdk +

η2
k
2 dkx−1

k dk. (2.7)

It is important the use of the second order term as it ensures that the result-
ing matrix is still an element of the SPD manifold (indeed, using only the
first term we would recover the euclidean step which, as dk is not positive
definite, may have undesired consequences).

The same approximation can be performed also for Equation (2.6), ob-
taining

Πxk,dk(ηk)(V) ≈ V + ηkdkx−1
k V

+
η2

k
2 (dkx−1

k V + 1
2Vx−1

k dk) x−1
k dk.

(2.8)

i.iii Euclidean and product manifold

Notice that Algorithm 2.2, aside from the specific expression of the geo-
metric quantities such as the inner product or the exponential map, is inde-
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pendent from the particular manifold of interest. As such, we defined two
other variants that wewill now briefly discuss. The first one is an Euclidean
version of the algorithm: indeed, the flat Euclidean space is actually a Rie-
mannian manifold by itself and, as such, can be described within the same
framework. In this case, the geodesic expression is the simple sum between
elements, the inner product is the usual dot product and so on. Of course,
this results in the exact same algorithm as the one defined in Nocedal and
Wright 2006.

The second variant, slightly more interesting, regards the product mani-
fold: inmany practical cases, the actual parameter space is not a singlemani-
fold but a combination of different ones. For instance, in the simple case of a
multivariate normal𝒩p(μ, Σ) the parameter space isℳ = ℝp×𝒮+

p . To tackle
this situation, we defined a suitable class ofmanifolds that allows to flexibly
specify such a product. Then, each one of the quantities discussed before is
defined as the appropriate combination of the single manifold quantities.
Continuing in the example ofℳ defined earlier, the exponential mapwould
be computed component-wise as a simple vector sum for the real compo-
nent and as Equation (2.3) for the SPD component. The same happens for
the parallel transport, while the inner product is computed as the sum of
the inner product of each component, as the tangent space to the product
manifold is canonically isomorph to the direct sum of the tangent spaces.
Assuming then that ξ, ζ ∈ Txℝp and η, ν ∈ Tx𝒮+

p are the components of
two tangent vectors, their inner product can be written as

⟨ξ ⊕ η, ζ ⊕ ν⟩ℳ = ⟨ξ, ζ⟩ℝ + ⟨η, ν⟩𝒮+ .

ii Simulation study

We performed a simulation study to test the performance of this algorithm
and to compare to standard methods for the optimization of a function de-
fined on the SPD manifold.
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As an objective function, a natural choice is to define a log-likelihood
function and to perform optimization in order to obtain a Maximum Like-
lihood Estimator (MLE) estimation of the parameters of this likelihood.

In order to compare our method to a classical one, we implemented a
simple Cholesky-Euclidean approach: given a function f(Σ) of a SPD vari-
able, we first use the Cholesky decomposition to obtain a triangular (with
unconstrained entries) matrix and we then flatten the non-zero entries in
a column vector with dimension p(p + 1)/2. Finally, a standard Euclidean
algorithm is employed to optimize this new function.

We first illustrate the performance of the proposed method using a toy
example. Specifically, we simulated a simple multivariate normal sample
{yi}n

i with yi ∼ 𝒩(μ, Σ). The log-likelihood for the parameters μ and Σ is

ℒ(μ, Σ ∣ y) = κ − log |Σ| − 1
2

n
∑

i
(yi − μ)⊺ Σ−1 (yi − μ) . (2.9)

To improve the performance and stability of the optimization we employ
a re-parametrization of Equation (2.9) that ensures geodesic convexity to
the function (Vishnoi 2018). We augment the sample vectors yi = [y⊺

i , 1]⊺.
This allows us to consider an extended log-likelihood function

ℒ(S ∣ y) = κ − log ∣S∣ − 1
2

n
∑

i
y⊺

i S−1yi

where S ∈ 𝒮+
p+1. Via simple algebra, it can be shown that the MLE estimator

̂S can be expressed as a function of μ̂ and Σ̂ as

̂S = ⎛⎜⎜
⎝

Σ̂ + μ̂μ̂⊺ μ̂
μ̂⊺ 1

⎞⎟⎟
⎠

.

We repeated the simulation for varying p (the dimension of the sample
space), generating r = 50 independent datasets with sample size n = 1000
for each p. To generate the true parameters we draw each component of the
mean vector from independent normal distributions, while the variance-
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covariance matrix is drawn from a Wishart distribution with large degree
of freedom (ν = 10p) and location parameter 𝕀/ν, to keep its expected value
equal to 𝕀.

The results obtained via this simulation are reported in Table 2.1, and a
graphical representation is also shown in Figure 2.1. As in this example the
analytical expression of the MLE is known, we are able to accurately check
the convergence of each algorithm.

Table 2.1: Results for the time and iterations required to find the MLE of a multi-
variate normal distribution, comparing the Cholesky-Euclidean method
with the R-L-BFGS algorithm described in Appendix A. The median and
the 95% range are provided.

p Algorithm Iterations Time [s]
Median 95% range Median 95% range

5 Cholesky 68.0 [30.2 , 602.2] 0.17 [0.07 , 1.48]
R-L-BFGS 17.0 [13.2 , 29.5] 1.41 [1.01 , 2.28]

10 Cholesky 161.0 [58.7 , 587.4] 0.39 [0.14 , 1.45]
R-L-BFGS 25.5 [20.0, 36.3] 2.18 [1.59, 3.18]

25 Cholesky 361.5 [188.1 , 1374.3] 0.93 [0.47 , 3.36]
R-L-BFGS 33.0 [28.2 , 41.6] 2.79 [2.35 , 3.78]

50 Cholesky 706.5 [253.7 , 2214.6] 2.38 [0.89 , 5.87]
R-L-BFGS 37.0 [31.0 , 52.0] 3.45 [2.79 , 5.01]

75 Cholesky 1232.0 [391.2 , 3776.2] 4.69 [1.46 , 11.46]
R-L-BFGS 40.0 [35.2 , 50.1] 3.99 [3.36 , 5.29]

100 Cholesky 1405.0 [553.6 , 3393.0] 6.74 [2.67 , 12.64]
R-L-BFGS 35.5 [30.0 , 42.8] 4.01 [3.28 , 4.99]

150 Cholesky 2062.0 [901.9 , 3753.2] 13.99 [6.08 , 20.61]
R-L-BFGS 39.0 [34.0 , 47.5] 5.85 [4.85 , 7.21]

250 Cholesky 2687.0 [1303.0 , 8951.5] 30.36 [14.97 , 104.46]
R-L-BFGS 38.0 [34.0 , 42.0] 10.71 [9.54 , 11.89]

Notice how the number of iterations required by our algorithm does not
show an exponential growthwith thematrix size, a behavior instead clearly
shownby theCholesky-Euclidean algorithm. The reason for this behavior is
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Figure 2.1: Results for the time and iterations required to find the MLE of a
multivariate normal distribution, comparing the Cholesky-Euclidean
method with the R-L-BFGS algorithm described in Appendix A. The up-
per panel shows the number of needed iteration to reach convergence
while the lower one shows the time in seconds spent by the algorithm.
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related to the more efficient exploration of the parameter space when using
the geodesic step: while the dimension of the manifold (and thus the eu-
clidean space obtained via Cholesky decomposition) grows quadratically
with the dimension p, the Cholesky-Euclideanmethod becomes quickly af-
fected by the curse of dimensionality, while our R-L-BFGS, by using the nat-
ural gradient and the geodesic expression to perform the update (which
is, recalling from Chapter 1, the shortest path available) maintains a high
efficiency and keeps the ”effective” dimension low.

As a second example, we consider the skew-normal density function from
Azzalini and Dalla Valle 1996, defined as

ℒ(μ, Σ, ξ ∣ y) = 2ϕΣ(y − μ)Φ(ξ⊺(y − μ)) (2.10)

where ϕΣ(y − μ) is the multivariate normal with mean μ and variance-
covariance Σ, while Φ(x) is the cumulative distribution of the univariate
standard normal distribution. This definition follows the parametrization
(Ω, α) discussed in Azzalini and Capitanio 1999; Azzalini 2013, where Σ
plays the role of Ω and α is represented by ξ. As in the previous exam-
ple, we generated r = 50 repetitions for every p (problem’s dimension). To
generate the true parameterswe simulate each component of the location and
α parameter as independent identically distributed standard normal vari-
ables, while the Ω parameter is obtained from aWishart with large number
of degree of freedom (ν = 10p) and mean 𝕀/ν. Then, a sample of size of
n = 1000 is generated following the implementation of R package sn (Az-
zalini 2021), described in Azzalini and Capitanio 1999 and rewritten in
Python.

Notice that, differently from the re-parametrized normal case, in this ex-
ample it is necessary to perform the optimization over the productmanifold
ℳ = ℝp × 𝒮+

p × ℝp, as described in Section 2.i.iii. The result of this simu-
lation are recorded in Table 2.2, and they show the same characteristics as
those in the multivariate normal case.
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Table 2.2: Results for the time and iterations required to reach convergence search-
ing the MLE of a multivariate skew-normal distribution, comparing the
Cholesky-Euclidean method with the R-L-BFGS algorithm described in
Appendix A. The median and the 95% range are provided.

p Algorithm Iterations Time [s]
Median 95% range Median 95% range

2 Cholesky 29.4 [25.0 , 91.5] 0.12 [0.10 , 0.47]
R-L-BFGS 13.1 [9.7 , 24.5] 1.38 [1.01 , 2.28]

3 Cholesky 106.5 [37.3 , 395.1] 0.44 [0.15 , 1.70]
R-L-BFGS 23.8 [17.3, 36.8] 2.16 [1.59, 3.18]

5 Cholesky 345.9 [64.5 , 1990.2] 1.49 [0.27 , 8.29]
R-L-BFGS 28.5 [21.2 , 41.7] 2.77 [2.35 , 3.78]

10 Cholesky 745.0 [347.1 , 2070.5] 3.24 [1.56 , 8.67]
R-L-BFGS 27.9 [22.0 , 42.7] 3.43 [2.79 , 4.87]

25 Cholesky 2622.5 [1807.4 , 5089.2] 12.79 [8.71 , 24.91]
R-L-BFGS 35.2 [25.2 , 56.3] 3.96 [3.36 , 5.29]

50 Cholesky 3221.8 [1969.2 , 6146.7] 19.82 [11.95 , 37.16]
R-L-BFGS 51.9 [32.4 , 77.8] 5.38 [4.18 , 7.22]
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Figure 2.2: Results for the time and iterations required to find the MLE of a multi-
variate skew-normal distribution, comparing the Cholesky-Euclidean
method with the R-L-BFGS algorithm described in Appendix A. The up-
per panel shows the number of needed iteration to reach convergence
while the lower one shows the time in seconds spent by the algorithm.
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iii Skew-Normal Variational Approximation

As an example of a use case in which our algorithm might be applied, we
discuss now the use of our method within the context of Variational Ap-
proximation (VA) (Ormerod and Wand 2010; Blei et al. 2017).

As a short introduction to fix the notation, we recall that in this context
we consider a Bayesian model parametrized through θ and with observed
data y and we are interested in the posterior distribution

p(θ ∣ y) =
p(y, θ)
p(y) . (2.11)

As known, marginalization over the parameter space p(y) is often diffi-
cult to compute or downright intractable, and thus alternative approaches
abounds, the most common by far being the class of Monte-Carlo based
techniques, of which the Markov Chain Monte Carlo is a primer example.
Starting from the field of Computer Science and recently seeing a wider
adoption also in the statistics literature, the variational approximations is a
framework of deterministic techniques to obtain an approximate version of
the posterior distribution (2.11).

If we define an arbitrary density q over the space of θ, the marginalized
log-likelihood satisfies

logp(y) = ∫ q(θ) logp(y)dθ = ∫ q(θ) log
p(y, θ)/q(θ)
p(θ ∣ y)/q(θ)dθ

= ∫ q(θ) log
p(y, θ)
q(θ) dθ + ∫ q(θ) log

q(θ)
p(θ ∣ y)dθ

≥ ∫ q(θ) log
p(y, θ)
q(θ) dθ,

with the inequality arising from the properties of the Kullback-Leibler di-
vergence (Kullback and Leibler 1951) between q(⋅) and p(⋅ ∣ y).

The essence of the variational approximation method is then to approxi-
mate the exact posterior p(θ ∣ y) with a more tractable approximation q(θ)



iii skew-normal variational approximation 33

obtained by restricting in some way the class of available density function
q and then finding the most similar of this densities to the target posterior.
Notice that maximizing the variational lower bound

pq(y) = exp∫ q(θ) log
p(y, θ)
q(θ) dθ (2.12)

over the chosen class of function q is equivalent tominimizing the Kullback-
Lieber divergence between the target posterior and the approximating func-
tion.

The most common restriction that are imposed on q are of two types.

Product density transforms: where q(θ) factorizes as ∏i qi(θi) for some
partition of θ. It is also known as mean field approximations in the
statistical physics literature (Parisi 1988).

Parametric density transforms: q(θ) is a member of a parametric family
of density function q(θ; ζ).

The second approach is less widely adopted (at least in the Computer Sci-
ence literature) albeit it is recently gaining popularity due to its superior
applicability to Generalized Linear Mixed Models (GLMMs). It is based on
finding a flexible and at the same time tractable enough parametric family
of densities. Themain family used in this context is themultivariate normal
family, which then constitutes the so called Gaussian Variational Approxi-
mation (GVA) method (Ormerod and Wand 2012).

Observe thatmaximizingEquation (2.12), even if q is a knownand simple
density, might be difficult or expensive if the dimension of the parameter
space is large or the parameters have complex constrains. A classical exam-
ple, is the situation (typical for instance in the GVA method) where one of
the parameter is a SPD matrix, for instance the covariance matrix parameter
of a multivariate normal distribution. In that case, the computational costs
of the optimization scales badlywith the dimension of the parameter space,
as we have seen from the simulation results reported Section 2.ii. For the
GVA, one can derive a tailor made update step that exploits the structure
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of the multivariate normal density function to simplify the computations
(Wand 2014), but changing the approximating density to something more
flexible loses this kind of optimizations.

An example of such situation is the one that arises in the context of the
Skew-Normal Variational Approximation (SNVA) method, discussed in the
unpublished work by Ormerod 2011. In this case, optimization is slowed
compared to other methods by the fact that one of the parameter is an (in
principle large) SPD matrix. As such, the Riemannian optimization tech-
nique discussed in Section 2.i can be used to stabilize and enhance the per-
formances of the method.

Once the maximization of the lower bound (2.12) has provided an es-
timated parameter ̂ζ, the optimal approximation to the posterior function
p(θ ∣ y) is then given by q(θ; ̂ζ).

iii.i The Skew-Normal variational approximation

The SNVA is defined as theVAwhen the parametric family of densities q(θ; ζ)
is the multivariate skew-normal distribution SN(μ, Σ, ξ) discussed in Az-
zalini and Dalla Valle 1996, using the same parametetrization of Equa-
tion (2.10)

q(θ; μ, Σ, ξ) = 2ϕΣ(θ − μ)Φ(ξ⊺(θ − μ)) .

Notice that the SNVA is guaranteed to have a tighter lower bound (2.12) on
p(y) than the simple GVA as

p(y) ≥ sup
μ,Σ,ξ

[psn(y; μ, Σ, ξ)] ≥ sup
μ,Σ,ξ=0

[psn(y; μ, Σ, ξ)] = sup
μ,Σ

[pn(y; μ, Σ)] ,

a consequence of the fact that when ξ = 0 the multivariate Skew-Normal
reduces to the usual multivariate normal distribution.

The explicit expression of psn(y ∣ μ, Σ, ξ) from Equation (2.12) for the
skew-normal distribution can be readily computed using the expression
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of the entropy of the skew-normal distribution as obtained for instance in
Contreras-Reyes and Arellano-Valle 2012, obtaining the following result
for the log-lower bound

logpsn(y ∣ μ, Σ, ξ) = 1
2 log |2πΣ| + m

2 − log 2

− Ψ (ξ⊺Σξ) + fSN(y ∣ μ, Σ, ξ)
(2.13)

where

fsn(y ∣ μ, Σ, ξ) = 𝔼q(θ) [logp(y, θ)] (2.14)

= ∫
ℝm

2ϕΣ(θ − μ)Φ(ξ⊺(θ − μ)) logp(y, θ)dθ

Ψ(σ2) = ∫
ℝ

2ϕσ(z)Φ(z) logΦ(z)dz.

iii.ii An actual example: the normal sample

As a toy example, we now discuss a simple case of a normal sample with
very small sample size and suitable conjugate prior distributions. Specifi-
cally, assume

yi ∼ 𝒩 (ν, σ2) (2.15)

for i = 1, … , n and prior distribution on ν and σ2 given by

ν ∼ 𝒩 (0, σ2
ν) , σ2 ∼ IG (a, b) .

To use the SNVA method we use the transformation σ2 = eγ and we write
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the posterior distribution density for the parameter vector θ = [ν, γ]

logp(θ ∣ y) = − (a + n
2 ) ⟨t, θ⟩ −

⟨r, θ⟩2

2σ2ν

− e−⟨t,θ⟩ ⎛⎜⎜⎜⎜
⎝

b +
∑n

i (yi − ⟨r, θ⟩)
2

2
⎞⎟⎟⎟⎟
⎠

+ κ
(2.16)

where t = (0, 1)⊺ and r = (1, 0)⊺ allows to select the single components of
the parameter vector.

Appendix B provides details on the computations required to obtain the
full expression for fsn in this case, given by

fsn(y ∣ μ, Σ, ξ) = − (a + n
2 ) ⎛⎜

⎝
⟨t, μ⟩ + √ 2

π ⟨t, δ⟩⎞⎟
⎠

− M (b + 1
2T)

− 1
2σ2ν

⎛⎜
⎝

r⊺Σr + ⟨r, μ⟩2 + 2√ 2
π ⟨r, μ⟩ ⟨r, δ⟩⎞⎟

⎠

(2.17)

where δ = Σξ
√1+ξ⊺Σξ

and

M = 2 exp [− ⟨t, μ⟩ + t⊺Σt
2 ] Φ (− ⟨t, δ⟩)

T = ⎡⎢
⎣
∑

i
(yi − μ̃)2 + n (r⊺Σr + ζ2 (− ⟨t, δ⟩) ⟨r, δ⟩2)⎤⎥

⎦
μ̃ = ⟨r, μ⟩ − r⊺Σt + ζ1 (− ⟨t, δ⟩) ⟨r, δ⟩

ζk(x) =
dklogΦ(x)

dxk .

In order to perform the maximization of the lower bound psn of Equa-
tion (2.13) an optimization over the parameters of the skew-normal distri-
bution is required, which is difficult due to the presence of Σ ∈ 𝒮+.

In this scenario the optimal variational parameter Σ̂ can be estimated by
applying the R-L-BFGS algorithm described in Section 2.i. The use of such
an algorithm provides an advantage in stability and performance over the
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standard Euclidean procedure aswe have seen in Section 2.ii. Moreover, the
internals of our implementation provide an automatic differentiation ap-
proach to the gradient computation, leveraging the excellent performance
of the JAX library (Bradbury et al. 2018). This allows the user to simply
specify the function (in this case psn) without needing to worry about ex-
plicitly writing the vectorization function and its derivatives.

We performed a small simulation, generating r = 50 datasets from Equa-
tion (2.15) with n = 6 (to keep a high degree of skewness, see Ormerod
2011) and simulating ν and σ2 from their prior distributions. Our algorithm
always reach the same result (within a 10−3 relative error) of the standard
euclidean Cholesky algorithm and does so in a stable number of iterations
(33 ± 2), differently from the Euclidean version which varies widely (the
minimum number of iterations is as low as 42 but it can go as high as 562
in one case, with an average of 112 ± 69).





3 Riemannian registration of matrix
data

Data in the form of Symmetric and Positive-Definite (SPD) matrices are col-
lected in a variety of areas, ranging from medical imaging (Pennec et al.
2006) to computer vision (Huang and Van Gool 2017). Before data analy-
sis and inference, it is of paramount importance to focus on data registration
and alignment, consistentlywith successful data registration approaches in-
troduced for functional data (Ramsay and Silverman 2002) or geomics data
(McCarthy et al. 2017).

As illustrative application, consider Electroencephalography (EEG) data
reported in Cattan et al. 2018. These dataset is just an example of the
data used in a modern and interesting field, and collects the EEG data of
a number of subject performing some simple tasks. One of its most modern
and interesting application is on the field of Brain Computing Interfaces
(Barachant et al. 2012), in which the observer is interested in detecting
the response of the subject to a particular stimulus and vice-versa. In this
field, the use of the properties of the Riemannian manifold of SPD matrices
is widely adopted, and has brought numerous important results.

Many applications to BrainComputing Interfaces reveals, however, aweak
generalizability of the predictions (i.e. of the results) to other subjects. The
similarities among subjects are most often hidden by the individual spe-
cific brain patterns. The Procrustes analysis attempts to solve this problem.
It aims to match matrices using similarity transformations by minimizing
their Frobenius distance. A few seminal papers (Goodall 1991; Dryden et

39
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al. 1997) consolidated the theory, then paving the road to its applications to
wide range of fields such as ecology (Saito et al. 2015), biology (Rohlf and
Slice 1990), analytical chemometrics (Andrade et al. 2004), psychometry
(Green 1952; McCrae et al. 1996) and neuroscience (Haxby et al. 2001).

Despite the paramount importance of reproducible and theoretically solid
registration tools for SPD data, no gold standard approach is uniquely rec-
ognized in the literature. In this context, Zanini et al. 2018 and Bhatia and
Congedo 2019 firstly worked in the direction of developing a Procrustes ap-
proach into a Riemannian framework. In spite of the admirable results all
the above-mentioned methods are problem-specific and often depend on
the data collection and on the dependence between variables. Motivated
by this and by considerations on Riemannian geometry, we propose a reg-
istration method that hypothesize the existence of a latent set of common
traits between the subjects, that is hidden through the single subject specific
spatial allocations of signals on the brain surface.

Our proposal is based on orthogonal transformations of the data (thus
preserving their eigenvalue structure) and on the identification of a suitable
reference matrix minimizing a notion of rotational effort, which allows us to
maintain as much of the original information as possible. In our illustrative
example, for instance, this implies that the transformed matrices are still
representable in the original brain space.

Before describing our Riemannian Registration (RR) method, in the next
section, we recall some notations and well-known concepts in Remannian
geometry in the space of SPD matrices from Chapter 1. Let 𝒮+

p be the space
of symmetric and positive definite matrices of fixed dimension p. We will
in general omit the subscript p unless it is needed. The set 𝒮+ is a subset of
the general linear group and can be seen as a Riemannian manifold when
endowed with a suitable metric. Herein, we will use the affine-invariant
metric, discussed in Section 1.ii.i, that can be represented in terms of the
usual Frobenius norm and that we report here for sake of convenience. For
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Σ, Σ1, Σ2 ∈ 𝒮+, the affine-invariant distance is defined as

dAI (Σ1, Σ2)2 = ∥Σ−1/2

1 Σ2Σ−1/2

1 ∥
2

AI
, (3.1)

‖Σ‖2
AI = ∥LogΣ∥2

F =
p

∑
j=1

log2 λj(Σ), (3.2)

where λj(Σ) is the j-th ordered eigenvalue of the matrix Σ. We will often
use the notation λji = λj(Σi) to indicate the j-th eigenvalue of the i-thmatrix
of a set {Σi}

n
i=1.

Given Σ ∈ 𝒮+ and Ω ∈ 𝕆 a squared orthogonal matrix of the same di-
mension, it is easy to observe that ΩΣ ∉ 𝒮+. A transformation that preserve
the symmetry andpositive definiteness of amatrix exists and can be defined
as (Tuan et al. 2010):

TΩ ∶ 𝒮+ → 𝒮+

Σ ↦ TΩ(Σ) = ΩΣΩ⊺, (3.3)

which, as Ω ∈ 𝕆, also preserves the determinant and the eigenvalues of
the matrix and as such can be considered as the equivalent of the orthogo-
nal transformations for SPD matrices. Notice that this transformation corre-
sponds to the congruent transformation described in Remark 1.2 in Chap-
ter 1, limited to orthogonal matrices.

The rest of the chapter is organized as follows. In Section 3.i we introduce
the proposed Riemannian registration method. Its practical performance
is illustrated in Section 3.ii and Section 3.iii, both with synthetic and real
world datasets related to the illustrative application on the EEG data nomi-
nated before and a functional Magnetic Resonance Imaging (fMRI) dataset
discussed in Canale et al. 2018, respectively.
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i Riemannian registration algorithm

Our goal is to introduce matrices Σ⋆
i for i = 1, … , n, trough orthogonal ro-

tations Σ⋆
i = TΩi(Σi). Our solution is obtained in two steps motivated by

two main desiderata:

1. the sum of the distances between the transformed Σ⋆
i is minimum

2. the rotational effort to pass from Σi to Σ⋆
i is as small as possible.

In Section 3.i.i we first introduce the notion of reference matrix M̃ ∈ 𝒮+ for
a sample of SPD Σi, i = 1, … , n showing that its distance from each rotated
matrix depends only on their eigenvalue structure. Moreover, we use a re-
sult in orthogonal Procrustes analysis to obtain a closed form expression
for the orthogonal matrices Ωi that depends only on the original sample.
Section 3.i.ii specifies the notion of rotational effort and how to exploit it to
obtain a closed form expressions for reference matrix M̃.

In Remark 3.1 the relation between the proposed method and the classi-
cal orthogonal Procrustes analysis (Gower and Dijksterhuis 2004) is high-
lighted.

i.i Reference for a rotated set of SPD matrices

Given a sample of n SPDmatriceswe introduce the referencematrix M̃ ∈ 𝒮+,
minimizing the following sum of distances

M̃ = argmin
M∈𝒮+

n
∑
i=1

dAI (M, Σ⋆
i ) . (3.4)

where Σ⋆
i = TΩi(Σi) is the orthogonal transformation of matrix Σi through

the generic Ωi ∈ 𝕆.
Notably, this problem is reminiscent of the Riemannian center of mass of

a set of n matrices (Berger 2003; Moakher 2005), with the difference being
that we are interested in the center of mass of the rotated matrices Σ⋆

i . This



i r iemannian registration algorithm 43

difference looks subtle but will enable a closed form solution that solves the
problem without the need of an explicit minimization.

We first search for suitable expressions for each Ωi as a function of M,
defined in Equation (3.4). Said Ω = {Ωi} the collection of the n orthogonal
matrices we are looking for, we define it as the solution of

Ω = argmin
W∈𝕆n

n
∑
i=1

dAI (M, TWi(Σi))2 (3.5)

for fixed M. Each term of this sum is independent from all the others and
greater or equal than zero, thus it is sufficient to find n orthogonal matrices
Ωi that depends only on M and on the i-th Σi matrix.

Notably, each term of the sum resembles the orthogonal Procrustes prob-
lem (Gower and Dijksterhuis 2004) and indeed a similar solution can be
found. This result is given in the following lemma.

Lemma 3.1 (Symmetric and Positive Definite Procrustes)

Let Θ1, Θ2 ∈ 𝒮+. Then

argmin
Ω∈𝕆

dAI (Θ1, TΩ(Θ2))2 = Γ1Γ⊺
2 . (3.6)

where Γ1Λ1Γ⊺
1 = Θ1 and Γ2Λ2Γ⊺

2 = Θ2 are the two Eigenvalue Decompo-
sition (ED) (that exist and are unique due to the spectral theorem).

Proof. This proof was firstly provided in Bhatia and Congedo 2019 and is
here provided for ease of reference.

First we recall the substitution that, thanks to the cyclic property of the
eigenvalues, the identity

∥Σ−1/2
1 Σ2Σ−1/2

1 ∥
2

AI
= ∥Σ−1

1 Σ2∥2
AI
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holds, which allows us to write

d(Σ1, Σ2)2 =
p

∑
h

log2 λh (Σ−1
1 Σ2)

Thenweuse a result onmajorization for eigenvalues fromGel’fand,Naimark
and Lidskii (theorem iii.4.6 in Bhatia 1997, p. 73), which states that

logλ↓(Σ1) + logλ↑(Σ2) ≺ logλ(Σ1Σ2) ≺ logλ↓(Σ1) + logλ↓(Σ2)

or equivalently (if we replace Σ2 with its inverse):

logλ↓(Σ1)− logλ↓(Σ2) ≺ logλ(Σ1Σ−1
2 ) ≺ logλ↓(Σ1)− logλ↑(Σ2). (3.7)

In this context we use the standard notation for majorizations (see for in-
stance Marshall et al. 2010) which, given x = (x1, … , xn) ∈ ℝn, defines
x↑ (resp. x↓) to be the vector obtained by arranging the components of x in
increasing (resp. decreasing) order and defines x ≺ y (x is majorised by y)
if

k
∑
i=1

x↓
i ≤

k
∑
i=1

y↓
i for k < n and

n
∑
i=1

xi =
n

∑
i=1

yi.

Majorizations (3.7) hold also for any gauge function of the sequence of
the logarithms of the eigenvalues (such as the sum of squares of the ele-
ments, see Bhatia 1997, § iv on the general definition of gauge function) and
thus they imply that

d(Λ↓
1, Λ↓

2)2 ≤ d(Σ1, Σ2)2 ≤ d(Λ↓
1, Λ↑

2)2

Now it is sufficient to observe that the left and right hand sides of this in-
equality do not change if we replace Σ2 with ΩΣ2Ω⊺, which means that to
obtain the minimum of d(Σ1, ΩΣ2Ω⊺) we need that

λ (Γ−⊤
1 Λ−1

1 Γ−1
1 ΩΓ2Λ2Γ⊺

2 Ω⊺) = λ (Λ−1
1 Λ2)
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which implies (using the cyclic property of the eigenvalues)

Ω = Γ1Γ⊺
2

as we wanted to show.

Using the result of Lemma 3.1 and defining Ωi = ΓMΓ⊺
Σi

, we go back to
the problem in (3.4), noting that now we can express each of its terms as

dAI (M, Σ⋆
i )2 =

p

∑
j=1

log2 λj (M−1/2Σ⋆
i M−1/2)

=
K

∑
i

⎡⎢
⎣

p

∑
h

log2 λh (M−1ΓMΓ⊤
i ΣiΓiΓ⊤

M)⎤⎥
⎦

=
p

∑
j=1

log2 λji

λj(M). (3.8)

where λji = λj(Σi) = λj(Σ⋆
i ) due to the properties of the orthogonal-like

transformation we defined in Equation (3.3). From Equation (3.8), it is
clear that each distance in Equation (3.4) depends only on the eigenvalues
of M and Σi. Consistent with this, if we consider the polar decomposition
of a SPD matrix as

𝒮+ ∋ Σ = Ω diag (er) Ω⊺, (3.9)

the problem in Equation (3.4) can be seen as pertaining only the radial com-
ponent r ∈ ℝp and not to the angular component Ω ∈ 𝕆.

Thus, we focus on the set of diagonal matrices with positive entries𝒟+ ⊂
𝒮+. Each point in𝒟+ is associated to an infinite collection of matrices in 𝒮+

with the same set of eigenvalues. In our context this implies that

1. the distance after the registration procedure between any two ele-
ments of 𝒮+ is equal to the one between the corresponding represen-
tatives in 𝒟+ obtained after diagonalization, consistently with Equa-
tion (3.8);
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2. for two representative matrices in 𝒟+, the Riemannian distance re-
duces to the Euclidean distance between the radial components of the
polar decomposition in Equation (3.9).

Consistent with implication 1, we recast the minimization of Equation (3.4)
as

Λ̃ = argmin
Λ∈𝒟+

n
∑
i=1

dAI (Λ, ΛΣi) .

Then, exploiting the decomposition in Equation (3.9) and consistently with
implication 2, the solution to the previous equation is a diagonal matrix
with entries that satisfy

argmin
r∈ℝp

n
∑
i=1

(ri − r)2 , (3.10)

where ri ∈ ℝp, ri = (ri1, … , rip)⊺, and rij = logλj(Σi). Clearly, the mini-
mization in (3.10) has a simple solution and it leads, for j = 1, … , p to

λj = ⎡⎢
⎣

n
∏
i=1

λj(Σi)⎤⎥
⎦

1
n

= exp ⎡⎢
⎣

1
n

n
∑

i
rij⎤⎥

⎦
. (3.11)

Now, let Λ̃ be the diagonal matrix containing the eigenvalues obtained
with Equation (3.11). Since𝒟+ ⊂ 𝒮+, Λ̃ represents just one, yet elegant and
computationally undemanding, of the infinite solutions to the problem in
Equation (3.4). Indeed, there are infinite matrices in 𝒮+ obtained as ΓΛ̃Γ⊺

for Γ ∈ 𝕆 leading to the same sum of distances.
In the following section we introduce a notion of rotational effort and use

it to obtain a single element M̃ of the form ΓΛ̃Γ⊺ lying in the full manifold
𝒮+ and, as we have seen, solving Equation (3.4).

i.ii Constraining the eigenvector matrix

We introduce the following definition of rotational effort R:
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Definition 3.1: Given a set of rotations Ω = {Ωi}n
i=1, the rotational effort RΩ

is the sum of the effective rotations, measured as the Frobenius distance from the
identity element of the orthogonal group

RΩ =
n

∑
i=1

dF (Ωi, 𝕀)
2 ,

where 𝕀 is the diagonal unitary matrix.

A similar definition could, in principle, be expressed relative to any ma-
trix O ∈ 𝕆. The results obtained in the following would not change much
in this more general case, but for the sake of exposition we maintain the
definition with respect to the diagonal unitary matrix.

ConsistentlywithDefinition 3.1, it is reasonable to look for amatrix Γ ∈ 𝕆
minimizing the rotational effort induced by each Ωi(Γ) = ΓΓ⊺

Σi
arising from

the application of Lemma 3.1 with Equation (3.11), i.e.

Γ̃ = argmin
G∈𝕆

RΩ(G) (3.12)

The intuition behind this choice is appealing: we are imposing that the ro-
tation performed on each data point Σi is as small as possible, provided
that we still obtain the appropriate alignment. This is particularly interest-
ing when the graphical representation of the matrix data is still interesting:
indeed, by imposing this constrain we are asking to be as close as possible
to the original space, allowing us to preserve some notion of spatial distri-
bution of the variables, for instance when dealing with EEG data as we will
show in Section 3.iii.

Notably, Equation (3.12) is a particular version of a generalizedProcrustes
problem, similar to the ones discussed in Section 9 of Gower and Dijkster-
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huis 2004. A few algebraic manipulations lead to

Γ̃ = argmin
G∈𝕆

K
∑

i
dF (GΓ⊺

i − 𝕀)2 = argmin
G∈𝕆

K
∑

i
⟨GΓ⊺

i − 𝕀, GΓ⊺
i − 𝕀⟩

= argmin
G∈𝕆

K
∑

i
[∥GΓ⊺

i ∥2
F + ‖𝕀‖2

F − 2 ⟨GΓ⊺
i , 𝕀⟩]

= argmax
G∈𝕆

K
∑

i
⟨GΓ⊺

i , 𝕀⟩ = argmax
G∈𝕆

K
∑

i
⟨G, Γi⟩

= argmax
G∈𝕆

K
∑

i
Tr [G⊺Γi] = argmax

G∈𝕆
Tr ⎡⎢

⎣
G⊺ ⎛⎜⎜

⎝

K
∑

i
Γi

⎞⎟⎟
⎠

⎤⎥
⎦

= argmax
G∈𝕆

⟨G,
K

∑
i

Γi⟩ = UV⊺ (3.13)

where U and V are obtained from the Singular Value Decomposition (SVD)
∑n

i=1 Γi = UDV⊺.

The reference matrix M̃ and thus the optimal registration providing the
minimal rotational effort and minimal sum of distances between the regis-
tered matrices are then identified by

M̃ = Γ̃ Λ̃ Γ̃⊺, λ̃j = exp ⎡⎢
⎣

1
n

n
∑

i
logλji⎤⎥

⎦
, Γ̃ = UV⊺ (3.14)

where λji is the j-th eigenvalue for matrix Σi and U and V are obtained from
the SVD of ∑n

i=1 ΓΣi. The rotated matrices then are simply

Σ⋆
i = TΓ̃Γ⊺

Σi
(Σi) = Γ̃ΛiΓ̃⊺, i = 1, … , n. (3.15)

Remark 3.1: It might be interesting to observe the similarity of the problem in
Equation (3.4) to one of the form of the generalized Procrustes problem see identity
9.2 in Gower and Dijksterhuis 2004. Indeed, in that context the sum of the pair-
wise distances is equal to the sum of the distances from the barycenter, while in the
context of SPD matrices this equivalence does not hold anymore due to the different
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properties of the metric. In fact, to prove that identity one has to rely on the distri-
bution property of the trace and of the linear operators that appear in the Frobenius
norm, but the metric of Equation (3.2) features a non linear combinations of the
two matrices (namely, Log(A−1/2BA−1/2)) and the distribution property does not
hold anymore.

ii Simulation study

In the context of the SPD matrices space, we consider the unbiased centered
sample variance as a measure of dispersion of a sample {Σi}

n
i=1 , Σi ∈ 𝒮+

defined as

s2 = 1
n − 1

n
∑

i
d2(Σ̂, Σi) (3.16)

where Σ̂ is an estimator for the center of the sample, such as the Karcher
barycenter (which is indeed defined as the Σ̂ that minimize s2).

It is easy to observe that, by virtue of how we set up Equations (3.4)
and (3.5), the sample variance of the set of registeredmatrices centeredwith
respect to the optimal reference M̃ defined by Equation (3.14) will always
be smaller or equal than the sample variance of the original distribution, as
it holds that

∑
i

d2(M̃, Σ⋆
i ) ≤ ∑

i
d2(Σ̂, Σi) ,

with equality holding only if all the original matrices are already diago-
nal. Moreover, as the expression to compute M̃ are in closed form, we ex-
pect the computational time required to perform the operations on the left
hand side to be orders of magnitude shorter than the one required to obtain
the karcher estimate of the barycenter. We call s2

⋆ the equivalent of Equa-
tion (3.16) when using the registered set of matrices Σ⋆

i and the reference
matrix M̃ as the center.
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Indeed, we show this behavior through a simulation, which results are
shown in Figures 3.1 and 3.2. First, we select a matrix dimension p and a
sample size n, while we vary both, wewill show the results with a fixed n as
the sample size has a predictable effect on the results: the time required in-
crease with the sample size, while the deviation s2 remains approximately
constant. Notice that the tested values of n ranges between 20 and 500, with
no appreciable differences. We explore the performance of our algorithm
for matrix dimensions ranging from 5 to 50, as for larger matrix the com-
putational time required for the computation of the Karcher barycenter be-
comes too large.

To show the properties of our method we then randomly generate a true
center for the distribution by samplinguniformlyUC ∈ 𝕆p and rC ∈ [−5, 5]p

and then computing

C = UC diag(erC) U⊺
C.

From this, we generate a sample of n SPD matrices centered around C ac-
cording to twodistributions, namely theWishart distribution (Wishart 1928)
and the Riemannian Gaussian distribution (Said et al. 2017):

• For the Wishart distribution we fix the degree of freedom as ν = 2p
(resp. ν = 20p) to obtain a large (resp. small) variance in the simu-
lated sample. Then we generate the sample from𝒲p(C/ν, ν).

• For the Riemannian Gaussian distribution we fix σ = 0.5 (resp. σ =
0.1) to obtain a large (resp. small) variance in the simulated sample.
Then we generate the sample from ℛ𝒢(C, σ).

For each combination of parameters we repeat the experiment Nrep = 100
times, and for each simulation we compute the deviation s2 from equa-
tion (3.16) (which requires finding the Karcher center of mass Σ̂) and then
s2

⋆ = 1
n−1

∑n
i d2(M̃, Σ⋆

i )
The results for s2 and s2

⋆ are shown in Figure 3.1. It is interesting to ob-
serve that, as expected, the measured deviation after our rotation is always
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Figure 3.1: The results of the simulation described in Section 3.ii for n = 500. On
the upper panel, results formatrices sampled from a RiemannianGaus-
sian distribution are shown, while on the lower panel are shown results
for Wishart-distributed matrices. For each plot the blue lines show the
dispersion as a function of the matrix dimension for the original data,
while the orange lines show the dispersion after the Riemannian reg-
istration algorithm discussed in this work. Moreover, the solid and
dashed lines distinguish between larger and smaller variance in the ini-
tial distribution of the data.
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smaller than the original one but also, perhaps more surprisingly, that in
the Wishart case, it seems to not increase with the matrix dimension (even
shrinking slightly). As we have seen previously, since we can express the
distance of the registered matrices with respect to the optimal reference M
as the Euclidean distance in the space of the eigenvalues, the deviation in
the rotated space can be written as (using the expression in Equation (3.11)
for the eigenvalues of M̃)

1
n − 1

n
∑

i
d2 (M̃, Σ⋆

i ) = 1
n − 1

n
∑

i

p

∑
j

⎛⎜
⎝

rji − 1
n

n
∑
k

rjk
⎞⎟
⎠

2

=
p

∑
j

s2
j

where s2
j is the unbiased sample variance of the logarithm of the eigenval-

ues. The fact that this term is decreasing, then, is a known consequence
of the distribution of the eigenvalues of a Wishart distributed matrix (see
Zanella et al. 2009).

In Figure 3.2, instead, the time required for a single run of the simulation,
i.e. the time, given the sample, to find the Karcher center of mass (resp. the
reference matrix) and compute the dispersion s2 (resp. s2

⋆) is shown. A
difference in the time required of around 2 order of magnitude is always
present. Moreover, notice that the time required for our algorithm does not
depend on the dispersion of the original sample, which for the Riemannian
Gaussian distributed data is indeed the case when the matrix dimension is
large.

iii Applications to medical imaging data

Wenow show two applications to real data of ourmethod. In both cases the
applications stems from neuroscience and the study of the brain and are to
be considered illustrative of the potential of the method. In the first case we
use resting state EEG data to show that the proposed RR method can lead
to an improvement in the interpretation of the connectivity network. In the
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Figure 3.2: The times (in seconds) required for a single run of the simulation de-
scribed in Section 3.ii for n = 500. As in Figure 3.1 the blue lines relate
to the original data, while the orange ones to the data after the Rieman-
nian registration discussed in this work, while solid and dashed lines
distinguish between larger and smaller variance in the initial distribu-
tion of the data.
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second dataset we use fMRI data to show how this method enhances – and
simplifies – the inferential approach and prediction.

iii.i EEG data

First, we analyse the EEG data provided by Cattan et al. 20181, a dataset
collected at the GIPSA-lab in 2017 and containing electroencephalographic
recordings of 20 subjects in a resting-state with eyes open and closed.

After a standard pre-processing of the data, following the authors’ guide-
lines, in which we remove the noisiest frequency components with a band-
pass filter between 3 and 40 Hz, we center the data and compute the co-
variance matrix of the signals for each subject. Then, we perform a qual-
itative exploration of the data, which shows that our RR procedure allows
the underlying processes of the data to better emerge, removing much of
the single subject variability due, in the example of this application, to the
specific positioning of the electrodes on the scalp. As can be seen directly
from drawing the correlationmatrices (see for instance, three different sub-
jects in Figure 3.3), an underlying structure is clearly emerging, even if the
subjects still maintains their individuality.

This effect is evenmore apparent in Figure 3.4, where theKarcher barycen-
ter and the reference matrix are shown. Indeed in the reference matrix,
shown in the right hand panel, the same pattern that was emerging in the
single subject matrices is clear, while the Karcher barycenter of the original
data provides no indication of an underlying latent structure: all the entries
in the matrix are pretty similar to each other and close to zero.

iii.ii fMRI data

For a second application we used the data from the enhanced Nathan Kline
Institute-Rockland Sample (NKI1) described in Nooner et al. 20122. In this

1Available at https://doi.org/10.5281/zenodo.2348892
2Available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html.

https://doi.org/10.5281/zenodo.2348892
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
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Figure 3.3: The empirical correlationmatrices of three subjects from the EEGdataset
Cattan et al. 2018 before and after the Riemannian registration process
described in this work. A darker color means a value closer to ±1 (resp.
+1 blue and −1 red).
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Figure 3.4: The Karcher center of mass and the reference matrix M̃ for the subjects
fromCattan et al. 2018. Darker shade of blue (resp. red)means a value
closer to the +1 (resp. −1).
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study, 18 subjects are divided in two group by the presence of a clinical
diagnosis, and data on their functional network are provided by means of
Resting state fMRI (R-fMRI). The available diagnosis ranges from alcoholism
to severe schizofrenic disorder, but given the limited amount of data we
focused on the binary outcome of having a diagnosis against the control
group of healthy subjects.

The two groups are compared on the basis of their connectivitymeasured
as the empirical variance-covariance matrix, built from the 70 brain parcel-
lation based on the Desikan Atlas (Desikan et al. 2006). Notice that 8 out of
the 18 subjects have multiple scans available, thus allowing both inference
and validation on the same subject, but as we focus on an illustrative exam-
ple of inference we used only a single scan per subject (see the introduction
to Canale et al. 2018, for details on the dataset structure).

First we perform a permutation test Pesarin 2001 to check the group dif-
ferences for the original data and for the matrices after the proposed Rie-
mannian registration algorithm. The permutations (obtained by k = 1000
random permutations of the group membership for the subject and then
computing the distance between the center of the groups) show that the
groups are significantly apart in both scenarios, with observed p-values of
0.032 before the Riemannian registration and 0.004 after it.

As previously discussed, the proposed Riemannian Registration method
highlights the importance of the latent eigenvalues structure of the data.
Consistently with this, we focus the analysis on the eigenvalues set of each
matrix. An example of such analysis is the test for the statistical signifi-
cance of the eigenvalues in predicting the membership of the subject to any
of the two groups. Such tests can then be performedwithin standard frame-
works for multiple t-testing, as the one discussed in Pesarin 2001 (i.e. min-
p multiple testing correction, described in Westfall and Young 1993). In
Figures 3.5 and 3.6 the results of such analysis are shown, where the sig-
nificance t-tests implemented for the R software (R Core Team 2021) in the
package flip (Finos 2018) have been used.

A classical task for this kind of data is of course to be able to perform
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Figure 3.5: Distribution of the eigenvalues for the two groups, shown are the mean
eigenvalue for the group and the bars represents one standard devia-
tion. A small red star indicates the significant eigenvalues, as described
in Figure 3.6.
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Figure 3.6: Significance (represented via the usual − log10(p) transformation) of
each eigenvalue in predicting the diagnosis label obtained via a per-
mutation test. The red stars shows the significant eigenvalues, i.e. the
eigenvalues for which the p-value of the permutation test is lower or
equal then 0.05.
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classification, and standard methods in the literature are available for such
a scenario that exploits the Riemannian structure, such as the Mininun Dis-
tance to Riemannian Mean (MDRM) by Barachant et al. 2012, which clas-
sifies each subject according to its Riemannian distance from the Karcher
center of mass of the group.

Our RR method, then, impacts this classification algorithm by perform-
ing a registration of each cluster with respect to its reference matrix first
and then classifying a new subject by registering it with respect to each ref-
erence matrix and comparing the two distances of the registered subject to
its reference.

A fast comparison of the two methods on the NKI1 dataset does not show
significant differences in performances when applied to such a dataset due
to its dimensions, with both methods obtaining the same 89% accuracy on
train and 62.5% accuracy on test (where, as discussed before, we used the
second scan for the subjects that have it available to test the classification).
By pooling the two sets together and performing a leave-one-out classifi-
cation procedure, we obtain an estimate on the accuracy of 79% for our
algorithm and 74% for the standard MDRM.

Moreover, we tested the two algorithms also for the EEG dataset of Sec-
tion 3.iii.i, again with a leave-one-out procedure, obtaining an accuracy of
71% with our method and 57% (slightly above random chance) for the
MDRM algorithm.

Figure 3.7 shows the two groups before and after the RR procedure. To
obtain a 2 dimensional projection, we used the classical metric Multi Di-
mensional Scaling (MDS) algorithm (Borg andGroenen 2005) in the imple-
mentation of Scikit-Learn (Pedregosa et al. 2011). This low-dimensional
representation of the data is built in order to have the distances respect well
the distances in the original high-dimensional space, and the metric variant
does so by setting the distances between output two points to be as close as
possible to the similarity or dissimilarity in the original data. As it can be
seen, even for such a small dataset, the RR procedure provides a substantial
increase in the shrinking and separation of the two groups.
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Figure 3.7: A 2 dimensional MDS projection of the NKI1 dataset, where the colors
distinguish between healthy and diagnosed subjects. On the left panel,
the projected data are the original covariance matrices while on the
right one are shown the projection of the registered matrices after the
RR algorithm.





4 Discussion

The aim of this work has been to introduce different techniques for deal-
ing with non Euclidean data in statistics, specifically with data lying in the
Symmetric and Positive-Definite manifold. In particular, we dealt with two
examples of the kind of situations thatmay arise in this scenarios: first, in an
inference scenario, the presence of a variance-covariance parameter is com-
mon and, in those cases, it is often required to perform the maximization of
a function (generally the log-likelihood or the log-posterior of the model)
over that parameter. As a second example, we have considered the case in
which the Symmetric and Positive-Definite (SPD) manifold is actually the
sample space: this situation appears frequently in many modern domains,
such as neuro-imaging or computer vision. As with most scenarios of this
kind, a pre-processing step is often required to ensure that the inference
or classification algorithms are allowed to work in the optimal way. We
will now proceed to summarize briefly the main contributions of this work,
along with several line of future development that we deem interesting and
potentially open.

First, in Chapter 1 we provided a compendium of the main ideas and re-
sults needed to use differential geometrywithin the context of statistical ap-
plications, startingwith a general description of the concepts of Riemannian
manifold,metric and geodesics and thendetailing those concepts in the case
of SPD matrices. It is interesting to observe that already in this ere is room
for extending this work, as the choice of the Affine-Invariant (AI) metric is
entirely arbitrary (although the AI metric has some properties that makes
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it a very good choice, see the discussion in Moakher 2005; Pennec et al.
2006). This choice can be changed, though, and indeed recently there have
been someworks trying to define newmetrics that might show different be-
haviors in different situations (see for instance Lin 2019). At this moment
this new proposals are still in an initial phase, but they sure seem worth
exploring in the future. Changing the choice of the metric clearly modifies
all the subsequent quantities, such as the expression for the geodesic and
the parallel transport, then requiring to rethink some of the details of the
other parts of this work as they are build upon this properties.

Chapter 2 is devoted to the development of a Riemannian optimization
method tuned to the specific properties of the SPD manifold. In Section 2.i
we have explained how to construct a quasi-Newton optimization algo-
rithm (we have used the Limited memory BFGS (L-BFGS) class of algo-
rithms, as discussed in Appendix A), discussing the use of approximate
geodesic and parallel transport expressions. We have shown via simula-
tions that this approach provides a substantial improvement over the more
traditional technique of transforming the SPD matrix through Cholesky de-
composition in order to performa standardEuclidean optimization in terms
of the number of iterations required to reach convergence. It is interesting
to observe in this context the similarity of this traditional technique with
the metric by Lin 2019 cited earlier, and this difference in performance is
one of the reasons why we think that a more thorough discussion of that
idea might be interesting.

In Chapter 3 a Riemannian Registration (RR) algorithm has been devel-
oped and tested, showing its similarities in principle with the Orthogonal
Procrustes analysis. As we have shown in Section 3.iii, this method allows
to maintain some of the spatial relations thanks to the variational princi-
ple used in defining the rotational effort, and at the same time provides a
framework to perform eigenvalues-based analysis of the matrices. This has
the double advantage of allowing the usual Euclidean suite of statistical
methods and techniques to perform inference while maintaining a high in-
terpretability of the data. Notice again that also in this context the use of
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a different metric would substantially change the results obtained in Sec-
tion 3.i.i, namely the analytical expressions of Equations (3.14) and (3.15)
that depends heavily on themetric expression. Interestingly, though, one of
the more appealing property of the Log-Cholesky metric (Lin 2019) is the
possibility of obtaining a closed form expression for the Riemannian center
of mass, and as such this metric could probably still provide some of the
advantage of the AI one. Nevertheless, the interesting property of allowing
to focus on the eigenvalues for the statistical analysis would be definitely
lost, providing a worse experience in general. Moreover, integrating our
procedure within other similar procedures (such as, for instance, the one
of Zanini et al. 2018) is something worth investigating for the increase in
the classification performances shown by our method.





A Quasi-Newton optimization methods:
implementation details

In this appendixwewill discuss some technical details on the quasi-Newton
methods discussed in Section 2.i.i. The code has been implemented in the
Python within the JAX framework (Bradbury et al. 2018) to allow for auto-
matic differentiation for the computations of gradients. The code is avail-
able (still in alpha version) as the Python package optispd1. Provided
within the package is also the code to reproduce some of the simulations of
Chapter 2.

i Strong Wolfe line-search procedure

We start discussing the line-search procedure from algorithm 3.5 and 3.6
of Nocedal and Wright 2006. This algorithm is used to ensure stability
during the phase of line search, all the while increasing the convergence
speed of the algorithm.

To find a step length η that satisfies the strong Wolfe conditions of Equa-
tion (2.2), this algorithm (shown in Algorithm A.1) starts from a trial esti-
mate η1, which is then increased repeatedly until an acceptable step length
or an interval containing it is found. In the latter case a sub-procedure of
zoom, described in Algorithm A.2, is called to repeatedly reduce the inter-
val that contain the step length satisfying the strong Wolfe conditions. An

1At the moment available only on Github at github.com/jschiavon/optispd.
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in-depth discussion of the details of this algorithm can be found by the in-
terested reader in § 3.5 Nocedal and Wright 2006.

Algorithm A.1: Line search algorithm based on algorithm 3.5 of Nocedal and
Wright 2006

1: function LineSearch(ϕ, ϕ′)
2: η0 = 0; ηmax = 1; m = 2
3: η1 ∈ (η0, ηmax)
4: for i = 1, … do
5: Evaluate ϕ(ηi)
6: if ϕ(ηi) > ϕ(0) + c1ηiϕ′(0) then
7: η⋆ ← zoom(ηi−1, ηi); Break
8: Evaluate ϕ′(ηi)
9: if ∣ϕ′(ηi)∣ ≤ −c2ϕ′(0) then

10: η⋆ ← ηi; Break
11: if ϕ′(ηi) ≥ 0 then
12: η⋆ ← zoom(ηi, ηi−1); Break
13: ηi+1 ← mηi
14: return η⋆

Here we will just note the definition of ϕ and its derivative ϕ′. Indeed, in
the original (euclidean) version of the algorithm ϕ(η) = f(xk + ηdk) is the
value assumed by the function f computed in the evolved point, as a func-
tion of the step length used for the evolution. This definition remains the
same when dealing with a Riemannian manifold, but in this case the evo-
lution is the retraction that, for the Symmetric and Positive-Definite (SPD)
manifold, is described by the exponential map of Equation (2.3).

Moreover, as can be easily seen with a little bit of calculus, the value of
ϕ′(η) is the projection of the descent direction along the direction of the
gradient, which is simply the inner product of the gradient with the descent
direction, and which is adapted within the context of the SPD manifold as
Equation (2.4).
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Algorithm A.2: Zoom phase of the line search algorithm, based on algorithm 3.6
of Nocedal and Wright 2006

1: function Zoom(ηlow, ηhigh)
2: for i = 1, … do
3: ηj ← Interpolate(ηlow, ηhigh)
4: Evaluate ϕ(ηj)
5: if ϕ(ηj) > ϕ(0) + c1ηjϕ′(0) orϕ(ηj) ≥ ϕ(ηlow) then
6: ηhigh ← ηj
7: else
8: Evaluate ϕ′(ηj)
9: if ∣ϕ′(ηj)∣ ≤ −c2ϕ′(0) then

10: η⋆ ← ηj; Break
11: if ϕ′(ηj)(ηhigh − ηlow) ≥ 0 then
12: ηhigh ← ηlow
13: ηlow ← ηj
14: return η⋆

ii Limited memory BFGS algorithm

In this section we will discuss the implementation of the limited memory
version of the Broyden Fletcher Goldfarb Shanno (BFGS) algorithm when
dealing with a Riemannian optimization setting. A comprehensive discus-
sion of the original Limitedmemory BFGS (L-BFGS) algorithm can be found
in § 7.2 Nocedal and Wright 2006, but in synthesis this example of quasi-
Newton algorithm approximates the inverse hessian matrix using only the
information on the curvature of the last m iterations, as the information
from iterations far in the past is more likely to be less impacting on the cur-
rent value of the descent direction. This is a significant difference with the
BFGS method, as in that case a full, albeit approximated, hessian matrix has
to be computed, stored and updated for every iteration.

Specifically, the L-BFGS algorithm stores a modified version of the hessian
implicitly by storing a certain number m (the so called memory parameter
of the algorithm) of vector pairs {sk, yk} and a scalar quantity γk, defined
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for the euclidean setting as

sk = xk+1 − xk yk = ∇fk+1 − ∇fk ρk = 1
⟨sk, yk⟩

.

Algorithm A.3 shows the use of this quantities to update the descent direc-
tion starting from the gradient ∇fk. Notice Line 9, where a multiplication
by a factor γk appears: this is a per-step approximation of the initial hessian,
as explained in Nocedal and Wright 2006, and is computed as

γk = ⟨sk, yk⟩ / ∥yk∥2 .

Algorithm A.3: Two-loop recursion to approximate the inverse hessian correction
to the gradient in the L-BFGS optimization scheme, based on algo-
rithm 7.4 of Nocedal and Wright 2006

1: function HessianGradient(ρ, s, y, γk)
2: q ← ∇fk
3: if k = 1 then return −q
4: else
5: l ← min(m, k)
6: for i = k − 1, k − 2, … , k − l do
7: αi ← ρi ⟨si, q⟩xk
8: q ← q − αiyi
9: r ← γkq

10: for i = k − l, k − l + 1, … , k − 1 do
11: β ← ρi ⟨yi, r⟩xk
12: r ← r + (αi − β)si
13: return −r

To compute these quantities in the Riemannian setting, though, we need
to apply some careful consideration: indeed, as discussed in Chapter 1 and
specifically in Table 1.1, the expression for the difference of two elements
on the manifold should be expressed through the logarithm map, and thus
sk = logxk

(xk+1). Moreover, we cannot compare vectors belonging to dif-
ferent vector space, as already said, thus thewe need to parallel transport to
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Algorithm A.4: Update history for Riemannian L-BFGS. Differently from algorithm
7.5 of Nocedal andWright 2006 all the vectors needs to bemoved
along with the parallel transport.

1: function UpdateHistory
2: if k > m then remove sk−m, yk−m and ρk−m
3: sk ← Πxk,dk(ηk)(logxk

(xk+1))
4: yk ← ∇fk+1 − Πxk,dk(ηk)(∇fk)
5: ρk ← 1/ ⟨sk, yk⟩xk+1
6: for i = k − 1, k − 2, … , k − l do ▷ Transport parallely
7: si ← Πxk,dk(ηk)(si); yi ← Πxk,dk(ηk)(yi) ▷ older history elements
8: return ρ, s, y

place all the vectors onTxk+1𝒮
+. The operations required to build the history

are collected in the function UpdateHistory described in Algorithm A.4,
which is the last piece needed to build Algorithm A.5, that describe the
whole Riemannian L-BFGS procedure.

Algorithm A.5: Riemannian version of L-BFGS algorithm, based on algorithm 7.5
of Nocedal and Wright 2006

Input: x0, f ▷ Starting point and cost function
Input: m ▷ Memory size
Input: ϵ, δ ▷ Tolerances
1: for k = 1, 2, … Nmax do
2: dk ← HessianGradient(ρ, s, y, γk) ▷ Descent direction
3: ϕ(η) ← f(γxk,d(η)); ϕ′(η) ← ⟨∇f(γxk,d(η)), dk⟩

xk
4: ηk ← LineSearch(ϕ, ϕ′) ▷ Step length
5: xk+1 ← expxk

(ηkdk)
6: if ∥∇fk+1∥xk+1

< ϵ or ∣fk+1 − fk∣ < δ then Break ▷ Convergence
7: s, y, ρ ← UpdateHistory ▷ Update history vectors
8: γk ← ⟨sk, yk⟩xk+1

/ ∥yk∥2
xk+1

▷ and prepare for next iteration
Output: xk





B Technical details on Skew-Normal
Variational Approximation

In this provide some technical tool required for the Skew-Normal Varia-
tional Approximation (SNVA) described in Section 2.iii. We start by intro-
ducing the skew-normal distribution and some of its properties and then
we provide the computations to obtain the exact expression for fsn of Equa-
tion (2.14).

i Some properties of the skew-normal distribution

Most of the properties anddetails of the skew-normal distributiondiscussed
here comes from the seminal papers byAzzalini andDalla Valle 1996; Az-
zalini and Capitanio 1999 and later collected in the fundamental textbook
Azzalini 2013.

Given a random vector θ ∈ ℝp, it is distributed according to a multivari-
ate skew-normal distribution with parameters μ, Σ and ξ if its density is:

θ ∼ SN(μ, Σ, ξ) if

q(θ ∣ μ, Σ, ξ) = 2ϕΣ(θ − μ)Φ (ξ⊺(θ − μ)) (B.1)

where ϕΣ(θ − μ) is the multivariate normal with mean μ and variance-
covariance Σ, while Φ is the cumulative distribution of the univariate stan-
dard normal distribution. A useful quantity, which we will frequently use
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to reduce the cumbersome notation in some of the more common expres-
sions that will be needed for our work, is

δ = Σξ
√1 + ξ⊺Σξ

,

which is actually one of the main re-parametrization of the skew-normal.

Themoment generating function for the skew-normal distribution can be
written as

𝔼 [et⊺θ] = 2 exp [t⊺μ + t⊺Σt
2 ] Φ (t⊺δ)

and from this we can immediately compute the mean and variance of a
skew-normal distributed random variable

𝔼 [θ] = μ + √ 2
πδ (B.2)

Var [] = Σ − 2
πδδ⊺. (B.3)

Moreover, it can be shown that the distribution is invariant under affine
transformation, in the sense that

z = Aθ + b ∼ SN(μz, Σz, ξz)

with
⎧{{
⎨{{⎩

μz = Aμ + b Σz = AΣA⊺

ξz = A−⊺ξ (1 + ξ⊺Σξ)−1/2 δz = Aδ
,

corresponding to Proposition 3 of Azzalini and Capitanio 1999.

Another useful observation is to recognize that

et⊺θq(θ ∣ μ, Σ, ξ) = 2 exp [t⊺μ + t⊺Σt
2 ] Φ (t⊺δ) ̃q(θ ∣ μ, Σ, ξ, t) (B.4)
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where ̃q is the density defined in Arnold et al. 2002 as

̃q(vecθ ∣ μ, Σ, ξ, t) =
Φ (ξ⊺(θ − μ))

Φ (t⊺δ) ϕΣ (θ − μ − Σt) .

Said ̃θ a random variable distributed according to ̃q, then its moment gen-
erating function and the first two moments can be written (with ζk(x) =
dklogΦ(x)/dxk) as

𝔼 [es⊺θ̃] = 2 exp [s⊺ (μ + Σt) + s⊺Σs
2 ]

Φ ((t⊺ + s⊺) δ)
Φ (t⊺δ) ,

𝔼 [ ̃θ] = μ + Σt + ζ1 (t⊺δ) δ,

Var [] = Σ + ζ2 (t⊺δ) δδ⊺.

ii Computations for the normal sample

Considering the model of Equation (2.15), with the parametrization σ2 =
eγ to obtain the posterior written in Equation (2.16) and reported here for
convenience

logp(θ ∣ y) = − (a + n
2 ) ⟨t, θ⟩ − e−⟨t,θ⟩ ⎛⎜⎜⎜⎜

⎝
b +

∑n
i (yi − ⟨r, θ⟩)

2

2
⎞⎟⎟⎟⎟
⎠

−
⟨r, θ⟩2

2σ2ν
+ κ

for the vector parameter θ = (ν, γ), with t = (0, 1)⊺ and r = (1, 0)⊺ to select
each component of the parameter vector.

Then we can compute fsn by taking the expected value of each piece of
Equation (2.16) with respect to the density of the skew-normal. By using
the expressions for the moment generating function and the results for the
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mean and variance we are able to obtain quite easily:

𝔼 [(a + n
2 ) t⊺θ] = (a + n

2 ) ⎛⎜
⎝

t⊺μ + √ 2
πt⊺δ⎞⎟

⎠

𝔼 [be−t⊺θ] = 2b exp [−t⊺μ + t⊺Σt
2 ] Φ (−t⊺δ)

𝔼 ⎡
⎢
⎣

⟨r, θ⟩2

2σ2μ

⎤
⎥
⎦

= 1
2σ2μ

⎡⎢
⎣
r⊺Σr + ⟨r, μ⟩2 + 2√ 2

π ⟨r, μ⟩ ⟨r, δ⟩⎤⎥
⎦

To compute the missing piece of the log-likelihood we need to observe that
we can rewrite the integral as

𝔼 [e−t⊺θ (yi − r⊺θ)2] = ∫ e−t⊺θ (yi − r⊺θ)2 q(θ ∣ μ, Λ, d)dθ

= ∫ (yi − r⊺θ)2 e−t⊺θq(θ ∣ μ, Λ, d)⏟⏟⏟⏟⏟⏟⏟⏟⏟
(B.4)

dθ

= 2 exp [t⊺μ + t⊺Λt
2 ] Φ (t⊺δ) 𝔼 [(yi − r⊺ ̃θ)2]

Which we can then use to compute the last expected values and, by unify-
ing all the term, to obtain the complete expression for fsn written in Equa-
tion (2.17).



Acronyms

SPD Symmetric and Positive-Definite

AI Affine-Invariant

RR Riemannian Registration

SVD Singular Value Decomposition

ED Eigenvalue Decomposition

EEG Electroencephalography

fMRI functional Magnetic Resonance Imaging

R-fMRI Resting state functional Magnetic Resonance Imaging (fMRI)

NKI1 Nathan Kline Institute-Rockland Sample

MDRM Mininun Distance to Riemannian Mean

MDS Multi Dimensional Scaling

VA Variational Approximation

SNVA Skew-Normal Variational Approximation

GVA Gaussian Variational Approximation

BFGS Broyden Fletcher Goldfarb Shanno

L-BFGS Limited memory BFGS

R-L-BFGS Riemannian Limited memory BFGS

MLE Maximum Likelihood Estimator

GLMM Generalized Linear Mixed Model

MCMC Markov Chain Monte Carlo
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