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Abstract: When forecasting aggregated time series, several options are available.

For example, the multivariate series or the individual time series might be predicted

and then aggregated, or one may choose to forecast the aggregated series directly.

While in theory an optimal disaggregated forecast will generally be superior (or at

least not inferior) to forecasts based on aggregated information, this is not neces-

sarily true in practical situations. The main reason is that the true data generating

process is usually unknown and models need to be specified and estimated on the ba-

sis of the available information. This paper describes a bootstrap-based procedure,

in the context of vector autoregressive models, for ranking the different forecasting

approaches for contemporaneous time series aggregates. Uncertainty due to param-

eter estimation will be considered and the ranking will be based not only on the

mean squared forecast error, but more in general on the performance of the forecast

distribution. The forecasting procedures are applied to the United States aggregate

inflation.
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1 Introduction

The problem of forecasting aggregated time series has been studied over the
last decades. A classical introduction to this subject is presented in Lütkepohl
(1987), while Lütkepohl (2010) gives a recent survey. Time series aggregates
are important in many fields of Economics and received new attention after
the introduction of the euro-zone. When a forecast for a euro-area time series
is desired, it is not obvious whether it is preferable to predict the euro-area
series directly, or rather predict the time series for the single countries, and
then aggregate the forecasts obtained.

This problem has often been faced in the economic literature. For exam-
ple, several aggregate and disaggregate predictors of the euro-zone inflation



2 Matteo Grigoletto

are considered by Espasa et al. (2002) and Hubrich (2005). Similarly, Hendry
& Hubrich (2011) forecast the United States aggregate inflation using dis-
aggregate sectoral data. Central banks in the Eurosystem are also recently
giving attention to the aggregation of forecasts of disaggregate inflation com-
ponents (see, e.g., Bruneau et al., 2007, Moser et al., 2007). Besides inflation,
Marcellino et al. (2003) also analyze real GDP, industrial production and un-
employment for the euro area, while Fagan & Henry (1998) and Dedola et al.

(2001) focus on money demand, expliciting contributions generated at a na-
tional level. Carson et al. (2011) analyze the aggregate demand for commercial
air travel in the United States, using airport specific data. Conclusions are far
from univocal: e.g., Espasa et al. (2002) and Marcellino et al. (2003) provide
evidence against the use of aggregate models and prefer forecasts based on
information at country level; on the contrary, Bodo et al. (2000) show that
area wide models are preferable for forecasting industrial production. Many
other examples exist in the literature.

Early theoretical results on aggregation versus disaggregation in forecasting
can be found in Theil (1954) and Grunfeld & Griliches (1960). Other theo-
retical contributions include, among others, Lütkepohl (1984, 1987), Granger
(1987), Giacomini & Granger (2004), Hendry & Hubrich (2011) and Sbrana
(2012). See Lütkepohl (2010) for a recent survey on aggregation and forecast-
ing.

According to the theoretical literature, except under certain conditions
and when the data generating process (DGP) is known, aggregating forecasts
for the multivariate process is at least as efficient, in terms of mean squared
forecast error (MSFE), as directly forecasting the aggregate or aggregating
univariate forecasts. However, in practice the DGP is not known, and a model
needs to be specified and estimated. This can be difficult, and especially
so as the number of disaggregate series increases. In this case, combining
multivariate forecasts may not be preferable, and this is determined by the
properties of the unknown DGP. As a consequence, the choice of the best
forecast is essentially an empirical issue.

This paper suggests the use of a bootstrap approach, in the context of vector
autoregressive models (henceforth: VAR). These models are widely employed
for forecasting and asymptotic and bootstrap procedures have been formu-
lated (see, e.g., Kim, 1999, 2004, Grigoletto, 2005, Lütkepohl, 2005). There
also are extensive results on the advantages of the bootstrap for univariate
autoregressive (AR) models (e.g. Masarotto, 1990, Thombs & Schucany, 1990,
Kabaila, 1993, Breidt et al., 1995, Grigoletto, 1998, Clements & Taylor, 2001).
In small samples, bootstrap methods are shown to have better properties than
the asymptotic ones. Besides, these methods allow to take into account the
uncertainty attributable to model estimation. Since, when using bootstrap,
many replicates of the future values are generated, it is natural to examine the
forecast performance using prediction intervals (Christoffersen, 1998, Kupiec,
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1995), or the whole density forecast (Diebold et al., 1998). This is important,
since many realistic economic loss functions can’t be reduced to the compar-
ison of point forecasts, using the MSFE (Diebold & Mariano, 2002). We will
see that, when the sample size is sufficiently large and the comparison is based
on MSFE, the bootstrap procedure described here will work as predicted by
the available results on forecasting aggregates. However, as the sample size
decreases (and hence model uncertainty becomes more important), or when a
criterion different from MSFE is used, the approach for forecasting aggregates
suggested by the bootstrap methods might be different.

The paper is organized as follows. In Section 2 the competing forecasts for
the aggregate are defined, while Section 3 describes the bootstrap procedure.
The criterions that will be used to compare the predictive performances of
the different approaches are illustrated in Section 4. In Section 5 a simulation
study is carried out, while Section 6 treats an application to the USA aggregate
inflation. Conclusions follow in Section 7.

2 The model and the competing forecasts

Let us consider the VAR(p) model for a k-dimensional vector yt = (y1t, . . . , ykt)
′:

yt = A0 + A1 yt−1 + A2 yt−2 + . . .+ Ap yt−p + εt , (1)

where A0 is a k× 1 vector of constants, Ai for i = 1, . . . , p are k×k parameter
matrices and εt is a k × 1 vector of innovations. Innovations are i.i.d. with
E(εt) = 0 and E(εt ε

′

t) = Σε, where Σε has finite elements and is positive defi-
nite. The model is assumed to be stationary, i.e., all roots of the characteristic
equation det(Ik − A1 z − . . .− Apzp) lie outside the unit circle.

Model (1) can be written in backward form as

yt = H0 +H1 yt+1 +H2 yt+2 + . . .+Hp yt+p + νt , (2)

where H0 is a k × 1 vector of constants, Hi for i = 1, . . . , p are k × k coeffi-
cient matrices, E(νt) = 0 and E(νt ν

′

t) = Σν , where Σν has finite elements and
is positive definite. Bootstrap samples will be generated from the backward
representation (2). This will ensure that the last observations in the pseudo-
datasets are the same as in the original sample, consistently with the property
that VAR forecasts are conditional on past observations (see Thombs & Schu-
cany, 1990, in a univariate AR context and Kim, 1999, 2004, and Grigoletto,
2005 for VAR forecasting).

The iterated h-step-ahead predictors ŷT (h) for yT+h, h = 1, . . . , H, are
obtained from (1) using the ordinary least squares estimators Â0, Â1, . . . , Âp:

ŷT (h) = Â0 + Â1 ŷT (h− 1) + . . .+ Âp ŷT (h− p) ,
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where ŷT (j) = yT+j for j ≤ 0.
For bootstrap forecasts, bias-corrected estimators of A0, A1, . . . , Ap will be

used to compensate for the bias in least squares estimators (the bootstrap-
after-bootstrap procedure proposed by Kilian, 1998b, will be employed):

ŷcT (h) = Âc
0 + Âc

1 ŷ
c
T (h− 1) + . . .+ Âc

p ŷ
c
T (h− p) ,

where Âc
0, Â

c
1, . . . , Â

c
p are the bias-corrected estimators and ŷcT (j) = yT+j for

j ≤ 0.
We will focus on the following linear transformation of yt:

xt = F yt , (3)

where F is an m × k aggregation matrix of full rank m. It should be noted
that, while a linearly transformed VARMA(p, q) process has a finite order
VARMA representation, the same does not hold for finite order VAR pro-
cesses (Lütkepohl, 1987). Therefore, xt will in general be in the VARMA class
and will only be approximated by a VAR model. It is well known that, in
sharp contrast with the ease of identification and estimation of VAR models,
the nonuniqueness of a VARMA representation makes identifying and esti-
mating VARMA models quite difficult (e.g. Lütkepohl, 2005). Besides, the
use of VARMA models, while implying a more parsimonious representation of
the underlying process, is far from guaranteeing a significant improvement in
forecasts: see Athanasopoulos & Vahid (2008). For these reasons, for our fore-
casting purposes we will represent xt with equations analogous to (1) and (2).
See also Lewis & Reinsel (1985) and Lütkepohl (1985), who consider the MSFE
when the true DGP, which may be of the VARMA type, is approximated by
a finite order VAR.

For predicting the aggregated time series xt, three alternative approaches
are considered (Lütkepohl, 2010):

1. Forecasting the aggregate xt directly. The bias-corrected version of these
forecasts will be denoted by x̂ct(h).

2. Forecasting the disaggregated multivariate model and then aggregating
the forecasts:

dx̂
c
t(h) = F ŷct (h) .

3. Forecasting the individual disaggregated variables based on univariate
models and aggregating the forecasts. The bias-corrected h-step-ahead
predictor for the j-th, j = 1, . . . , k, component of yt will be denoted by
ŷcj,t(h). The corresponding forecast of xt will be

ux̂
c
t(h) = F (ŷc1,t(h), . . . , ŷ

c
k,t(h))

′ .
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Notably, the univariate processes yj,t, j = 1, . . . , k, will belong to the ARMA
class. The same is true for xt when m = 1. Of course, identification and
estimation of ARMA models is not as involved as it is for their multivariate
counterpart. Besides, bootstrap procedures have been proposed that allow
resampling from ARMA models: see Pascual et al. (2006). The procedure
proposed by these authors, however, differs from the one described here, also
because it does not use bias correction, which is an important step in bootstrap
prediction (Clements & Taylor, 2001 discuss bias correction in detail). Also,
the results in Kim (2002) show that, even for ARMA processes, building the
bootstrap on the univariate equivalents of (1) and (2) yields good prediction
performances. Therefore, here forecasts will be based on AR models also in
the univariate case.

The theoretical literature shows that, when the DGP is known and the
MSFE is employed as evaluation criterion, dx̂

c
t(h) is preferable to x̂ct(h) and

ux̂
c
t(h), while no unique ranking exists between x̂ct(h) and ux̂

c
t(h). In practice,

especially when the number of disaggregate variables is large, dx̂
c
t(h) might well

produce inferior results with respect to the other approaches. Also, dx̂
c
t(h) can

be expected to yield an improved performance (in terms of MSFE) only if the
disaggregate series are intertemporally related and heterogeneous. When, on
the contrary, the component series are described by similar univariate mod-
els, it should be desirable to use x̂ct(h), i.e. to forecast the aggregate series
directly. The forecast ux̂

c
t(h), obtained with individual forecasts of the uni-

variate components of yt, is likely to become preferable when the component
series have weak relations and their marginal DGPs are sufficiently different.
See Lütkepohl (2010) for more details.

While these suggestions define useful guidelines, some questions remain
unanswered. In practice, it is hard to define clear borderlines between differ-
ent situations. For example, when are the heterogeneity and intertemporal
relations among component series sufficient to guarantee superiority of the
disaggregate forecast dx̂

c
t(h)? This and similar questions are largely empirical.

Also, there are situations for which no guidance is provided by the theory: it is
unclear what would be a desirable approach when there are many component
series with a strong intertemporal relation. Finally, no guidance is provided
when the loss function underlying the MSFE is inappropriate, as when interval
forecasts are desired. The bootstrap procedure described here aims at giving
a practical answer to these questions.

3 The bootstrap procedure

The bootstrap procedure adopted here will use the residual (nonparametric)
method. Since bootstrap generation is based on the backward representa-
tion (2), forecasts computed are conditional on the last p observations in the
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original observed sample. Bootstrap-after-bootstrap is used for bias-correction.
The bootstrap procedure is composed of the following steps:

1. The T observations are used to determine the model order, obtaining
p̂. Many selection criteria are available (see e.g. Konishi & Kitagawa,
2008). The AIC information criterion has proven to have a good per-
formance in VAR order selection, when compared to other consistent
criteria (Kilian, 1998a, 2001). Here, the AICc criterion proposed by Hur-
vich & Tsai (1993) will be adopted, since it performs similarly to AIC in
large samples, while having superior bias properties in small samples.

2. The parameters of the forward and backward VAR models (1) and (2) are
estimated by least squares. The least squares estimators and the resid-
uals for the forward and backward models are indicated by Â0, . . . , Âp̂,

{ε̂t} and by Ĥ0, . . . , Ĥp̂, {ν̂t}, respectively. The residuals are rescaled as
suggested in Thombs & Schucany (1990).

3. B0 pseudo-datasets are generated from

y∗t = Ĥ0 + Ĥ1 y
∗

t+1 + Ĥ2 y
∗

t+2 + . . .+ Ĥp̂ y
∗

t+p̂ + ν∗t ,

where ν∗t is a random draw, with replacement, from {ν̂t}, and the p̂ initial
values y∗n−p̂+1, . . . , y

∗

n are set equal to yn−p̂+1, . . . , yn.

For each pseudo-dataset, the parameters of model (2) are estimated,

obtaining Ĥ∗

0 , . . . , Ĥ
∗

p̂ . Denoting by Ĥj

∗

the sample mean of the B0

replications of Ĥ∗

j , we have bias(Ĥj) = Ĥj

∗

− Ĥj, for j = 0, . . . , p̂.

This bias is used to compute the bias corrected estimates {Ĥc
j}, with

the procedure introduced by Kilian (1998b). A stationarity adjustment
(step 1b of the procedure) is also performed to ensure that the bias
correction does not push stationary estimates into the non-stationary
region of the parameter space. The residuals {ν̂ct } are computed from
the bias-corrected estimates {Ĥc

j}. Analogous steps lead, for the forward

model (1), to the computation of bias(Âj) = Âj

∗

− Âj, of the bias-

corrected estimates {Âc
j} and of the corresponding residuals {ε̂ct}.

4. B pseudo-datasets are generated from

y∗ct = Ĥc
0 + Ĥc

1 y
∗c
t+1 + Ĥc

2 y
∗c
t+2 + . . .+ Ĥc

p̂ y
∗c
t+p̂ + ν∗ct ,

where ν∗ct is a random draw, with replacement, from {ν̂ct }, and the p̂
initial values y∗cn−p̂+1, . . . , y

∗c
n are set equal to yn−p̂+1, . . . , yn. For each

pseudo-dataset, the forward model parameters are estimated by least
squares, obtaining the estimates Ã∗

j ; these estimates are then corrected

using bias(Âj) computed in step 3, thus obtaining Ã∗c
j , j = 0, . . . , p̂.
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5. The bootstrap forecast replicates made at time T for the forecast horizon
h are defined as

ŷ∗cT (h) = Ã∗c
0 + Ã∗c

1 ŷ
∗c
T (h− 1) + Ã∗c

2 ŷ
∗c
T (h− 2) + . . .+ Ã∗c

p̂ y
∗c
T (h− p̂) + ε∗cT+h ,

where ε∗cT+h is a random draw, with replacement, from {ε̂ct} and y∗cT (j) =
yT+j for j ≤ 0.

6. The bootstrap replicates for the forecasts dx̂
c
t(h), i.e. the forecasts of the

aggregated time series based on the disaggregated model, can now be
computed as

dx̂
∗c
T (h) = F ŷ∗cT (h) .

7. Perform steps 1–5 for the aggregated time series xt. When m = 1, the
underlying processes are univariate. The aggregate forecast replicates
will be indicated by x̂∗cT (h).

8. Perform steps 1–5 for each univariate series series yj,t, j = 1, . . . , k. In
this case, the aggregate forecast replicates are defined as

ux̂
∗c
T (h) = F (ŷ∗c1,T (h), . . . , ŷ

∗c
k,T (h))

′

4 Comparing the predictive performances

In this section we examine the predictive performance of the three competing
forecasts of the aggregated time series. When a prediction for the conditional
mean is desired, straightforward evaluation criteria can be computed by simply
comparing the realized and forecasted values on the basis of a suitable loss
function. If the loss function is quadratic, the evaluation criterion becomes
the MSFE, which has traditionally been used in the literature on aggregated
time series.

The bootstrap procedure described above yields many forecast replicates.
In this framework, computing prediction intervals or density forecasts are sim-
ple tasks. It is therefore natural, and useful, to compare different prediction
methods assessing their performance in accomplishing these tasks.

Since the 1990’s a variety of tests have been proposed to measure accuracy
of prediction intervals. Christoffersen (1998) introduced a model-free approach
based on the concept of violation, which occurs when the ex-post realization
of a variable does not lie in the ex-ante forecast interval. The validity of
prediction intervals can then be reduced to the problem of assessing whether
the following hypotheses are satisfied:

i) unconditional coverage hypothesis : the probability of an observation to
fall in the corresponding prediction interval must be equal to the coverage
rate;
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ii) independence hypothesis : violations of prediction intervals, observed at
different dates, for the same coverage rate, must be independent (i.e. vio-
lations should not “cluster”).

A test of unconditional coverage was initially proposed by Kupiec (1995),
while Christoffersen (1998) proposes a procedure to jointly test the two hy-
potheses, thus assessing correct conditional coverage. Here, the Monte Carlo
versions of these tests will be used, as suggested by Christoffersen & Pelletier
(2004), who employ the technique described by Dufour (2006) to overcome the
possible scarcity of violations. When the number of available out-of-sample
forecasts is not large, this is especially important. These test procedures need
to be modified when h ≥ 2, since in this case optimal forecasts at horizon h are
characterized by autocorrelation of order h − 1. Diebold et al. (1998) recom-
mend using an approach based on Bonferroni bounds: the indicator variables
used in the test statistics are divided in h sub-groups, which are independent
under the null hypothesis. The null hypothesis is then rejected, at an overall
significance level bounded by α, when it is rejected for any of the subgroups
at the α/h significance level. The use of Monte Carlo p-values, as described
above, is particularly recommended as h increases and the number of indicator
variables in each subgroup becomes small.

Diebold et al. (1998) remark that the method proposed by Christoffersen
(1998) allows to evaluate whether a series of prediction intervals are correctly
conditionally calibrated only at a specified confidence level. This leads to the
problem of density forecasts evaluation, which corresponds to the simultaneous
conditional calibration of all possible interval forecasts. Diebold et al. (1998)
proposed to evaluate density forecast estimates using the probability integral
transform (PIT) which, when h = 1, is defined as:

zT =
∫ xT+1

−∞

f̂T+1(u|ΩT ) du ,

where ΩT is the information available at the forecast origin T and f̂T+1(·|ΩT ) is
a one-step forecast density, which in our case will be one of the three bootstrap
based forecasts described in Section 3. Let fT+1(·|ΩT ) denote the true forecast
density. If the forecasting model is correct, Diebold et al. (1998) show that
the PIT series {zt} is i.i.d. U(0, 1). Evaluating the goodness of estimated
forecast densities can therefore be based on the assessment of the uniformity
and independence properties of {zT}. While Diebold et al. (1998) employed
mainly graphical tools, more recently (e.g. Clements et al., 2003, Siliverstovs &
Dijk, 2003) formal tests have been applied, such as the Kolmogorov-Smirnov
test (KS). Here, this test is implemented using the technique developed in
Wang et al. (2003).

Since the KS test assumes independence, as suggested by Diebold et al.

(1998) we will test for the presence of serial correlation in the PIT, assuming
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DGP Coefficients
DGP1 α11 = α22 = −0.5; α12 = α21 = 0
DGP2 α11 = 0.5; α22 = −0.3 α12 = −0.66; α21 = −0.5
DGP3 ψ11 = ψ22 = 0.5; α12 = α21 = 0
DGP4 ψ11 = 0.3; ψ22 = −0.5 ψ12 = −0.66; ψ21 = −0.5

Table 1: Definition of the DGPs used in the simulation experiment, where
A1 = {αij} and B1 = {ψij}.

that the process {zT} has this representation:

zT − z̄ = γ1 (zT−1 − z̄) + . . .+ γq (zT−q − z̄) + εT

Then, an LM test is carried out, with the null hypothesis that γi = 0, i =
1, . . . , q. When h > 1, we proceed as described above, partitioning the PITs
in h subgroups.

5 Simulation study

The simulation framework is designed to compare the performances of x̂ct(h),

dx̂
c
t(h) and ux̂

c
t(h) in small samples and when the coefficients and the order of

the DGPs are unknown. The experiments suggested by Lütkepohl (1984) will
be considered and extended by also assessing prediction intervals and forecast
densities, with the techniques discussed in the previous sections. Differently
from the above contribution, here models are estimated recursively, i.e. the
available sample until time T is first used to estimate the model and generate
forecasts, then the sample up to time T + 1 is used, and so on. This is meant
to represent a real life situation in which an out-of-sample period can be used
to choose between competing forecasting procedures.

We are going to consider two-dimensional DGPs. If we indicate by αij

the generic element of A1 in equation (1), the VAR(1) DGPs are defined in
Table 1. The elements of the intercept vector A0 are all set equal to 1. While
only autoregressive processes are used to fit and forecast, we are going to take
into account possible model misspecification by also employing VMA(1) DGPs,
having the following general structure: yt = B0 + εt +B1 εt−1. Table 1 defines
the VMA(1) DGPs adopted, with {ψij} denoting the generic element of B1.
Also in this case, all the elements of the intercept vector B0 are set equal to 1.
Innovations are Gaussian i.i.d. with E(εt) = 0 and Σε = I.

General results (Lütkepohl, 1987) concerning the MSFE and derived under
the assumption that the involved processes are known, allow to describe, for
each DGP, the theoretical performances of the forecasting procedures. Since, in
this context, there is no uncertainty originated e.g. from parameters and order
estimation, the three forecasts will be denoted by dxt(h), uxt(h) and xt(h).
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For DGPi, i = 1, 3, the components are independent and have homogeneous
correlation structures; as a consequence, the three forecasts yield the same
MSFE. On the contrary, for DGPi, i = 2, 4, the MSFE for dxt(h) will be lower
than that for the other two predictors. It should be noted that, while MSFEs
can be rather dissimilar if the prediction horizon h is small, differences vanish
as h increases (see Lütkepohl, 1987, Section 4.2.2).

The aggregation matrix in Equation (3) is F = (1, . . . , 1), so that xt is a
simple sum of the components in yt. Results are obtained for samples with an
initial size T = 100. Samples are recursively expanded to include an out-of-
sample period having length S = 100.

Prediction intervals and density forecasts are computed with B = 2000
bootstrap replicates; bias correction is based on B0 = 1000 replicates.

As discussed above, models are estimated by least squares, while the AICc

criterion by Hurvich & Tsai (1993) is adopted for order selection, with maxi-
mum number of lags p = 10.

We will consider prediction horizons h = 1, 2, 3. The out-of sample period
is used to compute the root MSFE (RMSFE), with respect to point forecasts
given by the mean of the bootstrap forecasting distributions. The tests de-
scribed in Section 4 will also be performed. RMSFEs and test p-values are
then averaged over 200 Monte Carlo repetitions.

It should be mentioned that while the necessary computations are rather
CPU-intensive, they are easy to parallelize. In fact, the results presented here
have been obtained on a computer cluster.

Table 2 shows the RMSFEs for the different processes, when estimation
uncertainty comes into play. When the component univariate processes are
independent (DGP1 and DGP3), the three methods yield similar RMSFEs.
On the contrary, when the component processes are dependent (DGP2 and
DGP4), at the prediction horizon h = 1, dx̂

c
t(h) produces smaller RMSFEs,

while x̂ct(h) and ux̂
c
t(h) perform similarly. As h increases, differences become

less marked. These results are of course consistent with those found in previous
literature, as e.g. Lütkepohl (1984) and Hendry & Hubrich (2011).

Let us now turn to the more general evaluation of the performance of the
predictive distribution. Table 3 displays the p-values for the Kolmogorov-
Smirnov (KS), LM (no serial correlation of order 1) and Christoffersen (CC,
conditional coverage, 95%) tests on the predictive distributions.

The KS tests show similar performances for the three methods when the
component processes are independent (DGP1 and DGP3), while ux̂

c
t(h) is

preferable (or at least comparable) when the component processes are inter-
related (DGP2 and DGP4). It should be noted that in this case the LM test
detects (at h = 1) the inability of ux̂

c
t(h) to fully represent the linear depen-

dence structure.

While the KS test concerns the whole forecasting distributions, when pre-
diction intervals are of interest results for the CC test are particularly relevant.
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DGP1 DGP2

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

dx̂
c
t(h) 1.426 1.586 1.617 1.422 1.717 1.805

ux̂
c
t(h) 1.420 1.580 1.613 1.708 1.738 1.869

x̂ct(h) 1.418 1.579 1.611 1.687 1.750 1.886

DGP3 DGP4

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

dx̂
c
t(h) 1.454 1.618 1.602 1.511 1.913 1.899

ux̂
c
t(h) 1.445 1.607 1.593 1.710 1.860 1.855

x̂ct(h) 1.442 1.606 1.593 1.693 1.879 1.867

Table 2: RMSFE in S = 100 out-of-sample steps (average over 200 Monte
Carlo runs). The sample size is T = 200.

In this regard, x̂ct(h) performs in most cases similarly or better than the other
two methods. The preferability of x̂ct(h) is particularly marked for DGP4,
as for this process the CC test p-values are rather larger for x̂ct(h), even for
h = 2, 3, while for the other DGPs differences among the forecasting models
are generally less noticeable when h = 2, 3.

In summary, when computing confidence intervals, x̂ct(h) appears to be the
most desirable choice, at least at this sample size and for the DGPs considered.
It should be noted that this result partially contradicts the suggestions based
on the RMSFE criterion.

6 Application

The techniques illustrated in the previous sections are now applied for predict-
ing aggregate inflation for the all items U.S. consumer price index (CPI). As
discussed in the introduction, conclusions on the preferability of aggregate or
disaggregate models for forecasting are far from univocal and depend, e.g., on
the period and the forecast horizon considered. For example, Hubrich (2005),
analyzing euro area inflation, finds that neither approach works necessarily
better, while results in Bermingham & D’Agostino (2011) are more in favor
of aggregating disaggregate forecasts. See Faust & Wright (2012) for a recent
discussion on inflation forecasting.

As in Hendry & Hubrich (2011), the data set used in the present anal-
ysis includes the all items U.S. consumer price index (CPI) as well as four
subcomponents, i.e. prices of: 1) food, 2) commodities less food and energy
commodities, 3) energy and 4) services less energy services. The data set can
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DGP1 DGP2

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

KS 0.541 0.381 0.276 0.533 0.398 0.244

dx̂
c
t(h) LM 0.526 0.321 0.264 0.511 0.307 0.262

CC 0.454 0.298 0.249 0.435 0.311 0.241

KS 0.522 0.363 0.272 0.670 0.417 0.324

ux̂
c
t(h) LM 0.501 0.313 0.255 0.004 0.233 0.150

CC 0.480 0.317 0.262 0.383 0.286 0.236

KS 0.540 0.366 0.287 0.419 0.342 0.219
x̂ct(h) LM 0.522 0.319 0.260 0.462 0.302 0.234

CC 0.473 0.321 0.249 0.425 0.290 0.229

DGP3 DGP4

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

KS 0.493 0.350 0.255 0.589 0.362 0.251

dx̂
c
t(h) LM 0.498 0.314 0.248 0.499 0.331 0.224

CC 0.391 0.274 0.242 0.380 0.244 0.198

KS 0.492 0.356 0.253 0.694 0.372 0.249

ux̂
c
t(h) LM 0.476 0.292 0.256 0.009 0.322 0.235

CC 0.410 0.283 0.245 0.373 0.264 0.207

KS 0.493 0.348 0.254 0.571 0.389 0.270
x̂ct(h) LM 0.485 0.299 0.242 0.514 0.315 0.230

CC 0.425 0.292 0.246 0.445 0.306 0.248

Table 3: p-values for the Kolmogorov-Smirnov, LM (no serial correlation of
order 1) and Christoffersen (conditional coverage, 95%) tests on the predic-
tive distributions. Results are obtained for 100 out-of-sample steps and are
averaged over 200 Monte Carlo runs. The sample size is T = 200.

be retrieved from the U.S. Bureau of Labor Statistics (BLS)1. The time series
employed are monthly and seasonally adjusted (X-12 ARIMA), except for CPI
services less energy services, which did not have a seasonal behavior.

We present results for models estimated using monthly changes in year-on-
year inflation. In fact, we found that modeling month-on-month (rather than
year-on-year) inflation and/or inflation levels (rather than inflation changes),
could lead to a slight reduction in the MSFE, but generally yielded worse
forecasting performances when the whole predictive distribution is evaluated.

We will compute out-of-sample forecasts for different periods, using the
year 1984 for splitting the sample. In fact, in the literature often attention is

1http://www.bls.gov/cpi/data.htm
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1970(1)–1983(12) 1984(1)–2004(12) 1984(1)–2012(8)
h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

dx̂
c
t(h) 0.449 0.725 1.072 0.280 0.484 0.615 0.398 0.699 0.903

ux̂
c
t(h) 0.424 0.709 1.028 0.256 0.442 0.573 0.384 0.680 0.896

x̂ct(h) 0.387 0.634 0.919 0.259 0.442 0.563 0.363 0.654 0.860

Table 4: RMSFE, year-on-year inflation (percentage points).

paid to forecasting inflation in the post-1984 period, which corresponds to the
great moderation. This is in line e.g. with the analyses by Stock & Watson
(2007), Hendry & Hubrich (2011) and Groen et al. (2012).

More precisely, the out-of-sample evaluation is based on periods 1970(1)–
1983(12), 1984(1)–2004(12) and 1984(1)–2012(8). The period 1984(1)–2004(12)
is interesting since it is only affected by relatively small variations of the infla-
tion volatility (making prediction intervals easier to compute), while volatility
starts to increase thereafter.

For estimation, a 10 year rolling sample is employed. We found this to be
preferable to a recursively expanding sample, since the volatility of aggregate
as well as components of inflation generally show changing volatility in time.
Therefore using models estimated, for example, during a long period of stable
inflation, will lead to poor density forecasts for periods of higher volatility (in
particular, observed coverage rates will be smaller than expected). As we did
for simulations, models are estimated by least squares, and the AICc criterion
(with maximum number of lags p = 10) is employed for order selection.

Disaggregate forecasts are combined replicating the procedure adopted by
the BLS. Since aggregation weights change over time, the current weights
available at prediction time are employed, as future weights are unknown to
the forecaster.

Tables 4 and 5 describe the root MSFE (RMSFE) for the year-on-year
inflation (percentage points) and the p-values for the Kolmogorov-Smirnov
(KS), LM (no serial correlation of order 1) and Christoffersen (CC, conditional
coverage, 95%) tests on the predictive distributions.

The period 1970(1)–1983(12) was characterized by inflation with evolving
volatility. Out-of-sample predictions during this period are therefore partic-
ularly difficult using AR models. According to the RMSFE criterion, x̂ct(h)
performs best during this period. On the other hand, ux̂

c
t(h) appears to be

preferable if correct coverage for the prediction intervals is desired, since it
passes the CC test, while the other two approaches perform worse in this re-
spect. This happens despite the fact that ux̂

c
t(h) does not appear to be able

to fully capture the linear dependence structure in the data (see the p-values
for the LM test).

In the period 1984(1)–2004(12) relatively small changes in inflation volatil-
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1970(1)–1983(12) 1984(1)–2004(12) 1984(1)–2012(8)
h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

KS 0.058 0.126 0.179 0.292 0.152 0.335 0.196 0.447 0.556

dx̂
c
t(h) LM 0.163 0.027 0.133 0.420 0.063 2e-5 0.784 0.081 6e-5

CC 5e-4 5e-4 0.007 0.095 0.585 0.227 5e-4 0.001 0.135

KS 0.048 0.241 0.146 0.099 0.300 0.268 0.057 0.745 0.586

ux̂
c
t(h) LM 0.009 0.003 0.054 0.259 0.341 1.5e-4 0.680 0.643 0.002

CC 0.031 0.015 0.033 0.504 0.588 0.123 0.034 0.002 0.063

KS 0.065 0.057 0.073 0.974 0.582 0.128 0.857 0.830 0.498
x̂ct(h) LM 0.018 0.087 0.302 0.700 0.004 0.001 0.959 0.049 0.010

CC 0.009 0.002 0.016 0.492 0.440 0.245 0.190 0.089 0.230

Table 5: p-values for the Kolmogorov-Smirnov, LM (no serial correlation of
order 1) and Christoffersen (conditional coverage, 95%) tests on the predictive
distributions.

ity have occurred, and the forecasting methods perform generally better. In
agreement with the results in Hendry & Hubrich (2011), the RMSFEs are
smaller than those for the 1970(1)–1983(12), with ux̂

c
t(h) and x̂ct(h) having

similar performances and being preferable to dx̂
c
t(h). The three procedures all

yield reliable prediction intervals (see the p-values of the CC test), with ux̂
c
t(h)

and x̂ct(h) generating p-values much larger than that for dx̂
c
t(h) when h = 1.

The rejection of the null hypothesis for the LM test when h = 3 suggests the
presence, at this forecast horizon, of linear dependence that is not accounted
for by the models.

The inflation volatility for 1984(1)–2012(8) is initially stable, and then in-
creases towards the end of the period. The performances of the three prediction
methods are somewhere in the middle between those for the other two periods.
Again, x̂ct(h) generates smaller RMSFEs. Here, x̂ct(h) is often preferable also
when using the KS, LM and CC tests as ranking criterions.

7 Conclusions

Since the choice between combining disaggregate forecasts and forecasting the
aggregate depends on the properties of the the process underlying observations,
which in practice is unknown, the selection of the best forecast of the aggregate
of interest is essentially an empirical problem.

The techniques described here show how estimation uncertainty can be
considered when choosing an appropriate procedure to forecast the aggregate,
and how the ranking between different approaches can be based on the evalu-
ation of the performance of the whole predictive distribution, rather than on
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a single point forecast.

Of course, the level of estimation uncertainty can greatly affect conclusions.
Also, rankings based on the performance of point forecasts do not always agree
with those derived from the more general evaluation of the forecasting distri-
bution. This is confirmed by simulations and a real data example concerning
the U.S. CPI inflation. The techniques analyzed appear then to be a useful
instrument for forecasters desiring to discriminate among different prediction
methods in an applied context.

The empirical results suggest that autoregressive models, while being ad-
equate (in all cases at least one of the models gave reasonable test results),
might benefit from the flexibility given e.g. from allowing for breaks in the
error variance and/or regression parameters. This appears to be a promising
direction for further research.
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