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1 Introduction

The ideal situation in order to make inference about treatment effect is with ran-
domized trials, however, quite often in many fields, randomization of subjects into
different treatment groups is unfeasible (Oakes, 2004). Thus, the use of observa-
tional data represents a challenge because of selection bias, that happens when the
treated group of subjects differs systematically from the control group, according to
covariates that may also affect the occurrence of the outcome. Indeed, the distri-
bution of covariates among the treatment groups may differ considerably, creating
what is called an unbalanced situation. Thus, in these cases the crucial question
is whether differences with respect to the outcome between treatment groups can
be attributed to the treatment itself, rather than to differences between subejts’
characteristics in the groups (Austin, 2011). This is why methodological techniques
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usually applied to solve this issue are focussed on reaching the balance of covariates’
distribution in the treatment groups. A widely used method to balance the distri-
butions of observed characteristics among treatment groups consists in the use of
propensity score techniques.

The propensity score is the probability to be treated conditional on a set of inde-
pendent variables. Thanks to this method, individuals in different treatment groups
are matched by their propensity score (Rosenbaum, 1987). The propensity score
matching technique enables to adjust for confounders, and contrast only compara-
ble groups of subjects, with similar observed characteristics. Moreover, it presents
also some additional advantages. Assumptions about the functional form of the rela-
tionship between the covariates and the outcome are not necessary with propensity
score matching, so there are few risks of model misspecification. Collinearity among
confounders is not a problem (Harding, 2003) because the adjustment for observable
confounders is managed separately from the estimation of the treatment effect on
the outcome.

Several studies and scientific papers deal with the use of propensity score tech-
niques in presence of a dichotomous treatment, where only two groups of subjects
need to be balanced with respect to covariates. The use of propensity score tech-
niques in multiple treatment frameworks is less straightforward. In the literature
there are few works that estimate the effect of non-dichotomous treatments (Mc-
Caffrey et al., 2013; Lopez and Gutman, 2017; Yoshida and Franklin, 2017; Rose
and Normand, 2019), comparing three or four treatment groups. However, using
propensity score matching is complicated when the number of treatment groups to
consider is huge, because of methodological, interpretative and computational issues.
Indeed, several issues raises in dealing with a multivariate treatment with propensity
score techniques. For instance, it is more difficult to identify a common support for
all the treatment groups, that safeguards the comparisons between them. Also the
computation of the propensity score is less trivial, especially the model specifica-
tion. Moreover, the matching algorithm increases its complexity together with the
number of treatment group considered.

The method we propose consists in a multiple matching based on partially or-
dered sets (poset). We test the Matching on poset-based Average Rank for Mul-
tiple Treatments (MARMoT) with simulations, and prove its utility in balancing
the observed covariates among groups. Our simulation study takes into account 23
treatment groups and shows more than satisfying results, indeed, the MARMoT
approach highly improves the balance of covariates, even starting from strongly un-
balanced situation. As far as the empirical application is concerned, we observed
MARMoT performance with real data considering 10, 23 and 70 treatment groups.
Even with real data the results are satisfactory, especially with 10 and 23 treatment
groups, while in the last case there is still room for improvement.

As a case study, we estimate the neighbourhood effect on hospitalized fractures
among elderly residents in Turin, a city in the north of Italy. The focus of this
paper is on comparison of neighbourhoods with different compositions, indeed indi-
viduals with different fracture risk factors may live in different areas. Our matching
technique enable us to adjust for confounders using a poset-based average rank in a
multiple treatments framework, even when the number of treatment groups (neigh-
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bourhoods) is very high. The main methodological contributions of this paper thus
consist in the proposal of this new matching approach based on poset theory, its
validation in a simulation study and its application to estimate the neighbourhood
effect on hospitalized fractures among individuals aged sixty or more based on three
different geographical partitions.

In the second section we describe the case study, the data analysed, the three
different geographical partitions considered, and the confounders observed. The
methods to balance the observed confounders in multiple treatments frameworks
are described in section 3, followed by a brief introduction to poset theory, and an
in-depth explanation of our original methodological proposal. In the fourth section
we describe the design structure and the results of a simulation that we performed
to test the reliability of our original proposal. Section 5 illustrates the empirical
application with real data, comparing different geographical partitions.

2 Case study

During the last 20 years, there has been growing interest in the effects of context
on individuals’ lives (Arcaya et al., 2016), prompting important new research in
social epidemiology. Such effects are usually called “neighbourhood effects” and were
defined by Oakes (2004) as the independent causal effects of neighbourhoods on a
given health or social outcome. In the literature, the term neighbourhood is often
used to delineate individuals’ immediate residential environments and the material
and social characteristics of these environments that presumably have an impact on
personal outcomes (Diez Roux, 2001). Various types of outcomes are considered,
such as life course events (Rabe and Taylor, 2010), educational achievement (Leckie,
2009) or health outcomes (Cubbin et al., 2000; Pickett and Pearl, 2001). The last
of these are the most often analysed, and concern mental health (Mair et al., 2008;
Truong and Ma, 2006), early childhood health (Christian et al., 2015), all-cause
mortality (Meijer et al., 2012) and older people’s health (Roux et al., 2004; Yen et al.,
2009). Risk factors of health attributable to neighbourhood include deprivation,
walkability, food environment, air pollution, crime and social cohesion (Arcaya et al.,
2016).

Interest in the neighbourhood effect on hospitalized fractures among over-60-
year-olds stems from a real need expressed by Turin’s Epidemiological Service.
Neighbourhoods may affect elderly fracture rates in two main ways: they may be
difficult to walk around, or have inadequate street lighting, and thus increase the
risk of falls; and/or people living in the area may be discouraged from engaging in
physical activity, and their muscle tone and bone structure consequently deteriorate
(Ambrose et al., 2013; Barnett et al., 2017; Sànchez-Riera et al., 2010). The focus
here is on people over sixty, partly because of their greater exposure of hospitalized
fracture, and also because they are assumed to be a more stable resident population.
Indeed, some researchers have found older people more susceptible to neighbourhood
effects because they spend more time in their neighbourhoods than younger people
(Melis et al., 2015; Turrell et al., 2014). Older people are also less likely to move
house (the annual rate for the observed population was only around 1%).
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2.1 Turin Longitudinal Study

The data used in our analysis come from a longitudinal study conducted in Turin,
that gave rise to an integrated database, which combines administrative data flows
on residents drawn from censuses and population registry with health data flows
(hospital discharge records, prescription charges and exemptions, and territorial drug
prescriptions). The hospital discharge records contain information on the patient’s
diagnosis, admission modality (emergency, compulsory, voluntary), and dates of
admission and discharge. The prescription charges database lists all exemptions
from payment of health services to which some patients are entitled due to chronic
conditions or low income. The territorial drug prescriptions database contains details
of prescribed drugs, the quantities involved, and their classification (based on their
therapeutic, pharmacological and chemical properties). The census data includes
not only basic demographic details, such as age, sex, and place of birth, but also
some important information about individuals’ socio-economic status, such as their
occupation, education, home ownership, and family composition.

All these different data sources have been pooled together over time. Starting
with the censuses and population registries available in 1971, Turin’s residents have
been registered and tracked as a historical migration dataset, considering all move-
ments of individuals living in Turin for at least one day from 1971 onwards (Costa
et al., 2017). Several other data sources were added over time, such as the cause of
death archives in 1971, the cancer registry in 1985, the hospital discharge records in
1995, drug prescriptions data in 1997, and so on.

2.2 Examined population

The study population consists of all individuals considered in the 2001 population
census, aged 60 or more as at 31st December 2001. In order to be able to collect
information on possible confounders represented by past health-related information,
we focus on individuals living in Turin between 1st January 1997 and 31st December
2001. We measure the outcome, i.e. hospitalized fractures, during the year following
the census (i.e. 2002). We therefore limit our analyses to individuals who lived in
Turin throughout the year 2002. Our study design enables us to measure the time-
varying confounders prior to the treatment, which is measured before the outcome is
observed. In this application, we focus on assessing the differences in the proportion
of individuals experiencing at least 1 hospitalized fracture in 2002 among populations
living in different neighbourhoods at the time of the 2001 census.

2.3 Neighbourhoods

The city of Turin can be split into 10 districts, 23 areas, or 94 zones, considering
neighbourhoods that might affect health (Arcaya et al., 2016). The three partitions
may relate to different living conditions (deprivation, walkability, crime, and social
cohesion) and population characteristics, but the three geographical layers are only
partially hierarchical. For instance, the same zone may belong to two or more areas,
or districts.
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Table 1: Distribution of the population by geographical partition.

Partition Minimum 1st Q. Median Mean 3rd Q. Maximum

10 Districts 10608 18777 21897 22583 29107 33072
23 Areas 3584 7976 9609 9819 12606 18089
94 Zones 3 625 1870 2402 3876 7758

Table 1 shows some summary statistics of the sizes of the populations in each
geographical partition. The ten districts have an average population of 22,583, with
the least populated accounting for 10,608 individuals, and the most populated for
33,072. The populations of the areas range between 3,584 and 18,089, with a mean
area population of 9,819. The number of individuals living in each zone varies even
more.

In our empirical analysis, we compare proportions of hospitalized fractures among
neighbourhoods considering the three geographical partitions. In the case of the 94
zones, however, we needed to reduce the neighbourhoods considered because some
of them were too small, as shown in the last row of Table 1. We therefore excluded
zones with a population of less than 625 (corresponding to the first quartile of the
distribution of zone populations). The number of individuals living in the zones
thus discarded accounts for only 3% of the whole population, and the final number
of zones considered is 70. For the sake of brevity, in the simulations we focus on the
intermediate partition, i.e. the city divided into 23 areas.

2.4 Variables

Based on the literature on neighbourhood effects on older people’s health (Roux
et al., 2004; Yen et al., 2009), we consider the following variables as possible con-
founders: gender, age (considering five-year age brackets: 60-64, 65-69, 70-74, 75-79,
80 and over), region of birth, family composition, educational attainment, last known
occupational condition, and home ownership. The region of birth is coded, distin-
guishing between individuals born: in Piedmont (the region to which Turin belongs);
in other regions of northern Italy; central Italy; southern Italy or islands; or outside
Italy. The variable representing family composition combines marital status with
the number of components: living alone; married and living only with partner (fam-
ily of two); unmarried and not living alone (family of two or more); married and
living in a family of more than two people. The last known occupational situation
is a variable obtained from the census data from 1971 to 2001, and aims to capture
the last type of occupation prior to retirement. This was not possible for some
individuals because they were already retired in 1971 (or in all the censuses con-
cerning them), or they were not working for other reasons. The occupation variable
distinguishes between the above-mentioned case and home-makers, entrepreneurs,
white-collar workers, and manual workers.

The percentage of hospitalized fractures in 2002 is quite low, at 0.9% of Turin
residents over 60 years old, with some differences between neighbourhoods. The
percentages of the outcome considered vary between 0.67% and 1.18% among the
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different areas.

3 Methods

Propensity score techniques are used to approximate a randomized trial with ob-
servational data. Unlike other techniques in which the analyst models the outcome
given all measured confounders and treatments, the propensity score approach fo-
cuses on modelling the treatment allocation process (Williamson et al., 2014). How-
ever, the treatment allocation model needs to be well specified and should include
all confounders.

3.1 Propensity score techniques

Before describing how propensity score methods are used in the multi-treatment
case, we consider the simple case of a binary treatment, i.e. a situation with only
two neighbourhoods, that we call 0 and 1.

Two fundamental variables are associated with each individual: a binary variable
T that represents the dichotomous treatment and takes a value of 1 if individuals
receive treatment 1 (lives in neighbourhood 1), or 0 if they receive treatment 0; and
the outcome variable Y . Each individual i also has a pair of possible outcomes, i.e.
Y0i and Y1i, which are respectively the outcomes under the treatments T = 0 and
T = 1. Each individual receives only one of the treatments (the control treatment or
the active treatment) (Austin, 2011). The effect of living in neighbourhood 1 for the
individual i is τi = Y1i − Y0i, i.e. the difference between the outcome for individual
i who lives in neighbourhood 1 and the outcome for the same individual if he/she
were living in neighbourhood 0 (Holland, 1986).

In practice, it is impossible for the same individual to live in two different neigh-
bourhoods at the same time, so we can only observe one potential outcome, which
corresponds to the allocated treatment for each individual. This is called the “fun-
damental problem of causal inference”.

In order to use propensity score methods, some assumptions to estimate a causal
effect are needed, as regards: temporality (the selected treatment T must occur be-
fore the outcome); and the strong ignorability, which is composed of two assumptions,
unconfoundedness and positivity; and the stable unit treatment value assumption
(SUTVA). Based on the assumption of unconfoundedness, the potential outcomes
(Y1, Y0) are independent from the allocated treatment (T ), given a set of observable
variables X, which are unaffected by the treatment, Y1, Y0 ⊥⊥ T |X. This assump-
tion is also known as “selection on observables” because it amounts to assuming
that there are no unmeasured confounders, since all the variables involved in the se-
lection process have been observed, measured, and included in the propensity score
computation. The positivity (or overlap) assumption requires that any individual
have a positive probability of being included in the treatment or control group,
0 < P (Ti = 1|Xi) < 1. The SUTVA includes two assumptions: the no interference,
and the stable unit treatment value assumption. According to the SUTVA, the po-
tential outcomes for any unit do not vary with the treatments allocated to other
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units, and, for each unit, there are no different forms or versions of treatment level
leading to different potential outcomes (Imbens and Rubin, 2015).

However, if the interest of the research is just focused on a controlled descriptive
comparison, the only assumption that is fundamental is the overlap assumption
that reassures about the comparability of groups. In this framework it is possible
to define a more general estimand (Li et al., 2013) that we are considering in our
analysis. As an adaptation of the estimand proposed by Li et al. (2013), we define
the Average Controlled Difference among Groups on the treated (ACDG) as the
expected difference in the outcome among the two neighbourhood for those who live
in neighbourhood 1:

ACDG = E(Y1 − Y0|T = 1) (1)

In words, this estimand can be interpreted as the difference between the average
outcome for those who live in neighbourhood 1 and the average outcome we would
observed for these people had lived in neighbourhood 0.

To be able to include all the observable confounders, we may have to deal with
a large number of covariates. This problem is called the “curse of dimensionality”,
and it can be solved by using a so-called “balancing score” (Caliendo and Kopeinig,
2008). A balancing score, b(X), is a function of the observed covariates X such
that the conditional distribution of X, given b(X), is the same for treated (T = 1)
and control (T = 0) units; in other words, X ⊥⊥ T |b(X) (Rosenbaum and Rubin,
1983). Rosenbaum and Rubin (1983) demonstrated that the propensity score ei, the
probability that each individual has to receive the treatment, ei = P (Ti = 1|Xi),
is the coarsest balancing score. Propensity scores are generally estimated using
parametric models such as logistic regression. If these models are misspecified, the
balance of covariates may not be satisfactory. That is why several different methods
for estimating the propensity score have recently been implemented and compared
(Setoguchi et al., 2008; Li et al., 2013), including some CART-based methods (Lee
et al., 2010) (for instance pruned, bagged and boosted (McCaffrey et al., 2004)),
neural networks and random forests. Using data mining techniques in this field
has been shown to achieve a better balance and a lower bias of causal estimators
based on propensity scores. Indeed, these flexible data-driven algorithms also allow
researchers to fit complex relations, overcoming variable selection and model building
processes automatically (Cannas and Arpino, 2018). If confounders and treatments
have non-linear or non-additive relations, machine learning techniques are able to
gather and handle them automatically in the estimation process. Although these
techniques provide models that are difficult to interpret, they are an important
resource for estimating propensity scores because the interpretation aspect is not
fundamental at this step in the analysis, and interest focuses mainly on the balance
that can be reached with propensity score adjustments.

The Absolute Standardized Bias (ABS) measure is usually employed to measure
the balance of each confounder X between treatment groups:

ASB =
|X̄0 − X̄1|√

S2
0
2 +

S2
1
2

(2)
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where X̄0 and X̄1 are the means of the variable X of individuals living respectively in
neighbourhoods T = 0 and T = 1; and S0 and S1 are the standard deviations of the
variable X for individuals living in neighbourhoods T = 0 and T = 1, respectively.

Propensity scores may be involved in the balancing procedures in four main ways
(Austin, 2011): matching, stratification, covariate adjustment, and inverse probabil-
ity of treatment weighting. According to the propensity score matching approach,
treated and untreated individuals with the same propensity scores are matched and
their outcomes are compared. The above-described theoretical framework focuses on
a binary treatment, while propensity score matching (PSM) is less straightforward
to implement if the number of treatments increases, as explained in the following
section.

3.2 Propensity score techniques in a multi-treatment framework

The set of multiple treatments can be represented by a series of dummies, Dit(Ti)
(Linden et al., 2016), where Ti is a categorical treatment variable that takes values
from 1 to K:

Dit(Ti) =

{
1 if Ti = t

0 otherwise.
for t = 1, . . . ,K (3)

We will consequently have a set of potential outcomes, Y = (Y1i, ..., YKi) for indi-
vidual i, considering all different treatments, and only one of them is observed.

In a multi-treatment framework, the definition of the Average Controlled Differ-
ence among Groups for each treatment t will be

ACDGt,tc = E[Yt − Ytc |T = t]. (4)

This estimand compares every treatment group (neighbourhood) t with the rest
of the population tc (the rest of the city). However other comparisons maybe more
meaningful, indeed in other cases, the most informative comparison may be between
two neighbourhoods, or between each neighbourhood and a common reference (e.g.
the neighbourhood with lowest rate of hospitalized fractures). These other estimands
can be obtained with minimal variations to definition 4.

In order to perform a controlled descriptive comparison, just the overlap as-
sumption is needed in the multi-treatment case, as in the dichotomous treatment
framework, under the circumstance that there are K treatments, and not just two
(Lopez and Gutman, 2017).

Finally, for the measure of balance or ASB, there is more than one possible
expression available in the literature, depending on the treatment comparisons of
interest. In this work, we define the ASB as

ASB =
|X̄t − X̄|√

S2
t
2 + S2

2

(5)

where X̄ and X̄t are the means of the variable X of individuals living respectively
in the whole city, and in the neighbourhoods t; and S and St are the standard
deviations of the variable X vis-á-vis individuals living respectively in the whole
city, and in the neighbourhood t.
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In a multi-treatment framework, the propensity score also needs a different spec-
ification. Imbens (2000) proposed a modified definition of the propensity score. The
generalized propensity score (GPS) is the conditional probability of receiving a par-
ticular level of the treatment, given the pretreatment variables. Generalized propen-
sity score applications remain largely scattered in the literature, however, with few
applications in regimes involving three (or four) treatments (Lopez and Gutman,
2017). Some of these involve binomial comparisons (Lechner, 2001, 2002) that may
pose problems in terms of common overlap and computational effort when the num-
ber of treatments increases. Other attempts have focused on forming triplets to
compare subjects in a three-treatment framework using matching algorithms (Hade,
2012; Rassen et al., 2011), or larger numbers with vector matching (Lopez and Gut-
man, 2017). The application of IPTW approaches has been explored by combining
different techniques (McCaffrey et al., 2013; Linden and Yarnold, 2016). Other meth-
ods that have been tested and compared (Linden et al., 2016) include: regression
adjustment (Spreeuwenberg et al., 2010); marginal mean weighting through stratifi-
cation (Hong, 2010, 2012); and doubly robust methods like the Inverse Probability
of Treatment Weighting (IPTW) regression adjustment (Uysal, 2015).

None of these methods are practical, however, if the number of treatments greatly
increases. Some important assumptions (such as the overlap) become difficult to
satisfy, and estimating the propensity score becomes computationally demanding.
The most common model for estimating a GPS is the multinomial logistic regression
(Lopez and Gutman, 2017): using this model, K propensity scores eit with t = 1, ...K
are estimated, one for each treatment, and they sum to 1. The dependent variable
of such a model in a framework with many treatments is therefore categorical with
many levels. The result of such a model in a multi-treatment framework would
be an estimation of many small probabilities, with small differences between them
(generally speaking, with 23 treatments we would expect a mean of the predicted
values of around 0.04 for each individual).

An alternative approach, to solve the curse of dimensionality without needing
to estimate the probability of receiving each treatment, is template matching. This
method can handle the balance of many treatments, and it has been used to compare
the performance of hospitals, for instance, reducing the bias due to their different
case-mix of patients (Silber et al., 2014). Taking this approach, a sample of individu-
als represented in all the treatment groups is selected so as to make the individuals in
all the treatment groups included in the analysis comparable. This sample becomes
the template. Then the matching algorithm matches individuals from all treatment
groups with the template, and all other individuals are discarded. The analysis is
thus restricted to individuals belonging to the common support of covariates across
all the treatment groups. The matching procedure remains similar to the binary
case, focusing only on the template and its selected variables. The final dataset will
comprise a sample of individuals for each treatment group that resembles the tem-
plate as much as possible. This simplification enables a huge number of treatments
to be managed, but limits the analysis to the individuals comprising the template,
and to the choice of template. This means that the target population experienc-
ing the estimated effects may differ considerably from the whole sample population,
even though it will be relevant with respect to the chosen template.
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We propose an original alternative approach to deal with covariate balance when
comparing many treatments. Our method involves matching on a score (average
rank) obtained using partially ordered sets (poset) theory. This approach, that we
label MARMoT (Matching on poset-based Average Rank for Multiple Treatments)
allows us to make the distribution of confounders similar across many treatments.

3.3 Matching on poset-based Average Rank for Multiple Treatments
(MARMoT)

3.3.1 Introduction to poset theory

A partially ordered set (poset) is, in mathematics, a set of elements where a binary
relation that indicates an order can be traced, the word “partially” refers to the fact
that not every pair of elements needs to be comparable. Poset theory is a theoretical
field between graph theory and discrete mathematics that quickly developed after
the 1970s thanks to technological advances that made greater computational efforts
manageable (Brüggemann and Patil, 2011). The main concepts needed to under-
stand why this method is useful to overcome the curse of dimensionality without
using a parametric model or introducing some subjective criteria are explained with
a toy example.

When dealing with a population, the people comprising it can be ranked and
ordered using a single variable: level of education, for instance, enables two different
individuals to be arranged in an order. From the mathematical standpoint, an order
is a binary relation between the elements in a set that respects specific properties.
Let P be a set, an order on P is a relation (≤) between two elements in the set P
such that, for all x, y, z ∈ P , the following properties hold:

• Reflexivity: x ≤ x

• Antisymmetry: x ≤ y and x ≥ y implies x = y

• Transitivity: x ≤ y and y ≤ z implies x ≤ z.

A set equipped with such a relation is said to be ordered. If the comparison
is drawn using several variables, it may be that some elements are neither equal
nor ordered, in which case they are defined as incomparable (Davey and Priestley,
2002). The word “partially” is added to “ordered set” when some of its elements
are incomparable, so the order relation has to be changed to a partial order relation,
which takes the incomparability (indicated with ||) of the elements into account:

Incomparability: x||y ↔ x 6≤ y and y 6≤ x, x, y ∈ P .

Comparing the individuals in a population gives rise to a list of comparabilities
and incomparabilities, which can be represented in a graphic form called a Hasse
diagram. This diagram represents the elements in a poset: each node is an element,
two or more equal elements still form one node, and every line segment is an order
relation between comparable objects. Let us suppose that we have a population
comprising six individuals characterized by three dichotomous variables, as repre-
sented in Table 2: age (which takes a value of 0 for individuals who are between 60
and 70 years old, and 1 if they are older); education (which takes a value of 0 if they
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Figure 1: A poset and its linear extensions: part (a) represents the Hasse diagram for
the individuals in Table 2; part (b) lists all the linear extensions for these individuals;
and part (c) their exact average rank.

have a higher education, and 1 otherwise); and homeowner (which takes a value of
0 if they own the house in which they live, and 1 otherwise). The set of observed
characteristics of each individual is called “profile”. These variables are ordered
according to the risk of experiencing the outcome, where a value of 1 corresponds
to the highest risk of hospitalized fracture.

Table 2: Toy example for a group of observations.

Subject Age Education Homeowner

A 0 0 0
B 1 0 0
C 0 1 0
E 1 1 0
G 0 1 1
H 1 1 1

In this example, for the sake of simplicity, we included only dichotomous vari-
ables, but categorical and discrete variables may be also considered in a poset.
However, in order to contain the entropy of the poset, it is recommended to reduce
each discrete variable in few meaningful classes.

A Hasse diagram can be used to visualize the order relations between the elements
in a poset, and it is based entirely on the order of the elements, disregarding any
quantitative information.

In Figure 1(a), the six individuals are represented by their profile in the Hasse
diagram, where each node stands for a profile. When two individuals are comparable,
they are connected by line segments in the diagram, like A and B or B and E, whereas
there is no ascending or descending path between incomparable elements, like B and
C.
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The list of all the ranks that each individual may occupy is shown in part (b) of
Figure 1, where all the linear extensions of the poset are listed. Linear extensions are
all the possible rankings of elements in the poset that respect its comparabilities (the
connections in the Hasse diagram) and incomparabilities (Brüggemann and Patil,
2011; Davey and Priestley, 2002). The average rank (AR) of a node represents the
mean of all the ranks that the element occupies in all possible linear extensions,
starting from the known order relations, as listed in Figure 1 part (c).

The AR is a single value for each element in the set that describes the relative
position of a given element with respect to the rest of the population. It can be
normalized in the interval [0;1].

AR’s involvement in the MARMoT approach is just as a balancing tool: its
purpose is to reduce data dimensionality and balance on observable individuals’
characteristics. There is no need in finding a substantial interpretation to AR values,
for our purposes.

3.3.2 Approximating the average rank

If the number of individuals and variables increases, the linear extensions become
too many to be examined thoroughly, and it becomes computationally almost im-
possible to find the exact AR as in the example in Table 2. That said, satisfactory
approximations of the number of linear extensions of a poset can be found in works
by Dyer et al. (1991), and De Loof (2009).

Researchers have used two main approaches to obtain a computationally efficient
calculation of the AR, by sampling linear extensions (Fattore, 2016; Lerche and
Sorensen, 2003), or defining an approximation formula. Different approximation
formulas have been proposed in the literature, such as the Local Partial Order
Model (Brüggemann and Carlsen, 2011), or the one based on Mutual Probabilities
(De Loof, 2009). The present work is based on De Loof’s approach (2009) because it
provides better results than other methods in terms of accuracy with a large sample
size (De Loof et al., 2011).

Two concepts help us to understand this approximation, for a sample P with
|P | elements:

The rank probability P (rank(x) = i) is the fraction of linear extensions in which
an element’s rank equals i, where i assumes the value of all possible ranks in
the sample of size |P |, so i = 1, . . . , |P |.

The mutual rank probability P (x > y) of two elements x, y ∈ P is the fraction
of linear extensions in which the element x is ranked higher than element y.

Now we can establish a relation between the last-mentioned two concepts and the
real AR of elements x, h̄(x), starting from a sample P with |P | elements, including
x and y:

h̄(x) =

|P |∑
i=1

i · P (rank(x) = i) = 1 +

|P |∑
y=1

P (x > y). (6)

In other words, the first part of formula 6 describes the real AR value, h̄(x), as
the expected value, multiplying each possible rank value i by the fraction of linear
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extensions in which the element’s rank equals i. The second part of formula 6
expresses the real AR value as the sum of all the mutual rank probabilities that
involve the element x. Starting from this formula, we need to find an approximation
for the mutual rank probability. To do so, we have to define three subsets of the
poset P, given a generic element x ∈ P :

Downset: O(x) = {y ∈ P : y ≤ x};

Upset: F (x) = {y ∈ P : y ≥ x};

Incomparables: U(x) = {y ∈ P : y||x}

If y ∈ O(x), then P (rank(x) > rank(y)) equals 1, and if y ∈ F (x), then P (rank(x) >
rank(y)) equals 0, so the mutual rank probabilities only need to be approximated
with respect to the reciprocal ranks of the incomparable elements. The following
approximation was proposed by Brüggemann et al. (2004)

P ∗(x > y) =
[o(x) + 1][f(y) + 1]

[o(x) + 1][f(y) + 1] + [o(y) + 1][f(x) + 1]
, (7)

where o(x) = |O(x) \ {x}| and f(x) = |F (x) \ {x}| are respectively the number of
elements in the downset and the upset of x without {x}. Two more quantities are
needed to approximate the AR according to the De Loof (2009) formula, õ(x) and
f̃(x):

õ(x) = o(x) +
∑

y∈U(x)

P ∗(x > y) and (8)

f̃(x) = f(x) +
∑

y∈U(x)

P ∗(x < y), (9)

and the AR approximation proposed by De Loof (2009) is

AR(x) = o(x) + 1 +
∑

y∈U(x)

[õ(x) + 1][f̃(y) + 1]

[õ(x) + 1][f̃(y) + 1] + [õ(y) + 1][f̃(x) + 1]
. (10)

That is to say that using formula 10, the AR of x is given by the number of elements
in its downset and the sum of probabilities of being a part of x’s downset for all
incomparable elements with respect to x, using the approximation of the mutual rank
probabilities. Following the toy example in Table 2, the steps needed to approximate
the AR with the De Loof (2009) approach are solved in Table 3, including the
estimation of the AR.

In the present work, the approximated AR was computed using the R software,
with an R function proposed by Caperna (2019, 2016) that can cope with large
datasets (Boccuzzo and Caperna, 2017; Caperna and Boccuzzo, 2018).

3.4 The Matching

We use our MARMoT technique to address the so-called curse of dimensionality,
the need to summarize confounders, applying a poset-based AR of the individuals.
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Table 3: A numerical example of the approximation of the average rank according
to De LoofDe Loof (2009) approach.

x o(x) f(x) U(x) Pr∗ (x > y) õ(x) f̃(x) AR(x)
y = A y = B y = C y = E y = G y = H

A 0 5 0 . 0.20 0.25 0.08 0.10 0.03 0.00 5.00 1.00
B 1 2 C, G 0.80 . 0.57 0.25 0.31 0.10 1.88 3.12 2.90
C 1 3 B 0.75 0.43 . 0.20 0.25 0.08 1.43 3.57 2.43
E 3 1 G 0.92 0.75 0.80 . 0.57 0.25 3.57 1.43 4.57
G 2 1 B, E 0.90 0.69 0.75 0.43 . 0.20 3.12 1.88 4.10
H 5 0 0 0.97 0.90 0.92 0.75 0.80 . 5.00 0.00 6.00

The individuals’ characteristics are summarized by unique numbers, and individuals
who have a similar AR have comparable profiles. AR enables us to proceed with
a matching whereby each individual in a given neighbourhood is allocated an indi-
vidual with a similar AR in all the other neighbourhoods, and those who cannot
be matched are discarded in order to respect the overlap condition and make all
neighbourhoods comparable simultaneously.

Once the AR has been computed, the first step is to build a frequency table,
as the table 4, where each row corresponds to one observed value of the AR (ARr,
r = 1, . . . , R), and each column represents a treatment group (t, t = 1, . . . ,K).

Table 4: An example of the frequency table involved in the matching of the MAR-
MoT approach.

AR t1 t2 . . . tk . . . tK

AR1 f1,1 f1,2 . . . f1,k . . . f1,K
AR2 f2,1 f2,2 . . . f2,k . . . f2,K
...

...
...

. . .
...

. . .
...

ARj fj,1 fj,2 . . . fj,k . . . fj,K
...

...
...

. . .
...

. . .
...

ARJ fJ,1 fJ,2 . . . fJ,k . . . fJ,K

In order for each value of the AR to be represented equally in all the treatment
groups, the desired result would be a table where fr,1 = fr,2 = · · · = fr,t = · · · =
fr,K = fr, ∀t = 1, . . . ,K in every row r.

Thus, for every row, we must choose the most appropriate frequency fr for each
AR value to impose in the balanced population. In the artificial final population,
the distribution of AR values will be balanced in all the treatments groups so as
to balance all confounders too. At the end of the matching procedure, each ARr

value will be present in the balanced population K ∗ fr times, with fr individuals
in each of the K treatment groups. The value for fr may be chosen according to
different criteria: for example, it may be the maximum, the mean, the median or
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the minimum of the frequencies in row r. In this work, we define the reference fr as

fr =

{
1 if median(fr,1, fr,2, . . . , fr,K) = 0

median(fr,1, fr,2, . . . , fr,K) otherwise.
(11)

Instead of discarding all the AR values with median(fr,1, fr,2, . . . , fr,K) = 0, we set
the minimum value of fr at 1 in order to have a matched population that includes
all the profiles in the real population. The choice of the value for fr may affect both
the final dimension of the balanced dataset, and the performance of the MARMoT
method in terms of balance. For instance, if we define fr as the maximum of the
frequencies in row r, the final dimension of the dataset will be more than double the
dimension obtained with the previous definition and also the quality of matches will
be worse. Indeed, for AR values where the frequency matrix is sparse, individuals
are duplicated creating distortion and noise in the final dataset.

Having established the frequency that each value of AR should have in each treat-
ment, the algorithm proceeds in three different ways, depending on the dimensions
of fr,t and fr, for every r and every t:

1. if fr,t = fr: all individuals with ARr (that is the AR value in row r) in the
treatment group t are copied in the final dataset.

2. if fr,t 6= fr and fr,t 6= 0: a random sample of size fr with replacement is
selected from among the individuals with ARr in the treatment group t, and
included in the final dataset.

3. if fr,t = 0: a random sample with replacement of size fr is selected from among
the individuals with an AR close enough (with a given tolerance) to ARr in
treatment group t, and included in the final dataset. If there are no individuals
with an AR close enough, then all individuals with an AR equal to ARr have
to be discarded.

While points (1) and (2) are just a matter of matching individuals with identical
AR values, point (3) is the trickiest, because it involves inexact matching, and
possibly excluding some individuals from the final dataset. In this work we define the
tolerance interval as [ARr− SAR

4 ;ARr + SAR
4 ], considering as a caliper the value SAR

4 ,
where SAR is the AR’s standard deviation, similar to recommendations on caliper
setting in the propensity score matching literature (Cochran and Rubin, 1973; Lunt,
2013). Thus, if all frequencies f.,t that correspond to AR values included in the
interval [ARr − SAR

4 ;ARr + SAR
4 ] equal 0, subjects with AR value equal to ARr will

be discarded with respect to all the treatments groups. This criterion ensures that
the overlap assumption is respected.

As a final remark, the MARMoT method is strongly influenced by five funda-
mental aspects:

1. the number of variables considered, which directly affects the number of AR
values (the number of rows of table 4);

2. the number of the levels of ordinal and categorical variables and the inclusion
of a discrete variable that may increase the entropy of the poset (and the
number of rows of table 4);
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3. the number of treatments, i.e. the number of columns in table 4;

4. the size of the total population, N , which corresponds to N =
∑R

r=i

∑K
t=i fr,t;

and

5. the choice of fr that affects both the final dimension of the balanced dataset
and the quality of matches.

An increase of one of the first three variables without a proportional growth of the
population will cause an increase of not exact matching cases with a consequent
slight worsening of the balancing. An interesting development would be to test
limits of this method changing the first three mentioned dimensions.

Once the MARMoT algorithm has matched the individuals and balanced the
confounders, any estimand can be used to calculate the effect of a treatment. In the
following paragraphs, we use the ACDG on the treated as the estimand of interest
representing the neighbourhood effect.

4 Simulation study

Before using the MARMoT method to estimate the neighbourhood effect on real
data, we tested it with some simulations in two different scenarios for allocating
individuals to 23 treatments. The R code used for the simulation study is reported
in appendix A.

4.1 Simulation design

To keep our simulation close to the real situation of interest, we considered the real
population of Turin and the individuals’ observed characteristics. Starting from
the seven confounders described in the second section, we simulated the treatment
allocation according to two different scenarios. Since the computation of the AR
depends only on individual variables (which come from the observed population and
are not simulated artificially), and not on the treatment, AR values computed di-
rectly on the observed data could be used, meaning that they were based exclusively
on the real population, not on simulated values.

In the first scenario, the treatment allocation equation is simple and close to the
real situation. The treatment is generated through a multinomial logistic model,
taking neighbourhood 20 (the one with the lowest crude hospitalized fractures rate)
for reference. Thus, for each neighbourhood t, and each individual i, the treatment
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equation is

ln

(
Pr(Ti = t)

Pr(Ti = 20)

)
= βt0 + βt1 ∗Genderi + βt2 ∗ LowerSecondaryi +

+ βt3 ∗ UpperSecondaryi + βt4 ∗Age65− 69i +

+ βt5 ∗Age70− 74i + βt6 ∗Age75− 79i +

+ βt7 ∗Age > 79i + βt8 ∗MarriedCouple(2)i +

+ βt9 ∗MarriedCouple(> 3)i +

+ βt10 ∗NoMarriedCouple(> 2)i +

+ βt11 ∗HomeMakeri + βt12 ∗ Entrepreneuri +

+ βt13 ∗WhiteCollarsi + βt14 ∗Manualworkersi +

+ βt15 ∗NorthofItalyi + βt16 ∗ CenterofItalyi +

+ βt17 ∗ SouthofItalyi + βt18 ∗OutsideofItalyi +

+ βt19 ∗Homeowneri. (12)

In order to choose values for the coefficients, we estimated a multinomial logistic
model on the whole population. The result was a matrix with 23 rows and 20 columns
containing all treatments’ equations intercepts βt0 for t = 1, ..., 19, 21, 22, 23, and
coefficients βv v = 0, ...19 for the other variables in the model. These coefficients were
perturbed by adding a random value coming from a uniform distribution between
−0.01 and +0.01, and rounded up or down to just three decimals.

The second scenario envisages a more complex treatment allocation equation,
which includes all the interactions between the seven variables considered. As in the
first scenario, the choice of parameters for these treatment allocation equations was
based on those estimated by a multinomial logistic model, perturbed by a uniform
distribution between −0.1 and +0.1, and rounded up or down to just three decimals.

4.2 Results

The main results of the simulations are shown in Table 5, where column T indicates
the above-described treatment allocation scenarios (coded as 1 for the linear and
additive, and 2 for the one with interactions). The first part of Table 5 shows the
results of the simulation as described in the previous section, the differences between
the scenarios and the differences in the distribution of the individuals among the
neighbourhoods.

We examined the initial balance of the two scenarios in all 1000 simulations using
the ASB. Having 23 neighbourhoods and seven variables (for a total of 24 levels), we
chose to summarize the information by computing the minimum, the 1st quartile,
the mean, the median, the 3rd quartile and the maximum of all the ASB, counting
ASB values over 5% and 10% for each iteration. The means of these values among all
1000 simulations before and after the balancing procedure for each scenario are given
in Table 6. The balance was much improved in both scenarios after the matching
procedure, which fixed even extremely unbalanced situations. After matching, the
mean number of ASB over 10% corresponded to one tenth of the number beforehand.
The central part of Table 5 shows the means (among the simulations) of the number
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of ASB higher than 5% and 10% before and after adjusting for each neighbourhood.
From these results, we can see that our MARMoT method greatly improves the
balance of confounders among neighbourhoods: it achieves a five-fold reduction in
the number of ABS over 5%, and an almost ten-fold reduction in those over 10%, in
both the treatment scenarios.

Table 6: Mean of ASB summary statistics in the first and second scenarios before
and after balancing among 1000 simulations.

Scenario Balance Min 1st Quartile Median 3rd Quartile Max Mean Over 5% Over 10%

First Before 0.01 1.98 4.43 9.59 63.72 8.01 252 132
After 0 0.58 1.30 2.59 16.95 2.12 52 15

Second Before 0.02 2.42 5.63 11.89 68.41 9.10 297 175
After 0 0.62 1.37 2.71 16.84 2.24 60 18

5 Empirical Results

In this section, we use our MARMoT technique to estimate neighbourhood effects
considering 10 districts, 23 smaller areas and 94 zones. As explained in the second
section, rather than considering all 94 zones, we selected 70 of them with a suffi-
cient number of individuals (more than 625) to avoid the individuals in the excluded
neighbourhoods causing problems in the balancing procedure. The computational
time required by MARMoT is acceptable, as the procedure to balance the 10 districts
took less than 18 minutes, the one for the 23 areas took 36 minutes, and the bal-
ancing of the 70 zones took 116 minutes. Table 7 shows that the MARMoT method
substantially reduces the ASB in the three partitions, but slightly less successfully
in the case of the 70 zones.

The mean of the ASB computed in the 70 zones decreases from around 10% before
the MARMoT adjustment to 5.7% in the matched population. Before matching, the
majority of the 70 considered zones had at least half of the computed ASB higher
than 5%, while after MARMoT adjustment the number of these zones is halved and
the number of zones with half of the computed ASB higher than 10% is null. The
percentage of zones with a quarter of the computed ASB higher than 10% decreases
from around 63% before the matching, to 21.4% after the MARMoT adjustment.

Table 7: Mean of ASB summary statistics on the empirical study in different geo-
graphical partitions before and after balance.

Partitions Balance Min 1st Quartile Median 3rd Quartile Max Mean Over 5% Over 10%

10 Before 0.012 1.689 3.563 7.587 56.207 7.242 101 46
Districts After 0 0.192 0.427 0.937 8.948 0.846 5 0

23 Before 0.072 1.934 4.198 9.774 63.763 7.938 248 132
Areas After 0.003 0.482 1.169 2.330 15.802 1.973 51 11

70 Before 0.008 2.556 5.723 12.287 105.132 10.020 914 522
Zones After 0.008 1.539 3.523 7.075 55.625 5.725 624 265
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Figure 2 plots the mean of the ASB of variables in each neighbourhood, before
and after the MARMoT procedure in order to visualize areas that are more difficult
to balance and those that were more unbalanced in the initial situation. As a general
observation, the two areas that are highly unbalanced and difficult to balance are
the city center and a neighbourhood in the south of Turin, called “Mirafiori Sud”.
The composition of “Mirafiori Sud” is quite different from the others, indeed, in this
neighbourhood there is a higher percentage of men, individuals born in the South of
Italy, subjects with primary or lower education than in the rest of Turin. Moreover,
the most common last occupations are home-makers and labourers.

Considering smaller areas also enabled us to identify neighbourhood effects in
a greater geographical detail, even though it was more difficult to balance and it
proved necessary to discard an extensive portion of the 70-zone partition (white
area in Figure 2) because they are scarcely populated. Indeed, the eastern part of
the map (in white) is hilly and essentially very different and scarcely comparable
with the rest of Turin, the others are mainly graveyards and factories.

6 Conclusions

The aim of this paper was to develop and evaluate an original approach, based
on poset theory, to deal with selection bias in a multiple-treatment framework.
The main idea behind our method, that we labelled MARMoT, was to obtain a
population in which each poset-based AR value that summarize the combinations
of confounders, was equally represented in all the treatment groups. The MARMoT
approach proved very useful in balancing for confounders and reducing biases in
our estimates. The matching involved is not bound to subjective choices (of the
template, for instance), and the computation time required is limited, even in the
case of 70 different treatments.

Our method enabled us to estimate the neighbourhood effect on hospitalized frac-
tures involving the elderly, considering different geographical partitions (10 districts,
23 smaller areas, and 70 more circumscribed zones) without any selection bias due to
the different composition of the neighbourhoods. Indeed, once Turin residents over
60 years old residing in different Turin’s neighbourhoods have a comparable compo-
sition with respect to confounders distribution, it is possible to evaluate differences
among their distribution of hospitalized fractures. This information will be useful to
the Piedmont Region’s Epidemiological Service when implementing prevention poli-
cies for Turin’s population and urban interventions focusing on the neighbourhoods
at greatest risk.

The choice of geographical scale is a very important issue in neighbourhood stud-
ies, and several authors have suggested considering different scales, and examining
neighbourhood effects on outcomes for individuals in more detail, in order to better
discern which geographical scale is more relevant to the examined phenomena (Ar-
caya et al., 2016). The importance of choosing the most meaningful scale for spatial
data is illustrated by a serious analytical issue known as the modifiable areal unit
problem (MAUP). Using our MARMoT method, neighbourhood effects can be esti-
mated and compared in different geographical partitions, enabling an assessment of
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Figure 2: Mean of ASB before and after MARMoT for three geographical partitions:
10 districts, 23 areas and 70 zones.
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the sensitivity of neighbourhood effect estimates to different choices of geographical
scale.

Moreover, when the considered number of treatments is 70, there is still room
for improvement. Several adjustments may be done tuning some choices such as the
choice of frequency reference for each AR, the caliper and some additional cleaning
of less frequent AR values. Further steps will be taken in these directions to improve
this already promising technique.

A R code for the simulation study

Required( parsec, dplyr, multiwayvcov, lmtest)

### Computation of the average rank using Caperna (2009) approximation

function implemented in R, where set is a matrix that contains all

observable covariates (columns) for all the considered subjects (rows)

ar<-deloof(set)

###Normalization of the average rank value

ar_norm<-(ar-min(ar))/(max(ar)-min(ar))

data$ar<-ar_norm

### Set the number of iterations

num<-1000

### Need the data matrix that contains all individual characteristics,

personal ids and the computed average rank; and the prob.sim matrix

that contains the computed probabilities for each subject to be

assigned to each one of the 23 treatments (according to one scenario)

### Create matrices to save measure of balance and computational time

ASB_pre<-matrix(data=NA, nrow=num, ncol=8)

ASB_post<-matrix(data=NA, nrow=num, ncol=8)

time_bal<-c()

### Starting with the simulation

for (k in 1:num){

### Simulation of the treatment

ass.treat = t(apply(prob.sim, 1, rmultinom, n = 1, size = 1))

s1 = cbind.data.frame(data, treat_sim = apply(ass.treat, 1,

function(x) which(x==1)))

### Saving balance measure relative to the population before balance

pre<-table(s1$sex, s1$treat_sim)

pre<-rbind(pre,table(s1$age, s1$treat_sim))

pre<-rbind(pre,table(s1$edu, s1$treat_sim))

pre<-rbind(pre,table(s1$fami, s1$treat_sim))

pre<-rbind(pre,table(s1$occ, s1$treat_sim))
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pre<-rbind(pre,table(s1$birth_reg, s1$treat_sim))

pre<-rbind(pre,table(s1$homeowner, s1$treat_sim))

perc_treatm<-matrix(data=NA, nrow = 24, ncol = 23)

for (i in 1:23){

perc_treatm[,i]<-pre[-c(1,25),i]/tab_treats[k,i]}

var_treatm<-perc_treatm*(1-perc_treatm)

perc_tot<-apply(pre[-c(1,25),],1,sum)/(sum(tab_treats[k,]))

var_tot<-perc_tot*(1-perc_tot)

t_asb_pre<-matrix(data=NA,nrow=24, ncol = 23)

for (i in 1:24){

t_asb_pre[i,]<-(abs(perc_treatm[i,]-perc_tot[i]))/

(sqrt((var_treatm[i,]+var_tot[i])/2))*100}

ASB_pre[k,]<-c(quantile(t_asb_pre, probs = c(0, 0.25, 0.5, 0.75, 1)),

mean(t_asb_pre), length(which(t_asb_pre>5)),

length(which(t_asb_pre>10)))

### Preparation of the frequency table and setting of other parameters

needed in the balancing procedure

freq<-table(s1$ar, s1$t)

ps<-sort(unique(s1$ar))

freq<-cbind(ps, freq)

### Set the caliper to define the tolerance interval

caliper<-sd(s1$ar)/4

n<-as.numeric(colnames(freq)[-1]) # Identification codes of treatment

groups considered

nT<-length(n) # Number of treatments in the matching procedure

### Set the frequency reference for each row fr

ref<-ifelse(ceiling(apply(freq[,-1], 1, median))==0,1,

ceiling(apply(freq[,-1], 1, median)))

### Create empty vectors to store individual identification codes that

will be included in the balanced population

new<-c()

new0<-c()

sub0<-c()

rem<-c()

### Start the balancing procedure

start<-Sys.time()

### Consider every column separately

for (i in 1:nT){

same<- freq[,i+1]==ref

zero<-freq[,i+1]==0

different<-freq[,i+1]>0 & freq[,i+1]!=ref

ok<-rep(0, dim(s1)[1])
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ok<-ifelse(s1$ar %in% freq[same==TRUE,1] & s1$t==n[i], TRUE, FALSE)

new<-c(new, which(ok))

for (j in which(different)){

cond_tosample<-which(ifelse(s1$ar==freq[j,1] & s1$t==n[i], TRUE, FALSE))

if (length(cond_tosample)==1){

ok<-rep(cond_tosample, ref[j]) }

if (length(cond_tosample)>1){

ok<-sample(cond_tosample, ref[j], replace = TRUE) }

new<-c(new, ok)}

for (j in which(zero)){

diff<-abs(freq[!zero,1]-freq[j,1])

value<-ifelse(sort(diff)[1]<=caliper,as.numeric(names(sort(diff))[1]),-1)

if (value==-1){rem<-c(rem,freq[j,1])}

if (value!=-1){

cond_tosample<-which(ifelse(s1$ar==value & s1$t==n[i], TRUE, FALSE))

if (length(cond_tosample)==1){

ok<-rep(cond_tosample, ref[j])

}

if (length(cond_tosample)>1){

ok<-sample(cond_tosample, ref[j], replace = TRUE)

}

new0<-c(new0, ok)

sub0<-c(sub0, rep(freq[j,1], ref[j]))

}}}

end<-Sys.time()

###build the balanced population

balanced_pop<-s1[new,]

balanced_pop0<-s1[new0,]

balanced_pop0$ar2<-sub0

after_all<-rbind(balanced_pop, balanced_pop0)

after<-after_all[!(after_all$ar2 %in% rem), ]

########save measure of balance on the balanced population

post<-table(after$sex, after$t)

post<-rbind(post,table(after$age, after$t))

post<-rbind(post,table(after$edu, after$t))

post<-rbind(post,table(after$fami, after$t))

post<-rbind(post,table(after$occ, after$t))

post<-rbind(post,table(after$birth_reg, after$t))

post<-rbind(post,table(after$homeowner, after$t))

treatm<-as.numeric(table(after$t))[1]

perc_treatm<-post[-c(1,25),]/treatm

var_treatm<-perc_treatm*(1-perc_treatm)
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perc_tot<-apply(post[-c(1,25),],1,sum)/(treatm*23)

var_tot<-perc_tot*(1-perc_tot)

t_asb<-matrix(data=NA,nrow=24, ncol = 23)

for (i in 1:24){

t_asb[i,]<-(abs(perc_treatm[i,]-perc_tot[i]))/

(sqrt((var_treatm[i,]+var_tot[i])/2))*100 }

time_bal[k] <-end-start

ASB_post[k,]<-round(c(quantile(t_asb, probs = c(0, 0.25, 0.5, 0.75, 1)),

mean(t_asb), length(which(t_asb>5)), length(which(t_asb>10))),

digits=3)
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A review. Sankhyā: The Indian Journal of Statistics, Series A, pages 417–446.

Costa, G., Stroscia, M., Zengarini, N., and Demaria, M. (2017). 40 anni di salute a
Torino, spunti per leggere i bisogni e i risultati delle politiche.

Cubbin, C., LeClere, F. B., and Smith, G. S. (2000). Socioeconomic status and injury
mortality: individual and neighbourhood determinants. Journal of Epidemiology
& Community Health, 54(7):517–524.

Davey, B. A. and Priestley, H. A. (2002). Introduction to lattices and order. Cam-
bridge university press.

De Loof, K. (2009). Efficient computation of rank probabilities in posets. PhD thesis,
Ghent University. (Available from https://biblio.ugent.be/publication/874495).

De Loof, K., De Baets, B., and De Meyer, H. (2011). Approximation of average
ranks in posets. MATCH Communications in Mathematical and in Computer
Chemistry, 66:219–229.

Diez Roux, A. V. (2001). Investigating neighborhood and area effects on health.
American Journal of Public Health, 91(11):1783–1789.

Dyer, M., A., F., and R., K. (1991). A random polynomial-time algorithm for
approximation the volume of convex bodies. Journal of the ACM, 38(1):1–17.

Fattore, M. (2016). Partially ordered sets and the measurement of multidimensional
ordinal deprivation. Social Indicators Research, 128(2):835–858.



REFERENCES 27

Hade, E. M. (2012). Propensity score adjustment in multiple group observational
studies: Comparing matching and alternative methods. PhD thesis, The Ohio
State University.

Harding, D. J. (2003). Counterfactual models of neighborhood effects: The effect of
neighborhood poverty on dropping out and teenage pregnancy. American Journal
of Sociology, 109(3):676–719.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American
statistical Association, 81(396):945–960.

Hong, G. (2010). Marginal mean weighting through stratification: adjustment for
selection bias in multilevel data. Journal of Educational and Behavioral Statistics,
35(5):499–531.

Hong, G. (2012). Marginal mean weighting through stratification: A generalized
method for evaluating multivalued and multiple treatments with nonexperimental
data. Psychological Methods, 17(1):44.

Imbens, G. W. (2000). The role of the propensity score in estimating dose-response
functions. Biometrika, 87(3):706–710.

Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social, and
biomedical sciences. Cambridge University Press.

Lechner, M. (2001). Identification and estimation of causal effects of multiple treat-
ments under the conditional independence assumption. In Econometric evaluation
of labour market policies, pages 43–58. Springer.

Lechner, M. (2002). Program heterogeneity and propensity score matching: An
application to the evaluation of active labor market policies. Review of Economics
and Statistics, 84(2):205–220.

Leckie, G. (2009). The complexity of school and neighbourhood effects and move-
ments of pupils on school differences in models of educational achievement. J. R.
Statist. Soc. A, 172(3):537–554.

Lee, B. K., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weight-
ing using machine learning. Statistics in Medicine, 29(3):337–346.

Lerche, D. and Sorensen, P. (2003). Evaluation of the ranking probabilities for
partial orders based on random linear extensions. Chemosphere, 53:981–992.

Li, F., Zaslavsky, A. M., and Landrum, M. B. (2013). Propensity score weighting
with multilevel data. Statistics in Medicine, 32(19):3373–3387.

Linden, A., Uysal, S. D., Ryan, A., and Adams, J. L. (2016). Estimating causal
effects for multivalued treatments: a comparison of approaches. Statistics in
Medicine, 35(4):534–552.



28 REFERENCES

Linden, A. and Yarnold, P. R. (2016). Combining machine learning and propensity
score weighting to estimate causal effects in multivalued treatments. Journal of
Evaluation in Clinical Practice, 22(6):875–885.

Lopez, M. J. and Gutman, R. (2017). Estimation of causal effects with multiple
treatments: a review and new ideas. Statistical Science, 32(3):432–454.

Lunt, M. (2013). Selecting an appropriate caliper can be essential for achieving
good balance with propensity score matching. American Journal of Epidemiology,
179(2):226–235.

Mair, C. F., Roux, A. V. D., and Galea, S. (2008). Are neighborhood characteristics
associated with depressive symptoms? a critical review. Journal of Epidemiology
& Community Health, 62:940–946.

McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R.,
and Burgette, L. (2013). A tutorial on propensity score estimation for multiple
treatments using generalized boosted models. Statistics in Medicine, 32(19):3388–
3414.

McCaffrey, D. F., Ridgeway, G., and Morral, A. R. (2004). Propensity score estima-
tion with boosted regression for evaluating causal effects in observational studies.
Psychological Methods, 9(4).

Meijer, M., Rohl, J., Bloomfield, K., and Grittner, U. (2012). Do neighborhoods
affect individual mortality? a systematic review and meta-analysis of multilevel
studies. Social science & medicine, 74(8):1204–1212.

Melis, G., Gelormino, E., Marra, G., Ferracin, E., and Costa, G. (2015). The
effects of the urban built environment on mental health: A cohort study in a
large northern italian city. International Journal of Environmental Research and
Public Health, 12(11):14898–14915.

Oakes, J. M. (2004). The (mis)estimation of neighborhood effects: causal inference
for a practicable social epidemiology. Social Science & Medicine, 58(10):1929–
1952.

Pickett, K. and Pearl, M. (2001). Multilevel analyses of neighbourhood socioeco-
nomic context and health outcomes: a critical review. Journal of Epidemiology &
Community Health, 55(2):111–122.

Rabe, B. and Taylor, M. (2010). Residential mobility, quality of neighbourhood and
life course events. J. R. Statist. Soc. A, 173.(3):531–555.

Rassen, J. A., Solomon, D. H., Glynn, R. J., and Schneeweiss, S. (2011). Simultane-
ously assessing intended and unintended treatment effects of multiple treatment
options: a pragmatic “matrix design”. Pharmacoepidemiology and Drug Safety,
20(7):675–683.



REFERENCES 29

Rose, S. and Normand, S. L. (2019). Double robust estimation for multiple unordered
treatments and clustered observations: Evaluating drug-eluting coronary artery
stents. Biometrics, 75(1):289–296.

Rosenbaum, P. R. (1987). Model-based direct adjustment. Journal of the American
Statistical Association, 82(398):387–394.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score
in observational studies for causal effects. Biometrika, 70(1):41–55.

Roux, A. V. D., Borrell, L. N., Haan, M., Jackson, S. A., and Schultz, R. (2004).
Neighbourhood environments and mortality in an elderly cohort: results from
the cardiovascular health study. Journal of Epidemiology & Community Health,
58(11):917–923.
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