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ABSTRACT

In the recent years, the advances in high performance embedded microcontrollers, opti-
mized signal processing techniques and reliable communication protocols have fostered
the development of pervasive sensing technologies. By acquiring spatially distributed and
information-rich data, pervasive sensing has become fundamental in several applications.
In industrial settings it is used to predict failures, to reduce slowdowns, and to improve
workers safety and energy efficiency; in urban scenarios pervasive sensing spots potential
security threats, while in critical environments it enables continuous monitoring at previ-
ously inaccessible locations. In robotics, the aggregation of information from multiple
spatially distributed sources allows the robot to learn faster, and to plan more robust
and more adaptive strategies under dynamic and uncertain conditions. Recently, the
research in machine learning and automatic controls has contributed to a new generation
of smart pervasive sensors, where connected devices become autonomous. Smart sensors
can decide how to gather data within a set of resource constraints; thus they represent
a new frontier for data acquisition systems in a wide range of applications including
agriculture, surveillance, post-disaster assessment, and manufacturing.

The main research interest of this Thesis concerns Multi-Sensor Probabilistic Active
Sensing. Active sensing schemes are responsible for the generation of control and
optimization strategies in resource-constrained perception and data collection processes;
hence, they are of paramount importance in the decision making process of smart devices.
At the same time, probabilistic approaches accommodate for noisy sensors and unknown
environments, while multi-sensor solutions introduce more accuracy, reactivity and
robustness in intelligent operations like planning, learning, and reasoning. Furthermore,
multi-sensor architectures allow to capture environmental properties that single-sensor
counterparts usually miss.

The main contribution of this Thesis is the development of a mathematical framework
for multi-sensor probabilistic active sensing; the proposed scheme is modular and appli-
cable for general active sensing tasks. Indeed, the formulation is derived in the context
of active position estimation, but it is then validated under four distinct applications:
active localization, active tracking, energy-constrained video surveillance, and connected
vehicles.

Extensive simulation and experimental studies have been conducted to evaluate the
proposed approaches, examining the performance against original baselines. The main
findings suggest that active sensing, coupled with Bayesian inference and information
fusion, enables self-supervised learning techniques, allows to account for realistic percep-
tion uncertainties and unmodeled dynamics, and introduces faster, more accurate, and
more robust estimation processes.






SOMMARIO

Negli ultimi anni, i numerosi progressi nel campo dei sistemi embedded ad alte prestazioni,
I’ottimizzazione delle tecniche di elaborazione dei segnali, e la maggiore affidabilita nei
sistemi di comunicazione, hanno portato allo sviluppo di tecnologie di sensoristica per-
vasiva. Tramite 'acquisizione di dati spazialmente distribuiti e ricchi di informazioni,
la sensoristica pervasiva ¢ diventata fondamentale in diverse applicazioni. In ambito
industriale viene utilizzata per prevedere guasti, ridurre i rallentamenti e migliorare
la sicurezza dei lavoratori e I'efficienza energetica; negli scenari urbani la sensoristica
pervasiva individua potenziali minacce alla sicurezza, mentre in ambienti critici con-
sente il monitoraggio continuo in luoghi precedentemente inaccessibili. Nella robotica
I’aggregazione di informazioni provenienti da piu fonti spazialmente distribuite, consente
ai robot di apprendere piu velocemente e di pianificare strategie di movimento piu robuste
e piu adattive, anche all’interno di ambienti variabili e poco noti. Recentemente, la
ricerca nel settore del machine learning e dei controlli automatici ha favorito lo sviluppo
di una nuova generazione di sistemi di sensoristica intelligenti, in cui i sensori, oltre ad
essere connessi tra di loro, diventano autonomi. Essi possono infatti prendere decisioni sul
processo di raccolta dati, nel rispetto delle risorse a disposizione. Per questo motivo, le
tecnologie di sensoristica intelligente rappresentano oggi una nuova frontiera per i sistemi
di acquisizione dati in numerose applicazioni tra cui ’agricoltura, la videosorveglianza, il
monitoraggio in ambienti critici, e nel campo manifatturiero.

Questa Tesi ¢ dedicata alle tecniche di sensoristica attiva probabilistica e multi-
sensoriale. La percezione attiva si occupa di generare strategie di controllo e di ottimiz-
zazione nei confronti del processo di raccolta dati e sulla base delle risorse a disposizione;
per questo motivo, essa ¢ fondamentale nel processo decisionale dei sistemi di sensoristica
intelligente. Allo stesso tempo, gli approcci probabilistici possono operare in presenza di
sensori rumorosi e ambienti sconosciuti, mentre le soluzioni multi-sensore introducono
maggiore precisione, reattivita e robustezza in fase di pianificazione ed apprendimento.
Inoltre, le architetture multi-sensore consentono di catturare proprieta ambientali che le
controparti a sensore singolo non riescono a cogliere.

Il contributo principale di questa Tesi risiede nello sviluppo di un framework matematico
per la percezione attiva probabilistica e multi-sensore; lo schema proposto € modulare
e applicabile in diversi ambiti legati alla sensoristica attiva. La formulazione viene
dapprima proposta nel contesto della stima di posizione attiva, e viene poi convalidata in
quattro applicazioni distinte: localizzazione attiva, tracciamento attivo, videosorveglianza
con vincoli di energia, e veicoli connessi.

Al fine di valutare gli approcci proposti, sono stati condotti ampi studi sia numerici
che sperimentali; in particolare, le performance sono state confrontate con delle baseline
di riferimento. I risultati principali mostrano che la percezione attiva, quando viene
integrata con sistemi di inferenza Bayesiana e con tecniche di sensor fusion, consente
di progettare metodi di apprendimento auto-supervisionato, di modellare le incertezze
tipiche dei sistemi di percezione reali, e di introdurre maggiore rapidita, accuratezza e
robustezza nei processi di stima.
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NOTATION

All the statements belonging to the latter have to be intended of global usage for the
whole document. In the following lines, the most used symbols together with further
basic notation and operators are reported as a preliminary.

Symbols In this manuscript the following notation is adopted. The symbols N, Z, R, C
respectively denote the set of natural, integer, real and complex numbers. The symbols
R™ and R™ ™ indicate the spaces of n-dimensional vectors and (n x m)-dimensional
matrices having real entries, respectively. The notation {0,1}" is used to denote the
space of IN-dimensional boolean vectors. Lowercase italic letters and greek symbols, e.g.,
x,v, €, denote scalar values. Lowercase roman bold letters and bold greek symbols, e.g.,
X, Vv, €, denote vectors assumed by convention to be column vectors. Uppercase roman
bold letters, e.g., X, A, C denote matrices. Uppercase calligraphic letters, e.g., X, A,C
denote sets. The symbol I,, denotes the (n x n)-dimensional identity matrix, while 0,, is
the zero vector of dimension n. The symbol & indicates the empty set.

Regarding the statistical distributions used in this Thesis, x?(n) denotes the chi-squared
distribution with n degrees of freedom; N '(x|u, 0?) is the Gaussian distribution over
the random variable x with expectation p and variance o2 (when it is not necessary to
explicit the random variable, the notation N'(u1, 02) is used); a Bernoulli distribution with
parameter p > 0 is denoted as B(p); a Binomial distribution with parameters n and p is
denoted as Bin(n,p); uniform distributions over the interval [a, b] are denoted as U(a, b).

The shorthand notation z;,.;, indicates the sequence of variables from time instant ¢y to
t1, namely the set {zk}};l:to (i.e., the subscripts denote a temporal evolution of the same
variable). Otherwise, the shorthand notation z1.y indicates the sequence of variables
from index 1 to IV, namely the set {zl}fi 1 (i.e., the subscripts denote a collection of N
different variables); if these N variables can evolve in time, the notation z;; identifies
the i-th variable at time t.

Operators  Given a scalar x, |z| denotes its absolute value. Analogously, given a
n-dimensional vector v, |v| represents its absolute value, while ||v||, is its p-norm. The
(row) vector v' indicates the transpose of v and the scalar value v(i) specifies its i-th
entry In addition, diag(v) denotes the (n x n) diagonal matrix whose main diagonal
consists of the elements of v.

Given a matrix A, ||A]|, and AT denote the same operations of norm and transpose
as before. The symbol a(i, j) indicates the ij-th scalar entry of the matrix.

Given a set C, the symbol |C| denotes its cardinality, i.e., the number of elements
belonging to the set. Given two sets A and C, the relation C C A (C C A) indicates that
C is a proper (non necessarily proper) subset of .A. The symbols N, U and \ represent
intersection, union and complement of sets, respectively.
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TOWARDS PERVASIVE AND SMART
SENSING

The significant factors impacting the growth of the global smart sensor industry include a
surge in demand from the automotive and domotics sectors, a growing trend toward the
Internet of Things, and the development of smart city scenarios. In this context, this
Chapter provides an overview of the technological trends that support the main topics of
this Thesis: smart sensing, information fusion and intelligent control.
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1 Towards pervasive and smart sensing

Autonomous systems and ubiquitous computing

Autonomous systems are composed by one or more agents capable to act without external
intervention, possibly under uncertainties and against external disturbances; in this re-
gard, each agent autonomously senses and interacts with the environment to accomplish
a set of goals (predefined or computed online, collective or personal) Chen, Abbod, and
Shieh (2019a). According to literature Chen et al. (2019a), the fundamental properties
of autonomous systems are self-regulation and self-diagnosis (to operate continuously
and fulfil repetitive tasks), self-adaptation (to act under dynamic environmental con-
ditions), and self-organization (to guarantee optimal configuration in relation to the
goals to be achieved). Examples of autonomous systems are unmanned robots Meera,
Popovié¢, Millane, and Siegwart (2019) and smart sensor systems Varotto and Cenedese
(2021b). The past several decades have witnessed incredible breakthroughs in the field
of control engineering and autonomous systems, enabling high levels of autonomy and
integration with modern computing architectures Chen et al. (2019a). More specifically,
the maturation of robotic, machine learning and automation disciplines, coupled with
the rapid advances in ubiquitous computing technologies, have enabled autonomous
systems to increasingly penetrate across multiple industrial and civil domains Chen
et al. (2019a); Popovic (2019). At the same time, with their rising accessibility, robots
and smart sensors are growing more commonplace in our workplaces, in our private
homes, and in our society as a whole. The main motivation comes from the fact that, as
autonomous intelligent machines become more accurate, they can introduce remarkable
time, labor, and cost savings across all sectors of the economy. Hence, they are promising
to revolutionize the ways in which we work and live. In fact, the potential applications
are extensive and they expand at an extraordinary rate, especially in tasks that involve
repetitive procedures, demand high levels of accuracy or precision, and transpire in risky
and hazardous environments.

Recently, new research topics related to autonomous systems problems have started to
gain popularity among the robotics, automation and control communities. Some examples
are given by ubiquitous robotics, pervasive computing, intelligent and distributed edge
computing systems, smart energy systems, security control, and privacy of cyber-physical
systems. All these scientific fields are fostered by the advances in communication
technology (mobile communication, secure broadband transmission), microelectronics
(new materials, smaller and more powerful devices), energy supply, and sensor systems;
an important role is also played by the rise of the Internet of Things (IoT) paradigm,
which allows the interconnection of different networked embedded devices used in the
everyday life and integrated into the Internet Li, Da Xu, and Zhao (2015). An additional
contribute has been given by the increased performance of production processes, better
methods to create software, more efficient programming languages and operating systems,
together with innovative concepts for man-machine interaction Friedewald and Raabe
(2011). Among all the aforementioned research lines, this Thesis will cover topics related
to ubiquitous robotics and pervasive sensing.

Ubiquitous robotics (also referred to as ubirobotics or networked robotics), cloud robotics
and multi-agent systems are crosscutting technologies that utilize the whole range of mod-
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ern information and communication technologies (ICT) with representative application in
systems engineering domains Chibani, Amirat, Mohammed, Matson, Hagita, and Barreto
(2013); Fabris (2021); Herrera, Pérez-Hernandez, Kumar Parlikad, and Izquierdo (2020);
Miki, Popovi¢, Gawel, Hitz, and Siegwart (2018). In the ubirobotics framework, multiple
autonomous agents communicate, interact and cooperate to accomplish a common goal or
to satisfy a set of concurrent tasks Krasniqi and Hajrizi (2016); Masehian, Jannati, and
Hekmatfar (2017). Ubirobots overcome the limitations of stand-alone robots by integrat-
ing them with web services and ambient intelligence technologies Chibani et al. (2013);
moreover, they acquire richer functionalities and open the way for the composition of a
variety of services, leveraging on semantic perception, reasoning and actuation Chibani
et al. (2013). Ubirobotics plays an important role also within the emergent framework of
robotic process automation (RPA) Hofmann, Samp, and Urbach (2020), where collab-
orative software agents (i.e., bots) run on intelligent digital services Avula, Chadwick,
Arguello, and Capra (2018). In line with the IoT and ambient intelligence concepts, these
agents have the ability to coordinate autonomously their activities with other physical
or logical entities, in order to provide assistive and monitoring services. Moreover, the
emergence of cloud computing allows to enrich the agents’ cognitive capabilities and share
their knowledge by connecting to web infrastructures Ferrarotti, Breschi, and Bemporad
(2021).

Most ubiquitous robotics concepts evolve from the application in robotics scenarios
of the ubiquitous computing paradigm (also known as pervasive computing). Pervasive
computing promotes the idea of a physical world that is richly interwoven with sensors,
actuators, displays, and computational elements, embedded seamlessly in everyday
objects, and connected through a communication network Weiser, Gold, and Brown
(1999). In other words, pervasive computing is a general concept referring to the ubiquity
of information technology and computing power, and to the integration of internet
connected computers, microprocessors and sensors into the environment Friedewald and
Raabe (2011). More specifically, ubiquitous computing systems are characterized by the
following features Friedewald and Raabe (2011); Kim, Kim, and Lee (2004):

o modularity, decentralization and mnetworking: all devices are capable to share
information, but their computational and storage capabilities make them self-
reliant, so that they do not require any central control unit;

e integration of ambient intelligence sensors and actuators in objects of daily use;

e ubiquity: mobile support for the user through information services anywhere and
any time;

e accessibility: computers should be accessible at anytime and at anyplace;

e adaptation: context awareness and adaptation of the system with respect to
changing requirements;

e self-organization: automatic recognition and autonomous processing of repetitive
tasks without user intervention.

The principal goal of pervasive computing is that of providing support to everyday tasks
in an automated fashion, from people home assistance to the continuous optimization
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of economic, industrial and social processes. In the long term, ubiquitous computing
can pervade all spheres of life: it promises to increase comfort and energy efficiency in
the private home area; it may increase roads safety, if applied to smart transportation
systems; it could raise work productivity in the offices through RPA and adaptive personal
assistance systems; finally, in the medical field implantable sensors and micro-computers
may be used to monitor the health of the user.

The principal research trends in ubirobotics and ubiquitous computing concern context
and activity recognition Jiang, Cai, Ma, Yang, and Liu (2018), semantic reasoning Sa,
Popovié, Khanna, Chen, Lottes, Liebisch, Nieto, Stachniss, Walter, and Siegwart (2018),
multi-agent coordination Fabris (2021), and privacy-by-design Osia, Shahin Shamsabadi,
Sajadmanesh, Taheri, Katevas, Rabiee, Lane, and Haddadi (2020). From a more industrial
and technological perspective, the main challenges regard the design of software and
middleware tools capable to creare ubirobot services as plug-and-play applications, to
guarantee interoperability among robots and smart devices, and to extend ubirobots
intelligence and knowledge from the cloud.

Pervasive sensing

When ubiquitous computing meets sensing devices (e.g., RFIDs Deyle, Nguyen, Reynolds,

and Kemp (2010), audio microphones Li, Girin, Horaud, and Gannot (2016), cam-
eras SanMiguel and Cavallaro (2014)), it is referred to as pervasive sensing Bordel,
Alcarria, Robles, and Martin (2017); Park, Chao, Hussain, and Yen (2014). Facilitated
by the increasing availability of inexpensive, wireless sensors and by the cost-effective
and straight-forward installation, pervasive sensing has recently become a fundamental
technology in several applications. In industrial settings it provides a variety of mea-
surable and significant improvements, from process and worker safety, to regulatory
compliance, from equipment reliability, to energy efficiency. Pervasive sensing is also used
to monitor and track processes performance so that productivity levels can be optimized!;
in addition, the large amount of data collected are used to predict failures and reduce
slowdowns and shutdowns. In urban scenarios, instead, pervasive sensing spots potential
security threats, while in critical environments (e.g., oil refineries) it enables continuous,
on-line monitor at previously inaccessible locations and at an affordable cost; this makes
it possible to detect and respond to hazards early. In the robotics community, the
emergence of pervasive sensing is strongly contributing to extend ubirobots’ perception
capabilities. As a matter of fact, spatially distributed sensing platforms can acquire large
amount of data from the physical world; hence, a robot surrounded by internet-connected
sensing devices has access to a larger and richer amount of information compared to
the localized data collected by its on-board sensors Bordel et al. (2017). Consequently,
by aggregating information from multiple sources, the robot attains faster, more robust
and more adaptive planning under dynamic and uncertain environments. Ubiquitous
computing not only improves the decision making process of the robot, but it is also
useful to increase its cooperative capabilities. In fact, the storage and communication

1ht‘cps ://www.emerson.com/documents/automation/-advantages-of-pervasive-sensing-en-us-94136.
pdf
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capabilities embedded in modern pervasive sensing platforms allow to use these devices
as communication bridge between two or more robots involved in the same task.

Despite the increasing interest of several industrial sectors towards pervasive sensing
applications, there are still many open questions to be addressed in research. These are
mostly related to data management criteria (e.g., how to deal with data accumulation and
limited storage capabilities), data stream processing (e.g., how to deal with continuous
incoming data flows), distributed processing techniques and computational intelligence
(e.g., speech recognition, image analysis, text mining, information retrieval, gesture
recognition), as well as artificial intelligence applied to embedded devices Park et al.
(2014).

Smart sensing

Recently, pervasive sensors have become smart Zhang, Gu, Vlatkovic, and Wang (2004)

thanks to the advances in digital and embedded technologies, and from the research in
the fields of machine learning, automatic controls, sensor fusion and signal processing.
Smart sensors are static Varotto and Cenedese (2021c) or mobile Varotto, Cenedese,
and Cavallaro (2021) devices endowed with on-board decision-making capabilities; hence,
a smart sensor is required to actively control the data acquisition process, according
to the incoming data, the sensing mission specifications, and its current state (e.g.,
energy available, position in space, internal configuration parameters). To accomplish
this task, the main functional properties of any smart sensor are self-organization and
self-reconfiguration, self-awareness and self-diagnostics (i.e., knowledge of the current
state of the system), self-calibration and adaptation Rinner, Esterle, Simonjan, Nebehay,
Pflugfelder, Dominguez, and Lewis (2015); SanMiguel, Micheloni, Shoop, Foresti, and
Cavallaro (2014). For this reason, they can be treated as autonomous intelligent agents
(see Sec. 1.1), whose functionalities are supported by processing, communication, and
sensing modules.

Sensing module The core unit of any measurement system is the sensing module,
which is characterized by several device-dependent parameters: sensing range, Field of
View (FoV, or sensing domain), accuracy, information content, and sampling time. In
the following, a qualitative introduction of these sensor properties is provided; for a more
formal discussion, the reader is addressed to Chapter 3.

e Sensing range: maximum operational distance at which data can be collected.
e Field of View: the portion of environment from which data can be collected.

e Accuracy: quality of the information collected; it is often non-homogeneous over
the FoV.

o Information content: type of information collected. Sensors can be roughly classified
into five main classes Michieletto (2018): (i) environmental sensors, which retrieve
information about a specific quantity of the environment (e.g., temperature, hu-
midity, pressure, light); (ii) proximity sensors, which reveal the presence of objects
of interest (e.g., people, obstacles); (iii) visual sensors, which capture frames of a
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certain scene in a continuous or sampled manner; (iv) range sensors that provide
distance measurements; and (v) bearing sensors that sense the relative direction.

¢ Sampling time: data collection rate.

Communication module Smart sensors are capable to propagate information to
other agents®. As mentioned in Sec. 1.2, the communication capabilities of pervasive
sensors can be used to establish cooperation among different sensing units and with
surrounding connected robots. Therefore, smart sensors are fundamental building blocks
in sensor networks and multi-agent systems (see Sec. 1.4).

In real-world scenarios, any communication-reliant application (e.g., multi-agent cooper-
ation) is affected by several limitations. At first, communication may be slow, unavailable
and intermittent Rondén, Mahmood, Grimaldi, and Gidlund (2019). Secondly, any
communication device is generally constrained to a certain range; hence each agent can
only interact with a limited set of neighbours. To address the aforementioned issues, it is
important to regulate the transmission/reception of the messages through protocols and
algorithms that tolerate and mitigate communication faults and limited communication
coverage. In this regard, coordination among agents can follow a centralized, decentralized
or distributed scheme. With a centralized coordination, the agents exchange information
with a central node or ground station. As discussed in Chapter 3, the central node is
a single point of failure and might not receive complete and updated information due
to sensing and communication limitations. With decentralized coordination there are
multiple leader agents that act as central nodes for smaller groups of agents. Each leader
then coordinates with other leaders. Finally, agents with a sufficient amount of memory
and processing power can coordinate in a distributed manner. In distributed coordination
each robot decides independently, even with limited available information. Distributed
algorithms enable individual robots to operate with partially available information and
are therefore only marginally affected by communication problems.

Computational module In smart environments scenarios, the trend is to avoid
centralized architectures, where a single high powerful control unit (e.g., a server)
elaborates all the data received from the sensors in order to produce the required
results. It is instead preferred the adoption of a decentralized (or distributed) paradigm,
according to which the storage and processing resources of the agents are exploited
to elaborate information locally. In this case, only distilled, high-level, information is
delivered to the central unit, or to the end users. For this reason, smart sensors are
generally equipped with a microprocessor with a suitable memory buffer and with the
computational resources necessary to provide a local contribution to the distributed
task solution. Some implementations exploit multi-core architectures which are often
equipped with dedicated cores for signal processing and system management. In this
work, a sensor endowed with a computational module is considered to be smart, since

it is capable to implement intelligent control®, decision-making and planning strategies.

In this work the term agent is used to identify any autonomous entity, either a human being, a
robot, or a smart sensor.

3The term intelligent control is used when any kind of artificial intelligence (neural networks, Bayesian
inference, machine learning, evolutionary algorithms, reinforcement learning) is present in the control
loop Blondin, Sédez, and Pardalos (2019); Jafari and Xu (2018); Rodriguez-Molina, Mezura-Montes,
Villarreal-Cervantes, and Aldape-Pérez (2020).
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Memory bandwidth and capacity are further crucial resources for smart sensors, since
signal processing tasks typically deal with huge amounts of data.

1.3.1| Applications

Smart sensing is an emerging technology that is becoming a turning point in several
industrial settings, especially when large amount of information is used to control the
manufacturing quality, reduce unnecessary maintenance, and improve system reliability.
In most industrial contexts, system reliability is as important as the maintenance costs
(e.g., in large scale smart grids Li et al. (2015)); hence, sensors connectivity, self-diagnosis
and self-configuration are critical requirements.

Smart sensors automatize and optimize data acquisition campaigns, where traditional
systems may require excessive human labor, in terms of supervision and maintenance.
Thanks to the on-board decision-making capabilities, smart sensors represent the intel-
ligent units of smart cities, smart buildings, smart grids, and smart factories Jaradat,
Jarrah, Bousselham, Jararweh, and Al-Ayyoub (2015). Other relevant use-cases include
agriculture Sa et al. (2018), urban surveillance Bernardini, Fox, and Long (2017), post-
disaster assessment Queralta, Taipalmaa, Pullinen, Sarker, Gia, Tenhunen, Gabbouj,
Raitoharju, and Westerlund (2020), and environmental monitoring Popovic (2019). In
these scenarios, and many more, intelligent systems enable gathering valuable information
at unprecedented levels of resolution and autonomy.

1.3.2 Use case: smart cameras
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Figure 1.1. A generic architecture of a smart camera Rinner and Wolf (2008).

Many sensors collect and process scalar values, such as temperature or light measure-
ments. The main benefit of scalar quantities is that they require limited memory and
processing resources; nevertheless, the amount of information carried by scalar sensors
is often inadequate for many applications. On the other hand, cameras collect richer
information, at the cost of higher processing demand both for image enhancement and
for high-level features extraction (e.g., object bounding boxes in recognition tasks).

Recently, the convergence of advances in computer vision, embedded computing, and
communication technologies has brought to the evolution of smart cameras Rinner
and Wolf (2008). Smart cameras represent a prominent example of pervasive sensing
devices, by integrating visual sensing with embedded processing and communication
capabilities Rinner and Wolf (2008), as depicted in Fig. 1.1. Smart cameras are used
to autonomously perform vision tasks through on-board resources; then, aggregated
high-level knowledge (e.g., objects bounding boxes, spatio-temporal trajectories of tracked
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people, action recognition results) is delivered to third parties (data centers, end-users,
other cameras). The data source of the processing pipeline in a smart camera is the image
sensor, implemented either in complementary metal-oxide—semiconductor (CMOS) or in
charge-coupled device (CCD) technology. The sensing unit collects the raw data from
the image sensor; this propagates the information towards the processing unit, which
is responsible for both image processing and decision-making tasks. At this point, the
obtained abstracted/semantic data are eventually transferred to third parties through
the communication unit. Smart cameras represent a fertile research field with a variety
of different applications; it also conveys a number of heterogeneous methodological areas
such as signal processing, machine learning, task and resource optimization, embedded
computing, predictive control, and planning under uncertainty. For this reason, a
lot of attention has been given to this research field over the last few years, both
from academia and industry, as demonstrated by the increasing number of dedicated
publications Esterle, Lewis, McBride, and Yao (2017); Kyung et al. (2016); Magno,
Tombari, Brunelli, Di Stefano, and Benini (2013); Rinner, Winkler, Schriebl, Quaritsch,
and Wolf (2008); Rinner and Wolf (2008); Varotto, Fabris, Michieletto, and Cenedese
(2019a). More specifically, as mentioned in Sec. 1.3, smart sensors are not composed by
the sensing module only; the intelligence of smart devices resides upon a computational
unit, which enables complex data processing algorithms. In smart cameras, many research
efforts have been devoted to the migration of computer vision on embedded platforms; this
has facilitated the implementation of a variety of novel algorithms in real-life applications,
from real-time quality assessment Chang, Mazzon, and Cavallaro (2018) and privacy
protection Tadesse, Bent, Marcenaro, Weldemariam, and Cavallaro (2020) in wearable
cameras, to mobile object detection, classification and tracking Meera et al. (2019). The
computational module of smart cameras is also responsible for controlling and regulating
the device configuration and sensing parameters for performance optimization. Smart
cameras can be static, PTZ (Pan-Tilt-Zoom) Micheloni, Rinner, and Foresti (2010), or
mobile Rinner et al. (2008): static cameras are mounted at fixed locations Aghajan and
Cavallaro (2009); PTZ visual sensors can modify the focal length and rotate the optical
axis Saragih, Kinasih, Machbub, Rusmin, and Rohman (2019a) (Fig. 1.2(a)); mobile
cameras are usually mounted on ground or aerial robots, thus they can move in the
space Schwager, Julian, Angermann, and Rus (2011) (Fig. 1.2(b)). Therefore, from the
control perspective, smart cameras can be treated as robotic platforms characterized by a
number of degrees of freedom and composed by internal sensing and physical configuration
parameters and (e.g., the sampling rate and the PTZ parameters). Hence, the perception
process can be cast to an optimization (control) problem that, given present and past
measurements, regulates the camera degrees of freedom; this is the core idea behinds the
active sensing paradigm as discussed in Chapt. 3.

Applications Smart cameras are currently used in many applications. Intelligent
Video Surveillance Systems (IVSS) is a very active research area whose fundamental
goal is to detect abnormal behaviors. This requires complex image analysis, starting
from motion detection to segmentation, feature extraction, and classification. Smart
cameras are also employed in Intelligent Transportation Systems (ITS), which can be
divided into infrastructure-based systems and vehicle-based systems. The former are
closely related to IVSS, but the main objective is related to traffic monitoring. On
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(a)

Figure 1.2. Examples of PTZ (a) and mobile (b) cameras.

the other hand, in vehicle-based systems the cameras are used inside automobiles to
monitor the vehicle’s surrounding environment, as well as the driver’s state of attention
while driving. These are fundamental building modules in adaptive cruise control and
in forward collision-warning systems. Smart cameras can be used also in many medical
applications like in robotic surgery, to automate experiments, or to monitor patients and
medical personnel inside hospitals. Intelligent cameras have been extensively deployed
also in machine vision systems, which deals with the application of computer vision
methods to manufacturing, inspection, and robotics. Finally, there are many important
applications for smart cameras in the fields of entertainment and smart environments (e.g.,
smart cities). All these applications often pose strong requirements on the processing
speed and robustness of the vision methods, which are therefore embedded in the overall
application.

1.3.3| Challenges and Trends

Future pervasive smart sensor systems will be targeted at end-user applications, where
special emphasis is put on privacy and security, cost-efficiency, as well as simple deploy-
ment, supported by self configuration capabilities. Considering the recent advances of
smart sensors in research and industrial practice, it is possible to identify several trends
and research challenges to be addressed in the future.

e Power consumption: A core feature of smart sensors is that they are designed
to run on battery power; hence, one of the main challenges is to find a reasonable
trade-off between computing power, memory resources, communication capabilities,
system size, and power consumption. These aspects can be regulated through
the design of efficient logical architectures, as well as middleware algorithms that
account for the power consumption of each operational unit. At the same time,
in the area of embedded systems, advances in chip manufacturing technologies
are expected to lower the power consumption and, therefore, increase the overall
operating time of the system.

e Adaptability and self-configuration: The main advantage of smart sensing is
the presence of embedded processing, which enable autonomous decision making
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strategies; hence, smart sensors are devices with high levels of automation and
adaptation capabilities. These properties are fundamental to simplify system
deployment and minimize the human intervention: at first, the self-organizing
functionalities make installation and integration of new applications easy also for
non-expert users; in addition, autonomous sensor nodes can self-regulate their
energy consumption, and they can also self-calibrate to adapt themselves in case of
environmental changes.

Limited computational capabilities: Many real-life applications (e.g., search
and rescue Queralta et al. (2020)) require real-time processing speeds; nonetheless,
self-operating agents, like UAVs, carry only a limited amount of payload Michieletto
(2018); hence, it is often necessary to use cloud offloading for more computational
power. This solution, however, slows down the computing process Krasniqi and
Hajrizi (2016). This problem is particularly critical for deep learning, which is one
of the most studied fields in machine perception. State-of-the-art deep learning
models often lead to heavy and slow methods, but recent research has also focused
towards the development of lighter and faster models, able to operate in real-time
with limited hardware resources Moons, Bankman, and Verhelst (2019).

Privacy and security: To manage the massive amounts of data generated from
smart visual sensors, it is possible to exploit smart sensors’ connectivity capabilities
to transfer information to other sensor nodes, to human-readable end services, or to
cloud infrastructures. The main problem of cloud computing is that it introduces
several latency and privacy concerns. One approach to improving privacy is to not
let raw data leave the sensors, delivering only encrypted information. Nonetheless,
this makes it much more difficult to ensure the trustworthiness of the overall
system Osia et al. (2020); hence, preserving individuals’ privacy versus providing
detailed data analytics faces a dichotomy in most pervasive sensing applications.
The future trend is to implement pervasive computing and IoT infrastructures to
the edge, rather than using the centralized cloud computing models. The main
concept behind the edge computing paradigm is that computation and data storage
are brought closer to the sources of data through distributed schemes (see Fig. 1.3).
Edge computing is expected to improve response times and save bandwidth Yu,
Liang, He, Hatcher, Lu, Lin, and Yang (2017); furthermore, by leveraging on
distributed architectures, it also increases privacy by minimizing the transmission
of sensitive information to the cloud.

Data accumulation: The IoT technologies integrated in smart sensing devices
produce large volume of data. Some data are generated directly by the sensor, such
as measurements, device configuration, components status, log files, post-processing
information (e.g., segmented images in computer vision applications), and, possibly,
deep neural network models. The remaining data come from external sources, such
as end-users or other connected devices (according to the ubuquitous computing
paradigm). Such huge amount of data could overwhelm existing processing and
storage techniques and systems. Hence, smart sensors must have the software and
hardware capabilities to store, manage, and process the collected data efficiently.
This requirement collides with the fact that many off-the-shelf devices have limited
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Figure 1.3. The basic edge computing infrastructure Yu et al. (2017).

storage resources, which impose severe constraints on the data accumulation capa-
bilities. At the same time, excessive data accumulation affects the interpretability
of a service. For these reasons, future research efforts should be devoted to the
design of efficient data aggregation and selection criteria to prevent information
overload and data accumulation, and to improve the interpretability of the sensing
results.

e Wearability: Modern wearable devices can incorporate sensing, actuating, com-
munication and energy storage functionalities; hence, they play a fundamental
role within the IoT framework Balsamo, Merrett, Zaghari, Wei, Ramchurn, Stein,
Weddell, and Beeby (2017). In particular, body worn sensors are becoming popular
in sport, entertainment, medicine and security Brutti and Cavallaro (2017); Davison,
Mayol, and Murray (2003); Gu and Ren (2015); Jiang et al. (2018) (Fig. 1.4).
Despite this, there are still many significant research challenges around achieving
robust solutions: the hardware miniaturization and integration should be designed
to maximize the usability and the ergonomics; the materials should be flexible,
stretchable and washable; the electronic components have to be robust and with
low energy operation; software algorithms should mitigate environmental distur-
bances and ego-noise from the wearer (for instance, videos captured with body-worn
cameras are often affected by motion blur Chang et al. (2018)).

Figure 1.4. Example of body-worn camera.

11
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Multi-sensor systems

When networked or integrated, smart sensors can cooperate in order to carry out more
complex tasks and achieve collective goals (e.g., maximise the number of tracked objects
in visual sensor networks) Micheloni et al. (2010); Park and Oh (2020). A multi-
sensor system integrates a number of sensors to achieve a specific task. Multi-sensor
systems offer several advantages over single-sensor counterparts: at first, the on-board
processing and storage resources allow to exploit information fusion techniques to refine
the incoming data and, therefore, to attain better estimation and control performance Rao
(2001); secondly, different sources of information enable high levels of parallelisation
and specialisation Esterle et al. (2017), induce inherent robustness and complementarity,
and allow inferences that are not possible with single-sensor measurements Nakamura,
Loureiro, and Frery (2007). In general, multi-sensor systems are composed by sensors
that can be homogeneous or heterogeneous, spatially distributed or embedded in a unique
sensing platform, where, in this work, a sensing platform is any physical device endowed
with one or more sensors on-board?. According to this definition, multi-sensor systems

can be divided into single-platform and multi-platform solutions®.

Multi-Sensor Single-Platform A Multi-Sensor Single-Platform system refers to a
unique sensing platform comprising more than one sensor on-board (i.e., sensor-rich
platform). The platform can be static Varotto and Cenedese (2021b) or dynamic Varotto
et al. (2021), while the sensors can be homogeneous (e.g., multi-camera robots) or
heterogeneous (e.g., robots endowed with audio-visual sensing capabilities). The former
are referred to as uni-modal platforms, while the latter are called multi-modal platforms.

Heterogeneous perception capabilities is an increasingly prevalent property in cyber-
physical systems Lewis, Goldingay, and Nallur (2014), due to the fact that multiple sensing
modalities induce inherent robustness and complementarity (i.e., different properties
of the environment can be perceived); moreover, the aggregated multi-modal data
allow inferences that are not possible with uni-modal measurements. Nevertheless,
heterogeneous data sources suffer from different types of noise, they might produce
conflicting features, and they often require different calibration procedures, each of which
might involve extensive human intervention (see Chapt. 3 for further details). Examples
of multi-modal platforms are audio-visual sensing devices, composed of microphone array
and a monocular camera Qian, Brutti, Lanz, Omologo, and Cavallaro (2021a,b); Wang,
Sanchez-Matilla, and Cavallaro (2019): the camera provides information-rich data, while
audio signals allow to better handle occlusions and to collect information from a wider
sensing domain. Another example is provided by the turtlebot in Fig. 1.5; it allows
to integrate a variety of different sensors (cameras, LiDAR, IR) into a single robotic
platform.

4This definition can be eventually extended to the RPA framework, where a sensing platform is
not a physical device, but a digital entity; in this context, it is possible to extend also the definition of
sensor, from a device that measures physical properties of the environment, to software tools that extract
information from files or cloud databases.

5This Chapter provides a preliminary and qualitative categorization; for a more formal discussion,
the reader is addressed to Chapter 3.
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Figure 1.5. Turtlebot3 is a typical multi-modal platform. It is a small ground robot set up for
a variety of USB cameras, RGB-D sensors, lidars, IR and ultrasonic sensors as well.

Multi-Sensor Multi-Platform  Multi-Sensor Multi-Platform systems exploit the
communication capabilities of pervasive sensors to create sensor networks, which consist
of spatially distributed devices that are employed to monitor environmental conditions
(e.g, temperature), detect anomalous events, or track the trajectory of people or objects.

A sensor network is said to be wireless (WSN) if each node in the network is equipped
with wireless communication technologies (e.g., bluetooth or WiFi Zafari, Gkelias, and
Leung (2019)), as well as with an on-board energy storage system (e.g., a battery).
A WSN is then said to be smart when any of its node is a smart sensor Zhang et al.
(2004). A WSN is cooperative when its agents (i.e., the sensor nodes) share information
with the purpose of taking collective decisions; the final aim is the improvement of
the perception capabilities in terms of quality and speed Hu, Xie, Xu, and Xu (2014).
Thanks to their cost-effective and easily deployable nature, wireless sensors are often
employed in large scale networks; these require the design of efficient information fusion
and decision making strategies to manage the sensors’ energy consumption, as well as
the communication and processing workload over the network. The evolution in robotics
and embedded systems have enabled the introduction of mobile sensor networks (see
Fig. 1.6). These are composed of smart sensor nodes with additional degrees of freedom
which allow them to move in space; examples are sensorized ground, underwater or aerial
autonomous robots®. Swarms of mobile sensors have the ability to simultaneously gather
information from disjoint locations, enlarging the spatial and temporal coverage of the
network. Fig. 1.6(a) shows an aerial mobile camera network that attains optimal area
coverage through the control of the UAVs position and the cameras PTZ parameters.
Finally, a sensor network is multi-modal if it is composed by heterogeneous sensors.
In addition to perception heterogeneity, certain applications require the simultaneous
use of robots with actuation and morphological heterogeneity (see Fig. 1.6(b)); this is
common in cooperative localization, surveillance, assistive navigation, exploration and
mapping Chen, Xu, Ren, and Chirarattananon (2021)7. For instance, smaller platforms
have access to narrow passages, but their payload is limited Chen et al. (2021); therefore,
it usually advisable to employ larger robots that carry application-specific payloads (e.g.,

5In this work, the emphasis is on autonomous perception systems; hence, a sensorized robot is
considered as a mobile sensing platform.

"To avoid confusion, the term heterogeneous robots is used when the focus is on actuation and
morphological properties; otherwise, when the emphasis is on the perception capabilities, the term
heterogeneous sensors is used.
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long-duration batteries, heavy sensors or actuators) Rizk, Awad, and Tunstel (2018).

Figure 1.6. From a perception point of view, a group of connected sensorized robots is a
mobile WSN. (a) Swarm of camera-equipped UAVs representing a homogeneous and
uni-modal mobile camera network Schwager et al. (2011); (b) two heterogeneous
mobile robots, where the heterogeneity is mainly related to the morphological and
operational characteristics of the robots.

1.4.1| Applications

Multi-platform solutions are often employed to compensate the limited computing and
sensing capabilities of the individual sensors; in addition, sensor networks are more fault-
tolerant with respect to systems relying on a single-platform, even if they come at a cost of
higher logical and structural complexities. Multi-sensor systems are common in a variety
of applications, ranging from civil and private contexts to emergency missions in post-
disaster scenarios. In industrial environments, collaborative fleets of sensor-rich mobile
robots are being utilized in the manufacturing sector and in logistics warehouses. The
high covering capabilities of large scale WSNs are often exploited to monitor widespread
areas for the surveillance of urban streets Varotto, Zampieri, and Cenedese (2019b),
airports, and shopping centres. Nowadays, modern sensor fusion techniques simplify the
deployment of sensor networks also in ambient intelligence and Intelligent Transportation
Systems (ITS), especially regarding tasks like localization and tracking Varotto et al.
(2021); Varotto and Cenedese (2021c), advanced driver-assistance systems Varotto and
Cenedese (2021a), and access control systems Varotto and Cenedese (2021b). At the
same time, cooperative multi-robot systems have been shown to significantly improve
the efficiency of Seach and Rescue (SAR) missions, with faster search of victims, initial
assessment and mapping of the environment, and real-time monitoring Queralta et al.
(2020). Finally, smart sensor networks provide numerous opportunities for smart grid
applications including power monitoring, demand-side energy management, coordination
of distributed energy storage, and integration of renewable energy generators Jaradat
et al. (2015). In smart grids, intelligent monitoring and sensing capabilities are necessary
to insure real-time response from the power grid. In particular, the growing electrification
process resides on the pervasiveness and efficiency of electric energy supply systems;
hence, a reliable and real-time monitoring is highly required to provide solutions quickly,
especially when natural accidents severely affect the transmission lines status. In this
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context, wireless sensors are also used to collect real-time weather information, so that it
is possible to accurately predict the energy availability in the near future; these forecasts
are particularly crucial for energy scheduling models relying on renewable energy sources,
like wind energy and solar energy.

1.4.2 Use case: smart camera networks

Smart camera networks are a prominent example of multi-sensor multi-platform systems.
As discussed in Sec. 1.3.2, a smart camera can be either fixed, PTZ or mobile. Therefore,
from the perception point of view, a smart camera network is obtained from the integration
of a number of fixed or PTZ smart cameras in a common network, as in motion capture
systems (see Fig. 1.7); alternatively, smart camera networks can also be composed by a set
of cameras mounted on interconnected ground or aerial vehicles (see Fig. 1.6(a)). In both
cases each camera has reasonable computing and communication capabilities, therefore
such networks of smart cameras can also be treated as systems with distributed sensing
and image processing resources. These systems can be organized either in a centralized
or decentralized manner. In the former case, some sort of pre-processing is done on
the individual cameras, but the most of the computations are performed at a central
server, which merges information provided by individual cameras. On the other hand,
in decentralized architectures cameras organize themselves and collaborate on a certain
task; video streams can be analyzed independently and only abstracted information is
delivered to other nodes alternatively, videos can be jointly and cooperatively processed
by sharing information in a distributed manner. In general, the embedded intelligence
of each camera allows to integrate adaptivity and autonomy to the network, and it is
fundamental to stimulate the emergence of collective and cooperative behaviors Micheloni
et al. (2010).

The ultimate vision is to provide a service-oriented network which is easy to deploy,
adapts to changes in the environment, and provides various customized services to users.
Clearly, this increases the complexity of the system as future smart camera networks
will operate on a vast scale, drawing on mobile, internet-connected resources. They will
comprise heterogeneous and decentralised aggregations of visual sensors with other non-
visual sensors. Furthermore, the potential to include citizen-contributed mobile streaming,
videos coming from body-worn and robot-mounted cameras, alongside more traditional
fixed or PTZ cameras, leads to a number of difficult and important challenges Esterle
et al. (2017).

Applications The aim of distributing smart cameras is mainly enhanced reliability,
coverage of larger areas and the ability to resolve occlusion Mavrinac and Chen (2013).
These properties are integral part of applications like unmanned search and rescue
operations, disaster management, wildlife conservation, environmental mapping, and
multi-camera target tracking. In healthcare instead, smart camera networks can assist the
monitoring of at-home patients. Many of these applications require cameras to develop
autonomous, cooperative and collective intelligence; this is useful to address unforeseen
situations, predict the presence of events of interest, manage fluctuating resources, and
regulate the network parameters for task optimization. Some examples of collective
intelligence are given by cameras selection for video surveillance systems Varotto et al.
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Figure 1.7. Motion Capture Systems are typically composed by several cameras to resolve
occlusion problems (https://www.vicon.com).

(2019b), pan-tilt control for minimal FoV intersection in environmental monitoring, and
multi-task allocation Esterle et al. (2017); SanMiguel et al. (2014).

1.4.3| Challenges and Trends

Multi-sensor systems represent a multidisciplinary research field, at the frontier between
robotics and information technology. In particular, the high complexity of smart sensor
networks poses new challenges that are based upon the system robustness and reliability,
real-time operation, cooperative self-reconfiguration and self-healing capabilities. The
next steps to the future development of intelligent sensor networks are as follows.

e System reliability and fault tolerance: if a single node of the network goes
down, the network should continue working without interruptions. Moreover, it
must provide actions to detect and recover from the failure Khalastchi and Kalech
(2019).

¢ Communication robustness: network bandwidth, latencies, limited communi-
cation ranges, and communication faults represent the bottleneck in the imple-
mentation of most cooperative algorithms, especially in mobile robotics. For this
reason, multi-robot coordination in communication-constrained environments will
be a fertile research field in the future Kemna, Rogers, Nieto-Granda, Young, and
Sukhatme (2017).

¢ Deployment in real scenarios: little attention is given to the analysis of multi-
sensor systems in real-life scenarios. Therefore, more research (and development)
is needed on software and hardware components in order to facilitate inter-node
communication and to simplify the deployment procedures. To this aim, ubiqui-
tous smart sensor nodes should form dynamic networks, where each node can be
easily removed and added by non-expert users, supported by the self-organizing
functionality of the network. In this direction, it is fundamental to design service-
oriented architectures that facilitate operations like maintenance, installation and
integration.

e Multi-modality: researchers are expected to start integrating different sensors
(audio, seismic, thermal, visual, radio) into distributed multi-sensor networks. By

16


https://www.vicon.com

1.4 Multi-sensor systems

Figure 1.8. Examples of heterogeneous cameras (fixed, PTZ, mobile, and body-worn) Esterle
et al. (2017).

fusing data from multiple sensors, the system exploits the distinct characteristics
of the individual sensors, resulting in an enhanced overall output.

e Distributed intelligence and collective learning: multi-agent systems are
mostly used to carry out tasks where the emergence of collective behaviors provides
some benefit. Hence, one of the main future challenges in machine learning and
robotics research is the design of multi-agent architectures where each device
contributes to the collection of data used to increase the intelligence of the entire
system, considered as a whole. Some of the main methodological concepts related to
this task are multi-agent reinforcement learning Hernandez-Leal, Kartal, and Taylor
(2019), game theory Griinwald, Dawid, et al. (2004) and federated learning Li, Sahu,
Talwalkar, and Smith (2020).

o Heterogeneity: today’s technology is mature to envision large networks composed
of heterogeneous smart devices (static, wearable, and mobile). These may interact
and coordinate autonomously, being aware of their sensing, physical and operational
differences. Fig. 1.8 shows examples of heterogeneous cameras that can cooperate
within the same network®. In this network, each device is specialized into a specific
task: fixed cameras constantly monitor environmental sectors of high relevance, PTZ
cameras are regulated to focus on sporadic event of interest, body worn cameras
are used to take detailed close-up videos, mobile cameras exploit their dynamic
nature to provide a panoramic overview of the environment, or to accomplish tasks
that require robotic actuation capabilities (e.g., object picking).

¢ Real-time requirements and synchronization: multi-sensor systems are de-
signed to work with large amount of data and processing workloads; at the same
time, it is necessary to deal with network and device limitations, as well as strict
synchronization among all network nodes. As a consequence, working under real
time requirements is a difficult constraint to be guaranteed.

8Note that, in this case, the network is homogeneous from the sensing perspective (i.e., uni-modal),
but heterogeneous from the operational point of view.
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¢ Resource and task allocation, data dissemination: one of the main advan-
tages of multi-agent systems is that the nodes can cooperate to optimize the shared
usage of processing and memory resources, so that the network lifetime is max-
imized. However, in large networks, task allocation problems often lead to an
intractable combinatorial explosion of possible configurations. Thus it is necessary
to introduce some automation, either through a-priori optimisation, or by online

machine learning techniques.

e Collaborative self-organization: future research in control theory and machine
learning will guarantee more efficient inter-node collaboration for supporting self-
organizing and self-configuring networks. In particular, smart nodes are expected to
adapt themselves to environmental changes and non-fixed network topologies. The
former are very common in real-life applications and are mainly caused by external
events, such as illumination and weather conditions in video surveillance systems,
dynamic obstacles in smart warehouses, time-varying occlusion, and cluttering
in domestic and industrial environments. Topology variations, instead, are often
due to changes in the network behavior. For instance, mobile robots introduce
continuous topological fluctuations, communication faults affect the inter-node
communication topology, while camera pan and tilt rotations modify the sensing
topology in visual sensor networks (i.e., the FoVs projected into the environment
are time-varying). To deal with these scenarios, smart sensors should be endowed
with self-calibration SanMiguel et al. (2014); Varotto et al. (2019a), self-localization,
and self-reconfiguration capabilities SanMiguel et al. (2014) In this regard, one
of the main challenges to be tackled is the fact that self-organisation in sensor
networks often requires a high degree of interaction among the individual devices;
this can be error prone and may result in higher communication demands.

Research activity outline and structure of the manuscript

The focus of this Thesis is on the design of autonomous data acquisition and perception
schemes for multi-sensor applications. In particular, the dissertation explores a variety of
use-cases, with the aim of analyzing and solving some of the open questions related to
robotic perception systems and smart connected sensors. After this Chapter where general
concepts have been introduced as regards to pervasive and smart sensing technologies,
the rest of the Thesis in organized into four main parts.

1. Chapt. 2 provides the background and the main motivations towards the Multi-
Sensor Probabilistic Active Sensing (MS-PAS) framework.

2. Chapt. 3 introduces the first contribution of this work, by formalizing the MS-PAS
paradigm (under the context of active position estimation).

3. Chapters 4-7 represent the Thesis core, since they describe the predominant research
studies carried out during the Ph.D. activity. The objective of these Chapters is to
investigate the applicability and effectiveness of the proposed MS-PAS framework
in some application scenarios; these include Localization (Chapt. 4), Tracking
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(Chapt. 5), energy-constrained video surveillance systems (Chapt. 6), and IoT
for connected vehicles (Chapt. 7). In each Chapter, the devised techniques are
validated through comparison with other literature solutions, according to spe-
cific performance metrics; the results are supported with theoretical statements,
numerical experiments of realistic case studies, and, when available, with real data.

4. Chapter 8 summarizes the principal achieved results, draws the general conclusions
and presents potential future works for the contents of this dissertation.

The manuscript ends with the appendix in Chapter A, regarding Gaussian Process
Regression, Bayesian Optimization, and Recursive Bayesian Estimation.

1.5.1 | List of publications

The following list provides the full catalog of the author’s publications. The items marked
with a blue asterisk (*) are considered relevant for the Ph.D. activity and hence for this
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MULTI-SENSOR PROBABILISTIC
ACTIVE SENSING: FRAMEWORK AND
CONTRIBUTIONS

Smart sensors are endowed with decision-making and communication capabilities; thus,
they can exploit self-organizing schemes to control and optimize their perception and data
collection process. This Chapter formalizes the paradigm of Probabilistic Active Sensing
for multi-sensor scenarios; it serves as reference for the application-specific variations
that will be presented in the successive Chapters.
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2 Multi-Sensor Probabilistic Active Sensing: Framework and Contributions

Active Sensing

An important component of any robotic and data acquisition system is the processing

and interpretation of the available sensory information. At the lowest level, the sensor
data are used to derive regulatory and actuation signals, while at a higher level they
are used to create models of the environment Papanikolopoulos (1996). In this regard,
to fully exploit the potential of modern smart data acquisition systems, many open
challenges remain to be addressed. In particular, as mentioned in Chapt. 1, the era of
ubiquitous and mobile computing has opened up many exciting research directions in
robotic perception, sensor fusion, and information control Bajcsy, Aloimonos, and Tsotsos
(2018). In this regard, active sensing (AS) Bajcsy et al. (2018) represents a research
framework that stands at the nexus between automation and robotics research, leveraging
the intimate interplay among estimation, perception, and control. According to Bajcsy
et al. (2018), active sensing is the problem of intelligent control strategies applied to the
data acquisition process; hence, it consists in the control of a dynamical system with
actuation and sensing capabilities (e.g., eye-in-hand manipulators Radmard and Croft
(2017)). In line with this definition, an agent is an active perceiver if it knows why it
wishes to sense, it chooses what to perceive, and determines how, when and where to
achieve that perception Bajcsy et al. (2018). The objective of AS is to automate the
perception process and maximize its efficiency, in terms of acquired information or task
completion Bajcsy et al. (2018). If follows that any mature active sensing platforms
should offer a controllable, flexible and adjustable sensory and processing apparatus.
Second, the system must have exploratory capabilities, that is, it must also be able to
evaluate the information gain obtained with each new measurement. Third, the system
must be selective in its data acquisition, in order to be able to act upon the perceptual
information in real time. Fourth, the system must be able to learn Bajcsy et al. (2018).
Given these premises, most AS schemes consider a smart sensor as an intelligent agent
that can reason and decide on the next sensing actions, with the aim to maximize a set
of target criteria, given its current state; thereby, AS allows to collect the most useful
data, given platform-specific constraints. In doing so, AS can trade off between the level
of task completion and the finite quantity of sensing resources (e.g., energy consumption,
mission time, travel distance). For instance, in object recognition tasks not all input
images contribute equally to the quality of the output model, since several images may
often contain redundant visual information; therefore, image selection saves unnecessarily
increased processing times. On the other hand, a certain degree of redundancy can
help to improve the reconstruction in more difficult regions. It is therefore necessary to
propose AS schemes which result in a balanced image selection process Hornung, Zeng,
and Kobbelt (2008).

Fig. 2.1 provides an example of an active sensing system (eye-in-hand manipulator),
compared to a passive counterpart (eye-to-hand manipulator) within a visual servoing
application. The eye-to-hand scheme is composed by a sensor-free robotic arm that
needs to grasp some objects inside a box; the control is responsible for getting the end-
effector closer to the objects inside the box, possibly under some safety and performance
guarantee (e.g., collision avoidance, fast task execution). The control feedback exploits
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Eye-in-hand Eye-to-hand

Figure 2.1. Examples of active (a) and passive (b) sensing systems in robotics.

measurements coming from a static camera, which determines the pose (position and
orientation) of the end-effector and the position of the objects to be grasped. On the
other side, the eye-in-hand manipulator configuration has a camera directly attached to
the end-effector; hence, the arm becomes a mobile sensing platform (with visual sensing
capabilities). Similarly to the passive case, the camera observations are used to feed
the robot controller, but the main difference is that the control inputs modify both the
end-effector location and the sensor configuration (i.e., camera pose and Field of View).
Therefore, each sensor observation is affected by the past and present control actions.
In conclusion, the fundamental difference between active and passive sensing is that the
former provides the possibility to dynamically modulate the overall agent’s behavior by
controlling the measurement process and acting on the sensor configuration; in the latter,
instead, the sensor parameters are constant and the observations depend only on the
properties of the monitored environment Bajcsy et al. (2018).

2.1.1 Motivations

To introduce the main benefits and motivations towards active sensing approaches, we
still refer to Fig. 2.1. As mentioned in the previous Section, active sensing provides
the possibility to act on the measurement process; in turn, this provides the following
advantages.

e Performance optimization: suppose that the robot in Fig. 2.1 needs to collect
all the objects inside the box; if some objects are occluded from the eye-to-hand
camera, or if the resolution is not sufficient to detect all the elements inside the
container, the task can not be completely accomplished and only a sub-optimal
result can be attained. On the other hand, the possibility to move the eye-in-hand
camera allows to better explore the environment and, therefore, to handle possible
bad initial resolutions or to tackle occlusion issues. In general, active sensing
allows to implement a proactive sensor behavior, which seeks to attain the best
performance possible by self-regulating its configuration. Without these capabilities,
the sensor (and, thus, the overall system) is typically more bond to the initial setup
conditions.
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2 Multi-Sensor Probabilistic Active Sensing: Framework and Contributions

¢ Adaptation to dynamic and unstructured environments: if the container
in Fig. 2.1 is movable (e.g., mounted over a ground robot), it can leave the camera
FoV, and the grasping task may be compromised. In this case, a mobile visual
sensor is able to track the box and guarantee a certain task continuity level. In
general, a traditional sensor with fixed structure is often inadequate to perceive
features in dynamic and uncertain environments; conversely, dynamic reconfigurable
sensors can better fit the environmental properties at runtime.

¢ Multi-tasking: suppose now that the objective is to estimate the objects shape
and pick only a subset of them, according to the estimation result. To this aim,
the camera needs to take several pictures at different perspectives for each object.
Obviously, this is not possible in the eye-to-hand scenarios (especially if the robot
can not manipulate the box), while the eye-in-hand setup allows to generate suitable
control inputs so that the final estimation result is accurate enough to proceed with
the successive phase. In general, active sensing allows to combine powerful and
versatile exploration techniques (e.g., object shape estimation) with more executive
ones (e.g., objects picking).

e Larger number of degrees of freedom: active sensing is the control framework
that allows to exploit the degrees of freedom of modern smart sensing platforms.
As a matter of fact, PTZ and mobile cameras offer their main benefits only when
their configuration is regulated and modified over time.

2.1.2 | Applications

In the previous Sections visual servoing has been used as use case to introduce the
concept of active sensing and its main advantages over passive sensing. Indeed, the
main active sensing applications are related to the robotic field, both for research and
industrial purposes. In particular, by enabling autonomous perception in robotic systems,
active sensing has been successively employed in object recognition, classification and
manipulation Calli, Caarls, Wisse, and Jonker (2018); Patten, Martens, and Fitch (2018),
collaborative mobile robotics Carron, Todescato, Carli, Schenato, and Pillonetto (2015);
Haugen and Imsland (2015); Mathew, Smith, and Waslander (2015); Nagaty, Thibault,
Trentini, and Li (2015); Yu, Budhiraja, and Tokekar (2018); Zhou (2012), active sensor
calibration Papanikolopoulos (1996), environmental mapping Masehian et al. (2017);
Popovic (2019), and exploration Bai, Wang, Chen, and Englot (2016); Ghassemi and
Chowdhury (2020); Mavrommati, Tzorakoleftherakis, Abraham, and Murphey (2017).
Active sensing is also fostered by the higher performance guarantees with respect to
passive data collection systems Czarnetzki, Kerner, and Kruse (2010); Patten et al. (2018);
hence, it has been used for optimal sensor coverage Fabris and Cenedese (2019), intelligent
video surveillance systems SanMiguel et al. (2014), and target tracking Varotto et al.
(2021). The capability to balance task execution and knowledge refinement has been
proven to be fundamental in applications like search and rescue missions Du, Zhang, Ling,
and Zheng (2019); Lin and Goodrich (2009); Murphy, Sreenan, and Brown (2019), wildlife
monitoring Cliff, Saunders, and Fitch (2018); Katenka, Levina, and Michailidis (2013);
Rodriguez, Negro, Mulero, Rodriguez, Hernandez-Pliego, and Bustamante (2012), and
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autonomous source term estimation Bourne, Pardyjak, and Leang (2019); Hutchinson,
Liu, Thomas, and Chen (2019b); Hutchinson, Oh, and Chen (2017); Masson, Bechet,
and Vergassola (2009); Park and Oh (2020); Ristic, Angley, Moran, and Palmer (2017);
Ristic, Skvortsov, and Gunatilaka (2016). The high flexibility of the active sensing
paradigm is proven by the fact that it can be employed in digital games and virtual
reality. For instance, the authors of Mousavi, Liu, Yuan, Takac¢, Munoz-Avila, and Motee
(2019) cast an image classification problem into a navigation and planning mechanism,
leveraging on visual attention and deep reinforcement learning; they design a control
architecture that learns to complete a task and, at the same time, it collects only the
necessary observations relevant for the classification problem. Finally, thanks to the
high performance guarantee in terms of sensor management and information processing,
active sensing is today an important player in many IoT scenarios Varotto and Cenedese
(2021a) and smart factories Zhang, Wang, Du, Qian, and Yang (2018).

2.1.3 Use case: Active Vision

Active vision ! applies the active sensing paradigm to camera-based scenarios; in doing
so, active vision combines modern computer vision techniques with intelligent control
algorithms. Active vision involves the continuous interaction between smart cameras
and the environment to decide what to observe and how to prioritize observation tasks.
This information is then used to actively change smart cameras intrinsic and extrinsic
parameters (i.e., pose and PTZ), with the aim to adapt their FoVs, according to specific
(possibly time-varying) tasks. By combining adaptive control techniques with computer
vision algorithms, the active vision framework introduces new capabilities, such as the
derivation of depth maps from controlled motion, the development of efficient vision-
assisted grasping, the design of active calibration and visual inspection techniques Héne,
Heng, Lee, Fraundorfer, Furgale, Sattler, and Pollefeys (2017); Papanikolopoulos (1996);
Varotto et al. (2019a), the minimization of the detection time in objects search Ryan (2008),
the maximization of accuracy and efficiency in localization and mapping problems Popovic
(2019), the gaze control for simultaneous target tracking and area coverage Lathuiliere,
Massé, Mesejo, and Horaud (2019), and the adaptation of camera configuration to
dynamic lighting conditions, to name a few. In this regard, pan and tilt movements are
often used for viewpoint optimization, while zoom is usually regulated to increase the
image resolution and, therefore, to maximize the quality of visual data. If the platform is
mobile, PTZ movements can be substituted Dogancay (2012) (or integrated Varotto et al.
(2021)) with spatial degrees of freedom. In particular, zoom-in and zoom-out actions
are equivalent to a platform coming closer and further; on the other hand, pan and
tilt movements are often replaced by the roll-pitch-yaw orientations in aerial robotic
platforms. More seldom, active vision is also used to tune internal camera parameters,
with the purpose of enhancing the image quality; for instance, it is possible to control
the camera exposure Kim, Cho, and Kim (2018a) in order to prevent image saturation
caused by dynamic lighting conditions.

Applications Active vision algorithms are utilized in industrial inspection, object

!The reader is addressed to Chen, Li, and Kwok (2011) for a survey on active vision applications and
techniques.

25



2 Multi-Sensor Probabilistic Active Sensing: Framework and Contributions

Figure 2.2. Active vision system used to estimate the shape of an object.

recognition and reconstruction, security and surveillance, site modeling and exploration,
mapping, navigation, tracking Chen et al. (2011). In robotics, active vision is used to
supply better visual data for the execution of a given task by systematically changing
the viewpoint of the robot’s sensor Calli et al. (2018). In the object grasping and
manipulation domain, the goal of the active vision system is to increase the success rate
of grasp synthesis algorithms for manipulating objects whose models are not available a
priori Calli et al. (2018); Pang, Xompero, Oh, and Cavallaro (2021). The first step consists
in the reconstruction of some properties of the target object (e.g., shape); to this aim,
the camera is utilized to collect images at multiple viewpoints, since a global description
of objects often can not be reconstructed from only one viewpoint, due to occlusion,
measurements uncertainty and ambiguities (e.g., from a single image it is not possible to
retrieve the distance of the object). The estimation process is then used to control the
movements of the robotic arm and fingers in order to achieve a successful grasp. In this
case, the camera degrees of freedom allow the reformulation of the manipulation task as
an optimal control problem, where the viewpoint optimization algorithm maximizes the
quality of the grasp and, therefore, its probability to be successful. In particular, the
majority of the strategies design the optimization problem such that each new camera
action provides images that minimize the uncertainty on the target physical properties
and for which the confidence in generating a good grasp is the highest (see Fig. 2.2). In
some circumstances it is also helpful to integrate terms related to occlusion minimization
and collision avoidance Ji, Huang, and Huang (2019). In any case, it is necessary to
adopt an eye-in-hand or a PTZ eye-to-hand configuration (see Sec. 2.1).

Probabilistic Active Sensing

Probabilistic AS (PAS) exploits incoming data to generate a belief map Queralta et al.
(2020). This encodes the knowledge gathered during the sensing mission and it is used to
guide the platform decision-making process for the generation of the successive actions.
For instance, in sensor planning for object search (i.e., the problem of finding an object
in an unknown space) Liu, Li, and Hedrick (2015), the belief map models the target
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probabilistic location Liu and Hedrick (2017) and allows to implement selective attention
mechanisms. The search task is a nondeterministic polynomial-time (NP)-complete
problem, whose goal is to maximize the probability of detecting the target with minimum
cost; hence, the next best view is usually chosen according to an optimization problem
over the probabilistic map. This means that the camera FoV at each step is selected based
on statistical metrics regarding the quality of the observations (e.g., the information gain,
or the probability of detection) 2. More in general, Fig. 2.3 depicts a generic bi-modal
probabilistic map, which may represent the spatial concentration of gas particles, the
probabilistic location of an object, or the uncertainty level associated to a navigation
and mapping task. As shown in the Figure, the platform moves from its initial position
towards the highest peak of the map, following a non-linear trajectory.

‘ X(t)

X(0)

Figure 2.3. Example of platform trajectory guided by a probabilistic map, according to the
PAS paradigm.

Major benefits of PAS versus AS reside in the fact that probabilistic approaches account
for realistic perception uncertainties Radmard and Croft (2017); hence, they are suitable
to manage real-world (noisy) scenarios, unmodeled dynamics, and sensing nuisance.
Furthermore, probabilistic decision making has high adaptivity properties Popovic (2019),
it allows to include a-priori knowledge Ramirez, Doucette, Curtis, and Gans (2014), and
it scales well with high-dimensional control spaces (e.g., in environment exploration Bai
et al. (2016)). On the contrary, under these conditions, deterministic approaches often
become computationally intractable Trummel and Weisinger (1986) and ineffective.

For the aforementioned reasons, PAS is expected to be a flourishing research area with
a direct application in environmental mapping and exploration, autonomous source term
estimation, search and rescue, and collaborative mobile robotics.

Multi-Sensor PAS

Novel technologies and the evolution in embedded systems have enabled the integration
of different types of sensors to perform autonomous sensing, among which video Pérez-
Carabaza, Besada-Portas, Lopez-Orozco, and Pajares (2019a), radio Koohifar, Guvenc,
and Sichitiu (2018), and acoustic Haubner, Schmidt, and Kellermann (2019a) sensors

2The reader is addressed to Chapters 3-5 for a deeper discussion on PAS applied to target search and
tracking.

27



2 Multi-Sensor Probabilistic Active Sensing: Framework and Contributions

play a major role, paving the way towards multi-sensor PAS (i.e., MS-PAS) Lathuiliere
et al. (2019); Rajasekaran, Ahmed, and Frew (2020); Varotto et al. (2021). The coupling
and integration of different information sources (either homogeneous or heterogeneous)
opens up new perspectives in scene perception, since the uncertainty of measured data is
mitigated through sensor fusion Khaleghi, Khamis, Karray, and Razavi (2013). Moreover,
the aggregated data allow inferences that are not possible with single-sensor measurements:
multi-sensor platforms enable parallelisation and specialisation Esterle et al. (2017), while
sensors heterogeneity induces inherent robustness and complementarity (i.e., different
properties of the environment can be perceived) Varotto et al. (2021).

With the aim of underling the importance of sensor fusion in real-life applications,
two prominent use cases are provided in the following: Sec. 2.3.1 discusses the role of
active vision in smart camera networks and multi-modal camera networks; Sec. 2.3.2
highlights the role of active sensing and multi-sensor data aggregation in robotic object
manipulation and grasping.

2.3.1 Use case: collaborative active vision

Static camera networks allow to cover wide areas in surveillance and monitoring activities;
nevertheless, their fixed parameters may represent an important limitation in terms
of flexibility and adaptability. More specifically, high coverage capabilities and good
object recognition performance are two conflicting requirements in multi-camera systems:
the former demands wide-camera angles, while the latter necessitates for high image
resolutions. To compensate this problem, camera networks that require both panoramic
and detailed images, are often deployed with a certain degree of redundancy, namely,
with overlapping FoVs between different sensors. This approach introduces robustness
with respect to occlusions and obstacles (since any point in the environment belongs to
two or more FoVs), but, at the same time, it also poses severe economical and operational
limitations. In fact, the FoV overlapping constraint requires a huge amount of video
sensors; therefore, a camera network composed by specialized sensors does not scale well
with the dimension of the monitored environment, with the number of parallel tasks to
be accomplished, and with the level of environmental variability.

The introduction of collaborative PTZ cameras brought new capabilities to surveillance
networks, so that higher flexibility and scalability performance criteria can be reached.
PTZ cameras can adapt their FoVs with the aim to focus the attention on areas of interest.
Hence, some problems related to non-overlapping FoVs can be overcome (e.g., occlusions,
localization and low target resolution) SanMiguel et al. (2014). In particular, smart
camera networks implement the paradigm of collaborative active vision by integrating
intelligent visual nodes that self-regulate their parameters according to the tasks to be
accomplished, the overall network status (e.g., power consumption, bandwidth usage,
number of sensors switched on), and the network actuation capabilities. In addition to
the usual advantages of standard active vision solutions (see Sec. 2.1.1), collaborative
camera networks typically provide higher levels of parallelisation Rinner et al. (2015):
optimization methods enable topology reconfiguration; in this way, the areas of major
importance are covered and the events of interest are tracked, or further analyzed, via
zoom-in resolutions. Another advantage of collaborative camera networks over single-
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camera active vision systems is that the data exchange capabilities improve self-diagnostic
and fault tolerant algorithms Khalastchi and Kalech (2019); Yang, Han, Ge, Ding, Xu,
Jiang, and Zhou (2019a). Finally, the use of sensor fusion techniques generates information
that can not be obtained with monocular vision only, such as depth estimation Aghajan
and Cavallaro (2009).

Collaborative active vison for tracking The following case studies show that
target tracking is one of the main applications that takes advantage from the deployment
of collaborative smart camera networks.

o Tracking with handover: a single PTZ camera is usually not sufficient to cover
large-scale environments, due to the physical saturation limits of the pan and tilt
rotations; this becomes particularly critical in presence of obstacles and occlusion.
Hence, if the task is to track a target, it is not possible to provide any continuity
guarantee to maintain the target always inside the FoV. In this case, a multi-camera
setup expands the sensing coverage and, through collaboration, it is possible to
decide which camera will be the most suitable to track the target, as it moves
across different FoVs (handover). Active vision comes into action when the FoVs
are disjoint and, in order to synchronize the target hand-off, it becomes necessary
to cooperatively control the pan and tilt parameters of each camera.

o Tracking with coverage: most surveillance systems are expected to satisfy multiple,
possibly conflicting, objectives Ding, Song, Morye, Farrell, and Roy-Chowdhury
(2012). For example, in event recognition tasks, it is often necessary to continuously
perform area coverage and to capture close-up pictures of events of interest (if any).
This is only possible with a self-organizing multi-camera architecture that actively
selects which cameras have to narrow their FoV to focus on the target (zoom control);
other cameras must then cooperate to compensate for this lack of information
by changing their parameters and modifying their FoVs accordingly. Overall, the
system must achieve an optimal balance between area coverage maximization and
information gathering. Notably, this task usually involves precise and efficient
pan-tilt control algorithms, either for the reconfiguration of the coverage FoVs, or
for the active tracking mission.

o Multi-target tracking: if the number of targets is large, the level of parallelisation
requires a camera network. The optimization process computes a feasible configu-
ration to satisfy the Quality of Sight (QoS) for each target; this might also include
distributing tasks among active cameras while meeting network constraints.

Multi-modal smart camera networks As already mentioned, camera networks are
useful to cover and monitor wide areas; nonetheless, it is sometimes not practical, in terms
of deployment and maintenance costs, to have video cameras that completely cover the
entire region of interest. Therefore, an alternative is to deploy sparse camera networks,
where cameras are distributed over the most interesting regions and then complemented
by additional sensors with different modalities. It has been shown that these methods
lead to a more efficient usage of the camera resources, by focusing on the most important
parts of the scene: they allow to save power, bandwidth and cost, and they also reduce
concerns of privacy Nayak, Gonzalez-Argueta, Song, Roy-Chowdhury, and Tuncel (2008).
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2.3.2 | Use case: multi-modal grasping

Robots must be equipped with different sensing modalities to be able to operate in
unstructured environments Luo, Bimbo, Dahiya, and Liu (2017). In this regard, the
process of active perception includes the fusion of different data sources, which allows
to generate more meaningful, higher-level representations of the world. Furthermore,
redundant information is useful to reduce the uncertainty on the quantities to be measured
or estimated; at the same time, it increases the reliability of the system in case of failure.
Combining different sensing modalities provides also complementary information and has
a synergistic effect, especially for those environmental features that can not be perceived
using each sensor separately.

Recent studies have shown that grasping and object manipulation are among the
principal robotics applications that benefit from the aggregation of visual cues with other
sensing modalities, ranging from radio and audio signals, to pressure, tactile and proximity
sensors Milighetti, Emter, Kuntze, Bechler, and Kroschel (2006); Papanikolopoulos
(1996); Xue, Wang, Ma, Liu, Pan, and Han (2020). Indeed, the information richness
of visual sensors may be impaired by occlusions, FoV directionality, and illumination
changing Mavrinac and Chen (2013). In contrast, radio and acoustic signals are less
energy-harvesting and provide safer privacy guarantees; however, their noise level requires
robust signal processing techniques when working in adverse environments Milighetti et al.
(2006). In particular, most radio and acoustic localization systems have omnidirectional
domains , so that it is possible to sense the full scene without scanning. Nonetheless, these
systems suffer from relatively low accuracy and have severe problems with background
noise. On the other side, proximity sensors are specifically used to detect the presence
of objects of interests, or obstacles along the robot path. Finally, the sense of touch
in robots can play a fundamental role in enhancing perceptual capabilities; specifically,
vision is complemented by tactile perception when an agent must discriminate different
material properties through physical interaction Luo et al. (2017).

Human-to-robot handover Robots operating in dynamic and unstructured envi-
ronments are sometimes required to exhibit advanced forms of interaction with humans.
Human-to-robot handovers are important for daily household activities, and for industrial
manufacturing. The objective is to deliver an object from the robot to the human, or
viceversa, with strict safety and precision constraints. Thus, human-to-robot handovers
of unknown objects require accurate estimation of hand poses and object properties, such
as shape and weight Pang et al. (2021). To this aim, existing perception algorithms use
multi-modal data (e.g., audio-visual perception Ishikawa, Nagao, Hachiuma, and Saito
(2021); Liu, Feng, Lan, and Chan (2021b)), which provide the best performance in terms
of object properties estimation Iashin, Palermo, Solak, and Coppola (2020) and overall
task safeness Pang et al. (2021).
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2.4 Open research questions and Contributions

Open research questions and Contributions

Active sensing was first introduced in 1985 by the authors of Bajsy (1985); since then, the
AS framework has received a considerable attention, both from academic and industrial
communities. Nonetheless, a number of open research questions still need to be addressed.
In the following, the most relevant for this dissertation are reported.

1. In Probabilistic Active Sensing the actions are taken according to the environmental
model learnt from data. These actions affect the model itself; thus, it is fundamental
to understand how to rigorously formulate and conceptualize the PAS framework.

2. Once the PAS paradigm has been formalized, it is necessary to define the method-
ological tools that allow to efficiently generate and maintain the probabilistic map
over time.

3. In Multi-Sensor PAS it is fundamental to rely on efficient, accurate and robust
techniques that collect and aggregate different information sources to generate
the belief map. Moreover, decentralized multi-platform architectures require to
distribute the information over the agents, in order to have a global synchronization
on the same version of the map. Finally, multi-platform coordination poses severe
challenges regarding system integration and real-time data communication. In this
context, it is of paramount importance some research on how to apply data fusion
and knowledge encryption techniques within the PAS framework. This problem
becomes particularly interesting in multi-platform and multi-modal scenarios, where
each sensing modality and each sensing platform has its own characteristics.

4. Some of the fundamental issues of the active sensing research concern the next
movement and the realization of the motion of the sensor. According to previous
studies Kreucher, Kastella, and Hero Tii (2005b), the computational complexity
of most sensor planning problems is NP-hard; thus, it is necessary to design
control algorithms that guarantee sub-optimal solutions within predefined external
specifications.

5. The majority of AS applications deal with harsh settings where cluttering, environ-
mental noise, and time-varying conditions complicate the effectiveness of control
and estimation tasks. Thus, AS algorithms must be robust to real-life conditions.

6. The research community has to show that it is possible to build robotic systems
with active perception capabilities; namely, robots that are adaptive to varied
environments and tasks, that can deal with unexpected, novel situations and that
can learn from experience. Finally, their performance must be robust, reliable and
safe Bajcsy et al. (2018).

As already mentioned in Chapt. 1, the focus of this Thesis is on the active sensing

paradigm applied to multi-sensor architectures. In particular, the objective is to address
the research challenges enlisted above, by providing the following contributions.
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2 Multi-Sensor Probabilistic Active Sensing: Framework and Contributions

1. The major comprehensive contribution that has been devised in the entire dis-
sertation rests upon the combination and exploitation of distinct disciplines with
the purpose to consolidate both the theoretical and practical frameworks in which
multi-sensor PAS plays a crucial role.

2. The literature on MS-PAS still misses a unified methodological framework; hence,
this Thesis proposes a general and modular scheme to incorporate multi-sensory
data into any probabilistic active sensing problem. The proposed framework serves
as methodological reference for future research and can be applied to a number
of different scenarios, including position estimation, video surveillance, and IoT
applications.

3. The third contribution is the validation of the proposed scheme in four different
real-world case studies: localization, tracking, video surveillance, and parking
estimation for connected vehicles.

4. Another contribution is the development of control techniques for data collection
systems, designed to fit real-world requirements and conditions, such as computa-
tional efficiency, robustness to noise, and accuracy. Throughout this dissertation, a
particular attention is devoted the management of limited resource capabilities, and
to the presence of measurement uncertainties and unstructured environments Calli
et al. (2018), which are handled through Bayesian reasoning and learning techniques.

5. Multi-modal PAS schemes are a promising trend in intelligent perception systems,
thanks to the increasingly prevalence of heterogeneity in robotic systems Lewis
et al. (2014). Along this line, a further contribution stems on the exploitation of
multi-modal sensor fusion techniques, used to refine incoming measurements, learn
the sensors observation models in self-supervised manners, and keep under control
the platform resource usages.
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ACTIVE POSITION ESTIMATION:
METHODOLOGICAL FRAMEWORK

This Chapter proposes a reference methodological framework for PAS and MS-PAS
solutions, within the context of Active Position Estimation (APE), which is the task of
localizing one or more targets using one or more sensing platforms. The fundamental
elements and the tazonomy of any AS scheme are introduced by exploring the state of the
art on autonomous perception systems for localization tasks.
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3 Active Position Estimation: methodological framework

Active Position Estimation

Active Position Estimation (APE) is a specific active sensing task where one Lathuiliere
et al. (2019) or more Pack, DeLima, Toussaint, and York (2009) platforms monitor
and localize one Shahidian and Soltanizadeh (2017) or more Chung and Furukawa
(2009) static Fink and Kumar (2010) or dynamic Ryan and Hedrick (2010) targets
(humans Murphy et al. (2019), animals CIliff et al. (2018), or robots Koohifar et al.
(2018)), which may be active Twigg, Fink, Paul, and Sadler (2012) or passive Liu
and Hedrick (2017). Actuated sensing platforms drive the perception process towards
observations that are informative optimal Shahidian and Soltanizadeh (2017) or efficient
in terms of task completion Lathuiliére et al. (2019). In the APE framework, information-
seeking strategies Aoki, Bagchi, Mandal, and Boers (2011a) adopt explorative policies
that consist of making decisions for next actions in order to maximize the uncertainty
reduction on the target position; this leads to better estimation performance with respect
to passive sensor systems Denzler, Zobel, and Niemann (2003); Queralta et al. (2020).
On the contrary, task-driven approaches bring the sensing platform closer to its task
execution, such as reaching a goal position within certain time/energy tolerances Kreucher,
Hero, and Kastella (2005a).

An APE task can be categorized as Search, Localization and Tracking. Active Search
(ASe) refers to the problem of making data-collection decisions in order to search for
objects of interest (i.e., targets) which have not been detected yet Ghods, Durkin, and
Schneider (2020). In Active Localization (AL), the purpose is to estimate the location
of static targets that have already been detected Fink and Kumar (2010); Hutchinson
et al. (2019b); Park and Oh (2020); Shahidian and Soltanizadeh (2017); Twigg et al.
(2012); Active Tracking (AT) differs from Active Localization in that the targets are
dynamic Wang, Sanchez-Matilla, and Cavallaro (2018). Furthermore, in a Search and
Tracking (SAT) task, Active Search precedes Active Tracking Lathuiliere et al. (2019); Liu
and Hedrick (2017); Pack et al. (2009). The common challenge of all these categories is
to design autonomous and, possibly, cooperative decision making strategies to search and
localize the targets within a set of given resource constraints (e.g., energy consumption,
mission time, travel distance) Popovic (2019). Fig. 3.1 shows the main elements of a
generic APE scheme, namely the targets and the sensing platforms.

This Chapter provides a formal definition of the Active Position Estimation problem,
with a comparative analysis on the main sensing modalities (Sec. 3.2) and control
schemes (Sec. 3.4) involved. One of the main insights of this Thesis is on autonomous
and multi-sensor perception systems; along this line, this Chapter highlights the role of
information fusion and multi-agent cooperation in APE tasks (see Sec. 3.3). Even though
several works discuss the level of cooperation between sensing robots Khan, Rinner,
and Cavallaro (2016); Queralta et al. (2020); Robin and Lacroix (2016); Senanayake,
Senthooran, Barca, Chung, Kamruzzaman, and Murshed (2016), the importance of
multi-modal fusion algorithms is mentioned only in Queralta et al. (2020). However, the
authors of Queralta et al. (2020) specifically focus on search and rescue applications,
while this Thesis promotes the development of a general framework that can be applied to
the entire APE class. Control theory is another relevant part of autonomous perception;
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m-th sensing platform

Target dynamics | Platform dynamics )
7777777777777777 . [P - ----Z----- oo -------------- e |
: ) ! Pie : : . . : | . 1
1 Me—1 —>| f(Pi—1,6,M—-1) : T Sensing units TSt T St = @m (st—1,m,uf_1) H
1 \m
‘ | i ‘ l I
_ | i | * )
: P14 ‘ ¥ " () 1 : St—1,m; U1 ‘:
\ -1 | \: Zy N\ GZtm : | I
z , | ¥ -1
L | 1! ‘ : z : :
**************** | : | | i
1 : | |
) 1 Com Observation ! !
r PP sm) | | P 1Pes Stm) models ! : . f
| | Ug
S — WE—— | | !
1 |
| : \ :
| 1 i
fmmmmmmm— = | - | e i Control I
) - | | | I !
|| 1-st platform |<——2Z¢m | i ] ] 1 p(ze|Pees St,1:m) ! [ — C_______ n
I - ! ] Ul Information fusion [+ “ Map update ) |
a4 | I Z1-
|| M-th platform : {z m,}ﬁf,:l : ] E—— | ) I PPrelZi: :
[ m #m Probabilistic map !
\ St1:M :

Figure 3.1. Generic APE scheme: different targets properties require different APE algorithms

Table 3.1.

and, therefore, sensing platforms with specific requirements. Perception modules,
on-board data management and multi-agent coordination, and platform control are
the most important aspects to be considered in the design of any APE mission.

Comparison of Active Position Estimation methods. Key — SAT: Search and Tracking;
AL: Active Localization; AT: Active Tracking; A: Active; P: Passive. N: number of
targets; M: number of sensing platforms.

Target

Ref. Class “motion _type N M
Liu et al. (2015) SAT  static P 1 1
Liu and Hedrick (2017); Ramirez et al. (2014) SAT dynamic P 1 1
Lathuiliere et al. (2019) SAT  dynamic A >1 1
Pack et al. (2009) SAT dynamic A >1 >1
Fink and Kumar (2010); Hutchinson et al. (2019b); Radak, Baulig, Bijak, Schowalter, and Frey (2017) AL static A 1 1
Sun, Xiao, Li, and Cabrera-Mora (2008); Twigg et al. (2012); Varotto and Cenedese (2021c) ‘

Dogancay (2012) AL static P 1 >1
Hoffmann and Tomlin (2009); Park and Oh (2020); Shahidian and Soltanizadeh (2017) .

Vander Hook, Tokekar, and Isler (2015) AL static A o>l
Czarnetzki et al. (2010); Denzler et al. (2003) AT  dynamic P 1 1
Cliff et al. (2018); Haubner, Schmidt, and Kellermann (2019b); Varotto et al. (2021) AT  dynamic A 1 1
Koohifar et al. (2018); Koohifar, Kumbhar, and Guvenc (2016) AT  dynamic A 1 >1
Van Nguyen, Chen, Chesser, Rezatofighi, and Ranasinghe (2020) AT dynamic A >1 1
Meera et al. (2019) PTS  static P >1 1
Katsilieris, Boers, and Driessen (2012) PTS  dynamic P 1 1
Bourgault, Furukawa, and Durrant-Whyte (2003) PTS  dynamic P 1 >1

hence, the state of the art is reviewed according to the platforms degrees of freedom, the

control methods adopted for the platform actuation, and the main criteria that guide

APE tasks
Tab. 3.1

(see Sec. 3.4).
organizes the reviewed articles according to the Active Position Estimation

method applied, the characteristics of the targets, as well as the number of sensing

platforms involved.

3.1.1

The targets

Let N be the number of targets to be searched and tracked'. The movements of target ¢ at

time instant ¢ can be described by a stochastic Markovian state transition model Katsilieris

In practice, the number of targets is not always known beforehand (e.g., in search and rescue

applications);

moreover, it may also be time-varying (e.g., in video surveillance systems). In these cases,

the uncertainty of the APE problem increases; hence, ad-hoc and more complex planning algorithms are
required Yi, Morelande, Kong, and Yang (2012)
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et al. (2012):

pt+1,€ = f@(pt,éa 77t,£)§ Z == 17 cee 7N
s.t. poe ~ Po

3.1
pie €1, t>0 (3.1)

Mee ~ Z¢

where p;, is the target position, pg, is the initial condition, realization of a random
vector with probability density Py, IT € R? (d < 3) is the workspace (i.e. the environment
where targets move); and n; ¢ is the process noise, realization of a random vector with
probability density Z, and support in R%. More specifically, the bias of Z; (i.e., E[ny])
models the target driving input, while the variance (i.e., var [n;]) accounts for the model
inaccuracies and the state uncertainty. The process model is described by p(pit1.¢/Pte),
which is defined by f; : II x R — II, a (possibly) non-linear function that describes
the dynamics of target ¢ Katsilieris et al. (2012). Typically, (3.1) can be simplified by
assuming the same dynamic behavior and process noise distribution for all targets Wong,
Bourgault, and Furukawa (2005), namely

fi()=f(),B=5; £=1,...,N. (3.2)

A typical choice for Z is the Normal distribution Katsilieris et al. (2012),

n~N (e, 2p) (3-3)

where p, and X, are the bias and variance of =, respectively.

In the APE literature, targets are often classified as either active or passive Deak,
Curran, and Condell (2012).

Active targets We say that a target is active when it occasionally Koohifar et al.
(2018) or continuously Shahidian and Soltanizadeh (2017) releases information on their
presence Khan et al. (2016) (e.g., through radio ID Cantén Paterna, Calveras Auge,
Paradells Aspas, and Perez Bullones (2017b)) or on their position (e.g., GPS coordi-
nates Rodriguez et al. (2012)). To this aim, target and (robotic) sensing platforms
may establish some form of direct communication, for instance via radio CIiff et al.
(2018) or acoustic Wang et al. (2018) devices. Alternatively, active targets propagate
information on their position via radio broadcasting Fink and Kumar (2010) or by spread-
ing specific materials in the surroundings (e.g. hazardous chemicals, fluids, or gaseous
particles Hutchinson et al. (2019b)). The presence of active targets is usually captured by
robots equipped with ad-hoc sensing capabilities (i.e., radio receivers Van Nguyen et al.
(2020), microphone arrays Haubner et al. (2019b), gas detectors Park and Oh (2020));
once the target is perceived, its position is inferred through the extraction of specific
features from the collected data (e.g., the signal strength in radio communication Li, Geng,
Ye, Xu, Lin, and Pang (2018b)) Active targets often carry electronic devices that send
information to the APE system (e.g., portable WiFi transmitters Carpin, Rosati, Khan,
and Rimoldi (2015)). Despite this, it is important to remark that a target is not required
to carry an emitting device to be active: it can be a device-free speaker Lathuiliere et al.
(2019) or a radiation source in critical environments Gao, Wang, Zhu, Huang, Wu, and
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3.1 Active Position Estimation

Du (2018). In addition, it should be noticed that the definition of active target does not
include any awareness or collaboration guarantee from the target to the sensing platform.
Passive targets As opposed to active targets, passive ones neither send their location
information to robots nor hide from spread substances Deak et al. (2012); Khan et al.
(2016); thus, they can only passively reflect the electromagnetic waves emitted from
external sources (e.g., the platform transmitters Rosi¢, Simi¢, and Pejovi¢ (2020)). For
this reason, passive targets are usually detected by sensors like cameras Ryan and
Hedrick (2010) or RADARs White, Williams, and Hoffensetz (2008), via video processing
techniques Redmon, Divvala, Girshick, and Farhadi (2016); Viola and Jones (2001) or
through the variation of a measured signal (e.g., Differential Air Pressure Deak et al.
(2012)).

3.1.2 The sensing platforms

As discussed in Chapt. 2, active sensing can only be accomplished with one or more
sensing platforms with self-regulation capabilities. Let M be the number of sensing
platforms (robots) whose state is sy, € S,,, where S, is the state space of the m-th
robot2. The state space represents the platform degrees of freedom. It is Fuclidean, RY,
when the platform translates in a one Noori, Renzaglia, Vander Hook, and Isler (2016)
(i.e. d = 1), two Park and Oh (2020) (i.e. d = 2) or three Ramirez et al. (2014) (i.e. d = 3)
dimensional space; in this case,

St,m = Ct,m S Rd, (34)

where c¢; ,, denotes the platform position. The state space is a rotation manifold when
the platform can only rotate, either in one direction Katsilieris et al. (2012) (pan/tilt
only platform) or in two Lathuiliere et al. (2019) directions (pan-tilt platform); it follows
that

&mzPy@Te§, (3.5)

where o and 3 are the pan and tilt angles, respectively; S? is the sphere in R3. Finally,
the state space is Riemannian Tron, Vidal, and Terzis (2008) when the state embeds both
translations and rotations Pérez-Carabaza et al. (2019a). There are also high-dimensional
robotic systems, like eye-in-hand manipulators Radmard and Croft (2017), where the
state represents the joint parameters vector and encodes a large amount of degrees of
freedom.

In APE tasks, the detection event is the process of collecting informative measurements
on a specific target SanMiguel and Cavallaro (2017). To this aim, each sensing platform
is endowed with detection capabilities (e.g., object detectors in camera systems Redmon
et al. (2016), or gas detectors in source term estimation® Park and Oh (2020)). Hence,
we can characterize the detection event of target ¢ from platform m, at time ¢, as a

2The same considerations made in Sec. 3.1.1, regarding the number of targets, can be repeated for
the number of platforms, since M is not always known beforehand and it may change over time.

3Source term estimation (STE): estimation of location, emission rate and other variables needed to
describe, through dispersion models, the spread of the hazardous materials (e.g., gaseous pollutants) into
the ambient environment Hutchinson et al. (2019b).
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Bernoulli random variable D} € {0,1} with success probability Varotto et al. (2021)

p(DY" = 11pee,8tm) = Pa(Pr, Stam). (3.6)

The target detectability depends on both the target position and the sensor state.

3.1.3| Active Search and Probabilistic Target Search

Active Search of target ¢ is accomplished before the target detection event has happened
yet in any platform, that is

DM =0; k=0,1...,t Ym € [1, M]. (3.7)

In other words, Active Search (ASe) starts with no target position information available
and may employ a deterministic Mohamed and El-Hadidy (2013), random Cao, Tan, Li,
Gu, and Wang (2006); Gage (1994); Isler, Kannan, and Khanna (2005) or probabilis-
tic Katsilieris et al. (2012) search. Deterministic search follows predetermined patterns,
namely a systematic traversal of the whole environment along a predefined direction?.
Examples of deterministic patterns are the spiral search Bernardini et al. (2017); Fricke,
Hecker, Griego, Tran, and Moses (2016) and the lawn-mower pattern Bopardikar, Bullo,
and Hespanha (2007); Hutchinson, Liu, and Chen (2019a); Ousingsawat and Earl (2007).
On the contrary, random search is based on a completely random choice of the next
platform actions. Randomization is more powerful than deterministic strategies, since
it allows to solve problems that are not solvable by deterministic algorithms Isler et al.
(2005); in spite of this, random search is not always efficient and usually serves as a lower
bound when the objective is to minimize the expected time until target detection Chung
et al. (2011).

Probabilistic Target Search (PTS) Chung et al. (2011); Furukawa, Mak, Durrant-
Whyte, and Madhavan (2012); Katsilieris et al. (2012) accounts for target motion and
sensing uncertainties Katsilieris et al. (2012). In doing so, PTS typically formulates
the search task within a Bayesian probabilistic framework (e.g., Recursive Bayesian
Estimation Arulampalam, Maskell, Gordon, and Clapp (2002); Hue, Le Cadre, and Pérez
(2002); Smith (2013), or Bayesian Optimization Brochu, Cora, and De Freitas (2010);
Frazier (2018); Meera et al. (2019); Snoek, Larochelle, and Adams (2012)). In this way, it
is possible to encode and keep updated the knowledge about potential target locations as
a probability distribution, also referred to as belief or probabilistic map Liu et al. (2015);
this is done by treating no-detection observations (i.e., measurements with no information
on target position) as negative likelihood (see Sec. 3.2.1). PTS methods are based on
decision-making modules that rely on the optimization of a search objective, built upon the
belief map Chung et al. (2011); some examples are the probability of detection Katsilieris
et al. (2012), time to detection Pérez-Carabaza et al. (2019a), information gain CIiff
et al. (2018), or distance to the target Chung and Burdick (2011); Hasanzade, Herekoglu,
Yenigeri, Koyuncu, and Inalhan (2018); Kreucher et al. (2005a). The reader is addressed
to Sec. 3.4.4 for a comparative analysis on the main APE criteria. PT'S has its origins

4The reader may refer to Chung, Hollinger, and Tsler (2011); Robin and Lacroix (2016) for a broader
discussion on all possible active search classes.
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in the research done by the USA Anti-Submarine Warfare Operations Research Group
(ASWORG) during World War II Koopman (1946) and it is currently widely used in both
research and industrial settings. The main motivation stems on the fact that probabilistic
approaches are suitable to real-world scenarios, especially when resource consumption
(energy and time) is critical Pérez-Carabaza et al. (2019a); this is due to the use of
stochastic target motion models Li and Jilkov (2003), combined with the capability of
representing realistic perception uncertainties Popovic (2019); Radmard and Croft (2017).
Moreover, Bayesian-based control has been proven to be faster, more robust, and more
effective compared to traditional control methods that rely on direct (or filtered) sensor
feedback Bourne et al. (2019). In addition, relying on probabilistic strategies is necessary
when dealing with large-scale search spaces; indeed, the inherent NP-hard complexity
of the searching task Hollinger and Singh (2008); Pérez-Carabaza et al. (2019a); Pérez-
Carabaza, Scherer, Rinner, Lopez-Orozco, and Besada-Portas (2019b); Popovic (2019);
Trummel and Weisinger (1986) induces deterministic strategies to be computationally
intractable for very large-scale environments Shubina and Tsotsos (2010), due to their
polynomial Park, Lee, and Chwa (2001) or exponential Hollinger, Singh, Djugash, and
Kehagias (2009); Schlotfeldt, Atanasov, and Pappas (2019) scalability with the size of
the environment. Finally, compared to deterministic path planning, PTS strategies are
more capable to adjust the platform behavior in response to new information Ghods
et al. (2020); Popovic (2019); this higher adaptivity properties are proven to attain more
accurate target position estimates and lower search times (i.e., higher efficiency) Bourne
et al. (2019); Hutchinson et al. (2019b).

Applications Active Search is widely used in the field of search and rescue missions,
where aerial Du et al. (2019), ground Rodriguez, Al-Kaff, Madridano, Martin, and de la
Escalera (2020), or underwater Stone, Keller, Kratzke, and Strumpfer (2011) robots,
embedded with visual Lin and Goodrich (2009), acoustic Sibanyoni, Ramotsoela, Silva,
and Hancke (2018) or radio Murphy et al. (2019) devices, are employed to detect and
localize people in distress or imminent danger.

3.1.4| Active Localization and Tracking

Active Tracking starts the moment ko in which condition (3.7) breaks, namely
ko = min {k € Nst. D" =1}. (3.8)
Active Tracking is referred as Active Localization when targets are static, that is
pie=pe, V=1,...,N. (3.9)

Sec. 3.2 provides an overview of the main sensing modalities adopted in AL and AT,
including vision Ryan and Hedrick (2010), RADAR White et al. (2008) and LiDAR Kumar,
Lee, Hwang, Park, Youn, and Kwon (2020), audio Haubner et al. (2019b), and radio
signals Shahidian and Soltanizadeh (2017). As discussed in Sec. 3.3, AL and AT use
measurements provided by single Haubner et al. (2019b) or multiple Koohifar et al.
(2018) on-board sensors, to control the platform while estimating the target position.
Measurements may be aggregated through sensor fusion, which can be uni-modal Koohifar
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et al. (2018) or multi-modal Lathuiliere et al. (2019), cooperative Park and Oh (2020)
or non-cooperative Shahidian and Soltanizadeh (2017). Similarly to the PTS case, in
probabilistic AL and AT the sensing platform selects the information to extract from the
belief map based on a predefined criterion (e.g. reaching a goal position Hasanzade et al.
(2018), maximizing the information gain Cliff et al. (2018); Hutchinson et al. (2019b));
this information is then injected into the controller, in order to generate the next sensor
action.

Applications  Accidental releases of liquid or gaseous pollutants (i.e., hazardous
materials - HAZMAT) into the ambient environment can occur at industrial facilities
such as petroleum refineries, petrochemical plants, natural gas processing plants, oil and
gas transportation pipelines, and chemical plants. HAZMAT pose both an immediate
and chronic risk to environment and human health; hence, a prompt and accurate
STE is important to predict the spread of hazardous material and enable appropriate
mitigation steps. In fact, the ultimate goal of autonomous STE is to drive the robot to
the location of an emitting source without endangering the personnel. Therefore, the
target in STE problems is represented by the HAZMAT source (usually static), while
the platforms are typically unmanned ground or aerial vehicles, equipped with specific
HAZMAT detectors (e.g, atmospheric sensors Hutchinson et al. (2019b)). According to
the concentration of the HAZMAT, it is possible to retrieve the source position Park
and Oh (2020) by leveraging on specific dispersion models Hutchinson et al. (2017). In
fact, the dispersion rate and density of emitted substances provides information on the
position of the HAZMAT source Hutchinson et al. (2017).

Wildlife monitoring is essential for understanding animal movement patterns, habitat
utilisation, population demographics and poaching incidents. Radio transmitters are
usually attached to animals, so that autonomous robotic platforms (e.g., UAVs) embedded
with radio receivers can track their movements Cliff et al. (2018). Automated wildlife
tracking is necessary because robot systems can access rugged areas that are difficult
for humans to traverse; moreover, manually locating radio transmitters with handheld
equipment is labor-intensive.

The recent development in aerial mobile robotics® has revolutionized several applica-
tions that require live and dynamic camera viewpoints, such as autonomous cinematogra-
phy Bonatti, Ho, Wang, Choudhury, and Scherer (2019); Jeon, Shim, and Kim (2020)
and entertainment Kim, Jeong, Park, Ryu, and Oh (2018b). In films production, flying
agents are employed to follow actors motion, moving through an unknown environment
at high speeds. At the same time, they are required to map the environment to pro-
vide artistic and technical feedback to the producers. In this contexts, to plan smooth,
collision-free trajectories while avoiding occlusions, is extremely challenging even for
experienced pilots. For this reason, the current trend is to exploit autonomous active
tracking modules Bonatti et al. (2019).

Localization and tracking is fundamental in multi-robot cooperative systems Carron
et al. (2015); Haugen and Imsland (2015); Nagaty et al. (2015); Rizk, Awad, and Tunstel
(2019), where teams of robots work together to complete a mission Aranda, Lépez-Nicolds,
Sagiiés, and Mezouar (2015); Chen, Zhang, Xin, and Fang (2015); Lissandrini, Michieletto,

Antonello, Galvan, Franco, and Cenedese (2019). In autonomous warehouse inventory

Shttps://store.dji.com/guides/how-to-use-the-djis-return-to-home
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schemes Guérin, Guinand, Brethé, Pelvillain, et al. (2016), UGVs work as carries to bring
aerial platforms among rows of racks; then, the UAVs are used to scan or pick goods that
are not accessible to the ground robots. From the UGV perspective, the objective is to
locate and reach a desired warehouse planar position. On the other hand, the target of
the UAV is a specific good, after the take-off, and the UGV carrier during landing. Both
tasks must be accomplished in an autonomous manner, relying on APE strategies based
on visual, acoustic or radio signals.

Another application of multi-robot cooperation is rendezvous planning for mobile
recharging stations Mathew et al. (2015); Yu et al. (2018). The task consists of a
cooperative replenishment strategy for a team of battery-powered aerial robots. To
this aim, one or more mobile ground robots are employed as recharging stations, being
equipped with a payload of batteries and automated battery swap systems. The goal
is to schedule paths for charging robots such that they rendezvous with the UAVs, as
replenishment is needed, during the mission.

3.1.5| Search and Tracking

When Active Search precedes Active Tracking, it is referred as Search and Tracking (SAT).
The problem is to continuously search for (known or unknown) targets and to track
already located ones, which are two competing tasks Khan et al. (2016). In fact, while
tracking allows to reduce the uncertainty of a detected target, the search mode is more
explorative and gives the possibility to find previously undetected targets; however, some
targets are left unobserved and their location uncertainty grows. For this reason, tracking
and searching modes are often mutually exclusive; thus, typical SAT solutions Frew and
Elston (2008); How, Fraser, Kulling, Bertuccelli, Toupet, Brunet, Bachrach, and Roy
(2009); Lathuiliere et al. (2019); Pack et al. (2009) are designed so that each robot does
not lock its operation in a given mode, thus facilitating keeping a balance between search
and track operations Frew and Elston (2008); Furukawa, Bourgault, Lavis, and Durrant-
Whyte (2006). This is often implemented through switching policies that leverage on the
number of detected targets Lathuiliere et al. (2019), the uncertainty level, the accuracy
associated to each tracked target Frew and Elston (2008), and the cost of changing from
one mode to the other Pack et al. (2009).

Applications  Collaborative robotics Vicentini (2021) aims at designing robotic plat-
forms capable of cooperating with human beings. Most applications in this field require
to actively search, localize and track people by using on-board sensors. To this aim,
novel technologies have been proposed to extract contextual information regarding user
behaviors (e.g., health monitoring of elderly people, gesture recognition for smart home
applications) Jiang et al. (2018); this data can be used to activate positioning tasks in
the context of assisted living and ambient intelligence Sokullu, Balci, and Demir (2019).
For instance, if a fall detection system Jiang et al. (2018) raises a health monitoring
alarm, then a mobile platform might be used to search for the user and visually verify
their conditions Lewis and Beard (2016).
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R¥W The sensing units

The focus of this Thesis is on probabilistic active perception systems. The main steps
involved into the design of any PAS scheme are:

1. modeling of the perception process;

2. in case of multi-sensor PAS, definition of a sensor fusion technique to aggregate
data coming from different platforms;

3. definition of a statistical signal processing and filtering technique to generate the
probabilistic map from collected (and aggregated) data;

4. definition of the mission objective function, together with a control strategy for the
decision-making module that optimizes the cost function.

Within the APE context, this Section covers the first and third aspects; sensor fusion is
the topic of Chapt. 3.3, while the platform dynamics and control are treated in Sec. 3.4.

3.2.1 The observation model

Each platform may have one Lathuiliere et al. (2019) or more Katsilieris et al. (2012)
sensors. In this Section only the single-sensor case is considered, while the multi-sensor
setup is discussed in Sec. 3.3.

Each platform sensor is characterized by a Field of View (FoV), ®(s,y,), that is the
portion of space where the target Probability of Detection (POD), Pp, is positive Furukawa
et al. (2012); SanMiguel and Cavallaro (2017), namely

D(stm) = {x €R*[ 0 < Pp(x,s0m) < 1} (3.10)

As (3.10) highlights, the FoV is a finite solid in R3, whose shape depends on the POD;
this, in turn, is a function of the sensor state and might be non-constant over ®(s ).
In fact, ®(s¢) is related to the sensor physical properties, such as the border effects,
intrinsic and extrinsic parameters in cameras Furukawa et al. (2012); Radmard and Croft
(2017); SanMiguel and Cavallaro (2017); transmittance in RADARs Skolnik et al. (1980);
geometrical configuration of microphone arrays in acoustic systems Farmani, Pedersen,
Tan, and Jensen (2015); Martinson, Apker, and Bugajska (2011); Vargas, Brown, and
Subr (2018); antenna radiation pattern in radio signals Stoyanova, Kerasiotis, Prayati,
and Papadopoulos (2007); Stoyanova et al. (2007); Zanella (2016). The POD is related
also to the range of a sensor, which determines the largest distance at which a target is
detectable (over all possible sensor’s configurations); formally, for the sensor of the m-th
platform

R,, = max {HXH% . x €R3 Pp(x,81.m) >0, Vsim € Sm} (3.11)

By definition, for the m-th platform in position c;,, at time ¢, it follows that

llct,m — Ptl”% > Ry = Pp(Pie,St,m) = 0, (3.12)

42



3.2 The sensing units

10
ylm] o
~10

0

1
0
)

Figure 3.2. Probability of Detection of a visual sensor Furukawa et al. (2012): the camera can
not detect any object outside the FoV, while the detection capabilities are maximized
at the center of the sensing domain. An object is unlikely to be recognized when
too far or too close to the camera, due to scale and resolution issues.
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namely, a target can not be detected when outside the sensor range. Fig. 3.2 shows
the FOV and the POD of a camera Furukawa et al. (2012). The limited angle of view
restricts the target detectability; border effects reduce the POD along the sides of the
FOV, while depth effects make the target less detectable at larger distances (the range
is R ~ 20m). Different sensors are characterized by different FoVs and different ranges
(3.10)-(3.11); these, in turn, have a direct impact on the target detection capabilities,
according to (3.12).

The behavior of a specific sensor is mathematically characterized through a precise
observation model. An observation model describes the measurements generation process,
relates the target state and the sensor configuration with collected observations, and
statistically characterizes the noise associated to each measurement. An accurate and
reliable observation model is fundamental to apply suitable statistical filtering tech-
niques Arulampalam et al. (2002) that mitigate sensor nuisance, refine collected data, and
quantify the uncertainty associated to an estimation process. Furthermore, observation
models are often at the basis of the controller synthesis in active sensing schemes (see
Sec. 3.4). Finally, observation models affect the accuracy, the computational load and the
convergence rate of most localization techniques Arulampalam et al. (2002); therefore,
they are crucial and powerful tools for the design of any probabilistic APE solution. The
observation model of sensor m w.r.t. target £ can be formalized based on the sensor FoV
and the target POD as Furukawa et al. (2012)

. Y4
hm(pt,ﬁast,mavt)v if D;m =1

(3.13)
@, otherwise

Zt,m(pt,éu St,m) =

where @ is an empty measurement, indicating that the observation contains no information
on the target. Otherwise, when the target is detected, a (possibly) non-linear output
function

by I x Sy, x RP — RP (3.14)

transforms the target position into a p-dimensional measurement vector. The platform
can therefore extract information on the target position by leveraging on the set of
past and current measurements, namely 2. ,,. The analytical form of h,,(-) and the
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dimension of z; ,,, depend on the specific sensor type; for instance, z;,, for a visual sensor
is the projection of the target position onto the camera image plane, according to the
perspective projection equations Aghajan and Cavallaro (2009). The output function
depends also on the (current) sensor state, since different sensing configurations have
different effects on the observation process. An example is given by anisotropic radio
receivers, where the communication quality with the target is strongly affected by the
relative position and orientation of the sensor with respect to the target Zafari et al.
(2019); alternatively, consider the effect of camera intrinsic and extrinsic parameters
in visual observations Aghajan and Cavallaro (2009); SanMiguel and Cavallaro (2017).
Measurements are also affected by the noise component v, realization of a random vector
whose probability density has support in RP. The noise components induces a stochastic
characterization of the observation model; hence, we can equivalently reformulate (3.13)
in a probabilistic manner through the likelthood function

P(Zt,m, D;n’l =1|pte»St,;m) =0(2Zt,m|Pte, St,m) Pp (P, Stm)- (3.15)

The likelihood represents the probability of gathering the measurement z; ,,, given the
platform state and the target position®; in particular, Pp (Pt¢, St,m) refers to the target
detectability, while p(z¢.,|Pt.r,St.m) captures the sensor performance, supposed to be
independent w.r.t. the target detectability. In case of no-detection observations (i.e.,
Ztm = D), (3.15) is referred to as negative likelihood Katsilieris et al. (2012); Koch (2007)
and it holds

p(zt,m = @7 D;nylzo | pt,fv St,m) =1- PD(pt,fa St,m)- (316)

3.2.2 | Probabilistic map

An APE task is said to be probabilistic when information about the target location is
modeled with a probability map, kept updated through observations collected by all M
platforms until time ¢, that is z1..1.a7. As Fig 3.1 shows, the map is then used to guide
the platforms towards the next actions Bourgault et al. (2003).

Most probabilistic APE solutions adopt Bayesian filtering Chen et al. (2003) or Gaussian
Process Regression (GPR) Rasmussen (2003) for the map generation and update process.
In the framework of Bayesian filtering, the map is represented by the posterior distribution
of the target location given current and past measurements, namely p (pt7g|Z1;t’1; Mm). To
compute this posterior, Recursive Bayesian Estimation (RBE) if often applied (e.g.,
Kalman filtering Shahidian and Soltanizadeh (2017), particle filtering Arulampalam
et al. (2002); Smith (2013)). The major benefit of RBE is that it allows to efficiently
and recursively update the map, as new measurements are collected. In particular,
Sequential Monte Carlo approaches Smith (2013) allow to treat non-linear and non-
Gaussian likelihoods; however, their particle-based approximation makes it difficult
to compute uncertainty descriptors (e.g., posterior entropy) from the particle-based
approximation of the posterior density Boers, Driessen, Bagchi, and Mandal (2010). As
discussed in Sec. 3.4.4, this is a central issue in APE literature.

SFor this reason, the observation likelihood is also called generative model: each datapoint z: ., is a
realization of a random vector whose probability distribution function is the likelihood in (3.15)
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Some APE problems are formulated as environmental mapping tasks, where the target
location is inferred from the estimated and reconstructed spatial distribution of a physical
quantity. For instance, a target can be localized by estimating the maximum of a source
signal strength Carpin et al. (2015); Ghassemi and Chowdhury (2020)) or from occupancy
maps Khan, Yanmaz, and Rinner (2014); Meera et al. (2019). In this framework, a
common approach is to tesselate the workspace Il into a grid map and apply RBE to
each cell of the grid Khan et al. (2014). The main drawback of this method is the poor
scalability property in large-scale scenarios or when high spatial resolutions are required.

As an alternative to tessellation or RBE, the target posterior distribution can be
estimated directly over the continuous domain II via GPR. Indeed, Gaussian Processes
encode spatial correlation structures in a probabilistic and non-parametric manner; they
are also capable of accounting for prior knowledge and data dependencies. Furthermore,
GPs provide predictions with uncertainty measures, useful to guide robots towards more
uncertain areas. GPs were initially unpopular for online APE planning applications,
due to their computational complexity and non-recursive nature, as well as their bad
scaling properties with large datasets. Indeed, a critical problem for the long term
tasks is the large-scale accumulated data, which might exceed the capacity of on-board
computational hardware. To alleviate the computational bottleneck caused by large-scale
data accumulated, some methods for reducing the computing burdens of GPs have been
recently proposed (see Capt. 7). For example, sparse GPR Ma, Liu, and Sukhatme
(2017) and active sampling (see Chapt. 7) dynamically select only the most informative
data, while abandoning the samples that are less informatively novel (i.e., it is retained
only a subset of data that provides the greatest contribution). Other approaches suggest
efficient and online GP model refinement techniques hinging on Bayesian recursive
algorithms Popovic (2019).

3.2.3 Perceiving passive targets

Assuming the target to be equipped with ancillary emitting devices is a constraining
hypothesis in many real-life applications. For instance, in search and rescue missions
and video surveillance the objective is to detect people (or objects) that, in general, are
not able to establish any kind of communication with the sensing platforms (i.e., the
targets are passive). Sensors for perceiving passive targets include cameras, RADARsS,

and LiDARs.

Vision-based control, or visual servoing, is widely used for target search and track-
ing Chung and Furukawa (2009); Furukawa et al. (2012); Pérez-Carabaza et al. (2019a,b);
Radmard and Croft (2017); Ramirez et al. (2014); Ryan and Hedrick (2010). The main
motivation stems on the affordable cost of cameras and the high information content of
visual data (i.e., images); furthermore, various computer vision applications have greatly
benefit from the recent advances in signal processing and artificial intelligence (deep
learning, in particular), such as object detection and classification, action and activity
recognition, and human pose estimation Voulodimos, Doulamis, Doulamis, and Protopa-
padakis (2018). In spite of this, occlusions and Field of View (FoV) directionality limit
the range, applicability and success of camera-only platforms Mavrinac and Chen (2013).
Another downside of this technology lies in the fact that adverse weather conditions, e.g.,
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fog or rain, or external light sources, can severely affect its output. Moreover, single
monocular cameras can not provide accurate distance measurements.

Visual servoing systems use feedback information extracted from a camera to control
the motion of a robot Radmard and Croft (2017), or the parameters of the camera
itself (e.g., pan, tilt, zoom, exposure) Czarnetzki et al. (2010). In this latter case, visual
servoing is referred as active vision Bajcsy (1988); Bajesy et al. (2018); Chen et al.
(2011). To avoid inefficient search strategies, characterized by local minima and unstable
behaviors Radmard and Croft (2017), POD modeling is a critical aspect when dealing
with vision-based systems Meera et al. (2019); SanMiguel and Cavallaro (2017). A
realistic camera observation model should consider

e image edge effects: the image plane has poor detection capability on the edges, due
to distortions caused by the camera sensor Chung and Furukawa (2009);

o detection depth range: distant objects are seen at low resolution and their detection
probability is low Furukawa et al. (2012); Ghods et al. (2020); Meera et al. (2019);

o scale effects: objects too close to the camera may not be recognized, due to poor
scale-invariance properties of many computer vision algorithms.

To account for these phenomena, a possible detection model is Radmard and Croft
(2017)

1

i clug, by)e(v, Ly)

c(z,y) =1+ e(—D'u@—y) (3.17)
by = (=1)"(Lu/2 = €), £y = (=1)"(Ly/2 — €)
T(dy) = [(1+ Pt (1 4 feldi=d)] !

where L, and L, represent the image plane dimension; (u,v;) is the target position
projected onto the image plane; ds is the shortest distance at which the target is detectable;
d; is the target distance; ¢, €, 85 and 5, are user-defined parameters. Alternatively, the
POD can be modeled as a bi-variate Gaussian distribution over the camera image plane,
resembling Fig. 3.2 Liu and Hedrick (2017); Liu et al. (2015). The depth effect can be
accounted separately by modeling the POD as piecewise continuous function of the sensor
altitude Ramirez et al. (2014). Modeling the POD as in (3.17) or through Gaussian
functions has a strong intuitive rationale and it often works in practical applications.
Nonetheless, these models incur in a formal issue: the infinite support that characterizes
¢(z,y) and Gaussian functions is not compatible with the limited sensing domain of
cameras. In this regard, literature offers more realistic camera models Pérez-Carabaza
et al. (2019a) that handle the limited domain of visual sensors, but they often require
extensive user-defined parameters tuning.

LiDAR and RADAR are remote sensing devices used for detection, tracking, and
imaging of various objects, especially in agriculture and advanced driving assistance
systems (ADAS) Raj, Hashim, Huddin, Ibrahim, and Hussain (2020). They both use a
transmitter to emit a wave (light for LiDAR, radio for RADAR) and, by measuring the
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Figure 3.3. A comparison of LIDAR and RADAR accuracy: the image formed through a LiDAR
system is much more detailed than the one formed through RADAR.

time it takes the wave to hit an object and bounce back to the receiver, they can measure
the distance to the object. Both technologies are highly effective at night, but RADAR
scanners Dogancay (2012); Katsilieris et al. (2012) are cheaper, have longer detection
ranges (up to 200 m) and allow for measurements with higher reliability and robustness.
In particular, radio waves have low attenuation, which allows them to travel minimally
disturbed even in poor weather and without being affected by light conditions. However,
the main problem of RADAR technologies is the high sensitivity to environmental
disturbances, interferences from external sources, and cluttering, as most radio-based
detection systems; moreover, the SNR is strongly related to the target distance and to its
scattering coefficient (that, in turn, is related to the material reflectivity) Skolnik et al.
(1980). Finally, RADARSs can not distinguish different types of objects.

On the other side, light signals work in the nanometer range, making LiDAR systems
much more accurate and precise than RADAR systems (see Fig. 3.3). A lower wavelength
also means that a LiDAR system can detect smaller objects. High resolution and real-time
3D representation (point cloud) of the environment is helpful to obtain shape and distance
to surrounding objects, thus facilitating object detection and classification. The downside
of LiDAR systems is that they use light waves as a medium, which strongly affects the
measurements process. For example, LiDAR systems do not perform as well as RADARs
in bad weather.

3.2.4| Perceiving active targets

Active targets propagate in the environment position-related information (e.g., substances,
sound, radio frequencies) from which the sensing robots can perceive their presence. Most
of the works concerned with active targets typically suppose the target always inside
the sensing range; therefore, they neglect the search phase and assume already detected
targets Koohifar et al. (2018). Thus, they often differentiate in the way target-informative
data are used to perform efficient Active Localization and Tracking tasks.

Concentration sensors such as gas Park and Oh (2020) and atmospheric Hutchinson
et al. (2019b) particles detectors are embedded in autonomous sensing vehicles employed
in STE tasks. Traditionally, a network of static sensors on the ground are used to
estimate the source term; however, it is infeasible to cover all regions of importance with
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sensors dense enough to determine the source before it has spread significantly. Hence,
recently mobile unmanned sensors have been equipped for STE. Mobile sensors provide
the additional ability to perform boundary tracking of the contaminant and source seeking
to aid in the emergency response. Nevertheless, using mobile sensors for STE introduces
an additional area of research, concerning how to optimally move each sensor in order to
produce the best estimate of source parameters within the minimum amount of time, or
effort. The solution requires an interdisciplinary fusion of a number of robotics research
areas such as autonomous search, multiple robot cooperation, informative path planning
and control.

Acoustic signal-based localization techniques often leverage on the energy of the
incoming signal, or on the time-related information (i.e., time stamps) contained in
modulated acoustic signals; from this information, the microphones array mounted
on the robot can estimate the transmitter-receiver relative distance or bearing Cobos,
Antonacci, Alexandridis, Mouchtaris, and Lee (2017). MUSIC Schmidt (1986) or SRP-
PHAT DiBiase (2000) algorithms are typically used to estimate the relative Angle
of Arrival (AoA) between the robot and the source. Alternatively, AoAs can also
be measured sequentially, for instance by a moving robot equipped with microphone
arrays Haubner et al. (2019b). On the other hand, inferring distance information from
microphone data is generally difficult in reverberant rooms and often relies on labeled
training data Brendel and Kellermann (2018). In general, audio signals enable high
localization accuracy Haubner et al. (2019b) and are characterized by wider FoVs with
respect to visual ones Lathuiliere et al. (2019); however, this technology is affected by
critical pitfalls, like sound pollution Wang et al. (2019), short reception ranges (~ 10m),
extra hardware requirements and, consequently, the need of intensive pre-deployment
phases with accurate microphones synchronization. Moreover, acoustic signals are subject
to distortions caused by environmental changes, object obstruction, signal diffraction, as
well as the ego-noise generated by motors and propellers of the sensing robot itself Wang
et al. (2019).

Radio-frequency (RF) signals Zafari et al. (2019); Zanella (2016) represent an alternative
to acoustics. RF signals guarantee higher reception ranges (~ 100m) Zanella (2016)7,
low energy consumption Siekkinen, Hiienkari, Nurminen, and Nieminen (2012) and they
often come as parasitic in many real-life scenarios, since most of the current smart
phones, laptops and other portable user devices are WiFi or Bluetooth enabled. For these
reasons, RF-based active localization has been largely used in literature Fink and Kumar
(2010); Koohifar et al. (2018, 2016); Pack et al. (2009); Shahidian and Soltanizadeh
(2017); Twigg et al. (2012) and in commercial applications®, especially when the objective
is to reduce the deployment, economic and energy impact on the overall setup. In
spite of this, latencies Sui, Zhou, Liu, Ma, Pei, Zhao, Li, and Moscibroda (2016); Tosi,
Taffoni, Santacatterina, Sannino, and Formica (2017) and environmental interference (e.g.,
cluttering and multi-path distortions) generate strong signal instabilities and limit the
accuracy of RF-based solutions Zafari et al. (2019); Zanella (2016). To increase the SNR
(often below 10dB Qin, Dai, and Mitchell (2013)), complex pre-processing algorithms
have been suggested Li et al. (2018b); Radak et al. (2017); Zafari, Papapanagiotou,

"https://www.blueupbeacons.com
8https://quuppa.com
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and Hacker (2018). These, however, are computationally demanding and may need
dedicated and energy-harvesting hardware, which collides with the typical use of RF
architectures. At the same time, latency effects can impose significant challenges to
real-time localization; the main cause of latency resides in the adopted communication
protocols, which tune collision phenomena and scanning intervals to achieve balance
between energy and accuracy Kindt, Saur, Balszun, and Chakraborty (2017); Rondén
et al. (2019); Treurniet, Sarkar, Prasad, and De Boer (2015).

Similarly to acoustics, Angle of Arrival (AoA) Xiong and Jamieson (2013) can be
estimated also between radio transmitters and receivers, using antennae arrays at the
receiver side. To do this, the time difference of arrival (TDOA) at individual elements of
the antennae arrays is computed. To estimate the target (transmitter) position from AoA
samples, at least two receivers are required. Then, triangulation or Kalman filter can
be applied Pack et al. (2009). The former is a pure geometric approach whose accuracy
is limited by the number of sensor platforms and it does not improve with time. On
the contrary, Kalman filter is capable of gradually increasing the localization accuracy
in time, independently from the number of sensor platforms used Pack et al. (2009).
Although AoA can provide accurate estimation when the transmitter-receiver distance is
small, it requires complex hardware architectures, as well as decent computation power
and energy Zafari et al. (2018). In addition, accuracy deteriorates with increase in the
transmitter-receiver distance, where a slight error in the angle of arrival calculation is
translated into a large error in the actual location estimation.

To reduce hardware requirements and the computational load, it is possible to exploit
side effects of wireless communication. One of the simplest and widely used techniques
is to extract the Received Signal Strength Indicator (RSSI) from standard data packet
traffic Zanella (2016). The RSSI is the actual signal power strength measured at the
receiver side, and, in theory, its value is connected to the distance between transmitter and
receiver. More formally, the reference model to describe the relation between the RSSI
and the Tx-Rx distance is the so-called log-distance path-loss model (PLM) Goldsmith
(2005), according to which the received power r(-) at distance d from the transmitter can
be expressed (in dBm) as

r(d) = k — 10nlogo(d/d) + v, v ~ N(0,02). (3.18)

The zero-mean Gaussian noise v accounts for sensor distortions, model inaccuracies and
environmental interference; n is the attenuation gain and x is the RSSI at the reference
distance 0. Given the RSSI-distance relation (3.18), several techniques are applied to
estimate target position

e geometric approaches leverage on model inversion and trilateration Cantén Paterna,
Calveras Augé, Paradells Aspas, and Pérez Bullones (2017a); hence, at least three
receivers are required. Being deterministic, their robustness to measurement noise
and model inaccuracies is often low. Model inaccuracies are particularly critical,
since the PLM is too simple to accurately capture the strong signal instabilities
and the environmental sensibility Li et al. (2018Db).

o statistical strategies better account for both model inaccuracies and measurements
noise Coluccia and Ricciato (2014), by treating RSSI observations as random vari-
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ables and leveraging on statistical filtering techniques to refine raw datapoints (e.g.,
Kalman filter Robesaat, Zhang, Abdelaal, and Theel (2017), particle filter Cenedese,
Ortolan, and Bertinato (2010); Patel, Girgensohn, and Biehl (2018), belief function
theory Achroufene, Amirat, and Chibani (2018)). Model inversion is not always
needed and, under specific conditions, one receiver is sufficient to localize a moving
target Varotto et al. (2021).

e in data-driven models the RSSI-distance relation is represented by a Deep Neu-
ral Network (DNN), whose parameters are optimized during the offline training
session Choi, Choi, and Talwar (2019); Li et al. (2018b). The main benefit comes
from the theoretical function approximation properties of DNNs Hornik (1991):
the degrees of freedom given by DNN hyperparameters (e.g., number of layers,
number of nodes per layer) allow to tune the level of complexity of the model;
hence, in principle, it is possible to accurately capture the underlying propagation
behavior. In practice though, hyperparameters optimization is achieved either via
extensive brute-force search or through sub-optimal optimization techniques Wu,
Chen, Zhang, Xiong, Lei, and Deng (2019). Another important drawback of deep
models is that they do not have any physical consistency (i.e., the predictions ignore
the underlying physical laws); this may limit the generalization capabilities Hu, Hu,
Verma, and Zhang (2020). In addition, training processes commonly require larger
datasets than model-based parametric estimation procedures. Finally, when input
noise is high (i.e., low SNR), overfitting issues may arise.

e model-free techniques mainly refer to the fingerprinting strategy Lin, Chen, Deng,
Hassan, and Fortino (2016); Liu, Darabi, Banerjee, and Liu (2007): the operational
space is divided into cells and a database is generated, such that each cell is
associated to a specific range of RSSI values. When online RSSI data are collected,
matching algorithms are applied to retrieve the target position (at cell resolution).
Recently, several works have proven the effectiveness of using Recurrent Neural
Networks (RNNs) to guide the fingerprinting system Chen, Zou, Yang, Jiang, and
Xie (2019b); Hoang, Yuen, Dong, Lu, Westendorp, and Reddy (2019); Sahar and
Han (2018). The main disadvantages of model-free techniques is that they are
inherently overfitted, thus they offer poor adaptation capabilities in dynamic and
cluttered environments. Furthermore, the database generation process requires
cumbersome experimental campaigns, even though distributed procedures have
been suggested to tackle this issue Xu, Zhu, and Zhu (2019).

To sum up, RSSI-based localization approaches are simple and cost efficient Radak
et al. (2017), but they suffer from poor localization accuracy Konings, Faulkner, Alam,
Noble, and Lai (2017). Cluttered scenarios make the log-distance path-loss model (5.9)
weakly reliable. Furthermore, multipath fading and indoor noise induce severe RSSI
fluctuations, so that the noisy component v hides the informative part on the target
distance; in fact, in real-world scenarios o > 3 dBm Robesaat et al. (2017); Zanella (2016).
Yet, there are many practical solutions that use RSSI to solve APE tasks (see Tab. 3.2).
Moreover, the signal strength can also be used to estimate the relative angle between the
receiver and the transmitter (i.e., bearing); however, in this case motorized directional
antennas are required Vander Hook et al. (2015); Varotto and Cenedese (2021c).

50



3.3 Multi-Sensor Active Position Estimation

Table 3.2. Comparison of sensing modalities used for Active Position Estimation tasks.

Sensing modality

Ref. Vision RADAR Audio RF LiDAR Others
Lathuiliere et al. (2019) v DP-RTF
Koohifar et al. (2016); Shahidian and Soltanizadeh (2017)
Koohifar et al. (2018); Twigg et al. (2012) RSST
Fink and Kumar (2010); Radak et al. (2017); Sun et al. (2008); Van Nguyen et al. (2020)
Liu and Hedrick (2017); Liu et al. (2015) _ generic sensor with
limited sensing domain

Hutchinson et al. (2019b) atmospheric sensor

- . - RSSI
CIiff et al. (2018) - AoA
Park and Oh (2020) gas sensor
Haubner et al. (2019b) AoA
Pack et al. (2009) AoA
Katsilieris et al. (2012) v
Czarnetzki et al. (2010); Denzler et al. (2003); Meera et al. (2019); Ramirez et al. (2014) v
Hoffmann and Tomlin (2009) - RSSI magnetic field

- bearing sensing
Varotto et al. (2021); Varotto and Cenedese (2021c) v RSSI
Vander Hook et al. (2015) bearing
- AOA
Dogancay (2012) - TDOA
- Scan-Based

Bourgault et al. (2003) v
Kumar et al. (2020) v v

3.2.5 Discussion

Which sensing modalities to rely on is a critical application-dependent choice. Even
though the same APE task can be solved by using different sensing modalities (e.g., RSSI,
bearing and magnetic field Hoffmann and Tomlin (2009)), most of the reviewed solutions
presented in Tab. 3.2 rely on a single sensing modality; only few of them provide formal or
empirical comparative analysis to motivate their choice, or to investigate the main pitfalls
of alternative solutions. It follows that literature still misses a comparative analysis on
the differences between the various sensors types. In particular, it would be interesting
to compare the performance of search and tracking in case of passive and active targets:
intuitively, updating the belief map with the negative information provided by passive
targets is expected to produce long search times before the target is detected; on the
other hand, technologies for active targets (e.g., RF and acoustic signals) are typically
sensitive to measurement noise and might struggle in harsh environments.

Regarding RF-based methods, it is still unclear the impact that some structural
properties have on APE tasks; some of these are long sampling times Zhuang, Yang, Li,
Qi, and El-Sheimy (2016) (usually higher than 100ms Cantén Paterna et al. (2017b);
Radak et al. (2017)), delays and packet losses Rondén et al. (2019), cluttering Stoyanova
et al. (2007), orientation of the antenna Zanella (2016), and energy consumption Treurniet
et al. (2015). Only few works investigate the influence of these factors on search and
tracking Gu and Ren (2015); Stoyanova et al. (2007). Even in this rare cases, the data
are often collected from static targets and the analyses are mainly empirical; hence, the
results can not be generalized to different working conditions.

Multi-Sensor Active Position Estimation

Single-sensor strategies can sometimes be inadequate: active targets are perceived at
long ranges, but measurement noise represents a critical bottleneck for the localization
accuracy; on the other hand, passive targets do not need to use any ancillary equipment,
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Figure 3.4. MS-APE classification according to the number of platforms and the sensors het-
erogeneity.

but they are difficult to be detected in highly cluttered environments. For these reasons,
some research effort has been devoted to the design of Multi-Sensor APE (MS-APE)
systems Pack et al. (2009); Park and Oh (2020), where information is collected from
multiple sensing units. In MS-APE schemes, the way data is aggregated and manipulated
is a fundamental issue; indeed, an efficient information fusion technique can reduce
the amount of data traffic, filter noisy measurements, and make better predictions and
inferences about the target position. In the last two decades, several information fusion
methods, architectures, and models have been proposed. Consequently, the literature
on this theme is extremely vast and can not be classified in a unique way Baltrusaitis,
Ahuja, and Morency (2018); Khaleghi et al. (2013); Nakamura et al. (2007); Smith and
Singh (2006).

In this Section, the works on MS-APE are classified according to the number of
platforms, that is, into single Varotto et al. (2021) and multi-platform Koohifar et al.
(2018) strategies. These, in turn, are referred to as uni-modal Radmard and Croft (2017)
or multi-modal Lathuiliere et al. (2019), according to the level of sensors heterogeneity
involved (see Fig. 3.4).

3.3.1 Multi-Sensor APE

A multi-sensor APE algorithm exploits multiple sensing units to perform search, localiza-
tion or tracking tasks. The general formulation considers M > 1 sensing robots, with the
m-~th platform endowed with C,, > 1 sensing units, also referred as channels Jaimes and
Sebe (2007). Therefore, a MS-APE system is composed by a total of

M
Ciot = Y_ Cnm (3.19)
m=1
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3.3 Multi-Sensor Active Position Estimation

sensing units distributed on M spatial locations (i.e., the robot positions).
In this framework, the measurements collected by every channel are aggregated in a
unique multi-sensor observation

2,1 (Pte,St,1)
2t (P, St1:M) = | Zem(Pres Stm) | (3.20)

Zt,M(Dt,& St,M)

where 2z, (Pt.¢,St,m) fuses the measurements from the C,, internal channels of the m-th
platform, namely
(1)
Zt,m(pt,ﬁa St7m)
2t m(Pt,0, Stym) = . . (3.21)

(Cm)

Zim (Pt,e, St,m)

Each channel follows the single-sensor observation model (3.13), that is

j j . (©)]
h%) (pt,€7 St,ma Vggz)7 1f D;Sn e =1

(3.22)
&, otherwise

29 (D> Stm) = {

()

i.m 18 the stochastic noise (of given statistics) affecting channel j of platform m,

where v

(4) .
while D}" "t is the detection event of target ¢ from channel j of platform m.

Uni-modal and multi-modal MS-APE

A multi-sensor APE can be either uni-modal Radmard and Croft (2017) or multi-
modal Lathuiliere et al. (2019). A wuni-modal MS-APE satisfies the condition

RO =h(), j=1,....,Cpm, m=1,..., M. (3.23)

In this case the system is composed only by homogeneous sensors, namely all platforms
channels collect measurements of the same sensing modality. Examples are given by
swarms of camera-embedded UAVs Pérez-Carabaza et al. (2019a), multi-camera eye-
in-hand manipulators Cuevas-Velasquez, Li, Tylecek, Saval-Calvo, and Fisher (2018);
Kermorgant and Chaumette (2011), and multi-antenna platforms Jais, Ehkan, Ahmad,
Ismail, Sabapathy, and Jusoh (2015); Svecko, Malajner, and Gleich (2015).

On the other hand, a multi-modal MS-APFE admits the presence of at least two different
sensing modalities; formally

(5, k) s.t. KDY £ hE) ), mom € [1, M), (3.24)

This is the case of a system composed by heterogeneous sensors. Examples are given by
robots equipped with cameras surrounded by a microphone array Lathuiliere et al. (2019)
(in this case, m = m’), or teams of robots where agent m is equipped with different
sensors with respect to agent m’ (in this case, m # m’) Dogancay, Hmam, Drake, and
Finn (2009).
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Multi-Sensor Single-Platform (MSSP) APE

Several APE tasks (e.g., single target tracking Varotto et al. (2021)) do not require
multiple sensing robots to be accomplished; hence, the use of a single platform (i.e.,
M = 1) turns out to be more time and cost efficient. As a matter of fact, single-platform
solutions do not require any inter-agent synchronization or communication; moreover,
efficient multi-agent decision making strategies are often more difficult to design and
implement than single-agent counterparts (See Sec. 3.3.1).

As already mentioned, a sensing platform, endowed with multiple sensors on-board,
can be either uni-modal or multi-modal. In the former case, it collects the same sensing
modality (e.g., visual information Kermorgant and Chaumette (2011)) from all its
channels, according to the constraint (3.23). Otherwise, if (3.24) holds, it is referred to
as multi-modal. Embedding multiple (potentially different) sources of information on
a single platform opens up new perspectives in scene perception. Generally speaking,
multi-sensor integration allows to refine single-sensor measurements and obtain more
accurate data Rao (2001). More specifically, uni-modal multi-sensor platforms enable
parallelisation and specialisation Esterle et al. (2017), while sensors heterogeneity induces
inherent robustness and complementarity (i.e., different properties of the environment
can be perceived). Notably, the aggregated data (either homogeneous or heterogeneous)
allow inferences that are not possible with single-sensor measurements Nakamura et al.
(2007).

An example of uni-modal MSSP-APE is given by multi-camera platforms Heng, Choi,
Cui, Geppert, Hu, Kuan, Liu, Nguyen, Yeo, Geiger, et al. (2019): the multi-view geometry
allows stereoscopic vision from single camera observations; this can then be used for
localization and 3D geometric mapping tasks Heng et al. (2019). At the same time, the
possibility of acquiring information from different perspectives allows to better handle
occlusions, as well as dynamic multi-target scenarios Cuevas-Velasquez et al. (2018); Hiane
et al. (2017). Besides visual-based positioning, uni-modal MSSP-APE schemes are widely
used in audio and radio localization as well, as previously discussed in Sec. 3.2.4. In
this case, an array of receivers (either microphones or antennas) is employed to estimate
the target position, while this is not feasible with measurements coming from single
receivers only Farmani et al. (2015); Xiong and Jamieson (2013). On top of that, the use
of multiple receivers has been proven to guarantee higher accuracy and stability in the
localization process Kleisouris, Chen, Yang, and Martin (2008); Svecko et al. (2015).

In spite of the advantages introduced by uni-modal MSSP-APE solutions, some
applications require a high level of complementarity, which can only be obtained through
multi-modal platforms Dore, Cattoni, and Regazzoni (2007a); Lathuiliere et al. (2019);
Rajasekaran et al. (2020). For instance, RSSI observations are often combined with
camera measurements Dore et al. (2007a); Rajasekaran et al. (2020) because visual-based
tracking provides high accuracy Aghajan and Cavallaro (2009) and mitigates the inherent
ambiguity in RSSI data (see Chapt. 5). Conversely, radio observations are used to detect
the target at long ranges and under cluttering conditions, providing a rough position
estimate and reducing the typical long search phases of camera-only approaches Ye and
Tsotsos (1999). Despite being promising for target search and tracking, the fusion of RF
and camera sensor data is still an open problem with sparse documentation Rajasekaran
et al. (2020). Finally, it is important to remark that, to achieve multi-modal perception,
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it is not always necessary to supply the robot with a specific set of physical sensing units,
one for each modality; sometimes it is sufficient to extract different features from the
same sensor to get different information cues on the environment. For instance, given an
array of radio antennas, it is possible to retrieve both ranging (RSSI) and bearing (AoA)
data on the target Dehghan, Farmani, and Moradi (2012).

Applications The main applications that take advantage from multi-sensor integration
systems belong to the field of collaborative robotics and human-robot interaction Deyle
et al. (2010); Jaimes and Sebe (2007); Lathuiliere et al. (2019). Consider, as an example,
a robot interacting with surrounding people Lathuiliere et al. (2019). In this scenario, the
robot should be able to decide where to look in order to understand how many people
there are in the environment. To this aim, the combination of audio-visual measurements
within a deep reinforcement learning (DRL) framework has been proven to enable the
robot to autonomously learn gaze control policies Lathuiliere et al. (2019). In this way,
the robot decides where to look next, trying to maximize the number of people present
in the camera FoV, and favoring people who speak. This application highlights one of
the main advantages of audio-visual measurements, that is, the speakers are localized
without using any specific device. More specifically, acoustic sources are located via
Direct-Path Relative Transfer Function (DP-RTF) Li et al. (2016), which allows to track
people outside the camera FoV and, once a person has been visually detected, it is
kept within the visual FoV with high accuracy. Another application that benefits from
mobile sensor-rich robots is autonomous assistance of motor-impaired patients Deyle
et al. (2010). The robot exploits on-board sensors (RFID tags, cameras, and LIDAR)
to localize, approach and grasp objects of interest (e.g., a bottle of water, medications,
or a mobile phone), successively delivered to the patient Calli et al. (2018). Finally,
multi-modality has been found useful also for STE, with atmospheric sensors providing an
initial estimate of the source location, further refined through visual observations Monroy,
Ruiz-Sarmiento, Moreno, Melendez-Fernandez, Galindo, and Gonzalez-Jimenez (2018).

Probabilistic map in MSSP-APE The stochastic characterization of single channel
measurements (3.22) induces z¢ ,, to be a random vector as well. Hence, the techniques
used to manage probabilistic maps in single-sensor APE (see Sec. 3.2.2), can be extended
to the multi-sensor (single-platform) case. In particular, once the observation model of
each channel is known, it is possible to compute the joint likelihood as Bregonzio, Taj,
and Cavallaro (2007)

1 Cm
b (Zt,m|Pt,é> St,m) =p (zg,,l, e ,Z§,m )|Pt,€7 St,m)
Cm

) 3.25
= T (hipecssem) )
j=1

where measurements coming from different sensors are commonly supposed independent.
The joint likelihood is then incorporated into a RBE scheme to estimate the target
position. Notably, this approach allows to treat uni-modal and multi-modal platforms in
the same manner.
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Table 3.3. Classification of related works on Multi-Sensor Multi-Platform APE

Data type Coordination Protocol
Ref. Uni-modal Multi-modal | Non-cooperative Cooperative | Distributed Decentralized Centralized
Ghods et al. (2020); Park and Oh (2020) v v v
Hoffmann and Tomlin (2009); Pack et al. (2009) v v v
Shahidian and Soltanizadeh (2017) v v ‘ 4
Koohifar et al. (2018, 2016) v v v
Vander Hook et al. (2015) v v ‘ v
Dogancay (2012) v v v
Bourgault et al. (2003) v 4 ‘ v

Multi-Sensor Multi-Platform APE

In robotics applications, the presence of multiple sensing platforms (i.e., M > 1) increases
the redundancy level, making the system less vulnerable to failures and adversarial
attacks Queralta et al. (2020). Moreover, swarms of robots have the ability to simul-
taneously gather information from disjoint locations, while the sensing capability of a
single robot is restricted to a limited region (see Sec. 3.2); hence, spatial and temporal
coverage problems are reduced when deploying multiple platforms in the monitored envi-
ronment Chung, Paranjape, Dames, Shen, and Kumar (2018); Nakamura et al. (2007).
Finally, multiple platforms are typically employed when the objective includes different
concurrent tasks, such as coverage and tracking Mavrommati et al. (2017), or search and
tracking Pack et al. (2009).

In the specific case of APE tasks, the cooperation among multiple agents allows to
localize multiple targets, to refine the their position estimate, and to accelerate the
convergence rate of the localization process. In addition, by jointly performing decision-
making strategies, single-robot motion planning can be optimized to account for other
agents actions. To this aim, the sensing robots may share their current observations and
exchange information on their state (i.e., coordinated APE) Khan et al. (2016).

As outlined in Tab. 3.3, MSMP-APE strategies are here classified according to the

type of data to be aggregated (i.e., uni-modal Hoffmann and Tomlin (2009) or multi-
modal Dogancay et al. (2009)), the level of robot cooperation (i.e., cooperative Park
and Oh (2020) or non-cooperative Shahidian and Soltanizadeh (2017)), and the network
communication protocol (i.e., centralized Koohifar et al. (2018), decentralized Park and
Oh (2020) or distributed Pack et al. (2009)). The following paragraphs describe the main
advantages of coordinated APE and provide an overview on the different communication
protocols used in multi-sensor PAS.
Coordination in MSMP-APE Coordination in multi-agent systems implies a min-
imum level of data exchange. In this work, non-coordinated MSMP-APE solutions
(i.e., those where no communication is established among any couple of agents) are not
considered; as a matter of fact, any non-coordinated MSMP-APE architecture can be
treated as M independent MSSP-APE sub-systems. On the other hand, a coordinated
multi-platform APE can be either non-cooperative Shahidian and Soltanizadeh (2017) or
cooperative Park and Oh (2020).

e Non-cooperative coordination does not involve any negotiation mechanism and
decision-makers plan their actions individually, based on their current knowledge of
the world (which is represented by the belief map in PAS systems). These kinds of
control architectures are commonly used in privacy-preserving applications, where
the state of each robot is hidden to the other network agents. Therefore, each agent
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trajectory is computed through independent control laws, implemented internally
at each sensing platform Bourgault et al. (2003). The only information exchange
allowed is on the observations collected by the agents, namely, the measurements
can be spread over the network; in this way, all platforms maintain a synchronized
global belief map over time, which serves as common knowledge on which local
decisions are made.

o Cooperative techniques require each agent to take decisions aware of other agents
state Park and Oh (2020), usually, with the aim of achieving a common goal.
Cooperation allows to take the maximum advantage from a multi-agent system;
more specifically, cooperative decision making is useful to have balanced environ-
ment exploration and resource utilization Park and Oh (2020), real-time adaptivity
levels Rizk et al. (2018), collision avoidance Shahidian and Soltanizadeh (2017), as
well as fault detection and mitigation capabilities Yang et al. (2019a). In literature,
multi-agent cooperation strategies have been implemented relying on different
models and methodological frameworks, including game theory Griinwald et al.
(2004); Park and Oh (2020), optimal control Park and Oh (2020), reinforcement
learning Busgoniu, Babuska, and De Schutter (2010), finite state machines Pack
et al. (2009), Markov decision processes (MDP) Rizk et al. (2018), swarm intel-
ligence Chung et al. (2018), and evolutionary computing Pérez-Carabaza et al.
(2019a)°.

Information fusion protocols Multi-platform systems, either cooperative or not,
strongly depend on the information fusion technique adopted to spread robots data over
the network Parker, Rus, and Sukhatme (2016). In turn, the functionality of an informa-
tion fusion strategy greatly depends on robots networking capabilities. Data aggregation
can be achieved through different communication protocols, namely, centralized Koohifar
et al. (2018, 2016); Shahidian and Soltanizadeh (2017), decentralized Bourgault et al.
(2003); Lanillos, Gan, Besada-Portas, Pajares, and Sukkarieh (2014); Park and Oh (2020),
or distributed Atanasov, Le Ny, and Pappas (2015); Hollinger, Yerramalli, Singh, Mitra,
and Sukhatme (2014); Julian, Angermann, Schwager, and Rus (2012); Pack et al. (2009).

o Centralized architectures require the presence of a central base station!?. Even
though this setup may be practical in specific scenarios Mukerjee, Naylor, Jiang,
Han, Seshan, and Zhang (2015), many real-life applications does not allow to rely
on a central processing unit, capable of communicating with all network devices and
of supporting high computational burdens. At the same time, a centralized system
leverages on a single point of failure (i.e., the base station) which may compromise
the operations of the entire architecture. The central node represents also a
communication bottleneck: it might not receive complete or updated information,

9The reader may refer to Rizk et al. (2018) for a comprehensive survey on cooperative multi-agent
systems and to Khaleghi et al. (2013); Nakamura et al. (2007); Smith and Singh (2006) for surveys on
information fusion in APE-related tasks.

10The central base station is capable of communicating with all sensing robots and it embeds sufficient
memory and computational resources to store and elaborate the large amount of data received from the
sensor network. The base station can be either an external unit, or one of the M sensing robots; in
this latter case, the platform needs to be smart and with enough on-board capabilities to support the
processing, communication and storage demand Kyung et al. (2016).
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due to sensing and communication limitations, or because of any fault. Finally,
centralized protocols suffer from poor modularity and they do not scale well with
the network size, since the communication and computation costs increase with the
number of agents.

o Decentralized architectures are used to increase the scalability and robustness levels
with respect to centralized counterparts. Instead of a unique node, decentralized
protocols convey the information flow on multiple base stations Ghods et al. (2020).
In this way, it is also possible to guarantee higher levels of data redundancy
within the network; this, in turn, results in more accuracy, reliability and security.
Moreover, the presence of multiple nodes endowed with processing and storage
capabilities allows to reduce the computational and memory burden on each single
base station.

e Distributed protocols require individual robots to operate with local information,
that is, their own measurements and the data received from the communicating
nodes. To this aim, each agent of the network can be seen as a base station, with
sufficient computational and storage resources on-board. Distributed architectures
are extremely scalable and fault tolerant. Furthermore, they leverage on partially
available information; therefore they are only marginally affected by communication
problems Nakamura et al. (2007). However, distributed optimization does not
always guarantee optimality bounds as high as centralized methods do Ge, Yang,
and Han (2017); Tenney and Sandell (1981); Yang, Yi, Wu, Yuan, Wu, Meng, Hong,
Wang, Lin, and Johansson (2019b). The reason is that centralized fusion has a
global knowledge (i.e., all measured data is available), whereas distributed fusion has
only localized information coming from the set of communicating nodes Nakamura

et al. (2007).

3.3.2 Discussion

Teams of cooperative Koohifar et al. (2016) and (possibly) heterogeneous Ferrari, Fierro,
and Tolic (2009) robots are used to increase the robustness and the efficiency of APE
systems Khan et al. (2016), through multi-robot cooperation and multi-sensor integra-
tion Park and Oh (2020). Cooperation is particularly useful when the reconstructed belief
map has multiple optima; in this case, coordinated motion planning promotes informative
joint observations, which enables quick verification and elimination of unlikely target
position hypotheses Bourne et al. (2019). In spite of this, and although decision making
in Multi-Agent Systems (MAS) has seen significant improvements in the past decade,
there is only limited research on MS-APE, as highlighted in Tab. 3.3. This has led to the
presence of numerous open research questions that still need to be addressed Rizk et al.
(2018), making MS-APE a potential flourishing research field for the next years. The
most interesting research areas regard the design of multi-platform schemes that account
for on-board limited resources, network scalability, as well as robots heterogeneity. To
foster future developments in these sectors, some considerations and suggestions are
provided in the following.
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Deployment issues The growth of MAS technologies is mainly limited by deployment
issues: as a matter of fact, multi-robot systems require more time-consuming deployment
procedures, have additional hardware requirements, and come at the cost of higher
computational, communication and storage system resources Hoffmann and Tomlin
(2009), especially when cooperative behaviors are required. These factors keep pushing
the research and development efforts towards single-platform solutions, when task-
compliant. Nonetheless, a single platform might not guarantee the same effectiveness of a
multi-platform system; hence, more research is needed on software and hardware tools to
facilitate multi-robot communication and multi-sensor integration through plug-and-play
solutions.

Limited resources Robots are commonly characterized by limited on-board resources
and they might not be able to offload their computations to the cloud, due to bandwidth
scarcity, unreliable connectivity, or minimum latency requirements Rizk et al. (2018).
Tightly coordinated tasks also increase the computational burden, due to the large
amount of communication and data exchange among agents. In addition, most sensing
platforms are battery-powered (e.g., UAVs Meera et al. (2019)); hence, their lifetime is
related to the presence of energy-harvesting sensors, the communication activity, and the
processors usage SanMiguel and Cavallaro (2016). Finally, communication and storage
limitations might preclude the possibility to collect (or store) updated information from
other robots. In conclusion, limited on-board resources reduce the applicability of MAS
schemes and make cooperative algorithms challenging in real-life scenarios. Therefore,
future research should focus on the development of accurate models that capture the
entire spectrum of resource consumption (e.g., energy, bandwidth, storage) as function
of the network activity. This models will allow to apply predictive decision-making
strategies and guarantee an optimal balance between resource consumption and network
operation.

Scalability  Another key issue in multi-platform APE algorithms is the system scalabil-
ity with respect to the number of platforms. In this regard, decentralized and distributed
architectures should be considered; notably, they require agents with minimal on-board
processing, communication and storage capabilities, but they do not offer the same
optimality guarantees with respect to centralized counterparts Yang et al. (2019b). In
mobile robotics, distributed optimization is often used to yield agents coordinated motion.
In doing so, each sensing robot locally estimates the utility function to be optimized
by aggregating its previous observations with those coming from connected agents; the
computational complexity is therefore constant with respect to the number of platforms.
This approach is however not cooperative, since each agent only considers its own future
actions. To enable a higher level of coordination, each platform might consider the
effect of other robots actions in the objective estimation process. It incurs a linear
computational expense in the number of vehicles, yet the effect of the approximation error
is provably reduced from that of the single-node approximation, allowing coupled effects
between mobile sensors to be captured. Indeed, field experiments have shown better
results using the cooperative approach Hoffmann and Tomlin (2009). Robots cooperation
can be implemented also via finite state machines Pack et al. (2009). A Search and
Tracking algorithm can start with the team performing a global search and the next
platform action might be chosen by optimizing an objective function that accounts for
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both individual and collective goals. For instance, it may foster group dispersion over
the environment, while discouraging fuel consumption, or it should balance the revisits
of the monitored areas. Once a target has been detected, the search and track phase
starts: robots perform task assignment (continue the search or track the detected target),
according to the distance to the target, the current number of platforms focused on that
target, and the number of targets that have already been detected Pack et al. (2009).

Heterogeneity Robots heterogeneity stems from diverse sensing and actuating capa-
bilities, computing resources, cognitive algorithms, and morphology Parker et al. (2016);
Rizk et al. (2018). The literature regarding the utilization of heterogeneous robots has
shown the benefits of combining either different types of sensors, different perspectives,
or different computational and operational capabilities Queralta et al. (2020); Rizk et al.
(2019). More precisely, parallelisation, specialisation and complementarity are important
motivations for developing heterogeneity in multi-robot teams Esterle et al. (2017). For
these reasons, heterogeneity is an increasingly prevalent property in cyber-physical and
multi-robot systems Lewis et al. (2014)

When heterogeneity is related to the perception capabilities, it is referred to as multi-
modality, as discussed previously in this Section. Multiple sensing modalities capture
different properties of the environment; thus, the aggregated multi-modal data allow
inferences that might be not possible with single-sensor measurements. However, multi-
modality represents an important challenge to be handled in heterogeneous multi-sensor
applications. As a matter of fact, different data sources require different calibration
procedures, each of which might involve extensive human intervention Aghajan and
Cavallaro (2009); Zanella (2016). Recently, some works have proposed self-supervised
calibration procedures requiring minimal human effort. These methods hinge on the
correlation between the multi-modal data collected by the platform sensors; in particular,
one perception channel is used to produce the supervisory signal for the others, enabling
the automatic generation of a labeled dataset Nava, Guzzi, Chavez-Garcia, Gambardella,
and Giusti (2019). In this regard, Chapt. 4 and 6 deal with two self-supervised learning
procedures exploiting radio-visual data. Calibration is not the only problem to be
tackled when dealing with multi-modal systems. Indeed, different data sources suffer
from different types and magnitudes of noise, and they might produce unbalanced
data. This, in turn, affects the decision making process, which struggles when data
have different quality and resolution characteristics Khaleghi et al. (2013). Moreover,
unbalanced and missing data might affect the belief map generation procedure Khaleghi
et al. (2013); Queralta et al. (2020). Multi-modal data sources might also yield conflicting
features. For example, visual sensors and RADARs might detect obstacles at different
distances Kumar et al. (2020). All these issues are further complicated when multiple
robots are involved: the data to be fused are collected in different physical locations and
the sensors move with respect to each other. Thus, it is not trivial to evaluate whether
different agents are observing the same objects or not, or how to rank observations from
different agents Queralta et al. (2020).

From the operational perspective, certain applications (e.g., cooperative localization,
surveillance, assistive navigation, exploration and mapping) may require the simultane-
ous use of robots with actuation and morphological heterogeneity Chen et al. (2021).
For instance, smaller platforms have access to narrow passages, but their payload is
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limited Chen et al. (2021); to solve this issue, it is possible to employ larger robots
that carry application-specific payloads (e.g., long-duration batteries, heavy sensors or
actuators) Rizk et al. (2018). Heterogeneous robotic systems represent a fertile research
field, where there are still numerous open questions to be addressed. At first, the wide
variety of robots being utilized in APE missions, and the different scenarios in which
they can be applied, calls for a certain level of collective and situational awareness. This
requires the definition of self-organized swarm intelligence models, which account for
robots diversity and take into consideration the surrounding environmental conditions.
In this framework, the agents of a heterogeneous multi-robot system should identify the
main characteristics and constraints of the current environment, and the conditions of
the robots they interact with. In particular, heterogeneity-aware APE strategies in large
scale MAS scenarios, with variable number and agents capabilities, require each robot to
automatically learn the capabilities of their peers. For instance, a UGV collaborating
with other UAVs needs to be aware of the different perspectives that UAVs can bring into
the scene, but also of their limitations in terms of operational battery lifetime or payload
capabilities. In general, heterogeneity-aware algorithms, and the explicit incorporation of
agents diversity, can be advantageous for multi-robot decision making processes Davoodi
and Velni (2020). Nevertheless, there is still lack of further research in this area, as
most existing projects and systems involving heterogeneous robots predefine the way in
which they are meant to cooperate Queralta et al. (2020). This is mainly due to the
high complexity associated to the design of heterogeneity-aware APE strategies, where
robots are meant to autonomously plan their actions, according to the diverse capabilities
of their peers. As a consequence, several works introduce additional simplifications or
assumptions, such as the hypothesis that the robots sensing and actuation capabilities are
a-priori known over the entire network Chung, Kress, and Royset (2009); others design
ad-hoc strategies for a MSMP-APE system where the type and the number of robots
is predefined Dogancay (2012). These assumptions limit the scalability and the fault-
tolerance of the system, since they do not account for the possibility of malfunctioning
or missing robots Maza and Ollero (2007).

The platform dynamics

Active sensing can be defined as an intelligent data acquisition process where a feedback
is performed on sensory data (raw or processed) to satisfy specific perception performance
measures, such as scene exploration Mavrommati et al. (2017), target tracking Ferrari
et al. (2009), and object classification Patten et al. (2018). According to (3.13), the
measurements are affected by the current platform configuration. This implies that any
active sensing scheme must include a decision-making process to dynamically modulate
the sensing agent behavior through its state Bajcsy et al. (2018). To this aim, the
sensing platform is modeled as a dynamical system in most autonomous perception
frameworks Liu et al. (2015). In particular, the dynamics of sensing platform m, defined
by its state s, is usually described with a deterministic Markovian state transition
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model Radmard and Croft (2017):

St+1,m = gm (St,ma ut,m) , M= 17 R 7M

(3.26)
S.t. Stm € S, U € Apy

where A, is the control space (or action set), comprising all possible control actions that
can be applied by the platform actuators: a finite set of platform displacements in mobile
robots Park and Oh (2020), or a set of Pan-Tilt-Zoom configurations in camera-enabled
platforms Denzler et al. (2003); Lathuiliére et al. (2019)). The control space represents
the platform degrees of freedom (i.e., the controllable state variables), that is, a subset of
the state space S,,. The control input applied to the platform is denoted as uy,,,; finally,
a (possibly) is non-linear function

describes the dynamics of platform m and it mainly depends on the platform structural
properties (e.g., aerial, ground or underwater robot) Furukawa et al. (2012); Radmard
and Croft (2017). It is worth noting that, in this general setting, each sensing robot
has its own control space: as a matter of fact, there may be two agents, say m and m/,
whose motion capabilities are different (i.e., A, # A,,). For instance, in heterogeneous
camera networks the action set of PT cameras may be different from that of cameras
mounted on aerial robots. As introduced in Sec. 3.1.2, the state space can be Euclidean,
a rotation manifold, Riemannian or, more in general, a high-dimensional vector. In this
regard, it is worth noting that, in practice, dealing with a continuous multi-dimensional
state space might be computationally demanding and sometimes unfeasible Ryan and
Hedrick (2010). For this reason, S,, and A,, are usually discretized Chung et al. (2009);
Czarnetzki et al. (2010); Katsilieris et al. (2012); Van Nguyen et al. (2020).

Once the platform dynamic model has been defined, it is important to describe the
remaining core elements of any AS algorithm, namely the control law and the criteria
adopted to drive the platform behavior.

3.4.1 The control

In Active Sensing, the choice of the control input uy ., is often cast to an optimization
problem of a suitable utility function J(-) Radmard and Croft (2017). This combines the
criteria that guide the perception process and it is defined over the control space S;,. In
probabilistic AS settings, J(-) depends on some information extracted from the belief
map (see Sec. 3.4.4). Sometimes, if the platform is multi-modal and collects observations
from K < C,, different sensing modalities, J(-) is computed as the aggregation of K
utilities, one for each sensing modality Dogancay (2012).

Additional constraints may be introduced in the optimization problem in order to
account for finite resources availability (e.g., time, energy) Nguyen, Lawrance, Fitch, and
Sukkarieh (2013); Noori et al. (2016); Pérez-Carabaza et al. (2019a), communication
limitations Dogancay et al. (2009), or collision avoidance requirements Pérez-Carabaza
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et al. (2019b). The control input is therefore computed as Hutchinson et al. (2019b)

U = Uy, = argmax J (| ziem,Stm) (3.28)

uc Am\ct,m

where (3.28) is computed for each platform, that is for m = 1,..., M; the notation
J (0| Z1:4,m,St,m) says that J(-) is function of u, given the actual platform state and the
sequence of observations until time ¢, namely z1.t, = {Z1m, ..., Zem }; (-)* denotes the
solution of an optimization problem; C; ,, is the set of constraints for the m-th robot at
time ¢. Obviously, C; ,, is time and platform-dependent; for instance, if a UGV is close
to the borders of a room and another one is at the centre of the same room, the former
has constrained motion capabilities, while the latter is completely free to move.

In (3.28) each robot exploits its local information (i.e., z1.¢,,) and behaves independently
to the others, since J(-) depends only on sy y, (i.e., non-coordinated APE). If a coordinated
MSMP-APE is employed, the objective function depends on all measurements collected by
other agents (or a subset of them, if the information sharing protocol is not centralized),
according to (3.20). The problem (3.28) becomes

u;m = argmax J (u ’ Z1:t,1:M St,m) . (329)
uc Am\Ct,m

Finally, if the MSMP-APE is cooperative Park and Oh (2020), the decision making
process is aware of other agents state and actions, namely

u; . = argmax J (Wi | Z1:4,1:0,S6.1:Mm)

ui:pm (330)
st upy = {uy,...,um}, wn € A \Cim
where s¢ 1.0 = {st1,...,8:,m} and similarly for uj ;..

3.4.2 Control space, constraints and optimization

This Section classifies the APE-related literature according to the control space, the
principal platform constraints, and the optimization methods adopted to solve the control
problem (3.28)1!; the objective is to highlight how the same APE task can be tackled by
leveraging on platforms with different degrees of freedom and by applying different control
techniques. In fact, as Tab. 3.4 suggests, some works exploit approximate Radak et al.
(2017), greedy CIliff et al. (2018), or heuristic control laws Pérez-Carabaza et al. (2019b);
others adopt optimal and predictive strategies Shahidian and Soltanizadeh (2017), and a
few propose statistical black-box optimization methods Meera et al. (2019). This vari-
ability comes from the fact that the performance metrics and the optimization strategies
vary when operating on different action spaces (e.g., rotation manifolds or canonical
Euclidean spaces) Varotto et al. (2019a); furthermore, the choice of the control algorithms
depends also on the constraints that characterize the platform movements Pérez-Carabaza
et al. (2019b). Finally, the cardinality of A,, has a direct impact on the computational
demand and on the optimality guarantees of a control strategy; in particular, small action

"The focus is on the basic optimization problem (3.28); the variation (3.29) involves a larger amount
of available information, while (3.30) extends the problem dimensionality.
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sets Van Nguyen et al. (2020) and approximation schemes Czarnetzki et al. (2010) are
sometimes necessary to meet real-time performance requirements.

Platform position In many cases it is possible to regulate the planar Koohifar
et al. (2016) or the 3D Ramirez et al. (2014) position of ground Twigg et al. (2012) and
aerial Chung et al. (2018); Koohifar et al. (2016) robots, without any control on the sensors
orientation. Some examples are given by fixed radio antennas mounted on UGVs Twigg
et al. (2012), atmospheric sensors Park and Oh (2020), or fixed cameras embedded in UAVs
(and usually facing downwards) Ramirez et al. (2014). When the cardinality of the action
space is small, the optimal control input u;,, can be chosen according to an extensive
search over all possible candidate actions (i.e., grid-search optimization) Hutchinson
et al. (2019b). Grid-search becomes impracticable with continuous action spaces, while
gradient-based controllers are more suitable Shahidian and Soltanizadeh (2017). The
main limitation of gradient-based algorithms is the sensibility to local optima; hence,
their applicability is restricted to convex functions over the control space. However,
the presence of hard constraints might violate this condition; furthermore, the need to
analytically evaluate the gradient of the cost function represents a further limitation of
gradient-based controllers. To reduce the sensibility to local optima, several strategies can
be adopted. In Radak et al. (2017) an UAV is meant to fly a predefined distance towards
the peak of the target belief map and, in case of multiple peaks, the heading angle is
chosen randomly; the introduction of a stochastic term in the decision process might allow
the platform to escape from local optima, at the cost of possible unstable and inefficient
trajectories. On the other hand, when the gradient of the cost function can not be
analytically computed, or it is computationally expensive to evaluate, it can be estimated
through the collected data z1.; via gradient-assisted path-planning algorithms Sun et al.

Table 3.4. Classification of related works based on the control space A,,, the set of constraints C
and the optimization method. Key - MCTS: Monte Carlo Tree Search; BO: Bayesian

Optimization
Control space .
Ref. Position  Orientation  Other | Constraints ‘ Opt. method
Czarnetzki et al. (2010) pan-tilt grid-search
Lathuiliere et al. (2019) pan-tilt ‘ pan speed ‘ Q-learning
Denzler et al. (2003) zoom grid-search
Katsilieris et al. (2012) pan ‘ ‘ grid-search
Hoffmann and Tomlin (2009) 2D collision avoidance grid-search
Shahidian and Soltanizadeh (2017) 2D ‘ ~collision avoidance ‘ gradient

-connectivity to master
Sun et al. (2008); Twigg et al. (2012) X
Fink and Kumar (2010) 2D graciten(

safe distance from

Van Nguyen et al. (2020) 2D ‘ the target ‘ grid-search
Koohifar et al. (2016) 2D turning angle MPC
Koohifar et al. (2018) 2D | \ MPC
Liu and Hedrick (2017) 2D platform dynamics MPC

Liu et al. (2015) 2D | collision avoidance | MPC
CIiff et al. (2018) 2D greedy
Hutchinson et al. (2019b); Park and Oh (2020) .
Radak et al. (2017) 2D ‘ ‘ grid-search
Pack et al. (2009) 2D energy consumption grid-search
Haubner et al. (2019b) 2D ‘ ‘ MCTS
Varotto et al. (2021) 2D pan-tilt energy consumption gradient
Vander Hook et al. (2015) 2D ‘ communication ‘ heuristic
- collision avoidance
Dogancay (2012) 2D - agents connectivity interior point
- turn rate
Ramirez et al. (2014) 3D | |  grid-search
Meera et al. (2019) 3D - collision avoidance BO

- time of flight
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(2008); Twigg et al. (2012). This kind of strategies are completely model-free (i.e., the
observation model is not needed), which makes them highly adaptive. However, they
also have many limiting factors: first, they are not effective when the underlying data
generative model does not follow a convex function; secondly, they can be applied only
when the target is static; finally, in turbulent, cluttered environments, or when sensors
are noisy (e.g. in RSSI-based source localization Sun et al. (2008)), the gradient does not
always lead directly to the source, with consequent unstable platform behaviors. When
the form of the objective function is complex and intractable to analyze, non-convex,
nonlinear, high-dimensional and noisy, heuristic strategies can be adopted (e.g., ant
colony optimization Pérez-Carabaza et al. (2019b), genetic algorithm Pérez-Carabaza
et al. (2019a)). Interestingly, heuristic optimization techniques are particularly suitable to
handle platform constraints (e.g., communication and collision avoidance) Pérez-Carabaza
et al. (2019b), even though they might produce sub-optimal solutions in terms of tracking
performance (e.g., localization error) w.r.t. optimal control approaches Koohifar et al.
(2016).

Platform orientation When the platform is static (i.e., its position can not be
regulated), the APE task can only be accomplished through rotation movements. This is
the case of orientable RADAR scanners Katsilieris et al. (2012) and PT cameras, which
span the surrounding environment according to discretized action spaces, composed by a
fixed number of angular sectors. When the objective is to perform active tracking, but
the target dynamics is unknown, Active Disturbance Rejection Controllers (ADRC) Chen,
Zhao, and Tan (2014) can be used: the uncertainties on the target dynamics are estimated
and compensated through an extended state observer (ESO), and then treated as system
disturbances. As an alternative to ADRCs, Model Predictive Controllers (MPCs) can
be used Saragih, Kinasih, Machbub, Rusmin, and Rohman (2019b); MPCs generate
optimal control signals, have predictive capabilities, embed input saturation constraints
in the objective function Liu and Hedrick (2017), and allow to solve non-linear control
problems. The optimization problem (3.28) accounts for a one-step look-ahead action;
hence, it is referred to as myopic path-planning Dogancay et al. (2009). In receding
horizon path-planning (i.e., MPC) Koohifar et al. (2018, 2016); Liu and Hedrick (2017);
Liu et al. (2015) the problem defined in (3.28) is extended to a multiple-step look-ahead
horizon. It is important to remark that MPC usually implies high computational costs, it
needs an accurate dynamic model of the target, and model uncertainties are very difficult
to resolve!2.

High-dimensional control spaces High-dimensional control spaces are common
in many robotic systems, like visual servoing architectures and eye-in-hand manipula-
tors Radmard and Croft (2017). Robots with large number of degrees of freedom are
proven to be more robust and more efficient than platforms with limited action spaces. As
an example, when the purpose is to visually detect a target, acting on the entire camera
pose (i.e., position and pan-tilt orientation) is beneficial Varotto et al. (2021): the camera
orientation allows to observe the target even when it is not close to the robot; to maximize
the target detectability, it is possible to control the robot position, under the assumption
that the POD is inversely proportional to the target-platform distance, as in (3.17);

2The reader may refer to Bemporad, Morari, and Ricker (2005); Wang (2009) for a comprehensive
overview on predictive control
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the same formula suggests that, if camera sensors are employed, it is also possible to
increase the target detectability by acting on the focal length Pérez-Carabaza et al.
(2019a); Shubina and Tsotsos (2010). The main issue of dealing with high-dimensional
control spaces is that gradient-based solvers are typically not effective. This is due to
the fact that the objective functions are rarely convex with respect to the control space.
Hence, heuristic Pérez-Carabaza et al. (2019a) or grid-search Shubina and Tsotsos (2010)
optimization strategies are commonly applied to solve (3.28). Usually, to account for
joint limits and dynamics constraints, a multiplicative penalty term is introduced to the
cost function, or implicitly embedded into the sensor motion model Radmard and Croft
(2017).

Constraints Most existing strategies for Active Position Estimation do not include
any constraint in the task formulation Hutchinson et al. (2019b); Pack et al. (2009); Park
and Oh (2020); Radak et al. (2017), that is, C,,, = @. However, in real-life applications
the platform movements are limited by dynamics saturation levels Liu and Hedrick (2017)
(e.g., robot speed), while the network communication capabilities are commonly affected
by distance-based inter-agent constraints Pérez-Carabaza et al. (2019b); Vander Hook
et al. (2015). In addition, time and energy resources play a critical role in APE tasks,
usually in the form of (soft or hard) specifications to be satisfied (e.g., in UAV-based
Search and Rescue missions) Matthiesen (2010); Nguyen et al. (2013); Noori et al. (2016).
Finally, when multiple platforms are employed, or when the environment is cluttered,
the risk of collision among robots Hoffmann and Tomlin (2009), or with surrounding
obstacles Liu et al. (2015); Meera et al. (2019), should be minimized.

If the constraints can not be violated at any moment during the APE mission (i.e.,
hard constraints), they must be explicitly considered in the optimization problem (3.28).
This is the case of sensing robots with a fixed amount of internal resources, such as
battery powered cameras Varotto and Cenedese (2021b), or unmanned vehicles Varotto
et al. (2021). An alternative is to incorporate the constraints into the cost function (i.e.,
soft constraints), obtaining a new unconstrained optimization problem over a functional
that aggregates both APE requirements and constraints Meera et al. (2019); Pack et al.
(2009); Popovic (2019); Vander Hook et al. (2015). This is particularly useful when
robots are allowed to temporarily break their constraints to take better measurements
(i.e., move closer to the target, or acquire more informative data).

As suggested by Tab. 3.4, the APE literature offers a wide variety of constrained scenar-
ios; nonetheless, only few of the reviewed works consider energy consumption Varotto et al.
(2021), or time of search Miki et al. (2018), as hard specifications. Thus, future research
should focus on the impact of hard resource constraints in APE performance Varotto
et al. (2021). To this aim, high-dimensional control spaces are found to be useful in
balancing resource consumption and APE task completion Pérez-Carabaza et al. (2019a).
For instance, (3.17) suggests that, in camera-based APE tasks, the only way to have
effective detections is either to zoom-in, or to move closer to the target; however, platform
movements are much more energy consuming than the regulation of the camera focal
length. Thus, zoom control might have a beneficial impact when dealing with energy-
aware SanMiguel and Cavallaro (2014, 2016) and Quality of Sight-aware SanMiguel and
Cavallaro (2017) problems, where both detection capabilities and energy preservation
matter.
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3.4.3 Discussion

As discussed in Sec. 3.4.1, active position estimation is the control of the perception
process, which can be formulated as a mathematical optimization program where the cost
function depends on the platform state s;. All the articles reviewed in this Chapter solve
the control problem (3.28) assuming perfect knowledge on the platform state. Nonetheless,
this is an ideal assumption, since the platform state is often measured from noisy on-board
sensors (e.g., IMU units), or it needs to be estimated from other agents Varotto et al.
(2019a); in this case, the measurement or estimation inaccuracies might have a significant
impact on the active sensing performance Popovic (2019). Therefore, future research
should focus on the formulation of APE solutions that mathematically couple both target
and platforms uncertainties in a single objective function.

Reinforcement learning (RL) Hernandez-Leal et al. (2019) is a promising research direc-
tion within the robotics and control community. The reinforcement learning framework
is based on an agent that interacts with the surrounding environment, it observes the
consequence of any action taken, and it is capable to measure the success of its actions
via a punishment/reward system. In this way, experience is used to learn a policy that,
given the current state, chooses the next best action to maximize the expected future
reward. Along this line, RL has recently found a fertile ground in the active sensing
research field Queralta et al. (2020), since the essence of active sensing is understanding
and adapting to changes in the environment, so that future sensing actions can be
planned. Interestingly, the mathematical formulation of RL perfectly fits with the APE
characterization given in (3.28): the cost function J(-) represents the expected reward,
while uf . is the best action to take. For instance, in camera-based active tracking
the reward is typically based on a predefined viewpoint of the target (e.g., a desired
viewing angle or a given platform-target distance Luo, Sun, Zhong, Liu, Zhang, and
Wang (2018)); in some cases the reward considers the uncertainty associated to the
target location estimate Calli et al. (2018). In active search instead, the reward may
account for the time of search, the presence of cluttering in the environment, and the
probability of detecting the target, which is usually related to the platform-target distance,
as in (3.17) Meera et al. (2019); Sandino, Vanegas, Gonzalez, and Maire (2020). The
main advantage of RL is that the learning process does not require a dataset of labeled
input-output pairs; thus, the robot learns without any human supervision. Usually,
the robot starts by performing some random actions and gradually learns to follow a
desired search and tracking behavior. Another advantage of RL is that it provides an
end-to-end approach from sensing to actuation; therefore, it integrates the perception
and control aspects within a single framework Queralta et al. (2020). Finally, the RL
framework can also be extended to multi-agent and cooperative scenarios (i.e., multi-agent
reinforcement learning, MARL Busoniu et al. (2010); Hernandez-Leal et al. (2019)), with
direct application to distributed and coordinated MSMP-APE problems. Despite the
aforementioned benefits, a critical question of reinforcement learning methods is that
they require long training sessions, which are not always desiderable in robotics applica-
tions Lathuiliere et al. (2019). Furthermore, the training process of a RL model involves
random exploratory actions, which can be potentially unsafe (especially in human-robot
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cooperation) and costly (in terms of hardware damage) Arndt, Hazara, Ghadirzadeh,
and Kyrki (2020). These issues are particularly critical in SAR operations, where it is
difficult to collect or to create sufficient training data and experiences Queralta et al.
(2020). More in general, the dependence on training data may limit the applicability of
RL-based solutions in unstructured environments, where very few assumptions can be
made on the data generation and acquisition process; hence, the robustness performance
obtained during the training phase can not be guaranteed during system deployment. For
example, dramatic lighting changing conditions significantly affect the performance of an
image recognition algorithm Calli et al. (2018); thus, an unstable system is obtained if
during training phase it has not explored and experienced all possible lighting conditions.
Similar issues may arise in camera-based search and tracking tasks where the target is
unknown or its appearance does not match with the training dataset Calli et al. (2018).
Recently, a promising solution to deal with dynamic and unstructured environments
lies in transfer learning techniques Arndt et al. (2020); Lathuiliere et al. (2019); Luo
et al. (2018): ad-hoc simulators are employed to train an inference model; this is then
fine-tuned and adapted to the real world environment, since a simulation may not capture
all physical phenomena Arndt et al. (2020). As an alternative, it is possible to rely on
model-free control strategies (e.g., extremum seeking control Calli et al. (2018)), which do
not utilize training data and implement continuous adaptation strategies to respond to
the current state of the environment. To sum up, in view of the aforementioned challenges,
more research is needed on efficient and robust control techniques in unstructured and
cluttered environments Calli et al. (2018); Meera et al. (2019); Sandino et al. (2020).

3.4.4 APE criteria

In Active Sensing applied to target search and localization tasks, the platform state
must be regulated in order to satisfy several quality of sensing and quality of localization
requirements. For instance, a PTZ camera can be controlled to guarantee minimal
detection capabilities or maximum probability of detection; in the former case it is
sufficient to move the camera so that the target is inside the FoV, namely p; € @(St,m)l?’;
in the latter case, it is necessary to model and optimize the POD function through the
platform movements. Another example comes from radio-based tracking systems; these
often necessitate of automatic algorithms for antennas alignment to optimize the quality
of communication between the platform and an active target with which communication
has been established Li, He, Liu, Wan, Gu, Xie, Fu, and Lu (2019).

In this Section, more examples are provided; in particular, APE algorithms are classified
as either information-seeking or task-driven, according to the cost function involved in
the optimization problem (3.28) (see Tab. 3.5).

Information-seeking control

Information-seeking control aims at choosing the next sensor state such that the expected
future measurement optimizes a certain information gathering measure; for this reason,
the APE strategies belonging to this control class are biased towards an explorative

13Tn this Section the formulas are related to single-platform single-target solutions; hence, to ease the
notation, the subscripts used to denote the m-th platform and the ¢-th target can be omitted.
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accomplishment of the positioning task!'®. The most intuitive information-seeking criterion
is the minimization of target position estimate variance Chung and Furukawa (2009).

Other criteria are based on the optimization of real-valued functions of the Fisher
Information Matriz (FIM), which is related to the estimation uncertainty ellipsoid Ucinski
(2004); Vander Hook et al. (2015). For instance, A-optimality minimizes the trace of the
FIM and represents the average variance of the estimate Shahidian and Soltanizadeh
(2017); D-optimality instead minimizes the log-determinant of the FIM and it is related
to the volume of the uncertainty ellipsoid Dogancay (2012). D-optimality is proven to
outperform A-optimality in terms of trace of the error covariance matrix Shahidian and
Soltanizadeh (2017). Both criteria are suitable for gradient-based controllers Shahidian
and Soltanizadeh (2017) and Model Predictive Controllers Koohifar et al. (2018, 2016).
In this latter case, the FIM can be approximated via Monte Carlo numerical methods.
In general, the main issue of FIM-based approaches is that they rely on state estimators,
like the Kalman Filter and the Extended Kalman Filter, that are ill-suited when target
state and sensor models follow severe non-linear /non-Gaussian distributions. In this
context, several studies have proven that particle filters Gordon, Ristic, and Arulampalam
(2004); Koohifar et al. (2018) appear to be more appropriate, reliable and accurate than
conventional Kalman-based methods in many tracking applications.

The information gain obtained with action u; can be also quantified by the mutual in-
formation (MI) between the target position and the sensor observation, namely Hoffmann
and Tomlin (2009)

J(ut|zl:ta St) =1 (Zt+1(St+1); Pt+1) = H(pt+1) - H (Pt+1’Zt+1(St+1)) . (3-31)

H(p¢41) is the entropy of the random vector pyy1, while H (p¢41|2¢+1(St4+1)) represents
Table 3.5. Classification of related works based on the APE criteria. Key — FIM: Fisher

Information Matrix; MI: Mutual Information; H: Entropy; Dyr: Kullback-Liebler
divergence; POD: Probability of Detection

Ref. APE criterion
Lathuilicre et al. (2019) i;‘:;;‘:lz ift;gt\‘[on
Fink and Kumar (2010); Pack et al. (2009); Radak et al. (2017); Ramirez et al. (2014) distance to tareet estimate | 5
Liu and Hedrick (2017); Van Nguyen et al. (2020); Varotto et al. (2021) S50 e ?';
Sun et al. (2008); Twigg et al. (2012) highest RSST value &
Katsilieris et al. (2012) expected POD Al
Bourgault et al. (2003) cumulative POD =
. -distance to target estimate
Liu et al. (2015) POD
Vander Hook et al. (2015) mission time
Meera et al. (2019) target detectability
Shahidian and Soltanizadeh (2017) D/A-optimality
Dogancay (2012); Koohifar et al. (2018, 2016) D-optimality o
Vander Hook et al. (2015) FIM spectrum =
Cliff et al. (2018); Hoffmann and Tomlin (2009) MI g
Hutchinson et al. (2019b); Katsilieris et al. (2012) expected D, s
Park and Oh (2020) infotaxis %
Czarnetzki et al. (2010); Denzler et al. (2003); Haubner et al. (2019b) expected H 8
Fink and Kumar (2010); Meera et al. (2019) predictive variance g
Liu and Hedrick (2017) covariance trace o3
Ramirez et al. (2014) conditional H

4The reader may refer to Gupta, Smith, and Shalley (2006) and Xu and Zhang (2014) for an overview

on the concepts of exploration and exploitation.
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the conditional entropy, that is the expected entropy of the posterior belief, computed as

H (prs1|ze+1(8t41)) = Egpy i (se0) [H (Pr4112e+1 = Z(S¢41))]

3.32
- / (a5 H(pesalzesn = a(sisn))dz, o)
z(St+1)€EZ141

where, in general, Ey [] denotes the expectation w.r.t. the distribution of the x; Z;;
is the set of all possible measurements that can be collected at time ¢ + 1, typically
parametrized by the platform state and the control input, from (3.26) and (3.13). In
fact, a new measurement is influenced by the next platform state (i.e., s;11) and, in turn,
by the current platform state (i.e., s;) and the actual control input (i.e., u;), through
(3.26). In this way, the optimization problem (3.28) is well defined. As (3.31) suggests,
the cost function depends also on the past observations (i.e., z1). From (3.13), each
measurement z; is function of the target position; therefore, it can be used to recursively
update the target belief map, which is then employed to estimate the target position, or
to approximate any function of the target position (e.g., the conditional entropy) Boers
et al. (2010).

If the value of z;y; = z is known in advance Ramirez et al. (2014), then the condi-
tional entropy would be H(p¢+1|zi+1 = z), which can be computed without taking the
expectation. Interestingly, mutual information (3.31) is a submodular function Cliff et al.
(2018); thus, solving the optimization problem (3.28) via a greedy algorithm provides an
optimality (lower) bound of 63% Krause and Guestrin (2011). Formally,

_ 1 x
T | mas) = (12 ) I 210, (3.:3)

where @, is the solution of (3.28) obtained with a greedy algorithm.

Information-seeking capabilities can be achieved also by maximizing the expected
Kullback-Liebler (K L) divergence before and after a new measurement z;41 is collected,
namely Hutchinson et al. (2019b)

J(ut\zl:t,st) = Eztﬂ [DKL (pt+1|21:t7zt+1(5t+1) H pt+1’Z1:t)] (3‘34)

where Dg(x || y) is the KL divergence between the random vectors x and y Cover
(1999). The generalization of the Kullback-Liebler divergence is the Rényi divergence Aoki
et al. (2011a); this is parametrized by a parameter «, used to give emphasis on specific
parts of the distribution. Empirical results Aughenbaugh and LaCour (2011); Kreucher,
Kastella, and Hero Tii (2005¢) show that the Rényi divergence, for some values of o # 1,
provide superior performance than the KL divergence. It is also possible to prove that
maximizing (3.34) and (3.31) leads to the same control actions Aoki et al. (2011a); in
turn, this is equivalent to minimizing the conditional entropy H (p¢+1|2zi+1), since H (p¢+1)
does not depend on u; Cliff et al. (2018); Haubner et al. (2019b); Ryan and Hedrick
(2010).

The information-theoretic criteria defined so far induce pure explorative behaviors.
Infotaxis Vergassola, Villermaux, and Shraiman (2007) is instead used to attain a certain
level of exploration and exploitation trade-off and it is defined according to the following
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cost function

J(ug | z1:4,8¢) = p(Pe+1)H (Prs1) + [1 — p(Pes1)] L(Ze11(Se41); Peg1)- (3.35)

Infotaxis is a gradient-less measure of information gain and it is particularly useful in
STE tasks Park and Oh (2020), due to its capability to work under sparse datapoints.

Task-driven control

In literature several definitions of task-driven control have been suggested. A possible task-
driven sensor management criterion is based on the minimization of the expected estimation
error; in this case, the cost function employed in the optimization problem (3.28) is Aoki
et al. (2011a)

J<ut ’ Z1:t, St) = _Ezt+1(st+1) [e(pt+17 ﬁt—‘,—l)] y (336)

The estimated target position is denoted as p, while e(-, -) is an estimation performance
metric (e.g., Euclidean distance). The definition (3.36) is often impractical, since it may
be difficult to find a meaningful metric e(-,-) when there are multiple goals with different
importance. The same reason holds when the goals are defined in different dimensions or
state spaces Aoki, Bagchi, Mandal, and Boers (2011b). In addition, computing (3.36)
incurs a significant computation cost, since it requires to integrate over all possible target
positions and all possible sensor measurements Aoki et al. (2011b). For these reasons,
definition (3.36) can be reformulated as Kreucher et al. (2005a)

J( [ z1:4,8t) = Eqp i (s040) pﬂl?gnp(ptﬂlzm,Zt+1(St+1)) : (3.37)

which leads the platform to take the action that leads to the largest Maximum A-Posteriori
(MAP) estimate of target location, that is the action that results in maximal certainty
about target position.

In target search applications Liu et al. (2015), a commonly used task-driven criterion
is the maximization of the expected POD over a given time horizon v, that is Liu et al.
(2015)

t+v

J(ug | z1:4,8¢) = Ep,,, [p ( U Dy(st+1) | D1 = Q,let)]
k=t+1

(3.38)

=-E

Pt+1

t+v ~
II » (Dk(StH) |D1 = Q,zu)] :
k=t+1

In (3.38), D; denotes a non-detection event at time ¢ and p (Dt’DI:t—l) is the probability
of detecting the target at instant ¢, given the non-detection in previous observations. As
can be seen from the second equation, each detection event is considered independent
to the others. Traditionally, the calculation of (3.38) incurs high computation burden
because no analytical form exists and numerical integration over large state space is
required. Thus, ad-hoc approximation techniques have been proposed to efficiently solve
POD-based search tasks also in real-time applications. For instance, by approximating
the target belief map with a Gaussian Mixture Model (GMM) Liu et al. (2015) it is
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possible to get a closed-form reformulation of (3.38). Alternatively, it is possible to
assume the detection probability as constant during the time horizon [t + 1,¢ 4 v]; in this
way, the target search problem can be mathematically modeled as a Binomial experiment
see Chapt. 5).

Minimum Time Search (MTS) Lanillos, Besada-Portas, Pajares, and Ruz (2012);
Pérez-Carabaza et al. (2019a,b) is a task-driven criterion closely related to the POD
function. In fact, it aims at minimizing the expected detection time, where the time of
first detection (Tp) is modeled as a random variable; thus, the cost function in this case
is Lanillos et al. (2012); Perez-Carabaza, Besada-Portas, Lopez-Orozco, and Jesus (2018);
Pérez-Carabaza et al. (2019a)

J(ut \ Zl:tvst) =-E [TD]

— k;ﬂ [1—p(Tp < k)] (3.39)

o
= _ Z Ep (Dk(st-kl)’Dl:kflel:t)
k=t+1

The definition in (3.39) is intractable; for this reason, a truncated time horizon is often
considered in real-life applications Lanillos et al. (2012); Lanillos, Yanez-Zuluaga, Ruz,
and Besada-Portas (2013); Perez-Carabaza et al. (2018). The main difference between
the POD criterion (3.38) and the MTS one (3.39) stems on the fact that the former
maximizes the chances of finding the target, but it does not guarantee to minimize the
time to first detection; therefore, the POD criterion induces a slightly more explorative
behavior during the search mission Lanillos et al. (2012).

Source seeking is another example of task-driven control, often accomplished via
probabilistic approaches. In particular, a target-representative setpoint (also known as
reference point) is extracted from the belief map; then, the platform is driven towards
the setpoint. The MAP Radak et al. (2017) or the MMSE! Hasanzade et al. (2018)
target position estimates are typical setpoint choices. In source seeking, the cost function
is the distance between the current platform position'® and the setpoint itself, namely

J(ut | Zl:tast) = —HSt - f)tH?‘ (340)

This strategy is motivated by the assumption that moving closer to the target reduces the
uncertainty of measurements Van Nguyen et al. (2020); however, it becomes inefficient if
the belief map is characterized by multiple peaks Radmard and Croft (2017). Finally,
when time of search matters, source seeking can be combined with MTS Liu et al. (2015).

To sum up, there is a certain lack of consistency, among the reviewed works, regarding
the definition of task-driven control; however, all the proposed aforementioned options
are valuable. Therefore, it is possible to conclude that a task-driven APE criterion can
be simply defined as the opposite of an information-seeking criterion. In other words, a
control law is defined as task-driven when the cost function is not information-theoretic

MMSE: Minimum Mean Square Error.

WWhen the platform position is fixed and only rotation movements are allowed (e.g., pan cameras on
a static robot), the distance is computed between the setpoint and the centre of the FoV projection onto
the groundplane IT Chen et al. (2014)
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3.4 The platform dynamics

and drives the platform closer to its task completion in an exploitative manner (e.g., by
reaching a goal position within certain time/energy tolerances, minimizing the estimation
error, maximizing the probability of target detection).

Hybrid control

Many practical situations require a trade-off between exploration and exploitation Gupta
et al. (2006); Meera et al. (2019); Xu and Zhang (2014), as most APE tasks are designed
to accurately reconstruct information about the target location, but not to produce overly
time-consuming trajectories during the mission Vander Hook et al. (2015).

For this reason, some works propose hybrid control techniques, where information-
seeking and task completion are balanced together. To do this, the most intuitive way
is to cast the problem (3.28) into a multi-objective optimization framework Marler and
Arora (2004), where the cost function is a linear combination between an information
gathering measure and a task execution metric Liu and Hedrick (2017); Ramirez et al.
(2014).

Alternative approaches cast the APE problem into a Bayesian Optimization frame-
work Frazier (2018); Meera et al. (2019); Snoek et al. (2012), which is a powerful strategy
for finding the extrema of an objective function in a gradient-free manner and when
the cost function is expensive to evaluate, noisy, or non-convex Brochu et al. (2010). In
Bayesian optimization, the objective function is approximated by a surrogate function
(e.g., Gaussian Process Rasmussen (2003)); then, an acquisition function (e.g., Gaussian
Confidence Upper Bound Bai et al. (2016), Expected Improvement Carpin et al. (2015))
chooses the next sensing action, usually managing the trade-off between exploration and
exploitation Meera et al. (2019). The acquisition function can also be a linear combi-
nation between a source seeking term and an information gathering one Ghassemi and
Chowdhury (2020); the former might account for the distance to the maximum expected
target position, while the latter should depend on the target belief uncertainty. For a
deeper overview on Gaussian Processes and Bayesian Optimization, see Appendix. A.1
and A.2.

Instead of combining exploration and exploitation in a unique cost function, it is
also possible to use switching controllers to alternate between an information-seeking
contribute (e.g., predictive variance) and a source-seeking one (e.g., distance to the
Maximum Likelihood target estimate) Fink and Kumar (2010). In any case, switching
controllers are liable to unstable behaviors; hence, when they are used, strict convergence
guarantees should be provided.

Discussion

According to some previous works Kreucher et al. (2005a), task-driven control slightly
outperforms information-seeking in terms of tracking error; in fact, information-based
approaches sacrifice a small amount of tracking performance (i.e., estimation bias) to
yield smaller estimation uncertainty. In general, explorative strategies are used when
the priority is on uncertainty reduction, or if the APE task includes multiple objectives.
On the contrary, exploitative strategies are specifically designed for specialized tasks
(e.g., source seeking, detection time minimization). This usually requires ad-hoc utility
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3 Active Position Estimation: methodological framework

functions, which is the main limitation of task-driven controllers, as wrong choices may
lead to local minima, as well as to unstable and ineffective platform behaviors Radmard
and Croft (2017).

Challenges in task-driven control To increase the flexibility of pure-exploitative
strategies, hybrid solutions can be adopted, even though in hybrid control the performance
strongly depends on accurate exploitation-exploration balancing methods Ghassemi and
Chowdhury (2020): if the controller is biased towards the source-seeking term, the
estimation process might get stuck on local optima and the target may never be found; on
the other hand, higher importance on the exploration term, leads to superior capabilities
to explore the environment and, therefore, to find the target. However this may come
at the cost of higher completion times, sometimes not compatible with the mission
requirements Ghassemi and Chowdhury (2020). In conclusion, hyperparameter tuning
is not only cumbersome and time-consuming, but also critical for the performance of
hybrid APE solutions. For this reason, automatic hyperparameter tuning algorithms are
currently an active research field in machine learning and robotics communities.

Challenges in information-seeking control = While pure-exploitative strategies
lack in flexibility, one of the main pitfalls of information-seeking approaches is the poor
interpretability Aoki et al. (2011Db), together with a limited capability in considering time
and energy preservation policies. Furthermore, unlike task-based algorithms, information-
seeking path planning is not adequate to real-time APE missions, where platforms
have limited energy and computation power Van Nguyen et al. (2020). This is due to
the intractability of the numerical integration methods involved in the calculation of
most information-theoretic cost functions (e.g., Kullback-Liebler divergence, entropy,
information gain) Hoffmann and Tomlin (2009). To reduce the computational burden,
parametric Liu et al. (2015) and non-parametric Aughenbaugh and LaCour (2011);
Czarnetzki et al. (2010); Ryan and Hedrick (2010) approximations are often applied;
these, however, have an impact on the quality of the overall solution Hoffmann and Tomlin
(2009) and restrict the range of techniques that can be used to solve the optimization
problem (3.28). In particular, the lack of any analytical closed-form solution leads to
the use of grid-search Ryan and Hedrick (2010), greedy CIliff et al. (2018) and meta-
heuristic Pérez-Carabaza et al. (2019b) techniques, which are not always efficient and
accurate Liu et al. (2015); Ramirez et al. (2014).

Relations between task-driven and information-seeking strategies The near
universal proxy theory directly links any arbitrary task-driven function to the optimization
of a criterion based on the Rény divergence Hero, Kreucher, and Blatt (2008). In particular,
the near universal proxy theory claims that the expected value of any task-driven function
is sandwiched between two marginalized Reényi divergences; consequently, task-driven
sensor management criteria could be replaced by a Reényi divergence-based criterion
without altering the performance guarantees. Even though the near universal proxy
argument is the strongest theoretical justification until so far for the use of information-
driven sensor management, it has been formally rebutted Aoki et al. (2011b); hence,
there is still lack of a solid proof regarding the relationship between task-driven and
information-driven sensor management.

On the opposite side of the near universal proxy theory, some works Katsilieris et al.
(2012); Ryan (2008) have proven that it is possible to reformulate an information-theoretic
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optimization problem into an equivalent task-driven one. This, in turn, is less costly
and can sometimes be calculated more accurately; hence, reformulating information-
seeking tasks into task-driven ones can solve the computational issues discussed in the
previous paragraph. The main argument against these results is that they usually
hold under specific conditions. For instance, the minimization of the expected entropy
is equivalent to the maximization of the POD, if the POD is sufficiently small Ryan
(2008). If instead the POD is constant, the optimization problem is equivalent to the
maximization of the expected KL divergence (in the sense that both generate the same
control input) Katsilieris et al. (2012). Note however that the POD is a joint function
of the target state and the control input, as outlined in Sec. 3.1; hence, supposing this
quantity to be constant over the entire II x S, space is an ideal assumption, difficult to
be met in real-life scenarios (see Fig. 3.2).

Future research lines In spite of the presence of some comparative studies Aoki et al.
(2011a); Katsilieris et al. (2012); Kreucher et al. (2005a); Van Nguyen et al. (2020), the
relation between task-driven and information-seeking approaches is still an open debate
in APE-related research fields. Future research should aim to develop a generalized and
unified guideline for the choice of the APE objective function to be used in (3.28). This
should also account for the environment conditions, the number of cooperating platforms
and their available resources (e.g., on-board computational and power capabilities),
the platforms constraints, and for any specific task requirement (e.g., minimum time
search). Another possible future trend in APE literature is the design of Minimum
Energy Search (MES) strategies, which is still an unexplored line of research. Albeit
MES might share some similarities with MTS, it is important not to confuse the two
approaches: as discussed in Sec. 3.4.4, MTS generates control inputs that minimize
the expected detection time (3.39), but no guarantees are provided on the platform
energy-consumption, which is an important limitation in real-life applications.

3.5 Conclusion

In this Chapter, the main works in the area of Active Position Estimation have been
organized, critically discussed and compared, with a focus on perception, control and
multi-agent cooperation. The review identifies the main research challenges and future
directions for the APE community. To sum up, multi-modal approaches are considered as
one of the most promising future directions, since the majority of the existing works use
uni-modal sensing strategies. In particular, it is important to study how different sensing
modalities impact on search and tracking tasks. Future research should also be devoted
to the comparison among different APE criteria, as the near-universal proxy argument
is still an open discussion; furthermore, the existing literature does not clarify how to
balance exploration with exploitation, especially under critical mission constraints. To
this aim, hybrid control is indicated as the most promising research direction.
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PAS FOR LOCALIZATION: AN
APPLICATION TO TRANSMITTER
DISCOVERY

This Chapter introduces a bi-Radio-Visual PAS scheme (Ra® ViPAS) to solve the transmit-
ter discovery problem. Specifically, the correlation between radio and visual measurements
is first exploited to learn a target detection model in a self-supervised manner. Then,
the model is combined with antenna radiation anisotropies into a Bayesian Optimization
framework that controls the platform. The proposed algorithm attains an accuracy of
92%, overcoming two other probabilistic active sensing baselines.
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4 PAS for Localization: an application to Transmitter Discovery

The contents of this chapter are partly available in: Varotto and Cenedese (2021c¢)
L. Varotto and A. Cenedese, “ Transmitter Discovery through Radio-Visual Probabilis-
tic Active Sensing”. IEEE 25th International Conference on Methods and Models in
Automation and Robotics (MMAR), 2021 [accepted]

4.1 Introduction

In the context of Multi-Modal PAS, Radio-Visual PAS (RaViPAS) approaches have
been recently designed to mitigate the inadequacies of camera and radio-only strategies,
especially in localization tasks de San Bernabé, Martinez-de Dios, and Ollero (2017). As
discussed in Chapt. 3, the information richness of visual sensors may be impaired by
occlusions and Field of View (FoV) directionality de San Bernabé et al. (2017). Radio
frequency (RF) signals, instead, have wider ranges Zanella (2016) and enable energy
efficient localization from the extraction of the Received Signal Strength Indicator (RSSI)
of standard packet traffic Zanella (2016). Furthermore, RF communication has low
hardware requirements and comes as parasitic in many real-life scenarios, since most
portable devices are WiFi or Bluetooth enabled. Nonetheless, environmental interference
often limits the RF-based localization accuracy Zanella (2016).

RaViPAS aims to combine the complementary benefits of RF signals with visual cues.
The literature addressing radio-visual sensor fusion is still sparse and the RaViPAS
framework is an open research field with methodological challenges and application
opportunities: for example, energy-aware strategies are required to alternate the accurate
but energy-harvesting camera measurements, with the rough but lighter radio observations
(see Chapt. 6). Furthermore, traditional RF-based solutions involve tiring human-labeled
calibration processes Zanella (2016).

Contribution This Chapter proposes a RaViPAS scheme to solve the transmitter
discovery problem hereafter described (Fig. 4.1), which, despite its apparent simplicity,
remains a canonical problem in many application domains. A static radio-visual sensing
platform is surrounded by targets whose number and location is initially unknown. Only
one of them establishes communication with the platform through a radio transmitter (Tx)
and the aim is to identify which target is the Tx. The proposed scheme is based on the
design of a Bayesian Optimization (BO) controller, leveraging the non-isotropic antenna
radiation pattern at the receiver side. The exploration-exploitation trade off capabilities
of BO are crucial for robust and efficient target localization Meera et al. (2019). In
addition, RSSI-based localization techniques hinging on BO Carpin et al. (2015), do not
require any observation model. Hence, the tiring human-labeled calibration processes
involved in traditional RF-based solutions can be avoided. To increase the robustness
of the localization process, a target visual detectability model is included into the BO
framework. To this aim, it is possible to devise a self-supervised training procedure,
exploiting the correlation between radio-visual inputs. In this way, the dataset acquisition
process is automatized, with consequent minimization of the human intervention. In
accordance with the PAS paradigm, the platform is guided by a probabilistic reward
function, which is refined as new observations are collected. Numerical results show that
the proposed algorithm overcomes a RF-only PAS scheme.
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4.2 Problem Statement

4.2 Problem Statement

Fig. 4.1 shows the main elements of the problem scenario, namely the targets and the
sensing platform.

? A b, P
1) i
b

A
11 pi

Figure 4.1. Problem scenario. Five targets (black markers) surround the sensing platform over
the groundplane II. The platform communicates through radio signals with one of
the targets (Tx), placed at p;» and with angular coordinate 7;«. The platform has
orientation s; and it is detecting a non-Tx target (blue box). The Tx target can be
detected only when inside the camera FoV, that is if s; & ~;«.

4.2.1| Sensing platform

The sensing platform is a static orientable smart camera, endowed with a real-time target
detector Redmon et al. (2016) and two radio receivers!.

The camera Let Fy be the global reference frame, whose origin is centered in the
platform position? and whose axis Z is orthogonal to the groundplane II C R? where
the platform and the targets lie. The platform state is identified with its only degree of

freedom, that is the camera pan angle (i.e., the orientation around Zp)
st € [-m,nm] =S8, t=LT, LeN, (4.1)

where T, is the camera frame rate. The camera pan angle defines the FoV, ®(s;) C II,
which is regulated through the control input u; according to a deterministic Markovian
transition model®

sirt. = q(se,up) = s¢ +ug,  w € [-m, 7] = A (4.2)
The state transitions occur at multiple of T' > T,, namely
u =0, t#HT, HeN. (4.3)

The receivers The platform is endowed with two radio channels. The former, referred

(is0) uses an omnidirectional antenna, while the latter, Rx(%") has a directional

to as Rx
antenna (see Fig. 4.2) Gémez-Tornero, Canete-Rebenaque, Lopez-Pastor, and Martinez-

Sala (2018). The dominating lobe of Rx(%") is supposed to be aligned with the camera

"https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/
nRF52832-product-brief.pdf

2Formally, the platform position in II is ¢ = [0 O] T.
3st4, is forced to stay within S by adding (resp., subtracting) 27 if s;or, < —7 (resp, si+1, > 7).
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B Isotropic Pattern

Figure 4.2. Example of radiation pattern of an isotropic (red) and a directional antenna (blue
dashed).

optical axis, but the knowledge on the overall radiation pattern is inaccurate. It holds
T=1Tgr =v1,, vEN, (4.4)

where Ty is the sampling interval of both receivers. With the first equality (7' = Trr),
a control input is computed as a new RSSI sample is collected. The second equality
(Trr = vT,) is justified by the fact that radio reception has typically longer sample rates
than cameras’ acquisition Vollmer and Mollmann (2011).

4.2.2 | Targets

The platform is surrounded by N targets, which can be thought as people or objects, in
civil or industrial settings. The targets are in Line-Of-Sight (LOS) w.r.t. the platform.
In polar coordinates, the position of the i-th target w.r.t. Fy is denoted as

T
Pi: = |d;cos7y; d;sin ’}/7;} e II, (45)

where d; = ||p;||2 is the distance of the i-th target to the platform (i.e., Euclidean norm
of p;), and ~; is the target angular coordinate w.r.t Fy, that is

;i = arctan (ﬁl?) (4.6)
2,40

with p; x, and p; y; projections of p; along Xy and Yp, respectively.

The number and the locations of the targets are unknown to the platform, but all N
targets can be recognized through the camera object detector; moreover, one of the N
targets establishes communication with the platform through an omnidirectional radio
Tx. The index of such target is denoted with i* € {1,...,N}.An industrial example of such
a scenario comes from logistics and smart warehouse systems (see Fig. 4.3): a static pan
camera monitors the surrounding racks where there are N marked boxes, such that they
can be recognized by the camera. At each box location there is a radio Tx installed, but
only one is active and can communicate with the camera; the camera should identify and
localize, among the N locations, which one corresponds to the Tx; in this way, it can
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focus on the Tx to perform a specific visual inspection.

Figure 4.3. Example of radio-enabled smart warehouse environment.

4.2.3| Perception modeling

Radio perception Both platform receivers (i.e., Rx(4") and Rx(is")) extract from
received data packets the Received Signal Strength Indicator (RSSI), r € R. As mentioned
in Chapt. 3, the RSSI is a measure of the received radio signal power and, therefore, it
quantifies the quality of communication between two radio-enabled devices; the RSSI is
theoretically related to the Tx-Rx distance d;» Zanella (2016); thus, for an omnidirectional
receiver the following deterministic relation holds

T,(iso) _ g(di*>7 (47)

where (%) denotes the RSSI collected at Rx(**°). The relation (4.7) is not sufficient to
capture the quality of communication decay due to the non-isotropic pattern of Rx(@7);

hence, (4.7) should be modified as

T(dir) _ g(di*)Q(St"W*)v Q(St;’)/i*) c [O, 1] (48)

The function g(+) is an attenuation factor that models the effects of the radiation pattern
anisotropy in the RSSI signal and it depends on the misalignment between Tx and
Rx(%"); the attenuation is minimal if the domninating lobe points towards p;+, namely
0(st,vi+) =~ 1 (no attenuation), if s; ~ 7;+; the attenuation increases as the misalignment
between Tx and Rx(*") grows and it becomes maximal (i.e., o(s¢,7i) ~ 0) when the
dominating lobe points in the opposite direction w.r.t. p;+ Gémez-Tornero et al. (2018).
Finally, it is worth noting that both (%) and (@) are functions of p;~, the former
through d;=, and the latter also through ~;«. For this reason, a generic RSSI value can

be expressed as r(p;«). Moreover, p(dir)

is also function of s; through the attenuation
function o(-).

Motivated by the energy efficiency and the low-cost hardware requirements, RSSI-based
localization systems have been widely studied in literature de San Bernabé et al. (2017).

Despite this, RSSI localization suffers from several drawbacks.

1. At first, the functions g(-) and o(-) are usually unknown, are hardware-dependent,
and need to be estimated through extensive and time-consuming calibration pro-
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cedures Zanella (2016). Hence, in this Chapter a self-supervised methodology is
suggested; it requires minimal human intervention and does not need to estimate
neither g(-), nor o(-) (see Sec. 4.3).

2. A further limitation of RF-only localization systems resides on the high sensitivity
to environmental interference (e.g., cluttering and multi-path distortions) Zanella
(2016). The target position is often hidden in extremely noisy receiver measurements,
according to the following RSSI observation model

h(pi~, st; vrF 1) = 7(Pix) + vRFt, t= MTrp, M €N
ZRF,t = { (4.9)

g, otherwise

where @ is an empty observation (i.e., measurements without target information);
2RF,t is denoted as either 21({;02 or zl({jért) , depending on whether r(p;+) follows (4.7)
or (4.8), respectively. Furthermore, the dependence on the platform state holds only
for Rx(dir) Finally, vgps ~ N (v]0, J%F) is the RSSI measurements (zero-mean,
Gaussian) noise, with ogp usually high w.r.t. the range of values spanned by r(p;+);

in real-life applications, the following relation is often satisfied

ORF
max{r(pi-)} — min{r(pi-)}

> 0.1. (4.10)

3. A final issue of RSSI-based localization regards those techniques relying on omnidi-
rectional receivers only Shahidian and Soltanizadeh (2017). As (4.7) highlights, the
RSSI values are characterized by inherent ambiguities on the target position (i.e.,
they do not identify uniquely the position of the radio source). When the receiver is
static, these ambiguities induce severe convergence issues in the estimation process
(see Chapt. 5 for further details). For this reason, most literature solutions mitigate
the ambiguity effects through multiple receivers Cantén Paterna et al. (2017b),
multi-modal (e.g., radio-visual) perception systems Varotto et al. (2021), or active
sensing schemes Shahidian and Soltanizadeh (2017).

Visual perception As for the camera sensing capability, the visual detection process
of target i is modeled as a Bernoulli random variable D, € {0, 1}, with success probability

PD(di), if Pi € (I)(St)

(4.11)
0, otherwise.

p(Dy = 1|ps, s¢) = {

In line with the discussion of Chapt. 3, the detection success probability is a function of
both the camera orientation and the target-platform distance (see Fig. 4.4). In particular,
visual depth effects Radmard and Croft (2017) are accounted through Pp(d;), which
is the Probability of Detection (POD) when the target is in FoV. Notably, the same
POD function can be applied to all targets, which is a reasonable assumption in most
practical scenarios where targets are characterized by similar appearance. If ¢ = ¢*, the
dependence on d; in (4.11) can be equivalently substituted by (), on the basis of (4.7).
More specifically,

Pp(di) = Pp (g_l(r(iso))) ‘=pp (r(iso)) . (4.12)
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In the following, to ease the notation, (%59 is confused with r when it is used as argument
of the POD function.

A
1

0.5 ’
0.1 "

Figure 4.4. Example of detection model as function of the distance Radmard and Croft (2017)

4.2.4 Problem statement

The Tx discovery problem aims at identifying the Tx among the N targets. The LOS
condition implies

that is, each target is uniquely identified by its angular position w.r.t. the platform.
Hence, the Tx discovery problem boils down to an association task on top of a uni-
dimensional localization problem within a noisy scenario. The quantity to be estimated
is the Tx angular position ~;«, assuming that the dynamics of the targets is slow w.r.t.
the localization process. Formally, at time ¢, the result of the association task is

iy = argmin |y, — vil, (4.14)
ie{1,...,N}

where 4, is the estimate of 7;+ (i.e., the localization outcome), given camera and receivers
observations up to time ¢.

Methodology

In spite of its simplicity, the Tx discovery problem is ill-posed if tackled with passive

strategies, due to the inherent RSSI ambiguities (see Chapt. 5) and the uncertainties
on the receivers radiation pattern; thus motivated, an active sensing scheme is here
proposed.

Theoretically, the anisotropy of Rx(@") coupled with the platform movements, provide
sufficient information to reduce the RSSI ambiguities and solve the localization prob-
lem. Nonetheless, in practical scenarios the noise in RSSI data affect the stability and
reliability of RF-only strategies Dore, Cattoni, and Regazzoni (2007b). Moreover, the
lack of knowledge on the antenna radiation pattern often demands extensive calibration
procedures Zanella (2016). The localization robustness can be increased by combining
radio and visual cues. In particular, the problem is here formulated in a Bayesian
probabilistic framework, which accounts for perception uncertainties and increases the
adaptivity properties. This leads to the bi-Radio-Visual Probabilistic Active Sensing
(Ra?ViPAS) scheme depicted in Fig. 4.5 and detailed in the following. The Ra?ViPAS is
based on two steps:

1. first, given a set of offline RSSI and camera observations, Gaussian Process Regres-
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sion (GPR) is applied to learn, in a self-supervised fashion, the POD as function of
the RSSI value, that is pp(r(#°))* (Sec. 4.3.1);

2. then, an active localization task is formulated, where the platform control is cast
to a black-box optimization problem for which Bayesian Optimization (BO) is
employed (Sec. 4.3.2).

4.3.1| POD learning through GPR

This Section is devoted to the first part of Ra?ViPAS, namely the self-supervised POD
learning procedure through Gaussian Process Regression.

For a brief overview on Gaussian Processes and Gaussian Process Regression the reader
is referred to Appendix A.1. In this work, GPR is employed to learn the POD function
pp(r), on the basis of (4.12); to this aim, the POD is modeled as a GP, namely®

pp(r) ~ GP (0, k(r,r")) . (4.15)
The train dataset is
o (iSO) — ) Ntrain
D= { (=) p,) }jzl (4.16)

where the inputs {zgl‘?o]).}?t:rfi” are RSSI observations from Rx(%9) according to the

observation model (4.9); the labels {pp ;}7{" represent the empirical POD between

Sensing platform
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|
map > arg max a(s|Dy) |
|
|
|

|
: Control
|
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SR e | |- - - - - =Z=--------oo - )
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Figure 4.5. Ra?ViPAS scheme for the Tx discovery problem.

4To ease notation, pD(r(iso)) is also expressed as pp (7).
5The notation pp(r) is used to distinguish the GP model with the underlying POD, pp ().
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two RSSI samples, according to

_ 1<
Ppj=- ZDM. (4.17)
/=1

The equation above exploits the relation (4.4), regarding the ratio between the camera
and the receiver sampling periods; {D;¢};_; are the v detection outcomes before zl({;oj) is
collected. Notably, D is automatically acquired by the platform; in particular, neither
sensors calibration nor human labeling are required, which is one of the main contributions
of the Ra?ViPAS methodology. What is instead required is human collaboration during
the data acquisition process: to generate D, the camera observes a target moving back
and forth in front of it; at the same time, the receiver collects the RSSI data from the
data packets sent by the Tx-equipped target. Clearly, to facilitate the data association
process (i.e., each RSSI sample must be associated with v camera frames), the camera
and the receiver must be synchronized.

It is reasonable to assume that Try is sufficiently small w.r.t. the target movements,
and g(-) has a low sensitivity w.r.t. the distance (i.e., the derivative is bounded). Under
these hypotheses, the distance traveled between two consecutive RSSI samples (say, r;
and rj;1) is negligible; hence, from (4.7), the POD remains approximately constant
(see Fig. 4.4), that is pp(r;) =~ pp(rj+1). By consequence, the sequence of detection
events {D;};_, is composed by i.i.d. random variables with distribution B (pp(r;)),
according to (4.7) and (4.11). Then, from the Central Limit Theorem, pp ; converges in
distribution to

pp(r;)(1 —pp(r)))

N <ﬁD,j pp(75),

) , as v — 00, (4.18)

where condition ¥ — oo is in practice satisfied for a high frame rate camera Vollmer and
Mollmann (2011). From (4.18), the latent function pp(r) is related to the noisy labels
pp through the generative model

ppj =pp(rj) +¢;
. NN(e 0. Po(r)(d —pD(Tj))) (4.19)

14

and the GPR problem is well-posed®.
Fig. 4.6 shows an example of POD learning through GPR over synthetic data (see Sec.
4.4 for the data generation process). The true POD function is

Pp(d) = [(1+4"49) (14 ¢~(@-29))] - (4.20)

The GP model uses a zero mean function and a Matern covariance (with length scale
hyperparameter set to 1 and smoothness hyperparameter set to 1.5). The regression

SAs (4.19) highlights, the generative model of the labels is input-dependent (i.e., the GP is het-
eroscedastic McHutchon and Rasmussen (2011)). Moreover, the GPR, works on noisy inputs, according
to (4.9). To deal with heteroscedasticity and noisy inputs, several ad-hoc methods have been proposed in
literature Kersting, Plagemann, Pfaff, and Burgard (2007); McHutchon and Rasmussen (2011).
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Figure 4.6. Comparison between the latent function pp(r) (blue line) and the GP model pp(r)
(green, average and 68% confidence interval), learnt on the very noisy synthetic

data { zg;f?)

5P} (black markers).

performance is evaluated through the coefficient of determination R? € (—oo0, 1]

S rtn (pp(ry) — Po.«(r5))?

2 — —
R =1 _ _ 2
Sy (po(ry) = ke Spes po(ry))

(4.21)

Ntrain

where pp .(r;) is the POD prediction, according to (A.8). The higher R?, the better the
fit; in the case of Fig. 4.6, R? = 0.94.

4.3.2| Ra?ViPAS for Transmitter Discovery

In this Section, the second part of Ra?ViPAS is explained, namely the active localization
scheme. Fig. 4.5 shows the Ra?ViPAS pipeline: the information gathered by the
platform sensing channels is aggregated and injected into a BO scheme; this reconstructs
a probabilistic approximation of the localization objective function in (4.14), which is
then used to generate platform control inputs, according to a probabilistic controller.

As already discussed in Chapt. 3, Probabilistic Active Localization hinges on a belief
map to encode the knowledge on potential target locations and plan future actions
accordingly. If the likelihood function is known, Recursive Bayesian Estimation can be
applied to keep the map updated as new observations are collected (see Appendix A.3).
However, in our framework the likelihood function p(Dy, 2rp +|PTye:) is unknown; hence,
RBE techniques can not be applied to compute 4,. On the contrary, it is possible to cast
the localization problem defined in Sec. 4.2 to a suitable active sensing scheme where
the platform state is regulated via black-box optimization. To this aim, it is important
to notice that the Tx location satisfies the following relation

¥+ = argmax Jp(7y)Jrr(7)
~yE[-m,7] S——
J(v)
Jp(v) = —|p(D|pi+, vi*) — p(D|pi=, )|

Jre(7) = o(v,7i+)-

(4.22)
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Specifically: the detectability term, Jp(7), favors those values of « where the target has
the same (measured) POD of the Tx; on the other side, the RF term, Jrp(7), accounts
for the radiation pattern and gives higher rewards when Rx(%") is aligned with Tx. The
lack of precise knowledge on o(-) makes (4.22) a black-box optimization problem on
the cost function J(7); hence, it can be opportunely solved via BO. Recalling that the
paltform state is the camera pan angle, it is possible to equivalently optimize over the

platform state s;; thus, at time ¢ the dataset is
t
De = {(55, i) }j—ppp » (4.23)

with Yj = YD,jYRF,j and

N (iso0) -
YpD,j = —|pD,*(ZRF,j) _PD,j| (4.24)

g
YRF,j = !%ﬁ?\/@

. . di . .
where ( is a user-defined scaling hyper-parameter. Note that, zéérg /¢ is a (noisy)
scaled version of Jrp(-), according to (4.9) and (4.8); however, this does not affect the
optimization process, since the scale is g(d;=), which does not depend on s;. Regarding
Yp,t, it is a noisy version of Jp(-), where the noise comes from both the estimation error

in f)a*(zg;ob and the measurements error in pp,, (see Sec. 4.3.1).

In this BO implementation, the surrogate model is a Gaussian Process and, according
to the usual sequential BO procedure, J(7y) is approximated via GPR with the dataset
(4.23). The GP model that approximates J(vy) represents the probabilistic map from
which the next control input is computed (i.e., probabilistic control)

argmax - 1 a(s|Ds)| — s¢, t=HT]
u: _ { g s€[—m,m] ( ‘ t)} t RF (425)
0, otherwise,

where condition (4.3), with 7' = Tgry, is taken into account; moreover, the control input
in (4.25) is the displacement between the optimal and the current camera orientation,
(5|Dy) and s; respectively. Finally, Ra?ViPAS uses the GP Upper
Confidence Bound (UCB) as acquisition function, namely

that is argmax,e|_r - @

a(x|Dt) = e, + v/ Bow D, (4.26)

where (A.8) is applied, o4 p, is 2. p, With ness = 1, and 3 is an exploration-exploitation
tuning hyperparameter.

The estimate of ~;+ at time ¢ is the maximum of the GP predictive posterior mean
(A.8), namely

4y = arg max fi,p, (7) (4.27)
yE[—m,7]
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4.4 Numerical Results

The proposed approach has been evaluated through a Python-based synthetic environ-
ment’. Sec. 4.4.1 describes the main setup parameters, as well as the synthetic data
generation process. Sec. 4.4.2 defines the metrics used for performance assessment and
the baselines considered for comparison. The numerical simulation results are discussed
in Sec. 4.4.3.

4.4.1| Setup parameters

To carry out realistic simulations, most parameters reflect real device characteristics. Tx
and Rx("°) are supposed to be equipped with Nordic nRF52832 SoCs®; Rx(4") differs
from Rx(5°) in that the attenuation gain follows the function in Tab. 4.1, inspired by lit-
erature Gomez-Tornero et al. (2018). The function g(-) follows the log-distance Path Loss
Model (PLM) with a noise level typical of industrial scenarios, that is cpp = 3 dBm Zanella
(2016). The radio sampling time is set to Trr = 0.1s, and the value of v is set to 10,
as a reasonable trade-off between typical real-life values and the ideal condition stated
in (4.18). The underlying POD function is (4.20), designed according to real-life experi-
ments Varotto et al. (2021). During the POD learning phase, the target is supposed to
move according to the stochastic linear model reported in Tab. 4.1. Finally, the synthetic
environment simulates a crowded environment with N = 20 targets.

Table 4.1. Setup parameters for the MC experiment.

Parameter Value
TRF 0.1s
v 10
Ntrain 900
Ntest 120
Ntests 50
N 20
f(dg,me) di+m: n ~N(0,0.04)
g(dix) k — 10nlogy¢(di/d) k=—-30dBm, n=2, §=1m
o(st, vi+) 1—0.5(s; — yex)?
ORF 3dBm
Pp(d) [(1 4 e40449) (1 4 =@-29)]

4.4.2 Performance assessment

To capture the performance variability, numerical evaluation is performed through a
Monte Carlo (MC) experiment, composed by Niests = 50 tests of duration Ty = ngest TR
each, where ng.s; = 120 is the number of RSSI collected. At each MC test the position of

"https://github.com/luca-varotto/Tx-discovery
8https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/
nRF52832-product-brief.pdf.
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4.4 Numerical Results

the N targets is randomly chosen.

Performance metric

The performance of the Tx discovery task is evaluated through the Discovery Rate

Ntests e yk

1 1, ifé =1
DR; = S 1 1 = 4.28
Niests i =0 " 0, otherwise, (428)

where #; follows (4.14). From a probabilistic perspective, DR; is the empirical probability
of identifying Tx at time ¢t over the MC tests.

Baselines

The following original baselines are considered, all leveraging the main PAS approach
proposed here:

e RaPAS: same pipeline of Ra2ViPAS, but only Rx(@") is used, namely y, = YRF, ¢
as depicted in Fig. 4.7(a).

e RaViPAS: same pipeline of Ra2ViPAS, but Rx(%") is not used namely y; = YD,t, as
depicted in Fig. 4.7(b).
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Figure 4.7. Comparison of the Ra?ViPAS scheme with the two baselines used for performance
assessment: (a) RaPAS; (b) RaViPAS. The red cross identifies the part of the
Ra2?ViPAS scheme not used by that specific baseline.

4.4.3 Discussion

Fig. 4.8 depicts the discovery rate of Ra?ViPAS, RaViPAS and RaPAS. The control
law (4.25) induces the same tree-steps qualitative behavior in all three algorithms, even
though with different final results.

1. Initially, the sparse sampling of the search domain [—7, 7] produces wrong localiza-
tion solutions; therefore, DR is low.
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—— Ra?ViPAS

0.2 —— RaPAS
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Figure 4.8. Discovery Rate of Ra?ViPAS, RaPAS and RaViPAS over a MC experiment.

2. The sparse domain coverage implies large uncertainties in the surrogate model; this
induces an explorative platform behavior, according to (4.26). The exploration
process allows the platform to focus on regions that are more likely to optimize the
objective function in (4.22); hence, DR increases remarkably in this phase.

3. When enough information is collected, exploitation overcomes exploration, according
to the acquisition function (4.26); DR meets a converge.

Fig. 4.8 highlights the fact that the exploration phase of Ra?ViPAS and RaViPAS lasts
approximately half with respect to RaPAS (& 4 s against ~ 8s); this is due to the smaller
amount of information employed in RaPAS, and it is consistent with the advantages of
multi-modal AS solutions discussed in Chapt. 3.

Another interesting feature of the results reported in Fig. 4.8 is that RaPAS and
RaViPAS converge to the same value (=~ 60%), while Ra?ViPAS has the highest (~ 92%)
and smoothest convergence behavior. This means that the information fusion process
employed in Ra?ViPAS produces a fast and efficient information gain, which leads to
high estimation accuracy, stability and robustness.

In conclusion, the performance of Ra?ViPAS justifies the higher hardware requirements
w.r.t. RaPAS and RaViPAS.

4.5 Conclusion

This work proposes a probabilistic bi-radio-visual active sensing framework (Ra?ViPAS),
applied to the transmitter discovery problem. Target visual detectability and radio
signal strength are combined into a Bayesian Optimization framework, responsible for
the generation of the platform control movements. The detectability model is learnt in
a self-supervised fashion, so that human intervention is minimized. The approach can
be extended to various application domains and in the specifically considered scenario
the suggested strategy attains a 92% accuracy level, 30% higher than the two baselines
under comparison.
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PAS FOR TRACKING: AN

APPLICATION TO TARGET VISUAL

DETECTION

In this Chapter the focus is on the visual detection problem of a radio-emitting target

with an aerial robot, equipped with a radio receiver and a camera. A Recursive Bayesian

Estimation scheme uses camera observations to refine radio measurements and generate

a probabilistic map; on top of this, an optimal controller requlates the camera pose.

Theoretical results support the proposed algorithm, while numerical analyses show higher

robustness and efficiency with respect to visual and radio-only baselines. In particular,

visual-based tracking often requires long search times before detecting the target, due to

the directionality of the sensing domain; conversely, radio signals have larger coverage,

but lower tracking accuracy.
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The contents of this chapter are partly available in: Varotto et al. (2021)
L. Varotto, A. Cenedese and A. Cavallaro, “ Probabilistic Radio-Visual Active Sensing for
Search and Tracking”. European Control Conference (ECC), 2021 [accepted]

5.1 Introduction

As discussed in Chapt. 3, typical modalities for active sensing include vision, audio and
radio. Visual-based tracking provides high accuracy Aghajan and Cavallaro (2009) and
does not require the target to use any emitting device. Nonetheless, occlusions and
FoV directionality Mavrinac and Chen (2013) limit the range, applicability and success
of camera-only platforms Robin and Lacroix (2016), especially for applications where
time of detection is critical (e.g., search and rescue missions Murphy et al. (2019)). To
collect measurements on wider ranges, and reduce the search phase, other technologies
can be used, such as acoustic Haubner et al. (2019b) or radio-frequency (RF) Shahidian
and Soltanizadeh (2017) signals. Despite the high localization accuracy of acoustic
signals Haubner et al. (2019b), sound pollution and extra hardware requirements (e.g.,
microphone arrays) are critical pitfalls of this technology Zafari et al. (2019). Conversely,
RF signals are energy efficient, have large reception ranges (~ 100 [m]) Siekkinen et al.
(2012), and low hardware requirements, since platforms are not needed to be equipped
with multiple receivers; moreover, the Received Signal Strength Indicator (RSSI) is
extracted from standard data packet traffic (see Chapt. 3). For these reasons, RSSI-based
localization systems widely appear in literature and in commercial applications, despite
environmental interference (e.g., cluttering and multi-path distortions) often limits their
accuracy Zanella (2016). In this context, multi-modal sensor fusion techniques have been
shown to overcome the inadequacies of uni-modal approaches, being more robust and
reliable Lathuiliere et al. (2019).

Contribution The algorithm proposed in this Chapter exploits the complementary
benefits of radio and visual cues for visually detecting a radio-emitting target with an
aerial robot, equipped with a radio receiver and a Pan-Tilt (PT) camera. The control
problem is formulated within a probabilistic active sensing framework, where camera
measurements refine radio ones within a RBE scheme, used to keep the map updated.
The fusion of RF and camera sensor data for target search and tracking is an open
problem and the literature addressing this task is sparse. Indeed, this is the first attempt
to combine radio and visual measurements within a probabilistic active sensing framework.
Furthermore, unlike existing solutions operating on limited control spaces (e.g., platform
position Shahidian and Soltanizadeh (2017) or camera orientation Lathuiliere et al.
(2019)), it is here proposed a gradient-based optimal control, defined on a continuous
space comprising both platform position and camera orientation. Theoretical and
numerical analyses are provided to validate the effectiveness of the proposed algorithm.
What emerges is that bi-modality is proven to increase the target localization accuracy;
this, together with the availability of an integrated high-dimensional control space, leads
to higher detection success rates, as well as superior time and energy efficiency with
respect to radio and vision-only counterparts.
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5.2 Problem statement

Problem statement

Fig. 5.1 shows the main elements of the problem scenario, namely the target and the
sensing platform®.

5.2.1 | Target

The radio-emitting target moves on a planar environment II C R?, according to a (possi-
bly) non-linear stochastic Markovian state transition model

pPi+1 = f(pe,m); t € N. (5.1)

where p; € Il is the target position at time ¢, referred to the global 3D reference frame
Fo; when expressed in R3, it is referred as pf = [ptT O]T. The uncertainty on the
underlying target movements are captured by the distribution of the stochastic process
noise 71;. The probabilistic form of (5.1), namely p(ps+1|pt), is known as process model.

5.2.2| Sensing platform

The sensing platform is an aerial vehicle (UAV), equipped with an omnidirectional
(isotropic) radio receiver and a PT camera on gimbal, and endowed with processing
capabilities and a real-time target detector Redmon et al. (2016). The state of the
platform is the camera pose, namely

so=lel w] (5.2)
with -
c; €R3; 4y = {at Bt} €[-m/2+0,7/2 -0 (5.3)
and where
[~7/2+0,7/2 =0 = [~7/2+0,7/2 — 0] x [-7/2+60,7/2 — 6]. (5.4)

The UAV position c¢; is referred to Fy, it is supposed to coincide with the camera focal
point and its altitude is fixed (i.e., non-controllable); oy (resp. [3;) is the pan (resp. tilt)
angle w.r.t. the camera inertial reference frame F, (obtained by a c; translation of
F0); 0 is the half-angle of view. Similarly to Chapt. 4, the camera state follows a linear

!The Euclidean distance between vectors a,b € R" is denoted as

n 1/2
d(a,b) = a - b|> = <Z (a(i) - b(z‘))?)

i=1

where a(i) is the i-th component of a.
Given a plane II and a vector a € R"™, the orthogonal projection of a onto IT is denoted as ary.
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| 807

Figure 5.1. Problem scenario. A target moves in a planar environment and establishes a radio
signal communication with a camera-embedded UAV. The objective is to control
the camera pose so that the target is visually detected.

deterministic Markovian transition model

St+1 = S¢ + Uy; 55)
- 5.5
u = {ucT’t u:b’t} cA

where A is the control space (see Chapt. 3). In particular, the control input uy; € S?
acts on the camera PT configuration, while uc; € R3 acts on the drone position in R3.
However, being the UAV altitude fixed, the focus is only on the planar projection of c;
onto II, namely cry;; therefore, as formally described in Sec. 5.3, uc s is composed by a
planar control contribute (i.e., ucy +) in the first two entries, and a null contribute in the
last entry. As (5.5) suggests, the state transitions occur at multiple of 7' = 1, where T'
is supposed to coincide with the camera frame rate T,; moreover, as in Chapt. 4, the
camera frame rate T, is smaller w.r.t. the receiver sampling interval Trg, namely

Trr = vTy, v €N, (5.6)

Putting everything together, the chain-relation of the sampling rates introduced in (4.4),
here becomes
Trp = V1. =vT, v € N. (5.7)

Without any loss of generality, later on a normalized frame rate will be considered (i.e.,
T. = 1). Notably, the controller works at the same frequency of the camera, and not of
the receiver as in Chapt. 4 (i.e., the controller works at a higher frequency). As described
in Sec. 5.3.1, this implies that some control inputs are computed according to a belief
map that has been updated with visual information only.

Inspired by real-life scenarios, the UAV movements are considered energy-consuming
with a linear dependence on the flying distance Liu, Chen, Tang, Xu, and Piao (2018),
that is

AFE; = d(cty1,¢t), (5.8)

where AFE} is the energy used to move the platform from c¢; to c;11. The total available
energy is denoted as Ejy.
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5.2.3 | Perception modeling

Radio perception Motivated by the long reception ranges of radio signals, the target
is supposed to be always within the range of the platform receiver; moreover, the platform
can extract the RSSI value, r; € R, from received data packets. As already mentioned
in Chapt. 3 and 5, the RSSI is related to the platform-target distance d(c;,p;). In
particular, the ground-to-air communication should minimize distortions and cluttering
phenomena Koohifar et al. (2016); hence, in this Chapter, the unknown function g(-) of
(4.7) is supposed to be known and equal to the log-distance path loss model Goldsmith
(2005)

re = Kk — 10nlogy (d(ct,p:“)) . (5.9)

The parameters x and n are estimated via offline calibration procedures Zanella (2016),
where the reference distance is 6 = 1 [m]. Thus, similarly to (4.9) in Chapt. 4, the radio
observation model is

(5.10)

I hrr(Pt,St, UrFt) =7t + VRFt, t= MTgp, M €N
RF,t = .
g, otherwise

where Tgrr is the receiver sampling interval and the dependence on the platform state
and target position follows from (5.9); vrrs ~ N (v]0,0%5) is the RSSI measurements
noise.

Visual perception Camera measurements are modeled through the projection per-
spective geometry Aghajan and Cavallaro (2009)

(5.11)

hc(pt, St,cht) = P(St)fit + Ve, Di=1andt=NT,, NeN
Z t =
‘ , otherwise

where v, ~ N (v|03,X,.) is the noise of camera observations; p; is the homogeneous
representation of p;’, namely

po=[p/ 1] : (5.12)
and

P(s;) = [12 02] K [th) ct] € R4 (5.13)

is the projection matrix that maps p; onto the camera image plane. It depends on
K € R3*3, the matrix of intrinsic parameters, and R.(1);), the camera rotation matrix
w.r.t. Fo.

Finally, the target visual detection process is modeled as a Bernoulli random variable
D, € {0, 1}, with success probability

Y(ps,st), if pr € $(sy)

, otherwise

p(Dy = 1|pt,st) = { (5.14)
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with ®(s;) camera FoV onto II (see Fig. 5.1), and
+ -1
Y (ps,st) = {1 + etd(eepy )/f—e)} (1+e77). (5.15)

Thus, from (5.14), the target can be detected only if inside the camera FoV, while
from (5.15), the detection probability is proportional to the quantity d(c;, p;)/f; this
is the resolution at which the target is observed, where f is the camera focal length.
In (5.14), the success probability depends also on some constant values, such as the
resolution at which the target is no longer well detectable (i.e., € > 0), and the spatial
rate of decrease of the target detectability (i.e., v > 0). Notably, YT(-) is a realistic
POD model, as proven by literature Radmard and Croft (2017) and by field results (see
Chapt. 6); moreover, this model is consistent with the definition provided in Chapt. 3
and it is very similar to the model used to generate the synthetic data in Sec. 4.4 in
Chapt. 4.

5.2.4 Problem statement

With the formalism introduced in the previous Sections, the wvisual target detection
problem can be formulated as the control of the platform state s; (through u;) to realize
event D; = 1, given camera and receiver observations z.r..: and zrr 7.

Methodology

To solve the problem defined in Sec. 5.2.4, a probabilistic bi-modal active sensing
approach is proposed. As shown in Fig. 5.2, radio-visual measurements are aggregated to
form a bi-modal likelihood function; this is used to keep the target belief map updated
through an RBE scheme. Finally, an optimal controller is fed with the probabilistic map
and generates the platform control input.

5.3.1 [ Bi-modal likelihood and probabilistic map

In active sensing frameworks, the configuration of the sensing robot is not constant;
hence, the likelihood function p(z¢|p;) should account also for the platform state, that is
p(z¢|pt,s¢). Given this premise, and recalling the stochastic characterization of the radio
observation model (5.10), the RF likelihood is

N (z|re, 0kp), t= MTgrp

, otherwise.

p(zRF t|Pt,St) = { (5.16)

Note that zrr; updates the belief map only when it carries information on the target
position (i.e., zrp+ # @, at t = MTRr).

To define the wvisual likelihood, the observation model (5.11) is combined with the POD
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Sensing platform

|
| | P sensing |
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Figure 5.2. Scheme of the proposed Probabilistic Radio-Visual Active Sensing algorithm.

model (5.14)

P(Ze,t|Pt, St) = P(Ze,t|Pt, St, Di)p(Di|Pe, 8¢) =
N(Z’P(St)ist? EC)T(pta St)7

0,

1-— T(pt7st)7
1,

Dy =1, pr € P(s¢)
Dy =1, pt & ®(st)
Dy =0, pr € P(s¢)
D, =0, pt & D(sy).

(5.17)

By aggregating radio and visual likelihoods, the following bi-modal likelihood is obtained

p(Zt|Pt7 St) = p(ZRF.t|pta St)p(Zc,t\Pt, St)-

(5.18)

Then, (5.18) is applied to the update stage of the particle filter that implements the RBE
scheme (see Appendix A.3).

5.3.2

Optimal controller

The platform control input is computed by solving the following optimization program

C: u; =argmin J(u|2zrr 1:¢, Ze,1:4, St)

ucA

s.t. d(Ct+1,Ct) < Et

where FEj is the residual energy at time ¢, computed as

t—1 t—1
Ey = Eior — Z AE = Etor — Z d(Ck+1,Ck)-
k=0 k=0
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The cost function is chosen as
1 .\
J(u|2RP 111, Ze,1:65 1) = §d(CH,t+17pt) ; (5.21)

where cyy¢41 is the projection of ¢ 1 onto II, and p, is the MAP estimate? of the target
position; formally

()

P, =p!'; i* = argmax w,gi). (5.22)

1€[1,N,]

Note that J(-) extracts information from the belief map, according to the probabilistic
active sensing approach (Fig. 5.2). In fact, it is function of zrp 1+ and z. 1., through p,
(see Appendix A.3). It is also function of s; and u through cyy 441, which depends on the
next camera pose (i.e., s;41 =S¢ + uz), according to the inverse perspective geometry
(with known and fixed UAV altitude w.r.t. II) Aghajan and Cavallaro (2009).

The convexity of J(-) w.r.t. crr 41 allows to solve (5.19) with the following gradient-
based control law

Sr41=8rtUr, TE [07 Tmaac]
oJ (e, r+1)
801‘[
5.23
Uc t Gc 0 0 ( )
uT = = —
Uyt 0 ‘ Gw
8J(CH,T+1)
o

where 7,42 accounts for the maximum number of iterations in order to accommodate the
next incoming measurement at t 4+ 1. G € R3*3 and Gy € R2%2 are suitable control
gain matrices. By choosing G entries small, energy is preserved, since (5.23) commands
short UAV movements. Conversely, larger G and Gy, lead to a more reactive system,
capable of getting close to the setpoint p, within a maximum number of iterations
Tmaz- Consequently, if the localization procedure is accurate (i.e., p;, & p), the condition
p: € ®(sy) is likely to be satisfied and d(c;, p;") is small, which is necessary to have
high detection probabilities, according to (5.14). Finally, it is important to remark that
J(+) is purely-exploitative and not energy-aware: in the controller design problem C,
energy appears only in the constraint and no energy preservation Liu et al. (2018), nor
information-seeking (explorative) Radmard and Croft (2017) criteria are included.

5.4 Theoretical results

This Section formally motivates the use of an action space involving the entire camera
pose, as in (5.5), and supports the choice of a combined radio-visual perception system.
We observe that the particle weight distribution of a particle filter-based probabilistic

2 As discussed in Appendix A.3, an alternative would be the MMSE estimate Hasanzade et al. (2018),
which leads to smoother trajectories, but it is also proven to make C more prone to local minima Radmard
and Croft (2017).
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map? is an indicator of the target localizability: highly-weighted regions allow to focus
the position estimate, while uniform weight patterns suggest ambiguity in the target
localization. In this respect, it is possible to show that radio-only solutions need the
sensing platform to move in order to solve localization ambiguity (Ths. 1-2 that follow),
which can be conversely attained through a radio-visual approach also with a static
platform (Th. 3).

Theorem 1. Let the following hypotheses hold

1. the target moves according to an unbiased random walk, i.e.,
p(pe11lp:) = N(plpt, 0°1a); (5.24)

2. the platform is static, i.e. ¢ = c; Vt;

3. the RBE scheme updates through (A.15b) exploiting only the RF likelihood (5.16).

Then,
E [Wt(i)|ZRF,1:t} =E [ng)|ZRF,1:t} , t>0
(1) () (5:25)
Vi, j € [1,Ny] s.t. d(py’,en) = d(pg’, cn)-
Proof. The dynamic model associated to the target unbiased random walk is
Pir1 =Pt + 1M, M~ N(|02,0%1) (5.26)
Equivalently,
t—1
Pt =Do+ Y Mk t>0. (5.27)
k=0
Given ny, ns i.i.d. for any s # t, it follows
t—1
D= > mi ~ N (0|0, 0%, ) . (5.28)
k=0
Then, the squared distance df” =d( §i), crr)? is
7),2 7 7 _
d"* = |Ipy” ~ eall3 = Ip” + my — el
~ () 2 3 2
= (po (O) —en(0)) + 3 m_1(6)
=1 ( ’ ) 4221 o (5.29)
~ ()
+23 (15 (0) = eu(®) ia (0), £ >0
(=1
It holds,
. . 2
2 (4(6) = en)) 2 (0~ (110, 40% (5 (0) — entt))) (5.30)

3The symbols and notation used in the Theorems (and in their proofs) of this Section refer to the
particle filter introduction provided in Appendix A.3.
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and, since the components of 7,_; are i.i.d. with distribution N (0, tO’Z),
2
S i1 (02 ~ (). (5.31)
(=1

Finally, recalling that S°2_, (p{” (€) — cni(£))2 = dY,

% ~ N (g, 03) + to?x2(2), £ > 0 (5.32)
with ' '
pa =dV?, o2 = ato2d?. (5.33)

From (5.32)-(5.33), dgi) 2 is identically distributed for all particles with the same initial
distance from the platform. Using likelihood (5.16) and with zrp 1. given, wﬁ’) is a
(non-linear) function of dgz)’Q, through (5.9). Then, condition (5.25) follows. ]

Theorem 2. Let the following hypotheses hold

1. the target moves according to an unbiased random walk, i.e.,
p(Per1lpt) = N (plpe, 0°I); (5.34)

2. the platform moves at a fized altitude according to a deterministic linear Markovian
motion, i.e., Cr 441 = Cr1t + Ucy t;

3. the RBE scheme updates through (A.15b) exploiting only the RF likelihood (5.16).

Then,
(i, ) € [1,N] s.t. d(pg”, emo) = d(pf”, eo) and 535
E [wt(i)|ZRF,1:t, ucn,lzt} #E {wt(j)\ZRF,lzu U—cn,lzt} , t>0.
Proof. The platform planar dynamics can be equivalently written as
t—1
iy =cmo+ U1, U1 = Y Ueyp, t > 0. (5.36)
k=0

With similar computations involved in Th. 1, it is possible to show that the squared

distance dgi)’Q = d(pl(gi),cnﬂg)2 is distributed as

A% N (@, 03) + tox3(2,0), ¢ > 0 (5.37)
with
Ha = d(()im - 2(p(()i) —cmo) U1, 0f = 4t02d(()i)’2

2 (5.38)
A= — Zﬂcn,t_1(€)2
/=1

where x2(2, \) is a non-central chi-squared distribution, with non-centrality parameter A.
From (5.37)-(5.38), the distribution of dﬁ’” depends on both d[()z)’Q and (p(()z) —cmp) U
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It is always possible to find i € [1, Ng| and j € [1, Ng] (i # j) , such that d(()i) = d(()j) and
(P(()i) —cmo) "1 # (P(()j) —cmo) 1.

Then, in general,

E [Wt(i)|ZRF,1:t7 ucn,lzt] #E {wt(j)|ZRF,1:t, ucn,lzt] . (5.39)

Theorem 3. Let the following hypotheses hold

1. the target moves according to an unbiased random walk, i.e.,
p(pe+1|pt) = N (p|pt, 0°Lo); (5.40)

2. the platform is static, i.e. ¢; = c; Vit;

3. the RBE scheme updates through (A.15b) exploiting the radio-visual likelihood
(5.18).

Then,

i, 5) € [1,N)] s.t. d(p, en) = d(p”, en) and (5.41)
E {wgi)|ZRF,1:t7Zc,1:t] 75 E {ng)|ZRF,1:taZc,1:t} , t>0 '

Proof. Suppose (w.l.o.g.) that p[()i) and péj) satisfy d(péi), cr) = d(p[()j), crr); hence, dgi)’Q
and d,(fj )2 are equally distributed, from Th. 1. Suppose now that p,(f) € ®(s;), but
pgj ) & ®(sy). From (5.17)-(5.18), wy) and w,gj ) are different functions of two equally
distributed random variables (once the observations zgrp 1.+ and z. 14 are fixed).

Thus, in general,

E {wt(i)|ZRF,1it7 ZC,lit] 7& E [ng)|ZRF,1:t, Ze:t| - (542)

5.4.1 Discussion

Th. 1 statistically characterizes the axis-symmetric ambiguity, one of the main issues
of RSSI-based localization systems. As (5.9) suggests, RSSI values, collected by isotropic
receivers, bring information only on the target-receiver distance; consequently, the RF
likelihood (5.16) is axis-symmetric w.r.t. the receiver. Thus, in a particle-based RBE
scheme, particles at the same distance from the receiver are expected to equally weighted
(on average). When the sensing platform is static, this phenomenon generates severe
convergence issues, since the belief map is toroidal with a non-unique MAP estimate, as
depicted in Fig. 5.3(a). For this reason, most literature solutions propose to use multiple
receivers Cantén Paterna et al. (2017b) in order to reduce the axis-symmetric ambiguity
and find a unique solution in localization problems.
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Th. 2 guarantees that, when multi-receiver platforms are not feasible, the axis-
symmetric effect can be mitigated by using a single moving receiver. Therefore, including
the platform position in the control space, as in (5.5), is beneficial for the convergence of
RSSI-based probabilistic active tracking strategies.

Th. 3 says that another viable solution is the adoption of a bi-modal radio-viual
perception system, since the visual likelihood (5.17) reduces the ambiguity in the particles
weighting process. This represents one of the main advantages of radio-visual approaches
w.r.t. radio-only counterparts. To completely exploit the disambiguation effect of
visual observations, camera orientation should be included in the control space, as in
(5.5). In particular, with the control law defined in Sec. 5.3, the platform uses camera
measurements to discard wrong MAP candidates. In this way, most of the weight will
concentrate around the true target position over time, as Fig. 5.3(b) shows.

In conclusion, by combining radio-visual cues in the RBE scheme and by comprising
the entire camera pose in A, the estimation ambiguities can be reduced. This makes the
localization procedure faster and more accurate (see Sec. 5.4.2). Accordingly, the overall
target visual detection task becomes more robust and more efficient (see Sec. 5.5).

(a) (b)

Figure 5.3. Probabilistic map obtained with the uni-modal RF likelihood (a) and the bi-modal
radio-visual likelihood (b).

5.4.2 | Proof of concept - target localization

To support the theoretical results, the control law (5.19) is used to localize a static
target (i.e., p; = p; V¢) in a Python-based synthetic environment (see Fig. 5.3)*. For
consistency with the hypotheses of Th. 1-3, the process model is an unbiased random
walk. The receiver is kept static (i.e., G¢ = 0), to stress the effects of the axis-symmetric
ambiguity, as well as the improvements introduced by visual information. RSSI data
are collected with sampling rate Trr = 2 (7. = 1) and noise level ogp = 2 [dBm)]; the
target is placed at distance d(p™,c) = 10 [m] from the platform. The proposed bi-modal
radio-visual approach (RF+V) is compared with a visual-only (V) and a radio-only
(RF) one. To capture the performance variability, the evaluation is assessed through a
Monte Carlo (MC) simulation with Nyests = 150 tests of Ty = 100 iterations each. The

“https://github.com/luca-varotto/RF-Vision
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5.5 Numerical results

performance index is the localization error e; = d(p, p;).

Fig. 5.4 depicts the average localization error (p.,) and its 68% confidence interval over
the MC tests (with standard deviation o.,). Only RF+V converges to the groundtruth;
namely, the estimate is unbiased and with zero variability over the MC tests

Heqy, = ]E[eTW] =0 [m]

5.43
Geryy = \/EL(eTy — feny, 2] = 0 [m]. o4

The detrimental effect of the axis-symmetric ambiguity can be appreciated in the results
of the RF approach: as proven in Th. 1, the MAP estimate is non-unique; hence, at
any time, the estimate p, may be not representative of the true target position. This
leads RF to converge, on average, to a biased estimate (:“eTW ~ 1 [m]), with remarkable
inter-test variability (oe,,, ~ 3 [m]).

The oscillations of e; are even higher for the visual-only approach. The main issue
here is related to the limited sensing domain of the camera: as (5.17) suggests, in case of
non-detection events (D; = 0), only particles inside the camera FoV are updated, which
might be a small subset of the entire particles set. Consequently, many particles share
the same weight for a long time, leading to a stronger ambiguity than the axis-symmetry
(especially in the first iterations). Therefore, the localization procedure experiences a
very slow and erratic converge behavior.

0 10 20 30 40 50 60 70 80 90 100
t

Figure 5.4. Localization error (average and 68% confidence interval over a MC simulation) with
radio-only (RF), visual-only (V) and radio-visual (RF+V) likelihood.

Numerical results

In this Section the localization problem tackled in Sec. 5.4.2 is extended to the active
tracking of a moving target, as stated in Sec. 5.2. At first, the main setup parameters
are introduced (Sec. 5.5.1), as well as the performance metrics used to validate the
proposed approach (Sec. 5.5.2). Then, Sec. 5.5.3 numerically motivates the choice of
the entire camera pose as control space, in accordance with the theoretical results of
Sec. 5.4. Sec. 5.5.4 instead shows that bi-modality allows to achieve higher robustness
and time-efficiency with respect to several uni-modal baselines. Finally, in Sec. 5.5.5
the proposed algorithm is proven to be even more energy-efficient than a radio-only
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counterpart, albeit the control law (5.19) does not account for any energy-preserving
term.

5.5.1 Setup parameters

Asin Sec. 5.4.2, RF+V, RF and V are compared within the same Python-based synthetic
environment and over a MC simulation with Ny.ss = 150 tests of Ty = 100 iterations
each. The belief map is approximated by Ng = 500 particles, initialized according to a
uniform distribution over II. The underlying target motion is simulated using a linear
stochastic Markovian transition planar model, namely

Pt+1 =Pt + Qs Qe ~ N(Q|Nq7 Eq)7 Hq # 0. (5~44)

The initial condition pg is randomly changed at each MC test, as well as the platform
initial planar position crp. The process model is an unbiased random walk, the receiver
sampling rate is Trr = 10 (7. = 1), the total available energy is fixed to E;, = 300, and
the RSSI noise level is ogp = 3.5 [dBm).

5.5.2 Performance assessment

The following performance indexes are computed from the MC simulation, recalling the
definition of Empirical Cumulative Distribution Function (ECDF) for a generic variable
q:

Ntests
plg<Q Ntests Z Ly<q

ILQjSQ =

0, otherwise

(5.45)

where g; is the value of the j-th MC test and @ is the considered threshold.

1. Detection success rate: robustness index that counts the number of successful
target visual detections over the MC tests; formally,

1 Ntests
N, tests

w = ﬂD,j
j=1
1, if 3tp € [1,Tw]s.t. Dy =1

Ip;= :
0, otherwise

where 1p ; is 1 only if the target is detected (D, = 1) at any instant during the
j-th test (3tp € [1,Tw]); tp is the time of first detection, namely

(5.46)

tp = min{t € [1,Tw] : Dy = 1}. (5.47)

2. Detection time ECDF: time-efficiency index that accounts for the time required
to visually detect the target over the MC tests. The ECDF is obtained applying
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(5.45) with ¢ = tp and Q = ¢.

3. Energy consumption ECDEF: energy-efficiency index that accounts for the
amount of available energy Er,, € [0, Eyy| at the end of the task. The ECDF is
obtained applying (5.45) with ¢ = E,, and Q = E.

5.5.3

Impact of the control space

The controller C, described in Sec. 5.3, acts on a high-dimensional space comprising the

full camera pose (namely, its position and orientation). This choice has been theoretically

motivated in Ths. 2-3 of Sec. 5.4 and it is here supported by numerical results.

Specifically, the proposed control law (i.e., RF+V) is compared with two variants.

1. The first baseline does not allow pan-tilt movements (i.e., Gg = 0) and the camera

is fixed and facing downwards (namely, oy = B, = 0, Vt). Without pan-tilt
actuation, the target can be detected only when the UAV gets very close to it;
more precisely, p; € ®(s;) (necessary condition to have D; = 1) is satisfied only
when the platform is approximately above the target (i.e., ¢ ~ p:)°. However,
this condition is difficult to be met for every initial condition pg and crj, due
to the localization errors and to the bias in the target motion. More specifically,
localization errors imply that p, ~ p; does not hold; thus, cr; = p; may not be
met (hence, p; € ®(s;) neither), since C drives the platform towards p,. At the
same time, the target motion bias (pq) increases the difficulty of the task: consider
that, at time ¢, the localization error is small enough to drive the platform close to
the target, so that p; € ®(s;); at time t+ 1 the target may move outside the camera
FoV and its position must be accurately estimated again to keep piy1 € ®(s¢41).
In conclusion, if the control space is restricted to the UAV position only, the success
of the tracking task hinges on the accuracy and reactivity of the localization process.
In this regard, the full potentialities of the proposed radio-visual approach are
poorly exploited, since the disambiguation effects of camera observations (see Th.3)
are applied only locally (i.e., in a neighbourhood of the UAV position). In this way,
the ambiguities introduced by RSSI data, and trasnsmitted to the particles, are
propagated in time, with consequent detrimental effects on the overall localization
accuracy.

. The second baseline considers a static platform (i.e., G¢ = 0). In this case, the
UAV is not capable to get closer to the target; hence, many detection failures may
occur, even when the position accuracy is sufficiently good to have the target inside
the camera FoV. In fact, the detection capability of the camera depends on the
resolution at which the target is observed and, according to (5.14)-(5.15), the
POD is very low when the platform-target distance is large. Interestingly, choosing
G. = 0 can also lead to the worst case scenario in which the tracking task is
unfeasible; this happens when d(par ,Cp) is large enough to have almost zero POD

SRecall that another necessary condition is to have an UAV altitude small enough to guarantee
non-zero POD when p; € ®(s;), according to (5.15). Otherwise, the tracking problem is ill-defined.
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Table 5.1. Detection success rate of the compared approaches.

RF+V | RF+V: Gy =0 | RF+V: G, =0
w | 7% 39% 29%
RF Vv 2RF
w | 55% 26% 64%

and the target moves away from the platform. Formally, from-(5.14)-(5.15)

d(p:ru Ct)

7 >e€, Vt>0. (5.48)

The considerations above are supported by the numerical results reported in Tab. 5.1
(top row): the detection success rate of RF+V is 77%, against 39% of the case Gy =0
and 29% of the case G¢ = 0. Moreover, Fig. 5.5 shows a remarkable difference in the
detection time ECDF between the proposed solution and the other two versions with
reduced control space.

In conclusion, considering the entire camera pose as control space induces more
robustness and more time-efficiency in the target visual detection task.

0.8 RF+V

0 20 40 60 80 100
t

Figure 5.5. MC simulation results. Detection time ECDF with different control spaces: full
camera pose (RF+V), no pan-tilt movements (RF+V: Gg = 0), static platform
(RF+V: G, =0).

5.5.4 [ Impact of the sensing modalities

Sec. 5.4.2 shows that aggregating radio-visual cues allow to achieve a more accurate
localization than radio-only or visual-only approaches. Hence, control law C, combined
with the localization accuracy of a radio-visual approach, should regulate the platform
position and the camera orientation in such a way that the UAV is often close to the
target and this, in turn, is often inside the FoV. These two conditions should result into
high detection probabilities, according to (5.14)-(5.15). As a consequence, radio-visual
active tracking should be more robust and more time-efficient than radio and visual-only
counterparts. Indeed, Tab. 5.1 (bottom row) highlights the fact that RF+V overcomes
both RF and V in terms of detection success rate; moreover, Fig. 5.6 shows the higher
time-efficiency of the bi-modal strategy with respect to the two uni-modal baselines.
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One may argue that the superior performance of the bi-modal strategy is due to
the larger amount of information involved. To rebut this assumption, RF+V is also
compared with 2RF: instead of combining radio-visual data (heterogeneous radio-visual
sensor fusion), the observations coming from two receivers are aggregated (homogeneous
radio-only sensor fusion). Thus, the measurements of 2RF are

T
ZORF,t = [ZRF(1)¢ ZRF@),t} (5'49)

where 2 , identifies the RSSI sample collected by the /-th receiver at time ¢, according
to the model (5.10). Under the assumption of independence between the observations of
the two receivers, the likelihood of 2RF becomes

2
P(Z2rF ¢ |Pt, St) = HP(ZRF(@APt,St), (5.50)
(=1

with p(zRF<g)7t|pt,st) as in (5.16). Tab. 5.1 and Fig. 5.6 show that 2RF gains some
robustness and time-efficiency with respect to RF, but not enough to overcome RF+V.
This means that the tracking performance is not only affected by the quantity, but also
by the quality, of the aggregated information. In particular, exploiting complementary
cues (e.g. radio and visual ones) is more advantageous than combining homogeneous
data extracted from different sources; in fact, one can prove that the axis-symmetric
ambiguity is not reduced when applying multiple receivers placed at the same location.

1.0
—— RF —— RF+V
0.8 \Y — 2RF
=
Vi 0.6
S
\5_0.4
0.2
0'00 20 40 60 80 100
t

Figure 5.6. MC simulation results. Detection time ECDF with different type and amount of
information employed for the tracking task: radio-visual (RF+V), visual-only (V),
radio-only (RF), and radio-only with two receivers (2RF).

5.5.5| Energy-efficiency

As mentioned in Sec. 5.3, the proposed control law (5.19) does not include any explicit
energy-aware term; hence, C is not expected to generate energy-preserving platform
movements (unless G is kept small, but this strategy has already been proven to be
ineffective). Therefore, when the total available energy runs out, that is

3t € [1,Tw] s.t. By =0, (5.51)
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the platform becomes static and the detection capabilities dramatically decrease (see
Sec. 5.5.3). In the absence of an energy-aware control technique, the only way to avoid
energy run-out is by producing accurate target position estimates. In fact, if p, ~ ps,
the controller C drives the platform towards the target through a smooth and direct
trajectory, which is more energy-efficient than irregular patterns, according to the energy
model (5.8).

Given this premise, an considering the localization superiority of RF+V against RF
(Sec. 5.3 and 5.5.4), the expectation is to have more energy preservation in RF4+V than
in RF. Indeed, the two energy consumption ECDFs showed in Fig. 5.7 satisfy

p(Efy, " < B) <p(Efy, < E); VE € [0, Eror]- (5.52)

This means that RF drains the initial available energy faster than RF+V. In particular,
the out-of-energy condition (5.51) is higher in RF (76%) than in RF+V (68%).

1.00
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@ 0.90

VI 0.85

=

@ 0.80

2 0.75
0.70
0.65

— RF —— RF+V

0 50 100 150 200 250 300
E

Figure 5.7. MC simulation results. Energy consumption ECDF between RF+V and RF.

5.6 Conclusion

This work discusses the problem of visually detecting a RF-emitting target under energy
constraint. To this aim, a probabilistic active sensing approach, leveraging radio-visual
information, is proposed. A theoretical discussion highlights the main limitations of
radio-only localization, as well as the benefits introduced by the bi-modal strategy.
These findings are then validated through numerical results, from which bi-modality is
shown to be more robust and more time and energy-efficient than uni-modal camera and
radio-only counterparts (in terms of detection success rate, time to first detection, and
energy consumption). Bi-modality is proven to be even more effective than homogeneous
sensor fusion strategies, since the combination of two receivers does not get comparable

performance of the suggested radio-visual integration.
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PAS FOR ENERGY-CONSTRAINED

VIDEO SURVEILLANCE: AN

APPLICATION TO CAMERA WAKE-UP

The application described in this Chapter considers a wireless smart camera, equipped

with a low-energy radio receiver, and used to visually detect a moving radio-emitting target.

To preserve the camera lifetime, probabilistic energy-aware controller is designed to switch

on and off the camera. The decision-making module relies on the radio signal strength

measured at the receiver side and used to estimate the target detectability, via Recursive
Bayesian Estimation combined with self-supervised Gaussian Process Regression. Both
numerical and experimental results validate the proposed approach in terms of target

detection accuracy and energy consumption.
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The contents of this chapter are partly available in: Varotto and Cenedese (2021b)
L. Varotto and A. Cenedese, “ Probabilistic RF-Assisted Camera Wake-Up through Self-
Supervised Gaussian Process Regression”. TEEE 29th Mediterranean Conference on
Control and Automation (MED), 2021 [accepted]

6.1 Introduction

Wireless sensors are battery-powered devices that do not require any wiring infrastructure
to work Jelicic, Magno, Brunelli, Bilas, and Benini (2014). Fostered by the emerging
Internet of Things (IoT) paradigm Zanella, Bui, Castellani, Vangelista, and Zorzi (2014)
and the evolution in embedded systems, and thanks to their high scalability and to their
fast and economical deployment, wireless sensors have become a propulsive technology
in various applications, from home and industrial automation, to environmental mon-
itoring Kandris, Nakas, Vomvas, and Koulouras (2020). However, the finite battery
capacity often affects the sensors reliability, with consequent degradation of the sensing
performance and with high maintenance costs for battery replacement. This becomes
critical in applications like environment monitoring Lopes and Ruiz (2008) and video
surveillance Jelicic et al. (2014), where energy-hungry sensors (e.g., cameras SanMiguel
and Cavallaro (2016)) monitor events that occur sporadically and unpredictably Aghdasi,
Nasseri, and Abbaspour (2013) (e.g., anomalous events Peri, Khorramshahi, Saketh Ramb-
hatla, Shenoy, Rawat, Chen, and Chellappa (2020)). Thus motivated, the design of
efficient energy management schemes has recently become a major theme in research En-
gmann, Katsriku, Abdulai, Adu-Manu, and Banaseka (2018). In this regard, modern
computer vision systems have been designed to include attentional strategies that limit
processing in an attempt to both mimic human visual behavior, as well as to economize
on processing in the face of limited resources Bajcsy et al. (2018). More in general, several
researchers within the wireless sensor networks community have proposed multi-tier
wake-up strategies Jelicic et al. (2014) to preserve sensors lifetime and functionality:
the first sensor layer is composed by low-power scalar nodes (e.g., Pyroelectric Infrared
sensors, PIRs Jelicic et al. (2014)), which continuously monitor the environment; if any
event of interest is detected, the power-consuming sensors (second layer) are activated.
In this way, the energy-hungry sensors can be switched off most of the time and triggered
only if needed.

In this Chapter, the focus is on wireless smart cameras which are nowadays ubiquitous in
both industrial and civil contexts. Their on-board sensing, processing and communication
capabilities Rinner and Wolf (2008) enable complex vision-based applications, even if at
the cost of high-power consumption SanMiguel and Cavallaro (2016). For this reason,
a number of energy preservation strategies for camera networks have been proposed.
These are often based on multi-layer architectures Aghdasi et al. (2013), where cameras
are coupled with scalar nodes, such as PIRs Magno et al. (2013) or Radio Frequency
Identification (RFID) tags Alemdar, Durmus, and Ersoy (2010). PIR nodes are widely
used, being low-cost, low-power and reliable presence detectors. RFIDs are limited
by the possibility of detecting radio-emitting objects only. This, however, allows to
reduce false alarms and wrong target identifications, thanks to the ID information
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carried by radio-frequency (RF) signals. Moreover, some RFIDs are passive (i.e., they
do not have an internal power source); hence, they do not impact on the system energy
consumption. Despite this, passive RFIDs are limited by short sensing ranges. As
an example, authors of Lopes and Ruiz (2008) propose a three-tier architecture: the
first sensor layer is composed of passive infrared (PIR) scalar nodes, which monitor the
environment continuously. When a heat-emitting event is detected by PIR nodes, the
second-tier, made up of camera nodes with limited capabilities, is activated. At this
step, a visual identification process occurs and, if the target is of interest, more powerful
cameras are used to track the target. This kind of multi-tier solutions typically require
extra hardware costs, but they significantly reduce the energy consumption, leading to
maintenance costs savings, while providing high sensing performance Jelicic et al. (2014).
Contribution - The setup considered in this Chapter comprises a wireless smart camera,
equipped with a low-energy radio receiver. The purpose is to visually detect a RF-emitting
target and to minimize the overall energy consumption of the platform. To this aim,
a multi-tier wake-up system activates the camera only when the target detectability is
sufficiently high. Similarly to Chapt. 4, Gaussian Process Regression is used to learn, in
a self-supervised fashion and exploiting the correlation between radio-visual inputs, the
map between the Received Signal Strength Indicator (RSSI) at the receiver Zanella (2016)
and the target probability of detection (POD). In this way, the same advantages discussed
in Chapt. 4 are obtained, namely the human intervention is minimized and it is possible
to avoid the tiring human-labeled calibration processes involved in traditional RF-based
solutions Zanella (2016). On the other side, o account for the uncertainties on the target
dynamics and on the perception process, the problem is formulated within a Bayesian
probabilistic framework Smith (2013), similarly to Chapt. 5. This is the first attempt to
design a RSSI-based probabilistic camera wake-up strategy. Furthermore, the suggested
algorithm is suitable for mobile camera applications, as opposed to most existing works,
relying on large static sensor networks Jelicic et al. (2014); Magno et al. (2013). Finally,
numerical and experimental results validate the effectiveness of the proposed algorithm:
it maintains high detection rates and introduces rema rkable energy savings compared to

non-wake-up and random wake-up policies.

Problem statement

Fig. 6.1 shows the main elements of the problem scenario, namely the target and the
sensing platform

6.2.1 | Sensing platform

The sensing platform is a smart camera, endowed with a real-time target detector Redmon
et al. (2016); Viola and Jones (2001) and a low-energy radio receiver. The camera works
at a frame rate 1/7. and can be either in active or in sleep mode: the former allows
to detect the target, but with a high energy cost; the latter, instead, is a power saving
mode and makes the camera inoperative SanMiguel and Cavallaro (2016). Therefore,
the camera operational mode allows to define the platform state as a boolean variable,
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Pp(d)

» @@ T

dtg dt: d

Figure 6.1. Problem scenario. A target (black marker) moves towards a camera, which has
to visually recognize the target, supported by radio communication. At d;, the
target is far from the camera and the detection module is ineffective, while at d;,
the target is likely to be visually detected (blue box). In a resource-constrained
framework, the camera should activate only when the detection probability Pp(d)
is sufficiently high.

namely
st € {0,1}, t=LT.,, LeN (6.1)

where s; = 0 and s; = 1 denote the sleep and active mode, respectively. The platform state
is regulated through a switching-state control input us; hence, sy follows the deterministic
Markovian transition model

St+1, = St + Uy (62)
{O, 1}, if s¢ =10

up € A(sy) =
¢ € Alst) 0,-1}, ifs = 1.

(6.3)

Similarly to the setup defined in Chapt. 4, and differently from that of Chapt. 5, the
controller is here supposed to perform a state transition at multiples of T > T, where
T is set equal to the receiver sampling interval Tgrr. In this way, a new control input
is computed as a new RSSI sample is collected; hence, between two consecutive RSSI
samples the camera operational mode remains unchanged, namely

w =0, t+#HT, HeN. (6.4)

Finally, as in the previous Chapters, the following relation is supposed to hold regarding
the sampling rate of camera and receiver

Trr = V1., v € N. (6.5)
Putting everything together, the same chain-relation of (4.4) holds:
T=Tgr =vT., vEN. (6.6)
The camera energy consumption follows the model

E.(sar+1.,s5T) =T [(PA + Pop)sur+1. + Ps(1 — sar+1,)]

+ Etrans|Sar+1. — SHT|- (6.7)

If the new state is sgryr, = 1, the power consumption is P4 with an additional
cost Pop, due to the object detector SanMiguel and Cavallaro (2016). Otherwise, a
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reduced power Pg < P4 is employed. If the camera operational mode changes (i.e.,
SHT+T, 7 SHT), it requires a power of Pj..,s for a transition time Tipqns (i-€., a total
energy of Eyrans = PiransTirans) SanMiguel and Cavallaro (2016). The power consumption
of the receiver, Pry, is constant.

Overall, the accumulated platform energy consumption at a generic time instant
te|HT,(H+1)T]is

H-1
E,= Z Ec(shT-‘rTc, ShT) + E‘trans|5HT—0—TC - 5HT|

h—1
+ (t—HT) [(Pa+Pop)sur+1.+Ps(1 — sgr47.)|+tPrx (6.8)

The summation accounts for the energy consumption caused by the previous H — 1
transitions; tPrx is the accumulated receiver energy consumption; the remaining part is
the accumulated energy consumption between HT' (current transition moment) and ¢
(current instant of time).

6.2.2 Target

The radio-emitting target is supposed to move in front of the camera; hence, its state
is the distance from the camera focal point, namely d; € R;. The process model is a
(possibly) non-linear stochastic Markovian transition model

dee. = fme). (6.9)

As usual, the uncertainty on the underlying target movements are captured by the
distribution of the stochastic process noise 7;.

6.2.3| Perception modeling

Radio perception Similarly to Chapt. 4 and 5, the target is supposed always inside
the receiver sensing range and the RSSI value, r € R, is extracted from received data
packets. The map between the target-platform distance, d;, and the RSSI value,

re = g(dy), (6.10)

As in Chapt. 4, the function g(-) is unknown. By combining the process model (6.9)
with (6.10), the (noise-free) RSSI value 7; can be equivalently considered as the target
state. Therefore, the target dynamics becomes

resr, = F(g7 re)ome) = f(re,my), (6.11)

where the new process noise, 7, accounts for uncertainties in both target dynamics and
in the underlying RSSI-distance relation.

Given the process model reformulation in (6.11), the target state is hidden in the
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receiver measurements, according to the following RSSI observation model

hgr(Pt; VRF,) = 71t + VRFyt, t= MTRrr, M €N
ZRF,t = (6.12)

o, otherwise.

The lack of samples (when ¢t # MTRrr) is modeled with empty observations &; this will
turn useful for the formulation of a probabilistic controller as in Sec. 6.3.1. As can be
noticed, the main difference w.r.t. the previous Chapters is that hgp(-) does not depend
on the platform state, since the receiver is static and always working (the wake-up control
is applied only to the camera).

Visual perception Differently from the assumptions made in the previous Chapters,
the target is always inside the camera FoV. The target visual detection process is modeled
as a Bernoulli random variable D, € {0, 1}, with success probability

Pp(dy), ifsp=1
p(Dy = 1]dt, st) = b{dt) 1 o (6.13)
0, if s, =0.

As (6.13) highlights, the detection success probability is a function of both the camera
operational mode (i.e., the state s;) and the target-platform distance, through Pp(dy).
This is the POD when the camera is active and accounts for the visual depth effects (see
Fig. 6.1). In the following, the dependence on d; is equivalently substituted by r;, on the
basis of (6.10); formally

Pp(di) = Pp (9_1(7“t)) = pp (re) - (6.14)

6.2.4 Problem statement

With the formalism introduced in the previous Sections, the RF-assisted camera wake-up
problem can be formulated as the control of the platform state s; (through wu;), given
camera and receiver observations z.r,.; and zrp 7. (i.e., all platform measurements).
The purpose is the realization of the event D; = 1, with a a minimal amount of energy
E, spent.

Methodology

To solve the RF-assisted camera wake-up problem, defined in Sec. 6.2, a two-step

probabilistic (energy-aware) bi-modal active sensing approach is proposed.

1. First, given a set of offline RSSI and camera observations, GPR is applied to
learn, in a self-supervised fashion, the POD as function of the RSSI value, that is
pp(r). The method is the same as that described in Sec. 4.3.1; hence, the reader is
addressed to Chapt. 4 for a detailed description of the first step of the proposed
pipeline.

2. As shown in Fig. 6.2, the GPR result is incorporated into a RBE framework to

114



6.3 Methodology
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Figure 6.2. Scheme of the RF-assisted camera wake-up algorithm.

predict the target detectability and, therefore, to switch the camera operational
mode. More specifically, radio measurements are used to keep the target belief map
updated through an RBE scheme. The map feeds the pre-trained Gaussian Process
module, which estimates the expected target POD over a time horizon. This
estimate and the updated RBE map are injected into a probabilistic energy-aware
controller, which is responsible for generating the platform control input.

6.3.1 | Probabilistic RF-assisted camera wake-up

Probabilistic map The RBE scheme involved in Fig. 6.2 is implemented through a
particle filter (see Appendix A.3). Given the target state 7, the process model (6.11),
the observations zgp 7,:+ and the observation model (6.12), the RBE map estimates the
posterior distribution p(r¢|zrp 1.:t) via

NS . .
p(relzrr 1.t) = Zw§l)5 (T‘t - T,gl)) . (6.15)
i=1
The particles and their weights are computed as

) =f (Tﬁ)nﬂ UQ—TC) (6.16a)
wgi) x wlgi_)Tcp (zRF7t|T§i)) . (6.16b)

In our framework, the radio observation model (6.12) leads to the following RF
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likelihood
N (Z|Tt701%,F) 5 t= MTRF

(6.17)
1, otherwise.

p(ZRF,t‘Tt) = {

The belief map is updated only when zrp; carries information on the target state (i.e.,
ZRF # @, at t = MTRry).

Probabilistic Energy-aware Controller The platform control input is computed
by solving the following optimization program

(6.18)

0ot = {argmaxueA(St) J(u|zrp 1,05 5¢), t=HTRr
S

0, otherwise,

where condition (6.4), with 7' = TRy, is taken into account. The cost function is a
combination of a detection term Jp(-) and an energy-aware term Jg(-), both related to
uz through (6.2):

J(u|zrr 1,085 5¢) = Ip (Ul 2RF 10085 5¢) + VI E(U|S¢) (6.19)

)

where {Dyy7y,,.¢}7—; are the v detection outcomes before the next RSSI sample, 2Rr 1473y »

The detection term is

14
Jp(u|zrp 1,85 5¢) = E [p (Z Diirppe > 1
=1

ZRF,T.:t St] ) (6.20)

is collected; hence, Jp(-) represents the expected probability of detecting the target at
least once before a new RSSI measurement comes. Clearly, it is a function of the next
platform state (i.e., s;y7,), from which the dependence on u; and s; follows, according
o0 (6.2). Consequently, the detection cost function can be re-written as Jp(s¢7.|2RF 7,:t)-
From (6.13), Jp(s¢47.|-) = 0 if si4.1, = 0; otherwise, { Dy 7y, ¢}7—; is a sequence of i.i.d.
random variables with distribution B (pp(rt+7y,)) (see Chapt. 4); thus

v

> Dittig e ~ Bin (v, pp (res i) (6.21)
(=1

and, therefore,

v
P <Z Diirppe 21

/=1

u) =1—[1—pp(re+rr)]” . (6.22)
Finally, we get
Ip(ser, = 1zrp 1) = 1 - / [1 = po(revrre |2rE 10:0)]” PP Tie |2RE st ) AT e T

N ) . ”
~1-Y [1 - ﬁD,*(Tﬁ@TRF)] : (6.23)
=1

where the RBE prediction step is applied to compute the particles {rt(QTRF}Zle from
those at time ¢; at the same time, the weights {wf)}f\fl encrypt the information carried

by measurements zrp 7.+ through the likelihood function (6.17). Finally, the posterior
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POD p(rt4+1xp |2RF,1.:t) is estimated through the pre-trained GP-based POD function,
(@) )

fed with the RBE particles, namely p(ri1yp |2RF,7.:¢) & ﬁD,*(THTRF

The energy-aware term is

Ec(st41.,5t)
Emax ’

which accounts for the energy consumption induced by the new state sy;7,, according

Je(ulst) = (6.24)

to (6.7). This quantity is then normalized by the maximum energy consumption
Emax = (PA + POD)TRF + Etrans- (625)

The hyperparameter v > 0 is used to tune the importance of the energy preservation
contribution: the higher v, the higher must be the expected POD to justify larger energy
expenditures for the camera activation (with v = 0, the camera is always active).

Numerical and experimental results

The proposed approach is firstly evaluated with a Python-based synthetic environment!
and then through a real-world experiment. Sec. 6.4.1 describes the main (numerical
and experimental) setup parameters, as well as the synthetic data generation process.
Sec. 6.4.2 defines the metrics used for performance assessment and the baselines considered
for comparison. The numerical simulation results are discussed in Sec. 6.4.3, while the
experimental validation is reported in Sec. 6.4.4.

6.4.1 Setup parameters

To carry out realistic simulations, most parameters reflect the experimental setup also in
the synthetic experiments (see Tab. 6.1, where blue font highlights the difference between
simulative and experimental setups). The platform and the target communicate via
Bluetooth protocol, using Nordic nRF52832 SoCs?. RSSI observations are collected with
a sampling time of Trr = 0.1s. The camera node is the integrated webcam of a Dell
Inspiron (Intel Core i7-4500U, 3.00 GHz processor), which collects images at resolution
640 x 480 pixels and with a frame rate of 20 Hz; hence, its transition energy, as well as the
energy consumption in active and sleep modes, can be computed accordingly SanMiguel
and Cavallaro (2016). For the target detection, the camera is endowed with a real-time
face detector Viola and Jones (2001), whose energy consumption is studied in LiKamWa,
Priyantha, Philipose, Zhong, and Bahl (2013). To simulate detection events in numerical
tests, the POD in (4.20) is considered®. The value of v with the experimental frame rates
is 2; nonetheless, a value of ¥ = 10 is used in the numerical tests, as a reasonable trade-off
with the ideal condition stated in (4.18). The target is supposed to move according

"https://github. com/luca-varotto/RSSI-camera-wakeUp
*https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/
nRF52832-product-brief.pdf.

3Pp(d) = [(1 +e4(d7445)) (1 Jref(dfz.s))]fl'
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Table 6.1. Setup parameters for simulations and experiment.

Parameter Simulation Experiment
TRF 0.1s 0.1s
v 10 2
Prx 20 mW 20 mW
Py 100 mW 100 mW
Pg 1 mW 1 mW
Pirans 50 mW 50 mW
Tirans 3ms 3 ms
Pop 100 mW 100 mW
Ntrain 900 1073
Niest 500 936
N 100 100
Ntests 50 1
¥ 1
fde,me) o~ %TOTO. 04) unknown
ORF 3 unknown
Kk — 10nlog(d /0
g(d) k= —30dBm, nli(Q, /5): Iy | (mknown

to the stochastic linear model reported in Tab. 6.1; the initial condition dy is chosen
according to a uniform random variable in [0.5,6/m. The log-distance path loss model
(PLM) Zanella (2016) is used to generate synthetic RSSI data and to design the RF
likelihood, with noise level orr = 3. By combining the target dynamics with the PLM,
the RSSI process model (6.11) is obtained.

6.4.2 Performance assessment

To capture the performance variability, numerical evaluation is performed through MC
simulations with Nyests = 50 tests of duration Ty = niest IrF €ach, where ng.q is the
number of RSSI collected.
Performance metrics The following performance indexes are computed from the
MC simulation, recalling the definition of Empirical Cumulative Distribution Function

(ECDF) defined in Sec. 5.5.2 of Chapt. 5.

e Accuracy ECDF': the main objective of any wake-up system is to save energy
without reducing the effectiveness of the perception system. A bias in the wake-up
decision process may induce imbalances between sensing performance and energy
efficiency. More specifically, the camera wake-up problem can be seen as a binary
decision task (camera is either active or not) based on the binary classification
about the target detectability (target is either detectable or not). Therefore, the
higher the classification accuracy, the higher the capability to activate the camera
only when needed: leaving the camera active when the target is not detectable
leads to (unjustified) energy waste; on the contrary, a bias towards the sleep mode
increases the risk of losing the target. Moreover, if the wake-up system is unstable
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(i.e., active and sleep states alternate faster than target dynamics) the transition
costs may reduce the energy efficiency. The system accuracy is computed as

T
1 w
acc = — E Dysi + (1= Dy)(1 —s4) |, (6.26)
Tw t=Tc | Tp TN

which is the empirical probability of having either a true positive (TP) or a true
negative (TN). At time ¢, a TP is realized if the camera is active and the target
is detected. Conversely, a TN consists in switching-off the camera and having a
non-detection event if the camera would have been active. The accuracy ECDF is
then obtained applying (5.45) with ¢ = acc from (6.26) and @ = a.

e Total Energy Consumption ECDF": clearly, a high accuracy is necessary, but not
sufficient to justify the additional power costs introduced by the ancillary equipment
of multi-tier architectures (the radio receiver, in our case). More precisely, the use
of a multi-layer wake-up system is well-founded only if the accuracy-induced energy
savings overcome the costs due to the ancillary equipment. Since accuracy does
not provide any information about the power usage, it is possible to evaluate a
wake-up strategy also on the total energy consumption E7,,, computed from (6.8),
and recalling (5.45) to obtain the corresponding ECDF (with ¢ = Epy, and Q = E,
expressed in energy units).

e Final Confusion-Energy ECDF': accuracy and energy efficiency are sufficient to
characterize the performance of a wake-up strategy; despite this, a performance
index that aggregates these two metrics is needed, in order to ease the comparative
analysis between different techniques. As a matter of fact, a very accurate solution
may employ energy-hungry sensors that increase the energy usage; conversely,
an energy-preserving algorithm sometimes do not yield high accuracy levels. In
conclusion, it is useful to define the confusion-energy at t = Ty (i.e., final CE)

T
1 w
CEpy=—— Y (Bi—Ei_1) (se+Dy—25,Dy) . (6.27)
By t=2T.

The CE is the ratio of energy spent in case of any mis-classification (i.e., s; # D),
over the total amount of energy usage. Thus, it is a measure of power management
efficiency. The final CE ECDF is obtained similarly to the previous case, resorting
to the general formulation in (5.45) with ¢ = C'Ep,, and threshold value Q = Eporm,
where energy normalization is applied.

Baselines The following baselines are considered for comparison in the simulative
scenario:

o always: the camera is always left active (i.e., no camera wake-up strategy is applied)
and the receiver is not used;

o rnd: the camera is activated randomly, that is s; ~ B(0.5), and the receiver is not
used;
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e gt: the camera is activated according to the probabilistic control law C, but assuming
perfect knowledge on the underlying POD function pp(r), on the underlying path
loss model, and on the platform-target distance at each time instant. Hence, pp(r)
can be perfectly evaluated and, in turn, the computation of the cost function
J(u|zrF 1,:t, 5¢) does not involve any approximation or estimation step. For this
reason, gt works as comparison groundtruth and represents the performance upper
bound.

The proposed approach differs from g¢ in that the underlying POD function pp(r) is
estimated with the self-supervised GPR described in Sec. 4.3.1. Moreover, neither the
platform-target distance nor the PLM are known; hence, the target state is predicted
through the RBE scheme described in Sec. 6.3.1. For the aforementioned reasons, the
proposed solution is referred as S2GPR.

6.4.3 Numerical results discussion

1.0
always

08 rnd
S) 2
V10.6 S'GPR
5.,
304
SH

0.2 //

0.0

0.0 0.2 0.4 0.6 0.8 1.0

a

Figure 6.3. Numerical results: accuracy ECDF.

Accuracy Fig. 6.3 shows the accuracy ECDF of the proposed S?GPR and the three
baselines under comparison (always, rnd, gt). The accuracy of always experiences the
highest variability over the MC simulations, being strongly related to the target behavior
at each MC test. In fact, the accuracy depends only on the ratio between true and false
positives (since s; = 1,Vt), which, in turn, depends on the time spent by the target at
detectable distances. This result suggests the importance of adopting a camera activation
scheme to increase the robustness w.r.t. all possible target behaviors. On the other hand,
the accuracy of rnd is independent on the target dynamics and it is concentrated around
0.5; this is due to the fact that, with s; ~ B(0.5), the probability of a TP or a TN is 0.5,
irrespectively to the target detectability. This suggests that, to have better accuracy
levels, the camera activation scheme should exploit some kind of target detectability
awareness. As Fig. 6.3 shows, the exploitation of a RF-assisted strategy to account for
both target movements and its probability of detection, allows to attain remarkable
improvements; in particular, gt and S?GPR are better than the non-RF-assisted baselines
for every MC test. More specifically, the accuracy of gt is never smaller than 0.8, due to
the perfect knowledge employed in the target detectability evaluation. Despite this, the
probabilistic nature of C makes it difficult to reach acc = 1.0 for every MC test, even in
this ideal scenario. The proposed algorithm performs slightly worse than g¢t, since GPR
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and RBE introduce some estimation errors that affect the computation of the expected
target detection probability. In any case, the accuracy performance is satisfactory, since
it is never lower than 0.7 and in the range [0.7 — 0.8] with probability 0.2.
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/Lﬂ\ 0.8 rnd
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Figure 6.4. Numerical results: total energy consumption ECDF.

Energy consumption Fig. 6.4 depicts the ECDF of the total amount of energy usage,
E7,,. The consumption related to the always mode is obviously constant and equal to
10 J, since the camera never changes its operational mode. The RF-assisted strategies (gt
and S2GPR) have a very similar power usage, with minor preservation improvements
coming from the perfect knowledge involved in gt. Interestingly, S?G PR requires less
power than always for the 80% of the MC simulations. The remaining 20% may be due
to target movements lingering around a borderline distance for the detectability (e.g.,
Pp(d) ~ 0.5): in this case, the trade-off between Jp and Jg in (6.18) produces unstable
and rapid state changes; therefore, the energy savings induced by camera deactivations
are negligible and the frequent transition costs become relevant for the overall energy
computation. The least energy-demanding algorithm is rnd, with an average energy
consumption of 5.1J. Note, however, that rnd is also the least accurate for the 80% of
the MC tests, according to Fig. 6.3; for this reason, it is fundamental to to draw the main
conclusions by considering a performance index that combines and balances together
accuracy and energy consumption (i.e., the confusion energy metric).
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Figure 6.5. Numerical results: final confusion-energy ECDF.

Energy efficiency Fig. 6.5 shows the ECDF of the final CE, CE7,,. The accuracy
gap between gt and S2GPR is reflected also on this quantity. In any case, the RF-assisted
solutions are always more efficient than the others, despite the extra energy spent for
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the receiver. In particular, the low accuracy of rnd leads to poor performance in terms
of energy efficiency, despite the highest energy preservation levels depicted in Fig. 6.4.
These findings prove the impact of accuracy on the energy usage efficiency. Overall, the
results shown in Fig. 6.5 justify the adoption of multi-tier wake-up strategies.

6.4.4 | Experimental results discussion

In this paragraph, the results of an experimental test are described, where the reader
may refer to Sec. 6.4.1 for the setup and to Tab. 6.1 for the main parameters. The
groundtruth baseline gt is not considered, since no perfect knowledge is available in real
scenarios. Moreover, since the RSSI generative model and the noise level are unknown, it
is possible to use an educated-guess value (orp = 3) for the RF-likelihood. Regarding
the RSSI process model (6.11), a linear stochastic Markovian dynamics with variance
0.01 is adopted.

Fig. 6.6 depicts the POD function learnt via GPR, on the real data. With respect to
the synthetic version (Fig. 4.6), output labels are noisier, due to the smaller value of
v and according to (4.19). Moreover, depth effects impact on the target detectability
also at smaller distances (larger RSSI values), as expected indeed in real-world computer
vision systems Radmard and Croft (2017).

—0.2 —76 —73 =70 —67 —64 —061

r [dBm]

Ntrain

Figure 6.6. Experimental results: GP model pp(r) (green), learnt on real data {zrr ;, Pp,; i)

(black markers).

To exemplify, Figs. 6.7(a) and 6.7(b) show sample images for a TP and a TN case: here,
camera active and sleep modes are indicated by a green and red marker, respectively. In
summary, the main quantitative results are given in Tab. 6.2: notably, S?’G PR exhibits
the highest accuracy and the smallest confusion-energy, and achieves 68% and 37% energy
saving w.r.t. always and rnd, respectively. As a final remark, it is important to note
that one major benefit of the proposed approach is that it performs well also with small
datasets. A total of nyrqin = 1073 training data were collected, at a sampling rate of
Trr = 0.1s; hence, the data collection campaign lasted only 107.3s. A further advantage
is the self-supervised procedure, which allows to automatize the dataset acquisition
process.
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Figure 6.7. Experimental results. a) True Positive example: the target is detected and the
camera is active (green marker on left top). b) True Negative example: the target
is not detected and the camera is left silent (red marker on left top).

Table 6.2. Experiment results: accuracy, final CE and total energy consumption (best values in
blue font).
Method
always rnd S°GPR
acc 0.31 0.48 0.81
Metrics | CE7y, 0.68 0.69 0.21
Er, |2347J) 1217J 7.61J

6.5 Conclusion

This work proposes an energy-preservation scheme for a wireless camera, used to detect a
radio-emitting target. A probabilistic energy-aware controller activates the camera based
on the predicted target detectability. Predictions are made through Gaussian Process
Regression, combined with Recursive Bayesian Estimation. The GP model is learnt in
a self-supervised fashion, exploiting the correlation between radio-visual measurements
and avoiding manual annotation. Experiments on a real platform show a 68% energy
reduction w.r.t. a camera than continuously monitors the environment.
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PAS FOR 10T: AN APPLICATION TO
PARKING ESTIMATION IN CONNECTED
VEHICLES

In the context of assisted driving and connected wvehicle technologies, this Chapter
proposes an online and adaptive scheme for parking availability mapping. Specifically, an
information-seeking active sensing approach is adopted to select the incoming data, thus
preserving the on-board storage and processing resources; then, the parking availability is
estimated through Gaussian Process Regression. The proposed algorithm is compared with
several baselines, which attain inferior performance in terms of mapping convergence
speed and adaptivity capabilities; moreover, the proposed approach comes at the cost of a
very small computational demand.
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7 PAS for IoT: an application to parking estimation in connected vehicles

The contents of this chapter are partly available in: Varotto and Cenedese (2021a)
L. Varotto and A. Cenedese, “Online and Adaptive Parking Availability Mapping: An
Uncertainty-Aware Active Sensing Approach for Connected Vehicles”. IEEE 32nd Intel-
ligent Vehicles (IV2021) - 2nd workshop on Online Map Validation and Road Model
Creation (MAVROC), 2021 [accepted]

7.1 Introduction

IoT technology for connected and automated vehicles Research on connected
vehicles represents a continuously evolving technological domain, fostered by the emerging
Internet of Things (IoT) paradigm and the recent advances in intelligent transporta-
tion systems. Nowadays, vehicles are platforms capable of generating, receiving and
automatically act based on large amount of data. In the context of assisted driving,
connected vehicles technology provides real-time information about the surrounding
traffic conditions Cic¢i¢, Barreau, and Johansson (2020). Such information is expected to
improve drivers’ quality of life, for example, through Advanced Driver Assistance Systems
(ADASSs), or by adopting decision making strategies according to the current parking
availability status. Indeed, the research on ADAS is an extremely active and promising
field of study across all levels: from the Level 1 of Driver Assistance, with possible
intelligent intervention to steering, braking, and acceleration, to the futuristic Level 5
of Full Automation, where the vehicle can operate all driving conditions SAE On-Road
Automated Vehicle Standards Committee and others (2014). Along these avenues, though,
it has been recently highlighted how to unleash the full potential of autonomous driving;:
the smartness of the infrastructure is at least as important as the intelligence inside
the vehicle itself Gopalswamy and Rathinam (2018); Joy and Gerla (2017); Mamduhi,
Hashemi, Baras, and Johansson (2020). By infrastructure it is usually meant the infor-
mation and communication systems distributed along the roads that will support the
autonomous driving capabilities, but also the dynamic information-rich collaborating
network that emerges from the many vehicles that are actually circulating Uhlemann
(2015, 2018).

Such an information flow allows the definition of real-time maps that are needed for
efficient and safe navigation: to this aim, mapping is an all-inclusive procedure that
accounts for topology of roads, geometry of the environment, and more volatile data such
as traffic levels, congestion or accident occurrences, and parking availability Wong, Gu, and
Kamijo (2021). In order to acquire such mixture of permanent and temporary information,
active sensing methodologies come into play, where the information acquisition process
is controlled and driven by some optimal criteria chosen according to the task or the
goal to be accomplished. Specifically, the vehicle can be interpreted as a mobile sensing
platform that leverages environmental perception from on-board sensors, information
coming from fixed infrastructure, and data exchange with other vehicles to perform
scene reconstruction and understanding Siegel, Erb, and Sarma (2017). The combination
with active sensing approaches allows to improve the quality of measurements and the
efficiency of the information gathering process Varotto et al. (2021). This framework
results particularly effective when the information of interest is highly dynamic, such
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Figure 7.1. The Cariad’s self-learning adaptive cruise control system is a prominent example of
how IoT can be used within the framework of connect vehicles.

as that related to traffic condition and parking availability. In this case, the data
coming from the network of connected vehicles provide high-fidelity real-time information
that supports the driver’s decision making process and improves the overall system
mobility Talebpour and Mahmassani (2016).

As an example, Fig. 7.1 depicts the scheme of a self-learning adaptive cruise control
system developed at Cariad (a subsidiary of the Volkswagen Group responsible for
automotive software). Data from the vehicle is actively selected and transmitted wirelessly
to the cloud, where it is used to adapt a neural network model the on the basis of the
current road scenario. Afterwards, the improved algorithm is tested and integrated on
a new software release, which is fed back again into the vehicle. For what concerns
this Thesis, the most interesting module is the AMDA (Automated Measurement Data

"https://newsroom.porsche.com/en/2021/innovation/porsche-engineering-big-data-loop-25029.
html.
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Analytics), which is responsible for the data selection process. As a matter of fact, radar
sensors and cameras generate an immense amount of data, most of which is not relevant
to the function under consideration. Driving on an empty highway, for example, offers
no learning opportunities for a distance controller. Moreover, evaluating or storing all
the data would be far too time-consuming and memory demanding.

Parking Availability Mapping With such premises, the parking forecast problem
can be seen as a probabilistic map building problem that can be addressed through
an incremental information discovery process: namely, the problem is to estimate the
parking availability in a certain objective area by gathering information along the path
towards the desired place; the result of the estimation process is then used to take actions
accordingly, in order to maximize the parking probability itself.

In the last few years, the strong demand for ADAS technologies, and the quest for
the autonomous vehicles, have fuelled a growing literature on the design of strategies
and models for smart parking systems Bischoff, Maciejewski, Schlenther, and Nagel
(2018); Lin, Rivano, and Le Mouél (2017a). Indeed, smart vehicles equipped with
assistive systems exploit semantic maps of the environment to navigate and operate.
In Westfechtel, Ohno, Mizuno, Hamada, Kojima, and Tadokoro (2018), for example, a
map of the environment is build from on-board sensors (basically LIDAR and GPS) and
a graph-based approach is proposed to include topological and usage parking information,
obtained also from multiple days observation data. This map is then used to evaluate
the parking spots occupancy rate and therefore predict their availability. The method
proposed in Westfechtel et al. (2018) detects and uses parked vehicles in the surroundings
to estimate parking lot topology and infer vacant parking spots via a graph-based
approach. The suggested solution is validated both in structured and unstructured
parking lots. A collaborative approach is proposed in Li, Yang, Xiao, Valde, Wrenn,
and Leflar (2018a) with the specific focus of the management of parking garages, where
a global probabilistic occupancy map emerges from individual vehicle perception (e.g.
through LiDAR, IMU, GPS) and inter-vehicle information sharing; the final objective is
to support autonomous parking: from the available parking spot identification, to the
navigation and motion planning, to the precise parking maneuvering. The multi-vehicle
data collection is considered also in the ParkNet system Mathur, Jin, Kasturirangan,
Chandrasekaran, Xue, Gruteser, and Trappe (2010), where the problem of urban street
parking is addressed by means of drive-by-parking monitoring; the collected data from
GPS and ultrasonic rangefinders are then fused into a single centralized map, which
allows the generation of statistics for optimal management policies.

On the modeling aspects, the state of the art reports several research avenues. In partic-
ular, the employment of Gaussian Processes (GPs) to model occupancy maps appears as
a convenient method to attain a probabilistic description of the behavior of mobile objects
in the environments, given their physical spatial structure and correlation O’Callaghan,
Ramos, and Durrant-Whyte (2009). Dynamic GP occupancy maps are further developed
in Senanayake, O’Callaghan, and Ramos (2017), where variational inference methods are
employed to speed up the estimation process and adapt to LIDAR produced dataflow. A
different approach is taken by other models that instead of focusing on the occupancy
map, consider the point of view of the vehicles that are moving towards the parking slots.
For example, in Rajabioun and Ioannou (2015), a multivariate autoregressive model is
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proposed where temporal and spatial correlations are taken into account to compute
the probability of parking availability at the vehicle estimated arrival time; this system
exploits real-time and historical data, where the latter are used to learn the parameters
of the model and the former are used to carry out an accurate up-to-date prediction.
Finally, queuing models are a popular and established method to describe the behavior of
the vehicles-parking slots interaction and are employed in Tavafoghi, Poolla, and Varaiya
(2019) to provide probabilistic estimation of parking availability, leveraging on learning
techniques to attain the prediction model parameters.

Contributions This Section considers a smart transportation scenario, populated by
smart infrastructures (I), as well as intelligent and connected vehicles (V) Uhlemann
(2018). These are able to detect parking slots and to classify them as either free
or occupied Westfechtel et al. (2018). They are also endowed with communication
capabilities, so that V2V and V2I data exchange are allowed. In this framework, the
purpose is the design of an online parking mapping scheme, which leverages on local and
remote data to adapt to dynamic traffic conditions. To this aim, the task is formulated
as a Gaussian Process Regression problem, coupled with an active sampling module;
the latter is based on an information-seeking data selection criterion, which retains only
those datapoints that are expected to reduce the uncertainty of the model.

This is the first attempt to design a parking mapping algorithm by leveraging active
sensing within the framework of connected vehicles. In particular, with respect to the
state of the art, the proposed methodology employs a data-driven approach (i.e., GPR)
with the training dataset collected in a multi-source scenario, where V2V and V2I commu-
nication guarantees incremental learning and continuous map update. The computational
complexity of most data-driven multi-source learning procedures increase without an
appropriate control algorithm; therefore, the proposed active sensing module selects
the most informative samples, thus minimizing information redundancy and avoiding
memory and processing overload. Numerical experiments validate the effectiveness of
the proposed algorithm against several baselines; according to them, the combination
of GPR with active sensing improves the quality and the efficiency of the estimation
process. In particular, the suggested approach attains high performance in terms of
mapping convergence speed and adaptivity capabilities, at the cost of small computational
demands.

Problem statement

Fig. 7.2 provides an overview of the problem scenario: a road path is populated by
mobile sensing platforms (e.g., autonomous vehicles Bischoff et al. (2018)) with sensing,
processing and communication capabilities on-board (i.e., intelligent and connected
vehicles Siegel et al. (2017); Uhlemann (2018)). Each platform establishes communication
with surrounding smart infrastructures (e.g., smart parking stations) and with the other
vehicles, according to the V2I Uhlemann (2015) and V2V Krasniqi and Hajrizi (2016)
paradigms. The platform has also access to cloud storage resources, where information
on current traffic conditions can be downloaded. The purpose is to estimate the parking
availability (PA) over the entire route. To this aim, informative data from on-board
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Figure 7.2. Problem scenario. A road path of length L is populated by intelligent and connected
vehicles, as well as with smart parking infrastructures. Each vehicle is capable to
detect parking slots and to classify them as free or occupied. Traffic conditions p(z)
are obtained from online cloud databases; hence, by establishing communication
with external information sources (e.g, connected vehicles, and parking stations),
each vehicle can learn the parking availability map f (z|u(x)), which differs from
the a-priori parking availability 7(z), over the entire road path.

sensors and external resources need to be gathered, selected and processed.

One of the main objectives of this Chapter is to stress the flexibility and the general-
ization capabilities of the MS-PAS scheme introduced in Chapt. 3. In Chapt. 3-6 the
targets were moving agents (e.g., people), but the MS-PAS scheme has been designed to
accommodate for a more general concept of target, namely any entity whose properties
are measured and estimated from platform observations. In this respect, the "target"
considered in this Chapter is the environment (more specifically, the road), from which
the parking availability level is estimated.

7.2.1 Environment

Consider a road path X = [0, L] over which the following function is defined
m(x): X — [0,1]. (7.1)

It represents the (on-street Mathur et al. (2010); Rajabioun and Ioannou (2015)) a-priori
parking availability along the path X. Being related to structural and environmental
properties of the street in traffic-free conditions (e.g., presence and number of parking
slots), it is a time-invariant quantity. In this work, 7(x) is the total count of slots over a
spatial window W, namely

[W/s]

1
an—hs reX (7.2)

~ wW/s]

where S is the length of a parking slot (homogeneous slots are considered); |W/S| is the
maximum number of parking slots over the window W and it works as normalization factor;
1(-) is an indicator function, such that 1(x — hS) = 1 if there is a parking slot between
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x—hS and z — (h+ 1)S; 1(z — hS) = 0 otherwise. In practice, 7(x) is produced once
and for all, via parking spot detection and mapping algorithms Westfechtel et al. (2018).
The road path is supposed to be characterized, at each time instant ¢, by a time-varying

traffic density function
() + X —[0,1]. (7.3)

This function maps each point of X into a normalized density value, proportional to the
traffic congestion level. It is realistic to assume that there exists a parking availability
attenuation function, which depends on the current traffic density level Aryandoust, van
Vliet, and Patt (2019); Bischoff et al. (2018); Cao and Menendez (2015), namely

A () < [0,1] = [0, 1]. (7.4)

This function defines the parking availability reduction according to the traffic density
pt(x) at a certain location z. Hence, the parking availability map (PAM) (also referred
to as occupancy map Westfechtel et al. (2018)) is computed as

f(xlpe(z)) = & = [0,1] (7.5)
z = ()X (),

where notation f (z|u(z)) means that f(z) is computed, given ()%, By aggregating
information on environmental properties through 7(z), and on current traffic conditions
through p;(x), the PAM represents the number of available parking slots between z and
x — W, normalized by the maximum number of parking slots (i.e., |[W/S]). In fact, it is

computed as
1 /s

f(x|pe(z) LW/SJ Z 1,,(z reX (7.7)

where 1,,, (z—h.S) is an indicator function, such that, at time ¢, 1,,, (x — hS) = 1 if between
x —hS and v — (h +1)S there is a parking slot and it is available; 1,,(x —hS) =0
otherwise.

7.2.2| Sensing platform

This work leverages on the active sensing framework to solve the parking availability
estimation problem Mathur et al. (2010); therefore, the sensing platform is one of the
main elements of the problem scenario. In particular, the platform interacts with the
surrounding environment and, by actively selecting the incoming information, it can
reconstruct the PAM.

Platform observation model The sensing platform is mobile and equipped with
communication capabilities (i.e., it is a connected vehicle Uhlemann (2018)). It also
embeds sensing, computational and logical resources on-board, so that it is capable to
detect on-street parking slots and to recognize their availability, as in Bischoff et al.

For ease of notation, f (z|u:(z)) is sometimes referred also as f (z).
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(2018). Thus, a platform measurement is

1 s
[i7/5] Z 1,,(st — hS), (7.8)

2t =

where s; € X is the platform state at time ¢, represented by the vehicle location over
the road path. The vehicle is supposed to move according to a (possibly) non-linear
deterministic Markovian dynamics

st +v(pue(z))T, t=LT, LeN
St+1 = . (79)

St, otherwise,
where T is the transition time of the discretized vehicle model, and v (g (x)) is the car veloc-
ity influenced by the current traffic level. In (7.8), the binary function 1, (s; — hS) € {0,1}
is the estimated occupancy: 1,,(s; —hS) = 1 if the platform classifies the slot between
st —hS and s; — (h + 1)S as available; 1,,(s; — hS) =0 otherwise. To account for
sensors nuisance and for the estimation uncertainty associated to common parking slot
classification algorithms Bischoff et al. (2018), 1, (s; — hS) is a noisy version of the true
value 1,,(s; — hS). In particular, we consider the following PA observation model

| bws

2 = [W/s] Z 1, (st — hS)(1+e1) (7.10)
, bwsi |
sy 2 @ —hS)) ey

where €y and €; are noisy terms: €; ~ B(p1) with support in {—1,0}, while ¢y ~ B(po)
with support in {0,1}. In practice, €; induces a free slot to be either not detected or
detected as occupied; hence, it accounts for mis-detections and mis-classifications. On
the other hand, ¢y induces an absent or occupied slot to be seen as a free parking space;
thus, it accounts for sensor artifacts and mis-classifications as well. From the Bernoulli
distribution of €y and ¢y, it follows that z;9 and z;; are Binomial random variables;
by exploiting the Gaussian approximation of Binomial random variables, the following
approximation holds

2 & h(pe, ¢, €) = f(se|pe(se)) + €
(7.11)
e ~N (e 0 02) .

Note that the observation model (7.11) is linear, with noise component concentrated in
the Gaussian term e,°.

External information sources In line with the IoT paradigm, the platform is
supposed to receive information from external sources, such as other connected vehicles,

cloud databases, and smart parking stations Krasniqi and Hajrizi (2016); Uhlemann

3Later on, the dependence of z; on the platform state will be made clear through the notation z:(s:),
while the dependence on the current traffic conditions and on the observation noise is left implicit.
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(2018). The set of external sources that establish communication with the platform at
time ¢ is denoted as
Vi = {Ut,z‘}fv:tl, (7.12)

while the location of the i-th source is indicated with x; € X. As (7.12) suggests, the
number of communicating agents is a function of time, as in common real-life scenarios.
In fact, smart parking stations and connected cars may have a limited communication
range; therefore, two communicating (resp. non communicating) platforms at time ¢
may lose (resp. establish) connection at time t + T, due to their relative movements.
Moreover, the number of platforms travelling along X', and endowed with compatible
communication technologies, is non-constant in time (in principle, it should follow the
traffic density trends). For the aforementioned reasons, the i-th source at time ¢t may be
different from the i-th source at different instants of time?. It is also important to remark
that the vehicle is capable to receive a limited amount of N,,,, data at each iteration ¢,
that is

0 < Nt < Niag- (7.13)

Each agent in V; sends to the platform the measured PAM at its location, namely
zi(x;), i =1,..., Ny, where each z(z;) follows (7.11).

The platform is also supposed to have access to an external database from which
perfect information on the traffic density level over the entire path can be gathered; in
other words, at each time instant ¢, the platform knows u(z) for each x € X, thanks to

cloud resources®.

7.2.3 Problem statement

Given the premises provided in this Section, the platform can accumulate large amount
of data over time; in particular, if no data selection strategies are applied, at time ¢ the
platform stores the following dataset

Dy = (X¢,yt) - (7.14)
This is incrementally fed with new incoming data, namely

Xt == {thTS St X1 ... .’ENt:|
(7.15)

Yt:{Yt—TS zi(st) z(xy) ... Zt(fUNt)}-

where Tg is the sampling time, that is, between ¢t — T's and ¢ the platform collects a new
measurement, z(s;), accumulates the data received from the external sources i.e., the set
of data

{(@is ze(2) i, (7.16)

and updates the knowledge on p;(x) over X.

4This explains why the variable z; has not reference to time: it is not meant to describe the
spatio-temporal trajectory of a specific source.

5If the platform does not have access to any cloud database, the traffic state can also be reconstructed
exploiting the measurements coming from on-street sensors and connected vehicles along the road Liu,
Barreau, Ci¢i¢, and Johansson (2021a).
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Data selection as an active sensing problem According to (7.15), the cardinality
of D; is

|Dy| = [Dy—1] + (1 + Ny)

¢

Zt—i—ZNT, (7.17)
T=1

which linearly increases as the time grows. Consequently, to operate with the limited

on-board computational and storage resources of the platform, efficient data collection,

filtering and management schemes are required. In this work filtering is cast to an active

sampling problem (see Sec. 7.3), which requires the introduction of the extended platform

state, namely

5 = [st btr. (7.18)

The platform position is coupled with the choice state by: a (Npag + 1)-dimensional
boolean vector (i.e., by € {0,1}(Nmaz+1)) used to indicate which information sources are
considered by the platform at time ¢; formally, it is defined as

1, if =1 and z(s;) is selected

0, if £=1 and z/(s;) is not selected

bi(€) =<1, if £ €]1, N+ 1] and z/(x) is selected (7.19)
0, if £€]1, Ny + 1] and z(z) is not selected

0, ifl>Ng+1.

The first entry indicates if the platform retains its own measurement; from the second to
the (IV; 4+ 1)-th entry, b; indicates which external source is used to update the dataset;
the remaining entries are set to 0, since no more observations are available, From this
definition, the selected data at time t are

U Up. _ , ifb(1)=1
Zi(by) = 2t(st) UlUeb, (=1 2t(2e),  if by( ) (7.20)
Ue;bt(z):1 z(@e), otherwise.
Accordingly, the selected sources are
U Up. _1xe, ifby(l) =1
xt(by) = st U= o6, 3T il ) (7.21)
Uézbt (0)=1T¢, otherwise.
Consequently, (7.15) can be re-formulated using sets x;(b;) and Z;(by), as
Dy = Dy—1g U (xe(bt), Z¢(by)) . (7.22)

Finally, it is possible to cast the data selection process into a data acquisition control
problem (i.e., active sensing); this is done by associating the following dynamics to the
choice state

b; = bthS + uy, (7.23)
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with the control input @1, disabled between two sampling instants, that is®
G, =0, t+#HTs, HcN. (7.24)

The control input 4 is suitably chosen to modify b;_7, on the basis of which information
sources to select at time ¢. In this way, it is possible to choose what to sense, according to
the active sensing paradigm, as selection represents an integral process of active sensing,
according to Bajcsy et al. (2018).

The PAME problem With the formalism introduced in this Section, the parking
availability map estimation (PAME) problem can be formulated as the control of the
platform choice state by (through u;), given the dataset D;. The objective is to reconstruct
the latent PAM function f(z|u:(z)), over X. Moreover, the problem is solved online when
the reconstructed function, f(z|u(z)), is updated as new samples are collected. Finally,
a PAME technique is considered adaptive if it can handle the time-varying fluctuations of
the traffic density level, namely it is capable to deal with the condition p(x) # p—7g ().

Methodology

The methodology adopted to solve the PAME problem leverages on a GPR scheme that
incrementally and adaptively learns the underlying function f(x|u(x)), exploiting the
dataset D;. As GPR strategies do not scale well with the cardinality of the dataset Das,
Roy, and Sambasivan (2018); Liu, Ong, Shen, and Cai (2020); Moore, Chua, Berry, and
Gair (2016); Shahriari, Swersky, Wang, Adams, and De Freitas (2015), the learning process
is combined with an active sensing scheme to select the incoming samples according to

an uncertainty-aware acquisition policy.
To sum up, the proposed online and adaptive PAME algorithm is based on the following
three steps.

1. The core of the algorithm is the exploitation of D; to learn f(z|u:(z)) via GPR
(the reader may refer to Appendix A.1 for an overview in GPR).

2. To preserve the on-board storage and processing resources an active data selection
procedure is applied; in particular, the data acquisition task is treated as an active
sensing (active sampling) problem, according to the formulation introduced in
Sec. 7.2.3. In this framework, an information-seeking data selection criterion is
employed to retain only those datapoints that are expected to reduce the uncertainty
of the model.

3. Finally, adaptation to time-varying traffic density is achieved by leveraging on cloud
resources; these allow to detected and remove obsolete data in D;. In this way, it is
possible to prevent data contamination issues during the GPR learning process.

Alg. 1 provides a schematic overview of the suggested solution, while the following
Sections describe in detail each of the aforementioned steps.

5Note that, in general, T # Ts; hence, the two elements of the extended platform state, namely s;
and by, update at different frequencies. This is due to the fact that s; is related to the dynamics of the
vehicle, while b; refers to the data collection process.
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Algorithm 1: Online and adaptive PAME.

Initialization:

. SO:O
® DOZ(gaQ)

while s; < L do
- update knowledge on ()
- Compute Dobsolete
if Dobsolete 7é < then
‘ - thTs — thTs \Dobsolete
end
- measure z¢(s¢)
- receive {(z;, zt(xz))}fvztl
- solve (7.28) — uy
- solve (723) with u; = 1_12{ — (Xt(bt)a Zt(bt))
- apply (7.22) — Dy
- perform GPR on Dy — f (x| ()
- Se4rs = st +v(pe(2))Ts
-t t+Ts
end
Output:

o J(lui(@)) ~ GP (0, k(w,a"))

7.3.1 GPR-based PAME

Consider the PAME framework described in Sec. 7.2 and suppose a time-invariant traffic
density function, i.e.,
pi—1y(x) = pe(x), Vo € X, Vi. (7.25)

At any time instant ¢, it is possible to employ GPR to learn the PAM function f(x|u:(z)).
To this aim, D; can be used as training dataset, while the underlying PAM can be
modelled as a GP with zero mean function and Matern covariance function k(z,2’) (with
length scale hyperparameter set to 1 and smoothness hyperparameter set to 1.5), that is”

flalpa(@)) ~ GP (0, k(") (7.26)

Note that the GPR problem is well-posed Williams and Rasmussen (2006), according
to (7.11).

7.3.2 | Uncertainty-aware active sampling

In active sensing, attention is a set of mechanisms that tune and control the data
acquisition process. One important aspect of this tuning is to select which portion of
the input to process at any time Active sensing systems can also select the manner
in which this input is processed, suppressing irrelevant computations and enhancing
the relevant ones, improving responses to task-relevant characteristics, and sharpening

"The notation f(z) is used to distinguish the GP model w.r.t. the underlying one, f(z).

136



7.3 Methodology

decision processes. This is the essence of attentional behavior and active sampling, which
represents an important subset of the full range of active sensing techniques.

With reference to the PAME task, it can theoretically be solved with the iterative GPR
procedure outlined in Sec. 7.3.1: as a new datapoint z;(s;) is collected, it is included
in the dataset D;_1g, together with the samples coming from the external sources, as
in (7.15); at this point, a new GPR process is performed on D;. In this way, as |Dy|
increases, the GPR converges to an optimal reconstruction of the latent function Carron
et al. (2015); Shahriari et al. (2015). Nonetheless, one of the main drawbacks of GPR is
the poor scalability properties with respect to the dataset cardinality Das et al. (2018);
Liu et al. (2020); Moore et al. (2016); Shahriari et al. (2015). In particular, the PAME
framework induces a fast intractability in the learning process, since the dataset gains
Ny + 1 new data at each iteration, as (7.17) shows.

Given these premises, it is here proposed an active sampling scheme to select which
incoming data (among the N; + 1) are kept in memory (i.e., included in the dataset)
and used in the successive GPR iterations. Motivated by the fast dataset growth and
the good estimation properties of GPs with small datasets Williams and Rasmussen
(2006), it is sufficient to consider only one sample per iteration, according to the following
uncertainty-aware policy

a(@y|De-1) = O%,Ds_1g (7.27)

where (A.8) is applied on the query point z, and 04Dy g is 2*’Dt7TS with p = 1. The
predicted variance is a measure of the process entropy Viseras, Wiedemann, Manss,
Magel, Mueller, Shutin, and Merino (2016); hence, by choosing the source whose position
is characterized by the highest predicted variance, it is possible to sample where the
entropy is highest, that is, at the most informative location. This leads the selection
process to be achieved through the following control law

u; = arg max a(xt(b)|Di—15)| —bi—1y, t=HTs, HeN. (7.28)
b€{071}(Nmaz+1)
ZEZTGZ+1) b(E):l

The control input u} is applied to compute the next choose state, by, according to (7.23); in
turn, by allows to select the next query point x;(by), as well as its correlated measurement,
Z(by). Note that [y:(by)| = |Z(by)| = 1, due to the condition 3" 7™ b(¢) = 1.

In Sec. 7.4 the active sampling module is shown to remarkably decrease the compu-
tational load of the map learning process; in particular, the acquisition function (7.27)
leads to fast convergence and adaptability.

7.3.3| Adaptation to time-varying traffic density

So far, a time-invariant traffic density function has been considered. Nonetheless, real-
life scenarios are characterized by time-varying traffic densities, as stated in Sec. 7.2.
Consequently, some data in D; become obsolete as u(-) changes over time. More formally,

Dobsolete = {(xjvyj) € Dt L Ut—Tg (33]) 7& Mt(xj)} - Dt (729)
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is the sub-dataset of obsolete data at time ¢, that is, the set of locations (and respective
measurements) where the traffic density has changed during the last sampling period.

As mentioned in Sec. 7.2, the platform captures information on the current traffic
conditions from cloud databases. Thus, it is capable to compute Dpgoete and, therefore, it
can remove obsolete data from the current dataset (see Alg. 1); in this way, the successive
GPR iterations are not to contaminated by spurious information. This technique,
combined with the multi-source data collection technique described previously, allows
to achieve reactive and adaptive mapping performance under dynamic traffic conditions
(see Sec. 7.4).

7.4 Numerical results

The proposed approach has been evaluated through a Python-based synthetic environ-
ment®. Sec. 7.4.1 describes the main setup parameters, as well as the synthetic data
generation process. Sec. 7.4.2 defines the metrics used for performance assessment and
the baselines considered for comparison. The numerical simulation results are discussed
in Sec. 7.4.3.

7.4.1 Setup parameters

In the synthetic environment the platform is required to travel a length of L = 10 km with
a velocity v(u¢(z)), function of the local traffic density conditions (see Tab. 7.1). The
traffic density is a piece-wise constant function where each constant portion is 1 km-long
and with a value randomly chosen between 0 and 1. The time-variance is simulated
through a Bernoulli random variable of parameter pchange = 0.2, which is used to change
the value of one of the constant portions (the segment is randomly chosen, as well as
its new value). The a-priori parking availability function is generated according to its
definition (7.2), where W = 100m and the indicator function 1(x) is a binary piece-wise
constant function where each portion is 5m-long (i.e., S = 5m) and whose binary value
is chosen randomly. The number of connected external sources at time ¢ is modeled as
Ny ~U(0, Npaz), with Npq = 10. Measurements are simulated according to the model
(7.11) with 0 = 3 x 1072, For all the remaining relevant parameters, refer to Tab. 7.1.

7.4.2 Performance assessment

To capture the simulation and performance variability, numerical evaluation is performed
through a Monte Carlo (MC) experiment, composed by Nyests = 10 tests.
Baselines The following baselines are considered for comparison.

e NoCom: the platform is a non-connected vehicle; hence, it relies on its measurements
only, i.e.,
Dy = (st {zr(s1)}hon ) 5 VE- (7.30)

8https://github.com/luca-varotto/Pparking
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7.4 Numerical results

Table 7.1. Setup parameters for the MC experiment.

Parameter Value
A | (L4 DB
v(p) 90e #km/h

L 10 km
Ntests 10
Niaz 10

Ny ~ u(07 Nmaz)

Pchange 0.2

T 10s

S 5m

w 100 m

o 3x 1072

e NoSel: the platform is a connected vehicle, but the active sampling module is not
applied (i.e., D; is updated with all N; available data).

e Rnd: the platform is a connected vehicle and the active sampling module uses a
random acquisition function; more formally, the choice state is not computed as in
(7.28), but according to

1, £=/{g,
by (¢) = find (7.31)
0, otherwise

with £gna ~ U1, N; + 1).

Fig. 7.3 shows a realization of 7(x), with the corresponding PAM function to be
estimated, according to the synthetic generation procedure detailed in Sec. 7.4.1. As an
immediate observation, it can be seen that noCom attains good estimation performance
only on a small neighbourhood of the current platform position (s; = 4.1km). In principle,
its training dataset (7.30) should induce an accurate GP model estimate for any = < s,
(for all past locations). Nevertheless, many of these datapoints become obsolete over
time, due to the dynamic traffic conditions; thus, the accuracy remains good only locally
(i.e., in a neighbourhood of s;, where samples are more recent). To sum up, noCom has
poor adaptivity capabilities, since obsolete data can not be replaced by more up to date
samples; for this reason, noCom is not suitable to accurately estimate the latent function
over the entire domain X.

Performance metrics The following performance indexes are computed from the
MC simulation.

e Learning curve: the estimation quality at time ¢ is estimated through the Root
Mean Squared Error (RMSE) between the underlying function f(-|u(-)) and its
estimated version f(-|p(-)), i.e.

2

RMSE, = ﬁ [ et - relptan]” o (732

The learning curve is defined as RMSE,/RMSEy, where RMSEy is computed
before any measurement is collected (i.e., during model initialization) and it is
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Figure 7.3. Example of PA curves. Synthetic PAM f(z|u¢(x)) (red) with its a-priori availability
function 7(x) (red dashed), plotted against the estimated f(-|p¢(+)) (with values not
constrained in the interval [0,1]): the proposed approach (black) is compared with
Rnd (green) and noCom (blue). The gray shaded area is the uncertainty associated
to the GP model obtained with Alg. 1. The current platform position (vertical and
dashed blue line) is s; = 4.1km over the L = 10km path.

equal for all baselines, since the initial model parameters are fixed.

e Processing time ratio: it is computed as

T(proposed)
Ct
Tt = — (7.33)
(noSel)
TC,t
where Tgf tr oposed) and T((ftosel) are the computation time for the proposed algorithm

and noSel, respectively; both are referred to an entire GPR iteration: model training
and prediction.

7.4.3 Discussion

Time-invariant traffic This paragraph considers the simplified scenario in which
the traffic density is time-invariant; this allows to analyze the asymptotic estimation
properties of the methods under comparison. As depicted in Fig. 7.4, all the methods

1.4
L§1-2 —— proposed
S 10| (Wi Rad
= 0.8 e
~
Y 0.6
§§04
< 0.2

0.0

noCom

A oA

0 100 200 300 400 500 600 700
t[s]

Figure 7.4. MC numerical results. Learning curve in case of time-invariant traffic: average
(lines) and 68% confidence interval (shaded areas), plotted as a function of time
over the whole duration of the L-long travel.
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end up with the same estimation quality, due to the fact that the traffic density does not
change in time and, at the end of the route, all methods have gathered the same amount
of information. From one side, this means that the multi-source approaches (i.e., the
proposed algorithm and Rnd) store redundant data, as clearly shown in Fig. 7.4: the
two learning curves are characterized by a very slow decay after an initial dramatic drop.
Thus, most of the PAM learning process is completed after 200s (approximately); then,
some minor corrections to the model parameters are executed. Even though multi-source
approached induce a certain level of redundancy, they also attain a faster and smoother
convergence. In particular, during the entire MC experiment, the RMSE ratio between
the proposed approach and the noCom baseline is smaller than 1 for the 96% of the
times (the remaining 4% is caused by small oscillations at steady-state), while it is
smaller than 1 for the 66 of the times, if compared with Rnd. Therefore, the main
benefit of an uncertainty-aware acquisition function is that it drives the data collection
process towards the highest information gain, ensuring fast and high quality mapping
performance. On the other hand, the absence of any communication with the external
sources (i.e., noCom) induces the slowest convergence. In particular, the platform does
not have spatial predictive capabilities; hence, it needs to reach the end of the path to
have enough information to accurately reconstruct the latent function.

Impact of uncertainty-aware sampling The main benefits of the proposed strategy
stand out when the traffic conditions are time-varying. The local information exploited
by NoCom and its poor adaptivity capabilities (see Sec. 4.4.2), make this algorithm
not suitable for dynamic traffic conditions, as shown in Fig. 7.5. Therefore, in real-life
scenarios it is fundamental to exploit information coming from external sources. In
particular, the fast adaptation capabilities of multi-source data collection, coupled with
an active sampling strategy, guarantees the highest estimation performance. As described
in Sec. 7.3.3 and in Alg. 1, when traffic density variations are detected, the corresponding
obsolete datapoints are removed from the dataset. This increases the uncertainty of
the GP model increases around the locations of the removed samples; consequently, the
policy in (7.27) prioritises new query points coming from those regions. This leads to a
faster recovery of the estimation process w.r.t. to a random sampling process. Indeed,
Fig. 7.5 shows a remarkable performance difference between the proposed algorithm
and the baseline Rnd; more specifically, the ratio between the RMSE of the proposed
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Figure 7.5. MC numerical results. Learning curve in case of time-varying traffic: average (lines)
and 68% confidence interval (shaded area), plotted as a function of time over the
whole duration of the L-long travel.
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algorithm and that of Rnd is smaller than 1 for the 80% of the times (14% more than
the time-invariant case previously described).

Impact of data selection Fig. 7.6 shows the processing time ratio; it highlights
the benefit of performing data selection when GPR meets big data. Indeed, the time
required to fit the GP model, and to estimate the underlying function, is 83% of the
times smaller when using the proposed approach rather than a non selective strategy
(i.e., noSel). Notably, the computational gap between the two methods increases (on
average) as the dataset increases, as expected from (7.17).
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Figure 7.6. MC numerical results. Processing time ratio in case of time-invariant traffic: average
(lines) and 68% confidence interval (shaded area), plotted as a function of time over
the whole duration of the L-long travel.

7.5 Conclusion

This Chapter proposes an online and adaptive learning technique for estimating the on-
street parking probability in the framework of connected vehicles. The parking availability
map is incrementally learnt via GPR in a multi-source data collection scenario. To prevent
computational and storage intractability issues, an information-driven active sensing
module is applied to select incoming data. Numerical results validate the proposed
approach in terms of adaptation capabilities, learning speed, and execution time.

The scope of this Thesis is to provide a prototypical solution to the PAME problem on
a synthetic environment. To exhaustively validate the proposed algorithm, it should be
tested in a real scenario which, however, might be challenging: at first, the setup requires
a complex infrastructure, with reliable V2V and V2I communication; moreover, in real-life
scenarios the perfect knowledge on the traffic conditions is usually not guaranteed; finally,
dynamic and cluttered environments might affect the platform sensing performance,
making the observation model (7.11) not applicable.
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CONCLUSIONS AND FUTURE WORKS
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This Thesis introduces a novel active perception paradigm, where sensor fusion and
intelligent control play a fundamental role. Specifically, the aim of the dissertation
is to develop a wunified, modular, and general methodological framework that can be
easily deployed on a wide variety of active sensing scenarios. To validate the MS-PAS
framework proposed in Chapt. 3, several applications have been presented, including
position estimation, video surveillance, and parking estimation in connected vehicles.

The following paragraphs summarize the main results discussed throughout this
dissertation, with some conclusive considerations on the future trends in the field of

smart and active sensing research.

Concluding Remarks and Summary of Contributions

In this Thesis, the main research interests concern the development of a multi-sensor
probabilistic active sensing (MS-PAS) paradigm, which can serve as methodological
reference for future research in active sensing applications. Specifically, the MS-APS
framework described in Chapt. 3 is designed to satisfy the following properties.

e Modularity: the MS-PAS scheme satisfies two levels of modularity, namely internal
modularity and external modularity. The former defines the possibility of aggregating
a different number of internal platform components without changing the overall
structure of the scheme; for instance, it is possible to change the number of sensing
units, leaving all the other modules unchanged. On the other hand, external
modularity is related to the number of platforms employed and to the level of
coordination among them.

e Generality: the MS-PAS scheme has been designed with a high level of abstraction;
hence, it can work as flexible reference basis from which specific implementations can
take place, both in the formulation and in the task definition. In fact, each module
of the MS-PAS scheme can be customized according to specific task requirements
and constraints.
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¢ Integration: MS-PAS is a unified scheme including different operating modules

into a single system: from control, actuation and sensing, to data communication,
processing and fusion.

The second objective of this work is to validate the MS-PAS scheme through different
application and case studies, which allow to stress and test the properties enlisted above.

From Chapt. 4 to 7, four applications have been proposed; each of them modifies the

general MS-PAS scheme according to the application-specific setup; nonetheless, the

overall operational behavior is left unchanged and represents the common thread among

the four applications, despite their intrinsic differences.

In this regard, the main contributions of this manuscript are the following.

1.

The design of the MS-PAS scheme, a unified methodological framework that allows
to incorporate multi-sensory data into a probabilistic active sensing scheme. The
proposed infrastructure is formulated in a general manner, making it easily adapted
for any active sensing problem.

. Implementation of the MS-PAS scheme in four different case studies: localization,

tracking, video surveillance, and parking estimation for connected vehicles. How-
ever, the applicability of MS-PAS extends to other areas of robotics and artificial
intelligence, such as environmental mapping, source term estimation and visual
object recognition.

. Throughout this dissertation, a particular attention is devoted the management

of limited resource capabilities, and to the presence of measurement uncertainties
and unstructured environments Calli et al. (2018); all these situations are handled
through Bayesian reasoning and learning techniques.

. Unlike conventional active sensing schemes, this work proposes a comparative

analysis of different solutions; the theoretical and numerical investigations under-
line the ability of multi-modal and multi-sensor PAS schemes to refine incoming
measurements, learn the sensors observation models in self-supervised manners,
and keep under control the platform resource usages.

. Various experiments were presented to validate the overall framework in both

simulated and real-world environments. Results from comprehensive simulation
studies reveal the effectiveness of multi-sensor solutions in resource-constrained
active sensing missions, in terms of both the estimation quality and the level of
adaptation to environmental changes.

Together with the contributions, it is also important to remark the main lessons that

can be learnt from this manuscript.

1.

The self-reconfiguration capabilities of most Active Sensing strategies enable per-
formance optimization and adaptation to dynamic and unstructured environments.
Moreover, the possibility to control the platform behavior allows the design of
multi-tasking algorithms based on the exploration-exploitation trade-off: explo-
ration is often used for mapping and knowledge discovery, while exploitation is
employed in tracking and decision making processes. Finally, Active Sensing allows
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to exploit the full potentialities of platforms degrees of freedom, enabling resource
optimization. An example is provided in Chapt. 7, where processing and storage
resources are preserved through data selection.

2. The probabilistic approaches are useful to account for realistic perception un-
certainties, sensor nuisance and unmodeled dynamics. For instance, in Chapt. 5
a probabilistic model has been used to account for the resolution effects into the
target visual detection process; in the same Chapter, a probabilistic model has
been used to include interference and noise effects into the RSSI data collection in
radio receivers. A further advantage of probabilistic approaches is the possibility
to include some a-priori knowledge in the system, through Bayesian inference; in
Chapt. 7 the a-priori knowledge on the parking availability map has been encrypted
into the mean and covariance functions of a Gaussian Process. Finally, probabilistic
active sensing strategies deal with (and learn from) unezpected and novel situations.

3. Multi-Sensor active sensing has been shown to attain faster, more accurate, and
more robust estimation processes, as discussed in all applications results, from
Chapt. 4 to Chapt. 7. Moreover, Chapt. 4 and 6 have proven that, within
the robotics community, multi-modal sensing channels can be used to design self-
supervised learning techniques. Finally, resource management can be achieved
through task handover; for instance, in audio-visual tracking, the sensing channels
can be alternated to preserve battery lifetime.

WA Considerations on the future of Smart and Active Sensing

The MS-PAS schemes developed in this Thesis represent a pointer for the advance in
multi-sensor autonomous perception research, where there are still several issues that
must be addressed. This conclusive Section provides some methodological and conceptual
considerations regarding the field of smart and active sensing, highlighting the future
technological directions and the main research challenges.
What is intelligence in autonomous perception? The recent advances in neural
networks and deep learning have enabled Al scientists to tackle many complex tasks,
such as natural language processing and computer vision. Nonetheless, over the past
years, there has been much debate over the definition of intelligence and how to measure
it in autonomous systems. As a matter of fact, solely measuring skill at any given task
falls short of measuring intelligence, because unlimited priors or unlimited training data
mask the system’s generalization power. In fact, optimizing AT algorithms for specific
tasks has entrenched the community in narrow Al As a result, work in Al has drifted
away from the original vision of developing “thinking machines”: we are able to engineer
systems that perform extremely well on specific tasks, but they still have limitations,
being data-hungry and unable to make sense of situations that deviate slightly from their
training data.

According to Chollet (2019), truly intelligent systems should be able to develop
higher-level skills that can span across many tasks; they should also be endowed with a
generalization power that allows to handle previously unseen situations. Unfortunately
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though, the best that current Al systems achieve is local generalization, which is the
ability of an agent to achieve goals within its own narrow domain. In fact, Al models
often need thousands of examples to perform specific tasks and then fail as soon as they
face corner cases.

Some Al researchers believe that the true direction for artificial intelligence research
are methods that can scale with the availability of data, prior knowledge, and compute
resources. In this regard, active sensing will play a fundamental role in machine learning
and robotics, paving the way towards autonomous decision making over data collection
campaigns and resource-aware autonomous perception systems. In particular, active
sensing modules can be used to teach robots how to perceive the surrounding environment;
once, an agent has learnt this preliminary and fundamental skill, it can gather environ-
mental data that allow to learn and to accomplish a variety of secondary tasks. In this
respect, explorative active sensing techniques will make it possible to incrementally learn
new skills, giving robots the freedom to choose what to learn. To this aim, intelligent
active sensing system should embed reasoning and abstraction capabilities; moreover,
robots should re-purpose themselves to deal with novel tasks and to satisfy high-level

specifications, with minimal human intervention in the loop.

Robustness with respect to adversarial attacks Most artificial intelligence re-
searchers agree that one of the key concerns of machine learning is the lack of causality
in machine learning systems. As long as neural networks focus on learning superficial
statistical patterns in data, they will remain vulnerable to different forms of adversarial
attacks (i.e., data manipulation techniques that cause trained models to behave erratically
and in undesired ways). Adversarial attacks originate from either direct or indirect data
poisoning effects: the former involve an attacker inserting corrupt data in the training
dataset to compromise the performance of a machine learning model; the latter instead is
typical of dynamic and unstructured environments, where the deployment conditions may
differ from the training ones. As an example, consider a machine vision system employed
in industrial settings where the temperature range is subject to sensible oscillations. In
this scenario, the camera thermal noise may introduce patterns that are not present in
training images, with consequent performance degradation (in terms of generalization
capability). There is concern that data poisoning and adversarial attacks can become a
serious security issue as deep learning becomes more prominent in physical tasks where
autonomous agents physically interact with humans, such as robotics and self-driving
cars. As a matter of fact, adversarial attacks reduce safety of neural networks in robotic
vision, where the visual recognition systems rely on deep learning technologies to interact
with the surrounding environment Melis, Demontis, Biggio, Brown, Fumera, and Roli
(2017). Data poisoning is a thread also for self-supervised learning procedures, which
have been shown to be a promising research trend in multi-sensor robotics. In fact, these
systems exploit the correlation among different sensing cues to create the supervisory
signals that guide the learning process. However, the inevitable amount of noise in
input and output data may generate numerical artifacts during the training procedure,
introducing novel error profiles in robot learning. For the aforementioned reasons, adver-
sarial machine learning is today an active area of research Mehra, Kailkhura, Chen, and
Hamm (2021). For instance, the authors of Lechner, Hasani, Grosu, Rus, and Henzinger
(2021) show that this field needs new ways to improve adversarial robustness in deep

146



8.2 Considerations on the future of Smart and Active Sensing

neural networks without reducing their accuracy and safety. In this framework, active
sampling techniques can be applied. For instance, the uncertainty-aware active data
selection algorithm presented in Chapt. 7 can be modified to filter out poisoned data, by
exploiting detectors of out-of-distribution samples Lee, Lee, Lee, and Shin (2018) and
adversarial attacks Feinman, Curtin, Shintre, and Gardner (2017); Lin, Liu, Sun, and
Huang (2017b).

Computational and storage loads The advantages of multi-sensor and probabilistic
approaches usually come at the cost of high computational and storage demands. In
particular, the major computational bottleneck in the MS-PAS approaches is the map
update procedure, which hinders their scalability to large-domain and high-resolution
applications. For example, standard GPR strategies suffer from cubic time complexity in
the number of accumulated measurements. In this regard, data selection has been used
to mitigate data accumulation problems (see Chapt. 7); as an alternative, sparsification
methods could be investigated towards enabling large-scale online applications. In general,
the processing and memory load of machine learning and probabilistic inference models
may limit the deployment of self-reconfigurable machines in industrial tasks, where
real-time specifications are mandatory. Therefore, future research directions should
focus on data selection and sensor switching algorithms to minimize the overall resource

consumption and utilization.

Persistent Monitoring A core challenge in active sensing is performing autonomous
data collection in unknown environments, subject to a limited amount of sensing resources.
Along this line, persistent monitoring scenarios pose critical research challenges in
terms of both on-board resource management (to minimize the maintenance costs) and
environmental mapping (due to dynamic variations of the distribution of the monitored
area). For resource management, online replanning capabilities are required. As done in
Chapt. 6, the lifetime of wireless sensors can be prolonged by modeling and forecasting
the probability of occurrence of the events of interest. For mapping, new representations
are necessary, in order to capture temporal and spatial variations. In this perspective,
sensor fusion approaches can be useful, as proven by the PAME algorithm in Chapt. 7:
environmental variations are detected by cloud services and a multi-source architecture
is responsible for the map adaptation.

Autonomous systems and advanced computing techniques In Chapt. 7 an
internet connected vehicle estimates the parking availability along the road by accessing
to cloud services and smart infrastructures (e.g., smart parking stations). This is just
an example of a growing research and technological trend, involving the integration
between autonomous systems and advanced computing techniques. As a matter of fact,
autonomous sensing platforms can achieve better performance by combining their own
local data with other advanced technologies, such as IoT architectures, big data centers,
and federated learning systems on mobile devices Chen et al. (2019a). Specifically, an
autonomous platform can extend its working area using information from IoT devices
or cloud databases; moreover, it can incrementally update its inference models through
federated learning services.

Multi-sensor fusion One of the main messages conveyed by this dissertation is that
sensor fusion approaches induce several advantages. These advantages mainly involve
the reduction in data ambiguity, while increasing the efficiency and the reliability of the
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data acquisition system. When data fusion is applied to the routing process in large scale
wireless sensor networks, only the result is forwarded; hence, the number of messages
is reduced, collisions are avoided, and energy is saved. Information fusion is useful also
because it provides efficient methods for automatically (or semi-automatically) transform
information from different sources into a representation that provides effective support
for human or automated decision making. In spite of the aforementioned benefits, multi-
sensor architectures pose severe practical challenges related to device synchronization
and real-time data aggregation. Furthermore, there are a number of issues arising from
imperfection and diversity of the sensor technologies, outliers, spurious and conflicting
data, data dimensionality and compression level Khaleghi et al. (2013). Another aspect of
critical importance are data communication and processing protocols, as fusion processing
can be performed in a centralized or decentralized manner. Finally, data collected at
different sensor devices should be post-processed to tackle alignment and association
issues: the former arise when different calibration settings are involved at different sensor
nodes; data association, instead, aims to identify which sensors provide measurements
from the same real-world objects (e.g., targets in multi-target applications).

Multi-robot planning A natural direction for future research is the extension of the
ideas developed in this Thesis into active sensing problems with multi-robot teams. This
field of study has grown considerably in the past several years, and will continue to do
so, as the capabilities of autonomous platforms expand. In many monitoring missions,
replacing a single-robot with a multi-robot system can offer improved spatial coverage,
versatility, higher redundancy levels, and more robustness to failures. A swarm of UAVs
can be deployed to monitor a very large agricultural field; alternatively, mobile robots
could be used to simultaneously gather information from disjoint locations. However,
such scenarios introduce additional considerations, including higher maintenance costs,
as well as requirements for coordination, communication, and resource sharing.

Sensor modeling  Active sensing is the problem of regulating an autonomous sensing
platform guided by quality of perception criteria. In this context, the sensor model is
critical, as it determines how future measurements will influence the evolution of the
sensing task, and subsequently the value of the information acquired. A major practical
issue emerging from the experiments in this Thesis is the development of accurate sensor
models as a basis for predictive decision-making. This problem is particularly relevant
for devices relying on deep learning architectures; these are gaining rapid momentum in
many robotics applications, but they still lack in explainability and transparency (i.e.,
the result is often the outcome of a black-box inference model) Dosilovié¢, Bréi¢, and
Hlupi¢ (2018). Moreover, the majority of AS applications deal with harsh settings, where
cluttering, environmental noise and time-varying conditions complicate the modeling of
the perception process.

Software and hardware infrastructures The active sensing community would
profit significantly from the availability of reliable and reproducible software and hardware
to create benchmark problems and algorithms for researchers to compare new methods in
a standardized manner. However, the lack of available software infrastructure for active
sensing research is identified as a major obstacle hindering further research in this area.
Furthermore, the design and implementation of robotics systems, which embody the
basic prerequisites for active perception, is still hard, especially when it comes to deploy
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multiple cooperating heterogeneous robots. In the future, the research community has to
show that it is possible to build robotic systems with active perception capabilities; these
include adaptivity to varied environments and tasks, the ability to deal with unexpected,
novel situations, and learning from experience capabilities. In addition, active sensing
platforms must be robust, reliable and safe Bajcsy et al. (2018).

Privacy concerns The power of sensor-rich robotic platforms is their capability to
collect large amount of data regarding the surrounding environment. Nevertheless, this
may pose severe questions on possible privacy violations. At the same time, the advances
in modern computer vision techniques have encouraged researchers in signal processing
and robotics community to employ cameras as principal (sometimes unique) sensing unit in
tasks like scene perception, activity recognition and environmental mapping. Accordingly,
new research lines are born around privacy-aware robotics and privacy-by-design signal
processing techniques Osia et al. (2020).
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Gaussian Process Regression (GPR)

This Appendix provides a brief overview on Gaussian Processes and Gaussian Process
Regression. The reader is referred to Rasmussen (2003) and Williams and Rasmussen
(2006) for a more comprehensive introduction on Gaussian Processes in Machine Learning
applications.

A Gaussian Process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution Williams and Rasmussen (2006). Given the
input vector x € RP, a GP is fully specified by its mean function m(x) and covariance
function k(x,x’), namely

f(x) ~ GP (m(x), k(x,x)), (A1)

where f: RP — R is referred to as latent function. Mean and covariance (or kernel)
functions incorporate prior knowledge (e.g., periodicity, smoothness) about the latent
function. The mean function is typically constant (either zero or the mean of the
training dataset), while the most commonly-used kernel functions are constant, linear,
square exponential or Matern, as well as compositions of multiple kernels Williams and
Rasmussen (2006). The hyperparameters in the mean and covariance functions are
computed by fitting the train dataset D of cardinality n¢rqin

D ={(x;, y;) ;o = (X,y)

X =[x ... xntmmf € RrainxP (A.2)

T N
o A
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Each training label y; is a noisy measurement of the latent function f(x), namely
yi = f(xj) +¢j, € ~N(]0,0?), (A.3)

where {e;}7277"" is the i.i.d. Gaussian noise in the training labels. Given (A.1) and (A.3),
it is possible to model the observations as a GP Williams and Rasmussen (2006),

y(x) ~ GP (m(x), k(x,x) + 0°1). (A.4)

This GP is used as prior for non-parametric Bayesian inference of the latent function.

Consider the test inputs

-
X, = {XL* xntest7*j| € RMtestXP, (A.5)
By definition, any finite number of samples drawn from the GP are jointly Gaussian.
Thus,
K(X,X I KX, X,
y:N l"’, ( ’ )+0- ( ’ ) (Aﬁ)
f, Ly K(X,, X) K(X,, X))
where:

:
Bo= [fOas) o ftmens)] ERM (A7)

the j-th row of p and g, is m(x;) and m(x; . ), respectively; the (7, k)-th entry of K(X, X)
and K(X, X,) is k(x;,x;) and k(x;, Xy «), respectively.

Making predictions about unobserved values x; , consists in drawing samples from the
predictive posterior distribution of f,, given D and X, that is

f*|D7 Xy~ ./\/‘(f*‘p,*‘p, 2>»<|D)
-1
papp = e A K (X, X) [K(X, X) 0] (v — o) (A.8)

Zp = KX, X,) - K(X., X) [K(X,X) + 0™1] KX, X.).

Bayesian Optimization (BO)

In this Section the fundamentals of Bayesian Optimization are provided. The reader is
referred to Frazier (2018) and Shahriari et al. (2015) for detailed overviews on Bayesian
Optimization techniques.

Bayesian optimization (BO) Frazier (2018); Shahriari et al. (2015) is a procedure
designed for derivative-free global optimization, particularly suited for objective functions
that are expensive to evaluate. Formally, BO aims to solve the following optimization
problem

x* = argmax J(x) (A.9)
xeX
where X is a domain space of interest; the objective function J : X — R is unknown (i.e.,
black-box optimization), but it can be evaluated at any arbitrary query point x, € X.
This evaluation produces a noise-corrupted (stochastic) output y € R.
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To solve (A.9), BO adopts a sequential procedure.

1. Cost function approximation: at first, the objective function J(-) is approx-
imated by a probabilistic model (e.g., a GP), easier to optimize and referred as
surrogate function. The surrogate model represents a prior belief over the possible
objective functions and it is sequentially refined via Bayesian posterior updating
(e.g., GPR), as new data (query points) are collected. The new query point x;
produces y;, noisy-corrupted version of J(x;). Then, model updating is performed
over Dy = {Dy_1, (x¢,yt)}, where

Dit = {(xj, )} 2L (A.10)

2. Data collection: Each query point in D; is chosen according to a suitable selection
criterion a(x|D;) (called acquisition function)

X¢+1 = argmax a(x|Dy). (A.11)
XEX

The acquisition function is designed over the surrogate function and quantifies
the utility of a query point to produce a more informative posterior distribution;
hence, the design of a suitable selection criterion is critical in many applications. In
literature a wide variety of acquisition functions are proposed Shahriari et al. (2015):
some of them prioritise samples that minimize the uncertainty of the model (or,
equivalently, maximize the information gain); some are used to foster a balanced
exploration of the latent function domain, while others are designed to focus the
estimation quality on specified domain regions; finally, some acquisition functions
are designed to take into account the cost associated to the sampling process (useful
when query points have non-equal sampling cost).

BO in Active Sensing applications The Bayesian optimization framework is par-
ticularly useful when J(-) is costly, nonconvex and multimodal, and it is not possible to
have access to derivatives with respect to x. Moreover, BO has the capability to balance
exploration with exploitation, and enables probabilistic decision making strategies that
gain from past experience. Finally, the use of a Gaussian Process as surrogate function,
allows to reach good approximation results with few measurements. For these reasons, BO
has been successfully applied for several active sensing tasks, including path planning for
target search Meera et al. (2019), cooperative multi-robot control Ghassemi and Chowd-
hury (2020), environment exploration Bai et al. (2016), and source localization Carpin
et al. (2015).

Recursive Bayesian Estimation (RBE)

This Section serves as brief tutorial on Recursive Bayesian Estimation and Particle
Filtering in target tracking applications. The objective is to estimate the probability
density function (PDF) of a given variable (in this case, the target position p;), recursively
over time and using incoming measurements z; (in this Section a generic sensor is
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considered; hence, no specific assumptions are made on the observation model). The
reader is referred Smith (2013) for detailed overviews on Sequential Monte Carlo methods
and Bayesian statistical inference.

Given the observations z.;, RBE provides a two-stage procedure to recursively update
the target belief state, namely the posterior distribution p(p¢|z1.¢). The prediction stage
involves using the target process model p(p¢|p:—1) (see Chapt. 5) to obtain the prior of
the target position via the Chapman-Kolmogorov equation Radmard and Croft (2017)

p(Pt|Z1:t—1) = /p(pt‘pt—l)p(pt—l‘let—l)dpt—l- (A.12)

As a new observation z; becomes available, Bayes rule Smith (2013) updates the target

belief state
p(pilz1:-1)p(2e|Pr) (A.13)

J p(ze|pe-1)p(Pr-11Z14-1)dPr-1’
with p(po) as initial target state belief.

p(pt|z1:4) =

Particle filtering Smith (2013) is a Monte Carlo approx1mat1on of the density p(p¢|z1:¢)
with a sum of Ny Dirac functions centered in the particles {pt 3= that is

p(pt|z1:4) = Zwt )(5( pgi)) , (A.14)

where wgi) is the weight of particle pgi) and it holds
Pgi) =f (Pi?pﬂt—l) (A.15a)
wg D x w§ )1p (zt|p§i)> (A.15D)

for i = 1,..., Ns. The i-th weight is therefore proportional to the likelihood function
evaluated on the i-th particle, namely p(zt|p§i)). Under this scheme, a few particles will
concentrate most of the weight over time, leading to a phenomenon called degeneracy.
To alleviate this problem, systematic resampling is adopted, which involves resampling

from the particle set when the effective number of particles

1
N
S W}

is low (i.e., Nefs < Ny/2). Particles with higher weights are more likely to be sampled,

Nejp = (A.16)

but the procedure preserves some low weight particles as well Smith (2013).

MAP and MMSE estimators Once the discrete approximation of p(p¢|z1.;) has
been reconstructed, it is possible to compute a punctual estimate of the variable py.

o Maximum A-Posteriori (MAP) estimate: mode of the posterior distribution, namely

p: = pgi*); 1* = arg max wgi). (A.17)

1€[1,N4]
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o Minimum Mean Square Error (MMSE) estimate: Monte Carlo approximation of
the expectation, namely

N;
~ 1 & 6 ¢
Pt = F ZOJ; )pg ) = E[pt|Z1;t]. (A18)
$ =1
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“It’s this trust (in AI) that bothers me. Not because of how often Al gets it wrong. It’s
how badly it gets it wrong when it makes a mistake that has me worried. These systems
do not fail gracefully.”

Peter Haas
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