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Abstract: Consider a sampling parametric model with parameter θ = (ψ, λ), where ψ is
the parameter of interest. Also in the Bayesian framework, an approach to the elimination
of nuisance parameters is to use an appropriate pseudo-likelihood function LPS(ψ) for the
parameter of interest only, in alternative to an integrated likelihood function.

The goal of this paper is to select a class of default priors πPS(ψ) for a parameter

of interest using pseudo-likelihood functions. Developing Stein’s (1985) and Tibshirani’s

(1989) results, our approach is to require that the resulting pseudo-posterior intervals, based

on the pseudo-posterior distribution πPS(ψ|y) ∝ πPS(ψ)LPS(ψ), have accurate frequentist

coverage. Several illustrative examples are given and comparisons of πPS(ψ|y) are made

to the posterior distributions based on the reference or Jeffreys priors. Some interesting

conclusions emerge.

Keywords: Frequentist coverage probability, Jeffreys prior, Modified profile likelihood,

Profile likelihood, Reference prior.

1 Introduction

Assume that y = (y1, . . . , yn) is a sample of n independent and identically distributed
random variables from a model p(y|θ), with θ ∈ Θ ⊆ IRp, partitioned as θ = (ψ, λ),
where ψ is a scalar parameter of interest and λ is a (p−1)-dimensional nuisance pa-
rameter. Bayesian techniques for eliminating λ require a prior π(ψ, λ) = π(ψ)π(λ|ψ)
over Θ and are based on the marginal posterior for ψ, given by

π(ψ|y) =

∫

π(ψ, λ|y) dλ ∝
∫

L(ψ, λ)π(ψ, λ) dλ ∝ LI(ψ)π(ψ) , (1)

where L(ψ, λ) is the entire likelihood function and

LI(ψ) =

∫

L(ψ, λ)π(λ|ψ) dλ (2)
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denotes the integrated likelihood for the parameter of interest ψ with respect to
π(λ|ψ). See, for example, Liseo (1993), Berger et al. (1999) and Severini (2000,
Chapter 6) for further discussions on integrated likelihoods.

To obtain the integrated likelihood, the elicitation of π(λ|ψ) may be difficult both
in the subjective and objective Bayesian contexts, and computation of the integral in
(2) can be heavy when the dimension of λ is high. Moreover, inferential procedures
based on (1) are not robust with respect to model misspecifications, and for complex
models it may be difficult to write the complete likelihood L(ψ, λ). An alternative
approach to the elimination of nuisance parameters is to resort to different pseudo-
likelihood functions. In general, a pseudo-likelihood LPS(ψ) is a function of the
parameter of interest only, and of the data, with properties similar to those of a
genuine likelihood function. Some examples of pseudo-likelihoods for a parameter of
interest are the marginal and the conditional, which require specific model structures,
the profile and modified versions, and the quasi- likelihoods; see, e.g., Pace and
Salvan (1997, Chapter 4) and Severini (2000, Chapters 8 and 9). Although the use
of a pseudo-likelihood function in the Bayesian inference cannot be considered as
orthodox in the Bayesian perspective, the use of alternative likelihoods is actually
widely shared. Unlike integrated likelihoods, pseudo-likelihoods are usually based
on maximizations rather than averaging. See, e.g., Efron (1993), Bertolino and
Racugno (1992, 1994), Raftery et al. (1996), Cabras et al. (2006) and Greco et al.

(2007). Papers which are more specifically related to the validation of a pseudo-
posterior distribution based on an alternative likelihood are Monahan and Boos
(1992), Severini (1999), Lazar (2003), Racugno et al. (2005), Pace et al. (2006) and
Schennach (2006).

In this paper we consider the problem of selecting a default prior πPS(ψ) for a
parameter of interest using pseudo-likelihood functions. Specifically, we seek a prior
πPS(ψ) so that the resulting posterior interval for ψ, based on the pseudo-posterior
distribution

πPS(ψ|y) ∝ LPS(ψ)πPS(ψ), (3)

has a coverage error of only O(n−1) in the frequentist sense. Extending Stein’s
(1985) and Tibshirani’s (1989) results in the pseudo-likelihood framework, we show
that the class of priors satisfying Stein’s condition is proportional to the square root
of an expected pseudo-information, where the latter is defined as the inverse of the
asymptotic variance of the pseudo-maximum likelihood estimator. Through several
illustrative examples, Bayesian techniques based on (1) with the reference or the
Jeffreys priors are compared to the methods based on (3), and frequentist coverage
of the implied confidence procedures are considered. Some interesting conclusions
emerge.

Section 2 briefly introduces the concept of pseudo-likelihood in the presence of
nuisance parameters and reviews its first order asymptotic properties. In Section
3 the general procedure to select a default prior πPS(ψ) using pseudo-likelihood
functions is discussed. Section 4 states the relation between πPS(ψ) and Tibshirani’s
(1990) prior for orthogonal parameters, and gives the expression of πPS(ψ) for a
modified profile likelihood. Finally, Section 5 is devoted to the discussion of several
examples, that raise interesting questions.
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2 Background theory

In order to draw inferences regarding the parameter of interest ψ in a given model,
in alternative to LI(ψ), several useful pseudo-likelihoods for a parameter of interest
can be considered. A pseudo-likelihood function for a parameter of interest ψ can be
used as a genuine likelihood function, since in general it shares the same asymptotic
properties. In particular, the pseudo-maximum likelihood estimator (MLE) ψ̂PS is
consistent and asymptotically normal, i.e.

ψ̂PS∼̇N(ψ, iPS(ψ)−1) ,

where iPS(ψ) can be interpreted as a pseudo-information, and the pseudo-likelihood
ratio statistic WPS(ψ) has a null asymptotic chi-square distribution. Some well-
known examples of pseudo-likelihoods are the conditional, the marginal, the ap-
proximate conditional, the profile, the modified profile, the generalized profile, the
partial and the integrated likelihood functions. See also the Severini’s integrated
(Severini, 2007) and the quasi-profile likelihood functions (Adimari and Ventura,
2002).

In general, unlike as happens with a genuine likelihood, a pseudo-likelihood func-
tion does not satisfy the second Bartlett identity. In view of this, the pseudo-
observed information jPS(ψ) = −∂2ℓPS(ψ)/∂ψ∂ψT , with ℓPS(ψ) = log LPS(ψ), is
not connected in the usual way to the asymptotic ariance of the pseudo-MLE. When
the information identity does not hold, the asymptotic variance of ψ̂PS can be writ-
ten as the Godambe information, i.e.

iPS(ψ)−1 = Eθ

(

−∂2ℓPS(ψ)

∂ψ2

)−2

Eθ

(

(

∂ℓPS(ψ)

∂ψ

)2
)

, (4)

where expectations are computed under (ψ, λ̂ψ), with λ̂ψ suitable consistent estimate
of the nuisance parameter for fixed ψ.

The main asymptotic results of pseudo-likelihood based inference allow to state
the asymptotic normality of a pseudo-posterior distribution πPS(ψ|y), extending
results in, e.g., Bernardo and Smith (2000, Chapter 5) or Davison (2003, Chapter
11). Indeed, for large n, using the expansion (ψ̂PS −ψ) ∼̇ iPS(ψ)−1(∂ℓPS(ψ)/∂ψ) +
op(n

1/2), we can write

2(ℓPS(ψ̂PS) − ℓPS(ψ)) = iPS(ψ)(ψ̂PS − ψ)2 + op(1) ,

and an analogous expansion can be obtained for the log-prior log πPS(ψ) around the
prior mode. However, in large samples the loglikelihood contribution is typically
much greater than that from the prior in (3) and thus for πPS(ψ|y) we have

πPS(ψ|y)∼̇N(ψ̂PS , iPS(ψ)) . (5)

3 Default prior for ψ

In this section, we look for a prior πPS(ψ) for the parameter of interest only for which
posterior probability regions, based on πPS(ψ) and a suitable pseudo-likelihood, have
accurate frequentist coverage.
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Following Stein (1985) and using (5), we seek a prior πPS(ψ) for the parameter
of interest, so that

Prψ|y{ψ ∈ Sα} = α , (6)

where

Sα = {ψ : iPS(ψ)1/2(ψ − ψ̂PS) < Φ−1(α)} , (7)

is a normal posterior region for ψ. Moreover, Prψ|y{·} denotes posterior probability,
and Φ−1(α) is the αth percentile of the standard normal distribution. We argue
that

Prθ{ψ ∈ Sα} = α + O(n−1) , (8)

for all ψ, where Prθ{·} indicates probabilty under p(y|θ). Thus, a sufficient condition
for πPS(ψ) to give (6) is

πPS(ψ)
∂iPS(ψ)−1/2

∂ψ
+ iPS(ψ)−1/2 ∂πPS(ψ)

∂ψ
= 0 . (9)

It is then straightforward to show that the solutions to condition (9) take the
form

πPS(ψ) ∝ iPS(ψ)1/2 . (10)

Expression (10) says that for a parameter of interest only, the default prior πPS(ψ) is
proportional to the square root of the pseudo-information. Note that this result can
be interpreted as a generalization to the situation of a pseudo-likelihood function of
the procedure of the Jeffreys prior.

Using (10) and the corresponding pseudo-likelihood function for ψ, the pseudo-
posterior distribution is

πPS(ψ|y) ∝ iPS(ψ)1/2 LPS(ψ) . (11)

In view of (6), posterior intevals for ψ based on (11) should have accurate frequentist
coverage.

4 Modifications of the profile likelihood

In this Section we show that (10) generalizes Tibshirani’s result, which is related
to the assumption of parameter orthogonality. Moreover, we give the expression of
(10) for a modified profile likelihood.

In an orthogonal parameterization with respect to expected Fisher information, a
suitable modification of the profile likelihood for inference about ψ gives the adjusted
profile likelihood function (Cox and Reid, 1987)

LAC(ψ) = Lp(ψ) |jλλ(ψ, λ̂ψ)|−1/2 , (12)
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where Lp(ψ) = L(ψ, λ̂ψ) is the profile likelihood for ψ, λ̂ψ is the restricted MLE
of λ solution of ∂ log L(ψ, λ)/∂λ = 0 and jλλ(ψ, λ) = −∂2 log L(ψ, λ)/∂λ∂λT is the
observed Fisher information for λ evaluated at (ψ, λ̂ψ). The main consequences of

parameter orthogonality are that ψ̂ and λ̂ are asymptotically independent and, in
addition, that λ̂ψ − λ̂ = Op(n

−1).
It is well-known that standard first-order methods for inference about ψ based on

Lp(ψ) can be seriously inaccurate in particular when the dimension of λ is substantial
relative to n. Various modifications of the profile likelihood of the form

Lmp(ψ) = M(ψ)Lp(ψ) , (13)

where M(ψ) is a suitable smooth correction factor, have been proposed; see Barndorff-
Nielsen and Cox (1994, Chapter 8) and Severini (2000, Chapter 9) for accounts. All
the available adjustments to Lp(ψ), including (12), are equivalent to second order
and share the common feature of reducing the score bias to O(n−1) (DiCiccio et al.,
1996).

The adjusted profile likelihood plays a central role also in the Bayesian setting.
The easiest way to see this is to consider an expansion of log L(ψ, λ) as a function
of λ about λ̂ψ. We get (see, e.g., Reid, 1995)

π(ψ|y) ∝ L(ψ, λ̂ψ)|jλλ(ψ, λ̂ψ)|−1/2π(ψ)π(λ̂ψ|ψ) (14)

∝ LAC(ψ)π(ψ)π(λ̂ψ|ψ) . (15)

This approximation to the marginal posterior was derived by Tierney and Kadane
(1986), which point out that the relative error is O(n−3/2). In (14) we have that the
marginal posterior distribution is proportional to the profile likelihood Lp(ψ) plus a
correction term, where the correction takes into account the information about the
nuisance parameter as ψ varies. The adjusted profile likelihood LAC(ψ) has been
widely discussed in the Bayesian framework; see, e.g., Liseo (1993), Reid (1995) ans
Sweeting (1995).

In an orthogonal parameterization, Tibshirani (1989) provided a general form
for the class of priors satisfying Stein’s condition. In particular, Tibshirani’s prior
can be assumed of the form

πT (ψ, λ) ∝ g(λ)iψψ(ψ, λ)1/2 , (16)

where g(λ) > 0 is arbitrary and iψψ(ψ, λ) is the (ψ, ψ) component of the Fisher
information matrix i(ψ, λ) based on L(ψ, λ). Expression (16) is obtained so that the
procedures implied by the objective prior πT (ψ, λ) have good frequentist properties.
This result was derived specializing the results of Peers (1965) and Stein (1985); a
rigorous derivation is given in Nicolaou (1993). Berger and Bernardo (1992) proved
that the Tibshirani prior is equal to the reference prior for a particular ordering of
the parameters.

Using (16) in (15), and using the orthogonality of ψ and λ so that we may replace
λ̂ψ by λ̂ to the same order of approximation, we obtain the following pseudo-posterior
distribution

πPS(ψ|y) ∝ iψψ(ψ, λ̂)1/2 LAC(ψ) , (17)
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for which, in view of (16), the resulting posterior intervals for ψ have accurate fre-
quentist coverage. It is straightforward to show that (17) is equivalent to (11), since
in this case the pseudo-MLE ψ̂AC is approximately normally distributed with mean
ψ and asympotic variance [iψψ(ψ, λ)]−1. In view of this, for orthogonal parameters,

we can assume iPS(ψ) = iψψ(ψ, λ̂).
More generally, in the absence of an orthogonal parameterization, for a pseudo-

likelihood function of the form (13), i.e. for a modified profile likelihood, we have
that the pseudo-MLE ψ̂PS is approximately normally distributed with mean ψ and
asympotic variance [iψψ(ψ, λ) − iψλ(ψ, λ)(iλλ(ψ, λ))−1iλψ(ψ, λ)]−1. In this case,

iPS(ψ) = iψψ(ψ, λ̂ψ) − iψλ(ψ, λ̂ψ)(iλλ(ψ, λ̂ψ))−1iλψ(ψ, λ̂ψ) .

This expression holds for any LPS(ψ) of the form (13) or such that ψ̂PS = ψ̂ +
Op(n

−1), where ψ̂ is the MLE of ψ.

5 Simulation studies

In this section we discuss four different examples. In particular, the first two ex-
amples focus on orthogonal parameters and on the pseudo-posterior (17), while the
latter two concern the pseudo-posterior (11). In all examples coverage probabilities
are all accurate and surprisingly most of the proposed pseudo-posteriors coincide
with other well known posterior distributions.

5.1 Gamma distribution

Let (y1, . . . , yn) be n independent observations from a gamma distribution with
density

f(y; ψ, λ) =

(

λ

ψ

)−ψ

y(ψ−1) exp

(

−ψ

λ
y

)

Γ(ψ)−1 .

This parameterization makes ψ and λ orthogonal. Assume the shape parameter ψ
of interest. The likelihood function is

L(ψ, λ) =

(

λ

ψ

)−nψ

qψ−1 exp

(

−ψ

λ
t

)

Γ(ψ)−n ,

with t =
∑n

i=1 yi = nȳ and q =
∏n

i=1 yi. The restricted MLE for λ given ψ is

λ̂ψ = λ̂ = ȳ, which does not depend on ψ, and

jλλ(ψ, λ̂) =
nψ

ȳ2
,

so that

LAC(ψ) ∝
(

ȳ

ψ

)−nψ

qψ−1 exp

(

−ψ

ȳ

)

Γ(ψ)−nψ−1/2.

The Jeffreys and the reference priors are (Liseo, 1993), respectively,

πJ(ψ, λ) ∝ λ−1
√

ψξ(ψ) − 1

πR(ψ, λ) ∝ λ−1
√

ξ(ψ) − ψ−1 ,
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n=3
(ψ, λ) πR(ψ|y) πJ(ψ|y)

πT (ψ|y)

(1
2 ,1) 0.949 0.888

(1,2) 0.946 0.888
(2,1) 0.952 0.888
(5,3) 0.950 0.885

n=10
(ψ, λ) πR(ψ|y) πJ(ψ|y)

πT (ψ|y)

(1,2) 0.955 0.938
(2,1) 0.957 0.940

Table 1: Frequentist coverages of 95% posterior credible intervals in the Gamma
example. The monte carlo error is

√

p(1 − p)/5000, where p is the table entry.

where ξ(ψ) is the Trigamma function, so that

πJ(ψ, λ̂) ∝
√

ψξ(ψ) − 1,

πR(ψ, λ̂) =
√

n
√

ξ(ψ) − ψ−1 = iψψ(ψ, λ̂)1/2 .

Note that the reference prior in this case equals the Tibshirani prior in (17), with
g(λ) = λ−1. Then the kernels of the posteriors are

πJ(ψ | y) ∝ ψnψqψ exp (−ψ/ȳ)Γ(ψ)−nψ−1/2
√

ψξ(ψ) − 1 ,

πR(ψ | y) = πT (ψ | y)

∝ ψnψqψ exp (−ψ/ȳ)Γ(ψ)−nψ−1/2
√

ξ(ψ) − ψ−1 .

The frequentist coverages for 95% posterior credible intervals based on πJ(ψ | y)
and πR(ψ | y) = πT (ψ | y) are given in Table 1 and are approximated with 5000
thousand samples. Simulations suggest that credible intervals of πT (ψ | y) have
frequentist coverages.

5.2 Inverse Gaussian distribution

Let (y1, . . . , yn) be n independent observations from the Inverse Gaussian model,
with density

f(y|ψ, λ) =

√

ψ

2πy3
exp

[

ψ

(

1

λ
− y

2λ2
− 1

2y

)]

,

where ψ and λ are orthogonal. The scale parameter ψ is of interest. The likelihood
function is

L(ψ, λ) = ψn/2 exp

[

ψ

(

n

λ
− t

2λ2
− a

2

)]

,
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with t = nȳ and a =
∑n

i=1
1
yi

. In this case λ̂ψ = λ̂ = ȳ,

jλλ(ψ, λ̂) =
nψ

ȳ3

and

LAC(ψ) = ψ
n−1

2 exp (−ψs),

where s = n
2

(

a
n − 1

ȳ

)

. The Tibshirani’s prior πT (ψ, λ) is

πT (ψ, λ) ∝ ψ−1 ,

and thus the pseudo-posterior distribution is

πT (ψ | y) ∼ Gamma

(

n − 1

2
, s

)

,

with mean n−1
2s and variance n−1

2s2 . Note that πT (ψ | y) is proper with at least n = 2,
while the posterior credible intervals in Liseo (1993) need n = 3. The frequentist
coverages for 95% posterior credible intervals based on πT (ψ | y) and the reference
posteriors πR(ψ | y) and πR1(ψ | y) discussed in Liseo (1993) are given in Table 2
and are approximated with 5000 thousand samples. It can be noted that also for
n = 10, comparisons are in favour of πT (ψ | y).

n = 2
(ψ, λ) πT (ψ | y) πR(ψ | y) πR1(ψ | y)

(1
2 ,1) 0.948 – –

(1,1) 0.948 – –
(2,2) 0.951 – –

n = 10
(ψ, λ) πT (ψ | y) πR(ψ | y) πR1(ψ | y)

(1,12) 0.946 0.972 0.962
(1,1) 0.945 0.963 0.963
(2,2) 0.951 0.964 0.961
(3,3) 0.949 0.966 0.946

Table 2: Frequentist coverages of 95% posterior credible intervals for the Inverse
Gaussian example. The monte carlo error is

√

p(1 − p)/5000, where p is the table
entry.
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5.3 Common ratio of Poisson means

Let X1, . . . , Xn and Y1, . . . , Yn denote independent poisson random variables with
mean ψλ and λ, respectively, with ψ > 0 and λ > 0. Let x =

∑n
i=1 xi and y =

∑n
i=1 yi. The likelihood function for the model is given by

L(ψ, λ) = exp (x log ψ + (x + y) log λ − nλ(ψ + 1)) .

Severini’7 (2007) integrated likelihood is in this case given by

LS(ψ) =
ψx

(ψ + 1)x+y
,

which can combined with the default prior

πPS(ψ) ∝
√

2x

ψ(ψ + 1)2
∝ (ψ + 1)−1ψ−1/2 .

The pseudo-posterior (17) is thus

πPS(ψ | x, y) ∝ ψx−1/2

(ψ + 1)x+y+1
,

and the corresponding density is

πPS(ψ | x, y) =
Γ(x + y + 1)

Γ(x + 1/2)Γ(y + 1/2)

ψx−1/2

(ψ + 1)x+y+1
.

For this problem, the reference integrated likelihood is

LR(ψ) =
ψx

(ψ + 1)x+y+1/2

and the reference prior for ψ slightly differs from πPS(ψ) as πR(ψ) ∝ (ψ+1)−1/2ψ−1/2.
Nonetheless πPS(ψ | x, y) equals the reference posterior πR(ψ | y) ∝ πR(ψ)LR(ψ),
for which it is known that it satisfies equation (8). Table 3 gives the frequentist
coverages for 95% posterior credible intervals based on πPS(ψ | y) = πR(ψ | y),
whcih are approximated with 5000 thousand samples.

5.4 Matched exponential samples

Let (X1, Y1), . . . , (Xn, Yn) be independent pairs of independent Gamma random vari-
ables, with fixed index m and unknown rate parameters λXj , λY j , respectively,
j = 1, . . . , n. Let ψ = λXj/λY j denote the parameter of interest, which is assumed
to be the same for all j, and take λj = λY j as the nuisance parameter.

Let Tj = Xj/Yj . The marginal distribution of T = (T1, . . . , Tn) depends on ψ
only and hence it may be used to form a marginal likelihood function. In particular,
the marginal likelihood is

Lm(ψ) = exp







mn log ψ − 2m
n

∑

j=1

log(ψxj + yj)







.
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ψ = 4, λ = 4
n πPS(ψ | y) = πR(ψ | y)

1 0.948
2 0.948
4 0.951
6 0.953

10 0.950

Table 3: Frequentist coverages of 95% posterior credible intervals. The monte carlo
error is

√

p(1 − p)/5000, where p is the table entry.

The marginal likelihood Lm(ψ) can be combined with the default prior

πPS(ψ) ∝
√

2m2n

2(2m + 1)ψ2
∝ ψ−1 .

The kernel of the pseudo-posterior (17) is

πPS(ψ | x, y) ∝ exp







(mn − 1) log ψ − 2m
n

∑

j=1

log(ψxj + yj)







.

For comparison, consider the full likelihood for this experiment

L(ψ, λ1, λ2, . . . , λn) = ψmn
n

∏

j=1

λ2m
j exp







−
n

∑

j=1

λj(ψxj + yj)







,

and the joint Jeffreys’s prior

πJ(ψ, λ1, λ2, . . . , λn) ∝ ψ−1
n

∏

j=1

λ−1
j .

We have πJ(ψ | x, y) = πPS(ψ | x, y). The proof is straightforward by noting that
the kernel of πJ(ψ, λj | x, y), as a function of λj , is a Gamma(2m, ψxj + yj).

Table 4 gives the frequentist coverages for 95% posterior credible intervals based
on πJ(ψ | x, y) = πPS(ψ | x, y), whcih are approximated with 5000 thousand sam-
ples.
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