
Working Paper Series, N. 4, November 2015

On penalised likelihood and bias reduction

Nicola Lunardon

Department of Statistical Sciences
University of Padova
Italy

Abstract: We propose a likelihood function endowed with a penalisation that

reduces the bias of the maximum likelihood estimator in regular parametric

models. The penalisation hinges on the first two derivatives of the log likeli-

hood and can be computed numerically. The asymptotic properties and the

sensitivity to nuisance parameters of the penalised likelihood and derived quan-

tities are addressed. In models for stratified data in a two-index asymptotic

setting, the bias of the penalised profile score function is found to be equivalent

to the bias of a modified profile score function.

Keywords: Bartlett identity, Bias reduction, Incidental parameter, Jeffreys

prior, Modified profile likelihood, Penalised likelihood, Profile likelihood, Pro-

file score bias, Stratified data, Two-index asymptotics



On penalised likelihood and bias reduction

Contents

1 Introduction 1

2 Penalised likelihood function 2

3 Sensitivity to the nuisance component 2
3.1 Two-index asymptotic setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Monte Carlo simulation 4
4.1 Beta regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Gamma samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Department of Statistical Sciences
Via Cesare Battisti, 241
35121 Padova
Italy

tel: +39 049 8274168

fax: +39 049 8274170

http://www.stat.unipd.it

Corresponding author:
Nicola Lunardon
tel: +39 049 827 4124
lunardon@stat.unipd.it

http://homes.stat.unipd.it/

nicolalunardon/

http://www.stat.unipd.it
lunardon@stat.unipd.it
http://homes.stat.unipd.it/nicolalunardon/
http://homes.stat.unipd.it/nicolalunardon/


Section 1 Introduction 1

On penalised likelihood and bias reduction

Nicola Lunardon

Department of Statistical Sciences
University of Padova
Italy

Abstract: We propose a likelihood function endowed with a penalisation that reduces the bias of the
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derivatives of the log likelihood and can be computed numerically. The asymptotic properties and the
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tion is found to be equivalent to the bias of a modified profile score function.
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1 Introduction

Consider a regular model {f(y; θ) : θ ∈ Rp, y ∈ Rd}. The log likelihood, which we will just call
the likelihood, and score functions based on n independent observations y1, . . . , yn are

`(θ) =
n∑
i=1

`i(θ) =
n∑
i=1

log f(θ; yi), `θ(θ) =
n∑
i=1

`iθ(θ) =
n∑
i=1

∂`i(θ)/∂θ,

while j(θ) and i(θ) are the observed and expected information. The maximum likelihood esti-
mate θ̂ is either defined as the maximiser of the likelihood or as the root of the score equation
`θ(θ) = 0. The bias of the maximum likelihood estimator is

Eθ(θ̂ − θ) = α(θ) +O(n−2),

with α(θ) = O(n−1) a p-dimensional vector whose expression is given, for instance, in Barndorff-
Nielsen and Cox (1994, formula 5·26). In the sequel we are concerned with the approach to bias
prevention, i.e., a methodology that adds a penalisation to either the score function or the
likelihood to define a new estimator having bias of order n−2.

Firth (1993) introduced the approach to bias prevention based on the penalised score function

`θ(θ)− v(θ)α(θ), (1)

where v(θ) can be either j(θ) or i(θ). Although this route to bias prevention is general and has
proven to be effective, it poses computational and conceptual challenges. On the one hand, the
computation of (1) is possible only when the analytic expression of α(θ) is available (Kosmidis,
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2014a). A substantial effort is therefore being done to elicit the functional form of the penalised
score function for large classes of models (Firth, 1993; Kosmidis and Firth, 2009; Kosmidis,
2014b). On the other hand, when p > 1 the approach does not necessarily relate to a likelihood
function because it is not guaranteed the existence of the penalised likelihood, i.e., the primitive
of (1); exceptions are given in Kosmidis and Firth (2009, § 4·2) and when θ is the canonical
parameter in exponential family models (Firth, 1993, § 3·1).

In this paper we propose a route to bias prevention based on a penalised likelihood function
which is available irrespective of p. The function is obtained through a fully empirical penalisa-
tion that depends on the first two derivatives of the likelihood function. The penalisation can
be computed numerically and thus allow the routinely use of the proposed methodology.

2 Penalised likelihood function

Let θ = (ψ, λ) with ψ and λ an interest and a nuisance component of dimension p0 and q = p−p0,
respectively. The proposed penalised likelihood function for θ is

¯̀(θ) = `(θ) + log |j(θ)|1/2 − log |k(θ)|1/2 = `(θ) + ∆(θ), (2)

with k(θ) =
∑n

i=1 `
i
θ(θ){`iθ(θ)}T, whereas the profile version for ψ is ¯̀{θ̄(ψ)}, with θ̄(ψ) the

maximiser of ¯̀(θ) for fixed ψ. We stress that θ̄(ψ̄) = θ̄ = (ψ̄, λ̄) is the global maximiser of both
functions. Our formulation to bias prevention is related to that of Firth (1993) because

∂∆(θ)/∂θ = −v(θ)α(θ) +Op(n
−1/2).

The bias of θ̄ is O(n−2) and, when θ is the true parameter value, the limiting distributions
of the penalised profile likelihood ratio statistic and of its directed version

W̄{θ̄(ψ)} = 2
[
¯̀{θ̄(ψ̄)} − ¯̀{θ̄(ψ)}

]
, r̄{θ̄(ψ)} = sgn(ψ̄ − ψ)W̄{θ̄(ψ)}1/2,

are chi-square with p0 degrees of freedom and standard normal, respectively. The conditions
and proof of these results, and of any additional result herein enclosed concerning the proposed
penalised likelihood function and related quantities, are in a Supplementary Material file not
included and available from the Author.

Example 1 (Comparison with likelihood penalised via Jeffreys prior) Consider a full
exponential family of order p with canonical parameter θ. Firth (1993) showed that the primitive
function of the penalised score function (1) is the likelihood penalised via Jeffreys prior, i.e.,

`(θ) + log |i(θ)|1/2 = `(θ) + log |j(θ)|1/2.

The penalised likelihood ¯̀(θ) differs from the function above by − log |k(θ)|1/2. In the Supple-
mentary Material it is shown that this term is in fact unnecessary and does not invalidate the
result for the bias of θ̄. Firth’s penalised likelihood is simpler to compute, thus recommended.

3 Sensitivity to the nuisance component

Let θ̂(ψ) be maximiser of `(θ) for fixed ψ or the root of `λ(θ) = 0 and θ̂ = (ψ̂, λ̂), with
`λ(θ) = ∂`(θ)/∂λ. The profile likelihood `{θ̂(ψ)} is not a proper likelihood because estimation
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of the nuisance component entails the failure of Bartlett identities. Failure of the first identity
implies that the profile score function `ψ{θ̂(ψ)} is biased, i.e.,

Eθ
[
`ψ{θ̂(ψ)}

]
= τ(θ) +O(n−1) = O(1),

with `ψ(θ) = ∂`(θ)/∂ψ and τ(θ) = O(1) a p0-dimensional vector whose expression is given in
McCullagh and Tibshirani (1990, Appendix A). Despite that the profile score bias does not
bear on the consistency of ψ̂, inferential procedures might behave poorly when the ratio n/q is
moderate or small. Penalisation of the profile likelihood is a long-standing procedure to cope
with this problem. The penalisation reduces the bias of the resulting profile score function to
O(n−1). Some examples of these functions, referred to as modified profile likelihoods, are given
in Barndorff-Nielsen (1983), Cox and Reid (1987), and DiCiccio and Stern (1993).

Inference for ψ based on ¯̀{θ̄(ψ)} is impinged on by the nuisance component as the penali-
sation reduces the bias of the maximum likelihood estimator rather than the profile score bias.
The penalised profile score function ¯̀

ψ{θ̄(ψ) has bias

Eθ
[
¯̀
ψ{θ̄(ψ)}

]
= τ(θ)− {iψψ(θ)}−1αψ(θ) +O(n−1) = O(1), (3)

with ¯̀
ψ(θ) = ∂ ¯̀(θ)/∂ψ, and iψψ(θ) and αψ(θ) the block of i(θ)−1 and the component of α(θ)

pertaining to ψ, respectively. The penalisation in ¯̀{θ̄(ψ)} is also effective in reducing the bias
of ¯̀

ψ{θ̄(ψ)} to O(n−1) only when the bias of the profile score function and of the maximum
likelihood estimator are related.

Example 2 (Simultaneous bias reduction) Let y1 and y2 be samples of size n from inde-
pendent exponential random variables with expectation ψ/λ and ψλ, respectively. The profile
score function is `ψ{θ̂(ψ)} = iψψ{θ̂(ψ)}(ψ̂ − ψ) and {iψψ(θ)}−1 = iψψ(θ) because iψλ(θ) = 0.
From (3) follows Eθ

[
¯̀
ψ{θ̄(ψ)}

]
= O(n−1).

3.1 Two-index asymptotic setting

Consider the model for independent stratified observations {f(y;ψ, λj), j = 1, . . . , q} as in Sar-
tori (2003). The likelihood and score functions for θ = (ψ, λ1, . . . , λq) based on n =

∑q
j=1mj

observations yjk = (yj1, . . . , yjmj ) are

`(θ) =

q∑
j=1

mj∑
k=1

`jk(θ), `θ(θ) =

q∑
j=1

`jθ(θ) =

q∑
j=1

mj∑
k=1

`jkθ (θ) =

q∑
j=1

mj∑
k=1

∂`jk(θ)/∂θ,

with `jk(θ) = log f(yjk;ψ, λj). In this framework both the dimension of the nuisance component
or, equivalently, the number of strata q and the observations in each stratum mj might diverge.
The goal is to study how the structure of the sequence {q,mj} affects inferential procedures
for ψ. In the following we assume that mj = m, i.e., n = qm. Furthermore, we highlight that

Eθ(θ̂ − θ) = α(θ) +O(m−2) = O(m−1) and that k(θ) =
∑q

j=1

∑m
k=1 `

jk
θ (θ){`jkθ (θ)}T.

The discussion for the profile likelihood provided earlier applies verbatim when q is fixed.
Conversely, the bias of the profile score function accumulates across strata and is

Eθ
[
`ψ{θ̂(ψ)}

]
=

q∑
j=1

E
[
`jψ{θ̂(ψ)}

]
=

q∑
j=1

{τ j(θ) +O(m−1)} = O(q).
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Sartori (2003) showed that this result modifies the first-order theory for ψ̂ because ψ̂ − ψ =
Op(n

−1/2) if q/m = o(1), ψ̂ − ψ = Op(m
−1) otherwise, i.e., the maximum likelihood estimator

is root-n consistent only when the sample size within each stratum increases faster than the
number of strata. Modified profile likelihoods are less sensitive to the dimension of the nuisance
component as the bias of the modified profile score function is O(q/m) and the corresponding
estimator ψ̂M satisfies ψ̂M − ψ = Op(n

−1/2) if q/m3 = o(1), ψ̂M − ψ = Op(m
−2) otherwise.

Analogue conditions on q and m bear on the asymptotic theory of likelihood ratio-type statistics,
and directed versions, derived from profile and modified profile likelihoods; see Sartori (2003).

The bias of the penalised profile score function is

Eθ
[
¯̀
ψ{θ̄(ψ)}

]
=

q∑
j=1

{τ j(θ) +O(m−1)} − {iψψ(θ)}−1αψ(θ) = max{O(1), O(q/m)}. (4)

Technical details, addressed in the Supplementary Material, prevent the derivation of conver-
gence rates for ψ̄ as those outlined for ψ̂ and ψ̂M. Nonetheless the comparison of profile, mod-
ified profile, and penalised profile score function bias leads to the following remarks. First, the
proposed penalised profile likelihood ¯̀{θ̄(ψ)} is preferable to the profile likelihood as the pe-
nalisation eliminates most of the profile score bias while being effective in reducing the bias of
the maximum likelihood estimator. Second, unless q/m = o(1), the penalised profile likelihood
safeguards inference for ψ against the nuisance component as a modified profile likelihood and
can therefore be used whenever the latter function is difficult to compute.

Example 3 (Neyman-Scott problem revisited) Let yjk be a sample from independent nor-
mal random variables with means λj and variance ψ, j = 1, . . . , q, k = 1, . . . ,m. For fixed m, the
maximum likelihood estimator for ψ is inconsistent as discussed, for instance, in McCullagh and
Tibshirani (1990, § 3·1). The use of the penalised profile likelihood leads to a consistent estimator
because (4) gives Eθ

[
¯̀
ψ{θ̄(ψ)}

]
= 0, being `{θ̂(ψ)} = mq(ψ̂−ψ)/(2ψ2), {iψψ(θ)}−1 = mq/(2ψ2),

and Eθ(ψ̂ − ψ) = −ψ/m. Our result is consistent with the findings in Firth (1993, § 4·5).

4 Monte Carlo simulation

4.1 Beta regression

To show that the approach to bias prevention based on (1) and (2) are equivalent, we consider
an illustrative example concerning a generalised linear model with beta responses (Kosmidis
and Firth, 2009). Suppose that y1, . . . , yn is a sample from independent beta random variables
with expectation µi and variance µi(1 − µi)/(1 + φ), i = 1, . . . , n. The mean of the ith unit
is related to a set of covariates through the link function g(·), i.e., µi = g−1(βTxi), where β is
the vector of regression coefficients, φ > 0 the precision parameter, and xi = (1, xi1, · · · , xip∗)T,
with p∗ = p− 2. Let θ = (β, φ) be the parameter of interest.

Simulation are run by setting n = 25, 75, θ = (0·1, 0,−0·1, 0·2, 2), g(t) = et/(1 + et), and by
generating xi1, xi2, and xi3 from the following random variables: Poisson with mean 2, expo-
nential with unit mean, and standard normal, respectively. The penalisation in the proposed
likelihood (2) is computed with numerical derivative routines, whereas the penalised score func-
tion (1) with the R function betareg which allows to set ν(θ) equal to either j(θ) or i(θ); the
function is in the betareg package (Gruen et al., 2012; R Core Team, 2013).
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In Table 1 we report Monte Carlo estimates of bias and variance of estimators based on
40 000 replicates. The result of estimators derived from the proposed penalised likelihood and
from the penalised score are similar, indicating that the approaches are equivalent. Since the
bias of the maximum likelihood estimator for the regression coefficient is in fact negligible, the
effectiveness of bias prevention strategies and their equivalence is better seen by focusing on the
results for the estimator of the precision parameter.

Table 1: Beta regression. Monte Carlo estimates of bias and variance (in parentheses) of esti-
mators derived from the likelihood (Lik.), penalised likelihood (Pen. lik.), and penalised score
function (Pen. score) computed with j(θ) and i(θ). All entries are multiplied by 100

n Lik. Pen. lik. Pen. score j(θ) Pen. score i(θ)

25 β1 0.28 (22.61) 0.07 (20.13) 0.12 (20.91) −0.08 (20.30)

β2 −0.03 (3.47) 0.02 (3.07) −0.01 (3.30) −0.01 (3.19)

β3 −0.16 (3.74) 0.23 (3.31) −0.11 (3.80) 0.12 (3.61)

β4 0.89 (12.28) −0.21 (11.05) 0.12 (11.50) −0.17 (11.15)

φ 58.69 (59.80) 3.48 (35.93) −1.48 (34.17) −2.00 (33.99)

75 β1 −0.06 (6.72) −0.03 (6.50) 0.01 (6.59) −0.02 (6.56)

β2 0.01 (0.80) 0.01 (0.78) −0.01 (0.79) 0.01 (0.79)

β3 −0.01 (1.99) 0.02 (1.93) −0.04 (2.01) −0.01 (2.00)

β4 0.20 (1.72) −0.06 (1.67) 0.06 (1.70) 0.02 (1.69)

φ 16.11 (10.14) −0.13 (8.57) −0.36 (8.59) −0.39 (8.58)

4.2 Gamma samples

The purpose of this example is to compare the sensitivity of inferential procedures derived from
¯̀{θ̄(ψ)} with those derived from profile likelihood and modified profile likelihood. Let yjk be
a sample from independent gamma random variables with shape and scale parameters ψ and
1/λj , respectively, j = 1, . . . , q, k = 1, . . . ,m. In Sartori (2003) are provided expressions for
the profile and Barndorff-Nielsen’s modified profile likelihood. Since the considered model is
full exponential with canonical parameter θ = (ψ, λ1, . . . , λq), we can also consider the profile
version of Firth’s penalised likelihood given in Example 1.

Simulation are run for several values of m and q and by setting ψ = 1 and λj generated from
a chi-squared variate with 10 degrees of freedom, j = 1, . . . , q. Results for quantities related to
¯̀{θ̄(ψ)} are given for q ≤ 30 because for these values computations are feasible.

In Table 2 we report Monte Carlo estimates of bias and variance of estimators based on 20 000
replicates; we denoted by ψ̂F the estimator derived from Firth’s penalised profile likelihood.
The maximum likelihood estimator is strongly biased even when m ≥ q. The comparison of
estimators ψ̂M, ψ̂F, and ψ̄ highlights that the bias prevention approach provides results which
are comparable to the ones obtained from a modified profile likelihood. The results for ψ̂F and
ψ̄ are close, confirming the claim made in Example 1.

In Figure 1 are depicted the Monte Carlo estimates of distribution functions of the directed
versions of the profile, r, modified profile, rM, Firth’s penalised profile, rF, likelihood ratio
and r̄. As expected, the distribution function of all statistics converge to the standard normal
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distribution for fixed q as m increases. Contrary to the distribution function of r the ones of rF
and r̄ are stable when m is fixed and q increases as the distribution function of rM.

Table 2: Gamma samples. Monte Carlo estimates of bias and variance (in parentheses) of
estimators. All entries are multiplied by 100

m q = 5 q = 15 q = 30 q = 100 q = 400

5 ψ̂M 9.59 (11.33) 3.41 (2.81) 2.02 (1.33) 1.01 (0.38) 0.72 (0.09)

ψ̂ 30.58 (17.20) 22.89 (4.23) 21.17 (2.00) 19.91 (0.57) 19.55 (0.14)

ψ̂F −4.21 (9.26) −3.97 (2.63) −3.87 (1.29) −3.87 (0.37) −3.85 (0.09)

ψ̄ 2.25 (9.91) −0.47 (2.65) −0.89 (1.28)

10 ψ̂M 3.82 (3.94) 1.49 (1.19) 0.79 (0.57) 0.33 (0.17) 0.19 (0.04)

ψ̂ 12.70 (4.78) 10.12 (1.45) 9.34 (0.69) 8.83 (0.21) 8.68 (0.05)

ψ̂F −0.94 (3.60) −0.67 (1.16) −0.74 (0.56) −0.76 (0.17) −0.77 (0.04)

ψ̄ −0.14 (3.64) −0.28 (1.16) −0.42 (0.56)

15 ψ̂M 2.51 (2.42) 0.90 (0.75) 0.49 (0.37) 0.18 (0.11) 0.09 (0.03)

ψ̂ 8.16 (2.75) 6.44 (0.86) 6.00 (0.42) 5.67 (0.13) 5.57 (0.03)

ψ̂F −0.32 (2.29) −0.28 (0.74) −0.29 (0.37) −0.32 (0.11) −0.32 (0.03)

ψ̄ −0.07 (2.30) −0.17 (0.74) −0.20 (0.37)
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Figure 1: Gamma samples. Monte Carlo estimates of distribution functions. Short-dashed line,
r, dotted-dashed line, rM, long-dashed line rF, dotted line, r̄, solid line, standard normal. Left
panel, m = 5, q = 5 (black), q = 30 (gray); right panel, m = 15, q = 5 (black), q = 30 (gray)
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