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Abstract: The reconciliation of systems of time series subject to both temporal and con-

temporaneous constraints can be solved in such a way that the temporal profiles of the

original series be preserved “at the best” (movement preservation principle). Thanks to

the sparsity of the linear system to be solved, a feasible procedure can be developed to

solve simultaneously the problem. A two-step strategy might be more suitable in the case

of large systems: firstly, each series is aligned to the corresponding temporal constraints

according to a movement preservation principle; secondly, all series are reconciled within

each low-frequency period according to the given constraints. This work compares the re-

sults of simultaneous and two-step approaches for medium/large datasets from real-life and

discusses conditions under which the two-step procedure can be a valid alternative to the

simultaneous one.

Keywords: Reconciliation, Movement preservation.

1 Introduction

Economic statistics are often linked by a system of accounting relationships. Some
linear restrictions originate from the economic theory (i.e. GDP as balance of the
uses and resources account), while others are related to the level of disaggregation
at which such statistics are compiled (i.e. value added for the total economy is the
sum of value added of the 17 sections of the NACE classification).

However, the given constraints are rarely met by the observed variables: this
happens, for example, because economic data are frequently collected by different
methods, using different sample surveys or different pieces of measuring equipment.
Then, data sets of real-world variables generally show discrepancies with respect to
prior restrictions on their values. Such discrepancies are rarely accepted because
they usually cause “confusion among users and criticism or embarrassment to the
publishers” (Quenneville and Rancourt, 2005). The adjustment of a set of data
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in order to satisfy a number of accounting restrictions - and thus to remove any
discrepancy - is generally known as balancing or reconciliation (Dagum and Cholette,
2006).

Data reconciliation problems are frequently faced by National Statistical Insti-
tutes (NSI) in the production of official statistics. NSI are often obliged to publish
consistent sets of time series to fulfill legal regulations or common practices on statis-
tics set by international institutions (UN, IMF, Eurostat, etc.). A typical example
is the compilation process of National Accounts (NA). The updating and balancing
of input-output or social and economic accounts matrices (Aceituno Puga, 2008),
or the benchmarking of Quarterly National Accounts (QNA) series to annual ag-
gregates (Bikker and Buijtenhek, 2006; Daalmans and Mushkudiani, 2009; other
references in Di Fonzo and Marini, 2005a) are nowadays common practices followed
by statistical agencies. In addition, reconciliation procedures may be used to restore
additivity in systems of directly seasonally adjusted (SA) component series (e.g.,
either one or two-way classified), which are wished to be in line with both the SA
marginal aggregates and the grand-total series (Cholette, 1988; Taillon, 1988; Di
Fonzo and Marini, 2005b; Quenneville and Rancourt, 2005; Dagum and Cholette,
2006; Quenneville and Fortier, 2006).

It can be said, in summary, that many published economic statistics, set in
the form of tables spanning on one or several time periods, have passed through a
reconciliation process.

The accounting restrictions can be of two types: the contemporaneous con-
straints, assuming the form of linear combinations of the variables which should be
fulfilled in every observed period, and the temporal aggregation constraints, which
require that the high-frequency adjusted series be in line with known (e.g., more re-
liable) low-frequency aggregates (say, the annual series of the variables of interest).
The former set is problem dependent, inasmuch as the set of linear restrictions is
directly identified from the system of accounts to be reconciled. Instead, the restric-
tions in the time dimension are generally limited to few cases, being related to the
nature of the data: preliminary high-frequency variables are usually adjusted such
that linear combinations1 of their values equal known low-frequency series.

The statistical procedures to restore consistencies between variables and within
variables are very similar, but the two problems are often treated separately in litera-
ture. The former type of reconciliation is generally known as the balancing problem,
while the process of adjustment in the time dimension is called benchmarking (or
temporal disaggregation) of time series (for references, see Di Fonzo, 2003).

It is common opinion that the main difficulty of solving a reconciliation problem
with both types of constraints “once for all”, i.e. by simultaneously considering all
the time periods covered by the series and the whole set of aggregation constraints,
is related to the features (dimensions and rank) of the matrices involved in the
calculation (Chen and Dagum, 1997; Di Fonzo and Marini, 2005b). In fact, as
we shall see later, when the number of variables, the length of series and/or the
number of constraints increase, the required memory space becomes huge and the
computational burden may be significant. Recently, however, an interesting two-

1Appropriately defined either for flow or stock variables.



Section 1 Introduction 3

step reconciliation strategy has been proposed (Quenneville and Rancourt, 2005; see
Dagum and Cholette, 2006, for a generalization), which “splits” the reconciliation
in two steps: in the former the preliminary series are benchmarked to their known
temporal aggregates in such a way as their temporal profiles remain untouched as
much as possible, in the latter the fulfilment of the contemporaneous constraints is
performed for each low-frequency time period (e.g., year-by-year) according to a well-
established statistical procedure2 of estimation of the cells of a two-way classified
table given the marginal totals (Deming and Stephan, 1940; Friedlander, 1961).

Besides the advantage of making simpler the reconciliation problem, by reducing
it in smaller ‘pieces’, it has been stressed (see, for example, Quenneville and Ran-
court, 2005, and Dagum and Cholette, 2006) that following a two-step approach in
order to reconcile a system of time series3 there is no need to ‘preserve the movement’
(e.g., month-to-month growth rates) in the second step, because this is done in the
first step. We think that this is an important point, which merits to be discussed
and verified in practice.

In this paper we present both simultaneous and two-step reconciliation proce-
dures. A simultaneous procedure is developed according to a quadratic constrained
minimization approach (Di Fonzo and Marini, 2005a), discussing both the features
of the linear system from which the solution can be recovered, and feasible ways
for solving it. Then we present the two-step procedure worked out by Quenneville
and Rancourt (2005), and discuss two sensible alternatives for the second step of
the procedure. In any case, we look at all procedures from both a technical (math-
ematical) and practical (feasibility) point of view. In fact, working with time series
of accounting relationships, at least three issues must be considered when a table
of preliminarly estimated time series must be reconciled in order to be in line with
pre-specified accounting constraints: (i) the dimension of the problem, which is ba-
sically proportional to the number of variables involved in the reconciliation process
and to the length of the time span considered, (ii) the number and the nature of
the constraints imposed to the series, and (iii) the preservation at the best of the
original dynamic profile (in time) of the preliminary series.

A further, not minor issue should be the capability of the procedure of taking
into account reliability measures for the variables, so that ‘good’ preliminary esti-
mates are touched less than ‘bad’ ones. This can be done - in the same quadratic
constrained minimization framework - by means of a straightforward extension of
the least squares adjustment procedure by Stone et al. (1942), the main problem
rather being how to recover sensible reliability indicators. Even if this is not the
main focus of the paper, we do believe that this is a major point to be considered
when one wishes to adjust a system of time series.

The paper is organized as follows. In section 2 we describe the linear constraints
usually faced in a reconciliation problem, and some ways of writing them in matrix
form, which is very useful in order to provide a general formulation of the recon-
ciliation problem when temporal and contemporaneous aggregation constraints are

2Often referred to as raking (Fagan and Greenberg, 1988; Evans, 2004).
3As far as we know, statistical reconciliation according to a two-step approach has been used

to restore additivity in tables of SA time series and of time series recalculated according to a new
classification scheme.
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jointly considered. In section 3 we discuss the movement preservation principle on
which the reconciliation procedures we consider are grounded, and a multivariate
extension of the modified Denton Proportional First Differences (PFD) benchmark-
ing procedure is presented. Then, three two-step reconciliation procedures sharing
the same first step are presented in section 4, while section 5 presents summary
indices to assess the quality of the reconciled estimates (also) in terms of capability
of preservation of the movement of the preliminary series. In section 6 the proposed
reconciliation procedures are applied to two real life datasets. First a medium-sized
problem is considered, namely the reconciliation of the European Union Quarterly
Sector Accounts (EU-QSA), where a system of 183 quarterly series has to be rec-
onciled with respect to the annual sector accounts and 30 accounting relationships
along a 7 years time span. Then we consider a large-sized reconciliation problem,
coming from the Canadian Monthly Retail Trade Survey (MRTS), where the com-
ponent SA monthly time series, classified by 13 regions (provinces and territories)
and 19 trading groups, are reconciled according to the marginal totals of both clas-
sifications along a 13 years time span. Finally, section 7 offers some conclusive
remarks.

2 Aggregation constraints in a system of time series

In several practical situations a system of sub-annual time series (say, monthly or
quarterly) may be required to be coherent with known aggregated information (e.g.,
annual and/or marginal totals). In practice, we wish to estimate M unknown (n×1)
vectors of high-frequency (say, monthly or quarterly) data, Yj , j = 1, . . . ,M , each
pertaining to M basic (i.e., component, disaggregate) variables Yj, which have to sat-
isfy both known contemporaneous and temporal aggregation constraints. The avail-
able information to be exploited is given by M high-frequency preliminary series, M

temporally aggregated (say, annual) series and possibly a number of high-frequency
contemporaneously aggregated series.

In this section we consider a matrix formulation of the constraints, which may
reveal itself useful to deal with reconciliation procedures of systems of time series.

2.1 Contemporaneous aggregation constraints

As regards the contemporaneous constraints of the system, let G be a (k×M) matrix
of known constants (usually 0, 1 and -1) defining the (contemporaneous) accounting
relationships between Yj, k being the number of linear relationships to be fulfilled.
Let Zh, h = 1, . . . , k, be the (n × 1) vectors of high-frequency known quantities
associated to the k accounting constraints in G. Denoting by Y = [Y′

1Y
′

2 . . .Y′

M ]′

the (Mn × 1) vector of all the unknown component series, the contemporaneous
aggregation constraints can be written in compact form as4

(G⊗ In)Y = Z (1)

4When G is a (1×M) row vector of constant values we have a single contemporaneous constraint.
In addition, G = 1

′
M when a simple summation constraint links the variables, 1M being a (M × 1)

vector of one.
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where ⊗ is the Kronecker product and Z = [Z′

1Z
′

2 . . . Z′

k]
′ has dimension (kn × 1).

We try to clarify how matrix G may be designed by some examples.

A (very) simple system of National Accounts variables. Consider the stylized ac-
counting relationship defining the GDP from the expenditure side, y = c+i+g+x−
m, where y, c, i, g, x and m denote GDP, private consumption, investment, govern-
ment expenditures, exports, and imports, respectively. Consider also a (even more
stylized) definition of GDP from the production side (excluding VAT): y = v − n,
where v and n denote total production and intermediate consumption, respectively.
If we define the (8 × 1) vector Y = (y c i g x m v n)′, we have k = 2,

G =

[

1 −1 −1 −1 −1 1 0 0
1 0 0 0 0 0 −1 1

]

, and Z = [0 0]′.

One-way classified systems of time series (Dagum and Cholette, 2006, chapter 12).
Consider M component variables, Yj, j = 1, . . . ,M , linked by a summation rela-

tionship to a grand-total series. We can write
M
∑

j=1

Yj = Z if the grand-total series is

given (i.e., it is exogenous). In this case k = 1 and G = 1′

M . If also the grand-total

has to be reconciled (i.e., it is endogenous), we have

M
∑

j=1

Yj −YM+1 = 0, where YM+1

denotes the grand-total, Z ≡ 0 and G = [1′

M − 1].

Marginal totals of two-way classified systems of time series (Dagum and Cholette,
2006, chapter 13). Let Yi., i = 1, . . . , R, and Y.j, j = 1, . . . , C, respectively, R and C

marginal totals series deriving from a two-way classified system of variables (table
1). The cases of interest are basically two: either the reconciled grand-total series
is implicitly (indirectly) derived by summation of the reconciled marginal totals, or
the grand-total series has to be reconciled along with the M = R + C marginal
totals. In the former case the contemporaneous constraint can be expressed as
R

∑

i=1

Yi. −
C

∑

j=1

Y.j = 0, so k = 1 and G = [1′

R − 1′

C ]. In the latter case we have

R
∑

i=1

Yi. − Y.. = 0 and
C

∑

j=1

Y.j − Y.. = 0. Thus, k = 2, G =

[

1′

R 0 −1
0 1′

C −1

]

and

Z = [0 0]′.

Two-way classified systems of time series (Dagum and Cholette, 2006, chapter 14).
Let Yij, i = 1, . . . , R, j = 1, . . . , C be the R · C component series of the system.
There are R constraints linking the component series to the ‘row’ marginal totals
Yi.,

C
∑

j=1

Yij = Yi., i = 1, . . . , R, (2)

and C constraints linking the component series to the ‘column’ marginal totals Y.j,

R
∑

i=1

Yij = Y.j, j = 1, . . . , C. (3)
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Table 1: A two-way classified system of variables.

1 · · · j · · · C

1 Y11 · · · Y1j · · · Y1C Y1.

...
...

. . .
...

. . . · · · · · ·
i Yi1 · · · Yij · · · YiC Yi.

...
...

. . .
...

. . . · · · · · ·
R YR1 · · · YRj · · · YRC YR.

Y.1 · · · Y.j · · · Y.C Y..

Depending on the ‘hierarchy’ of the reconciliation (Dagum and Cholette, 2006), sev-
eral different situations can be considered (see also Di Fonzo and Marini, 2005b).
For example, if we assume that the marginal totals according to both classifica-
tions are exogenously given (and thus the grand-total series too is exogenous), the
constraints (2) and (3) can be expressed by considering the ((R · C) × 1) vector
Y = (Y11 . . . YR1 . . . Y1C . . . YRC)′, the ((R+C)×1) vector Z = (Y1. . . . YR.Y.1 . . . Y.C)′,
k = R + C and the (k × (R · C)) contemporaneous aggregation matrix

G =

[

1′

C ⊗ IR

IC ⊗ 1′

R

]

.

2.2 Temporal aggregation and the complete set of constraints

We assume that low-frequency counterparts of the vectors Yj , denoted by Y0j , are
available. Each Y0j can be viewed as a non overlapping (N×1) linear combination of
Yj, with coefficients given by the (s× 1) vector c, s being the temporal aggregation
order5. Thus, we define the (N × n) aggregation matrix converting high-frequency

into low-frequency series as C =

[

IN ⊗ c′
...0

]

, where 0 is a null (N × (n − Ns))

matrix which permits to deal, for example, with high-frequency preliminary series
pertaining to the unknown most recent (e.g., current) low-frequency period6. The
temporal constraints linking the high-frequency component series to their temporal
aggregated counterparts can be expressed as CYj = Y0j , j = 1, . . . ,M , that is

(IM ⊗ C)Y = Y0, (4)

where Y0 = [Y′

01Y
′

02 . . .Y′

0M ]′.

5 s = 3 for monthly-to-quarterly aggregation, s = 4 for quarterly-to-annual and s = 12 for
monthly-to-annual. In addition, we assume n ≥ Ns.

6For simplicity, here and in the rest of the paper we are assuming that all the series (i) cover
the same time span, (ii) start on the first high-frequency period of the first low-frequency period,
and (iii) there are no ‘holes’ either in the preliminary or in the known aggregates to be filled
within the considered time span. The generalization of the results to such situations involves more
sophisticated and cumbersome notation and algebra (see, for example, Dagum and Cholette, 2006).
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Let H be the ((kn + NM) × nM) aggregation matrix

H =

[

G⊗ In

IM ⊗ C

]

and Ya = [Z′Y′

0]
′ the ((kn + NM) × 1) vector containing both contemporaneous

and temporal aggregates. The complete set of constraints between the unknown
high-frequency component series and the available aggregated information can be
expressed in compact form as

HY = Ya. (5)

Notice that the contemporaneous aggregation of temporally aggregated series
implies (Gh ⊗ IN )Y0 = CZh, h = 1, . . . k, where Gh is the h-th (1×M) row-vector
of matrix G. Considering the whole set of constraints, we have

(G⊗ IN )Y0 = (Ik ⊗ C)Z. (6)

Relationship (6) reflects the fact that the exogenous information have to be consis-
tent with the system constraints. Thus, the low-frequency component series, when
‘longitudinally’ aggregated through matrix G, must be equal to the series obtained
by temporal aggregation of the high-frequency series in Z. In other words, we
are assuming that Y0 and Z fulfill, respectively, all contemporaneous and tempo-
ral aggregation constraints7. This point must be stressed, because it is a strong
pre-requisite in order the reconciliation procedure may work.

Hereafter we denote by Pj the (n × 1) vectors of preliminary series to be ad-
justed, by Rj the corresponding (n × 1) estimated data after the reconciliation
process, j = 1, . . . ,M , and by P and R the (Mn × 1) vectors P = [P′

1P
′

2 . . .P′

M ]′

and R = [R′

1R
′

2 . . .R′

M ]′, respectively. Provided that HP 6= Ya, we look for rec-
onciled estimates of the high-frequency component series for which, while the tem-
poral profile of the original preliminary series is preserved “at the best” (movement
preservation principle), the same linear relationships valid for the M unknown high-
frequency component series must hold, (G⊗ In)R = Z and (IM ⊗ C)R = Y0:

HR = Ya. (7)

3 Movement preservation principle and simultaneous recon-
ciliation

Let us start by considering the reconciliation of a single preliminary series with
respect to its low-frequency counterpart. In this case we have a classical benchmark-
ing problem (Denton, 1971, Cholette, 1984), no contemporaneous constraint being
in order. A widely used solution to this problem is given by the modified Denton
PFD procedure worked out by Cholette (1984)8.

7For example, for a one-way classified table of time series linked by an additivity constraint,

relationship (6) simply becomes

M
∑

j=1

Y0j,T =

Ts
∑

t=(T−1)s+1

Zt, T = 1, . . . , N .

8For generalizations and extensions of Denton’s approach to benchmarking, see Cholette and
Dagum (1994), and Quenneville et al. (2004).
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This procedure performs the constrained minimization of an objective function
which is generally seen as a good approximation9 of the ‘ideal’ (Bloem et al., 2001)
movement preservation objective function. For, a rather natural measure of the
movement preservation is founded on the distance – suitably defined – between the
rates of change of the preliminary and target series. Denoting by B = {Bt}n

t=1 the
(n × 1) benchmarked values, and taking the squared differences, one can consider
the following objective function (Helfand et al., 1977):

FMPP =
n

∑

t=2

(

Bt − Bt−1

Bt−1
− Pt − Pt−1

Pt−1

)2

. (8)

Unfortunately, the constrained optimization of expression (8) has not an explicit
solution, and thus requires the use of numerical optimization techniques in order
to find the benchmarked figures (Bozik and Otto, 1988). The modified Denton
PFD procedure (Cholette, 1984) considers instead an objective function according to
which the proportionate period-to-period changes of the benchmarked series should
be as close as possible to those of the preliminary figures:

FMD =
n

∑

t=2

(

Bt − Pt

Pt

− Bt−1 − Pt−1

Pt−1

)2

. (9)

In this case the solution to the constrained optimization problem can be explicitly
expressed by means of standard linear algebra operations.

3.1 The modified Denton PFD procedure

An extension of the modified Denton’s criterion (9) to a system of M > 1 time
series10 is the function:

FMMD =

M
∑

j=1

n
∑

t=2

(

Rj,t − Pj,t

Pj,t

− Rj,t−1 − Pj,t−1

Pj,t−1

)2

, (10)

where we use symbol R to denote the reconciled series, which are wished to fulfill
the constraint (7).

In matrix notation, the simultaneously reconciled series can be obtained by solv-
ing the following quadratic constrained minimization problem:

min
R

(R − P)′ Ω (R − P) subject to HR = Ya (11)

where Ω = P̂−1 (IM ⊗ ∆′

n∆n) P̂−1, P̂ = diag(P) and ∆n is the ((n − 1) × n) first

9See Cholette (1987, p. 23), for a justification of this “approximation” assumption, and U.S.
Census Bureau (2007, pp. 100–101) for a critical assessment of it.

10A reconciliation procedure according to the movement preservation principle (8) extended to a
system of time series via a suitable log–transformation, has been discussed in Di Fonzo and Marini
(2005b).
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differences matrix11:

∆n =











−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1











.

The first order minimization conditions are
[

Ω H′

H 0

] [

R

λ

]

=

[

ΩP

Ya

]

(12)

where λ is a ((kn+Mn)×1) vector of Lagrange multipliers. In addition, given that
P̂−1P = 1Mn = 1M ⊗ 1n, and ∆n1n = 0, it is ΩP = 0, so the rhs of system (12)
simplifies to [0′Y′

a]
′. In summary, the reconciled estimates are (part of) the solution

of the linear system
Ax = b (13)

where A =

[

Ω H′

H 0

]

, x =

[

R

λ

]

and b =

[

0

Ya

]

.

3.2 Direct solution of system (13)

The square coefficient matrix A of the linear system (13) has some noticeable char-
acteristics12. It is symmetric, indefinite, and, in most practical situations, large and
sparse. In addition, matrix A is singular, that is it cannot be directly inverted,
and usually its dimensions make the adoption of the Moore-Penrose generalized in-
verse, which gives a formal solution of the system, generally unfeasible on a practical
ground.

Table 2 shows the dimensions (number of rows) of the coefficient matrix A of
the linear system (13) for both s = 4 (quarterly series) and s = 12 (monthly series),
and growing values of N (number of low-frequency time periods) and M (number
of component series to be reconciled). Table 3 reports instead the sparsity of such a
matrix, that is the ratio between the number of non-zero entries and the total number
of its cells, when a simultaneous modified Denton PFD reconciliation procedure is
applied13.

From table 2 it clearly appears that the dimensions involved in calculations
dramatically increase as M and/or n grow up. For example, if we wish to reconcile
according to the simultaneous modified Denton PFD procedure a system of 250
monthly time series over 15 years while respecting 30 contemporaneous accounting

11In agreement with Cholette and Dagum (2006, p. 139), it is generally advisable to avoid using
the approximated (not singular) (n × n) first differences matrix originally proposed by Denton
(1971). This holds mostly when the time series in the system do not start in the same period.

12For a thorough analysis of the ‘fundamental bordered matrix of linear estimation’, as a matrix
like A is known in the literature, see Magnus (1990).

13For simplicity, we assume n = Ns. Notice that the values reported in table 2 are calculated
by assuming the maximum number of possible non-zero entries in A, which means we consider (i)
that no entry of vector c is zero (e.g., no interpolation of stock variables), and (ii) that all the kM

entries of matrix G are non-zero, which is a very safe assumption (see the examples in section 2.1).
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Table 2: Dimensions of the linear system (13) for different number of variables (M), low-
frequency time periods (N), temporal aggregation order (s), and contemporaneous con-
straints (k).

N N

M 1 5 10 15 1 5 10 15

s = 4, k = 1 s = 12, k = 1

10 54 270 540 810 142 710 1420 2130
50 254 1270 2540 3810 662 3310 6620 9930
100 504 2520 5040 7560 1312 6560 13120 19680
200 1004 5020 10040 15060 2612 13060 26120 39180
250 1254 6270 12540 18810 3262 16310 32620 48930

s = 4, k = 30 s = 12, k = 30

50 370 1850 3700 5550 1010 5050 10100 15150
100 620 3100 6200 9300 1660 8300 16600 24900
200 1120 5600 11200 16800 2960 14800 29600 44400
250 1370 6850 13700 20550 3610 18050 36100 54150

Table 3: Sparsity of matrix A for the simultaneous modified Denton PFD reconciliation
procedure (matrix G assumed full).

N N

M 1 5 10 15 1 5 10 15

s = 4, k = 1 s = 12, k = 1

10 .05761 .01174 .00588 .00393 .02539 .00511 .00256 .00171
50 .01252 .00251 .00126 .00084 .00555 .00111 .00056 .00037
100 .00633 .00127 .00063 .00042 .00281 .00056 .00028 .00019
200 .00318 .00064 .00032 .00021 .00141 .00028 .00014 .00009
250 .00255 .00051 .00026 .00017 .00113 .00023 .00011 .00008

s = 4, k = 30 s = 12, k = 30

50 .09064 .01813 .00907 .00604 .03650 .00730 .00365 .00243
100 .06454 .01291 .00645 .00430 .02701 .00540 .00270 .00180
200 .03955 .00791 .00396 .00264 .01699 .00340 .00170 .00113
250 .03304 .00661 .00330 .00220 .01427 .00286 .00143 .00095

constraints, the coefficient matrix of the linear system has dimension (54, 150 ×
54, 150), which means about 2,932 millions entries.

However, less than 0.1% of these entries are non-zero (sparsity 0.00095 in ta-
ble 3). Indeed, the sparsity ratio is smaller and smaller as the dimensions of the
reconciliation problem grow up. On the other hand, for N = 1, that is when only
one low-frequency period (e.g., one year) is considered for the reconciliation, the
dimensions are such that any standard statistical/mathematical package may solve
the linear system without any particular trouble.

It is important to notice that if A were (sparse and) non singular, A−1 usually
would be dense, in fact preventing the solution of the system be expressed in terms
of explicit inverse of A when large systems are involved.
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In some instances, iterative methods (Saad, 2003) can be used, but these are not
guaranteed to converge on general systems and usually require very sophisticated
preconditioning14. Instead, we look at sparse direct methods (Davis, 2006) that
involve some matrix factorization representation of the inverse. The method that
we consider here is based on Gaussian Elimination, that generates the factorization
ΠAQ = LU, where Π and Q are permutation matrices chosen to preserve spar-
sity and maintain stability, and L and U are lower and upper triangular matrices,
respectively. Thanks to the symmetry of A, the factorization is of the form

ΠAΠ′ = LDL′, (14)

where D is a diagonal matrix. The solution to system (13) is then easily obtained
by solving the lower triangular system Ly = Πb followed by the upper triangular
system DL′Πx = y.

The rank-deficiency of A is due to the fact that the aggregation matrix H has
not full row-rank. For, from relationship (6) it follows that only r = kn+N(M − k)
aggregated observations are ‘free’, while kN aggregated observations are redundant,
thus matrix H has rank r. This fact can be dealt with either by reformulating the
constraints15, which is obviously a problem-dependent solution and sometimes may
reveal itself tedious and prone to error, or numerically, by a (possibly sparse and
rank-revealing, see Davis, 2008) QR factorization of matrix H. For the constrained
minimization problem in hand, however, a very interesting result is that, due to the
peculiar pattern of the system coefficient matrix A, and provided the rhs vector
of system (13) fulfills the fundamental relationship (6), a very efficient algorithm
performing direct solution of sparse and large systems can be adopted, regardless of
the rank deficiency of A (Duff, 2004)16.

4 Two-step reconciliation procedures

As we have seen in the previous section, when the system of time series is very large,
a simultaneous solution can be computationally burdensome, mostly if the practi-
tioner either does not intend to or cannot use sparse matrices computation facilities.
Simplified solutions are however possible, based on a generalization of the two-step
approach proposed by Quenneville and Rancourt (2005) for restoring the additivity
of a system of SA time series such that their sum is in line with directly-derived
SA totals: firstly, a univariate benchmarking procedure (e.g., the modified Denton

14An iterative procedure to balance National Accounts aggregates, based on the conjugate gra-
dient algorithm, has been proposed by Byron (1978). Danilov and Magnus (2008) stress that the
application of iterative procedures has to be somewhat customized to the problem and sometimes
poses problems of convergence. Besides, the singularity of matrix Ω results in solving the complete
system, not the smaller sub-system valid for the Lagrange multipliers. A similar situation was faced
by Byron (1993).

15Constraints matrices having full row-rank for systems of time series linked by contemporaneous
summation constraints have been shown by Di Fonzo (1990) and Di Fonzo and Marini (2005b).

16In Matlab c©, starting from the release R2007b, a symmetric indefinite sparse system is efficiently
solved by the routine MA57 of the Harwell Subroutine Library (HSL) for real sparse matrices. As
Duff (2004, p. 122) claims, the solution procedure therein is able to flush any singularities of matrix
A to the end of the factorization, and performs an LDL’ factorization on the nonsingular block.
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PFD benchmarking procedure or the more general regression based benchmarking
procedure by Cholette and Dagum, 1994) is used to restore the temporal additivity
of every SA series; in the second step, the SA component series are reconciled one
year at a time using a least squares balancing procedure.

Denoting by B = {Bj,t} the (Mn × 1) vector containing all the temporally
benchmarked series17, the second step of this procedure is a quadratic constrained
matrix minimization problem, where the constraints are a ‘reduced version’ of (7),
valid for a single year. In order to restore additivity in a table of time series,
Quenneville and Rancourt (2005) consider the objective function

F
QR
T =

M
∑

j=1

Ts
∑

t=(T−1)s+1

(Rj,t − Bj,t)
2

Bj,t

, (15)

where suffix T , T = 1, . . . , N , denotes that the optimization is performed for each
low-frequency period separately. According to the results of the previous section,
the proposed two-step approach can be promptly extended to reconcile complex
systems of accounts while dealing with different types of aggregation between (not
only summation) and within (interpolation and extrapolation) variables.

Quenneville and Rancourt (2005) give an interpretation of their procedure in
terms of weighted least squares regression, with weights given by the reciprocal of
√

Bj,t. In other terms, this step can be interpreted as the least squares adjustment
of the temporally benchmarked estimates obtained in the first step according to
the least squares procedure by Stone et al. (1942), with variances given by Bj,t

(thus admitting heteroskedasticity), and assuming autocorrelation neither between
nor within the variables of the system. This requires the positivity of Bj,t, an
assumption that may create some practical problems when we want to reconcile
aggregates of a system of accounts, e.g. accounting balances, which may well not
be positive. In this case, |Bj,t| should be considered instead of Bj,t as denominator
into the expression (15)18:

FBB
T =

M
∑

j=1

Ts
∑

t=(T−1)s+1

(Rj,t − Bj,t)
2

|Bj,t|
. (16)

For space reason here we do not consider the certainly very important issue related to
the use of some estimates of data reliability in the least squares adjustment (van der
Ploeg, 1982). Nevertheless we wish to stress that, assuming that Bj,t is a (positive)
unbiased19 estimate of Rj,t (i.e., E (Bj,t − Rj,t) = 0, Bj,t > 0), and if we agree on

17The series Bj are in line with the known temporal aggregates, i.e. CBj = Y0j , but they do
not fulfill the contemporaneous aggregation constraints, i.e. (G ⊗ In)B 6= Z, so that, in general,
HB 6= Ya.

18This choice has been made by Beaulieu and Bartelsman (2004) and Chen (2006) in balancing
a system of tables of National Accounts for a given year. See also Dagum and Cholette (2006, p.
274).

19As far as the balancing of NA data is concerned, Byron (1978, p. 361) writes: “The argument
for the importance of unbiasedness, while formally correct, is unconvincing because most statis-
ticians will have not sufficient confidence in their initial estimates. An alternative, perhaps more
satisfactory, approach is to set up a loss function, and to interpret the new estimates in relation to
it”.
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using the coefficient of variability20 (CV , the ratio between standard deviation and
mean) as reliability indicator (higher CV’s correspond to variables of comparatively
worse quality, see, for example, Chen, 2006, Danilov and Magnus, 2008), the choice of
Bj,t as denominator in expression (15) implicitly involves CVj,t = 1√

Bj,t

, that is: (i)

different reliabilities for all variables are considered in the least-squares adjustment,
and (ii) large variables are considered relatively more reliable, and thus they are
touched relatively less by the reconciliation procedure than small variables21.

Conversely, in absence of any information about data reliabilities, one can adopt
the idea that the relative reliabilities of all variables are equal. This corresponds to
the situation in which CVj,t = κ is constant for any j and t, which means σ2

j,t =

κ2B2
j,t. As in least squares reconciliation only relative variances play a role, in this

case there is no loss of generality in assuming σ2
j,t = B2

j,t
22. As a consequence, it

seems sensible to consider the following objective function (Round, 2003; Stuckey et
al., 2004) in order to reconcile the temporally benchmarked series in the system at
the second step23:

FST
T =

M
∑

j=1

Ts
∑

t=(T−1)s+1

(

Rj,t − Bj,t

Bj,t

)2

. (17)

Alternatively, we may consider to adopt the simultaneous modified Denton PFD
criterion referred to a single low-frequency period:

FMD
T =

M
∑

j=1

Ts
∑

t=(T−1)s+2

(

Rj,t − Bj,t

Bj,t

− Rj,t−1 − Bj,t−1

Bj,t−1

)2

. (18)

In line of principle, nothing prevents us to consider a reconciliation procedure
grounded on the analogous of criterion (18), in which for each low-frequency period
the preliminary series Pjt are considered instead of the temporally benchmarked
series Bjt. In this case, one might be concerned about a possible ‘step’ problem24

in the series, which in turn would have been limited if temporal benchmarking was
performed at the first step25.

Finally, notice that the objective function (18) involves the squared levels of
the series to be reconciled at denominator, like criterion (17). In addition, it can

20Quenneville and Rancourt (2005), Dagum and Cholette (2006), Bikker and Buijtenhek
(2006), Buijtenhek (2006), and Daalmans and Mushkudiani (2009), discuss about using ‘reliability
weights/alterability coefficients’, generally based on a priori and/or subjective information on some
variables, both in order to take into account different reliabilities of the preliminary data and to deal
with exogenous and endogenous variables in the system. This extension can be easily incorporated
into the procedures considered in the paper.

21From a purely statistical point of view, we have thus some doubt in considering “neutral” the
choice of |Bj,t| (Chen, 2006).

22See Round, 2003, p. 178. Notice that even in this case eteroskedasticity is assumed, and still
neither contemporaneous nor temporal correlation is allowed.

23Although they do consider SA monthly time series, annual temporal aggregation constraints
are not dealt with by Stuckey et al. (2004).

24We mean the introduction of irregularities in the temporal dynamics of the series between, e.g.,
the last month of one year and the first month of the following one (Bloem et al., 2001).

25In practical applications the differences registered for the two procedures (either using or not
Bjt) are irrelevant.
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be shown (Appendix 1) that in the simultaneous modified Denton PFD reconcilia-
tion procedure both eteroskedasticity and temporal autocorrelation in the data are
assumed, while cross-correlation is still not allowed.

4.1 Some remarks

In the following (sec. 6) we will show that it is interesting to evaluate the corrections
produced by the procedures considered so far, in connection with the dimension of
the variables to be reconciled. For, the nature of the various adjustments is always
proportional, in the sense that - if a direct relationship between the level and the
variance of a variable is assumed - the amount of correction is strictly related to the
size of the variable: the larger (smaller) is a variable, the larger (smaller) will be its
adjustment.

In one dimension, that is if one considers only contemporaneous (accounting)
relationships linking the variables of the system, the following considerations of Kim
et al. (1994, p. 5) hold26: “at equal levels of accuracy (as quantified by relative
standard errors) and under equivalent accounting constraints, if one element is k

times larger than the others in the unbalanced accounts, its level of adjustment
will be k2 times larger than the rest and its proportional adjustment will be k

times larger. If this element is k times larger than the rest and m times more
inaccurate than others, the level of adjustment will be k2m2 the level of others while
the proportional adjustment will be km2 that of the others. If this element is no
larger than others but its relative standard error is m times greater, both its level
of adjustment and its proportional adjustment will be m2 greater. It is important
to note that the adjustments also depend upon the accounting constraints (. . .) on
the elements. This explains why data items of the same magnitude and comparable
levels of accuracy may be revised differently”.

Instead, if a pro-rata criterion of reconciliation is used, the level of the adjustment
will be k times larger than the rest, while the proportional adjustment will be the
same for all variables, regardless their relative dimensions.

It is clear that extending these findings in more dimensions (number of account-
ing relationships and/or time periods greater than 1) does not result in known-in-
advance amounts of adjustment. Nevertheless, one may guess that the nature and
the ‘scale’ of the corrections done to the levels by the various procedures should be
somewhat similar to what happens in one dimension.

We have shown (section 4) that both criterion FST
T and FMD

T are consistent with
the assumption of equal reliability of the variables in the system, while criterion FBB

T

(equivalent to F
QR
T when no negative preliminary values are involved)27, implicitly

postulates a quality ranking dictated by the dimensions of the variables. It follows
that the adjustment of larger variables will be relatively smaller in the latter than
in the former case, while smaller variables will be touched relatively more.

26We leave untouched the notation used by Kim et al. (1994), so in this context k does not mean
the number of contemporaneous constraints, as it is in the rest of the paper.

27If all the preliminary values are positive, it can be shown that the well-known RAS bi-
proportional adjustment procedure is a first order approximation of the adjustment procedure which
follows the criterion F

QR

T (Bacharach, 1970; Rampa, 2008).
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This should hold for the levels of the variables. However, given the relevance of
the time dimension in the problem under study, a question naturally rises: how large
is, and what (if any) are the peculiarities of the impact of the various reconciliation
procedures on the temporal profile (e.g., the movement) of the original preliminary
series? From the results we have found (sec. 6), it appears that the distinctive
characteristics we have discussed so far have a notably different impact, at least
when evaluated in terms of corrections done to the rates of change of the series.

5 The assessment of reconciliation

The result of a reconciliation procedure may be assessed using summary indices of
the corrections (adjustments) made to the original preliminary figures.

A range of quality measures may be used in order to assess the reconciliation
results. For example, in their work on post-adjustment of a system of SA series
(which play the role of preliminary estimates) Stuckey et al. (2004) consider

• that the reconciled estimates result in small corrections to the level of the
preliminary series;

• that the reconciliation result in a small correction to the period to period
movement of the preliminary series;

• that highly volatile series are altered more than less volatile series.

Another important point to be evaluated if the reconciliation of SA series is in order,
is that there is no introduction of residual seasonality into the reconciled SA series28.

In this paper, we limit ourselves in considering simple indices which summarize
the size of the adjustments to both levels and percentage rates of change. More
precisely, for each series we calculate the Mean Squared Percentage Adjustment
(MSPA) to the levels, and the Mean Squared Adjustment (MSA) to the percentage
growth rates, that is:

MSPA(Rj , Pj) = 100 ×

√

√

√

√

1

n

n
∑

t=1

(

Rj,t − Pj,t

Pj,t

)2

MSA(rj , pj) = 100 ×

√

√

√

√

1

n − 1

n
∑

t=2

(rj,t − pj,t)
2

where rj,t =

(

Rj,t − Rj,t−1

Rj,t−1

)

and pj,t =

(

Pj,t − Pj,t−1

Pj,t−1

)

are the growth rates of the

reconciled and preliminary series, respectively.
In addition, the standard deviation of the percentage change in the proportional

movement (Dagum and Cholette, 2006, p. 294) is considered, that is:

SDPAj = 100 ×

√

√

√

√

1

n − 1

n
∑

t=2

[(

Rj,t − Pj,t

Pj,t

− Rj,t−1 − Pj,t−1

Pj,t−1

)

− CM j

]2

28On this issue, see Evans (2004).
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where CM j =
1

n − 1

n
∑

t=2

(

Rj,t − Pj,t

Pj,t

− Rj,t−1 − Pj,t−1

Pj,t−1

)

.

Accordingly, overall indices for the whole system of time series are considered:

MSPA(R, P ) = 100 ×

√

√

√

√

1

Mn

M
∑

j=1

n
∑

t=1

(

Rj,t − Pj,t

Pj,t

)2

MSA(r, p) = 100 ×

√

√

√

√

1

M(n − 1)

M
∑

j=1

n
∑

t=2

(rj,t − pj,t)
2

SDPA = 100 ×

√

√

√

√

1

M(n − 1)

M
∑

j=1

n
∑

t=2

[(

Rj,t − Pj,t

Pj,t

− Rj,t−1 − Pj,t−1

Pj,t−1

)

− CM

]2

where CM =
1

M(n − 1)

M
∑

j=1

n
∑

t=2

(

Rj,t − Pj,t

Pj,t

− Rj,t−1 − Pj,t−1

Pj,t−1

)

.

6 Two applications

In the following we apply simultaneous and two-step procedures for the reconcilia-
tion of two systems of time series. We denote by Sim MD the simultaneous modified
Denton PFD procedure described in section 3.1, while the two-step procedures de-
scribed in section 4 are labelled as 2-S QR/2-S BB, provided either objective function
(15) or (16) is considered, 2-S ST for criterion (17), and 2-S MD for criterion (18).

First a medium-sized problem is considered, namely the reconciliation of the Eu-
ropean Union Quarterly Sector Accounts (EU-QSA). Then we consider a large-sized
reconciliation problem, coming from the Canadian Monthly Retail Trade Survey
(MRTS), where we want to restore additivity in a cross-classified system of compo-
nent SA monthly time series29.

Albeit the two systems (and the nature of their discrepancies) are rather different,
both cases can be seen as typical situations encountered in the current activity of a
data producer agency.

6.1 The EU Quarterly Sector Accounts

The compilation of the EU-QSA is done jointly by Eurostat (the European statis-
tical office) and the European Central Bank. The aggregates of the accounts are
derived from the data collected by member States, but the compilation process is
such that they are not calculated simply as the sum of the national components.
For this reason, many inconsistencies arise after this process, so that the accounting
relationships between the variables are not fulfilled. In addition, in some cases the
quarterly series are not in line with the corresponding annual figures. A reconcilia-
tion of the system is thus necessary to restore the required consistency.

29Restoring additivity in systems of SA series could be problematic from a logical point of view.
For reasons of space, here we do not address this issue (see, for example, U.S. Census Bureau, 2007,
p. 102).
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The EU-QSA dataset at disposal nominally comprises 183 series. In fact, in
8 out of 183 cases the aggregates are always zero, and need not be adjusted30.
So they are excluded from the system, leaving 175 series, which are linked by 30
accounting constraints. Figure 1 shows the non-zero pattern of the (30×175) matrix
of contemporaneous constraints G.
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15
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30

Figure 1: EU-QSA system. Non-zero pattern of the accounting constraints.

The first 22 equations of the system establish the consistency for a set of vari-
ables between institutional sectors and total economy (the known quantities are
zero vectors). For example, in the first equation the sum of the compensation of
employees by institutional sector is equal to that of the total economy. The last
8 equations ‘close’ the system with respect to important balances of the accounts
(e.g., value added, net lending/net borrowing, operating surplus, etc.), for both the
total economy and some institutional sectors31.

The quarterly data span the period from 1999-Q1 to 2005-Q4 (28 quarters). An-
nual benchmarks are available for each variable, along the 7 years. The dimensions
of this reconciliation problem are summarized in Table 4.

In 113 out of 175 cases, the quarterly data are perfectly in line with the annual
counterparts. The remaining 62 variables present temporal discrepancies which are
in some cases very small (less than 0.5% of the original level) and in other cases
rather large (up to 50% of the original level). The temporal discrepancies for a
single variable are often either all negative or all positive, which is a clear indication
that the quarterly series are biased with respect to the annual benchmarks32.

30In addition, 11 series present negative values, so the two-step reconciliation procedure by Quen-
neville and Rancourt (2005) has been applied according to the objective function (16) rather than
(15). For the same reason, in the first step the temporal benchmarking was performed according
to a variant of the objective function (9), where the absolute values of the preliminary series have
been considered at denominator. A similar device was adopted for the objective functions (10) and
(18) too.

31It should be noted that quarterly preliminary series for these balances are available, which are
not aligned to the corresponding annual series. Given that we choose to treat these balances as
exogenous contemporaneous constraints of the system, we have preliminarly benchmarked them via

the (univariate) modified Denton PFD benchmarking procedure in order to fulfill the fundamental
relationship (6).

32This is rather usual in National Accounts, where annual data are generally more reliable than
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Table 4: Dimensions of the EU-QSA reconciliation problem.

n. of series (M) 175
n. of quarters (n) 28
n. of complete years (N) 7
n. of contemporaneous constraints (k) 30
n. of preliminary values to be reconciled 4,900
n. of constraints 2,065
n. of non-redundant constraints 1,855
n. of rows of A (simultaneous modified Denton PFD) 6,965
sparsity of A 0.00086

Most of the series are non-stationary, with a clear seasonal component (although
sometimes really unstable). We stress that here we do not deal with any issue
of indirect vs. direct seasonal adjustment, such as the treatment of discrepancies
between components and aggregates. Rather, the focus is on the performance of
reconciliation procedures used to achieve consistency of a system of raw quarterly
NA time series.

As regards the contemporaneous discrepancies, in one out of the 30 cases the
accounting constraint is always fulfilled by the original data. In the other 29 cases
the ranges of the discrepancies (levels) hover between (in millions of e) 300 (min.
-113, max 187) and 185,973 (min -87,561, max 98,412). In addition, in 6 accounts
the preliminary data are systematically biased (all discrepancies have the same sign).

The EU-QSA have been reconciled by means of the four reconciliation procedures
described so far. As regards the two-step procedures, the first step is common to
them all: the quarterly series have been individually aligned to the annual series
using the modified Denton PFD benchmarking procedure. The second step is the
year-by-year reconciliation of the benchmarked series obtained at the first step,
performed by constrained optimization of the objective functions FBB

T , FST
T , and

FMD
T , as expressed by (16), (17), and (18), respectively. The system has been

reconciled also by means of the simultaneous procedure presented in section 3.1.

Firstly, the results are evaluated in terms of the distance between reconciled and
preliminary series, using the summary indices illustrated in section 5. Table 5 shows
the MSPA to the levels, the MSA to the percentage growth rates and the SDPA

in the proportional movement, calculated on all series and all quarters.

The reconciled series from 2-S BB present always higher statistics than those
from the other three procedures, which instead show very similar performances.
In particular, the impact of 2-S BB procedure on the rates of change seems to be
significantly higher (11.99% vs. 5.63% of the simultaneous procedure). The practical
equivalence of 2-S ST and Sim MD is a very interesting result: the two-step approach
may be implemented quite easily with any statistical package, and it requires less
computational time with respect to a simultaneous approach that considers all years

quarterly data because their calculation relies on more solid and comprehensive sources. The
preliminary series are thus standardized to the overall level of the annual series, according to the
bias correction procedure described in Quenneville et al. (2009).



Section 6 Two applications 19

Table 5: EU-QSA system. Assessment of results from different reconciliation proce-
dures.

Procedure MSPA(R, P ) MSA(r, p) SDPA

2-S BB 4.1286 11.9946 4.1551
2-S ST 3.7809 5.6096 3.2455
2-S MD 3.7853 5.6518 3.2460
Sim MD 3.7883 5.6318 3.2400

in a single step33. Another interesting aspect of the exercise can be drawn from the
slight superiority of 2-S ST relative to 2-S MD (5.61% against 5.63%); this implies
that with this dataset, dealing with the movement preservation at the second step
through function (18) does not improve on the results obtained when using criterion
(17).

To further investigate the quality of the results, there are two interesting aspects
to assess:

- the step problem: the procedure should not introduce breaks in the movement
from the fourth quarter of a year to the first quarter of the next;

- the preservation of the signs: the adjustment should not alter the signs of the
original estimates. Also, it is highly desirable that the signs of growth rates
do not change that much after the reconciliation.

Table 6 shows the MSA to growth rates considering only the rates of the first
quarter. The statistic worsens only for 2-S BB (19.28% vs 14.50%), while it improves
in the other cases. Considering the preservation of the signs, there are no change from
positive to negative values (and vice versa) caused by the reconciliation procedures.
The same does not hold for growth rates. Again, 2-S BB is the least performing
procedure: it changes sign to the 12.12% of the rates, against less than 9% of the
other procedures.

Table 6: EU-QSA system. Some measures on problematic aspects of reconciliation:
step problem and signs preservation.

MSA(r, p) % signs pres.

Procedure all quarters only Q1 levels rates

2-S BB 11.9946 19.2805 100.0 87.88
2-S ST 5.6096 3.3738 100.0 91.30
2-S MD 5.6518 3.4817 100.0 91.34
Sim MD 5.6318 3.3881 100.0 91.34

Figure 2 compares the MSA(r, p) statistics of procedures 2-S BB and Sim MD
calculated on different groups of variables, grouped according to their dimension34.

33However, our Matlab c© script performing the simultaneous reconciliation of EU-QSA takes
about 0.25 seconds on an Intel T2050 (1.60Ghz and 1Gb of memory Ram) notebook working under
Windows XP.

34The groups are determined as follows: the large series (10) are those with an annual average
level greater than e1,000,000 mln; the group of medium-sized series (52) between e100,000 and
e1,000,000; the group of small series (113) up to e100,000.
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As expected, the procedure 2-S BB shows a smaller distance than Sim MD for
the 10 largest series (1.25% vs 2.05%). For the medium-sized group the MSA

statistic is slightly in favor of Sim MD (3.31% compared to 3.51% of 2-S BB).
But the performances of the two procedures are really different for the small-sized
group, the largest one with 113 variables: the adjustment produced by the 2-S BB
procedure is such that the original temporal profiles of these variables are drastically
changed. The MSA statistic is indeed 16.62%, compared to 6.61% of Sim MD. From
this analysis it is confirmed that the 2-S BB procedure tends to preserve better
the movement of the larger variables at the expense of the smaller ones, whose
movements after reconciliation might be very far from those of the preliminary series.

2−S BB Sim MD 2−S BB Sim MD 2−S BB Sim MD

5

10

15

Large size (10) Medium size (52) Small size (113)Large size (10) Medium size (52) Small size (113)

Figure 2: EU-QSA system. MSA(r, p) by dimension of the variables.

Figure 3 and 4 show preliminary and reconciled series of a large variable (B-
S11-B1G, gross value added of non-financial corporations) and a small variable of
the EU-QSA (B-S13-D71, net premium (non-life insurance) of general government),
in order to visually detect the different adjustment carried out by the 2-S BB and
Sim MD procedures. The adjustments done on the two series are typical of their
group. The top graph contains the original series (straight line) along with the two
reconciled series (dashed line for 2-S BB, dot-dashed line for Sim MD); the bottom
graph shows the differences from the original series. The two procedures adjust the
large variable in a similar way, although the simultaneous procedure seems to have
a more marked impact in comparison with the two-step approach. As far as the
small variable is concerned, the reconciliation with 2-S BB radically changes the
short-term movements of the series; on the contrary, the Sim MD procedure leaves
them practically unchanged.
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Figure 3: EU-QSA system. Original and reconciled estimates for series B-S11-B1G (Gross
value added of non-financial corporations).
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Figure 4: EU-QSA system. Original and reconciled estimates for series B-S13-D71 (Net
Premium (non-life insurance) of General Government).

6.2 The Canadian Monthly Retail Trade Survey

Typically, seasonal adjustment introduces discrepancies in a system of time series
linked by aggregation constraints. Firstly, the annual sum of SA series might show
differences with the annual totals from the raw series, due to the fact that a non-
deterministic seasonal component is normally assumed. Secondly, the direct SA
aggregate does not necessarily equal the sum of its SA components series, due to
the presence of non-linearities in the SA procedures.

This kind of problem is faced by Statistics Canada with the Monthly Retail
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Trade Survey (MRTS). The data are collected according to a two-way classification:
by industry (19 trade groups, the TG system) and by region (10 provinces and 3
territories, the PR system). The cross-classified MRTS system is thus nominally
composed of 247 component series (the TGPR system). SA time series are only
published for the national total, the 19 trade groups and the 13 regions (the marginal
systems). The SA national total is derived indirectly as the sum of the 19 SA
components by industry. Then, the 13 SA regional components are aligned to the
SA national total (Statistics Canada, 2009).

In this section we present a comparison of simultaneous and two-step techniques
for reconciling the MRTS data35. We use a dataset covering the period from January
1991 to December 2003, except for the Nunavut territory, whose series begin on
January 1999. We consider 236 raw series out of the 247 components of the TGPR
system as the starting point of the exercise. In fact, 2 component series are always
zero, while other 9 series do not show any visible seasonal pattern and contain
some observed zero values36. Thus we decided not to seasonally adjust them. The
marginal series by region (13) and by industry (19), the national total, and the
corresponding annual totals are derived as direct aggregation of the 236 component
series. The X12-ARIMA procedure was applied to the 269 (236+13+19+1) monthly
series with automatic options37, using the interface program Demetra (version 2.2,
see Eurostat, 2007). The SA series resulting from X12-ARIMA are called hereafter
preliminary SA series.

6.2.1 Reconciliation of the PR system

As a first step, the 19 marginal SA totals by industry are benchmarked according
to the univariate modified Denton PFD procedure38, so that their annual totals are
equal to those of the corresponding raw series. These series will be referred to as
benchmarked SA series. The SA national total is calculated (indirectly) as the sum
of the 19 benchmarked SA series by industry. This practice forces the national total
to be coherent with the SA data derived from the TG system: as Quenneville and
Rancourt (2005) stress, this is justified by the fact that it is easier to identify breaks,
outliers, calendar effects, and the seasonal component in general, at the industry
level. The annual constraints for the national total are automatically satisfied.

Such a procedure makes the 13 SA regional series not in line with the SA national
total. Then, the 13 SA series by region need to be adjusted such that their sum

35This example has been already considered by Di Fonzo and Marini (2005b), Quenneville and
Rancourt (2005), and Dagum and Cholette (2006).

36The series we have not considered in the exercise pertain to 10 trading groups of the Nunavut
territory and 1 trading group of the Yukon territory. The raw series account for a negligible share
of the Canadian total (at most 0.02% in the time span under study).

37We did not use the optional spec FORCE (U.S. Census Bureau, 2007), so the yearly sums of
the SA series are in general different from those of the original series. Besides, we stress that the
quality of seasonal adjustment is not a primary concern of the paper. We have replicated the exercise
performing the seasonal adjustment by TRAMO-SEATS, and the results we found as regards the
different impact of the various reconciliation procedures on the temporal profiles of the directly SA
series, were not significantly affected.

38This can be accomplished with X-12 ARIMA by setting the argument type=denton in the FORCE
spec.
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equal the SA national total derived from the TG system and, also, their yearly sums
match the annual totals of the corresponding raw series. The dimension of this
reconciliation problem is relatively small, as shown in table 7.

Table 7: Dimensions of the PR system reconciliation problem.

n. of series (M) 13
n. of months (n)∗ 156
n. of complete years (N)∗ 13
n. of contemporaneous constraints (k) 1
n. of preliminary values to be reconciled 1,932
n. of constraints 317
n. of non-redundant constraints 304
n. of rows of A (simultaneous modified Denton PFD) 2,249
sparsity of A 0.00267
∗ For Nunavut n = 60 (1999.01–2003.12) and N = 5 (1999–2003).

The temporal discrepancies generated by the seasonal adjustment are rather
small, being in a range from -0.7% to 0.3% of the original annual levels. The con-
temporaneous discrepancies (the percentage differences between the SA national
total and the sum of the preliminary SA series by region) are shown in figure 5.
They are always less than 2% in absolute values (from a minimum of -1.55% to a
maximum of 1.73%), with a mean absolute percentage discrepancy equal to 0.3%.
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Figure 5: PR system. Contemporaneous discrepancies (%) between the SA Canada total
from the TG system and the sum of the 13 SA regional series.

The reconciliation is performed with the four procedures described at the begin-
ning of this section (the 2-S QR procedure can be used because preliminary series
are always positive). Table 8 shows the statistics for assessing their relative perfor-
mances. The reconciled estimates from the simultaneous solution Sim MD and those
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from the two step procedures 2-S ST and 2-S MD are very close to each other: the
statistics are practically identical. Instead the 2-S QR displays higher values, both
in terms of levels and growth rates. In particular, the MSA to growth rates between
preliminary and reconciled SA series is 0.54% for 2-S QR, quite higher than 0.32%
achieved by Sim MD.

Table 8: PR system. Assessment of results from different reconciliation procedures.

Procedure MSPA(R, P ) MSA(r, p) SDPA

2-S QR 0.4209 0.5408 0.5377
2-S ST 0.2893 0.3196 0.3182
2-S MD 0.2900 0.3196 0.3183
Sim MD 0.2900 0.3196 0.3181

Like the EU-QSA system, it is interesting to look at the MSA(rj , pj) on the basis
of the relative dimension of the series in the system. Figure 6 shows graphically the
relationship between the MSA(rj , pj) statistics and the regional sales in percentage
of the national total (the top graph refers to Sim MD, the bottom graph to 2-S QR).
Both relationships are very peculiar: the adjustment is directly proportional to the
dimension of the regional sales for Sim MD, while the 2-S QR has always the same
impact on the rates of change, irrespective of their relative size. The MSA(rj , pj) for
the four largest regions (in terms of retail sales’ share) are identified in both graphs.
The MSA(rj , pj) statistic is lower for the 2-S QR procedure only for Ontario, which
is the largest region (37.9% share): 0.53% vs. 0.87% of Sim MD. The adjustment for
Quebec is almost the same, while for the remaining 11 regions a lower MSA statistic
is always achieved by Sim MD. It clearly appears that the 2-S QR procedure has a
deep impact on the smallest series: for example, the MSA(rj , pj) for Newfoundland
and Labrador (about 1.68% share of the Total Canada amount) is about ten times
higher than the one produced by Sim MD (0.54% vs. 0.05%). This is an empirical
confirm that the 2-S QR procedure tends to ‘touch’ less the larger variables, at the
expense of the smaller ones, implicitly assuming a greater reliability for the former.

6.2.2 Reconciliation of the cross-classified TGPR system

A second exercise is performed with the MRTS data in the industry-by-region clas-
sification (the TGPR system). The 19 benchmarked SA series by industry, the
indirectly-derived SA series for the Canada total, and the 13 reconciled SA series
by region (with the Sim MD procedure) are now considered as given constraints for
the TGPR system. The 236 preliminary SA series must be adjusted such that:

- for every month, the sum over the 13 regions for an industry matches the given
industry total (19 constraints);

- for every month, the sum over the 19 industries of a region matches the given
region total (13 constraints);

- for every complete year, and for every industry-region, the sum over the 12
months complies with the annual total from the corresponding raw series (236
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Figure 6: PR system. MSA(rj , pj) by percentage share of sales for Sim MD and
2-S QR.

constraints).

This application can be seen as a reconciliation problem of a two-way table of
time series subject to marginal totals and temporal constraints. The problem can
be formulated in different ways, according to the role played by the marginal totals,
which can be treated as either endogenous or exogenous (Di Fonzo and Marini,
2005b). In this exercise we consider the 32 marginal totals by province and trading
group as exogenous constraints of the system.

Table 9 shows the (quite large) dimensions of the problem. The system matrix A

for the Sim MD reconciliation procedure, whose sparsity pattern is shown in figure
7, can be managed in a computing software only using sparse matrices facilities, and
system (13) can be directly solved only with algorithms that exploit the sparsity of
A (see section 3).

The discrepancies, both temporal and contemporaneous, are quite variable: the
mean absolute percentage temporal discrepancies of the 236 component series range
from 0.02% (Pharmacies and Personal Care Stores Sales of Yukon Territory) to 4.52%
(Computer and Software Stores Sales of Newfound and Labrador), whereas the same
indices for the 32 monthly additivity constraints vary between 0.29% (Pharmacies
and Personal Care Stores) and 1.65% (Used and Recreational Motor Vehicle and
Parts Dealers).

Table 10 presents the statistics to assess the four procedures of reconciliation.
Once again, 2-S QR shows higher distances from the preliminary series than the
other procedures, both in terms of levels and rates of change. The MSA to the
growth rates is almost double the one of the simultaneous solution (2.52% compared
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Table 9: Dimensions of the TGPR system reconciliation problem.

n. of series (M) 236
n. of months (n)∗ 156
n. of complete years (N)∗ 13
n. of contemporaneous constraints (k) 32
n. of preliminary values to be reconciled 35,952
n. of constraints 7,988
n. of non-redundant constraints 7,572
n. of rows of A (simultaneous modified Denton PFD) 43,940
sparsity of A 0.00017
∗ In 9 out of 236 series n = 60 (1999.01–2003.12) and N = 5 (1999–2003).

Figure 7: TGPR system. Sparsity pattern of matrix A.

to 1.26%). The 2-S ST procedure represents a good alternative, again better than
2-S MD, to the simultaneous solution in regard to movement preservation. Besides,
it is also less demanding in terms of computational resources39.

It is interesting to inspect the distribution of the MSA statistics over the 236
series of the system. Figure 8 displays the boxplots of MSA(rj , pj) for 2-S QR
(left) and Sim MD (right). Differently from the PR system, 2-S QR does not alter
the temporal profiles of the variables with the same intensity40: for 6 series the
MSA(rj , pj) statistic is higher than 5%, in 2 cases even higher than 10%. Sim MD

39It should be noted that, for each two-step procedure, the reconciled estimates are obtained by
solving 8 linear systems of 3,310 equations for each year in 1991-1998, when Nunavut territory was
not present, and 5 linear systems of 3,452 equations for the remaining years. On the other hand,
the Matlab c© script performing the simultaneous reconciliation of the TGPR system takes about 13
seconds. In any case the linear systems are solved by using sparse matrices facilities and algorithms
made available by the software.

40We guess that this fact is due to the need of fulfilling 32 contemporaneous constraints instead
of only 1, as it was in the reconciliation of the marginal PR system.
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Table 10: TGPR system. Assessment of results from different reconciliation proce-
dures.

Procedure MSPA(R,P ) MSA(r, p) SDPA

2-S QR 1.7137 2.5158 2.0328
2-S ST 1.3308 1.2668 1.2410
2-S MD 1.3637 1.2880 1.2473
Sim MD 1.3599 1.2635 1.2364

seems instead more robust, the largest MSA(r, p) being equal to 5.6%.

2S QR Sim MD

0
5

10
15

Figure 8: TGPR system. Boxplots of MSA(rj , pj) for 2-S QR and Sim MD.

This picture is somewhat enriched by figure 9, which displays the scatterplot
of the MSA(rj , pj) statistics vs. the relevant percentage shares of sales. It clearly
appears that the series whose dynamic profile is strongly modified by 2-S QR are
relatively very small. On the other hand, the two series much adjusted by Sim MD
as compared to the rest of the system, are not the largest ones41.

In order to have a better look at the relationship between the corrections and
the dimension of the variables, we classify the 236 component series in groups of
regions. The first group is composed of the 38 series of Ontario and Quebec, having
these provinces the largest share of sales (60.7% of total Canada). The other 8
provinces form the second group, with a share of 39.0%. The last group includes
the 46 series of the 3 territories (Yukon, Northwest and Nunavut), which amounts
to the remaining 0.3% of Canada retail sales. Table 11 presents the number of
times the procedures 2-S QR and Sim MD produce the smallest adjustment to the
preliminary series’ growth rates. The two-step approach prevails to the simultaneous
solution in 47 cases, more than half concentrated on the series of Ontario and Quebec
(25). For the other regions (8 provinces and 3 territories) Sim MD achieves a lower

41The two series of sales refer to Supermarkets of Yukon Territory (MSA(rj, pj) = 5.63,
% share=0.03), and Used and Recreational Motor Vehicle and Parts Dealers of Ontario
(MSA(rj , pj) = 5.28, % share=1.64), respectively.
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Figure 9: TGPR system. MSA(rj , pj) by share (%) of sales for Sim MD and 2-S QR.

MSA(rj , pj) in 176 out of 198 cases.

Table 11: TGPR system. Number of series with minimum MSA(rj , pj) by group of
regions and reconciliation procedure

Group of regions
Procedure Ontario-Quebec Other provinces Territories Total

2-S QR 25 17 5 47
Sim MD 13 135 41 189
Total 38 152 46 236

We calculate the MSA(r, p) statistic for the three groups; figure 10 compares
those referred to 2-S QR and Sim MD. In the first group (Ontario and Quebec), the
statistic is lower for 2-S QR, 1.6% against 2.0% for Sim MD. The results are opposite
for the other two groups. For the other 8 provinces, the MSA(r, p) statistic is equal
to 0.9% for Sim MD and 2.5% for 2-S QR; for the three territories, we obtain 1.5%
for Sim MD and 3.2% for 2-S QR.

The step problem and the sign preservation (discussed in the previous section)
can be evaluated from table 12. Differently from the EU-QSA exercise, the statistics
computed considering only the first months of the year increase for all procedures. As
expected, Sim MD provides the smoothest transition from one year to the next. The
step problem is more pronounced if the system is adjusted by the 2-S QR procedure,
which also gives rise to a larger number of changes of sign of the preliminary growth
rates (about 15.6% vs. 10.2%).

Finally, figure 11 shows the percentage differences between preliminary and rec-
onciled estimates for two component series of sales: New car dealers in Ontario and
Computer software stores in Saskatchewan.

The first series is the largest of the system, with a share of 7.9%: the adjust-
ment through 2-S QR both in levels and growth rates is consequently smaller, with
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Figure 10: TGPR system. MSA(r, p) for three groups of regions.

Table 12: TGPR system. Some measures on problematic aspects of reconciliation:
step problem and signs preservation.

MSA(r, p) % signs pres.
Procedure all months only Jan levels rates

2-S QR 2.5158 3.0178 100.0 84.41
2-S ST 1.2668 1.8549 100.0 89.82
2-S MD 1.2880 2.0701 100.0 89.78
Sim MD 1.2635 1.8282 100.0 89.82

MSPA(Rj , Pj)=1.1% and MSA(rj , pj)=1.6%, vs. 1.8% and 2.5%, respectively, of
Sim MD. It can be seen from the graph that the corrections made by Sim MD
are more pronounced (max correction 6.3% in absolute value) but share the same
pattern as those made by 2-S QR (max correction 4.1% in absolute value).

The second series, a very small one (0.01% of share), when reconciled via 2-S QR
registers a marked adjustment both in levels (MSPA(Rj , Pj)=1.8%) and in growth
rates (MSA(rj , pj)=16.8%, the largest one of the system), while Sim MD leaves this
series practically unchanged (MSPA(Rj , Pj)=0.2% and MSA(rj , pj)=0.2%).

7 Conclusions

In this paper we have discussed and applied to two real-life economic datasets a
number of procedures for reconciling systems of time series in such a way that
all the a priori (contemporaneous and/or temporal) constraints be fulfilled while
preserving “at the best” the temporal dynamics of the original series. Many aspects
of the problem have not been dealt with, like the treatment of non-linear constraints,
an evaluation of the procedures’ performance when extrapolation is involved (e.g.,
when reconciling systems of monthly or quarterly time series when the most recent
year is not yet concluded), possible adoption of temporal benchmarking procedures
other than modified Denton PFD procedure in two-step procedures, the adoption of
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Figure 11: TGPR system. Relative differences (%) between preliminary and recon-
ciled values for two series.

(simple) parameterizations for matrix Ω in the objective function of the simultaneous
reconciliation, and other issues concerning this important and awkward phase of the
data production process.

Nevertheless, we think that on the basis of the results we have found, some
remarks are worthy of being stressed.

First, we think that, as a kind of prerequisite when one wishes to reconcile a sys-
tem of time series, if ‘genuine’ variability measures (i.e., reliability indicators, either
‘true’ or coming from evaluations of experts) for one or more variables of interest
are available, they should be used in a statistical procedure which explicitly takes
care about them, like the least squares adjustment procedure by Stone et al. (1942).
When (if) no such measures are available, a sensible approach consists in considering
all the series to be reconciled of equal reliability, and in looking for reconciliation
procedures which pay attention to the movement preservation principle.

At this regard, we showed that a straightforward generalization to systems of
M > 1 time series of the well known Denton’s PFD benchmarking criterion is feasi-
ble even for large-sized problems, because the possible large matrices involved in the
simultaneous reconciliation procedure can be managed without any particular trou-
ble if their pattern, and mostly their sparsity, are conveniently taken into account.
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Simple two-step procedures might however be a valid alternative to the simulta-
neous approach. We considered the raking technique by Quenneville and Rancourt
(2005), an extension of the proposal by Stuckey et al. (2004) in order to encompass
temporal aggregation constraints in the reconciliation, and finally the simultaneous
extension of the modified Denton PFD procedure working on a single low-frequency
period. All the above two-step procedures share the same temporal benchmarking
for each component series (via modified Denton PFD) in the first step, the main dif-
ference being the way in which the quadratic additive terms in the objective function
considered in the second step are normalized.

The results found for a medium-sized and a large-sized system of time series sug-
gest that the simultaneous reconciliation procedure seems to work well in practice.
In both cases this procedure demonstrated itself as feasible, provided the practitioner
has at disposal a software capable of dealing with linear systems with sparse and large
coefficient matrices in efficient way, as most of the modern statistical/mathematical
packages are. In addition, and most important, in the two real-life applications we
considered, we never found results worse than those obtained by the most perform-
ing two-step reconciliation procedures. On the other hand, very good performances
have been registered for two-step procedures in which the squared temporal bench-
marked series is considered as normalizing factor rather than the (absolute) level.
At least for the datasets we used in the paper, these procedures may be considered
as valid alternatives to the simultaneous reconciliation procedure.

Finally, we want to stress that, as far as two-step procedures are concerned,
contrary to what it has been claimed in the past, the size of the impact on the original
(preliminary) dynamics of the series due to the second step is not at all irrelevant,
and depends on the reconciliation procedure one chooses. The practitioner should
thus control the performance offered by different techniques, for example looking for
the one producing, on the whole, the smallest adjustment to the rates of change, or
to the levels, or both.

Appendix 1: Matrix formulation of the objective functions

(16), (17) and (18)

Function FBB
T , FST

T and FMD
T can be written in matrix form as

F ν
T = (RT − BT )

′

Ων
T (RT − BT ) , ν = BB, ST, QR,

where RT and BT are (Ms × 1) vectors of, respectively, high-frequency reconciled and
temporally benchmarked values for a single low-frequency period T , T = 1, . . . , N . In
other words, RT = (R′

1T . . .R′

MT )
′

, BT = (B′

1T . . .B′

MT )
′

, where RjT = {Rjt}Ts

t=(T−1)s+1,

BjT = {Bjt}Ts

t=(T−1)s+1. The (Ms × Ms) matrices ΩBB
T and ΩST

T are both diagonal, with

nonzero entries given by
1

|Bj,t|
and

1

B2
j,t

, respectively. Matrix ΩMD
T is in turn given by:

ΩMD
T = B̂−1

T (IM ⊗ ∆′

s∆s) B̂
−1
T ,



32 REFERENCES

where B̂T = diag(BT ) and ∆s is the ((s − 1) × s) first differences matrix. So, for example,
for s = 4 and dropping index j (i.e., M = 1), we find

ΩMD
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