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Abstract: When forecasting aggregated time series, several options are available.

For example, the multivariate series or the individual time series might be predicted

and then aggregated, or one may choose to forecast the aggregated series directly.

While in theory an optimal disaggregated forecast will generally be superior (or at

least not inferior) to forecasts based on aggregated information, this is not necessarily

true in practical situations. The main reason is that the true data generating process

is usually unknown and models need to be specified and estimated on the basis of

the available information. This paper describes a bootstrap-based procedure, in

the context of vector autoregressive models, for ranking the different forecasting

approaches for contemporaneous time series aggregates. Estimation uncertainty

and model misspecification will be considered and the ranking will be based not

only on the mean squared forecast error, but more in general on the performance

of the predictive distribution. The forecasting procedures are applied to the United

States aggregate inflation.
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1 Introduction

The problem of forecasting aggregated time series has been studied over the
last decades. A classical introduction to this subject is presented in Lütkepohl
(1987), while Lütkepohl (2010) gives a recent survey. Time series aggregates
are important in many fields of Economics and received new attention after the
introduction of the euro-zone. When a forecast for a euro-area time series is
desired, it is not obvious whether it is preferable to predict the euro-area series
directly, or rather predict the time series for the single countries, and then
aggregate the forecasts obtained. When considering inflation, in particular,
two aggregation dilemmas are present: aggregation over subindexes and over
countries (for the euro-zone).
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Two strands of research have developed on this topic, the theoretical and
the empirical one. Early theoretical results on aggregation versus disaggrega-
tion in forecasting can be found in Theil (1954) and Grunfeld and Griliches
(1960). Other theoretical contributions include, among others, Lütkepohl
(1984, 1987), Granger (1987), Giacomini and Granger (2004), Hendry and
Hubrich (2011) and Sbrana (2012).

According to the theoretical literature, when the data generating process
(DGP) is known, except under certain conditions, aggregating forecasts for the
multivariate process is at least as efficient, in terms of mean squared forecast
error (MSFE), as directly forecasting the aggregate or aggregating univariate
forecasts. However, in practice the DGP is not known, and a model needs to be
specified and estimated. This can be difficult, and especially so as the number
of disaggregate series increases. In this case, combining multivariate forecasts
may not be preferable, and this is determined by the properties of the un-
known DGP. As a consequence, the choice of the best forecast is essentially an
empirical issue. Thus, it is not surprising that recent empirical studies do not
reach unanimous conclusions regarding the value of disaggregate information
in forecasting aggregates (Lütkepohl 2010, page 55).

For example, several aggregate and disaggregate predictors of the euro-zone
inflation are considered by Espasa, Senra, and Albacete (2002) and Hubrich
(2005). Similarly, Hendry and Hubrich (2011) forecast the United States ag-
gregate inflation using disaggregate sectoral data. Central banks in the Eu-
rosystem are also recently giving attention to the aggregation of forecasts of
disaggregate inflation components (see, e.g., Bruneau, De Bandt, Flageollet,
and Michaux 2007, Moser, Rumler, and Scharler 2007). Besides inflation,
Marcellino, Stock, and Watson (2003) also analyse real GDP, industrial pro-
duction and unemployment for the euro area, while Fagan and Henry (1998)
and Dedola, Gaiotti, and Silipo (2001) focus on money demand, expliciting
contributions generated at a national level. Carson, Cenesizoglu, and Parker
(2011) analyse the aggregate demand for commercial air travel in the United
States, using airport specific data. Conclusions are far from univocal: e.g.,
Espasa et al. (2002) and Marcellino et al. (2003) provide evidence against the
use of aggregate models and prefer forecasts based on information at coun-
try level; on the contrary, Bodo, Golinelli, and Parigi (2000) show that area
wide models are preferable for forecasting industrial production. Many other
examples exist in the literature.

This paper stems from the observation that, in the literature on forecasting
aggregated time series, forecasts are compared generally using the MSFE for
point forecasts. Lütkepohl (2010), Hendry and Hubrich (2011) and Faust and
Wright (2013) are some recent examples. This can be misleading, since the
uncertainty of the future is often poorly summarized by point forecasts and
is instead better represented by density forecasts, which are suitable for con-
sidering a range of possible future outcomes. In other words, many realistic
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economic loss functions can’t be reduced to the comparison of point forecasts,
using the MSFE (Diebold and Mariano 2002). Besides, it should be remarked
that the ranking of forecasts needs to be well grounded also in small samples,
where uncertainty is greater and theoretical conclusions based on the assump-
tion that the model is known are less reliable. These considerations suggest
the use of a bootstrap approach. Since, when using bootstrap, many repli-
cates of the future values are generated, it is natural to examine the forecast
performance using prediction intervals (Kupiec 1995, Christoffersen 1998), or
the whole density forecast (Diebold, Gunther, and Tay 1998). We will see
that, when the sample size is sufficiently large and the comparison is based
on MSFE, the bootstrap procedure described here will work as predicted by
the available results on forecasting aggregates. However, as the sample size
decreases (and hence model uncertainty becomes more important), or when a
criterion different from MSFE is used, the approach for forecasting aggregates
suggested by the bootstrap might be different. Simulations and an empirical
data analysis will allow to conclude that evaluating forecasts using solely the
MSFE can indeed lead to prefer procedures with worse performance in terms,
e.g., of coverages of prediction intervals.

Vector autoregressive models (henceforth: VAR) will be used for forecast-
ing. These models are widely employed and asymptotic and bootstrap pro-
cedures have been formulated (see, e.g., Kim 1999, 2004, Grigoletto 2005,
Lütkepohl 2005). There also are extensive results on the bootstrap for uni-
variate autoregressive (AR) models (e.g. Masarotto 1990, Thombs and Schu-
cany 1990, Kabaila 1993, Breidt, Davis, and Dunsmuir 1995, Grigoletto 1998,
Clements and Taylor 2001). In small samples, bootstrap methods are shown
to have better properties than the asymptotic ones. Besides, these methods
allow to take into account the uncertainty attributable to model estimation.

The main difficulty encountered in using the procedure described here is
that it is computationally heavy. However, the widespread availability of fast
computers and the possibility to parallelise bootstrap simulations seem to im-
ply that this is not a serious drawback. It should also be considered that in
many cases (e.g., when forecasting inflation: see Section 6) the frequency of the
considered time series implies that it is not necessary to compare forecasting
procedures repeatedly in short time intervals.

The paper is organised as follows. In Section 2 the competing forecasts
for the aggregate are defined. Section 3 describes the bootstrap procedure.
The criteria that will be used to compare the predictive performances of the
different approaches are illustrated in Section 4. In Section 5 a simulation
study is carried out, while Section 6 treats an application to the USA aggregate
inflation. Conclusions follow in Section 7.



4 Matteo Grigoletto

2 The model and the competing forecasts

Let us consider the VAR(p) model for a k-dimensional vector yt = (y1t, . . . , ykt)
′:

yt = A0 + A1 yt−1 + A2 yt−2 + . . .+ Ap yt−p + εt , (1)

where A0 is a k× 1 vector of constants, Ai for i = 1, . . . , p are k×k parameter
matrices and εt is a k × 1 vector of innovations. Innovations are i.i.d. with
E(εt) = 0 and E(εt ε

′
t) = Σε, where Σε has finite elements and is positive defi-

nite. The model is assumed to be stationary, i.e., all roots of the characteristic
equation det(Ik − A1 z − . . . − Apzp) lie outside the unit circle. In the fore-
casting procedure described in Section 3, the order p will be selected using the
corrected AIC criterion by Hurvich and Tsai (1993).

Model (1) can be written in backward form as (Kim 1997, 1998)

yt = H0 +H1 yt+1 +H2 yt+2 + . . .+Hp yt+p + νt , (2)

where H0 is a k×1 vector of constants, Hi for i = 1, . . . , p are k×k coefficient
matrices, E(νt) = 0 and E(νt ν

′
t) = Σν , where Σν has finite elements and

is positive definite. Bootstrap samples will be generated from the backward
representation (2). This will ensure that the last observations in the pseudo-
datasets are the same as in the original sample, consistently with the property
that VAR forecasts are conditional on past observations (see Thombs and
Schucany 1990, in a univariate AR context and Kim 1999, 2004, and Grigoletto
2005 for VAR forecasting).

The iterated h-step-ahead predictors ŷT (h) for yT+h, h = 1, . . . , H, will be
obtained from (1) using the ordinary least squares estimators Â0, Â1, . . . , Âp:

ŷT (h) = Â0 + Â1 ŷT (h− 1) + . . .+ Âp ŷT (h− p) ,

where ŷT (j) = yT+j for j ≤ 0. In an extensive comparison of direct and iterated
multistep forecasts for AR models, Marcellino, Stock, and Watson (2006) find
that the iterated forecasts typically outperform direct forecasts.

For bootstrap forecasts, bias-corrected estimators of A0, A1, . . . , Ap will be
used to compensate for the bias in least squares estimators (the bootstrap-
after-bootstrap procedure proposed by Kilian 1998b, will be employed):

ŷcT (h) = Âc0 + Âc1 ŷ
c
T (h− 1) + . . .+ Âcp ŷ

c
T (h− p) ,

where Âc0, Â
c
1, . . . , Â

c
p are the bias-corrected estimators and ŷcT (j) = yT+j for

j ≤ 0. See Section 3 for further details on the bootstrap-after-bootstrap bias
correction.

We will focus on the following linear transformation of yt:

xt = Ft yt , (3)
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where Ft is an m × k aggregation matrix of full rank m. The matrix Ft can
be time-varying (as in the application in Section 6) and unknown (as in DGP6

in Section 5). While the considered methods can be applied in the m > 1
case (e.g., by considering prediction regions instead of prediction intervals),
henceforth discussion will be essentially constrained to m = 1.

It should be noted that, while a linearly transformed VARMA(p, q) process
has a finite order VARMA representation, an analogous property does not hold
for finite order VAR processes (Lütkepohl 1987). Therefore, xt will in general
be in the VARMA class and will only be approximated by a VAR model. It is
well known that, in sharp contrast with the ease of identification and estimation
of VAR models, the nonuniqueness of a VARMA representation makes iden-
tifying and estimating VARMA models quite difficult (e.g. Lütkepohl 2005).
Besides, the use of VARMA models, while implying a more parsimonious rep-
resentation of the underlying process, is far from guaranteeing a significant
improvement in forecasts: see Athanasopoulos and Vahid (2008). For these
reasons, for our forecasting purposes we will represent xt with equations anal-
ogous to (1) and (2). See also Lewis and Reinsel (1985) and Lütkepohl (1985),
who consider the MSFE when the true DGP, which may be of the VARMA
type, is approximated by a finite order VAR. While it is rather unusual to use
VMA models in a forecasting context, results concerning these models can be
found in Sbrana and Silvestrini (2009) and Sbrana (2012).

For predicting the aggregated time series xt, three alternative approaches
are considered (Lütkepohl 2010):

1. Forecasting the disaggregated multivariate model and then aggregating
the forecasts:

dx̂
c
t(h) = Ft ŷ

c
t (h) .

2. Forecasting the individual disaggregated variables based on univariate
models and aggregating the forecasts. The bias-corrected h-step-ahead
predictor for the j-th, j = 1, . . . , k, component of yt will be denoted by
ŷcj,t(h). The corresponding forecast of xt will be

ux̂
c
t(h) = Ft (ŷc1,t(h), . . . , ŷck,t(h))′ .

3. Forecasting the aggregate xt directly. The bias-corrected version of these
forecasts will be denoted by x̂ct(h).

Notably, the univariate processes yj,t, j = 1, . . . , k, will belong to the ARMA
class (Zellner and Palm 1974 and, e.g., Franses 1998, p. 198). The same is true
for xt when m = 1. Of course, identification and estimation of ARMA models
is not as involved as it is for their multivariate counterpart. Besides, bootstrap
procedures have been proposed that allow resampling from ARMA models: see
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Pascual, Romo, and Ruiz (2004). The procedure proposed by these authors,
however, differs from the one described here, also because it does not use bias
correction, which is an important step in bootstrap prediction (Clements and
Taylor 2001, discuss bias correction in detail). Also, the results in Kim (2002)
show that, even for ARMA processes, building the bootstrap on the univariate
equivalents of (1) and (2) yields good prediction performances. Therefore, here
forecasts will be based on AR models also in the univariate case.

The theoretical literature on VARMA processes shows that, when the DGP
is known and the MSFE is employed as evaluation criterion, dx̂

c
t(h) is prefer-

able to x̂ct(h) and ux̂
c
t(h), while no unique ranking exists between x̂ct(h) and

ux̂
c
t(h). In practice, however, the DGP must be estimated and, especially when

the number of disaggregate variables is large, dx̂
c
t(h) might well produce infe-

rior results with respect to the other approaches. Also, dx̂
c
t(h) can be expected

to yield an improved performance (in terms of MSFE) only if the disaggregate
series are intertemporally related and heterogeneous. When, on the contrary,
the component series are described by similar univariate models, it should be
desirable to use x̂ct(h), i.e. to forecast the aggregate series directly. The forecast

ux̂
c
t(h), obtained with individual forecasts of the univariate components of yt,

is likely to become preferable when the component series have weak relations
and their marginal DGPs are sufficiently different. In fact, Lütkepohl (2010),
p. 46, shows that, when yt is formed by independent components, summing up
the forecasts for the individual components will be strictly more efficient than
forecasting the sum directly only if the components have distinct serial corre-
lation structures. See Lütkepohl (2010) and Sbrana (2012) for more details.

While these suggestions define useful guidelines, some questions remain
unanswered. In practice, it is hard to define clear borderlines between differ-
ent situations. For example, when are the heterogeneity and intertemporal
relations among component series sufficient to guarantee superiority of the
disaggregate forecast dx̂

c
t(h)? This and similar questions are largely empirical.

Also, there are situations for which no guidance is provided by the theory: it is
unclear what would be a desirable approach when there are many component
series with a strong intertemporal relation. Finally, no guidance is provided
when the loss function underlying the MSFE is inappropriate, as when interval
forecasts are desired. The bootstrap procedure described here aims at giving
a practical answer to these questions.

3 The bootstrap procedure

The bootstrap procedure adopted here will use the residual (nonparametric)
method. Since bootstrap generation is based on the backward representa-
tion (2), forecasts computed are conditional on the last p observations in the
original observed sample. Bootstrap-after-bootstrap is used for bias-correction
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(Kilian 1998b). The bias correction is useful to improve the small sample prop-
erties of bootstrap density forecasts. The improvement yielded by bias correc-
tion is found to be particularly relevant when the VAR model has near unit
roots (see Kim 2001, who describes the benefits of bootstrap-after-bootstrap
for interval forecasting).

The bootstrap procedure is composed of the following steps:

1. The T observations are used to determine the model order, obtaining
p̂. Many selection criteria are available (see e.g. Konishi and Kitagawa
2008). The AIC information criterion has proven to have a good per-
formance in VAR order selection, when compared to other consistent
criteria (Kilian 1998a, 2001). The order selection criterion used here is a
corrected form of AIC (AICC), which performs better in small samples,
counteracting the overfitting nature of AIC. The AICC was introduced
by Hurvich and Tsai (1993). In their work, these authors remark that
consistency can be obtained only at the cost of asymptotic efficiency and
that, of the two properties, asymptotic efficiency is the more desirable.
This is because, in practice, there will often be no true order. Therefore,
efficiency (Shibata 1980) becomes crucial.

2. The parameters of the forward and backward VAR models (1) and (2) are
estimated by least squares. The least squares estimators and the resid-
uals for the forward and backward models are indicated by Â0, . . . , Âp̂,

{ε̂t} and by Ĥ0, . . . , Ĥp̂, {ν̂t}, respectively. The residuals are rescaled as
suggested in Thombs and Schucany (1990).

3. B0 pseudo-datasets are generated from

y∗t = Ĥ0 + Ĥ1 y
∗
t+1 + Ĥ2 y

∗
t+2 + . . .+ Ĥp̂ y

∗
t+p̂ + ν∗t ,

where ν∗t is a random draw, with replacement, from {ν̂t}, and the p̂
initial values y∗n−p̂+1, . . . , y

∗
n are set equal to yn−p̂+1, . . . , yn (Kim 1999

and Grigoletto 2005).

For each pseudo-dataset, the parameters of model (2) are estimated, ob-

taining Ĥ∗0 , . . . , Ĥ
∗
p̂ . Denoting by Ĥj

∗
the sample mean of the B0 repli-

cations of Ĥ∗j , we have bias(Ĥj) = Ĥj

∗
− Ĥj, for j = 0, . . . , p̂. This

bias is used to compute the bias corrected estimates {Ĥc
j}, with the

procedure introduced by Kilian (1998b). This procedure also performs
a stationarity adjustment, to ensure that the bias correction does not
push stationary estimates into the non-stationary region of the param-
eter space. The residuals {ν̂ct } are computed from the bias-corrected
estimates {Ĥc

j}. Analogous steps lead, for the forward model (1), to the

computation of bias(Âj) = Âj
∗
−Âj, of the bias-corrected estimates {Âcj}

and of the corresponding residuals {ε̂ct}.
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4. B pseudo-datasets are generated from

y∗ct = Ĥc
0 + Ĥc

1 y
∗c
t+1 + Ĥc

2 y
∗c
t+2 + . . .+ Ĥc

p̂ y
∗c
t+p̂ + ν∗ct ,

where ν∗ct is a random draw, with replacement, from {ν̂ct }, and the p̂
initial values y∗cn−p̂+1, . . . , y

∗c
n are set equal to yn−p̂+1, . . . , yn. For each

pseudo-dataset, the forward model parameters are estimated by least
squares, obtaining the estimates Ã∗j ; these estimates are then corrected

using bias(Âj) computed in step 3, thus obtaining Ã∗cj , j = 0, . . . , p̂.

5. The bootstrap forecast replicates made at time T for the forecast horizon
h are defined as

ŷ∗cT (h) = Ã∗c0 + Ã∗c1 ŷ
∗c
T (h− 1) + Ã∗c2 ŷ

∗c
T (h− 2) + . . .+ Ã∗cp̂ y

∗c
T (h− p̂) + ε∗cT+h ,

where ε∗cT+h is a random draw, with replacement, from {ε̂ct} and y∗cT (j) =
yT+j for j ≤ 0.

6. The bootstrap replicates for the forecasts dx̂
c
t(h), i.e. the forecasts of the

aggregated time series based on the disaggregated model, can now be
computed as

dx̂
∗c
T (h) = Ft ŷ

∗c
T (h) .

7. Perform steps 1–5 for each univariate series yj,t, j = 1, . . . , k. In this
case, the aggregate forecast replicates are defined as

ux̂
∗c
T (h) = Ft (ŷ∗c1,T (h), . . . , ŷ∗ck,T (h))′ .

8. Perform steps 1–5 for the aggregated time series xt. These aggregate
forecast replicates will be indicated by x̂∗cT (h).

4 Comparing the predictive performances

In this section we examine the predictive performance of the three competing
forecasts of the aggregated time series. For the sake of simplicity, we will
confine ourselves to the m = 1 (i.e. unidimensional aggregate) case: this is the
situation most often considered in the relevant literature and also analysed
here in the simulation study and in the application.

When a prediction for the conditional mean is desired, straightforward
evaluation criteria can be computed by simply comparing the realised and
forecasted values on the basis of a suitable loss function. If the loss function is
quadratic, the evaluation criterion becomes the MSFE, which has traditionally
been used in the literature on aggregated time series. However, as remarked
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by Christoffersen (1998), users should not be content with a point forecast,
since such a forecast describes only one (even if important) possible outcome.

The bootstrap procedure described above yields many forecast replicates.
In this context, it is easy to propose a range of likely outcomes, therefore
allowing users to be thoroughly prepared to future events, even if they differ
from what is usually expected. In particular, in the bootstrap framework,
computing prediction intervals or density forecasts are simple tasks. It is
therefore natural, and useful, to compare different prediction methods assessing
their performance in accomplishing these tasks.

It should also be noted that often the appropriateness of point forecasts
is evaluated by studying the correlation structure of prediction errors, using
the well known result stating that the h-step error should be MA(h − 1).
This assessment, however, gives no hint on the performance of the forecast
distribution as a whole. For example, the prediction error might be MA(h −
1) and, at the same time, the coverage of prediction intervals be completely
wrong. The evaluation criteria shown below assess the performance of density
forecasts, rather than point forecasts.

Prediction intervals. In most of the literature, evaluation of interval fore-
casts proceeds by simply comparing the nominal and true coverages. In the
following, this amounts to testing an unconditional coverage hypothesis. How-
ever, intervals should be evaluated considering that they are based on a time-
dependent information set. For example, intervals should be narrow in times
of low uncertainty, and wide when uncertainty is higher. Prediction intervals
that fail to account for this might be correct on average (and pass the uncon-
ditional coverage evaluation), but in any given period the conditional coverage
will be incorrect. Since the 1990’s a variety of tests have been proposed to
measure accuracy of prediction intervals, assessing also conditional coverage.
Christoffersen (1998) introduced a model-free approach based on the concept
of violation, which occurs when the ex-post realisation of a variable does not lie
in the ex-ante forecast interval. The conditional validity of prediction intervals
can be reduced to the problem of assessing whether the following hypotheses
are jointly satisfied:

i) unconditional coverage hypothesis : the probability of an observation to
fall in the corresponding prediction interval must be equal to the coverage
rate;

ii) independence hypothesis : violations of prediction intervals, observed at
different dates, for the same coverage rate, must be independent (i.e. vio-
lations should not “cluster”).

A test of unconditional coverage was initially proposed by Kupiec (1995),
while Christoffersen (1998) proposes a procedure to jointly test the two hy-
potheses, thus assessing correct conditional coverage (CC). In the following, the
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Monte Carlo versions of the CC test will be used, as suggested by Christoffersen
and Pelletier (2004), who employ the technique described by Dufour (2006) to
overcome the possible scarcity of violations. When the number of available
out-of-sample forecasts is not large, this is especially important. The CC test
procedure needs to be modified when h ≥ 2, since in this case optimal forecasts
at horizon h are characterised by autocorrelation of order h−1. Diebold et al.
(1998) recommend using an approach based on Bonferroni bounds. Let us
denote by IT the indicator variable used in the test procedure, which equals 1
when there is no violation (i.e. the forecast interval for horizon h, computed at
the forecast origin T , contains the realisation yT+h), and 0 otherwise. The in-
dicator variables are divided in h sub-groups, which are independent under the
null hypothesis: (I1, I1+h, I1+2h, . . .), (I2, I2+h, I2+2h, . . .), . . . , (Ih, I2h, I3h, . . .).
The null hypothesis of correct conditional coverage is then rejected, at an over-
all significance level bounded by α, when it is rejected for any of the subgroups
at the α/h significance level. The use of Monte Carlo p-values, as described
above, is particularly recommended as h increases and the number of indicator
variables in each subgroup becomes small.

Density forecasts. Diebold et al. (1998) remark that the method proposed
by Christoffersen (1998) allows to evaluate whether a series of prediction inter-
vals are correctly conditionally calibrated only at a specified confidence level.
This leads to the problem of density forecasts evaluation, which corresponds
to the simultaneous conditional calibration of all possible interval forecasts.
Diebold et al. (1998) proposed to evaluate density forecast estimates using the
probability integral transform (PIT) which, when h = 1, is defined as:

zT =
∫ xT+1

−∞
f̂T+1(u|ΩT ) du ,

where ΩT is the information available at the forecast origin T and f̂T+1(·|ΩT )
is a one-step forecast density, which in our case will be one of the three boot-
strap based forecasts described in Section 3. Let fT+1(·|ΩT ) denote the true
forecast density. If the forecasting model is correct, Diebold et al. (1998) show
that the PIT series {zT} is i.i.d. U(0, 1). Evaluating the goodness of estimated
forecast densities can therefore be based on the assessment of the uniformity
and independence properties of {zT}. To this aim, Diebold et al. (1998) em-
ployed mainly graphical tools. More recently (e.g. Clements, Franses, Smith,
and Van Dijk 2003, Siliverstovs and Dijk 2003) formal tests have been applied:
the most commonly employed one is the Kolmogorov-Smirnov test (KS). The
KS goodness-of-fit measure has been discussed extensively in the literature
(see e.g. Conover 1999); here, the KS test is implemented using the technique
developed in Wang, Tsang, and Marsaglia (2003).

Since the KS test assumes independence, as suggested by Diebold et al.
(1998) we will test for the presence of serial correlation in the PIT, assuming
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that the process {zT} has this representation:

zT − z̄ = γ1 (zT−1 − z̄) + . . .+ γq (zT−q − z̄) + εT

Then, a Lagrange multiplier test (LM) is carried out, with the null hypothesis
that γi = 0, i = 1, . . . , q, against the alternative that γi 6= 0 for at least one
i ∈ {1, . . . , q}. This test is very widespread, especially in the econometric
literature: see e.g. Godfrey (1986), pp. 116–117, or Lütkepohl (2004), pp. 44–
45. While several asymptotically equivalent algorithms are available for the
LM test, Kiviet (1986) suggests that a simple F version of the test is better
behaved in small samples. When h > 1, we proceed as described above for
prediction intervals, partitioning the PITs in h subgroups: (z1, z1+h, z1+2h, . . .),
(z2, z2+h, z2+2h, . . .), . . . , (zh, z2h, z3h, . . .). Then, a test with overall significance
level bounded by α is performed. Rejection of the null hypothesis suggests the
presence of serial correlation that is not explained by the forecasting model.

Recently, Chevillon (2014) remarked that the method based on non-overlapping
subsamples of PITs, described above for horizons h > 1, implies that the con-
ditional information sets entering the forecasting models are non-overlapping
themselves. The solution proposed by Chevillon (2014) is to fit an MA(h− 1)
model to the estimated h-step forecast errors, and then compute the PIT for
the residuals of this model. This solution is easy to implement in the context
of the present paper. However, the estimation of the auxiliary MA(h − 1)
model injects uncertainty in the density forecast evaluation procedure. As a
consequence, the uncertainty (that we would like to take into account with the
bootstrap) in the estimation of the main prediction model becomes inextrica-
bly confused with the uncertainty in the estimation of the MA(h−1) auxiliary
model. Also, Chevillon (2014) does not investigate whether the MA(h − 1)
correction affects the power of the tests on the PITs. This investigation is
especially important here, where test results are used to rank prediction mod-
els. For these reasons, while the remark by Chevillon (2014) is important, the
solution proposed by this author is not adopted here.

5 Simulation study

The simulation framework is designed to compare the performances of dx̂
c
t(h),

ux̂
c
t(h) and x̂ct(h) in small samples and when the DGPs are unknown. The

experiments suggested by Lütkepohl (1984), Sbrana and Silvestrini (2009) and
Hendry and Hubrich (2011) will be considered and extended by also assessing
prediction intervals and forecast densities, with the techniques discussed in
the previous sections. Differently from the above contributions, here models
are estimated recursively, i.e. the available sample until time T is first used to
estimate the model and generate forecasts, then the sample up to time T + 1
is used, and so on. This is meant to represent a real life situation in which
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DGP Coefficients

DGP1 α11 = α22 = −0.5; α12 = α21 = 0
DGP2 α11 = 0.5; α22 = −0.3 α12 = −0.66; α21 = −0.5
DGP3 ψ11 = ψ22 = 0.5; ψ12 = ψ21 = 0
DGP4 ψ11 = 0.3; ψ22 = −0.5 ψ12 = −0.66; ψ21 = −0.5
DGP5 ψ11 = 0.7; ψ22 = 0.3 ψ12 = 0.2; ψ21 = 0.32

Table 1: Definition of the DGPs used in the simulation experiment, where
A1 = {αij} and C1 = {ψij}.

an out-of-sample period can be used to choose between competing forecasting
procedures.

Design of the experiment. We are going to consider two-dimensional and
five-dimensional VAR(1) DGPs. If we indicate by αij the generic element of
A1 in equation (1), the two-dimensional VAR(1) DGPs are defined in Table 1.
The elements of the intercept vector A0 are all set equal to 1. While only
autoregressive processes are used to fit and forecast, we are going to take into
account possible model misspecification by also employing VMA(1) DGPs,
having the following general structure: yt = C0 + εt +C1 εt−1. Table 1 defines
the VMA(1) DGPs adopted, with {ψij} denoting the generic element of C1.
Also in this case, all the elements of the intercept vector C0 are set equal to 1.
Innovations are Gaussian i.i.d. with E(εt) = 0 and Σε = I, except for DGP5,
for which the non-diagonal elements in Σε are set equal to 0.3.

DGPi in Table 1 is from Lütkepohl (1984) for i = 1, . . . , 4, and from Sbrana
and Silvestrini (2009) for i = 5. All DGPs in Table 1 are two-dimensional:
four-dimensional VAR(1) DGPs from Hendry and Hubrich (2011) were also
considered and did not change the general conclusions. While here only DGP5

has a non-diagonal covariance matrix Σε, Sbrana and Silvestrini (2009) used
the same non-diagonal matrix also for other VMA(1) processes. Similar ex-
periments in the present framework did not change the ranking of the different
forecasting techniques under study.

For the DGPs in Table 1, we will define the aggregation matrix in Equa-
tion (3) as Ft = F = (1, . . . , 1), so that xt is a simple sum of the components
in yt. It should be noted, however, that in many cases the aggregation weights
are time-varying. For instance, there are several proposals to aggregate the
euro-area gross domestic product using stochastic weights (see Winder 1997,
Beyer, Doornik, and Hendry 2001, and Anderson, Dungey, Osborn, and Vahid
2011). This situation can easily be accommodated in the present framework
with the approach by (Lütkepohl 2011). Let us define

Ft =

[
w′t
Ik

]
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where wt = (w1t, . . . , wkt)
′ is a vector of stochastic weights and Ik is the identity

matrix of order k. Then, the first element of ywt = Ft yt is the aggregate of
interest, and the other elements replicte the series yt. Hence, considering ywt
instead of yt leads to an extension of the information set, since the information
in the process wt is also being incorporated. When stochastic weights are
considered, only the predictors based on forecasting the full process ywt and on
forecasting the aggregate w′t yt directly are available. In fact, since the weights
are unknown, aggregating univariate forecasts of the disaggregate component
series yi,t is not possible.

Stochastic aggregation weights will be represented here by DGP6 (from
Lütkepohl 2011), a VAR(1) process of dimension k = 5, with the intercept
vector set to zero and

A1 = diag(0.9,−0.9, 0.5,−0.5, 0.5) .

Here, the serial correlation structure differs remarkably from one component
to the other, representing cases in which the univariate series have distinct
behaviours (e.g., energy and food prices might well have dissimilar DGPs: see
Section 6). In order to generate stochastic weights, first a vector w̃t is drawn
from a k-dimensional Gaussian distribution: w̃t ∼ N ((10, 5, 5, 5, 5)′, 0.1 · Ik),
so that the first univariate component has a larger weight on average and the
variation in the aggregation weights for adjacent periods tends to be small,
as is often the case in empirical time series. The negative elements of w̃t are
replaced by zero and then the aggregation weights are defined as

wt =
w̃t∑k
i=1 w̃it

.

General results (Lütkepohl 1987, Sbrana and Silvestrini 2009), concerning
the MSFE and derived under the assumption that the involved processes are
known, allow to describe, for each DGP, the theoretical performances of the
forecasting procedures. Since, when the DGP is known, there is no uncertainty
originated from model specification and estimation, in the present paragraph
the three forecasts will be denoted by dxt(h), uxt(h) and xt(h). For DGPi,
i = 1, 3, the components are independent and have homogeneous correlation
structures; as a consequence, the three forecasts yield the same MSFE. On the
contrary, for DGPi, i = 2, 4, 6, the MSFE for dxt(h) will be lower than that for
the other two predictors. Finally, DGP5 is interesting since uxt(h) and xt(h)
have the same one-step MSFE, even if the forecasts do not coincide (Sbrana
and Silvestrini 2009). It should be noted that, while MSFEs can be rather
dissimilar if the prediction horizon h is small, differences vanish as h increases
(see Lütkepohl 1987, Section 4.2.2).

Now, the question we would like to answer is: the above theoretical rank-
ings, based on the MSFE for point forecasts when the DGP is known, are still
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valid when the evaluation criterion is based on prediction intervals or density
forecasts, and the DGP needs to be estimated? The bootstrap procedure,
detailed here, is applied as a response to this question.

The results shown are obtained for samples with an initial size N = 100.
Samples are recursively expanded to include an out-of-sample period having
length S = 100. This means, e.g. for h = 1, that first y1, . . . , yN are used to
forecast yN+1, then y1, . . . , yN+1 are used to forecast yN+2, and so on until the
last step, in which y1, . . . , yN+S−1 are used to forecast yN+S. Simulation ex-
periments with N = 200 were also performed and led to analogous qualitative
conclusions.

Prediction intervals and density forecasts are computed with B = 2000
bootstrap replicates; bias correction is based on B0 = 1000 replicates. Repeat-
ing several times the same experiment did not lead to significant changes in
the results, implying that the number of bootstrap replicates is sufficient for
the analysis.

As discussed above, models are estimated by least squares, while the AICc

criterion by Hurvich and Tsai (1993) is adopted for order selection, with max-
imum number of lags p = 10.

Comparison of prediction methods. We will consider prediction horizons
h = 1, 2, 3. To evaluate point forecasts, we will use the root MSFE (RMSFE),
which is obviously equivalent to the MSFE, but is used more often in the
applied literature (e.g. Hendry and Hubrich 2011) and will also be adopted
later in the application. Therefore, the out-of sample period is used to compute
the RMSFE, with respect to point forecasts given by the mean of the bootstrap
forecast distributions. More formally:

RMSFEh =

√∑N+S−h
T=N [xT+h − x̂T (h)]2

S − h+ 1

where x̂T (h) is the average of the B values obtained for dx̂
∗c
T (h), ux̂

∗c
T (h) or

x̂∗cT (h). The RMSFEs are then averaged overM = 200 Monte Carlo repetitions.
The B values generated for dx̂

∗c
T (h), ux̂

∗c
T (h) and x̂∗cT (h) form a bootstrap

forecast distribution. Hence, the evaluation criteria described in Section 4 are
also available. The outcomes of the conditional coverage (CC), Kolmogorov-
Smirnov (KS) and Lagrange multiplier (LM) tests, used to evaluate the per-
formance of the prediction intervals and forecast distributions, are described
by their p-values. The performance measure adopted here is the one used in
Engle (2002) (p. 343 and Tables 2 to 5):

p̃α =

∑M
i=1 I(pi < α)

M

where pi is the p-value for the test at the i-th Monte Carlo iteration, I(·)
is the indicator function and α is the chosen significance level. Hence, p̃α is
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the fraction of α-level tests rejecting. A prediction method is preferable when
it yields a smaller value of p̃α. It must be strongly emphasized that p̃α is a
performance measure, and not a p-value.

Simulation results. 1 Table 2 shows the RMSFEs ratios, with respect to
the RMSFE for x̂ct(h), for the different processes, when estimation uncertainty
comes into play. When the component univariate processes are independent
and homogeneous (DGPi, i = 1, 3), the three methods yield similar RMSFEs.
On the contrary, for DGPi, i = 2, 4, 6, which have dependent and/or inhomo-
geneous component processes, at the prediction horizon h = 1, dx̂

c
t(h) produces

smaller RMSFEs. As h increases, differences become less marked. These re-
sults are of course consistent with those found in previous literature, as e.g.
Lütkepohl (1984, 2011) and Hendry and Hubrich (2011). Also, for DGP5, we
see that the RMSFEs observed for ux̂

c
t(h) and x̂ct(h) are very similar, especially

at h = 1, in agreement with the theory in Sbrana and Silvestrini (2009).
Let us now turn to the more general evaluation of the performance of the

predictive distribution. Table 3 displays the fraction of 5% tests rejections (i.e.
p̃0.05) for the Kolmogorov-Smirnov (KS), LM (no serial correlation of order 1)
and Christoffersen (CC, conditional coverage, 95%) tests on the predictive
distributions, described in Section 4.

The KS tests show similar performances for the three methods when the
component processes are independent and homogeneous (DGPi, i = 1, 3). For
the DGPs with interrelated component processes, it can be noted that ux̂

c
t(h)

yields better, or at least comparable, KS test results for DGPi, i = 2, 4, while it
performs worse, and rather markedly so, for DGP5. This result is particularly
interesting since, as mentioned above, DGP5 is designed to guarantee the same
theoretical one-step forecasting performance, in terms of MSFE, for ux̂

c
t(h) and

x̂ct(h). As can be seen, this does not necessarily translates into comparable
performances when an evaluation criterion different from the MSFE, as the
KS criterion, is considered. An analogous reasoning applies to DGP6, for
which using the disaggregate information yields an evident advantage in terms
of RMSFE (notably for h = 1), but this advantage vanishes, at least at h = 1,
when the KS test results are used as ranking criterion (the same is true for the
CC test: see below).

It should be noted that, when the component processes are interrelated
(DGPi, i = 2, 4, 5), the LM test detects the inability of ux̂

c
t(h) to fully represent

the linear dependence structure, yielding fractions of rejections p̃0.05 for the LM
test which are sensibly larger, especially at h = 1, for ux̂

c
t(h) than for the other

methods.

1R (R Core Team 2014) was used to run the simulations. It should be mentioned that
while the necessary computations are rather CPU-intensive, they are easy to parallelise. In
fact, the results presented here have been obtained on a computer cluster. The parallelisation
was based on the snow (Tierney, Rossini, Li, and Ševč́ıková 2011) R package.



16 Matteo Grigoletto

DGP1 DGP2 DGP3

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

dx̂
c
t(h) 1.006 1.004 1.004 0.843 0.981 0.957 1.008 1.007 1.006

ux̂
c
t(h) 1.001 1.001 1.001 1.012 0.993 0.991 1.002 1.001 1.000

DGP4 DGP5 DGP6

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

dx̂
c
t(h) 0.892 1.018 1.017 0.996 1.020 1.015 0.787 0.965 0.914

ux̂
c
t(h) 1.010 0.990 0.994 1.001 0.991 0.992 - - -

Table 2: RMSFE ratios, with respect to the RMSFE for x̂ct(h), in S = 100
out-of-sample steps (average over M = 200 Monte Carlo runs). The initial
sample size is N = 100.

The KS and LM tests concern the whole forecast distributions. However,
when prediction intervals of a specified confidence level are of interest, results
for the CC test are particularly relevant (results shown in Table 3 concern the
95% confidence level). In this regard, x̂ct(h) performs in most cases similarly or
better than the other two methods. The preferability of x̂ct(h) is particularly
marked for DGP4 and DGP5, as for these processes the CC test fractions of
rejections p̃0.05 are usually rather smaller for x̂ct(h), even for h = 2, 3, while
for the other DGPs differences among the forecasting models are generally less
noticeable when h = 2, 3. Most notably, for DGP5, according to the CC test
results, the preferability of x̂ct(h) with respect to ux̂

c
t(h) is evident (as it is

for the KS criterion), even if these procedures are theoretically equivalent in
terms of MSFE (at h = 1). In summary, when computing confidence intervals,
x̂ct(h) appears to be generally a safe choice, at least for the DGPs considered.
This result partially contradicts the suggestions grounded on the theoretical
results recalled above for the MSFE criterion, which therefore should not be
the only criterion used to rank the alternative forecasting procedures, at least
when decisions are based not on the consideration of a single possible future
outcome, but rather on a range of likely outcomes.

6 Application

The techniques illustrated in the previous sections are now applied for predict-
ing aggregate inflation for the all items U.S. consumer price index (CPI). As
discussed in the introduction, conclusions on the preferability of aggregate or
disaggregate models for forecasting are far from univocal and depend, e.g., on
the period and the forecast horizon considered. For example, Hubrich (2005),
analysing euro area inflation, finds that neither approach works necessarily
better, while results in Bermingham and D’Agostino (2011) are more in favour
of aggregating disaggregate forecasts. See Faust and Wright (2013) for a recent
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DGP1 DGP2 DGP3

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

KS .050 .105 .135 .030 .075 .150 .060 .070 .150

dx̂
c
t(h) LM .050 .120 .115 .090 .105 .105 .045 .135 .100

CC .095 .090 .145 .070 .135 .200 .140 .235 .265

KS .070 .135 .160 .015 .040 .055 .045 .045 .140

ux̂
c
t(h) LM .050 .105 .140 .975 .145 .400 .045 .145 .120

CC .070 .095 .135 .140 .085 .155 .080 .190 .270

KS .050 .115 .125 .115 .085 .170 .055 .055 .155
x̂c
t(h) LM .050 .120 .145 .075 .140 .135 .060 .155 .115

CC .095 .120 .175 .075 .115 .225 .100 .195 .265

DGP4 DGP5 DGP6

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

KS .015 .065 .110 .070 .080 .130 .060 .095 .085

dx̂
c
t(h) LM .045 .085 .155 .040 .120 .130 .045 .080 .115

CC .100 .185 .285 .140 .190 .300 .125 .150 .190

KS .010 .090 .130 .115 .100 .160 - - -

ux̂
c
t(h) LM .940 .110 .150 .495 .105 .145 - - -

CC .110 .185 .255 .150 .325 .400 - - -

KS .030 .060 .105 .045 .095 .115 .050 .145 .110
x̂c
t(h) LM .055 .105 .145 .040 .095 .155 .085 .115 .130

CC .085 .130 .215 .105 .175 .240 .090 .175 .210

Table 3: Fraction of 5% tests rejecting for the Kolmogorov-Smirnov (KS), LM
(no serial correlation of order 1) and Christoffersen (CC, conditional coverage,
95%) tests on the predictive distributions. Results are obtained for S = 100
out-of-sample steps and are averaged over M = 200 Monte Carlo runs. The
initial sample size is N = 100.

discussion on inflation forecasting.

As in Hendry and Hubrich (2011), the data set used in the present analysis
includes the all items U.S. consumer price index (CPI) as well as four subcom-
ponents, i.e. prices of: 1) food, 2) commodities less food and energy commodi-
ties, 3) energy and 4) services less energy services (see Figure 1). The data set
can be retrieved from the U.S. Bureau of Labor Statistics (BLS)2. The time
series employed are monthly and seasonally adjusted (X-12 ARIMA), except
for CPI services less energy services, which did not have a seasonal behaviour.

We present results for models estimated using monthly changes in year-on-
year inflation. In fact, we found that modelling month-on-month (rather than
year-on-year) inflation and/or inflation levels (rather than inflation changes),
could lead to a slight reduction in the MSFE, but generally yielded worse
forecasting performances when the whole predictive distribution is evaluated.

2http://www.bls.gov/cpi/data.htm
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Figure 1: Monthly changes (percent) in year-on-year inflation for U.S. con-
sumer price index (CPI) and its subcomponents: Food, Commodities Less
Food and Energy Commodities (CLFEC), Energy, Services Less Energy Ser-
vices (SLES).

We will compute out-of-sample forecasts for different periods, using the
year 1984 for splitting the sample. In fact, in the literature often attention is
paid to forecasting inflation in the post-1984 period, which corresponds to the
great moderation. This is in line e.g. with the analyses by Stock and Watson
(2007), Hendry and Hubrich (2011) and Groen, Paap, and Ravazzolo (2013).

More precisely, the out-of-sample evaluation is based on periods 1970(1)–
1983(12), 1984(1)–2004(12) and 1984(1)–2014(4). The period 1984(1)–2004(12)
is interesting since it is only affected by relatively small variations of the infla-
tion volatility (making prediction intervals easier to compute), while volatility
starts to increase thereafter.
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1970(1)–1983(12) 1984(1)–2004(12) 1984(1)–2014(4)
h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

dx̂
c
t(h) 0.449 0.725 1.072 0.280 0.484 0.615 0.390 0.684 0.878

ux̂
c
t(h) 0.424 0.709 1.028 0.256 0.442 0.573 0.380 0.668 0.878

x̂ct(h) 0.387 0.634 0.919 0.259 0.442 0.563 0.359 0.643 0.843

Table 4: RMSFE, U.S. year-on-year inflation (percentage points).

1970(1)–1983(12) 1984(1)–2004(12) 1984(1)–2014(4)
h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

KS 0.058 0.126 0.179 0.292 0.152 0.335 0.327 0.460 0.408

dx̂
c
t(h) LM 0.163 0.027 0.133 0.420 0.063 2e-5 0.849 0.056 2e-5

CC 5e-4 5e-4 0.007 0.095 0.585 0.227 5e-4 5e-4 0.126

KS 0.048 0.241 0.146 0.099 0.300 0.268 0.288 0.701 0.620

ux̂
c
t(h) LM 0.009 0.003 0.054 0.259 0.341 1.5e-4 0.472 0.493 0.001

CC 0.031 0.015 0.033 0.504 0.588 0.123 0.033 0.018 0.087

KS 0.065 0.057 0.073 0.974 0.582 0.128 0.917 0.772 0.332
x̂ct(h) LM 0.018 0.087 0.302 0.700 0.004 0.001 0.732 0.035 0.007

CC 0.009 0.002 0.016 0.492 0.440 0.245 0.085 0.096 0.221

Table 5: Results for U.S. year-on-year inflation: p-values for the Kolmogorov-
Smirnov (KS), LM (no serial correlation of order 1) and Christoffersen (CC,
conditional coverage, 95%) tests on the predictive distributions.

For estimation, a 10 year rolling sample is employed. We found this to be
preferable to a recursively expanding sample, since the volatility of aggregate
as well as components of inflation generally changes in time. Therefore using
models estimated, for example, during a long period of stable inflation, will
lead to poor density forecasts for periods of higher volatility (in particular,
observed coverage rates will be smaller than expected). As we did for simu-
lations, models are estimated by least squares, and the AICc criterion (with
maximum number of lags p = 10) is employed for order selection. Besides, pre-
diction intervals and density forecasts are computed with B = 2000 bootstrap
replicates, while bias correction is based on B0 = 1000 replicates.

Concerning the aggregation matrix Ft in Equation (3), disaggregate fore-
casts are combined replicating the procedure adopted by the BLS. Since ag-
gregation weights change over time, the current weights available at prediction
time are employed, as future weights are unknown to the forecaster. We use
this procedure, rather than the one described for DGP6 in Section 5, in order
to be able to compute ux̂

c
t(h), and also for better comparability with the results

in Hendry and Hubrich (2011).
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Tables 4 and 5 describe the root MSFE (RMSFE) for the year-on-year
inflation (percentage points) and the p-values3 for the Kolmogorov-Smirnov
(KS), LM (no serial correlation of order 1) and Christoffersen (CC, conditional
coverage, 95%) tests on the predictive distributions.

The period 1970(1)–1983(12) was characterised by inflation with evolving
volatility. Out-of-sample predictions during this period are therefore partic-
ularly difficult using AR models. According to the RMSFE criterion, x̂ct(h)
performs best and should be adopted in this period. In disagreement with this
suggestion, ux̂

c
t(h) appears to be preferable if correct conditional coverage for

the 95% prediction intervals is desired, since it passes the CC test (at the 0.01
level of significance), while the other two approaches perform worse in this
respect. This happens despite the fact that ux̂

c
t(h) does not appear to be able

to fully capture the linear dependence structure in the data (see the p-values
for the LM test).

In the period 1984(1)–2004(12) relatively small changes in inflation volatil-
ity have occurred, and the forecasting methods perform generally better. In
agreement with the results in Hendry and Hubrich (2011), the RMSFEs are
smaller than those for the period 1970(1)–1983(12), with ux̂

c
t(h) and x̂ct(h) hav-

ing similar performances and being preferable to dx̂
c
t(h). The three procedures

all yield reliable prediction intervals (see the p-values of the CC test), with

ux̂
c
t(h) and x̂ct(h) generating p-values much larger than that for dx̂

c
t(h) when

h = 1. The null hypothesis for the LM test is often rejected when h = 2, 3,
suggesting the presence, at these forecast horizons, of linear dependence that
is not accounted for by the models.

The inflation volatility for 1984(1)–2014(4) is initially stable, and then in-
creases towards the end of the period. The performances of the three prediction
methods are somewhere in the middle between those for the other two peri-
ods. Again, x̂ct(h) generates smaller RMSFEs. Here, x̂ct(h) is preferable also
when evaluated with the CC test. In fact, x̂ct(h) always passes the CC test at
the 0.05 level of significance, while the same does not hold for the other two
prediction methods. This suggests that, for this period, x̂ct(h) is a safe choice
from several points of view.

7 Conclusions

When considering estimation and specification uncertainty, the best way to
predict aggregated time series is unclear and depends on the data at hand.
A procedure that ranks the available prediction methods on the basis of an
observed time series, and takes uncertainty into account, appears then to be
useful. Since forecasters are often interested not in one, but in a range of

3While Table 3 shows a measure of performance (given by the percentage of 5% tests
rejecting over Monte Carlo iterations), in Table 5 simple p-values are displayed.
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possible outcomes (e.g. Rossi and Sekhposyan 2014, or Brandt, Freeman, and
Schrodt 2014), it is advantageous to base the ranking of prediction methods
on the performance of the whole predictive distribution, as opposed to the
evaluation of a single point forecast. The bootstrap technique, and the ranking
methods, detailed in the paper allow to fulfill these objectives.

Simulations, and an empirical application to the prediction of U.S. CPI
inflation, show that only evaluating point forecasts, as often done in the current
literature, can indeed suggest a prediction method that has, e.g., a worse
performance in terms of prediction intervals.

It is also found that the ranking of prediction methods is highly dependent
on the data generating process. However, when prediction intervals of a spec-
ified level are of interest, a univariate prediction of the aggregate seems to be
the method of choice, at least within the simulation design considered here.

The empirical results suggest that autoregressive models, while being ad-
equate (in all cases at least one of the models gave reasonable test results),
might benefit from the flexibility given from allowing for breaks in the er-
ror variance and/or regression parameters (see e.g. Bos, Koopman, and Ooms
2014, who investigate changing time series characteristics of US inflation using
long memory processes). This appears to be a promising direction for further
research.
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