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On Computation Using Gibbs Sampling for Multilevel Models

by ALAN E. GELFAND, BRADLEY P. CARLIN, and MATILDE TREVISANI!

Abstract

Multilevel models incorporating random effects at the various levels are enjoying increased
populm‘ity. An implicit problem with such models is identifiability. From a Bayesian perspective,
formal idelltiﬁal;ility is not an issue. Rather, when implementing iterative simulation-based model
fitting, a poorly behaved Gibbs sampler frequently arises. The objective of this paper isv to shed light
upon two computational issues in this regard. The first concerns autocorrelation in the sequence
of iterates of the Markov chain. We clarify when, for estimable functions, autocorrelation will drop
off to zero rapidly, enabling high effective sample size. The second concerns exact sampling, i.e.,
when, at an arbitrary iteration, the simulated value of a variable is in fact an obs_erva,tion from the
posterior distribution of the variable. Again, for estimable functions, we clarify when the chain wil]
produce at each iteration a sample drawn essentially from the true posterior of the function. We
provide both analytical and computational support for our conclusions, including exemplification

for three multilevel models having normal, Poisson, and binary responses, respectively.
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1 Introduction

Multilevel models incorporating random effects at the various levels are enjoying increased
popularity among practitioners, particularly as fast, inexpensive computing makes their fitting
more widely accessible. The book by Goldstein (1995) has detailed the classical viewpoint including
implementation.

IFrom the Bayesian perspective, a Gibbs sampler (Gelfand and Smith, 1990) for such models
is conceptually straightforward to implement since the required full conditional distributions are
either standard (arising from conjugacy) or log concave (e.g., an exponential family first stage
specification with canonical link). See, for example, the book of Gilks, Richardson and Spiegelhalter
(1995). The BUGS software (Spiegelhalter et al., 1995) is a reliable package which is frequently used
to implement the simulation-based model fitting. Comparison between Bayesian and likelihood
methods for fitting multilevel models is taken up in the recent work of Browne and Draper (1999).

An implicit problem which arises under multilevel random effects models js identifiability. Upon
an appropriate linear transformation, the likelihood only involves a subset of the parameters. The
remainder are not identified in the classical sense. Fortunately, parametric functions of interest
(e.g., individual means and contrasts at each level) are usually estimable (Searle, 1971) and the
likelihood does identify such functions, enabling classical point and interval estimation.

I'rom the Bayesian perspective, hierarchical models are routinely overparametrized. However,
under proper priors there is no identifiability problem (Lindley, 1971); the posterior for every model
unknown is proper. Dawid (1979) clarifies the Bayesian notion of unidentifiability and recent work
of Poirier (1998) and Gelfand and Sahu (1999) provides further elaboration. An equivalence with
classical nonidentifiabilty then follows.

Perhaps most interestingly, what emerges from all of this discussion is an informal notion of



weak identifiability. For certain unknowns the posterior differs little from the prior; the data provide
little Bayesian learning about the unknown. A practical consequence when implementing iterative
simulation-based model fitting is a poorly behaved Gibbs sampler. When rather vague priors are
used, trajectories. of the Markov chain for weakly identified parameters will tend to exhibit drift to
very extreme values, since there is nothing in the structure to center them. Convergence assessment
is difficult; unstable computation and inaccurate inference ensue. On the other hand, very precise
priors are generally unattractive, since then Bayesian learning is necessarily limited. Takem to the
extreme, a degenerate prior would be specified which would be analogous to imposing restrictions
or constraints, as is customarily done in the classical setting.

Thé ob je;:tive of this paper is to shed light upon two computational issues in this regard. Passibly
unexpected implicationé for using .Gibb‘s sampling to fit multilevel models result. That 1s_ the
behavior of the Gibbs sampler with regard to certain parameters may improve as prior specifications
are made increasingly vague. The first issue concerns autocorrelation in the sequence of iterates of
the Markov chain. In particular, autocorrelations which drop off to zero rapidly enable, following
a diagnosis of convergence, high effective sample size thus avoid thinning of this éutput. We show,
using both analytical and computational evidence, that if the variance components associated with
the random effects at the highest level are made increasingly larger, then post-convergemce. the
lag-one autocorrelation for any estimable parameter (or any function of an estimable parameter)
tends to 0. Moreover, if all of the variance components in the model are made increasingly larger,
the overall posterior tends to impropriety. Following Gelfand and Sahu (1999), in this case there is a
unique proper embedded posterior associated with the estimable parameters. Remarkably, the post-
convergence simulation behavior from this posterior is improving with regard to autocorrelation.

The second issue concerns exact sampling. In the Markov chain Monte Carlo context. exact

sampling for a particular parameter means that, regardless of iteration, the simulated value that



iteration is, in fact, an observation from the posterior distribution of the parameter. Again we
show. using both analytical and computational evidence, that if all of the variance components in
the model are made increasingly larger, for any estimable parameter (or function of the parameter)
we tend to exact sampling. In other words, while the overall posterior tends to impropriety so
that sampling its full conditional distributions cannot lead to meaningful convergence for the full
parameter vector, we tend to exact sampling of the unique proper embedded posterior. This result
provides clarification and extension of a result in Section 5 of Gelfand and Sahu (1999).

The format of the paper is as follows. In Section 2 we present an elementary example which is
useful in illustrating all of our ideas. Section 3 presents the formal technical work in the form of
two theorems. Section 4 offers empirical clarification in the Gaussian case with unknown variance
components but familiar prior specifications for these components. Section 5 provides empirical
support for the non-Gaussian case where analytic work is infeasible; illustration is given using a
two-level Poisson spatial model. Finally, Section 6 analyzes a three-level binary response model for

data concerning plant health and the presence of certain species of fungi at fine root apexes.

2 An Elementary Example

A simple illustrative example may be helpful to appreciate the general results of the next section.
Suppose Y ~ N(0+¢., 1) with 8 ~ N(0,03), ¢ ~ N(0, ai) and let 7 = 8+ ¢. By routine calculation,

f(() ‘ @ X )= N(EQ(Y . ¢)7€9) and f(¢ | on) = N(€¢(Y N 0)7€¢)

where ¢p = af /(o7 + 1) and ¢, = U%/(Uz + 1). Also

0 02Y/a oa(1+ ai)/a  —cloy/a
/ Y] =n , :
o a3Y/a ~ajoi/a  as(l+02)/a



2 2 2 2
and f(n|Y)=N (%Y, L“-:&> where a = o2 + ag + 1.

Suppose we implement a Gibbs sampler updating 6 and then ¢, i.e.,
SO, g 101, 60, ¥) = f(g+D) | 64D, y) . f(ge41) | 40, y), )

Then directly, cov(8(+1), 90)|y) = —egeov(¢,0)|Y) from which, at convergence, we have that
corr(UH1 0(0)Y) = ¢pe4. Similarly, cov(p(tH1) pD]y) = —egcov(0H1) 60|y = epcgvar(d]Y)
from which, at convergence, corr(¢(t+1), ¢(|y) = €gey. Hence, severe autocorrelation occurs when
both o3 ‘and o} ——> 00.

On the other hand, cov(n(t1), n(M)y) = cov(8t+1) 1 (t+1) g(8) 4 oY) = (1 - €s)
xcov(§(+1) 00 1 gD|Y) = —¢p(1 - e3){cov(¢®,00[Y) + var(¢(|Y)} = —e€geg/a at convergence.
Henée, if either o} or 03, grows large, a grows large and the posterior aésociation between 1}(‘+1)
and " tends to 0. This illustrates the primary result in Subsection 3.1.

Next, from (1), f(80H), ¢t+1) | 9) 4() ) is bivariate normal, so F(UD | 90 60 v) s
normal. In fact, p(*+1) | 90, ¢y ~ N(eyY + (1 — eg)ea(Y — o), (1 - ¢4)2ep + €). As 0} -
and j — oo, this distribution tends to N(Y,1). But note that, in this case, f(7|Y) = N(Y,1).In
the limit, at each iteration of the Gibbs sampler, we have exact sampling from the posterior of 7.
This illustrates the primary result in Subsection 3.2.

Lastly. it is apparent that, if we reverse the order of updating, drawing ¢ first then 6, all of the

foregoing conclusions still hold.

3 Technical Results

Our general analytic results presume a Gaussian specification for the data. In addition, all

variance components are assumed known. Evidently, priors can be placed on the variance com-



ponents to, for instance, encourage one or more of them to be large. A non-Gaussian first stage
model precludes analytic investigation since the resultant full conditional distributions associated
with the Gibbs sampler are not standard. However, we argue below that, when the likelihood is
approximately normal, our analytic results still apply. As a result, in Section 5 we present a nu-
merical illustration using a Poisson first stage, while in Section 6 we consider a three-stage random
effects model with a binary first stage.

We introduce some notation. Consider the linear model

[ 5

By
Y= (X() XoA] e XoAb) + € (2)

ey
where Y is nx 1, Xg is n X 79 with full column rank, A; is 7o X r;, 3; is a parameter vector of length
ri. and € ~ N(0,1,). For analytic investigation we can set the error variances to 1 without loss of
generality, since we will be looking at the variance components associated with the B; tending to
oc. In practice, we will require priors making other components large relative to the error variances.

Letting X' denote the design matrix in (2) and B3 the concatenated vector of Bi’sin (1), E(Y) =

n=XB= Xo(By+ Liey AiB;). Also

X5 Xy XTXoAr - XTXoA,

i ATX3 Xo ATXTIXoA; - ATXTXoA,

XTx = . . . (3)
AT X3 Xo ATXTXoA: - ATXTXoA,

[t is immediate that the design matrix X arises in any ANOVA specification which is fully nested,

T, e



hence any multilevel model with no quantitative regressors. In fact, it includes general multilevel
models with quantitative covariates and general Laird-Ware (1982) models, as we clarify below
[ollowing Remark 2. It also includes any main effects model which incorporates an interaction
involving all of the main effects. Also, the A; need not be distinct as long as when A; = A; the
prior covariance matrix for 3; is distinct from that for B;. In this way we can accommodate, e.g.,
both spatial and heterogeneity effects (see e.g. Clayton and Bernardinelli, 1992; Bernardinelli et
al., 1995; c.f. Section 5 below) at a given level of the model. In any event, we shall see that X is
always thle. portion of the design matrix associated with the parameters at the highest level.
The'&ptliior speciﬁ;ation is

b

f(B|o*) o exp (—% Zﬂ?%gﬂ;) = exp (— %ﬂTVazﬂ) (4)

1=0

where V2 is block-diagonal with it block Vy2. In (4), the V,; need not be full rank. The prior for

B3; need not be proper. In fact, we will assume that Vo2 = Vi/o? so that o? can be thought of as a

variance component and V,2 — 0 as 0? — co. The priors are “zero-centered” for simplicity in the
T

ensuing calculations, and as is typically the case in practice.

3.1 An autocorrelation result for estimable parameters

lollowing Lindley and Smith (1972),

BIY ~ N ((XTX 4 V) 'XTY |, (XTX + Vou)™), (5)



provided the inverse exists. For instance, if b = 1,

T Xg Xo+ V2 XIXoA
2 L o= 9

ATXTXe - ATXTXoAq + V,2

whence |XTX 4V »

= 'AY(’{XO + Vag

BEXTXOK: '+ Vo2 — AT XT Xo(XT X0 + Vo2) 71 Xg XoAq|.

If 0§ — oo (as we will want below), this simplifies to IX({ X0’ V,2| so B|Y is proper only if V; is
nonsingular.

We require some further notation. Let Qo? = ATXT XoA; + Va?, t = 1,...,b with Qag =
XJXo 4 Vag. Also let Y(;) = Y — Xo(B, + 22iQiBj) =Y — XB+ XoA:B;, i = 1,....b with
Yo =Y-Xo Z?zl Aifi =Y — XB+ XyBy. Then the full conditional distributions for the B’s

are:
BilBj j#1i, Y ~ NQJATXTY,, 7)), i#0, and
. ‘ [ v (6)

Bo | Bsy §#0, Y ~ N(QZ X{'Y (o), 07) -
Using standard matrix identities, e.g., Rao (1973, p.29) we can write (X7 X 4 Vg2)~! in (5) as

Wy i WAl
(7)
— Ag2 Wyt g% + Ag2W5 AL,
where ‘I‘() = ‘Q"ﬁ e ,X}?/\})A(O)AJZ, AO = Qo,_ng(;)FXOA(O)y and AG-Z = QE.IQA:(ZE))Xg‘XQ. Here. A(O) e
(N Ay ) and Qg2 = A(TO)XOTXOA(O) + V{o), with V(o) block diagonal having blocks “';'_2,
2

¢ =1....0. Note that, as 0§ — o0, Ag — A(o)-

Now suppose we are at convergence so that

FBD 1Y) = N (XX + Voa) ' XTY, (XTX 4 Vga) )



We implement a Gibbs sampler, updating the B’s in any order, but updating B last. (By relabeling
the B,;’s we can. without loss of generality assume the order is B1,B,, <y B3y.) Then
b b
cov (ﬂff“) +3 A8, g 4 ZAiﬂft)lY) = cov (ﬁc(yt“) + A(o)ﬂgff{l), 4 A8 IY)

(0)

(8)

where ﬁ{(;) = (B7,..,87). But then, using (6), (8) becomes

o (= 408051 + 8B, BY + 0B 1Y) = (A Ao)eov (5" B8+ ABE) 1Y)

| ©)
Hence, as 02 — o0, equation (9) — 0. In fact, more detailed calculation shows that, at whatever
stage we update 3, the covariance calculation in (8) introduces a (A(o) — Ao) term so that again,
as 0§ — 00, equation (8) approaches 0. Hence we have the following result.

Theorem 1. For the model in (2) under the prior in (4), if we implement a Gibbs sampler
which updates the blocks, B;, in any order, then provided (5) exists, after convergence co'm’(n(‘ﬂ),
1Y) —0as ol — x.

In-other words, once the Gibbs sampler has converged, if o§ is large, successive iterates of 7,
hence of any estimable function, hence of any function of an estimable function, will be apPproxi-
mately uncorrelated.

Remark 1. Note the distinct role played by o2 above. If we define A; = Q;?IA;IXg_X'OA(i)
where Ny = (1 xr0- A1, o Ai1, Aig, ey Ay), as 0 - 0, A; — (A?XgXOA,-)‘lA;IXgXOA(,-)
# A(). Hence. in (8).if, for instance, we update B; last and factor out Auy — A analogowsly to
(9). we do not obtain covariance tending to 0 as 02 — oo. However, in the special case where, for

some 1 # 0. A; = T then as 02 — o0, equation (8) does tend to 0.

Remark 2. Suppose, for example, we update By first. Then cov(ﬁétH),,B(()”[Y) = ApAg:-W5L,



From (7). cov( ét) (£) |Y) = cov(ﬁ(tH) (H'l) | Y) = Wy, To study the correlation between,
L AU and 31 we need to investigate (Wy ')z and (AgAg2 Wg ' )ee. This is more easily done

or (V4

using an alternative form of (7), again obtained from standard identities,

Q;gl + AoVig AT —AoVp)

—1 4T -1
~Vio) 40 o)

provided Vf] exists for 1 = 1,2,...,b.
Hence, as 0f — oo, W' = Q7 + AOV(O)‘AT — (XTI Xo)™ ' + A(O)V(O;A(TO) = (XTI Xo)?
0

PO AiVa;‘A?. Also, AgAg2W5t = AoV~

) AT Awo)Vio

0 A0) = TiAV5'AT. We see that i,

in-addition, any ¢? — oo then corr(ﬂ(H'1 (()? | Y) — 1. More detailed calculation shows that
this l'es;llt. holds.rega.rdl‘ess of updating order. We can also show that if 02 — oo and o} — oo,
('01('}(’“).,}1,{) |Y)—1
The model in (2) is more flexible than might first appear. For instance, consider the general
two stage multilevel linear model
¥ =Xin,; + €,
(10)
m=4iy+v,1=1,..,1
where Y, is n; x 1, X; is n; X mg with full column rank, 7, is mg x 1 and €; ~ N(0,0 2Lm;xn; )- Also
Ziis mo X my,yis my X 1, v; ~ N(0,0%H,) and finally v ~ N(O,U%H,y).
Next. let YT = (YT, 2 YF) let Xo, Bn; x I'mg, be block diagonal with ¢** block X; and let

Bl = (vl ... ) Iinally, let Ay be I'mg x myq, such that AT = (ol ZIT) and let 3; = v. Then

10



(10) can be written as

Bo
Y:(Xo X()Al) + €.

B
Here \-'(,g = %l where V, I'mg x I'my, is block diagonal with blocks H;1!and Vaf = a—lgH; L Hence,
Theorem 1 applies when o2 is large relative to az.

The extension to a general three stage model is apparent but we give brief details to provide

structural clarification. Now, let

Yij = Xymi; + €5,
Mi; = ZijY; + vij, and (11)

¥ = Wib + u,;.

The extended form for (11)is Y5 = XijZijM6+X;jZijui + Xijvij +€;. In (11)‘, Y;jis myj x 1,
t= 1o j = 1,0y Xij is nyg X mo, m;; is mo x 1 and € ~ N(O,azInijxn,.J.). Now, Z;; is
mo X my, y; is my X 1 and v;; ~ N(0,02H,). Lastly, W; is my x my, Bi» M1 X 1, ~ N(0,02H,,)
and § ~ N(0,02Hs).

Again, concatenating the Y;;’s into a column vector Y, let Xo be block diagonal with blocks

Xij and concatenate the v;; into a column vector Bo- Next let

Z1T1 ZITJl 0 -« 0 - 0 .- 0

T T
N o -~ o zIL ... Z3;, o 0 o0
0o .- 0 o ... 0o ... Z1T1 Z}[J,

Let By concatenate the g, into a column vector, let vl = (wf, ey WF), and let By, = 8. Then

11



(11) can be written as

Bo
Y = (X() XoAl X()AI‘III) ﬂl + €.

B

Again, Theorem 1 applies when o2 is large relative to a2,

We remark that, for models such as (10) and (11), Gelfand, Carlin and Sahu (1995, 1996) ar-
gued that a “hierarchically centered” parametrization would typically provide a better behaved
Gibbs sampler. For instance, in (10), (M1 --,m1,7Y) would be preferred to (v1,..,v1,7), ie.,
(Bo + Aibpﬁﬂ to (By,B;). Similarly in (11), (1152 M1gs V15 -0y Y1, 6) Would be preferred to
(V115 oy VLI By, s 11, 6), s, (By + A48y + A1948,, B1 + ¥18,, B;) to (By,B1,8,). Theorem 1
only applies to the vector of highest order hierarchically centered parameters.

To conclude this subsection we note that (2) will include certain models of the form
Yi:X,'a+Zi,3i+€i,:1....,I, (12)

the so-called Laird-Ware (1982) models. We provide two illustrations.

In the first case, suppose that X;, n; X p, is nested with Z;, n; x (p+4q),ie., Z; = (X; U;).
Then if X¢ is block diagonal with blocks Z;, if By collects the B; into a vector, if A is Ip+q)xp
of the form

Air - (Ipxp Oqu Ipxp Opxq - 'Ipo Opxq)’

and il B, = a then (12) becomes Y = (Xo XOAI)(ﬂ") +e.

Alternatively, suppose X; = 1,1 - X7 where X; is p x 1 and suppose the first column of Z;

consists of 1's, i.e., Z; is m; X (14 ¢) such that Z; = (1 Z;). Then again let Xy be block diagonal

12



with blocks Z; and let B, collect the 3; into a vector. Now, if A is I(1 + ¢) X p of the form
Al = (X1 Opxqg X2 Opxg X7 OPX(I)

and'if By = a then again (12) becomes Y = (Xo XoAl)(’g“) + €.
1

3.2 An exact sampling result for estimable parameters

Returning to the general setting of equations (2) and (4), we extend an exact sampling result
which appears in Gelfand and Sahu (1999, Section 5). Recalling (5), let Qg2 = XTX + Vo2 Also,
let XTX :L— U where L is the lower triangular part of X7 X including all of the diagonal elements
and U is obtai‘uedbby subtraction. Then Qg2 = Lg2 — U where Lg> = L+ Vga. Updating i the
order (By, By, --.,3,), Roberts and Sahu (1997) show that the Gibbs sampler transition kermel is
given by

BN BY, Y ~ N (BozBY +bg2, Q54 — BgaQz4BL.) (13)

where Bys = L _LU and bz = (I — Bg2)Q55XTY. They also show that the rate of convergence
of the Gibbs sampler is given by the maximum modu}us eigenvalue of Bg2.

Il all 0 — oo, the posterior distribution of B approaches an improper distribution. Since the
full conditional distributions are proper, by direct calculation, the above transition densitx still
remains valid in the limit if we replace Q;lz by a generalized inverse of X7X. However, following
Gelfand and Sahu, n =X8 = Xo(8, + 2_: AifB;) has a unique proper posterior distribution even as
min; o2 — oc. Theorem 2 describes what happens to the Gibbs sampler asymptotically.

Theorem 2. Suppose that a Gibbs sampler with the target density f(B|Y)in (5)is run with

a customary sequential updating scheme. Suppose further that L as defined above is such that L1

13



is a generalized inverse of Q = XT X, j.e.,
QL™'Q = Q. (14)

Then the Gibbs sampler on the full parameter vector 3 becomes divergent as min; 02 — oco. In this
limiting case. the iterates n(*) are an exact sample from the unique density f(n|Y).

Note that, because .Y is not of full column rank, in the limit (5) becomes improper so the first
conclusion follows. Also note that the second conclusion implies that, in the limiting case, the
Gibbs sampler produces identically distributed draws from the posterior for 7. The improper prior
specification for 3 results in a Gibbs sampler which yields exact samples for the proper posterior
of any estimable function and hence, any function of an estimable function.

We now j)rove the second conclusion. Straightforwardly, in the limit, the unique proper posterior
for n is

fn]Y) =N (XQ X7y, XQ~X7) )

for an arbitrary generalized inverse Q.
Next. note that L~! always exists due to the propriety of the full conditional distributions. Let
I3 = L', It is apparent that B is idempotent if and only if (14) holds. In fact, (14) holds also if

and only if X B = 0. Since Bg2 — B as min; 0% — 00, X Bg2 — 0. From (13), for any o? we have

I

' BYY ~ N (XBorpY + Xbos, X(Q5h - Be2Qgh B)XT). (16)
Letting min; 0% — o in (16) with lim,2_, Qg = L', we obtain (15) with Q— = L-!. That is,

for each t. the distribution of n(%) is the posterior for 7.

‘To summarize our two results, Theorem 1 states that at convergence, weak association between

14
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7"+ and ") arises as o2 grows large. Theorem 2 states that if ¢ll the o? grow large, for each ¢,

n'"Vis approximately a sample from f(m|Y).

3.3 The non-Gaussian first stage case

Suppose the first stage specification for the data is not Gaussian but a usual one parameter
exponential family so that a generalized linear multilevel response model arises. If the joint posterior
for B is approximately normal, we would expect Theorems 1 and 2 to still roughly hold.

The logic is as follows. Suppose that the likelihood is approximately proportional to exp{—(ﬁ -
B (XTM1X)"Y(3 — B)/2} where B is the MLE and M is a diagonal matrix with M;; equal to
the square of the derivative of the link function evaluated at the estimated mean of Y; multiplied
by the variance function evaluated at the mean of Y; (see, e.g., Agresti 1990, pp-448-449). Then

with the prior in (4) we have that 3 | B is approximately distributed as
N (XTM7IX + Vo2) " XTM I XB , (XTM™'X + V0 )™, (17)

analogous to (5). Since Y is treated as fixed, if )?0 = M‘%Xo, then XTM“.IX is identical to
(3) with Xo replacing Xo. Thus the calculations regarding n defined in Subsection 3.1 apply
approximately here.

With regard to Theorem 2, if the target posterior is approximately normal, the Gaussian approx-
imation approach (Sahu and Roberts, 1999) anticipates a similar continuity with regard to exact

posterior sampling of . Indeed, in Subsection 3.2 we need only replace XTX with XTM-1X.

15



4 Computational Findings with Normal Data

There seems little henefit in routine numerical illustration of Theorems 1 and 2. Of greater
practical interest is whether these results continue to hold when variance components are unknown,
particularly when the prior for the component is imprecise but with a large mean. In such cases,
amalytical calculation becomes intractable. As a first illustration of this, consider the usual balanced

ome-way ANOVA model

Yij = p+ a; + €, t=1,...,k j=1,...,m, (18)

2 N(0,1). Similarly to Subsection 3.1, (18) is of the form in (2) with X being block

w]hefe &y
diiagonal having blocks equal to m x 1 column vectors of i’s, Aj being a k x 1 column vector of 1’s,
B = (aq,... ,C\'/\._)T, g.u(l By =

Turning to the prior, we assume a; 9 N (0,02), and g ~ N(0, o?) independently ofv the o;. In
thve notation of (4), this means Vo = I and V; = 1. We use the BUGS language (http: / /www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml) as our computational engine. This packa‘g‘éb mé,l;;é the nec-
essary programming essentially trivial, but does require a reparametrization to Ty = 1/0% and
7. = I/o?, with gamma priors for each. We use the notation 7 ~ G(a,b) to denote a gamma
distribution with mean a/b, and IG(a,b) to denote an inverse Gamma distribution with mean
bj(a — 1). Markov’s inequality is useful in suggesting priors to encourage o? large or small. That
is. “Pfo% <ie) 2 "Plrdslge L)oe cafb. So if a/b is small, e.g. a/b = 10~2 and ¢ = 10, then
P(a® > 10) > .9. Also, if a > 1, P(o? > ¢) < bf[(a—=1)c). Soifa=2,b=.1and ¢ = 1, then
Pia? < 1) > .9.

We thus consider four illustrative specifications for the pair (Ta» Tu), where in each case 7, and

., are a priori independent:
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[T observations Y;;, j = 1,...,10

FpoLHT -0.331 0 2,673 0.288 —0.955 —0.247 1.795 -0.481 -0.841 0.867
21 -1.09%  0.100 -0.022 0.520 0.305 1.650 0.153 0.808 0.886 0.854
3 1594 1975 1722 0215  1.102  1.427 3.355 2.339 0.684  0.450
4 -L775 0 -1.678  -2.638 -1.217  0.915 -0.399 -1.011 -2.307 0.636 -1.016
5] 0263 -0.246  0.962 0.041 0.656 1.319 0.427 2.441 -0.259  1.985

Table 1: Illustrative generated dataset, oneway ANOVA model.

(i) T ~ G(2,2), T ~ G(1000, 1)
(ii) T‘,NG'(Z,2), Ta o ‘Gf(2, 100)
(iiij: TIN G(2, ioo)_, r; : G(2,100)
(iv) 7, ~. G('y,'y), T ™ 6(7,7), for v = .001

(Case (i) roughly meets the conditions of Theorem 1, while Case (i) is very far from these conditions
(P(af < .1) > .99). Case (iii) roughly meets the requirements for Remark 2. Case (iv) is a typical
“default” specification in BUGS, yielding a prior which is quite vague and nearly irqpro;lief."

In our investigation, we take k = 5, m = 10, and generate an lllustratlvedatasetfrom the

model (18) with 4 = 0 and 7, = 1. The resulting data are shown 1n Tablel, z;,nd a.rlse from a
sampled « vector of (0.391, 0.320, 1.265, —0.918, 0.622). Initializing the mean paJr%héters to 0
and the precision parameters to 1, we used BUGS to produce a single chain of 10,000 samples from
+ the joint posterior distribution, following a burn-in period of 1000 iterations (more than sufficient
for the chain to be in ifs post-convergence steady state). Table 2 gives the resulting lag 1 sample
autocorrelations for y, ay, and 9, = p + oy under each of the four prior specifications listed above.
As expected, the post-convergence 7, chain is essentially uncorrelated in Case (i), but similarly

small 7, correlations are seen in all four cases. In Case (iii), the correlations in the 1 and a; chains

arc very near |, in concert with Remark 2. Finally, the BUGS default prior leads to correlations
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case: (i) (ii) (iii) (iv)
prior for 7,: | G(2,2) G(2,2) G(2,100) G(v,7)
prior for 7o: | G(1000,1) G(2,100) G(2,100) G(y,7)

It -.00769 L0 996 871
oy .0129 .891 .982 494
m -.0169 -.00504  -.00437  .00237

‘lable 2: Post-convergence lag 1 sample autocorrelations, oneway ANOVA model, with priors for
7, and 7, as indicated (in Case (iv), v = .001).

rather intermediate to those in the preceding cases.

5 A Poisson Regression Example

In this section we investigate whether the implications of our theorems still hold when we depart
from the normal errors setting. In particular, we consider a spatial Poisson model that features
the identifiability and overparametrization issues present in model (2). Let Y; denote the number

iy . g 4. itd by i : A
of disease events in region i. We assume Y; '~ Poisson(E; exp(7;)), where E; is a known ezpected

number of events, and thus 7; is the log-relative risk of disease in r‘egibi z,modeled linearly as

PR RT TN W L I E B (19)

Here yu is an overall intercept, and 8 = (6y,...,0,)T and & = (¢1,...,¢0)T are vectors of region-
specific random effects capturing regional heterogeneity and cluétering, respectively (see the prior
specification below). Clearly the mean structure in (19) can be written in the general form used
in:(2) by letting Y. = (¥, . L. %0, G, = 8, B1 = ¢, B2 = p, and subsequently setting Xy = I,,,
Ay = Land-Ng =15

Turning to the prior specification, all three model components are given Gaussian specifications,

namely jo~ N(0,1/7,), 0; iy N(0,1/m), and ¢; ~ CAR(7.). This lattermost notation refers to a
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conditionally autoregressive specification in which ¢; | $izi ~ N (m% 25 adji Di > Eilr_c) , Where m; is
t e number of regions adjacent to region i, and the sum in the prior mean is taken over these regions.
B-sag (1971) showed that this formulation is equivalent to an (improper) joint multivariate mormal
iztribution for ¢p. The CAR prior is translation invariant, so a sum-to-zero constraint Y1 =0
i~ 1vpically imposed. A fully Bayesian model specification is completed by specifying fixed walues
or prior distributions for each of 7,,7,, and 7.. Appropriate choices in this regard (seeking a “fair”
prior balance between heterogeneity and clustering) are discussed in Bernardinelli et al. (1995),
Best et al. (1999), and Carlin and Pérez (2000).

To illustrate this model, we return to the oft-analyzed Scottish lip cancer data of Claytom and
haldor (1987). This dataset provides observed and expected cases of lip cancer in the 56 districts
of Scotland_fér 1975-1950. Eberly and Carlin (2000) investigate convergence and Bayésia,n learning
for this dataset and model, using fixed va,luesbfor Tus Thy and 'rc.‘ We investigate Theorems 1 and 2

n=ing several mutually independent prior specifications for these three parameters,‘ namely |
i) 7~ G(2,2), T ~ G(1000,1), 7. ~ G(1000, 1)
i) T~ G(2,2), T~ G(2,2), T ~ G2, 100)

i) 7, ~ G(2.2), T~ G(2,100), 7, ~ G(2,2)

PIV) T~ G2, 100), iy ~ G(2,100), T ~ G(2, 100)

V) T~ G(10,10%), 7, ~ G(.001,.001), 7, ~ G(.1,.1)

tvi) 7~ G10.10°%), 7, ~ G(3.2761,1.81), 7, ~ G(1, 1)

Here Case (i) fails to meet the conditions of Theorems 1 or 2. Cases (ii) and (iii) roughly satisfy
thie conditions of Theorem 1, with B, = ¢ in (ii) and By = 6 in (iii) so we can compare these two
»asible choices. Case (iv) meets the conditions of Theorem 2. Case (v) is the “fair” specification
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case: (i) (ii) (iii) (iv) (v) (vi)
prior for 7,0 | (/(2,2) G(2,2)  G(2,2)  G(2,100)  G(10,10%) G(10,105)
prior for 7,2 | (1000,1)  G(2,2)  G(2,100) G(2,100) G(.001,.001) G(3.2761,1.81)
prior for 7.: | G/(1000,1) G(2,100)  G(2,2) G(2,100)  G(.1,.1) G(1,1)

1 956 .996 .998 1999 .999 .998

fas | —.00392 744 810 956 198 441

bag 994 891 .950 975 956 .954

128 134 -.0266 -.0133 -.0177 -.00379 -.0712

d, 696 719 837 951 179 .500
dy | .00499 724 770 .950 254 413
s 322 -.0411 -.0127  -.00687 .0330 -.0571

Table 3: Post-convergence lag 1 sample autocorrelations, Scottish lip cancer data model, with priors
T, and 7. as indicated.

tor 7,
recommended by Best et al. (1999), while Case (vi) is an alternative such specification proposed
ba Carlin and Pérez (2000). Note that neither of these two papers uses a prior for 7,; the above
specifications for 7, in these two cases essentially fix 7, = .0001.

Initializing all the parameters to 0, we again used BUGS to produce a single chain of 10,000
samples from the joint posterior distribution, following a burn-in of 1000 iterations (a period which
again appears more than adequate in all cases). Table 3 is pertinent to Theorem 1, showing the
lag 1 sample autocorrelations for four model parameters, K, 28, 028, P28, and three parameter
comtrasts, dy = ¢ — ¢1, dy = 038 — 01, and d3 = 78 — 7. (The 56 counties are arranged in
increasing order of crude disease rate, so county 28 was selected as an “average” county.) Note
riiat. of these seven quantities, only 7yg and ds are estimable. The results are similar to those in
Table 2 above. Autocorrelations are higher for 7,5 and ds in Case (i), but low in Cases (ii), (iii),
and (iv), in concert with Theorem 1. The two “fair” specifications given in Cases (v) and (vi) also
sem Lo produce acceptable autocorrelations for these two estimable parameters, and slightly lower
antocorrelations for s, di, and dy than in Cases (ii), (iii), and (iv).

We illustrate Theorem 2 by comparing trace plots and kernel density estimates (KDEs) for
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M- 1ps, and s using iterates 1-1000 to those using iterates 10,001-11,000. We use Cases (1) and
(iv). and initialize all the chains to “bad” starting values far from the true posterior (u(o) = ¢£0) =
(),(-0) = -3, and T,(,,O) = T,(LO) = TC(O) = 1) so that any resulting slow convergence will be apparent in
the plots.

IYigures 1(a) and (b) compare the results for Case (i). The burn-in period is clearly visible in
the former, and the KDEs pairs look rather different. Figures 2(a) and (b) consider Case (iv).
Now convergence is essentially immediate, and the sample trace and KDE pairs look very similar,

()

suggestingj"tha.t the 7; * are roughly draws from their true posterior for every t.

6 A‘Binvary, Response Three-Level Example

We turn to an illustration of our results using a three-stage multilevel generalized linear model
where the response variable is binary. In particular, the response concerns the health statas of
root apexes of oak trees from the Mesola forest in the Veneto region of .northea,stei‘n Italy. Full

description of the dataset along with the questions of interest and a thlorough_ ddt‘é,:‘a,nélyéis, using

multilevel models, is provided in Trevisani ( 1999).

Here we consider a portion of the data consisting of trees classified as nondeclining,. We are
naturally led to a multilevel structure. That is, for the nondeclining class, 5 trees were randomly
selected. The area helow the crown of each tree was partitioned into 6 sectors. Within each sector,
15 roots were randomly drawn. Finally, within each root 15 apexes were examined, starting at the
distal part, for presence of ectomyéorrhization. Ectomycorrhiza is a gymbiosis occurring 'a,t the fine
root apexes of the trees with some species of fungi, which improves uptake of water and nutrients
and as a result, resistance to stress. Also recorded is the vitality of the apex as a binary response

(I' = healthy, 0 = not). The primary objective of the study is to examine the relationship between
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vitality and ectomycorrhization.

Almost surely. the responses at the apexes are not independent. Correlation is introduced
thirough sector level and root-within-sector level random effects. Covariate information at the apex
level is a (centered) indication of ectomycorrhization. At the root level a centered and scaled
root length is recorded as well as a categorical measure of extent of mycorrhiza (the number of
apexes) having 4 categories: 0, 1-7, 8-14, and 15. Dummy variables are introduced for the last
three categories; order is ignored. F inally, a sector-level classification, to reflect root distribution
of ectomycorrhization, is introduced.

Iiénce, the model becomes:

Pij _

log —E4 _ — X..m ..
ogl_pij 15745

where p;; is 15X 1 with entries Pijk denoting the probability of vitality status = 1 for the kt* apex
in the j* root in the it sector. Xi; is 15x2 with the first column consisting of 1’s and the second

off _v‘{;,'_,-;‘., the apex level ectomycorrhization indicator. ;5 18 2x1 with
Nij1 = P1¢ij1 + P2¢ij2 + @3ciz + pali; + vi1 + Vij1,
Nij2 = Yi2 + Vija.

Heore (7,, is the standardized root length, the ¢i;’s are the root level dummies and vij1 and v;;o are

root-within-sector random effects. Finally,

Yir = 61 + 828; + 4y,

Yiz = 63 + 648; + pia,

where s; is a dichotomous measure of sector level mycorrhizal distribution and p;; and Miz are

sector level random effects.
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prior case: (1) (ii)
by 0.5140  0.9960
04 0.5220  0.9880
V111 0.0115 - 0.2830
V112 0.0144 0.2220

g1 | -0.0010 0.9870
L1 -0.0059 0.9790 .
d; 0.1830 -0.0082
dy 0.0490  —0.0042

Table 4: Po_st-convergence lag 1 sample autocorrelations, three—level forest data model.

quallehng Subsectlon 3 1, ‘but omrttmg details, we: may wnte the mean vector on the logit

VISR

wcale as Xgﬁo + XgAlﬁl + X0A2ﬂ2 - X0A3ﬂ3, where ﬁo is the set of vij1’s and vyj9’s, B, is the

et of pjy’ g and /rﬂ ’s, ﬁ2 = (61,62,63,64) a,nd By = ((p1,<p2,903,<p4) We model v;; = (”:;;) ~

A} ((0),7‘11 ) so that o2 = 1 /'r,, and Vy'is block dla.gona.l w1th,I2x2 as the blocks. Slmllarly,

model p; = Z:‘)) ~ ((0) T_II) so that 01 = 1/1-,‘ and V1 is aga.m ‘block dlagonal with Iy as

blocks. Under a bmar y regressron ﬂ2 and ﬁ3 reqmre proper pI‘lOl‘S to provrde a proper postenor

For illustration, we use multlvarlate normals with mean 0 and dlagonai :olva,rlance ma,tnces which
are a multiple of the diagonal part of the respectlve}asyrrlpbtoﬁc.eo
fitting a standard logistic regre"sisiorl, ignoring all ra,rl__do'rrll;fe}ﬁ'ec'tj‘s.:‘?'"
Note that, with i=1, .?. . 580, 3.7y 4 vyl s and k = 1 | 15 the response vector Y is 6750 x 1.
%hcu ply discerning the qualitative conclusions of Theorems 1 and 2 using this large dataset with
the foregomg complex model will be difficult. Nevertheless, we 1nvestlgate usmg the following fixed
\\*ﬂlues f01 the pree1s1ons Ty and 7,: (i) 7, = - Tu = 1000, and (ii) 7, = 7, = 0.01. Case (i) is far from
the condrtlons of Theorems 1 and 2, while Case (ii) supports both. We keep the variability for B,
and B4 uhchanged in both cases.

Table 4 is pertinent to Theorem 1, showing the lag 1 autocorrelations for eight parameters

of interest. Only dy = log (1 p“u) and dy = log (—?’;111; —pflz;‘l) are estimable. The observable
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patterns in Table 4 from Case (i) to (ii) include a small but decreasing autocorrelation for the
well-identified parameters (particularly d3), and an increase for the level 1 random effects, v;1; and
ii2. the level 2 random effects, 17 and gy, and the fixed coefficients, §, and §,. The generally
low autocorrelation for the level 1 random effects is most likely due to the large sample size.

To illustrate Theorem 2, Figures 3 and 5 show trace and KDE plots of the first 1000 iterations
for the two estimable parameters; similarly Figures 4 and 6 for the post-convergence iterations
4001-5000. Comments analogous to those in the previous section can be made. In Cases (i) and
(ii), adding randomness to 7, and 7, through hyperpriors provides patterns that are qualitatively
similar to those in Table 4 and Figures 3-6, but, not surprisingly, a bit more obscured, and thus

are not presented.
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Iligure 1: Convergence plots, first and last 1000 iterations, Scottish lip cancer data model, case (i)
prior.
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Figure 2: Clonvergence plots, first and last 1000 iterations, Scottish li

prior.
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Figure 3: Convergence plots, first 1000 iterations, three-level forest data model, prior case (i).
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Figure -I: Convergence plots, last 1000 iterations, three-level forest data, model, prior case (i).
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Figure 5: Convergence plots, first 1000 iterations, three-level forest data model, prior case (ii).
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Figure 6: Convergence plots, last 1000 iterations, three-level forest data model, prior case (ii).
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Figure 6: Convergence plots, first 1000 iterations, three-level forest data model, prior case (ii).
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Figure 7: Convergence plots, last 1000 iterations, three-level forest data model, prior case (ii).
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