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how to deal with the random matrix D which is a Borel function of the residuals

under the tested null hypothesis instead of a Borel function of total residuals.

This provides a D matrix - and a test as well - which is more focused on the

effects of the predictors under test. A R code is available on the someMTP pack-
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Abstract: In this note we extend the Left-Spherically Distributed linear scores test (LSD)

of Läuter, Glimm and Kropf test (1998, The Annals of Statistics). The LSD test is a

method for multivariate testing also applicable to the p >> n (much more variables than

observations). As a key feature, the score coefficients are chosen such that a left-spherical

distribution of the scores is reached under the null hypothesis. Here the test is extended

to account for nuisance parameters, particularly for covariates that are assumed to explain

(part of) the response variables but are not under test. Moreover it is shown how to deal

with the random matrix D which is a Borel function of the residuals under the tested null

hypothesis instead of a Borel function of total residuals. This provides a D matrix - and a

test as well - which is more focused on the effects of the predictors under test. A R code is

available on the someMTP package in CRAN.

Keywords: Multiple Testing, Hight dimensional data

1 Introduction

In this brief manuscript we make the Left-Spherically Distributed linear scores test
(LSD) of Läuter et al. (1998) easier to deal with covariates not under test. The LSD
test is a method for multivariate testing also applicable to the p >> n (much more
variables than observations). It is very general and works with any multivariate
spherical error term and any set of predictors. It is also possible to deal with
covariates known to be associated with the response and not of interest for the
test. Despite this result, it is hard to figure out a general framework to deal with
them.

The following is the theoretical framework used in Läuter et al. (1998) (with
slight notational changes). The presented theory refers to n × p left-spherically
distributed matrices Y (n refers to observations and p to variables). Such random
matrices are characterized by the fact that

Y =d CY for every fixed n× n orthogonal matrix C

and by a characteristic function of the form φ(T ′T ). The symbol =d denotes
the equality of two distributions. This class of distributions is too wide for the
construction of optimal tests according to the likelihood ratio criterion. There-
fore, other authors (Fang and Zhang (1990), Anderson (1993), Gupta and Varga
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(1993)) prefer a restricted class of distributions Y with a characteristic function
ψ(tr(T ′TA)) = ψ(tr(TAT ′)), where A is a p× p positive definite symmetric matrix.
The matrices Y of this class have the representation Y =d UA1/2 with a vector-
spherically distributed matrix U (Fang and Zhang (1990), page 96). The notation
A1/2 indicates the positive definite symmetric matrix that satisfies (A1/2)2 = A.
Under these assumptions Läuter et al. (1998) prove the following theorem:

D is defined as a function of H + G + L, where L is a matrix of ”neutral” infor-
mation. For example, this is the case of multivariate model having predictors which
are not under test (see application 4 Läuter et al. (1998), page 1979). The authors
present the case of multivariate two-way classification with orthogonal design. In the
classical MANOVA approach, tests of hypotheses are performed by means of various
p × p sums of products matrices HA, HB, and HA×B, say, associated with main
effects and interactions. Using Theorem 1, a coefficient vector d for weighting the p
variables may be determined as a function of HA + HB + HA×B + G, where G is
the residual sum of products matrix. The main effect A may be tested by

F =
d′HAd/fA
d′Gd/fG

According to Theorem 1, this statistic is F distributed with fA and fG degrees of
freedom under HA (the null hypothesis of null effect of factor A), because L =
HB + HA×B is stochastically independent of HA and G, even if the hypotheses HB

and HA?B are not true. [. . . ]. Of course, in any practical application, one would
also have to consider the power of the resulting tests.

In this example the authors highlight the fact that a test is possible when the
matrix Y′Y can be decomposed in three orthogonal matrix: the explained part
(e.g. HA) , the ”nuisance” part (e.g. HB + HA×B) and a residual part (eg G).
However the proposed solution is possible only for the very special case of orthogonal
variables/factor. In this work we discuss a solution for the general case of testing
part of the predictors when they are not reciprocally orthogonal.
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A second remarkable point is the following. The reason of the last comment in
the quoted text is due to the fact that the weights (i.e. the elements of D) given
to any single variables will be affected by the size of the effect B and A × B. A
second result of this work is to provide a transformation of Y that allow to define
a nuisance-free D matrix for any kind of covariates (evene if non orthogonal to the
tested predictors).

2 The LSD test

Let us define a general framework where the n× p matrix Y is

Y = XBX + ZBZ + E, (1)

X and Z being a n×k and n×h matrix respectively and k+h < n. E = (ε′1, . . . , ε
′
n) is

a n×p spherical matrix and has n independent multivariate errors (εi ∼ (0,Σ) ∀i =
1, . . . , n) BX and BZ are k × p and h× p matrix respectively.

The null hypothesis to be tested is

H0 : BX = 0k×q.

In this case we can not easily reach the decomposition Y′Y = HX + HZ + G
as have been done in the motivating example quoted in the section since HX =
Y′X(X′X)−1X′Y will be not independent from HZ = Y′Z(Z′Z)−1Z′Y except for
the special case of orthogonal designs.

Define In×n − PZ = In×n − Z(Z′Z)−1Z′ and premultiply it in left and right
member of equation (1)f:

(In×n −PZ)Y = (In×n −PZ)XBX + (In×n −PZ)E (2)

The equation is now free from the nuisance parameters BZ but has n observations
which are not independent. Kherad-Pajouh and Renaud (2010) cope with a similar
problem but in the case of permutation tests with nuisance parameters. They suggest
to reduce the n× q matrix (In×n−PZ)Y in a n−h× q matrix of independent rows
by using the eigenvalues decomposition of In×n − PZ. Since it is a symmetric and
idempotent matrix, it possesses only two eigenvalues: 0 and 1. Let now In×n−PZ =
UDU ′ be the eigen-decomposition, where D is a diagonal matrix containing the
eigenvalues, and U is a unitary matrix, whose columns are the eigenvectors. Since
In×n −PZ has rank n− h, there are exactly n− h ones and h zeros in the diagonal
of D.

Therefore pre-multipling by (DU)′ both sides of 2, we get the modified model as
follows:

Y0 = X0BX + E0 (3)

where V0 = U ′D′(In×n−PZ)V (V = {Y, X, E}). Hence under the null hypothesis
and through the lemma 4 in Dawid (1977) Y0 = E0 is left-spherical.

Now we can apply again the theorem 1 on (3) defining D = f(G+H) (and not
on L). Recalling the quoted application 4 inLäuter et al. (1998) we see that the
D matrix can be chosen as a function of HA + G which rise up to be a big gain
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when effects of factors B and A×B are big. Let’s define H0 and +G0 as Y0
′Y0 =

Y0
′X0(X0

′X0)−1X0
′Y0 +Y0(In×n−X0(X0

′X0)−1X0
′)Y0 =: Y′(In×n−PZ)Y =

H0 + G0 =, then a valid test has the form

F =
trace(D′H0D)/(k − 1 + q)

trace(D′G0D)/(n− h− k + 1− q)

and D = f(H0 + G0) = f(Y0
′Y0) = f(Y′(In×n −PZ)Y).

Remark 1. The two samples case described in application 2 of Läuter et al.
(1998) fall to be a special case of this generalization.

Remark 2. The permutation-based version of the test is also possible of course.
It is based on permutations of the rows of X0. The solution is exact when Z is a
constant vector (the test is permutationally equivalent to the not mean-centered mul-
tivariate test) or when E is spherical (Kherad-Pajouh and Renaud (2010), theorem
4). When E has (row-wise) exchangeable terms, then Y0 has weakly exchangeable
(rows) elements (Kherad-Pajouh and Renaud (2010), theorem 3) and the test is
exact up to the second moment.

2.1 Software and simulation

The calculations needed to perform the LSD test are quite simple, however we have
produced a R code for the users. This is the function lsd.test() in some MTP

package available on CRAN. To get the test for the one-sample case of application 1
in Läuter et al. (1998) we set X = 1 and no covariates. The R call is as follow:

> library(someMTP)

> set.seed(1)

> X = matrix(rnorm(50), 5, 10) + 1

> lsd.test(resp = X, alternative = rep(1, 5))

F = 201.1744; p = 0.0001434661

The C ≤ 2 sample case can be handled setting Z = 1 and X as a matrix of dummy
variables.

> X2 = X + matrix(c(0, 0, 1, 1, 1), 5, 10) * 1

> lsd.test(resp = X2, null = rep(1, 5),

+ alternative = c(0, 0, 1,1, 1))

F = 43.1053943; p = 0.007186903

The general setting is handle in a similar way

> lsd.test(resp = X2, null = cbind(rep(1, 5), c(0, 0, 1, 1, 1)),

+ alternative = 1:5)

F = 0.3277843; p = 0.6247483
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There are many studies evaluating the power of LSD. The performance strongly
depends on the D matrix. We just run three quick simulations to see the effect
of covariates in the test. We fix n = 15 (sample size) and p = 10 (variables).
The Y matrix are generated from a 10-variate normal distribution with identity
matrix σ and mean determined by the subject ID (ranging between 1 and n = 15).
The predictor X is a two sample contrast comparing the first 5 observations vs the
remaining 10. This make X and Z non orthogonal. In Figure 1 we report the results.
In Sim1 the LSD test does not consider the covariate Z and the type I error is out of
control as expected. The Sim2 performs the LSD taking in account Z and the type
I error overlap the principal bisector. In Sim3 the data are generate as in Sim1 and
Sim2 but 0.5 is added on the last ten observations. The test is under the alternative
hypothesis.

> library(someMTP)

> X <- matrix(c(rep(0, 5), rep(2, 10)), 15, 1)

> Z <- matrix(1:15, 15, 1)

> Sim1 = replicate(10000, {

+ Y = matrix(rnorm(450), 15, 30) + matrix(1:15, 15, 30)

+ lsd.test(resp = Y, null = cbind(rep(1, 15)), alternative = X)

+ })

> Sim2 = replicate(10000, {

+ Y = matrix(rnorm(450), 15, 30) + matrix(1:15, 15, 30)

+ lsd.test(resp = Y, null = cbind(1, Z), alternative = X)

+ })

> Sim3 = replicate(10000, {

+ Y = matrix(rnorm(450), 15, 30) + matrix(1:15, 15, 30) +

+ matrix(c(rep(0, 5), rep(0.5, 10)), 15, 30)

+ lsd.test(resp = Y, null = cbind(1, Z), alternative = X)

+ })
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Figure 1: Data are generated as described in the text. In Sim1 the LSD test does
not consider the covariate Z. The Sim2 performs the LSD taking in account Z. In
Sim3 the data are generate as in Sim1 and Sim2 but 0.5 is added on the last ten
observations.

3 Conclusion

In this brief note we define the LSD test in a slight more general framework and
make it easer to deal with covariates (i.e. predictors to be putted in the model but
note tested). We also show how to define D = f(H0 + G0) = f(Y′(In×n −PZ)Y)
instead of D = f(H + G + L) = f(Y′Y).

The related R code is available with the package someMTP in CRAN.
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