Sensorless Capability of Fractional–Slot Surface–Mounted PM Motors

Adriano Faggion Emanuele Fornasiero Nicola Bianchi Silverio Bolognani

Electric Drives Laboratory Department of Electrical Engineering University of Padova

IEEE - IEMDC 2011 International Electric Machines and Drives Conference Niagara Falls, 15-18 May 2011

Distributed [coil winding](#page-11-0)

coil winding

motor topologies

[Conclusion](#page-39-0)

This presentation refers to the paper

Adriano Faggion, Emanuele Fornasiero, Nicola Bianchi and Silverio Bolognani

> **"Sensorless Capability of Fractional–Slot Surface–Mounted PM Motors"**

International Electric Machines and Drives Conference (IEMDC 2011)

held in Niagara Falls, CA, May 15-18, 2011

Outline

[coil winding](#page-11-0)

coil winding

with other topologies

[Introduction](#page-3-0)

2 [Distributed coil winding](#page-11-0)

3 [Concentrated coil winding](#page-18-0)

[Effect of the iron saturation](#page-27-0)

5 [Comparison with other motor topologies](#page-31-0)

[Introduction](#page-3-0) **Distributed** [coil winding](#page-11-0) coil winding

with other topologies

Rotor estimation purpose

Estimating the rotor position

- The motor have to exhibit a different value of direct and quadrature inductances
- Cross–saturation produces an angular error in the rotor position detection
- **• SPM machine does not allow the identification of the** rotor position (isotropic rotor)
	- \Rightarrow Insertion of short circuited ring around each pole. This configuration is called ringed–pole SPM motor.

Scheme and photo of the ringed–pole rotor configuration

Ringed–pole SPM motor

[Introduction](#page-3-0)

- [coil winding](#page-11-0)
- coil winding
-
- with other topologies
-

Different electromagnetic behaviour along the *d*– and *q*–axis at high frequency thanks to the presence of the rotor rings.

Aim of the work

- The ringed–pole solution has been tested with a distributed coil winding
- The possibility to use this configuration with a concentrated coil stator windings is investigated in this paper

[coil winding](#page-11-0) coil winding

[Introduction](#page-3-0) **Distributed**

with other topologies

Two kinds of motors are investigated:

- ¹ distributed coil windings (number of slots per pole per phase $q = 1.5$
- 2 concentrated coil windings $(q = 0.5)$

The effect of the conductive ring around each pole is investigated in the frequency domain by means of Finite Elements simulations

FEM analysis

In the following FEM analysis three cases have been analyzed:

- [Introduction](#page-3-0)
- [coil winding](#page-11-0)
- coil winding
-
- topologies
-
- case 1 only PMs effect is considered, i.e. without the ring.
- case 2 effect of both the ring and magnets
- case 3 only the effect of the ring

FEM analysis

Main simulation data

To derive the sensorless capability

- A sinusoidal current at different frequency is imposed in the stator winding (from 10 *Hz* to 8 *kHz*)
- The rotor is placed into two different position with respect the stator field

[Introduction](#page-3-0)

Distributed [coil winding](#page-11-0)

coil winding

topologies

High frequency impedance measurement scheme

Only *d*–axis current supplied

[Introduction](#page-3-0)

- [coil winding](#page-11-0)
- coil winding
-
- with other topologies
-

The magnetic field is along the *d*–axis and then the *d*–axis impedance can be computed.

High frequency impedance measurement scheme

Only *q*–axis current supplied

[Introduction](#page-3-0)

- [coil winding](#page-11-0)
- coil winding
-
- with other topologies
-

The magnetic field is along the *q*–axis and then the *q*–axis impedance can be computed

Referring to an equivalent circuit

Because of the short circuited rings, a saliency dependently on the frequency can be defined as:

High frequency saliency

$$
\xi(\omega_h) = \frac{Z_q}{Z_d} = \frac{R_r + j\omega_h L_r}{R_r + j\omega_h L_{rt}}
$$

From FE simulations

$$
\xi(\omega_h) = \frac{\lambda_q(\omega_h)}{\lambda_d(\omega_h)}
$$

[Introduction](#page-3-0)

Distributed [coil winding](#page-11-0)

coil winding

topologies

Distributed [coil winding](#page-11-0)

-
-
- with other
-

Distributed coil winding

Distributed coil winding

Distributed [coil winding](#page-11-0)

with other topologies

27**–slot** 6**–pole motor (distributed coil windings)**

Such configuration corresponds to the motor prototype available in laboratory.

IEMDC 2011 *Sensorless Capability of Fractional–Slot Surface–Mounted PM Motors* 13

Distributed [coil winding](#page-11-0)

- coil winding
-
- **[Comparison](#page-31-0)** topologies
-

*d***–axis flux versus frequency (distributed coil windings)**

- **1** The effect of presence of the ring can be noted comparing **case 1** with **case 2** \Rightarrow *d*-axis flux linkage decreases as the frequency increases
- ² The presence of PMs (**case 2**) yields a further reduction on the *d*–axis flux linkage

Distributed [coil winding](#page-11-0)

- coil winding
-
- **[Comparison](#page-31-0)** with other topologies
-

*d***–axis flux versus frequency (distributed coil windings)**

- **1** The effect of presence of the ring can be noted comparing **case 1** with **case 2** \Rightarrow *d*-axis flux linkage decreases as the frequency increases
- ² The presence of PMs (**case 2**) yields a further reduction on the *d*–axis flux linkage

*q***–axis flux versus frequency (distributed coil windings)**

Distributed [coil winding](#page-11-0)

- coil winding
-
- topologies
-

- **1** The effect of presence of the ring is not appreciable \Rightarrow the ring has no effect on the *q*–axis flux linkage.
- ² The PMs presence yields a slight effect on the *q*–axis flux linkage (**case 1** and **case 2**).

Distributed [coil winding](#page-11-0)

- coil winding
-
- **[Comparison](#page-31-0)** with other motor topologies
-

Saliency versus frequency (distributed coil windings)

- At low frequencies there is a small saliency of about 1.07 due to a slight rotor anisotropy.
- ² At 1 *kHz* the saliency increases from 1.1 (**case 1**) to 1.3 (**case 3**) thanks to the rings.
- ³ Considering the PMs the saliency increases to 1.4.
- ⁴ Without rings, almost no saliency variation at 1 *kHz*.

Inductance versus rotor electrical angle at 1 *kHz* **(distributed coil windings)**

Distributed [coil winding](#page-11-0)

- **[Concentrated](#page-18-0)** coil winding
- [iron saturation](#page-27-0)
- **[Comparison](#page-31-0)** with other topologies
-

- \bullet The anisotropy is significant only if a ring is present around the pole (**case 2** and **3**).
- **2** The effect of the PMs conductivity is beneficial to improve the saliency (**case 3** against **case 2**).
- ³ Experimental tests (squared marker) confirm the accuracy of the motor model.

[Concentrated](#page-18-0) coil winding

with other

Concentrated coil winding

[Concentrated](#page-18-0) coil winding

[iron saturation](#page-27-0)

with other

9**–slot** 6**–pole motor (concentrated coil winding)**

Motor sketch

Slot–opening

• Effect of the slot opening

IEMDC 2011 *Sensorless Capability of Fractional–Slot Surface–Mounted PM Motors* 19

Flux linkage versus frequency (concentrated coil winding)

d–axis – narrow slot opening

d–axis – wide slot opening

[coil winding](#page-11-0) **[Concentrated](#page-18-0)** coil winding

with other topologies

Flux linkage versus frequency (concentrated coil winding)

q–axis – narrow slot opening

[Concentrated](#page-18-0) coil winding

with other topologies

q–axis – wide slot opening

Saliency versus frequency (concentrated coil winding)

Narrow slot opening

[Concentrated](#page-18-0) coil winding

[iron saturation](#page-27-0)

with other topologies

Saliency versus frequency (concentrated coil winding)

Wide slot opening

[Concentrated](#page-18-0) coil winding

[iron saturation](#page-27-0)

with other

Inductance versus rotor angle (concentrated coil winding)

Inductance – narrow slot opening

[Concentrated](#page-18-0) coil winding

[iron saturation](#page-27-0)

with other topologies

Inductance versus rotor angle (concentrated coil winding)

Inductance – wide slot opening

[Concentrated](#page-18-0) coil winding

[iron saturation](#page-27-0)

with other topologies

Wide versus narrow slot opening

-
- [coil winding](#page-11-0)
- **[Concentrated](#page-18-0)** coil winding
-
- with other topologies
-
- The results obtained with both the configurations are comparable with those of the 27–6 motor configuration.
- With the narrow slot opening the flux linkages and the inductance values increase respect to the wide slot opening case.
- The saliency with the wide slot opening is greater than that with the narrow slot opening
- In both the cases the sensorless capability with injection of high frequency signals remains still working.

Effect of the [iron saturation](#page-27-0)

with other

Effect of the iron saturation

Effect of the iron saturation

-
- [coil winding](#page-11-0)
- coil winding

Effect of the [iron saturation](#page-27-0)

- with other topologies
-

• In order to consider the effect of the iron saturation on the motor model, the mutual inductance *L^M* between the ring and the *d*–axis windings has been computed for different motor working point.

Distributed [coil winding](#page-11-0)

coil winding

Effect of the [iron saturation](#page-27-0)

with other motor topologies

Map of L_M (μ *H*) with distributed coil winding

- *L^M* depends mainly on the *I^d* current
- L_M is practically constant along the MTPA trajectory
- In all the plane the saliency variation is quite low

[coil winding](#page-11-0)

coil winding

Effect of the [iron saturation](#page-27-0)

with other topologies

Map of L_M (μ H) with concentrated coil winding

- The mutual inductance is slightly smaller than the distributed coil winding case
- Saturation does not affect mutual inductance

IPM and inset rotor configuration

Distributed [coil winding](#page-11-0)

coil winding

[Comparison](#page-31-0) with other motor topologies

Sensorless capability

Both the motors present a magnetic saliency, more precisely the small signal magnetic saliency can be computed as:

$$
\xi_{\omega_h} = \frac{1+b/f}{1-b/f}
$$

where *b*/*f* is the ratio between the amplitude of the backward and forward sequence of the current signal, given by

$$
\frac{b}{f} = \frac{\sqrt{(L_d - L_q)^2 + M_{dq}^2}}{L_d + L_q}
$$

where L_d and L_q are the $d-$ and $q-$ axis differentially inductances and M_{dq} is the dq mutual inductance due to the cross–saturation.

[coil winding](#page-11-0) coil winding

[Comparison](#page-31-0) with other motor topologies

Estimation error due the cross–saturation

Effect of cross–saturation

The estimated position error due to the cross–saturation is

$$
\epsilon = \frac{1}{2}\arctan\frac{2M_{dq}}{L_d - L_q}
$$

 \Rightarrow a compensation algorithm is necessary to correct the position estimation error

The critical point is when $M_{dq} = 0$ and $L_d = L_q$ simultaneously

[coil winding](#page-11-0)

coil winding

[Comparison](#page-31-0) with other motor topologies

Magnetic saliency ξω*^h* **in the** *d* − *q* **plane, IPM motor**

● The magnetic saliency remains high in all the left–plane \Rightarrow good for control purposes

[coil winding](#page-11-0)

[Comparison](#page-31-0) with other motor topologies

Magnetic saliency ξω*^h* **in the** *d* − *q* **plane, INSET motor**

• Magnetic saliency is smaller than the IPM case, but always > 1

[coil winding](#page-11-0)

coil winding

[Comparison](#page-31-0) with other motor topologies

Estimated error in the *d* − *q* **plane, IPM motor**

• When $L_d = L_q$ and $M_{dq} = 0 \Rightarrow \xi_{\omega_h} = 1 \Rightarrow$ the sensorless detection of the rotor position is not possible

Distributed [coil winding](#page-11-0)

coil winding

[Comparison](#page-31-0) with other motor topologies

Estimated error in the *d* − *q* **plane, INSET motor**

- Estimated error along the MTPA trajectory lower than the IPM \Rightarrow the curve $M_{dq} = 0$ close to MTPA
- The limit $L_d = L_d$ is not present since it is out of the plot limits

- [coil winding](#page-11-0)
- coil winding
-
- **[Comparison](#page-31-0)** with other motor topologies

Estimated error in the Ringed motor

• The high–frequency saliency is guaranteed from the ring effect in all the $d - q$ plane (L_M almost constant)

- No estimated error occurs since the cross–saturation effect is negligible
- Control algorithm needs no error compensation

Effect of the [iron saturation](#page-27-0)

with other

[Conclusion](#page-39-0)

Conclusions

-
- **Distributed** [coil winding](#page-11-0)
- coil winding
-
- with other topologies
- [Conclusion](#page-39-0)

Conclusion

- Two SPM ringed pole motors with distributed and concentrated coil winding have been considered from the control point of view
- It is shown that ring around each pole represent an effective method to create a high frequency saliency, also when a fractional–slot winding is adopted
- It is shown that the effect of the eddy currents in the PMs give a useful contribution on increasing the saliency, but they are not enough to create the saliency without the ring

-
- [coil winding](#page-11-0)
- coil winding
-
- topologies
- [Conclusion](#page-39-0)
- An IPM and a INSET motor have been compared with the SPM motors
- Both the IPM and the INSET motor are suitable for the sensorless purpose, but an error compensation algorithm is necessary
- The Ringed–pole solution yields a negligible mutual coupling and then a negligible estimation error, too.

[coil winding](#page-11-0)

coil winding

with other topologies

[Conclusion](#page-39-0)

S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, "Sensorless control of ipm motors in the low-speed range and at stand-still by hf-injection and dft processing," in *IEEE International Electric Machines and Drives Conference, 2009. IEMDC '09.*, May 2009, pp. 1557 –1564.

N. Bianchi, S. Bolognani, J.-H. Jang, and S.-K. Sul, "Advantages of inset pm machines for zero-speed sensorless position detection," *IEEE Trans. on Industry Applications*, vol. 44, no. 4, pp. 1190 –1198, 2008.

- [coil winding](#page-11-0)
- coil winding
-
- topologies

[Conclusion](#page-39-0)

Related Papers by the Authors (cont.)

N. Bianchi, S. Bolognani, and A. Faggion,

"Predicted and measured errors in estimating rotor position by signal injection for salient-pole pm synchronous motors," in *IEEE International Electric Machines and Drives Conference, 2009. IEMDC '09.*, May 2009, pp. 1565 –1572.

A. Faggion, S. Bolognani, and N. Bianchi,

"Ringed-pole permanent magnet synchronous motor for position sensorless drives," in *IEEE Energy Conversion Congress and Exposition, 2009. ECCE 2009.*, 2009, pp. 3837 –3844.

Related Papers by the Authors (cont.)

Distributed [coil winding](#page-11-0)

coil winding

topologies

[Conclusion](#page-39-0)

A. Faggion, N. Bianchi, and S. Bolognani,

"A ringed–pole spm motor for sensorless drives – electromagnetic analysis, prototyping and tests," in *IEEE International Symposium on Industrial Electronics, ISIE 2010*, Bari, IT, Jul. 4–7, 2010.

with other topologies

[Conclusion](#page-39-0)

Thank you for the attention.