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the literature, but - except for Kourentzes and Athanasopoulos (2019) - generally these two
features have not been fully considered together. Adopting a notation able to simultaneously
deal with both forecast reconciliation dimensions, the paper shows two new results: (i) an it-
erative cross-temporal forecast reconciliation procedure which extends, and overcomes some
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the closed-form expression of the optimal (in least squares sense) point forecasts which fulfill
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1 Introduction

In several operational fields, decisions to be successful require the support of accu-
rate, detailed but also coherent forecasts. Forecasts are coherent when the predicted
values at the disaggregate and aggregate scales are equal when brought to the same
level. For example, temporally coherent monthly predictions sum up to annual ones
and similarly geographically coherent regional predictions add up to country level
ones. Such a coherence is an important qualifier for forecasts, so as to support
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aligned decision making across different planning units and horizons, while avoid-
ing that different decision making units plan on different views of the future. For
example, Kourentzes and Athanasopoulos (2019) generate forecasts for Australian
domestic tourism that are coherent across multiple geographical divisions (regions,
zones, states, and whole country), but are also coherent across time (at monthly,
bi-monthly, quarterly, 4-monthly, 6-monthly, and annual levels), i.e. for different
planning horizons.

As a matter of fact, in the growing literature on hierarchical forecast reconcil-
iation the cross-sectional (contemporaneous) and temporal coherency dimensions
are mostly considered in separate ways: either ‘time-by-time’ cross-sectional fore-
cast reconciliation for a n-dimensional time series (Hyndman et al., 2011, 2020),
or temporal coherency for the forecasts of a single variable for different time fre-
quencies (Athanasopoulos et al., 2017, Hyndman and Kourentzes, 2018). The issue
of getting coherent forecasts along both cross-sectional and temporal dimensions
(i.e., cross-temporal coherency) has been dealt with by Yagli et al. (2019) and
Spiliotis et al. (2020). However, as far as we know, the procedure proposed by
Kourentzes and Athanasopoulos (2019) is the only one able to simultaneously fulfill
both cross-sectional and temporal coherency in the final reconciled point forecasts
at any considered aggregation dimension.

Whereas the most recent forecast reconciliation procedures for each single co-
herence dimension are based on some optimality criterion (van Erven and Cugliari,
2015, Wickramasuriya et al., 2019), the cross-temporal reconciliation procedure by
Kourentzes and Athanasopoulos (2019) can be considered as an heuristic with a sim-
ple and effective structure, i.e. an approach that employs a practical method that
is not guaranteed to be optimal, but which is nevertheless sufficient for reaching an
immediate goal, which in our case is the coherency along all the considered dimen-
sions of the reconciled forecasts. This fact is probably due to the consideration that
in a cross-temporal forecast reconciliation framework the complexity and the dimen-
sions of the problem grow very quickly along with the requested computational time
and memory (Kourentzes and Athanasopoulos, 2019, Nystrup et al., 2020). This is
certainly true, but nevertheless an appropriate, thorough use of some well known
linear algebra tools, and the expanding computation facilities, in terms of both cal-
culation power and memory, makes it feasible to look for the optimal solution (in
least squares sense) expanding the field of application of the ‘forecast reconciliation
methodology’ to simultaneously encompass both contemporaneous (cross-sectional)
and temporal coherency dimensions.

Bottom-up and top-down approaches to forecast reconciliation are well known to
both practitioners and researchers. In short, according to the bottom-up approach
(Dunn et al., 1976), the forecasts at the most disaggregated level are summed up
to obtain the aggregates of interest. On the contrary, in the top-down approach
(Gross and Sohl, 1990) the most aggregated series is forecasted first, and then is
disaggregated to provide lower level predictions (Fliedner, 2001, Athanasopoulos
et al., 2009, and the references therein). A combination of these two approaches,
known as middle-out (Athanasopoulos et al., 2009), selects an intermediate level of
(dis)aggregation, and moves downward in a top-down fashion, and onwards accord-
ing to bottom-up.
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However, in the last decade there have been several contributions exploiting a
regression based optimal combination approach (Hyndman et al., 2011), which has
proven convincing from a mathematical-statistical point of view, flexible enough to
be adapted to both cross-sectional and temporal frameworks (Wickramasuriya et al.,
2019, and Athanasopoulos et al., 2017, respectively), and very effective in improving
the base forecasts from many different application fields (economics, demography,
energy, tourism, etc.).

In this paper we consider an optimal combination approach, which takes the
base (incoherent and however obtained) forecasts of all nodes in the hierarchy, and
reconcile them. We show that all the summation constraints induced by the cross-
temporal hierarchy underlying the time series, may be used to reconciliate the base
forecasts through a simple projection in a well chosen linear space. At this end,
we extend the optimal (in least squares sense) solutions separately proposed for
each coherency dimension, developing the optimal point forecasting procedure which
- while exploiting both cross-sectional and temporal hierarchies - simultaneously
fulfills both contemporaneous and temporal constraints. We refer to this as optimal
combination cross-temporal forecast reconciliation. In addition, grounding on the
existing literature on this topic (Wickramasuriya et al., 2019, Athanasopoulos et
al., 2017, and Nystrup et al., 2020), we discuss some simple approximations of the
covariance matrix to be used in the statistical point forecast reconciliation, with
focus on those making use of the in-sample residuals (when available) of the models
used to get the base forecasts. The strictly, and very important related issue of
probabilistic forecast reconciliation (Gamakumara et al., 2018, Athanasopoulos et
al., 2019, Hong et al., 2019, Jeon et al., 2019, Roach, 2019, Ben Taieb et al., 2020,
Yang, 2020) is not considered in this paper, and will be dealt with in the near future.

The paper is organized as follows. We start by presenting the general framework
of point forecast reconciliation according to a projection approach (Panagiotelis et
al., 2020), avoiding reference to cross-sectional or time indices (section . Hier-
archical and grouped systems of multivariate time series are introduced in section
The temporal hierarchies which characterize a single time series are discussed
in section [ The cross-sectional and temporal coherency dimensions are dealt with
simultaneously in section |5, and the optimal (in least squares sense) solution to
the cross-temporal forecast reconciliation problem is then developed in section [0}
The heuristics proposed by Kourentzes and Athanasopoulos (2019) is described in
section [7] where some variants of that procedure are discussed, and a very sim-
ple (and possibly more effective) iterative cross-temporal reconciliation procedure
is proposed. The feasibility of all the proposed procedures, along with the evalu-
ation of their performance as compared to the most performing ‘single dimension’
(either cross-sectional or temporal) forecast reconciliation procedures, is studied in
section [§| through a forecasting experiment on the 95 quarterly time series of the
Australian GDP from Income and Expenditure sides considered by Athanasopoulos
et al. (2019) and Bisaglia et al. (2020). Section [J] presents conclusions and lists some
topics in this field worth to be considered for future research. Finally, the Appendix
contains complementary materials, on both methodological and practical issues, not
considered into the paper for length reasons. In addition, it contains supplementary
tables and graphs related to the empirical application.
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Symbols and notation used in the paper

Symbols Description

Np, Na, N Number of bottom, upper, and total time series (n = n, + np)

m Highest available sampling frequency per seasonal cycle
(max. order of temporal aggregation)

h>1 Forecast horizon for the lowest frequency time series

T Number of high-frequency observations used in the
forecasting models

N Number of observations at the lowest frequency: N = -~

H Set of factors of m in descending order: %" = {ky, kp 1y--- ko, K1},
kpy=m, ki =1
p—1

s >k
j=1

M, % ke

b, € R™ vector containing the bottom time series (bts) at time ¢

a; € R"e vector containing the upper time series (uts) at time ¢

y: €R" vector containing the time series y, = [a@ bﬂ/ at time ¢

Y,Y,Y € R**ME+m) | Matrices of target, base and cross-temporally reconciled forecasts

Y[k], kex (n x hM}) matrix containing the target forecasts of the level k temporally
aggregated series. Component of matrix Y = [Y[m] yleeal | ylkel Ym]

~ [k

Y[ ! ket (n x hM}) matrix containing the base forecasts of the level k temporally

~ -~ Slka] oL

aggregated series. Component of matrix Y = {Y[m] Y[ ] . ,Y[ 2],Y[ ]}

~ [k

Y[ ], kex (n x hM}) matrix containing the cross-temporally reconciled forecasts

AW B ez

B* c R™ xhk*

v.9,¥ € Rnrh(k™+m)
ye Rnh(k’*+m)

C € R"%aXm

S € R™*m

U’ € Rexn

K, € RIE" xhm

R, € Rh(k*-f—m)xh,m
Z;’L c RIE" xh(k*+m)
H € RnGxnh(k™+m)
c c Rn;xnbm

S c Rn(k*er)anm
I:I, c Rhn;xnh(k*+m)

of the level k temporally aggregated series. Component of matrix

~|m| ~ ~ [k ~
¥ {Y[ Iyt 217Ym}
(nq x hMy) and (ny, x hMy) components of matrix Y = [

[B[m] Blko-1l ... glkel

y = vec (Y/)7 y = vec ?/>, y = vec (ﬂ?)
Alternative vectorization of matrix Y, used in the cross-temporal
vec (A’)

structural representation: y = | Vec (B* )

vec (Bml)
Cross-sectional (contemporaneous) aggregation matrix
Cross-sectional (contemporaneous) summing matrix
Zero constraints cross-sectional kernel matrix: U'Y = O(n, x (k*+m)]
Temporal aggregation matrix
Temporal summing matrix
Zero constraints temporal kernel matrix: Zj, Y’ = Oppe )
Zero constraints full row-rank cross-temporal kernel matrix: H'y =0
Cross-temporal aggregation matrix (structural representation) for h =1
Cross-temporal summing matrix (structural representation) for h =1
Zero constraints full row-rank cross-temporal kernel matrix
valid for y: H’y =0

2 Optimal point forecast reconciliation: projection approach

Forecast reconciliation is a post-forecasting process aimed to improve the quality of
the base forecasts for a system of hierarchical/grouped, and more generally linearly
constrained, time series (Hyndman et al., 2011, Panagiotelis et al., 2020) by exploit-
ing the constraints that the series in the system must fulfill, whereas in general the
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base forecasts don’t.
Let y be a (s x 1) vector of target point forecasts which are wished to satisfy the
system of linearly independent constraints

H'y = 041), (1)

where H' is a (r x s) matrix, with rank(H') = 7 < s, and 0,1y is a (r x 1) null
vector. Let y be a (s x 1) vector of unbiased point forecasts, not fulfilling the linear
constraints (i.e., Hy # 0).

Drawing upon Stone et al. (1942), Byron (1978), Weale (1988), Solomou and
Weale (1993), and Dagum and Cholette (2006), among others, we consider a regression-
based reconciliation method assuming that ¥y is related to y by

y=y+e, (2)

where ¢ is a (s x 1) vector of zero mean disturbances, with known p.d. covariance
matrix W. The reconciled forecasts y are found by minimizing the generalized least
squares (GLS) objective function (¥ —y)' W1 (3 — y) constrained by :

y=argmin(y —y) Wl (y—y), st Hy=0.
y

The solution is given by (see Appendix A.1):

y=9—-WH (HWH) 'Hy = My, (3)

where M = I, - WH (H'WH) ' H' is a (s x s) projection matri Denoting with
dy = 0 — H'y the (r x 1) vector containing the base forecasts’ ‘coherency’ errors,
we can re-state expression as

td

y=y+WH(HWH) dg,
which makes it clear that the reconciliation formula simply ‘adjusts’ the original
forecasts vector y with a linear combination — according to the smoothing matrix
WH (H'WH)f1 — of the coherency errors in the base forecasts. In addition, if the
error term of model is gaussian, the reconciliation error € = y —y is a zero-mean

gaussian vector with covariance matrix
EF-y)¥-y) =W-WH(HWH)  H =MW,

Hyndman et al. (2011, see also Wickramasuriya et al., 2019) propose an alter-
native formulation as for the reconciled estimates, equivalent to expression and
obtained by GLS estimation of the model

y=5SB+e¢, (4)

where S is a ‘structural summation matrix’ describing the aggregation relationships
operating on y, and [ is a subset of y containing the target forecasts of the bottom

LA geometric interpretation of the entire hierarchical forecasting problem is given by Panagiotelis
et al. (2020).
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level series, such that y = Sf (see section . Since the hypotheses on £ remain
unchanged, it can be shown (see Appendix A.1) that

= (SWs) 'swly

is the best linear unbiased estimate of 3, and that the whole reconciled forecasts
vector is given by

y =SB = SGy,

where G = (S'W18) 's'WL.

As witnessed by the huge literature on adjusting preliminary data (as the base
forecasts can be considered) in order to fulfill some externally imposed constraints,
the distinctive feature of the generalized least-squares reconciliation approach is
that it can take into account the ‘quality’, however measured, of the preliminary
estimates, through an appropriate choice of the covariance matrix W. However, for
a long time these procedures have depended on the assumption that this matrix (or
any other indicators of the estimates’ accuracy) of the figures to be reconciled was
known. In many practical situation W is assumed to be diagonal, and the data are
adjusted in the light of their relative variances so as to satisfy the linear restrictions.
But another - perhaps more delicate - challenge raises when either any reliability
measure is available or it can be hardly deduced by the data. The solutions proposed
in literature for this case are basically of two types, both of which are consistent
with the least-squares approach shown so far:

1. mathematical/mechanical solutions: the base forecasts are balanced by mini-
mizing a penalty criterion which ‘induces’ a covariance matrix (which is simply
a statistical artifact);

2. data-based solutions: the variability of the base forecasts to be reconciled is
estimated through the models and the data used to produce the forecasts.

As for point forecast reconciliation, in the following we will consider both approaches,
with an explicit preference towards approximations of W based on the in-sample
residuals (when available), which appear both more convincing from a statistical
point of view, and generally well-performing in practical applications. However, this
topic deserves further attention (Jeon et al., 2019, p. 368, see also Kourentzes, 2017,
2018), and will be considered for future research.

3 Hierarchical and Grouped Time Series

Extending the definition of hierarchical time series given by Panagiotelis et al.
(2020), a linearly constrained time series y; is a n-dimensional time series such
that all observed values y; ...y7 and all future values y1,yro... lie in the co-
herent linear subspace .7, that is: y, € ., Vt. In many situations, the time series
are linked through summation constraints, which induce a hierarchy. Figure [1]| gives
an example of a hierarchical system with eight variables and three levels: the top-
variable at level 1, two variables (A and B) at level 2, and five variables at level 3
(AA, AB, BA, BB, BB, BC). The temporal observations of these variables form a
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hierarchical time series, consisting of 5 bottom time series (bts) and 3 aggregated
upper time series (uts).

0000

Figure 1: A simple two-level hierarchical structure

Assuming that the relationship mapping the lower-level series in the hierarchy of
Figure|l|into the higher ones always be a simple summatiorﬂ, the bottom-level series
can be thought as building blocks that cannot be obtained as sum of other series in
the hierarchy, while all the series at upper levels can be expressed by appropriately
summing part or all of them. For all time periods t = 1,...,T, the link between the
top level series 3 and the bottom level series is given by:

Yt = YAAs +YABt T YBAL + YBBt + YBCyt- (5)

At the same time, the nodes at the intermediate level of the hierarchy satisfy the
aggregation constraints:

YAt = YAAt T YAB 6)
YBt = YBAtTYBB:t+YBC:H

In summary, there are as many summation constraints as many nodes with leaves
(3, i.e. Total, A, B). Consider now the matrices C, S, and U’, of dimension (3 x 5),
(8 x 5), and (3 x 8), respectively:

10101 1 1
11000
N (RS
C=|11000], S= :[ ] U =[I; —C],
00 111 01000 I
00100
00010
0000 1]

2For space reasons, in this paper only simple summation for both contemporaneous and tem-
poral aggregation relationships is considered. Remaining in a linear framework, the extension to
general linear constraints (i.e., weighted summation), able to cover other important data features,
is rather straightforward (Shang, 2017, 2019, Shang and Hyndman, 2017, Li and Hyndman, 2019,
Panagiotelis et al., 2020).
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where matrix U’ encodes each summation relationship in a row, with 1 at the asso-
ciated node, and -1 at its leaves.

Expressions and @ can be written in a more compact way if we define the
vectors of bottom level (b;) and upper level (a;) time series at time ¢ as, respectively,

YAA

YAB,t Yt
b; = YBAt | > ar = [ Yar

YBAt YB,t

YBA,t

Denoting by y, the (8 x 1) vector y, = [a} b}]’, the relationships linking bottom and
upper time series can be equivalently expressed as:

a = Cbt, Y = Sbt, U/yt = 0(3><1), t= 1, e ,T. (7)

Thus, for any time index t, y, is in the kernel of U’ also known as null-space
of the linear transformation induced by matrix U’, which is given by the set of
vectors v € R7, such that U'v = 0(3x1) (Harville, 2008, p. 591). We call structural
representation of series y, the formulation

Yt:Sbt7 tzl,...,T,
and zero constraints kernel representation of series y, the equivalent expression
Uy, =0, t=....T.

A linearly constrained time series formed by two or more hierarchical time series
sharing the same top level series, and the same bottom level series, is called grouped
time series (Hyndman et al., 2011, Hyndman and Athanasopoulos, 2018). Provided
matrix C is appropriately designed, the definitions of matrices S and U’, depending
solely on matrix C, remain unchanged.

It should be noted that we can face linearly constrained time series for which
the structural representaton y, = Sb; does not give a straightforward view of the
links between bottom and upper level time series. Figure |2 shows two very simple
hierarchies, where the variables of each hierarchy contribute (from different sides)
to the same top level variable X, and the bottom level series of the hierarchy on the
left side (A1,A2,B) are independent from those on the right side (C,D).

The aggregation relationships between the upper variables X and A, and the
bottom ones Al, A2, B, C, and D are given by:

X = A1+ A2+ B
X = C+D . 8)
A = Al+ A2

Expression cannot be represented as a mapping from the bottom variables into
(themselves, and) the upper variables. Nevertheless, it is possible to set up the
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Al A2 B C D

Figure 2: Two hierarchies sharing the same top-level series X

constraints valid for all the component series in y = [X A A1 A2 B C D]’ through
the matrix

~/

10
U=|10 0 0 0 -1 —1],
01 -1 -1 0 0 0

such that U'/y = 0(3x1). After simple operations on expression , it is found:

X = C+D
A = -B+C+D : 9)
Al = —A2-B+C+D

so we can write U'y = 0(351), with

10000 -1 —1
U=(01001 -1 -1]|=[I3 —CJ.
00111 -1 —1

While there is no practical problem in working with such constraints, it is clear that
they do not conform to the visual pattern of the linearly constrained time series in
Figure [2| where Al appears as a ‘bottom variable’, whereas in @D it is expressed as
linear combination of series A2, B, C, and D.

In addition, notice that the left side hierarchy of Figure [2|is ‘unbalanced’, in the
sense that unlike node A, node B has no children, and thus is located at the bottom
level of the hierarchy, though it could be considered at the same level as node A.
Situations like that, often met in practice when dealing with hierarchical/grouped
time series, require an appropriate formulation of the cross-sectional aggregation
matrix C, in order to avoid nodes’ duplication (see Appendix A.2).
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3.1 Alternative approximations of the covariance matrix for cross-sectional
point forecast reconciliation

Suppose we have the (n x 1) vector §;, of unbiased base forecasts for the n variables
of the linearly constrained series y, for the forecast horizon h. If the base forecasts
have been independently computed, generally they do not fulfill the cross-sectional
aggregation constraints, i.e. U’y # O(nx1)- By adapting the general point forecast
reconciliation formula , the vector of reconciled forecasts is given by:

Y =¥n— WeU (U,WCSU) U/Yha (10)

where W is a (n X n) p.d. matrix, assumed known, and suffix ‘cs’ stands for ‘cross-
sectional’. Alternative choices for W proposed in literature are the following;:

e identity (cs-ols): W¢s = I, (Hyndman et al. 2011),

structural (cs-struc): Weg = diag (S1,,) (Athanasopoulos et al., 2017),
e series variance (cs-wls): Weg = WCS_VM =1,0 Wl (Hyndman et al., 2016),

MinT-shr (cs-shr): W = WCS_Shr = S\WCS_VM +(1- 5\)\/7\\71 (Wickramasuriya
et al., 2019),

e MinT-sam (cs-sam): We = W1 (Wickramasuriya et al., 2019),

where the symbol © denotes the Hadamard product, \ is an estimated shrinkage
coefficient (Ledoit and Wolf, 2004, Shéfer and Strimmer, 2005), W is the sample
covariance matrix of the one-step ahead in-sample forecast error

W, = Zetet, (11)

and & =y, —y;,, t=1,...,T, are (n x 1) vectors of in-sample forecast errors.

The first three matrices are diagonal, and in the first case the projection is
orthogonal, whereas the latter two ones (cs-shr and cs-sam) have been proposed
within the minimum-trace point forecast reconciliation approach by Wickramasuriya
et al. (2019). It should be noted that the quality of the estimate V/\\fl crucially
depends on the dimension of T'. In particular, When T < n, matrix W1 is singular,
which prevents the matrix inversion in expression . The shrunk version ’VVCS shr 1S
a feasible alternative, well performing in many practlcal situations (Wickramasuriya
et al., 2019).

T
3Expression (|11 assumes that 77! Zét’i =0,7=1,...,n. When this does not hold, W is
t=1
the sample Mean Square Error (MSE) matrix.
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3.2 Matrix representation of the cross-sectional constraints

Let us denote with
by = [b1g- - bji .. bnyt] t=1,...,T, (12)

the T vectors, each of dimension (np x 1), containing the high-frequency bottom-
time series (hf-bts), that is the bottom series of the hierarchy/group observed at the
highest available temporal frequency. As we shall see in section [5], in cross-temporal
hierarchies of time series the hf-bts should be considered as the ‘very’ bottom series
of the system, since they cannot be formed as either contemporaneous or temporal
sum of other variables. Likewise, let us denote with

at:[alt...ait...anat]/, tzl,...,T, (]_3)

the T vectors, each of dimension (n, x 1), containing the high-frequency upper-
time series (hf-uts), which are the cross-sectionally aggregated series of the hier-
archy/group, observed at the highest temporal frequency.

At each time t = 1,...,T, the cross-sectional (contemporaneous) aggregation
constraints that map the hf-bts into the hf-uts can be written as:

at:Cbt, ZL/:].,...,,_T7 (14)

where C is a (ng X np) contemporaneous aggregation matriz. The structural repre-
sentation of the linearly constrained time series y, is in turn given by (Hyndman et
al., 2011):

ag o C o .
|:bt:|_|:1nb:|bt = yt—Sbt, t—17...,T,

where S = [ C
I,

The constraints valid for y, can be expressed in kernel form through the (n, x n)
zero constraints matriz

] isa (n x ny) contemporaneous summing matriz, with n = ng,+ny.

U=, -C,

that is:
Uy, =0, x1), t=1,...,T.

Now, denote B the (n, xT') matrix containing the 7" observations of the nj-variate
hf-bts of the system:

bii ... b ... bir b ]
B=|b1 ... by ... bir|=[bi ... by ... by]=|bY]|,
byt oo bagt oo boyr) b |

where b; has been defined by , and

bz:[bil...bit...bij‘]l, 1=1,...,np,
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is the (T" x 1) vector containing all the observations of the i-th univariate hf-bts,

where the asterisk in b} is used to distinguish this vector, which combines b;; across

all times for one series, from by, which combines b;; across all series for one time.
We consider the (ng x T) matrix A for the hf-uts as well:

.
ail PN aj PN alT aq
— . . . — _ */
A= |ap ... ajp ... a7 _[al ce.oap ... aT]_ aj |,
a a a a*
(Angl -+ Qngt  --- Gp,T| L2,

where a; was defined by , and
a; = [aj1...ajt...ajr] s j=1,...,nq,

is the (1'% 1) vector containing all the observations of the j-th univariate component
hf-uts.

The cross-sectional (contemporaneous) aggregation relationships linking
bottom and upper time series of y, can thus be expressed in compact form, by
simultaneously encompassing all T' time periods, for both types of data organiza-
tion. In fact, extending expression to the whole observation period, it is

A =CB, (15)
which is equivalent to
U'yY = O(nu xT)> (16)
where A
5

is the (n x T') matrix containing the observations of all n series. It is worth noting
that the cross-sectional constraints and hold at any time observation index
of any temporal frequency. This has to be considered when dealing with cross-
temporal hierarchies (see section [f]).

Now, let us consider two vectorized forms of matrices B and A, namely:

b =vec(B), a=vec(A),
b* =vec (B’), a"=vec(A’).

Both b and b* have the same dimension (Tn, x 1), and this holds for a and a* as
well, which have dimension (Tn, x 1). However, in the former case (b and a) the
data is organized ‘by-time-first-and-then-by-variable’:

b = [b’l...bg...b’T}/, a= [a’l...ag...a’T]/,

whereas in the latter (b* and a*) the data is organized ‘by-variable-first-and-then-
by-time’:

b* = [by...bY...b;]", a'=[a}...a)...a}].
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Switching between the two data representations is very simple, since vector b (a)
can be obtained by simple transformation of vector b* (a*) through an appropriate
permutation matrix, and vice-versa (see Appendix A.3.1).

Depending on the preferred data organization type, the cross-sectional con-
straints can be equivalently expressed in vectorized form as (Harville, 2008,
pp. 345):

a = vec(A) = (Ir®C)vec(B) = (Ir®C)b,

a* = vec(A) = (Colp)vec(B) = (C@lr)b*’ (17)

where the symbol ® denotes the Kronecker product. Expressions can be also
formulated using matrix U, as in (16), i.e.

a *

a
(Ir @ U') { b ] =0(rn,x1), (U ®Ir) [ b* ] = O0(Tngx1)- (18)
In order to avoid mistakes, one should note that, while

e (v) = et - ). a9

it is in turn:

_ [vec (A)]  [a
y =vec(Y) # vec (B)] = [b] .
Therefore, in the following when a matrix vectorization is needed, we will generally
prefer using vectorized version of matrices Y’, A’, and B/, as in . In addition,

to ease the notation, from now on the asterisk will be omitted, which means that,
unlike we previously did, we denote with y, a, and b the following vectors:

y = vec (Y') , a=vec (A') , b=vec (B') .

4 Temporal hierarchies

Following Athanasopoulos et al. (2017), we consider a time series {x;}_; observed
at the highest available sampling frequency per seasonal cycle, say m (e.g., month per
year, m = 12, quarter per year, m = 4, hour per day, m = 24). Given a factor k of
mE] we can construct a temporally aggregated version of the time series x¢, through
the non-overlapping sums of its k successive values, which has seasonal period equal
to My = m/k. To avoid ragged-edge data, we assume that the total number of
observations of x; involved in the non-overlapping aggregation is a multiple of m,
i.e. T'= N -m, where N is the length of the most temporally aggregated version of
the series, i.e. the series observed at the lowest available frequency.

We denote with & = {kp,kp—1,...,k2,k1} the set of the p factors of m, in
descending order, where k, = m and ki1 = 1. The temporally aggregated series of

4If k is not a factor of m, then the seasonality of the aggregate series is non-integer, and so
forecasts of the aggregate are more difficult to compute.
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order k£ can be written as

Lk
T
=Y I=1,.... 5, kex. (20)
t=(1—1)k+1

Expression accounts also for the trivial temporal aggregation transforming x;
in itself (i.e., x; = IL‘P ,L=1).

Since the observation index [ in varies with each aggregation level k, in
order to express a common index for all levels, we define 7 as the observation index
of the most aggregated series, such that [ = 7 at that level, i.e.

x[Tm], T=1,...,N.

As for the other temporally aggregated series defined in expression , we stack
the observations for each aggregation level below m in the (M} x 1) column vectors

(] (K]

K _ | .[K]
X[ ] - Mk(771)+2 kaT

T Ty (r—1)+1 L

!/

], T=1,...,N, kE{kp_l,...,k‘g,l}.
(21)

We may collect x[Tm I and the p — 1 vectors defined by expression in a single

column vector, by keeping distinct the temporally aggregated data from the high-
frequency one:

Xr = |::L-£_m] kapil], ce XL’kQ]/ XE]/]/ - |:tm7', XE]/:|/’ T= 17 s 7N7
k1 "’ p=l

where t, = [:L’Bn} X[T ol Xg—kz]} is a (k* x 1) vector, with k* = ij, con-
j=1

taining all the temporally aggregated series at the observation index 7, X‘[,-H is the
(m x 1) vector of observations of the time series at the highest available frequency
within the complete 7-th cycle, and thus each x; has dimension [(k* +m) x 1].
The relationships linking the original high-frequency series z; and its temporal
aggregates can be graphically represented as a hierarchical/grouped series. For
example, for quarterly data k € {4,2,1}, then every four quarterly observations are
aggregated up to annual and semi-annual counterparts. According to the notation
so far, for a single year the quarterly hierarchical structure can be defined as in
Figure |3 where 24, 22 and 2z denote annual, semi-annual, and quarterly values,
respectively. The relationships linking the nodes in the hierarchy can be expressed
as we did in for the cross-sectional (contemporaneous) hierarchy case:
ty, = le[Tl], X, = Rlx[Tl], Z\x, = Ok+x1), T=1,...,N, (22)
where K is the (k* x m) temporal aggregation matrix converting the high-frequency
observations into lower-frequency (temporally aggregated) ones,
K1
SN
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Figure 3: Temporal hierarchy for quarterly series using the common index 7 for all
levels of aggregation.

is the [(k* +m) x m] temporal summing matrix, and Z} = [I;» — Kj] is the zero
constraints kernel matrix valid for x,. For example, with quarterly data it is m = 4,
k* =3, and

1111
1100
1111 0011
Ki=|1100|, Ry=|[100 0|, Z =[5 —K.
0011 0100
0010
0 0 0 1]

The temporal aggregation relationships can be extended to the whole time span
covered by series ;. Denoting by x = (x} ...x} ...x)y) the [N(k* +m) x 1] vector
containing all the data of series X at any observed temporal frequency, the complete

set of temporal aggregation constraints valid for this vector is given by

NX = O(npex1), (23)
where Z/y = [Iny- — Kn], and
IN (9] 1/
Ky = 4
N I:IQN X 1/2]

It is not always possible to represent the temporal aggregates of one series in a
single treeﬂ such as Fig. 3l In Appendix A.4 the representations valid for monthly
and hourly hierarchies are shown.

SFor any given positive m > 1, there is a single unique temporal hierarchy only if m = ¢,
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4.1 Alternative approximations of the covariance matrix for point fore-
cast reconciliation through temporal hierarchies

Suppose we have the [(k* +m) x 1] vector X; of unbiased base forecasts for the p
temporal aggregates of a single time series X within a complete time cycle, i.e. at
the forecast horizon h = 1 for the lowest (most aggregated) time frequency. If the
base forecasts have been independently computed, generally they do not fulfill the
temporal aggregation constraints, i.e. Z|X; # O(x+x1)- By adapting the general
point forecast reconciliation formula (3], and not considering suffix i to simplify the
notation, the vector of temporally reconciled forecasts is given by:

% =% - QZ, (2,9Z,)' Z%, (24)

where Q is a [(k* +m) x (k* +m)] p.d. matrix, assumed known.
In order to consider possible residual-based estimates of matrix €2, denote

el =xM %M 7 =1 N, ke, (25)

the (M x 1) vectors of the in-sample residuals at time index 7 for the models used
to generate the base forecasts of the temporally aggregated series of order k. These
vectors can be organized in matrix form as

_(é[lk})/_

E. = (é[;d)/ . ke, (26)

T

(o4

~[k
where each matrix EL | has dimension (N x My,), and then grouped in the [N x (k* + m)]
matrix of in-sample residuals

= ~[m] ~[kp_ ~[k2] a[1

E; = [Eim] gl gl Ei]} :
Each column of this matrix contains the in-sample residuals pertaining to a specific
node of the temporal hierarchy, thus the sample cross-covariance matrix of the k*+m
nodes of the temporal hierarchy is given byﬁ:

9- % (B.) E.. (27)

where « is a positive integer and ¢ is a prime number (Yang et al., 2017). A corollary is that a
single unique hierarchy is only possible when there are no coprime pairs in the set {kp_1,..., ks, ka2}
(Athanasopoulos et al., 2017).
N
SExpression (27) assumes that N ! Zéﬂl =0,l=1,...,k" +m. When this does not hold, Q
T=1

is the sample Mean Square Error (MSE) matrix.
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This matrix is well defined if N > (k* 4+ m), otherwise there might be singularity
issues which would prevent its use in expression in place of matrix Q.

Athanasopoulos et al. (2017) and Hyndman and Kourentzes (2018) consider the
following alternative choices for € (the suffix ‘t’ stands for ‘temporal’, to keep the
‘t’-procedures distinct from the ‘cs’-ones shown in section :

e identity (t-ols): Q = Iy, ,

structural (t-struc): Q = ﬁt_stmc = diag (R11,,)

hierarchy variance scaling (t-wlsh): Q = ﬁt—wlsh =T © Q
e series variance scaling (t-wlsv): Q = fl\t_wlsv

MinT-shr (t-shr): Q = ﬁt_shr = j\ﬁt_wlsh +(1- 5\)§

e MinT-sam (t-sam): Q = Q

The series variance scaling matrix /Sit_wlsv is a diagonal matrix “which contains es-
timates of the in-sample one-step-ahead error variances across each level” (Athana-
sopoulos et al., 2017, p. 64), that requires a reduced number (p instead of k* + m)
of variances to be estimated as compared to the hierarchy variance scaling matrix
ﬁt_wlsh, with increased sample size available for the estimation.

“As the purpose of temporal aggregation is to exploit important information
about time series at different frequencies”, Nystrup et al. (2020) propose other for-
mulations in order to include potential information in the autocorrelation structure.
The matrices considered in this papelm are:

e auto-covariance scaling (t-acov): Q = ﬁt_acov
e structural Markov (t-strarl): Q = fl\t_strarl
e series Markov (t-sarl): Q = ﬁt_sarl

e hierarchy Markov (t-harl): Q = ﬁt-harl

The auto-covariance scaling makes use of the estimates of the full autocovariance
matrices within each aggregation level, while ignoring correlations between aggrega-
tion levels:

o o . o ]
o " ... o
Qiacor = | ST
0 .. ol 0
0 ﬁ[ll

"For the time being, we do not consider all the newly proposed covariance matrices. The inter-
ested reader may refer to Nystrup et al. (2020).
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~[k
where the (M x Mjy) matrices Q[ ] are given b

N /

ol = %Zé[ﬁ (&MY = % (BB ke, (28)
=1

where vector é[f} and matrix }AEEEk] are given by and 1} respectively. A nec-

essary condition in order to matrix ﬁt_acov be invertible, is N > m, which is less

demanding than what is needed for the non-singularity of matrix Q.

Because it is sometimes difficult to estimate the covariance matrix within each ag-
gregation level without assuming that it has some special form, Nystrup et al. (2020)
propose “an estimator that blends autocorrelation and variance information, but
only requires estimation of the first order autocorrelation coefficient at each aggre-
gation level”. They consider the Toeplitz matrix for the estimated first-order auto-
correlation coefficients of the in-sample residuals for the p—1levels k = k1, ..., k,—1,
of the series’ temporal hierarchy. Denoting these autocorrelation coefficents with pj,
it is:

r M —17
M. —2
Pik] 1 ... p[k]k
rim =1, rlkl — ‘ ‘ . , k=ki, ... kp,
M —1 M —2
I 1

where each matrix I¥, k € ¢, has dimension (My, x My,). The p matrices are used
to build the [(k* + m) x (k* + m)] matrix:

1 o 1

0 rke-1l ... 0
M= . . . . 3

0 0 oo

which can be used in three alternative estimates of matrix Q:

A~

~ /\l
2 2
Qt-strarl =Q rQ

t-struc t-struc

1 1
~ ~3 ~3
S2‘c—sarl =Q rQ

t-wlsv t-wlsv

PN PR P
02 2
Qt—harl - Qt_wlstht-wlsh

5 The cross-temporal forecast reconciliation framework

5.1 Cross-temporal aggregation constraints

The cross sectional aggregation relationships , linking n series at a single time
period, and the temporal aggregation relationships (22]), valid for an individual

. alm] .
8Matrix Q reduces to a scalar variance.
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variable, can be simultaneously considered, by extending (i) the cross-sectional con-
straints to all observation frequencies, and (ii) the temporal aggregation relationships
to all variables.

Considering contemporaneous and temporal dimensions in the same framework
requires to extend and adapt the notations used so far. At this end, define the p
matrices Y*!| each of dimension (n x NMy), as

[k]
Y[’flz[A } ke,

B
where ~ _ _ _
b[lk]/ a[lk]l
B — bE‘k]/ . AlF = ag’f]/ , ke,
I bﬁ“,}’ | i aﬁ'ﬁl/ ]

are the matrices containing the k-order temporal aggregates of the bts (B[k]) and
uts (A1), of dimension (ny x NMy) and (ng x NMj,), respectively.

In order to be consistent with the notation so far, Y[l], B[I], and AY denote the
matrices containing data at the highest available sampling frequency, while Y, B,
and A are used now to denote the matrices containing the data at any considered
temporal frequency, that is:

A Alml Alkp—1]l 0 Alke]l Al
Y= [ B } - { B Bkl ... Bkl gl |’

where Y, A, and B have n, n, and nj rows, respectively, and the same number of
columns, [N (k* + m)].

Cross-sectional aggregation constraints
The cross-sectional aggregation relationships operating along all the time observa-
tion indices can be worked out by extending the latter equation in expression :

UYHM =00, «nar), k€,
which can be expressed in compact form as
U'Y = 00, x N (k*+m))- (29)

If we define y as the (nN(k* + m) x 1) vector containing all the observations of
all series at any temporal aggregation level, organized ‘by-variable-first-then-by-
descending-aggregation-order’, that is y = vec(Y’), the cross-sectional (contempo-
raneous) constraints can be equivalently expressed as:

(U @ Iy tm)) ¥ = Oy N (ke +m) x1]- (30)
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Temporal aggregation constraints
The temporal aggregation relationships , valid for a single series, can be extended
to each component of the n-variate time series y, as follows:

i [ =Ky[ Al B, (31)
Alk2l gkl

which can be equivalently written as [Ing — Ky]Y' = O(Nk*xn), that is:

The temporal aggregation constraints can thus be re-stated as:

which, for n = 1, is equivalent to expression ([23)).

In summary, by considering expressions and together, the cross-temporal
constraints working on the complete set of observations can be expressed as:

o/
Hy = 04, x1), (34)
where n* = neN(k* +m) + nNk*, and

ﬁ, _ U/ ® IN(k/*_j'_m)
I, ® Zy

is a [n* x nN (k™ + m)] cross-temporal zero-constraints kernel matrix.

Due to the simultaneous consideration of temporal and cross-sectional relation-
ships linking the various time series of the system, some rows of H are redundant,
and can be eliminated if one wishes a full row-rank zero-constraints kernel matrix.
This issue is not new, since it has been encountered in the past when contempora-
neous and temporal aggregation constraints are simultaneously considered for the
reconciliation of a system of time series (Di Fonzo, 1990, Di Fonzo and Marini, 2011).

. . 2 / . .
In detail, matrix H consists in:

e Nnyk* rows defining the cross-sectional (contemporaneous) aggregation con-
straints operating on the If-uts;

e Nng,m rows defining the cross-sectional (contemporaneous) aggregation con-
straints operating on the hf-bts;

e Nn, (k* +m) rows defining the temporal aggregation constraints operating on
both hf- and If-uts;

e Nny (k* +m) rows defining the temporal aggregation constraints operating on
both hf- and 1f-bts.
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Since the first set of Nnyk* constraints is linearly dependent from the other rows of

o/
matrix H, a full row-rank cross-temporal zero constraints kernel matrix H' can be
obtained by:

1. considering the [(Nn(k* +m) x (Nn(k* + m)] commutation matrix (Magnus
and Neudecker, 2019, p. 54; see Appendix A.3.1) P such that P [vec(Y)] =
vec (Y');

2. defining a matrix U* as:
U* = [O(vn,mxnnke) Inm @ U] P';

3. considering the [N(ngm + nk*) x Nn(k* +m)| matrix:

,_[ U
- Da) 2

which has full row-rank equal to N(n,m + nk*) = n* — Nnyk*, and allows to
re-state the complete cross-temporal constraints as:

H'y = 0. (36)

Cross-temporal structural representation
The cross-temporal structural representation can be seen as a generalization from a
single time index ¢ to a single cycle index 7 (i.e., the low-frequency time index) of the
cross-sectional structural representation (see section , extended to cover n(k*+m)
nodes instead of n.

Denote with Y, the [(n x (k* 4+ m)] data matrix available at cycle 7:

, 7=1,...N,

A1 A Al Akl Al
5] -

Y, = [
Bl" gl gl gl!

and let S be the (n* x nym) cross-temporal summation matrix

- C
=)

where C denotes a (n* xnpm) cross-temporal aggregation matrix mapping the hf-bts
into the uts and lf-bts ones (n} = nq(k* +m) + nyk*). Denote with

vec (A”)
vec (BY')

, 7=1,...,N,

the (n} x 1) vector of ‘cross-temporal upper series’, containing the uts and lf-bts
data at the low-frequency time index 7, where B} = [B[Tm] B[Tk"_l] B[TkQ] , T =
1,..., N, and with

b[T” = vec (B[le> , 7=1,...,N,
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the (nym x 1) vector of ‘cross-temporal bottom series’, containing the hf-bts data.
The structural representation of a cross-temporal system of n time series takes the
form

y.=8Sbll =1 N, (37)

where ¥ is a [n(k* + m) x 1] vector where we place all the uts and the 1f-bts at the
top, and all the hf-bts at the bottom:

T

a*
Yy, = , 7=1,...,N. 38
o] >

5.2 Cross-temporal point forecast reconciliation: introduction

Let us assume to have unbiased base forecasts for all the individual time series of
the multivariate hierarchical/grouped time series, and for all levels of the temporal
hierarchies built from the highest available sampling frequency. In addition, assume
that the forecast horizon for the most temporally aggregated time series be h = 1H
and that the forecast horizons for the other temporally aggregated series cover the
entire time cycle. This means that (i) the forecast horizon for the highest frequency
time series is equal to m, and (ii) in general, the forecast horizon for a temporally
aggregated time series of order k£ spans from 1 to M.
The base forecasts for each bottom time series of the system form the vectors

i=1,...,ny5, kex,

~[1 ~ m
where bl[- - {bg} }l ) is the (m x 1) vector containing the base forecasts for the i-th
high-frequency bottom time series (hf-bts), which are the ‘very’ bottom time series

~[k
in the cross-temporal framework, while the remaining bE ]’s (for k # 1) contain the
M, forecasts for the lower-frequency ones (1f-bts).
The base forecasts for the upper time series can be defined likeways as

all j=1,...n., kex,

(1 _

m
where a;" = {Zig.ll]} is the (m x 1) vector containing the base forecasts for the
=1

high-frequency j-th upper time series (hf-uts), and the ﬁgk]’s (for k # 1) are (M}, x 1)

vectors of low-frequency upper time series (lf-uts) forecasts.
Let us collect these base forecasts in the (ny x M) and (n, x My), respectively,

matrices

B[lk}/ B ﬁg_k], T
gl _ Bl | A al |, ke (39)
[k [k
| b, | P

9The general case h > 1 can be dealt with in a straightforward way.
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The matrix containing the base bts forecasts is given by:

[m]

g B

B = [B 5 [k2] ﬁ[l]} ’
where B has dimension [n, x (k* +m)]. The base uts forecasts can be similarly
arranged in the [n, x (k* + m)] matrix
k ko] ~
A [A[m] A[ p— 1] A[ 2] A[ ]}
: LSl . :

From expression (39)) we can define the p matrices Y ', each of dimension (n x My),
with n = n, + np, containing the base forecasts for the temporal aggregation level k
of both uts and bts:

A [¥]
B

Finally, denoting with Y the [n x (k* +m)] matrix containing the base forecasts of
all series and for all temporal aggregation levels, it is:

o [?[m] Gl Gl ?[1}} _ [ % ] |

In general, the base forecasts fulfill neither cross-sectional (contemporaneous)
nor temporal aggregation constraints. That is, respectively:

—~ ~/
UY # 04, sertm)s LYY # O sy

The cross-temporal point forecast reconciliation problem can thus be stated as fol-
lows: we are looking for a reconciled point forecast matrix, say 37, which is ‘as-close-
as-possible’ (according to a pre-specified metric) to the base forecast matrix ?, and
simultaneously in line with the cross-sectional and temporal aggregation constraints,
that is: )

U'Y = 0, (k*+m) Z0Y = O ). (40)

As we have previously shown, the relationships (40 can be expressed in vectorized

form as H'y = 0, where y = vec Y and, since h = 1, the full row-rank matrix H’

in becomes
U*
= [In ® Z’l] 4D

5.3 Bottom-up cross-temporal forecast reconciliation

Cross temporal reconciled forecasts for all series at any temporal aggregation level

can be easily computed by appropriate summation of the hf-bts base forecasts b[ }
1 =1,...,n, according to a bottom-up procedure like what is currently done in
both the cross-sectional and temporal frameworks.
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Denoting by Y the [n x (k* + m)] matrix containing the bottom-up cross tem-
poral reconciled forecasts, it is:
Al gl KA

v-[A] -
Bl B[m] B[kp—ll B[kz] E[ll :
Since the hf-bts reconciled forecasts are by definition equal to the hf-bts base fore-

casts, i.e. Bm = ]§[1]
the following steps:

- 1)

, the bottom-up forecast reconciliation procedure consists of

1. compute the hf-uts reconciled forecasts using the cross-sectional aggregation

relationship :
Al cﬁ[”;

2. compute the If-bts reconciled forecasts according to the temporal aggregation

relationship :
(5
5

3. compute the If-uts reconciled forecasts by cross-sectional aggregation of the
1f-bts reconciled forecasts obtained in the previous step:

—k, (BY) = [l gt gl - Bk

AM=cBY, ke = [AM AP AP = Bk,
In summary, the matrix containing the bottom-up reconciled forecasts, solely de-

pending on the hf-bts base forecasts, is given by:

Sl ~nll
¢_ |CB K| CB (2)
gl gl
1

An equivalent, succint alternative to expression (42) consists in exploiting the
cross-temporal structural representation (37)):

. . ~[1
j=5b", (43)
~[1 ~ /
where b[] = vec (B[1]> , keeping in mind that the elements in y and in y are

differently organized, and in general it is y # ¥, with y = vec (Y/) This last
issue can be easily dealt with by considering the (n* x n*) permutation matrix
such that y = Qy (see Appendix A.3.2): given the orthogonality of matrix Q,

expression QD can be re-stated as y = QSIA)M. However, the formulation of matrix
S, which requires to manage linear relationships across cross-sectional and temporal
dimensions, may be tedious and prone to errors, mostly for large collections of time
series. In such cases, it might be preferible using formulation , where ﬁm, C
and K are involved in simple matrix products.

Appendix A.5 describes all these features with reference to a ‘toy example’ of a

very simple two-level hierarchy with two quarterly bottom time series.
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6 Cross-temporal optimal forecast combination
Let us consider the multivariate regression model
Y=Y+E, (44)

where the involved matrices have each dimension [n x (k* 4+ m)] and contain, re-
spectively, the base (?) and the target forecasts (Y), and the coherency errors (E)
for the n component variables of the linearly constrained time series of interest. For
each variable, k* +m base forecasts are available, pertaining to all aggregation levels
of the temporal hierarchy for a complete cycle of high-frequency observation, m.

Consider now two vectorized versions of model , by transforming the matrices
either in original form:

—

vec (?) =vec(Y)+vec(E) & ¥ =% +e¢, (45)

or in transposed form:

7

vec <Y> =vec(Y')+vec(E) & y=y+n. (46)
The target forecasts must fulfill the cross-sectional (contemporaneous) constraints
U'Y = 0, (k)
and the temporal aggregation constraints
ZYY' = 0 <)
that is, in vectorized form:

(L pm @U) Y =0, rpmyx1] & (U @ Lgm) ¥y = Opursmyx1) (47)

(ZYRL) % =03pnx1) € (In®Z))y = Openx1) (48)

Denote with P the [n(k* +m) x n(k* + m)] commutation matrix such that
Pvec(Y) =vec(Y) & P& =y
Pvec (?) = vec (?/> s PY = y
Pvec (E) =vec (E') & Pe=y

As a consequence, using the full row-rank matrix H’' defined by expression , the
constraints and can be re-stated as:

Hy=0 < HPZ=0.

Let W = E [e€/] be the covariance matrix of vector €, and Q = E [nn/] the covariance
matrix of vector 7. Clearly, W and Q are different parameterizations of the same
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statistical object, i.e. the covariance matrix of the random disturbances in the
multivariate regression model , for which the following relationships hold:

Q=PWP, W=PQP.

In order to apply the general point forecast reconciliation formula (3] to a cross-
temporal forecast reconciliation problem, we may consider either the expression

y=y - QH(H'QH) 'H'y,

~/ ~
where y = vec (Y) is the row vectorization of the base forecasts matrix Y, or
equivalently re-state the expression above as:

% —% - WP'H (HPWP'H) ' HP%,

by considering the column vectorization as in (45]).

6.1 Simple alternative approximations of the covariance matrix for cross-
temporal point forecast reconciliation

Consider the column vectorized form of the multivariate regression (45]), whose ran-
dom disturbances can be written as:

p

where each (n x 1) vector al[k], ke, l=1,..., M, contains contemporaneous

random disturbances, i.e. at the same observation index of any temporal aggregation
order.

A simple, though rather irrealistic, generalization to the cross-temporal frame-
work of the cross-sectional approach (see section consists in assuming that only
the disturbances at the same time index of the same temporal aggregation level
are correlated, whereas no temporal dependence (either within the same series at
different times, or between the n series) is admitted:

2 | (8[kj]>’ W itk =k =k, r=s=1 ke,
" ° B 0  otherwise Tl=1,..., M.
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In this case, the covariance matrix W has the following block-diagonal structure:

W[lm] 0 0 0 0
0 W[lkpfl] 0 0 0
0 0 witr ] 0 0
W = kp—1 (49)
0 0 W[ll} .0
0 0 Y | ng]_

Furthermore, if it is assumed that within each temporal aggregation level the ran-
dom disturbances follow a multivariate white noise, which means that the contem-

poraneous covariance matrices are constant in time (i.e., qu] = W[k], ke A,
l=1,..., M), the previous expression simplifies as follows:
Wil 0 . 0 T
0 (IL ® W[kp—ﬂ) .. 0
ky,_
W = . T _ . : (50)
0 0 . (Im ® W[ll)

From a practical point of view, each (n x n) matrix W[k]7 k € ', may be ap-
proximated like in the cross-sectional forecast reconciliation case, possibly using the
in-sample residuals (see section [3.1]). Expressions and can thus be seen
as two simple extensions to the cross-temporal case of the approach developed in
the cross-sectional framework, where no temporal dependence is accounted for both
within and between the n series.

We may similarly propose a simplified pattern of the disturbances covariance ma-
trix of the multivariate regression model , by considering the row vectorization
form . In this case, the random disturbances vector 1 can be written as

n=1[m .0 ...,

where each [(k* +m) x 1] vector 1;, i = 1,...,n, contains the random disturbances
at different observation indices of the various temporal aggregation levels for the
same series i. If we assume that the n series are uncorrelated at any observation
index for any temporal aggregation level (i.e. neither contemporaneous nor temporal
correlation is admitted between the series, which is rather irrealistic), denoting with
Q; = E(min}), ¢ = 1,...,n, the [(k* +m) x (k* +m)] covariance matrix of the
coherency errors of the temporal hierarchies of series i, the complete matrix £ can

be written as follows:
Q; 0 --- 0
0 Qp -~ 0

, (51)

0 0o - Q.
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where each matrix Q;;, i = 1,...,n, may be approximated as in the temporal fore-
cast reconciliation case, possibly using the in-sample residuals (see section .
Thus expression can be seen as a very simple (maybe too simple!) extension
to the cross-temporal case of the approach developed in the temporal hierarchies
framework, where no correlation is admitted between the random errors of the n
series.

Clearly, the two covariance patterns and (i) are placed at opposite ends
of possible ways of dealing with cross-temporal variables, and (ii) should be consid-
ered as first practical devices to make the optimal combination forecast approach
feasible for the cross-temporal framework as well. This subject is undoubtedly of
far greater importance between the open issues still remaining in this field, and we
plan to go deep on this subject in the near future.

Residual-based estimates of the covariance matrix W (and of its re-parameterized
counterpart ) make use of the in-sample residuals of the models used to forecast
the n time series considered at any temporal aggregation level. Denote by

B kew, 1=1,... M,

the (n x N) matrix containing the in-sample residuals for a single node of the cross-
temporal hierarchy (i.e., the i-th row contains the residuals for the N sub-periods
[ of the model used to forecast the temporal aggregate of order k of series 7). For

~[k
each temporal aggregation level k € J#°, the M} matrices El[ ] can be grouped into
the (n x N Mj) matrix

1L N PN ~[k] ~[K]
E —[El N OF EMk] keX.

The (n(k* +m) x N) matrix containing all the residuals at any time observation
index and any temporal aggregation level, can in turn be written as:

[ &lml

E,

E[lkpfl]

E[kfnfl]

[y = [é1...& ... én],

=
I

B

o

where each [n(k* +m) x 1] vector &,, 7 =1,..., N, is given by:
/

e ey

)y oeeeml ey

er = n,T n,T

k*+m k*4+m
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The sample residual covariance matrixm can be calculated according to both pa-
rameterization as:
1 N 1 ~~
~ A N/ =
= NZGT (eT) = NEE,
T=1

Wsam = P,ﬁsamP .

However, in many practical situations matrix E has a number of rows - which is
equal to the number of nodes in the cross-temporal hierarchy - much larger than

T P —~
the number of columns, which is equal to N = —. Thus matrices Qsam and Wgam

might not have good properties (in particular, tl?lzy are not p.d. if N < n(k*+m)),
and simplified approximations must be looked for.

Two fe@gible alternatives are given by either the diagonalization or the shrinkage
of matrix Wgam, that is, respectively:

—

lesh = In(k*—l—m) O] Wsarm

Wshr = 5\{7\\7wlsh + (1 - 5\)v‘\/-sama

where lesh is a diagonal matrix containing the estimates of the ‘hierarchy vari-
ances’ for each node of the cross- -temporal hlerarchy, Wshr is the matrix obtained
by shrinkage of Wsa]m with target lesh, and \ 1s an estimate of the coeflicient of
shrinkage intensity A, 0 < A < 1. Both Weam and Wshr refer to all the n(k* +m) hi-
erarchy nodes simultaneously taken, but unlike the former matrix, the latter should
not suffer for possible singularity problems.

The (n x n) matrices Wlm, keot,l=1,..., M, forming the blocks on the
diagonal of matrix (49)), can be estimated both in full and shrunk version using the

. : ~Tk
in-sample residuals E; ":

K] [N IPEN
Wl ssam NEZ (El

[k .
Wl[s]hr_)‘kl< ®W£s]am> (1_)\kl)W£s]am7 kex, l=1,..., M.

Y, ke, l=1,..., M, (52)

Similarly, full and shrunk estimates of matrices W ke, forming the blocks on
the diagonal of matrix , may be computed as:

K1 Sk ek,
sam_NMkE (E )7 ke%v (53)
<[k Q < [k] <[k
Wshr =X (L, O Wsam ( )‘k)Wsamﬂ ke . (54)

While expression always requires N > n in order to have good properties,
formula |.| makes it clear that - except W[ )

[ ] sam?’

N residuals for each series as Wy ., - the estimates are based on more data, and

which is calculated with the same

10Indeed7 Qsam and Wgam are mean square error (MSE) matrices.
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the necessary condition to have a p.d. matrix is NM; > n. However, in order to
—[k
have all the p matrices Wia]m well defined, the more restrictive condition N > n

should be met. Matrices - can be used to approximate W as follows:

Wl,sam [g |
<lkp—1
0 Wl,gam
ke
_—BD 0 0 w[kzlfsam 0 0
hsam — p-1
Sl
0 0 1,sam 0
<l
0 0 0 m.sam.
<lml T
Wl,shr 2
o Wi
-
8D 0 0 kf”l,shr 0 0
hshr — ) ) ) pjl )
Sl
0 0 1,shr 0
Sl
0 0 0 o Wi
(Wi, 0 . 0o ]
/\[kpfl}
—~BD 0 IkL ® Wsam 0
Wsam = pt
<51l
0 0 e Ty W |
_WLZLI-] O -
<5lkp—1]
_~BD 0 Ikm ®Wshr 0
Wshr = Pt
<5
o 0 s Lo Wi |

Most of the alternative choices for W (or Q) shown so far are simple extensions to
the cross-temporal framework of the approximations for W (or ) considered either
in cross-sectional or in temporal forecast reconciliation. For the time being, we are
considering the following approximations (‘oct’ stands for ‘optimal cross-temporal’):

e identity (oct-ols): W = Q = I, )
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e structural (oct-struc): W = Wstmc =P’ [diag (QSlnbm) P] = diag (P’QSlnbm)
(see section and appendix A.3.2)

e hierarchy variance scaling (oct-wlsh): W = W ish

e series variance scaling (oct-wlsv): W = W, = P'Q1 P, where Q. is a
straightforward extension of € v, (see section )

—BD
e block-diagonal shrunk cross-covariance scaling (oct-bdshr): W = W

—~BD

e block-diagonal cross-covariance scaling (oct-bdsam): W = W,

T P P
e auto-covariance scaling (acov): W = Wo.o, = P'Quov P, where Q,coy is a
Py
straightforward extension of Q .oy (see section D

e MinT-shr (oct-shr): W = W

—

e MinT-sam (oct-sam): W = Wgap,

7 An heuristic cross-temporal reconciliation procedure

Kourentzes and Athanasopoulos (2019), henceforth KA, have proposed a cross-
temporal reconciliation procedure that can be viewed as an ensamble forecasting
procedure which exploits the simple averaging of different forecasts. The procedure
consists in the following steps (it is assumed h = 1):

Step 1

For each individual variable, compute the temporally reconciled forecasts and collect
them in the [n x (k* + m)] matrix Y:

~

Y — Y.

Thls result can be obtained by applying the point forecast reconciliation formula
to each column of matrix Y which can be written as:

fal et

Ang

all oA Bl gl

The n, vectors of temporally reconciled forecasts of the uts can be obtained as:

[l

a; tll]'

1
51 =M, A |
J

Mo, = Lo pin—0,2Z1 (Z1R4,21) " Z,, j=1,...,na

-1 .
(1] ’ Mbi = Ik*+m - Qbizl (legzblzl) le: t=1,...,np,
b:
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where the n, +nj matrices M,,; and My, have dimension [(* +m) x (K* +m)], and
Qu, j =1,...,n4, and Qp,, i = 1,...,np, are known p.d. [(k* +m) x (k" +m)]
matrices.

The mapping performing the transformation of the base forecasts into the tem-
porally reconciled ones can be expressed in compact form as:

i M, - 0 0 e 0
o 0 M,, O 0 ~
vee (Y ) 1 o 0 My, o |¥*¢ (Y> ’
0 0 o0 M,

~/
and then matrix Y can be re-stated as:

V o V &y @™y
RN [ SRR S A : :
- § . = [k
é[lﬂ aﬁl b[ll] bgg (A[ 2}), (B[ 2}),
B M
L(A) (B )]

These reconciled forecasts are in line with the temporal aggregation constraints,
~/
ie. Z\Y = O(k+xn), but in general they are not in line with the cross-sectional

(contemporaneous) constraints, that is: U’ Y 7 O, x (k*+m)]-

Step 2
Transform Y by computing time-by-time cross-sectional reconciled forecasts for all
the temporal aggregation levels, and collect them in the [n x (k* + m)] matrix Y:

Y - Y.
Matrix Y can be written as
? — Y.[m] Y.[kpfl] y ?UW] \Yf,[l] ,

~ [k
where Y[ ], k € 2, has dimension (n x My). Thus, the cross-sectionally reconciled
~ [k
forecasts can be computed by transforming each Y[ ! as:

T My pe

where M denotes the (nxn) projection matrix used to reconcile forecasts of k-level
temporally aggregated time series:

-1
MH =1, - WU (UWHU) U, ke,
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and W is a (n x n) known p.d. matrix. Since it is UMM = O(n,xn), k € A, the
reconciled forecasts are cross-sectionally coherent, i.e. U’ Y = 0(n, x (k*4+m)], but not
temporally: Z| Y’ # O (k= xn)-

Step 3

Transform again the step 1 forecasts Y, by computing time-by-time cross-sectional
reconciled forecasts for all the temporal aggregation levels using the (n x n) matrix
M, given by the average of the matrices M obtained at step 2:

- ~ KA
Y —- Y .

Matrix M can be expressed as:

M=1 Y Mb,
kex

and the final cross-temporal reconciled forecasts are given by:

D=

~ KA
Y —wmy. (55)

_ 1 -/
Since UM = ~ Z UMM = 01, xn)» and ZY = O+ .y, the reconciled forecasts
p
kex
fulfill both cross-sectional and temporal aggregation constraints:

~ KA o

UY™ UMY = 04, e )
~ / [

2, (Y) =2 ¥'M = 0,

7.1 Some remarks

To perform step 1, KA consider two alternatives as for the [(k* +m) x (k* +m)]
matrices €2, and €2p, needed for computing the transformation matrices M,; and
M,,, respectively. The former is t-struc, while the latter is t-wlsv (see section .
As for step 2, KA use either cs-wls or cs-shr (see section [3.1).

Remark 1

These two steps can be seen as the successive applications of two distinct multivari-
ate reconciliation procedures, each characterized by different covariance matrix and
constraints. For, in the first step it is solved a quadratic linear problem, where only
temporal aggregation constraints are considered:

y = arg min (y — 5’),9_1 y-3), st (In ® le) y=0,
y

where  is the block-diagonal matrix in . The solution is given by:

Y=y-QI,®Z)[1,0Z) 1, ®Z)] " (I,©Z)) y = My,
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where
M=I-Q1,8Z)[(L®Z) 21, eZ)] " 1,Z)

is the [n(k* +m) x n(k* +m)] projection matrix

M; O 0
0 M, 0
M - . . ’
0 0 M,

with
-1 .
Mi = Ik*—',-m — Q“Z1 (Z’lﬂuzl) /1, 1= 1, Y N

The second step consists in another quadratic minimization problem, where only
cross-sectional (contemporaneous) constraints are considered:

- Y —
% = argmin (@/ . @/) w-! (@/ . @) st (Tepm@U) 2 =0,
%
where W is the block-diagonal matrix in , and whose solution is given by:
Y =T W (Lt @ U) [T 1 @ U)W (L i @ U)] 7 (e @ U) T = W
(56)
where

M =1—=W (I im ® U) [(Ik*+m ® U,) W (T4 @ U)] - (Ik*+m ® U/)

is the [n(k* +m) x n(k* +m)] projection matrix

vl 0 0 .0 -0

0o Mkl ... 0 e 0 -0

0 0 M[’f.p—ﬂ 0 0

M = )

0 0 M 0
0 0 0 M|
M 0 s 0 i

m [kpfl] e
o (IkT_l ® M ) 0
0 0 .. (Im ® M[ll)

with 1
MH — 1, - WiHU (U’W[k]U) U, kex.
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It is worth noting that the reconciled forecasts (56) can be expressed according to
the alternative vectorization, as:

y=P%.

Remark 2

The cross-sectional reconciliation performed at step 2 of the KA procedure involves
the transformations of k*+m vector of forecasts. More precisely, each transformation
matrix M¥, k € ¢, is applied to M, different (n x 1) vectors. Thus, a sensible
alternative to the KA proposal might be considering the weighted average of the
transformation matrices:

s 1
M = MM
k*+m Z k

ke

Remark 3

In general the final result of the reconciliation procedure would change if the user
invert the order of application of the two reconciliation steps. In Appendix A.6 the
‘cross-sectional-first-then-temporal’ reconciliation procedure is shown, along with
the relevant M matrix, which in this case is obtained through an average of the
projection matrices used for the reconciliation of the n series according to temporal
hierarchies. Since the differences between the reconciled point forecasts according
to these two approaches could be not negligible (see section , in our view this
is a weakness of the procedure, and calls for a decision rule about the final recon-
ciled forecasts to retain. A practical way of doing could be choosing the reconciled
forecasts which are the ‘closest’ (according to a given metric) to the base forecasts
between the two alternatives.

Remark 4

The calculation of the average matrix M in the final step of the procedure, needed to
recover the cross-temporal coherency across the point forecasts, requires the avail-
ability of the projection matrices used in the second step. This poses no problem
when closed form reconciliation formulae can be used. Unfortunately, this is not
the case when the user is interested in considering more general linear constraints
(e.g., non-negativity of the final reconciled estimates), that should be treated with
appropriate numerical procedures (Kourentzes and Athanasopoulos, 2020a, Wickra-
masuriya et al., 2020)@

In the next subsection we extend the heuristic KA procedure in such a way that
these issues can be overcome in a simple and effective manner.
7.2 An iterative heuristic cross-temporal reconciliation procedure

Taking inspiration from the heuristic KA reconciliation procedure, we consider an
iterative procedure which produces cross-temporally reconciled forecasts by alter-

HThis issue is currently under study, in order to develop a procedure which, by exploiting some
distinctive features of a hierarchical/grouped time series, be able to produce non-negative reconciled
forecasts with a reduced computational effort.
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nating forecast reconciliation along one single dimension (either cross-sectional or
temporal) at each iteration step.

Each iteration consists in the first two steps of the heuristic KA procedure, so
the forecasts are reconciled by alternating cross-sectional (contemporaneous) recon-
ciliation, and reconciliation through temporal hierarchies in a cyclic fashion.

Starting from the base forecasts SA{', denote with d.s and dq, respectively, the
cross-sectional and temporal gross discrepancies, given by:

e R

1

where [ X[, =3, ; [#;5]- Since the base forecasts are not in line with either type of
constraints, in general both d.s and d;. are greater than zero.
The iterative procedure can be described as follows:

)

~(1
1. Start the iterations by calculating the temporally reconciled forecasts Y( ,

~ / ~
such that Z, (Y(1)> — 0, and d) — HU’Y(I)‘ =0

~(1
2. The point forecasts in matrix Y( ) are then cross-sectionally reconciled, ob-

~ ~ ~ /
taining Y(z), which is such that U'Y(z) =0, and dg) = ’Z’l (Y(Q))

3. The updates in steps 1. and 2. are performed at each iteration j, j =1,2,...,
(7)
te

> 0.
1

until a convergence criterion is met, that is d;2’ < §, where § is a positive

(2
tolerance value (e.g., § = 107%), and matrix Y( /) contains the final cross-
temporal reconciled forecasts.

The above procedure can be seen as an extension of the well known iterative pro-
portional fitting procedure (Deming and Stephan, 1940, Johnston and Pattie, 1993),
also known as RAS method (Miller and Blair, 2009), to adjust the internal cell values
of a two-dimensional matrix iteratively until they sum to some predetermined row
and column totals. In that case the adjustment follows a proportional adjustment
scheme, whereas in the cross-temporal reconciliation framework each adjustment
step is made according to the penalty function associated to the single-dimension
reconciliation procedure adopted.

Indeed, the choice of the dimension along with the first reconciliation step in
each iteration is performed is up to the user, and there is no particular reason why
one should perform the temporal reconciliation first, and the cross-sectional recon-
ciliation then. Figure [4] shows the percentage discrepancies in the Australian GDP
at current prices one-step-ahead forecasts for any temporal aggregation level (quar-
terly, semi-annual, annual, see section , when the cross-temporal reconciliation
is performed according to either the KA approach, or to the analogous procedure
where the cross-sectional constraints are considered first, and then the temporal di-
mension is accounted for. Percentage differences in the reconciled forecasts for this
single, very important variable, are visually evident, though bounded within (-0.3%

- 4+0.4%).
Figure |5| completes the results shown so far, by considering the forecasts of the

strictly positive 79 (out of 95) variables from both Income and Expenditure sides,
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Figure 4: Quarterly, semi-annual and annual Australian GDP one-step-ahead reconciled forecasts ac-
cording to the Kourentzes and Athanasopoulos (2019) cross-temporal reconciliation approach (t-wlsv for the
temporal step, cs-shr for the cross-sectional step) by alternating the constraint dimensions to be fulfilled:
percentage differences between the reconciled forecasts obtained through (i) temporal-then-cross-sectional
reconciliation, and (ii) cross-sectional-then-temporal reconciliation. The differences between the two recon-
ciled forecasts are divided by their arithmetic mean.

cross-temporally reconciled according to the KA procedure and its iterative variant.
The boxplots show the distributions of the percentage discrepancies between the
reconciled forecasts obtained using temporal reconciliation first, and cross-sectional
reconciliation then, vis-a-vis the results obtained by inverting the order of applica-
tion of the two reconciliation procedures. It clearly appears that the iterative variant
of the original KA proposal produces less pronounced discrepanciesEl

It must also be said that the convergence speed of the iterative procedure does
not seem to be affected by the choice of the first dimension to be fulfilled when the
iteration starts. Figure [f]shows an example of the convergence speed of the iterative
procedure either starting with the cross-sectional (bottom panel) or temporal (top
panel) reconciliation procedure for the Australian GDP forecasts. In both cases, the
convergence is achieved very quickly: fixing § = 107°, 15 (14) iterates are needed
when starting from the temporal (cross-sectional) dimension. Furthermore, from
the fourth iteration onwards the constraints are practically fulfilled in both cases.
Nevertheless, since the final reconciled values depend on this choice, it would be use-
ful having an ex-ante ‘choice rule’ between the two alternatives. We are currently

2Temporal reconciliation has been done using t-wlsv, while cross-sectional reconciliation was
performed using cs-shr. However, this result does not seem to depend on the reconciliation proce-
dures considered: t-struc+cs-wls, t-struc+cs-shr, and t-wlsv+cs-wls give very similar results, here
not presented for space reasons, but available on request from the authors.



38 Tommaso Di Fonzo, Daniele Girolimetto

0.90% -

0.60% -

0.30% -

E iter
=

0.00% -

I
i
I
il
Tl
i

-0.30% -
—-0.60% -
—0.90% -

1 1
quarter semester year

Figure 9: Quarterly, semi-annual and annual one-step-ahead reconciled forecasts of 79 out of 95 times
series of the Australian GDP from Income and Expenditure sides using both the original KA cross-temporal
reconciliation procedure (t-wlsv for the temporal step, and cs-shr for the cross-sectional one), and its it-
erative variant: boxplots of the percentage differences between the reconciled forecasts obtained through
(i) temporal-then-cross-sectional reconciliation, and (ii) cross-sectional-then-temporal reconciliation. The
differences between each pair of reconciled forecasts are divided by their arithmetic mean.

working on this issue, however in the rest of the paper, when considering heuristic
cross-temporal forecast reconciliation procedures, for ease of presentation we main-
tain the original choice made by KA, performing temporal forecast reconciliation
first, and cross-sectional reconciliation then.

8 Cross-temporal reconciliation of the Australian GDP fore-
casts from Income and Expenditure sides

In a recent paper, Athanasopoulos et al. (2019, p. 690) propose “the application
of state-of-the-art forecast reconciliation methods to macroeconomic forecasting”
in order to perform aligned decision making and to improve forecast accuracy. In
their empirical study they consider the cross-sectional forecast reconciliation for 95
Australian Quarterly National Accounts time series, describing the Gross Domestic
Product (GDP) at current prices from Income and Expenditure sides, interpreted
as two distinct hierarchical structures. In the former case (Income), GDP is on the
top of 15 lower level aggregates (figure [7), while in the latter (Expenditure), GDP
is the top level aggregate of a hierarchy of 79 time series (see figures 21.5-21.7 in
Athanasopoulos et al., 2019, pp. 703-705).

By managing the complete set of 95 time series following the approach described
in section |3, Bisaglia et al. (2020) have extended the results of Athanasopoulos
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Figure 6: Cross-sectional and temporal gross incoherence at each iteration step of the
iterative cross-temporal forecast reconciliation procedure (t-wlsv + cs-shr) for the Australian
GDP time series, at the first forecast origin 1994:Q3.

et al. (2019), showing that fully reconciled forecasts of GDP, coherent with all
the reconciled forecasts from both Expenditure and Income sides, can be obtained
through the projection approach described in section 2l According to the notation
adopted so far, the (33 x 95) kernel matrix accounting for the cross-sectional zero
constraints is given by (Bisaglia et al., 2020):

1 0/(5><1) _1,(10><1) 0226>< 1) 0/(53>< 1)
) 1 o ’ / 1
U - (5x1) (10x1)  Y(26x1) (53x1)
O(5x1) Is —C' 0260 O(sx53)
O26x1) O26x5) O(26x10) I —-CF

In what follows, cross-temporal forecast reconciliation is applied within the same
forecasting experiment designed by Athanasopoulos et al. (2019), extended in order
to consider semi-annual and annual forecasts as well: for the available time series
span (1984:Q4 - 2018:Q1), quarterly base forecasts from 1 up to 4 quarters ahead
have been obtained for the n = 95 separate time series through simple univariate
ARIMA models selected using the auto.arima function of the R-package forecast
(Hyndman et al., 2020). The forecasting experiment uses a recursive training sample
with expanding window length, where the first training sample is set from 1984:Q4 to



40 Tommaso Di Fonzo, Daniele Girolimetto

GDP

l
- 1

Statistical discrepancy

Total Factor Income Taxes less Subsidies
(Income approach)
Gross Operating 2 Compensation of
Surplus Gross Mixed Income Employees
B ) Wages and salaries
Total Corporations General Government Dwellings

e
N I 1 Social contributions

‘ Non-financial

corporations ‘ Financial corporations

Public

Private

Figure 7: Hierarchical structure of the income approach for Australian GDP. The pink cell contains
the most aggregate series. The blue cell contain intermediate-level series and the yellow cells
correspond to the most disaggregate bottom-level series. Source: Athanasopoulos et al., 2019, p.
702.

1994:QQ3 and the last ends on 2017:Q1, for a total of 91 forecast originﬁ Likeways,
in the same automatic fashion we have computed (i) one and two-step ahead forecasts
for the time series obtained by temporal aggregation of two successive quarters, and
(ii) one-step-ahead forecasts for the time series obtained by temporal aggregation of
four successive quarters.

8.1 Performance measures for multiple comparisons

We evaluate the performance of multiple (say, J > 1) forecast reconciliation proce-
dures through forecast accuracy indices calculated on the forecast errof ]

kex,

olELh K] [k],h i=1,...,95,
h=1,..., hg,

iit = Yieen ~Yige s g =L 9L
where y and g are the observed and forecasted values, respectively, i denotes the
series (i = 1,...,32, for the uts, i = 33,...,95, for the bts), j = 0 denotes the base

13The R scripts, the data and the results of the paper by Athanasopoulos et al. (2019) are available
in the github repository located at https://github.com/PuwasalaG/Hierarchical-Book-Chapter!.
We did not change this first, crucial step in the forecast reconciliation workflow, since the focus is on
the potential of cross-temporal forecast reconciliation. However, Athanasopoulos et al. (2019) point
out that this fast and flexible approach performs well in forecasting Australian GDP aggregates,
even compared to other more complex methods.

1Gagaert et al. (2019) warn practitioners that this could be ‘a myopic choice as (the accuracy
metrics) consider solely the first moment of the error distribution and ignore higher moments, which
can have significant implications for decision making’. This important issue will be dealt with in
the near future.
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forecasts, t is the forecast origin (¢ = 1 corresponds to 1994:Q3), ¢ = {4,2,1},
and hgy = 1, ho = 2, hqy = 4, are the forecast horizons for annual, semi-annual, and
quarterly time series, respectively.

The accuracy is evaluated using the Average Relative Mean Square Error (Av-
gRelMSE, Davydenko and Fildes, 2013; Kourentzes and Athanasopoulos, 2019,
2020b), obtained by transforming the MSE index, given by the average across all 91
forecasts origins of the squared forecast errors:

91 .
p_ 1 (Am,h)z i=1,...,95, ke,
MBE;;™ = 91; Cigt) G =0,...,J, h=1,... h (57)

The AvgRelMSE is the geometric mean across all 95 series of the MSE ratid'”] of a
forecast over a benchmark given by the base, incoherent ARIMA forecasts, across
all evaluation samples, for a given horizon h:

L

[k],h a [k],h ” kex
AvgRelMSE;"™" = l:IlrMSEi’j’ LJ=0 0 L (58)
where rMSEZ[]f]]’h is the relative MSE:

MSEM"
rMSE,EIZ]-’hZ i, 1=1,...,95, ke,

MSEFR =000 h=1

If a forecast outperforms the base forecasts, then the AvgRelMSE becomes smaller
than one and vice-versa, and the percentage improvement in accuracy over the

benchmark can be calculated as (1 — AngelMSEBk]’h> x 100.

Expression , which refers to all 95 time series, can be re-stated for (i) groups
of variables (e.g., bts and uts), (ii) multiple forecast horizons (e.g., h = 1 — 4 for
quarterly forecasts, k = 1; h = 1 — 2 for semi-annual forecasts, k = 2), (iii) different
temporal aggregation levels over the whole forecast horizon (e.g., accuracy indices
for the whole temporal hierarchy of each series)ﬂ In Appendix A.7 we show the
expressions used to compute forecast accuracy indices in a rolling forecast experi-
ment, like the one we are dealing with, for selected combinations of variables/time
frequencies/forecast horizons.

5Davydenko and Fildes (2013) develop the Average Relative MAE (AvgRelMAE), based on the
Mean Absolute Error of the forecasts, but suggest that this formulation ‘If required (...) can also
be extended to other measures of dispersion or loss functions’, as the AvgRelMSE in and
the AvgRelRMSE, based on the Root Mean Square Error (Sagaert et al., 2019, Kourentzes and
Athanasopoulos, 2020a).

160n this last point, Kourentzes and Athanasopoulos (2020b, pp. 17-18) raise an important issue
by claiming that ‘in contrast to common practice, we believe that there is limited benefit in an
empirical evaluation setting, to report average accuracy measures across all levels of the hierarchy
(...). It is very improbable that this reflects a realistic situation. Hence, it is paramount that the
modeller attempts to establish a strong connection between the objectives of the forecasts and the
evaluation’. In the forecasting experiment of this paper, where only three temporal aggregation
levels are in order, it could be sensible not to consider as strategic the semi-annual time frequency,
which is instrumentally used to improve the accuracy of quarterly and annual forecasts, but is
probably of reduced practical usefulness to analysts and decision makers.
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In order to give a complete picture of the evaluation results, in the next subsec-
tion we show and discuss the MSE-based accuracy indices, at multiple timescales and
forecast horizons, for a set of selected forecast reconciliation procedures. Appendix
A8 reports the indices based on MAE as well, and several tables and graphs of the
accuracy indices (for both MSE and MAE) for all the forecast reconciliation proce-
dures described in the previous sections, by keeping distinct one-dimension (either
cross-sectional or temporal) forecast reconciliation procedures from cross-temporal
heuristic and optimal combination procedures.

Furthermore, we use the non-parametric Friedman and post-hoc Nemenyi tests
(see also Koning et al., 2005, and Hibon et al., 2012), as implemented in the R-
package tsutils (Kourentzes, 2019), to establish if the differences in the forecasts
produced by the considered procedures are significant. According to Kourentzes and
Athanasopoulos (2019, p. 402) “the Friedman test first establishes whether at least
one of the forecasts is significantly different from the rest. If this is the case, we use
the Nemenyi test to identify groups of forecasts for which there is no evidence of
statistically significant differences. The advantage of this testing approach is that
it does not impose any distributional assumptions and does not require multiple
pairwise testing between forecasts, which would distort the outcome of the tests”.

8.2 The considered forecast reconciliation procedures

The empirical application mainly aims to evaluate the performance of the most
convincing new cross-temporal reconciliation procedures, which basically are those
using residual-based approximations of the covariance matrix, as compared to the
state-of-the-art point forecast reconciliation procedures. More precisely, we consider
five selected procedures recently proposed in the hierarchical forecasting literature:

o cs-shr (Wickramasuriya, et al. 2019),
o t-wlsv (Kourentzes et al., 2017),
e t-acov (Nystrup et al., 2020),

e t-sarl (Nystrup et al., 2020),

kah-wlsv-shr (Kourentzes and Athanasopoulos, 2019),
five (two-step and iterative) variants of the KA approach:

e tcs-acov-shr, i.e. two-step t-acov + cs-shr,

tcs-sarl-shr, i.e. two-step t-sarl + cs-shr,

ite-wlsv-shr, i.e. iterative t-wlsv + cs-shr (see section [7.2)),

ite-acov-shr, i.e. iterative t-acov + cs-shr (see section [7.2)),

ite-sarl-shr, i.e. iterative t-sarl + cs-shr (see section [7.2)),

and finally, three optimal combination forecast procedures:
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e oct-wlsv, i.e. W = lesv (see section ,
. <BD .

e oct-bdshr, i.e. W = W = (see section ,

e oct-acov, i.e. W = Wacov (see section .

The first five procedures have proven well performing in the empirical applica-
tions where they have been used (Athanasopoulos et al., 2017, 2019, Wickramasuriya
et al., 2019, Bisaglia et al., 2020, Nystrup et al., 2020, among others). Clearly, the
one-dimension reconciliation procedures (cs-shr, t-wlsv, t-acov, and t-sarl) do not
give fully coherent forecasts. Rather, as far as it is expected that they improve on
the base forecasts, the best-practice one-dimension procedures should be viewed as
stricter benchmarks for the cross-temporal forecast reconciliation procedures, which
are requested to give accurate one-number-forecasts as well.

In summary, the forecasting experiment was designed to evaluate the capabil-
ity of the cross-temporal forecast reconciliation procedures to improve the forecast
accuracy as compared (i) to the base forecasts, and (ii) to the most performing one-
dimension forecast reconciliation procedures. In addition, the experiment should
help in assessing (iii) the performance of both KA-variants (two-step and iterative
procedures) and optimal combination forecasts as compared to the original proposal
by KA, and (iv) the feasibility and the accuracy of the optimal combination cross-
temporal reconciliation procedures, which for the time being - even when they are
computed using the in-sample residuals - are based on rather simple/unrealistic ap-
proximations of the covariance matrix (see section . As for this last point, we are
interested in understading if there is any significant difference between the recon-
ciled forecasts produced by the most performing heuristic and optimal combination
forecast procedures.

8.3 Main results

Table (1| presents the AvgRelMSE’s obtained for the forecasting techniques (base +
13 reconciliation procedures) listed in the previuos sub-section. We provide results
for all 95 component time series, and for the 32 upper-level and the 63 bottom-level
time series separately. The results are shown by level of temporal aggregation and
forecast horizon. At each column, the lowest error is highlighted in red boldface,
while values greater than one, which mean that the reconciled forecasts are worse
than the base ones, are highlighted in black boldface.

Most of the data in the table are represented in the top panel of Figure [§]
containing the graphs of the AvgRelMSE’s for the considered procedures, across
all forecast horizons, by temporal aggregation level of the forecasted series. The
ranks of these indices are reported in the bottom panel of the same figure, with
colours in background chosen to highlight the procedures’ performance, from best
(green) to worst (red). In this figure the procedures have been put in the order
given by the overall AvgReIMSE, which seems a good compromise to represent such
a multiple comparison. Figure [0] shows the Multiple Comparison with the Best
Nemenyi test, after that the Friedman test has shown that the forecasts given by
the considered procedures are different both when all temporal aggregation levels
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Table 1: AvgRelMSE at any temporal aggregation level and any forecast horizon.

Quarterly Semi-annual Annual All
Procedure 1 | 2 | 3 | 4 ] 14 1| 2 | 12 1

all 95 series

base 1 1 1 1 1 1 1 1 1 1
cs-shr 0.9583 | 0.9701 | 0.9757 | 0.9824 | 0.9716 | 0.9526 | 0.9781 | 0.9652 | 0.9657 | 0.9689
t-wlsv 1.0017 | 0.9994 | 0.9875 | 0.9853 | 0.9934 | 0.8444 | 0.9316 | 0.8869 | 0.7729 0.9279
t-acov 0.9780 | 0.9912 | 0.9986 | 0.9888 | 0.9891 | 0.8253 | 0.9353 | 0.8786 | 0.7694 | 0.9225
t-sarl 1.0018 | 0.9994 | 0.9875 | 0.9854 | 0.9935 | 0.8445 | 0.9317 | 0.8870 | 0.7729 | 0.9279

kah-wlsv-shr | 0.9684 | 0.9697 | 0.9596 | 0.9603 | 0.9645 | 0.8175 | 0.9085 | 0.8618 | 0.7518 0.9013
tes-acov-shr | 0.9453 | 0.9583 | 0.9710 | 0.9626 | 0.9592 | 0.7977 | 0.9117 | 0.8528 | 0.7481 0.8952
tes-sarl-shr | 0.9684 | 0.9697 | 0.9597 | 0.9603 | 0.9645 | 0.8175 | 0.9086 | 0.8619 | 0.7518 | 0.9013
ite-wlsv-shr | 0.9611 | 0.9680 | 0.9587 | 0.9604 | 0.9620 | 0.8148 | 0.9091 | 0.8606 | 0.7512 0.8995
ite-acov-shr | 0.9398 | 0.9583 | 0.9709 | 0.9653 | 0.9585 | 0.7957 | 0.9127 | 0.8522 | 0.7476 | 0.8945
ite-sarl-shr | 0.9613 | 0.9683 | 0.9588 | 0.9605 | 0.9622 | 0.8151 | 0.9092 | 0.8609 | 0.7514 | 0.8997
oct-wlsv 0.9692 | 0.9719 | 0.9622 | 0.9631 | 0.9666 | 0.8203 | 0.9125 | 0.8652 | 0.7562 0.9042
oct-bdshr 0.9838 | 0.9798 | 0.9618 | 0.9665 | 0.9730 | 0.8297 | 0.9144 | 0.8710 | 0.7573 0.9095
oct-acov 0.9553 | 0.9648 | 0.9767 | 0.9707 | 0.9668 | 0.8013 | 0.9185 | 0.8579 | 0.7531 0.9016

32 upper series

base 1 1 1 1 1 1 1 1 1 1
cs-shr 0.9157 | 0.927 | 0.9300 | 0.9315 | 0.926 | 0.9174 | 0.9387 | 0.928 0.9232 | 0.9262
t-wlsv 1.0064 | 1.0091 | 0.9909 | 0.9920 | 0.9996 | 0.8556 | 0.9386 | 0.8961 | 0.7684 | 0.9331
t-acov 1.0018 | 1.0146 | 0.9922 | 0.9934 | 1.0004 | 0.8537 | 0.9382 | 0.8950 | 0.7683 | 0.9332
t-sarl 1.0066 | 1.0093 | 0.9908 | 0.9921 | 0.9997 | 0.8560 | 0.9386 | 0.8963 | 0.7684 | 0.9333

kah-wlsv-shr | 0.9398 | 0.9467 | 0.9281 | 0.9302 | 0.9362 | 0.7996 | 0.8769 | 0.8373 | 0.7151 0.8726
tes-acov-shr | 0.9411 | 0.9435 | 0.9307 | 0.9331 | 0.9371 | 0.7956 | 0.8779 | 0.8357 | 0.7146 | 0.8725
tes-sarl-shr | 0.9399 | 0.9464 | 0.9280 | 0.9301 | 0.9361 | 0.7995 | 0.8767 | 0.8372 | 0.7149 | 0.8725
ite-wlsv-shr | 0.9253 | 0.9420 | 0.9224 | 0.9274 | 0.9292 | 0.7932 | 0.8739 | 0.8326 | 0.7114 | 0.8668
ite-acov-shr | 0.9283 | 0.9398 | 0.9259 | 0.9314 | 0.9313 | 0.7893 | 0.8754 | 0.8313 | 0.7111 | 0.8675
ite-sarl-shr | 0.9256 | 0.9424 | 0.9223 | 0.9274 | 0.9294 | 0.7936 | 0.8738 | 0.8327 | 0.7114 | 0.8669
oct-wlsv 0.9411 | 0.9506 | 0.9316 | 0.9326 0.939 | 0.8032 | 0.8811 | 0.8412 | 0.7198 | 0.8760
oct-bdshr 0.9453 | 0.9559 | 0.9246 | 0.9340 | 0.9399 | 0.8091 | 0.8791 | 0.8433 | 0.7174 | 0.8767
oct-acov 0.9388 | 0.9498 | 0.9353 | 0.9371 | 0.9402 | 0.7984 | 0.8844 | 0.8403 | 0.7193 | 0.8763

63 bottom series

base 1 1 1 1 1 1 1 1 1 1
cs-shr 0.9806 | 0.9928 | 0.9998 | 1.0094 | 0.9956 | 0.9709 | 0.9987 | 0.9847 | 0.9880 | 0.9914
t-wlsv 0.9992 | 0.9945 | 0.9858 | 0.9819 | 0.9903 | 0.8387 | 0.9281 | 0.8823 | 0.7752 | 0.9252
t-acov 0.9661 | 0.9796 | 1.0019 | 0.9864 | 0.9834 | 0.8112 | 0.9338 | 0.8704 | 0.7699 | 0.9171
t-sarl 0.9994 | 0.9944 | 0.9858 | 0.9820 | 0.9904 | 0.8388 | 0.9282 | 0.8824 | 0.7752 | 0.9253

kah-wlsv-shr | 0.9832 | 0.9817 | 0.976 | 0.9759 | 0.9792 | 0.8267 | 0.9250 | 0.8745 | 0.7712 | 0.9163
tes-acov-shr | 0.9474 | 0.9659 | 0.9921 | 0.9780 | 0.9707 | 0.7988 | 0.9294 | 0.8616 | 0.7658 | 0.9069
tes-sarl-shr | 0.9832 | 0.9818 | 0.9762 | 0.9761 | 0.9793 | 0.8268 | 0.9253 | 0.8746 | 0.7713 | 0.9164
ite-wlsv-shr | 0.9798 | 0.9814 | 0.9776 | 0.9776 | 0.9791 | 0.8259 | 0.9275 | 0.8753 | 0.7723 | 0.9166
ite-acov-shr | 0.9457 | 0.9679 | 0.9945 | 0.9830 | 0.9726 | 0.7989 | 0.9323 | 0.8631 0.7669 | 0.9086
ite-sarl-shr | 0.9800 | 0.9817 | 0.9779 | 0.9778 | 0.9793 | 0.8262 | 0.9278 | 0.8755 | 0.7725 | 0.9169
oct-wlsv 0.9837 | 0.9828 | 0.9782 | 0.9789 | 0.9809 | 0.8292 | 0.9288 | 0.8776 | 0.7754 | 0.9188
oct-bdshr 1.0040 | 0.9922 | 0.9813 | 0.9835 | 0.9902 | 0.8404 | 0.9329 | 0.8854 | 0.7784 | 0.9267
oct-acov 0.9639 | 0.9725 | 0.9984 | 0.9881 | 0.9806 | 0.8028 | 0.9363 | 0.8670 | 0.7709 | 0.9147

and forecast horizons (top panel), and when only one-step-ahead quarterly forecasts
(bottom panel), are considered.
The main results found on this dataset can be summarized as follows:

e as compared to both base forecasts and one-dimension reconciliation proce-
dures, using cross-temporal hierarchies provides a clear decrease in the Av-
gRelMSE for the uts (likely the most important variables for the decision
maker, e.g. GDP) at any temporal aggregation level and any forecast horizon;

e this accuracy improvement is less marked, though yet visually evident, for the
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Figure 8: Top panel: Average Relative MSE across all series and forecast horizons,
by frequency of observation. Bottom panel: Rankings by frequency of observation
and forecast horizon.

bottom level series, as compared to the reconciled forecasts through temporal
hierarchies alone, which however are cross-sectionally incoherent;

e each iterative procedure performs better than its two-step counterpart;

e within the cross-temporal procedures, the heuristic procedures provide better
results than the optimal combination ones.
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Figure 9: Nemenyi test results at 5% significance level for all 95 series. The reconcil-
iation procedures are sorted vertically according to the MSE mean rank (i) across all
time frequencies and forecast horizons (top), and (ii) for one-step-ahead quarterly
forecasts (bottom).
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Looking at the performances of each procedure, it’s worth noting that cs-shr
scores first as for the quarterly forecasts of the uts, and almost always improves on
the base forecasts’ accuracy, regardless of series’ group, temporal aggregation level
and forecast horizon’| In addition, from the bottom panel of Figure [9] we observe
that, when considered only on quarterly basis, the one-step-ahead forecasts for all
series provided by cs-shr are (temporally incoherent and) not significantly differ-
ent from those provided by the best procedure (which in this case is ite-acov-shr).
However, since the temporal dimension is not accounted for by this reconciliation
procedure, the relative performance worsens (i.e., the cross-temporal procedures im-
prove on the base forecasts more than cs-shr) as the temporal aggregation level
increases.

Overall, ite-acov-shr always scores best for all series and all forecast horizons,
and second-best for the bts series and all forecast horizons, while tcs-acov-shr scores
second and first, in turn. However, ite-acov-shr shows good results for the uts
forecasts as well. In this case, the best performances are given by ite-sarl-shr and
ite-wlsv-shr. Figure [9] shows that the differences in the forecasts produced by all
the considered heuristic procedures are not statistically significant at any temporal
aggregation level and forecast horizonlﬂ Furthermore, two optimal combination
procedures (oct-acov and oct-wlsv) produce reconciled forecasts not significantly
different from the best procedure according to the Nemenyi test (see Figure@, while
oct-bdshr is significantly (worse and) different from the best forecast reconciliation
procedure.

Finally, in Table [2| the AvgRelMSE’s for selected upper time series and recon-
ciliation procedures are shownﬂ The series we analyze (see Figure come from
the first three levels of both the Income and Expenditure sides hierarchies:

e Gross Domestic Product

e Total Factor Income (Income side)

e Gross Operating Surplus (Income side)

e Compensation of Employees (Income side)

e Gross National Expenditure (Expenditure side)

e Domestic Final Demand (Expenditure side)

e Changes in Inventories (Expenditure sides)

e Final Consumption Expenditures (Expenditure side)

e Gross Fixed Capital Formation (Expenditure side)

"The only exception is an AvgRelMSE greater than 1 (1.0094) for the bts quarterly forecasts at
horizon 4.

18Figure@ reports only the test results across all temporal aggregation levels and forecast horizons
(top), and for k = 1 and h = 1 (bottom). The graphs of the Nemenyi test for each temporal
aggregation level and each forecast horizon are provided in Appendix A.8.

¥The results for all 95 series, and AvgReIMAE as well, are available in Appendix A.8.
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Table 2: AvgRelMSE at any temporal aggregation level and any forecast horizon
for selected upper time series and reconciliation procedures.

Quarterly Semi-annual Annual All
Procedure 1| 2 | 3 | 4 | 14 | 2 | 12 1

Gross Domestic Product
cs-shr 0.9740 | 0.9397 | 0.9028 | 0.8924 | 0.9267 | 0.8382 | 0.8713 | 0.8546 | 0.7116 | 0.8719
t-acov 1.0883 | 1.0356 | 1.0108 | 1.0000 | 1.0331 | 0.6539 | 0.8717 | 0.7549 | 0.6047 | 0.8750

kah-wlsv-shr | 1.1249 | 0.9876 | 0.9068 | 0.8719 | 0.9681 | 0.6510 | 0.7698 | 0.7079 | 0.5485 0.8163

ite-acov-shr | 1.0503 | 0.9808 | 0.9027 | 0.8853 | 0.9526 | 0.6281 | 0.7730 | 0.6968 | 0.5427 | 0.8039

oct-acov 1.0696 | 0.9689 | 0.8975 | 0.8926 0.9545 | 0.6245 | 0.7745 | 0.6954 | 0.5402 | 0.8039

Total Factor Income
cs-shr 0.8316 | 0.9002 | 0.8769 | 0.8335 | 0.8600 | 0.8232 0.8760 | 0.8492 0.7162 0.8348
t-acov 1.0434 | 1.0927 | 0.9971 | 0.9818 | 1.0279 | 0.7174 | 0.9408 | 0.8215 | 0.6636 | 0.9057

kah-wlsv-shr | 0.9598 | 0.9523 | 0.8696 | 0.7984 | 0.8925 | 0.6353 | 0.7870 | 0.7071 | 0.5680 | 0.7829

ite-acov-shr | 0.8995 | 0.9428 | 0.8663 | 0.8134 | 0.8792 | 0.6141 0.7909 | 0.6969 0.5642 0.7722

oct-acov 0.8819 | 0.9335 | 0.8635 | 0.8131 0.8719 | 0.6078 | 0.7907 | 0.6932 | 0.5603 | 0.7666

Gross Operating Surplus
cs-shr 0.9170 | 0.8834 | 0.9140 | 0.9008 | 0.9037 | 1.0425 | 1.0489 | 1.0457 | 0.9354 | 0.9468
t-acov 1.0180 | 0.9768 | 0.9760 | 0.9459 | 0.9789 | 0.8958 | 1.1015 | 0.9933 | 0.8807 | 0.9682

kah-wlsv-shr | 0.9867 | 0.9139 | 0.8988 | 0.8717 | 0.9168 | 0.8572 | 1.0133 | 0.9320 | 0.8134 | 0.9055

ite-acov-shr | 0.9673 | 0.8943 | 0.8985 | 0.8810 | 0.9097 | 0.8338 | 1.0147 | 0.9199 | 0.8083 | 0.8973

oct-acov 0.9524 | 0.9233 | 0.9181 | 0.8826 | 0.9187 | 0.8534 | 1.0301 | 0.9376 | 0.8262 | 0.9102

Compensation of Employees
cs-shr 0.9416 | 0.9880 | 1.0172 | 1.0112 | 0.9891 | 1.0519 | 1.0820 | 1.0669 | 1.0488 | 1.0192
t-acov 1.0635 | 1.0506 | 1.0593 | 1.0365 | 1.0524 | 0.7474 | 0.8618 | 0.8026 | 0.5876 0.8962

kah-wlsv-shr | 1.0893 | 1.0739 | 1.0886 | 1.0330 | 1.0709 | 0.7663 | 0.8726 | 0.8177 0.5932 0.9112

ite-acov-shr | 1.0060 | 1.0417 | 1.0778 | 1.0668 | 1.0477 | 0.7326 | 0.8859 | 0.8056 0.5931 0.8961

oct-acov 1.0585 | 1.0662 | 1.0576 | 1.0251 | 1.0517 | 0.7560 | 0.8567 | 0.8048 | 0.5853 | 0.8960

Gross National Expenditure
cs-shr 0.9243 | 0.9407 | 0.9212 | 0.8897 | 0.9188 | 0.9865 0.8728 | 0.9280 0.9302 0.9230
t-acov 1.0197 | 1.0367 | 1.0113 | 1.0060 | 1.0184 | 0.8447 | 0.9008 | 0.8723 0.6630 0.9164

kah-wlsv-shr | 0.9966 | 0.9959 | 0.9265 | 0.9017 | 0.9542 | 0.8284 | 0.8113 | 0.8198 | 0.6156 | 0.8583

ite-acov-shr | 0.9723 | 0.9925 | 0.9155 | 0.9094 | 0.9467 | 0.8244 | 0.8158 | 0.8201 0.6156 | 0.8545

oct-acov 1.0071 | 1.0002 | 0.9278 | 0.9031 0.9585 | 0.8193 | 0.8075 | 0.8133 | 0.6064 | 0.8567

Domestic Final Demand
cs-shr 0.8713 | 0.9737 | 1.0182 | 0.9958 | 0.9631 | 0.9787 | 1.0192 | 0.9988 | 1.0038 | 0.9789
t-acov 0.9844 | 1.0002 | 1.0031 | 0.9851 | 0.9932 | 0.8656 | 0.9421 | 0.9030 | 0.6745 0.9146

kah-wlsv-shr | 0.9112 | 1.0152 | 1.0136 | 1.0039 | 0.9850 | 0.8184 | 0.9562 | 0.8846 | 0.6747 | 0.9049

ite-acov-shr | 0.8843 | 1.0014 | 1.0049 | 1.0161 | 0.9751 | 0.8119 | 0.9662 | 0.8857 | 0.6758 | 0.9003

oct-acov 0.9274 | 1.0114 | 1.0088 | 0.9956 | 0.9852 | 0.8142 | 0.9428 | 0.8761 | 0.6608 | 0.8999

Changes in Inventories
cs-shr 1.0791 | 1.0228 | 1.0412 | 0.9250 | 1.0154 | 0.7215 | 0.8134 | 0.7661 | 0.8811 | 0.9181
t-acov 1.0382 | 1.0609 | 1.0032 | 0.9999 | 1.0253 | 0.6886 | 0.7098 | 0.6991 | 0.8996 | 0.9020

kah-wlsv-shr | 1.0204 | 1.0339 | 1.0163 | 0.9467 | 1.0037 | 0.6644 | 0.6795 | 0.6719 | 0.8369 | 0.8720

ite-acov-shr | 1.0317 | 1.0239 | 0.9908 | 0.9285 | 0.9929 | 0.6776 | 0.6676 | 0.6726 | 0.8407 | 0.8674

oct-acov 1.0074 | 1.0401 | 1.0087 | 0.9540 | 1.0021 | 0.6813 | 0.7051 | 0.6931 | 0.9084 | 0.8894

Final Consumption Ezpenditures
cs-shr 0.8826 | 0.8184 | 0.8216 | 0.8223 | 0.8358 | 0.9482 | 0.9741 | 0.9611 0.9988 | 0.8923
t-acov 0.9956 | 1.0268 | 0.9982 | 1.0199 | 1.0100 | 0.8978 | 0.9456 | 0.9214 | 0.7540 | 0.9436

kah-wlsv-shr | 0.9370 | 0.9094 | 0.9000 | 0.8956 | 0.9104 | 0.8077 | 0.8395 | 0.8234 | 0.6708 | 0.8469

ite-acov-shr | 0.9263 | 0.8804 | 0.8963 | 0.8913 | 0.8984 | 0.7861 | 0.8331 | 0.8093 | 0.6593 | 0.8343

oct-acov 0.9691 | 0.9489 | 0.9310 | 0.9373 | 0.9464 | 0.8277 | 0.8673 | 0.8473 | 0.6888 0.8763

Gross Fized Capital Formation
cs-shr 0.9442 | 0.9828 | 1.0156 | 1.0096 | 0.9876 | 1.0225 | 1.0185 | 1.0205 | 0.9719 0.9946
t-acov 0.9875 | 1.0066 | 0.9967 | 0.9653 | 0.9889 | 0.8881 | 1.0002 | 0.9425 | 0.7258 | 0.9333

kah-wlsv-shr | 0.9875 | 0.9790 | 0.9768 | 0.9663 | 0.9774 | 0.8480 | 0.9829 | 0.9130 | 0.7052 | 0.9149

ite-acov-shr | 0.9524 | 0.9827 | 0.9651 0.9859 | 0.9714 | 0.8453 | 0.9973 | 0.9182 0.7097 0.9140

oct-acov 0.9498 | 0.9511 | 0.9539 | 0.9426 | 0.9448 | 0.8149 | 0.9476 | 0.8787 | 0.6726 | 0.8816
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Figure 10: Quarterly GDP and selected time series from both Income and Expendi-
ture sides: actual values and one-step-ahead base forecasts during the testing period
(1994:Q4 - 2018:Q1)

The ability of cs-shr to improve on short-term (1 or 2-quarter ahead) base fore-
casts clearly emerges, with the only exception of the forecasts of the Change in
Inventories series, where most indices at quarterly level are greater than 1. How-
ever, this bad performance is shared by the other reconciliation procedures as well,
and is likely due to the low quality of the base forecasts as compared to the other
considered series (see Figure .

To conclude, the general improvement registered on average (last column of Ta-
ble |2) by the cross-temporal reconciliation procedures may be considered a positive
outcome, which combines an acceptable forecasting performance at quarterly level
with a good performance at semi-annual and annual-levels, with the additional fea-
ture that the complete system of forecasts is internally and temporally coherent.
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9 Conclusions

The hierarchical framework is currently considered as an effective way to improve
the accuracy of forecasts in many different fields of application. In this paper we
give some contributions and extensions to a topic which has been widely studied
in the last decade, by connecting it to the widespread literature on least-squares
adjustment of preliminary data (Stone et al., 1942, Byron, 1978), with focus on a
projection approach which de facto encompasses and extends the modelling frame-
work by Hyndman et al. (2011) (see Wickramasuriya et al., 2019, and Panagiotelis
et al., 2020). However, we do agree with Jeon et al. (2019, p. 368) that a “short-
coming of many of the approaches above, including WLS with structural scaling,
is that the weights (...) are a function of in-sample errors and are not directly de-
termined with reference to an objective function ultimately used to asses forecast
quality”. This problem, yet present for cross-temporal hierarchies, is added to the
dimensionality issues which generally characterizes these structures, whose number
of nodes is considerably larger than the relevant single-dimension hierarchies, and
calls for alternative estimation strategies, based for example on cross validation, as
proposed by Jeon et al. (2019), or - when enough data is available - on Machine
Learning techniques (Mancuso et al., 2020, Spiliotis et al., 2020).

Nevertheless, cross-temporal point forecast reconciliation seems to be a promising
theme, which is worth considering for future research. In particular, we are currently
working to finalize an R package offering classical and new optimal and heuristic
combination forecast reconciliation procedures (forec - forecast reconciliation). In
addition, we plan to perform simulation experiments to better understand behaviour,
potentiality, and possible shortcomings of the proposed procedures. Other topics in
our research agenda are:

e looking for more realistic (and hopefully effective) approximations of the co-
variance matrices for cross-temporal reconciliation, (i) by building on Jeon
et al. (2019), (ii) by deepening some ideas by Kourentzes (2017, 2018), and
(iii) by extending/adapting some proposals by Nystrup et al. (2020) to the
cross-temporal framework;

e extending the cross-temporal framework to the reconciliation of probabilistic
forecasts (Gamakumara et al., 2018, Jeon et al., 2019, Ben Taieb et al., 2020),
and for bayesian (Eckert et al., 2019) and fast (Ashouri et al., 2019) forecast
reconciliation procedures;

e extending the cross-temporal optimal combination approach to the case of
intermittent demand forecasts (Petropoulos and Kourentzes, 2015), with the
related non-negativity issues (Kourentzes and Athanasopoulos, 2020a, Wickra-
masuriya et al., 2020), and possible consideration of ‘soft’ constraints (Danilov
and Magnus, 2008).
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A.1 Alternative, equivalent formulations of the solution to
the optimal point forecast reconciliation problem

Given the model
y=SB+e, E(e)=0, E()=W,

the GLS estimator of vector [ is given by
A= (SWs)'swly
and then the vector containing all reconciled forecasts is given by
y=SB=8(SW'S) " W'y = SGy, (A.1)

where G = (S'W1S) ' s'WL.

Now we show that solution is equivalent to the one we obtain considering
the following model and its subsequent formulation in terms of constrained quadratic
minimization:

y=y+e, E()=0, E(e£/)=W,st. Hy=0,

where H= [ I,, —C | is a matrix of dimension [ng x (nq + n)].
In this case the following constrained minimization problem must be solved:

min(y —§)' W' (y—y), st. Hy=0

Let’s consider the lagrangean function
L=(y-y) W' (y-y) +2XHy=yW 'y —2yW 'y + 2\'H'y,

where A is a (n, X 1) vector of Lagrange multipliers.
Differentiating .Z wrt y and A and then equating to zero (first order conditions),
we get the linear system

oW ly + 2HN = 2Wly
Hy = 0

Wl H y|] [Wly
H o0 A 0 '
According to the lemma of inversion of a block-partitioned matrix (Lou and Shiou,
2002), it is:

that is:
w! H]' | W-WHEHWH) 'HW WHMHWH)
H 0 B (HWH) 'H'W —~@HWH) " |’

and thus
y = |1, - WH (H'WH) ' H'| y.
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Now, let us consider matrix J, defined as
J= [ Onbxna Inb } 5

which has dimension [n, x n], and is such that when applied to a (n x 1) vector,
‘extracts’ its last ny elements. In other words, by denoting 5 = Jy, it is:

§=SG= [J ~ JWH (HWH) ' H’] y = Gy,

from which we can conclude that

G=(SW's)"'S'W = [J - JWH (H'WH) 'H|.
In the former case, the expression requires the inversion of a (n x n) matrix, W,
and of a (np X np) matrix, (S’Wfls). In the latter case the matrix to be inverted,
(H'WH) has dimension (ng X ng).
A.2 Balanced and unbalanced hierarchies
A simple three-level hierarchy is shown in the right panel of figure where variable

C at the second level of the hierarchy has no ‘children’, and thus is considered as a
bottom variable too, at level three of the hierarchy.

Tot. Tot.

AA || AB || BA || BB C AA || AB || BA || BB c

Figure A.1: A simple unbalanced hierarchy (right) and its balanced version (left)

The left panel shows the ‘balanced version’ of the same hierarchy, where variable
C' is (duplicated and) present at both levels two and three.

The aggregation relationships linking the component series can be expressed as
follows:

YTot = YAA T YAB +YBA+YBB + Yo
YA = YAA T+ YAB
YB = YBA+YBB ’

Yyc = Yo
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where the last equality has merely the function of making the hierarchy balanced.
The corresponding contemporaneous aggregation matrix C is given by:

C =

S = O =

11
00
1 0
01

OO = =
S O = =

The redundant relationship (yo = yc) makes the last row of matrix C equal to the
C
I5
be easily eliminated by considering the new contemporaneous aggregation matrix
C, which in the case of an unbalanced hierarchy has clearly one row less than in the
balanced version:

last row of the contemporaneous summing matrix S = [ ] . This redundancy can

3 11111
C=|(11000
00110

C ], which has
Is

dimension (8 x 5) instead of (9 x 5) as for matrix S. In a complex hierarchy, mostly
when contemporaneous and temporal hierarchies are simultaneously considered, this
fact should be carefully considered in order to save memory space and computing
time.

The R package hts (Hyndman et al., 2020) manages only balanced hierarchy,
and thus builds matrix S instead of S. Due to this fact, large cross-sectional hi-
erarchies might require computational efforts larger than necessary, and could face
numerical problems when more sofisticated reconciliation strategies are applied. For
example, the grouped time series of the Australian Tourism Demand analyzed by
Wickramasuriya et al. (2019) (see also Ashouri et al., 2019; Bertani et al., 2020;
Wickramasuriya et al., 2020), contains 30 duplicated time series, since it comes
from two unbalanced hierarchies with only 525 ‘unique’ time series (304 bts and
221 uts), as compared to the 555 time series of the balanced version. A similar,
though less pronounced case (105 ‘unique’ time series out of 111 for the balanced
hierarchy) is present in the reduced version of this system analyzed by Kourentzes
and Athanasopoulos (2019) and Panagiotelis et al. (2020).

The new contemporaneous summing matrix is thus given by S = [

A.3 Commutation matrix and the relationships linking vectors
and matrices of bottom and upper time series

Given an (r x ¢) matrix X, denote with C, . the (rc x r¢) commutation matrix
(Magnus and Neudecker, 2019) which maps vec (X) into vec (X'):

C;cvec (X) = vec (X).

This matrix is a special type of permutation matrix, obtained by simple exchanges
of rows of the identity matrix, and is therefore orthogonal, that is:

-1 _ !
C'r,c - Cr,c - CCJ"
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A.3.1 Cross-sectional case: the permutation matrices linking vectors b”
to b and a* to a

Denoting b = vec (B), b* = vec (B’), a = vec (A), a* = vec (A’), the mappings of
b into b* and a into a*, respectively, can be expressed as

Pyb =b*, P,a=a",

where P, = Cy,, 7,7 and P, = C,, 7,7 are (T x 1) and (n,T x ngT"), respec-
tively, commutation matrices. Since both P;, and P, are orthogonal, it is:

b =P,b*, a=Pla"

The index k, k = 1,...,npT, of the generic element of vector b* can be expressed
in terms of the row and column indices of the corresponding element of matrix B':

vec(B') =b* = {b;}, b =by, withk=t+ (i —1)T.
As for the index [, [ = 1,...,n,T, of the generic element of vector a*, we have:
vec(A') = a* = {af}, af =ay, withl=t+ (j — 1)T.

A numerical example

Assuming that n = 2 variables and T = 3 time periods are considered, matrix
11 12 13 . .
X = [21 99 23} can be vectorized either as

vee(X)=x=[11 21 12 22 13 23]

or
vee(X')=x*=[11 12 13 21 22 23].

In this case, the permutation matrix P mapping x* into x, such that x = Px* (and
x* = P'x), is given by:

100000
000100
010000

P=lo00010
001000

00000 1]

The following R script performs the calculation of matrix P:

n <- 2;

t <- 3;

I <- matrix(1l:(n*t), n, t, byrow = T)

I <- as.vector(I) # vectorize the required indices

P <- diag(n*t); # Initialize an identity matrix

P <- PI[I,] # Re-arrange the rows of the identity matrix
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# A numerical example
X <- matrix(c(11,12,13,21,22,23), byrow=T, nrow=2) # (2 x 3) matrix
Xt <- t(X)

x <- as.vector(X) # x = vec(X)

xstar <- as.vector(Xt) # xstar = vec(X’)

xnew <- PYx*Yxstar # vector xstar is mapped into vector xnew

norm(x - xnew) # check: the norm of the difference should be zero
xstarnew <- t(P)*x; # vector x is mapped into vector xstarnew

norm(xstar - xstarnew) # check: the norm of the difference should be zero

A.3.2 Cross-temporal case: the relationship between y and vec (Y’)

Assuming h = 1, denote with Y = {A} the [n x (k* + m)] matrix of the target fore-

B
casts at any temporal frequency. The [n, x (k* + m)| submatrix B, which contains
the target forecasts of the bottom time series, can be written as:

B =Bl Bl Bl Bl = [B* BIY],
where the (np x £*) matrix B* = {B[m] BlFp-1l B[kﬂ, and matrix B contain

the target forecasts for, respectively, the temporally aggregated time series (lf-bts)
and the high-frequency ones (hf-bts). The following relationships hold:

Co,.(k*+m) [vec (B)] = vec (B/) ,

Co, i [vec (B¥)] = vec [(B*)'],

Ch,m {vec (Bmﬂ = vec [(B[I])'] :

vec (B*)
Since vec (B) = , we can write:
vec (Bm>
C (B) C Ck*vnb O(ku‘* xnym) vec [(B*)l]
ny,(k*+m) VeC = Yng,(k*+m )
b, (k*+m) bo(k*+m) 0 nymotrgh) Crum, vec {(B[”)’}
that is:
| vec[(B*)]
vec (B') = Q ,
&) vec [(B[I])’]
where

Q= Cnb,(k*+m) (A2)

Ck*,nb O(nbk*xnbm)]

O(nbmxnbk*) Cm,nb
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According to expression (38)), the [n(k* +m) x 1] vector y can be written as:
vec(A”)
vec [(B*)']
vec [(B[l])’}

y =

Then, vec (Y') can be expressed in terms of y as:
vec (Y') = Qy,
where

Q- [ Ina(k:*+m) O[na(k*+m)><nbm]] '

O[nbmxna(k*+m)] Q

A.4 Monthly and hourly temporal hierarchies

For monthly data, the aggregates of interest are for k € {12,6,4,3,2,1}. Hence the
monthly observations are aggregated to annual, semi-annual, four-monthly, quarterly
and bi-monthly observations. These can be represented in two separate hierarchies,
as shown in Fig. which means that the temporal hierarchies form a grouped
series, sharing the ‘top level’ (annual) aggregate, and the same twelve ‘bottom’
nodes, one for each month of the original temporally disaggregated time series.

However, the (16 x 12) temporal aggregation matrix K; for this case is easily
obtained:

111111111111

111111000000

0O 000O0OO0OT1T1TI1T1TT11

111100 00O0O0O0TO0

000011110000

0O 000O0OO0OO0OO0OT1TT1TT1IT1

11 100000O0O0O0O0
K, — 00011 10O0O0UO0OQO0O®O0

0000O0OO0OT1T1T1O0O0TO0]|’

0O 000O0OO0OO0OO0OTO ODTITTI1II1

1100 000O0O0OO0TO0DO

0011 00O0O0O0O0OQO0OT®O0

00001 1O0O0O0UO0OQO0O®O0

0O 000O0OO0OT1T1UO0TQO0OQO0O0

0O 000OO0OO0OO0OO0ODT1TT1TTO0OSO

|00 000O0O0O0OTO0DOT11|
and thus R; = [ 5; :|,Z/1:[116 —Kl],xT:Rlxg}],and Zix,=0,7=1,...,N,

/
where x, = [x[Tw] , xL—G]/, x[74]/, xg]/, x[ﬂ/, X[TH/} is the (28 x 1) vector containing all tem-

poral aggregates of variable X at the observation index 7 (i.e., within the complete
7-th cycle).
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Q1 Q2 Qs Q4

‘Ml‘ \UZ\ ‘]\Jg‘ \M4\ \u \Mh\ \MT

(M| [My] [Mio] [Mu] [Miz]

(a) Monthly - Quarterly - Semi-Annual - Annual frequencies

(2] [Me] [Ma] M| [Ms] [Ms] [Mr] [Ms] [Mo] | Mo [Mu] [Me]

(b) Monthly - Bi-Monthly - Four-Monthly - Annual frequencies

Figure A.2: The two temporal hierarchies induced by a monthly time series.

Let’s conclude with considering the case of an hourly time series with diurnal
periodicity. In this case it is m = 24, k* = 36, and Ky is the (36 N x 24N) matrix

[ IN ® 1,24 1
IQN & ]-/12

Isy ® 15

Kyv=| Liz®1j |,
Isny ® 1)
Isy @ 14
Ioy ® 15

which converts single hour values into the sum of 2, 3, 4, 6, 8, 12, and 24 hours data,
respectively, and Z’y = [Isgny — Ky] is a full row-rank (36 N x 60N) matrix.
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A.5 Cross-temporal hierarchy: a toy example

Let us consider the relationships linking all the variables implied by a cross-temporal
hierarchy for the very simple case of a total quarterly series observed for one year,
X, obtained as the sum of two component variables, W and Z, respectively. The
contemporaneous (cross-sectional) constraint, X = W + Z, must hold at any ob-
servation index of all temporal frequencies considered in the temporal hierarchy of
Figure [3| (annual, semi-annual and quarterly), as shown in Figure which gives
a graphical view of the the way in which the two dimensions (cross-sectional and
temporal) are combined within a complete time cycle (one year).

All the nodes in the cross-temporal hierarchy can be expressed in terms of the

(1] (1]

quarterly bottom time series w, - and z; ', t = 1,...,4, according to the structural
representation:

_.r:[l4]_

"

o

o0

o0

] - ]

3 1 11 1 1 1 11

] 11001 10 0]¢
(4] 001 10011 wy
w1 0]
2] 1000 1 000 Wy
wj 00100010 0]]
w2 001000T10 3
2 (1]
w| 000100 0 1] |uw
AT 0 00 0]
P 11000000 a
e 001 10000]|[?
R 000011 1 1|][M
wy 00001100/
wgl] 00 0O0O0TUO0 11|t d

Is b

(1 L _

U_)3 v

il :

A

A

2

2]

Hf_/

y

where a — [a:[f‘} x[12} m[22] m[ll] ng[21] m:[;] 1'4[11]},’ b= [w[ll] wéﬂ wgl] wE] Zgll zg] Z:E,l] ZL[11] /7

y= 2 .S © , and C is the (13 x 8) matrix:
b Ig



Appendix 65

Figure A.3: A two level cross-temporal hierarchy with quarterly data
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)

The zero constraints valid for the nodes of the cross-temporal hierarchy can be
represented through the (13 x 21) matrix H = [113 — C], which has full row-rank,
and is such that:

e

HYy = 0(13x1)- (A.3)

According to the notation used so far, it isn, =1, np, =2, T =m =4, N =1,
p =3, and # = {4,2,1}. The contemporaneous aggregation matrix C, mapping
bts into uts, is simply a (1 x 2) row vector of ones: C = [1 1], and thus U’ is the
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(1 x 3) row vector U’ = [1 —1 — 1]. Furthermore, the (3 x 4) temporal aggregation
matrix K; mapping a quarterly series into its semi-annual and annual counterparts,
and the related (3 x 7) matrix Z} = [I3 — Ky], are given by:

1 111 100 -1 -1 -1 -1
Ki=1(1 1 0 0], Zi=1010 -1 -1 0 0
0 011 001 o0 0 -1 -1

The (3 x 7) matrix Y, collecting all the time series at any observation frequency, is

given by:
$[14] x[12} m[22] x[ll] m[21] xz[))l] xLl}

Y = w%] wgz] w?] wgl] wg] wz[,,l] wl[ll] ,
z£4} ZEQ] Zé?] zgl] Zgl] z:[gl} 24[11]

and then y = vec (Y’) is the (21 x 1) vector

!/
y = [a:[f” e e e el el el ot P ol it ol ol ) 2SR zE]} :

which is differently organized as compared to y. However, it is easy to show that
y = Qy, where Q is the (21 x 21) permutation matrix

i Lo 0(10x11) i
0O000OO0OO0OOOODLOODLOOTLTI OO0OO0OO0OO0ODO0ODQ
00 00O0OO0OO0OO0OO0OO0OO0OO0OO0OOTOOSOOOOO
000 0O0OO0OOOODOSODOOODLOTI 0OO0OO0OO0OTO
Q=100 0 00O 0 O0OO0OO0OO0ODO0ODOOOODOOT11TO0O0OTQO0OTO
000 0O0O0OO0OOODOT1TOOOOOODOOOODQO
0O 000OO0OO0OO0OO0OO0OO0OO0OT1O0OOOOOSOOOOO
000 0O0O0OO0OOO0DOODOTTOOSOOSOSOODQ

L 0117 Iy i

Given the orthogonality of matrix Q, it is ¥ = Q'y, and then the constraints (A.3)
can be re-stated as H/Q’y = 0(13x1), that is
H'y = 0(1341),;

where H' = (QI:I)/ is a (13 x 21) full row-rank matrix.
The cross-temporal constraints can be formulated according to expression

as well, where H' is the (16 x 21) matrix

I, -I, Iy
. U el Zi 0 0
H = 1| = /

o o0 Z

The rank of H is 13, which means that the matrix is not full row-rank. The choice
of the rows to remove is not uniqud?}, and in real life applications the elimination of

20For example, in this simple example a different full row-rank H’ can be obtained either by
removing the last three rows, or by eliminating rows 5, 10 and 15 from matrix H.
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linear dependent relationships from the cross-temporal constraint set might be not
as simple as in this toy example. In general, the computation of H' as in seems
rather quick and effective. In this toy example, the resulting H matrix according
to that procedure is simply matrix H' without the first three rows, that is:

r -1 -r
Z, 0 0
r_ |4

H=19 2z ol

0 o0 Z

where I* is the (4 x 7) matrix

0001 00O
I — 000O01O0O0
0000010
0 00 0O0O01

A.6 An alternative heuristic cross-temporal reconciliation pro-
cedure

Let us consider a cross-temporal reconciliation procedure based on the reversal of
the order in which the one-dimension forecast reconciliation procedures are applied
by KA. The procedure consists in the following steps (it is assumed h = 1):

Step 1
Transform Y by computing time-by-time cross-sectional reconciled forecasts Y for
all the temporal aggregation levels:

~ ~—

Y —- Y.

The [n x (k* + m)] matrix Y can be re-written also as:

~

Y = [ gl gl ?[1}] 7

~ [k

where Y[ ], k € 2, has dimension (n x My). Cross-sectionally reconciled forecasts
Sk

can be computed by transforming each Y[ ] as:

M =M™ p e,

where M are p transformation matrices, each of dimension (n x n), given by:
MM — 1, — wlky (U’WWU) UL ke

and W is a (n x n) p.d. known matrix. Since it is U'M* = O(n,xn), k € A, the
reconciled forecasts are cross-sectionally coherent, i.e. U'Y = Ofn, x (k*+m)]> but not
temporally: Z/ Y’ # 0k xn)-
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Step 2

For each individual variable, compute the temporally reconciled forecasts Y:

Y - Y.

This result can be obtained by apping the point forecast reconciliation formula

according to temporally hierarchies (24]) to each column of matrix Y'. In fact, using

the notation of section 4, it is

— Eal Eana Eb1 Ebnb
Y/ =
all oAl el

The n, vectors of temporally reconciled forecasts of the uts can be obtained as:

[
e+C

aj aj
=M,

<[1] S I
a, a;

-1 .
; Mo, = Loy —R0,21 (Z194,21) " Z), j=1,...,n4

Likeways, the np vectors of temporally reconciled forecasts of the bts are given by:

~ ¥

tb. tb'
T 2 —1 .

c = M,, L | My, = Lo — 0,20 (210, 21) 27, i=1,...,my,
7 )

where the n, + np matrices M,; and M,, have dimension [(k* +m) x (k* +m)],
and each Q,., j = 1,...,nq, and Qp,, i = 1,...,ny, respectively, is a known p.d.
[(* +m) x (k* +m)] matrix.

The mapping performing the transformation of the base forecasts into the tem-
porally reconciled ones can be expressed in compact form as:

M,, - 0 0 0
~/ _ 0 Mana 0 0 =
vec(Y)- 0 0 My, - 0 vec(Y).
0 0 0 Mbnb_

~/
The temporally reconciled forecasts can be then collected in the matrix Y :

V o V A"y @™y
o ta, tan, to to,, : :
Y = (1] 1 0l - [1] v[}€2] v[}w] ’
él vna b bnb (A )/ (B )/
L,
LA (B )

~/
which is in line with the temporal aggregation constraints, i.e. Z|Y = 01+ xn), but
in general it is not in line with the cross-sectional (contemporaneous) constraints:

U/? 7& Ona x (k*4+m)-
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Step 3

Transform again the step 1 forecasts \YJ', by computing temporally reconciled fore-
casts for all n variables using the [(k* +m) x (k* +m)] matrix M™ where ‘cst’
stands for ‘cross-sectional-then-temporal’, given by the average of the matrices M;
obtained at step 2:

- cst

SV(:>Y

. mwxcst
Matrix M~ can be expressed as:

1 n
~acst
i=1

The final cross-temporal reconciled forecasts are given by:

o.cst

v = (v 3?')' _ (MY, (A.4)

Since U'Y = O, x (k*+m)]» and z’lﬁ"“ =013 ZE M = Ope (o +-m))» the Tecon-
ciled forecasts (A.4) fulfill both cross-sectional and temporal aggregation constraints:

7 /wxcst

.cst
UY =UYM ") = O0p,xktm)

~cst\/ ——cst 3%
A (Y ) = Z\M™ Y = 0.

A.7 Average relative accuracy indices for selected groups of
variables/time frequencies/forecast horizons, in a rolling fore-
cast experiment

Let

ke X,
h=1,..., h,

R S I
be the forecast error, where y and g are the actual and the forecasted values, respec-
tively, suffix ¢ denotes the variable of interest, j is the forecasting technique, where
j = 0 is the benchmark forecasting procedure, t is the forecast origin, £ is the set
of the time frequencies at which the series is observed, and h is the forecast horizon,
whose lead time depends on the time frequency k.

Denote by ij’j’h the forecasting accuracy of the technique j, computed across
q forecast origins, for the h-step-ahead forecasts of the variable ¢ at the temporal
aggregation level k. For example, Ay;]-’h = MSEM" , as defined in expression ,

1,
[k}vh — MAEZ[?’h or A .’h = RMSEZ[:C]]’hg Where

otherwise we might have A;; Ek‘]]

q
ke 1
MAE;;" = EZ

[k],h
€i,j

RMSEF"  —
17]
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. . . . k),h .
In any case, we consider the relative version of the accuracy index AE ]] , given by:

[k].h

K i . . _

T _AE’CJ],h’ i=1,....,n, 7=0,....J, kex, h=1,..., M,
%,0

and use it to compute the Average relative accuracy index of the forecasting proce-
dure j, for given k and h, through the geometric mean:

]

1
AngelAg»k]’h = ( T[k]’h> , 3=0,...,J.
i=1

We may consider the following average relative accuracy indices for selected groups
of variables/time frequencies and forecast horizons:

Average relative accuracy indices for a single variable at a given time
frequency, for multiple forecast horizons

ha
AngelA[k]’h1:h2 = H plELR yi=1,...,n,7=0,...,J, ke x.

1,J ,J
h=h1

Average relative accuracy indices for a group of variables (either all, or
selected groups, e.g. a: uts, b: bts) at a given time frequency, either for
a single forecast horizon or across them

AvgRelA" = (Hr£§7h> , j=0,... 0 k€A, h=1,..., M
i=1
1
AvgRelA!H" = ( 7«5317”) : J=0,.... 0 keX
i=1
1
n nyg,
AvgRelA) 1" = ( I1 rz[{?’h> : j=0,...,J kX
i=ng+1
My o
AvgRelAl! = (H I1 r,[f“}h> L i=0. .l kex
1=1 h=1
Na Mk ﬁ
AvgRelAl = (H I1 rllfgl’h) L =0, 0 kex
=1 h=1
n My, nb}wk
AvgRelA)) = ( I1 rz[?’h> L j=0,....J, kex
i=ng+1 h=1
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Average relative accuracy indices for a single variable or for a group of
variables (all, a: uts, b: bts), across all time frequencies and forecast
horizons

1
K i=1,...,n
AvgReIMSE, ; = (H I1 RelMSE[f“}h> , im0y
ket h=1
n m
AvgReIMSE; = (H I1 HReIMSE[k] h) , j=0,...,J
i=1kex h=1
My GED]
AvgRelMSE, ; = (H I1 HRelMSE[’;].’h> . i=0,...,J
i=1kex h=1
AvgReIMSE,; = ( IT II1I Re1MSE£’f}h> L =00
i=ng+1keX h=1
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A.8 Forecast reconciliation experiment: supplementary tables
and graphs

A.8.1 Selected forecast reconciliation procedures: performance results
using AvgRelMAE

Table A.1: AvgRelMAE at any temporal aggregation level and any forecast horizon.

Quarterly Semi-annual Annual All
Procedure 1 [ 2 [ 3 [ 4 [ 14 1] 2 ] 12 1

all 95 series

base 1 1 1 1 1 1 1 1 1 1
cs-shr 0.9769 | 0.9842 | 0.9863 | 0.9893 | 0.9842 | 0.9733 | 0.9871 | 0.9802 | 0.9840 | 0.9830
t-wlsv 0.9997 | 0.9988 | 0.9967 | 0.9953 | 0.9976 | 0.9212 | 0.9617 | 0.9412 | 0.8714 | 0.9624
t-acov 0.9893 | 0.9951 | 1.002 | 0.9971 | 0.9959 | 0.9106 | 0.9632 | 0.9365 | 0.8697 | 0.9598
t-sarl 0.9997 | 0.999 0.9964 | 0.9953 | 0.9976 | 0.9213 | 0.9615 | 0.9412 | 0.8712 | 0.9624

kah-wlsv-shr | 0.9796 | 0.9829 | 0.9797 | 0.9790 | 0.9803 | 0.9046 | 0.9459 | 0.9250 0.8572 0.9459
tes-acov-shr | 0.9698 | 0.9764 | 0.9852 | 0.9805 | 0.9780 | 0.8936 | 0.9476 | 0.9202 | 0.8555 0.9429
tes-sarl-shr | 0.9797 | 0.9830 | 0.9796 | 0.9790 | 0.9803 | 0.9048 | 0.9459 | 0.9251 0.8572 0.9459
ite-wlsv-shr | 0.9750 | 0.9815 | 0.9783 | 0.9784 | 0.9783 | 0.9035 | 0.9459 | 0.9245 0.8562 0.9444
ite-acov-shr | 0.9672 | 0.9770 | 0.9849 | 0.9812 | 0.9776 | 0.8936 | 0.9481 | 0.9205 | 0.8547 | 0.9426
ite-sarl-shr | 0.9751 | 0.9819 | 0.9781 | 0.9784 | 0.9784 | 0.9038 | 0.9459 | 0.9246 0.8563 0.9445
oct-wlsv 0.9813 | 0.9858 | 0.9829 | 0.9830 | 0.9832 | 0.9078 | 0.9506 | 0.9289 0.8620 0.9494
oct-bdshr 0.9858 | 0.9880 | 0.9809 | 0.9833 | 0.9845 | 0.9112 | 0.9499 | 0.9304 | 0.8620 0.9505
oct-acov 0.9762 | 0.9831 | 0.9904 | 0.9879 | 0.9844 | 0.8965 | 0.9541 | 0.9248 0.8600 0.9485

32 upper series

base 1 1 1 1 1 1 1 1 1 1

cs-shr 0.9484 | 0.9628 | 0.9595 | 0.9652 | 0.959 | 0.9521 | 0.9679 | 0.9600 0.9691 0.9607
t-wlsv 0.9947 | 1.0034 | 0.9994 | 1.0006 | 0.9995 | 0.9273 | 0.9628 | 0.9448 0.8689 0.9641
t-acov 0.9965 | 1.0061 | 1.0019 | 1.0011 | 1.0014 | 0.9270 | 0.9627 | 0.9447 | 0.8688 0.9651
t-sarl 0.9947 | 1.0034 | 0.9993 | 1.0005 | 0.9995 | 0.9275 | 0.9626 | 0.9449 0.8686 0.9640

kah-wlsv-shr | 0.9538 | 0.9713 | 0.9646 | 0.9685 | 0.9645 | 0.8912 | 0.9265 | 0.9087 | 0.8319 0.9284
tes-acov-shr | 0.9595 | 0.9679 | 0.9655 | 0.9700 | 0.9657 | 0.8895 | 0.9269 | 0.9080 0.8314 0.9288
tes-sarl-shr | 0.9539 | 0.9711 | 0.9643 | 0.9684 | 0.9644 | 0.8913 | 0.9263 | 0.9086 0.8318 0.9283
ite-wlsv-shr | 0.9466 | 0.9700 | 0.9614 | 0.9665 | 0.9611 | 0.8897 | 0.9247 | 0.9071 0.8299 | 0.9257
ite-acov-shr | 0.9528 | 0.9674 | 0.9627 | 0.9684 | 0.9628 | 0.8879 | 0.9257 | 0.9066 | 0.8297 | 0.9265
ite-sarl-shr | 0.9469 | 0.9704 | 0.9611 | 0.9665 | 0.9612 | 0.8901 | 0.9246 | 0.9072 0.8300 0.9258
oct-wlsv 0.9589 | 0.9773 | 0.9712 | 0.9752 | 0.9706 | 0.8969 | 0.9339 | 0.9152 0.8404 0.9350
oct-bdshr 0.9552 | 0.9790 | 0.9632 | 0.9719 | 0.9673 | 0.8983 | 0.9288 | 0.9134 | 0.8364 0.9320
oct-acov 0.9631 | 0.9756 | 0.9729 | 0.9764 | 0.9720 | 0.8933 | 0.9356 | 0.9142 0.8383 0.9351

63 bottom series

base 1 1 1 1 1 1 1 1 1 1

cs-shr 0.9917 | 0.9953 | 1.0002 | 1.0018 | 0.9972 | 0.9842 0.997 0.9906 0.9917 | 0.9945
t-wlsv 1.0022 | 0.9965 | 0.9953 | 0.9926 | 0.9967 | 0.9181 | 0.9611 | 0.9393 0.8727 | 0.9615
t-acov 0.9856 | 0.9896 | 1.0021 | 0.9951 | 0.9931 | 0.9023 | 0.9635 | 0.9324 0.8702 0.9571
t-sarl 1.0023 | 0.9968 | 0.9950 | 0.9926 | 0.9967 | 0.9183 | 0.9609 | 0.9393 0.8726 0.9615

kah-wlsv-shr | 0.9930 | 0.9888 | 0.9875 | 0.9844 | 0.9884 | 0.9115 | 0.9559 | 0.9334 | 0.8703 0.9549
tes-acov-shr | 0.9751 | 0.9807 | 0.9953 | 0.9859 | 0.9842 | 0.8957 | 0.9582 | 0.9265 | 0.8680 | 0.9502
tes-sarl-shr | 0.9930 | 0.9891 | 0.9875 | 0.9844 | 0.9885 | 0.9117 | 0.9559 | 0.9335 0.8704 0.9550
ite-wlsv-shr | 0.9898 | 0.9874 | 0.9869 | 0.9844 | 0.9871 | 0.9106 | 0.9568 | 0.9334 | 0.8699 0.9541
ite-acov-shr | 0.9746 | 0.9819 | 0.9963 | 0.9878 | 0.9851 | 0.8965 | 0.9597 | 0.9276 | 0.8677 | 0.9509
ite-sarl-shr | 0.9897 | 0.9879 | 0.9869 | 0.9844 | 0.9872 | 0.9109 | 0.9569 | 0.9336 0.8700 0.9542
oct-wlsv 0.9929 | 0.9901 | 0.9888 | 0.9870 | 0.9897 | 0.9133 | 0.9591 | 0.9360 0.8732 0.9568
oct-bdshr 1.0018 | 0.9925 | 0.9900 | 0.9892 | 0.9933 | 0.9178 | 0.9609 | 0.9391 0.8753 0.9600
oct-acov 0.9830 | 0.9869 | 0.9994 | 0.9937 | 0.9907 | 0.8981 | 0.9636 | 0.9303 0.8712 0.9554
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Figure A.4: Top panel: Average Relative MAE across all series and forecast horizons,
by frequency of observation. Bottom panel: Rankings by frequency of observation

and forecast horizon.
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Figure A.5: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MAE mean rank (ii)
across all time frequencies and forecast horizons (top), and (ii) for one-step-ahead
quarterly forecasts (bottom).
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Figure A.6: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MSE mean rank for
two-step-ahead (top) and three-step-ahead (bottom) quarterly forecasts.
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Figure A.7: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MSE mean rank for
four-step-ahead (top) and one-to-four-step-ahead (bottom) quarterly forecasts.
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Figure A.8: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MSE mean rank for
one-step-ahead (top) and two-step-ahead (bottom) six-months forecasts.
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Figure A.9: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MSE mean rank for
one-to-two-step-ahead (top) six-months forecasts and one-step-ahead twelve-months
forecasts (bottom).
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Figure A.10: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MAE mean rank for
two-step-ahead (top) and three-step-ahead (bottom) quarterly forecasts.
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Figure A.11: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MAE mean rank for
four-step-ahead (top) and one-to-four-step-ahead (bottom) quarterly forecasts.



Appendix 81

Critical distance = 2.04
Friedman: O (Ha: Different)

base 13.28 - o
cs—shr11.92 - —_—
t—sarl 8.68 -
t-wisv 8.63 -
t—acov 8.04 -
oct—bdshr 7.82 -

oct-wisv 7.08 -

tcs—sarl-shr 5.92 -
kah-wlsv—-shr 5.88 -
ite—sarl-shr 5.59 -
tcs—acov-shr 5.41 -
ite—wlsv—shr 5.31 -

——
T
|
-
— I
oct-acov 6.14 - —_—
B
— 1 .-
B
B
B
—

ite—acov—shr 5.29 -

6 9 12
Mean ranks

Critical distance = 2.04
Friedman: O (Ha: Different)

base 11.6 - o

cs—shr 10.67 - —_—
t-wlisv 8.34 -
t—acov 8.24 -
t-sarl 8.22 -
oct—acov 7.84 -

oct-wlsv 7.32 -

ite—acov-shr 6.2 -
ite—sarl-shr 6.12 -
tcs—acov-shr 6.02 -
ite—wlsv—shr 5.99 -
tcs—sarl-shr 5.81 -
kah-wlsv—-shr 5.75 -

oct-bdshr 6.88 - T M

6 8 10 12
Mean ranks

Figure A.12: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MAE mean rank for
one-step-ahead (top) and two-step-ahead (bottom) six-months forecasts.
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Figure A.13: Nemenyi test results at 5% significance level for all 95 series. The
reconciliation procedures are sorted vertically according to the MAE mean rank for
one-to-two-step-ahead (top) six-months forecasts and one-step-ahead twelve-months
forecasts (bottom).
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Table A.2: AvgRelMSE at any temporal aggregation level and any forecast horizon
for all 95 time series and selected reconciliation procedures.

Quarterly ‘ Semi-annual ‘ Annual All
Series 1 2 3 4 14 1 2 1-2

cs-shr

Gdp | 0.9740 0.9397 0.9028 0.8924 0.9267 0.8382 0.8713 0.8546  0.7116  0.8719

Tfi | 0.8316 0.9002 0.8769 0.8335 0.8600 0.8232 0,8760 0.8492  0.7162  0.8348

TfiGos | 0.9170 0.8834 0.9140 0.9008 0.9037 1.0425 1.0489 1.0457 0.9354  0.9468

TfiCoe | 0.9416 0.9880 1.0172 1.0112 0.9891 1.0519 1.0820 1.0669 1.0488 1.0192

TfiGosCop | 0.8994  0.9722 1.0203 1.0302 0.9791 0.9818 1.0060 0.9938 1.0113  0.9879
TfiGosCopNfn | 0.9562  0.9347  0.9420 0.9691 0.9504 0.9873 1.0029 0.9951 1.0170 0.9723

Gne | 0.9243 0.9407 09212 0.8897 0.9188 0.9865 0.8728 0.9280  0.9302  0.9230

GneDfd | 0.8713  0.9737 1.0182 0.9958 0.9631 0.9787 1.0192 0.9988 1.0038  0.9789

GneCii | 1.0791 1.0228 1.0412 0.9250 1.0154 0.7215 0.8134 0.7661  0.8811  0.9181

GneDfdFce | 0.8826 0.8184  0.8216 0.8223  0.8358  0.9482 0.9741 0.9611  0.9988  0.8923

GneDfdGfc | 0.9442 0.9828 1.0156 1.0096 0.9876 1.0225 1.0185 1.0205 0.9719  0.9946

GneCiiPnf | 0.9022 0.8656 0.9051 0.9528 0.9059 0.8407 0.8504 0.8455  0.8584  0.8814
GneDfdFceGvt | 0.8352 0.8195 0.8463 0.9233  0.8552 0.8653 0.8642 0.8647  0.8716  0.8602
GneDfdFceHfc | 0.9330 0.9655 0.9374 0.8885  0.9307 0.9677  0.9229  0.9451 0.8749  0.9266
GneDfdGfcPub | 0.8485 0.9159 09178 0.9042 0.8961 0.8549 0.9234 0.8885  0.9637  0.9033
GneDfdGfcPvt | 0.8293  0.8913  0.8665 0.9197 0.8761 0.9277 0.9635 0.9455  0.9939  0.9116
GneDfdFceGvtNat | 0.9314  0.8758 0.9116 0.9399 0.9143 0.8944 0.9283 09112  0.9342  0.9163
GneDfdGfcPubGvt | 0.8485  0.9301  0.8247 0.8911  0.8727 0.9150 0.8243  0.8685  0.8495  0.8681
GneDfdGfcPubPcp | 1.0156 1.0273 0.9306 0.8908 0.9644 1.0143 0.9653 0.9895  0.7877  0.9438
GneDfdGfcPvtTdw | 0.9404 0.9740 0.9568 0.9362 0.9517 0.8496 0.9688 0.9072  0.9665  0.9409
GneDfdGfcPvtPbi | 0.8779  0.9021  0.9340 0.9710  0.9206 0,9080 1.0254 0.9649  0.8969  0.9296
GneDfdFceHfcAbt | 1.1053 1.1137 1.1005 1.0772 1.0991 1.0458 1.0276 1.0366 0.8659  1.0447
GneDfdFceHfcMis | 1.0375 1.0144 1.0850 1.1083 1.0607 0.9943 1.0618 1.0275 0.9926 1.0412
GneDfdFceHfcTpt | 0.9166  0.9311  0.9593  0.9482  0.9387 0.8779 0.8693 0.8736 1.0199  0.9306
GneDfdFceHfcHer | 0.9639  0.9600 0.9805 0.9684 0.9682 0.9216 1.0225 0.9708  0.9956  0.9728
GneDfdFceHfcHIt | 0.9584 0.9925 0.9567 0.9731 0.9701  0.9828 1.0071 0.9948  0.9833  0.9790
GneDfdFceHfcFhe | 0.9458  0.9755  0.9515 0.9372  0.9524 0.9392  0.9103 0.9247  0.9233  0.9402
GneDfdFceHfcHwe | 0.8682  0.8421  0.8023 0.8503  0.8404 0.7431 0.8147 0.7781  0.9994  0.8427
GneDfdGfcPubGvtNat | 0.8614  0.8802  0.9402 0.9078 0.8969 1.0715 0.9802 1.0249 0.9607  0.9409
GneDfdGfcPvtPbilpr | 0.7457  0.7762  0.7669 0.7793  0.7669  0.8557 0.9102 0.8826  0.9911  0.8281
GneDfdGfcPvtPbiNdc | 0.8342  0.8022 0.8466  0.8807 0.8404 0.7535 0.8158 0.7840  0.8256  0.8218
GneDfdGfcPvtPbiNdm | 0.9785  0.9417  0.9523  0.9617 0.9585 0.8980 0.9013 0.8996  0.8933  0.9318
TfiGosCopNfnPub | 1.0199 1.0458 1.0475 1.0741 1.0467 1.0165 0.9985 1.0074 1.0120 1.0303
TfiGosCopNfnPvt | 0.9149 0.9766  0.9871 1.0472 0.9803 1.0269 1.0044 1.0156 0.9986  0.9929
TfiGosCopFin | 1.0101  0.9985  0.9888 0.9845 0.9954 1.0028 1.0113 1.0071 1.0011 0.9996

TfiGosGvt | 1.0396 1.0182 1.0046 1.0023 1.0161 0.9800 0.9729 0.9765  0.8773  0.9837

TfiGosDwl | 0.9794 1.0005 0.9954 0.9927 0.9920 0.9875 0.9750 0.9813  0.8947  0.9744

TfiGmi | 1.0569 1.0892 1.1426 1.1265 1.1033 1.0611 1.0894 1.0751 1.0325 1.0849

TfiCoeWns | 0.9782 1.0048 1.0238 1.0464 1.0130 1.0497 1.0757 1.0626 1.0250 1.0287

TfiCoeEsc | 0.9635 0.9746 0.9866 0.9909 0.9788 0.9925 1.0344 1.0133 1.0023 0.9919

Tsi | 1.0094 1.0275 0.9765 0.9786 0.9978 0.9980 1.0066 1.0023 0.9908  0.9981

Sdi | 09774 1.0322 1.0025 1.0600 1.0176 1.0374 1.0463 1.0419 1.0185 1.0246
GneDfdFceGvtNatNdf | 0.9019  0.8936  0.9145 1.0108 0.9290 0.9290 0.9114 0.9202  0.8858  0.9202
GneDfdFceGvtNatDef | 1.0172 1.0092 0.9755 0.9502 0.9877 0.9746 1.0200 0.9970  0.9937  0.9912
GneDfdFceGvtSnl | 0.8689  0.8791  0.8737  0.8929 0.8786 0.8385 0.8418 0.8401  0.8738  0.8668
GneDfdGfcPubGvtNatNdf | 1.0088 1.0748 1.0469 1.0725 1.0504 0.9931 1.0452 1.0188 1.0147 1.0362
GneDfdGfcPubGvtNatDef | 0.9251 1.0844 1.1166 0.9711 1.0213 0.9261 0.9281 0.9271 1.0105 0.9919
GneDfdGfcPubGvtSnl | 1.0144 1.0571 1.0871 1.1209 1.0692 0.9616 1.0536 1.0065 1.1600 1.0632
GneDfdGfcPubPcpCmw | 1.0350 1.0360 1.0992 1.0905 1.0648 0.9930 0.9683 0.9806  0.9927 1.0296
GneDfdGfcPubPcpSnl | 0.9308  0.9414 0.8722  0.8440 0.8962 0.8914 0.8616 0.8764  0.8955  0.8904
GneDfdGfcPvtTdwNnu | 0.9714  0.9673  0.9850 0.9995 0.9807 0.9027 0.9781 0.9396 1.0376  0.9766
GneDfdGfcPvtTdwAna | 0.9973 1.0733 1.0890 1.0954 1.0630 0.9352 0.9923 0.9633  0.9751  1.0209
GneDfdGfcPvtPbilprRnd | 1.0410 1.0137 1.0021 1.0082 1.0162 1.0362 0.9926 1.0142 0.9904 1.0119
GneDfdGfcPvtPbilprMnp | 1.0282 1.0304 1.0774 1.0953 1.0575 0.9267 1.0079 0.9664 1.0003 1.0225
GneDfdGfcPvtPbilprCom | 0.9789  0.9792  0.9906 0.9954  0.9860 0.9327  0.9847 0.9584  0.9131  0.9673
GneDfdGfcPvtPbilprArt | 1.0168 0.9899  0.9812 0.9770  0.9911  0.9827 0.9426  0.9624  0.9098  0.9709
GneDfdGfcPvtPbiNdcNbd | 1.0444 1.0726 1.1079 1.0984 1.0805 1.0819 1.1597 1.1201 1.2492 1.1146
GneDfdGfcPvtPbiNdcNec | 0.8576  0.8409  0.8613  0.8666  0.8566  0.8683  0.9379  0.9024  0.7908  0.8596
GneDfdGfcPvtPbiNdcSha | 0,9030  0.9850 1.0448 1.1815 1.0236 0.9485 1.0223 0.9847  0.9950 1.0083
GneDfdGfcPvtPbiNdmNew | 1.0204 0.9594  0.9690  0.9809  0.9822 0.8479 0.9178 0.8822  0.9295  0.9450
GneDfdGfcPvtPbiNdmSha | 0.9575 0.9709  0.9964 0.9937 0.9795 0.9364 0.9699 0.9530  0.9527  0.9680
GneDfdGfcPvtPbiCbr | 1.0485 1.0307 1.0059 0.9911 1.0188 0.9475 09735 0.9604 1.0226 1.0023
GneDfdGfcPvtOtc | 0.9625 1.0052 0.9959  0.9987 0.9904 0.9382 0.9654 0.9517  0.9527  0.9738
GneDfdFceHfcAbtAlc | 0.9614  0.9718  0.9494 0.9367 0.9547 0.9652 0.9597 0.9624 1.0157  0.9654
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GneDfdFceHfcAbtCig | 0.8864 0.9089  0.9201  0.9864 0.9247 0.9083 0.9672 0.9373  0.9889  0.9372
GneDfdFcelfcMisOgd | 0.9932  0.9826  0.9538  0.9366 0.9663 1.0094 0.9896 0.9994 1.0034 0.9809
GneDfdFceHfcMisOsv | 1.0009  0.9946  0.9920  0.9839  0.9929  0.9380 1.0020 0.9695 1.0061 0.9880
GneDfdFceHfcMislfs | 0.9113  0.9297  0.8367 0.8769  0.8879  0.8905 0.9017 0.8961 0.8831  0.8895
GneDfdFceHfcTptTsv | 0.9585 0.9832  0.9686 0.9521  0.9655 1.0157 1.0761 1.0455 1.0196 0.9954
GneDfdFceHfcTptPvh | 0.9766  0.9906 0.9845 1.0074 0.9897 09297 1.1746 1.0450 1.0152 1.0089
GneDfdFceHfcTptOvh | 0.9588  0.9439  0.9461 0.9333 0.9455 1.0326 1.1102 1.0707 1.0268 0.9913
GneDfdFceHfcHerAsv | 1.0063  0.9681  0.9700  0.9930  0.9842  0.9942  0.9783  0.9862 0.9517  0.9801
GneDfdFceHfcHerCsv | 0.9911  1.0182  0.9957  0.9804 0.9962  0.9488  0.9600 0.9544 1.0401  0.9902
GneDfdFceHfcHItHsv | 0.9338  0.9553 1.0182 1.0157 0.9801 0.9449 1.0121 0.9779 1.0487 0.9890
GneDfdFceHfcHItMed | 0.9755 0.9461 0.9414 0.9314  0.9485 0.9614 09351 09481 0.8705 0.9368
GneDfdFceHfcFheFnt | 0.9757 0.9771 1.0228 1.0246 0.9998 0.9338 1.0334 0.9823 1.0250 0.9983
GneDfdFceHfcFheTls | 1.0127 1.0237 1.0182 1.0204 1.0187 1.0064 1.0279 1.0171 1.0150 1.0177
GneDfdFceHfcFheApp | 1.0068 1.0628 1.0933 1.1253 1.0712 1.0588 1.0889 1.0737 1.0811 1.0733
GneDfdFceHfcHweRnt | 1.0503 1.0086 0.9753  0.9865 1.0048 0.9564 0.9466 0.9514 0.8405 0.9643
GneDfdFceHfcHweWse | 0.9987  0.9743  0.9843  0.9373  0.9734  0.9896 0.9709  0.9802  0.9846  0.9769
GneDfdFceHfcHweEgf | 0.9804 09604 1.0542 0.9820 0.9936 1.0035 0.9676 0.9854 1.0012 0.9923

GneDfdFceHfcFud | 1.0237 1.0499 1.0661 1.0736 1.0532 1.0021 1.0415 1.0216 1.0127 1.0382
GneDfdFceHfcCnf | 0.9780 1.0182 1.0440 1.0920 1.0322 0.9737 0.9937 0.9836 0.9415 1.0048
GneDfdFceHfcRuc | 1.0043 1.0111 1.0043 0.9813 1.0002 0.9412 0.9951 0.9678  0.9970  0.9904
GneDfdFceHfcEde | 0.9643 0.9848 1.0157 1.0314 0.9987 1.0421 1.0207 1.0313 0.9721 1.0040
GneDfdFceHfcCom | 1.0636 1.0687 1.0604 1.0527 1.0613 1.0210 1.0151 1.0181 1.0205 1.0429
GneCiiPnfMin | 0.9405 0.9335 1.0162 1.0442 09824 09737 0.9801 0.9769  0.9975  0.9830
GneCiiPnfMan | 1.0461 0.9593 1.0542 0.9686 1.0061 0.9138 0.9523 0.9329 1.0331 0.9884
GneCiiPnfWht | 0.9199  0.9863 0.9533 1.0492 0.9760 0.9142  0.9906 0.9517  0.9232  0.9613
GneCiiPnfRet | 0.9933  0.9603  0.9555 1.0145 0.9806 0.9111 0.9663 0.9383  0.9230  0.9600
GneCiiPnfOnf | 1.0092 1.0588 1.0119 0.9797 1.0145 0.9574 0.9446 0.9510 0.9423  0.9855
GneCiiPba | 1.0316 1.0688 1.0553 1.1072 1.0654 1.2286 1.1593 1.1934 1.2484 1.1257
GneCiiPfm | 0.9696 0.9319 0.9780 1.0003 0.9696 0.9931 1.0305 1.0116 1.0405 0.9914
Sde | 0.9130 1.0615 1.0478 1.2256 1.0562 1.0290 1.1197 1.0734 1.0491 1.0601
ExpMinlmp | 0.9393 0.8813  0.9690 0.9741 0.9402 0.9531 1.0465 0.9987 1.1246 0.9813
t-acov
Gdp | 1.0883 1.0356 1.0108 1.0000 1.0331 0.6539 0.8717 0.7549 0.6047  0.8750
Th | 1.0434 1.0927 0.9971 0.9818 1.0279 0.7174 09408 0.8215 0.6636  0.9057
TfiGos | 1.0180 0.9768  0.9760 0.9459 0.9789  0.8958 1.1015 0.9933 0.8807  0.9682
TfiCoe | 1.0635 1.0506 1.0593 1.0365 1.0524 0.7474 0.8618 0.8026 0.5876  0.8962
TfGosCop | 1.0378 1.0000 0.9960 0.9865 1.0049 0.8140 0.9597 0.8839  0.8965  0.9530
THGosCopNfn | 1.0499  0.9555 0.9591  0.9668 0.9821  0.8377 0.9968 0.9138  0.9346  0.9553
Gne | 1.0197 1.0367 1.0113 1.0060 1.0184 0.8447 0.9008 0.8723  0.663  0.9164
GneDfd | 0.9844 1.0002 1.0031 0.9851 0.9932 0.8656 0.9421 0,9030 0.6745 0.9146
GneCii | 1.0382 1.0609 1.0032 0.9999 1.0253 0.6886 0.7098  0.6991  0.8996  0.9020
GneDfdFce | 0.9956 1.0268 0.9982 1.0199 1.0100 0.8978 0.9456 0.9214 0,7540  0.9436
GneDfdGfc | 0.9875 1.0066 0.9967 0.9653 0.9889 0.8881 1.0002 0.9425 0.7258  0.9333
GneCiiPnf | 1.0114  0.9620 0.9996 1.0157 0.9970 0.8957 0.8850 0.8904 0.8775  0.9478
GneDfdFceGvt | 0.9499 1.0178 1.0282 1.0061 1.0000 1.0279 0.9855 1.0065 0.8365  0.9766
GneDfdFceHfc | 1.0526 1.0358 1.0393 1.0359 1.0409 0.7627 0.8180 0.7899  0.6042  0.8900
GneDfdGfcPub | 1.0078 1.0358 0.9913 1.0219 1.0140 0.8665 0.9454 0.9051 0.9464  0.9720
GneDIdGfcPvt | 0.9705 1.0131 0.9607 0.9764 0.9800 0.8832 1.0155 0.9471 0.7524  0.9345
GneDfdFceGvtNat | 0.9844 0.9764 0.9518 1.0231 0.9836  0.9411 0.9616 09513  0.8894  0.9603
GneDfdGfcPubGvt | 0.9673 1.0382 0.9615 0.9867 0.9880 0.9529  0.9684  0.9606  0,9090  0.9685
GneDfdGfcPubPep | 0.9947 09799  0.9927 0.9701  0.9843  0.9801 1.0172 0.9985 0.8473  0.9674
GneDfdGfcPvtTdw | 0.9560 1.0231 1.0117 0.9665 0.9889 0.7188 1.0576 0.8719 0.8164 0.9282
GneDIdGfcPvtPbi | 0.9422 1.0148 0.9666 0.9791  0.9753  0.9489 1.0268 0.9871  0.6028  0.9137
GneDfdFceHfcAbt | 1.0022 1.0410 0.9693 0.9819  0.9982 0.8696 0.9559 0.9117 0.8160 0.9451
GneDfdFceHfcMis | 0.9414  0.9439  0.9639  0.9566 0.9514 0.8591 0.9058 0.8821 0.8453  0.9155
GneDfdFceHfcTpt | 1.1538 1.1127 1.0889 1.1141 1.1171 0.6375 0.7133  0.6743  0.6718  0.8993
GneDfdFceHfcHer | 0.9815  0.9432  0.9465 0.9054 0.9438 0.9349 1.0194 09762 0.7304  0.9187
GneDfdFceHfcHlIt | 1.0026 1.0050 0.9752  0.9853  0.9919  0.9578 0.9716 0.9647 0.8579  0.9639
CneDfdFceHfcFhe | 1.0178 1.0204 1.0583 1.0189 1.0287 0.8930 0.8827 0.8879 0.8427  0.9586
GneDfdFceHfcHwe | 0.9810 1.0123 0.9876 1.0188 0.9998 0.7566 0.8855 0.8185 0.7001  0.8974
GneDfdGfcPubGvtNat | 0.9666  0.9618  0.9437 0.9776 0.9623 1.0353 1.0110 1.0231 0.9088  0.9713
GneDfdGfcPvtPbilpr | 0.9296 1.0251 0.9736  0.9776  0.9759  0.8682 0.9559 0.9110 0.6231  0.8975
GneDfdGfcPvtPbiNde | 1.0089 1.0598 0.9970 1.0336 1.0245 0.9206 0.9468 0.9336  0.7006  0.9450
GneDIdGIcPvtPhiNdm | 0.9422 1.0257 0.9510 0.9643 0.9703 0.9583 0.9934  0.9757 0.7851  0.9428
TfGosCopNfaPub | 1.0425 1.0218 1.0020 1.0324 1.0246 0.9427 0.9596 0.9511 0.7867  0.9659
TRGosCopNfnPvt | 0.9537 0.9788  0.9734 1.0187 0.9809 0.8281 0.9489 0.8864 0.8806  0.9383
TfGosCopFin | 0.9834 0.9890 0.9149 0.9177 0.9506 0.8531 1.0975 0.9676  0.8208  0.9356
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TfiGosGvt | 0.4874 0.7062 1.3241 1.0692 0.8355  0.244  0.7633 0.4316 0.2685 0.5883
TfiGosDwl | 1.0092 0.9711 0.9639 1.0151 0.9896 0.8787 0.9649 0.9208 0.5876 0.8998
TiGmi | 1.0412 0.9778 0.9906 0.9929 1.0004 0.8936 0.9638 0.9280 0.8520 0.9569
TfiCoeWns | 1.0779 1.0581 1.0743 1.0515 1.0654 0.7286 0.8438 0.7841 0.5622 0.8908
TfiCoeEsc | 1.0415 1.0569 1.0257 1.0039 1.0318 0.7958 0.9304 0.8604 0.6295 0.9129
Tsi | 0.9932 1.0096 1.0240 1.0014 1.0070 0.8515 0.8890  0.8700  0.7989 0.9344
Sdi | 1.0270 1.0139 1.0706 1.0304 1.0353 0.9412 0.9247 0.9329 0.9245 0.9888
GneDfdFceGvtNatNdf | 0.9154  0.9423  0.9137 0.9653 0.9339  0.9567 0.9529 0.9548 0.8692 0.9303
GneDfdFceGvtNatDef | 1.0389 1.0349 0.9904 1.0028 1.0165 0.9605 1.0379 0.9985 0.8095 0.9790
GneDfdFceGvtSnl | 0.9438  0.9842 0.9713 1.0017 0.9750 0.9753 0.9924 0.9838 0.7715 0.9454
GneDfdGfcPubGvtNatNdf | 1.0410 1.0068 1.0061 0.9231 0.9933 0.9584 1.0275 0.9923 0.8943 0.9782
GneDfdGfcPubGvtNatDef | 1.0314 1.1158 1.0319 0.8729 1.0090 0.8821 0.8533 0.8675 0.9159 0.9531
GneDfdGfcPubGvtSnl | 1.0251 1.0126 0.9790 1.0698 1.0211 0.8180 0.8321 0.8250 0.9399 0.9494
GneDfdGfcPubPcpCmw | 0.9298 1.0102 1.0371 1.0514 1.0060 1.0150 0.9429 0.9783 0.7066 0.9489
GneDfdGfcPubPcpSnl | 1.0081 0.9931 1.0087 1.0092 1.0048 0.9227 0.9380 0.9303  0.9490 0.9749
GneDfdGfcPvtTdwNnu | 0.9046  0.9569 1.0030 0.9827 0.9611 0,7050 1.0043 0.8414 0.8294 0.9060
GneDfdGfcPvtTdwAna | 0.9843 1.0109 0.9807 0.9853 0.9902 0.8509 0.9812 0.9137 0.8709 0.9502
GneDfdGfcPvtPbilprRnd | 0.7073  0.8253 1.3471 1.0909 0.9624 0.3181 0.8063 0.5064 0.2933 0.6760
GneDfdGfcPvtPbilprMnp | 0.9554  0.9983  0.9907  0.9760 0.9800 0.8973  0.9476  0.9221  0.7118 0.9201
GneDfdGfcPvtPbilprCom | 0.6357 0.8213 1.2096 1.0202 0.8959 0.2781 0.7280 0.4500 0.3416 0.6412
GneDfdGfcPvtPbilprArt | 0,6910 0.7836 1.1864 1.0053 0.8964 0.3232 0.6995 0.4755 0.2986 0.6392
GneDfdGfcPvtPbiNdcNbd | 0.9855 1.0170 1.0018 0.9717 0.9938 0.7785  0.9343  0.8528  0.7079 0.9063
GneDfdGfcPvtPbiNdcNec | 1.0971 1.0102 0.9825 0.9679 1.0132 0.9550 1.0206 0.9872 0.5662 0.9255
GneDfdGfcPvtPbiNdcSha | 1.0457 1.0051 1.0696 1.0124 1.0329 0.9186 0.9250 0.9218 0.9711 0.9911
GneDfdGfcPvtPbiNdmNew | 0.9570 1.0298 0.9707 0.9780 0.9835 0.9024 0.9926  0.9464 0.7959 0.9438
GneDfdGfcPvtPbiNdmSha | 1.0437 1.0508 1.0504 1.0498 1.0487 1.0250 0.9650 0.9945 0.8206 0.9974
GneDfdGfcPvtPbiCbr | 0,7960 0.8636  0.9434 0.8725 0.8673 0.5219  0.8547 0.6679  0.5959 0.7629
GneDfdGfcPvtOtc | 0.9627  0.9930  0.9340 0.9533  0.9605 0.7681 1.0004 0.8766 0.7423 0.9019
GneDfdFceHfcAbtAle | 0.9900 0.9917 0.9602 0.9374 0.9696 0.9279  0.9956 0.9612 0.8519 0.9495
GneDfdFceHfcAbtCig | 1.0116 1.0551 0.9750 0.9891 1.0073 0.8646 0.9455 0.9041 1.0213 0.9786
GneDfdFceHfcMisOgd | 0.9259  0.9746  0.9213  0.8942 0.9285 0.8291 0.9768 0.9000 0.8362 0.9066
GneDfdFceHfcMisOsv | 1.1103 1.0549 1.0473 1.0562 1.0669 0.8318 0.9096 0.8698 0.5861 0.9239
GneDfdFceHfcMislIfs | 0.9822  0.9420 0.8998 0.8695 0.9224  0.9315 1.0134 0.9715 1.0126 0.9487
GneDfdFceHfcTptTsv | 1.0897 1.0691 0.9921 1.0329 1.0453 0.8335 1.0183 0.9213 0.6491 0.9419
GneDfdFceHfcTptPvh | 1.0468 1.0376 0.9908 0.9870 1.0152 0.8203 0.9516 0.8835 0.7898 0.9413
GneDfdFceHfcTptOvh | 1.1163 1.0570 1.0129 1.0272 1.0526 0.7905 0.9479  0.8656  0.7336  0.9453
GneDfdFceHfcHerAsv | 1.0103  0.9544  0.9743  0.9939 0.9830 0.8901 0.9559 0.9224 0.8515 0.9457
GneDfdFceHfcHerCsv | 0.9536 0.9484  0.9459  0.9722  0.9550 0.9270 0.9916 0.9588  0.7984 0.9319
GneDfdFceHfcHItHsv | 1.0322  0.9900 1.0044 0.9896 1.0039 0.9176 0.9640 0.9405 0.8349 0.9598
GneDfdFceHfcHItMed | 0.9976  0.9995  0,9050 0.9541 0.9633 0.8910 1.0479 0.9663 0.9778 0.9662
GneDfdFceHfcFheFnt | 1.0047 0.9998 1.0421 0.9720 1.0044 0.8929 0.8848 (0.8888 0.8768 0.9513
GneDfdFceHfcFheTls | 1.0325 1.0128 1.0344 1.0139 1.0234 0.8335 0.8957 0.8640 0.6574 0.9153
GneDfdFceHfcFheApp | 1.0388 1.0319 1.0035 0.9839 1.0143 0.8606 0.9669 0.9122  0.8545 0.9602
GneDfdFceHfcHweRnt | 1.0063 1.0079 1.0253 0.9862 1.0063 0.7058 0.7796  0.7418 0.3518 0.7937
GneDfdFceHfcHweWsc | 0.9440  0.9331  0.9483  0.9748  0.9499 1.0327 1.0600 1.0463 0.7958 0.9521
GneDfdFceHfcHweEgf | 0.9848 1.0469 1.0008 1.0597 1.0226 0.9043 0.9636 0.9335 0.8532 0.9709
GneDfdFceHfcFud | 1.0381 0.9726  0.9393  0.9314 0.9694 0.7185 0.9565 0.8290 0.8166 0.9046
GneDfdFceHfcCnf | 1.0143 0.9976 1.0031 0.9675 0.9955 0.9618 0.9568 0.9593  0.8478  0.9627
GneDfdFceHfcRne | 1.0338 0.9974  0.9740  0.9457  0.9872  0.9008 0.9849  0.9419 0.8525 0.9538
GneDfdFceHfcEdc | 0.9950 0.9793  0.9625 1.0021 0.9846 0.9282 0.9884 0.9578 0.8492 0.9564
GneDfdFceHfcCom | 1.0190 1.0567 0.9611 1.0370 1.0178 0.8069 0.8178 0.8123 0.7488 0.9134
GneCiiPnfMin | 0.9753  0.9284 0.9598 0.9723 0.9588 0.9673 1.0214 0.9940 1.0562 0(.9822
GneCiiPnfMan | 0.9145 0.9535 0.9946  0.9483  0.9523 0.9395 0.8974 0.9182 0.9435 0.9412
GneCiiPnfWht | 0.8916 0.9969 0.8985 1.0234 0.9508 0.8863 0.9461 0.9157 1.0117 0.9490
GneCiiPnfRet | 0.9443 1.0114 0.9275 1.0118 0.9730 0.9429 0.9110 0.9269 1.0157 0.9655
GneCiiPnfOnf | 1.0015 0.9978 0.9971 0.9990 0.9989 0.9319 0.8796 0.9054 1.0464 0.9777
GneCiiPba | 0.9725 0.8292  0.9508 0.8891 0.9086 0.8489 0.9688 0.9068 1.2867 0.9544
GneCiiPfm | 0.8621 0.8663 1.1989 1.0147 0.9763 0.8981 0.8647 0.8812 1.2032 0.9769
Sde | 1.0104 1.0006 1.0103 0.9988 1.0050 0.8517 0.8966 0.8739 1.1513 0.9846
ExpMinlmp | 1.0340 0.9492 0.8963 0.8931 0.9415 0.8295 0.9644 0.8944  0.9541 0.9295

kah-wlsv-shr

Gdp | 1.1249 0.9876  0.9068 0.8719  0.9681 0.651 0.7698  0.7079  0.5485 0.8163
T | 0.9598 0.9523 0.8696 0.7984 0.8925 0.6353 0.7870  0.7071  0.5680 0.7829
TfiGos | 0.9867 0.9139 0.8988 0.8717 0.9168 0.8572 1.0133 0.9320 0.8134 0.9055
TfiCoe | 1.0893 1.0739 1.0886 1.0330 1.0709 0.7663 0.8726 0.8177 0.5932 0.9112
TfiGosCop | 0.9628 1.0040 1.0012 0.9961 0.9909 0.8093 0.9700 0.8860 0.9061 0.9475
TfiGosCopNfn | 1.0155 0.9532  0.9197 0.9371  0.9557 0.8268 0.9574 0.8897 0.8986 0.9282
Gne | 0.9966 0.9959  0.9265 0.9017 0.9542 0.8284 0.8113 0.8198 0.6156 0.8583
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GneDfd | 0.9112 1.0152 1.0136 1.0039 0.9850 0.8184 0.9562 0.8846  0.6747  0.9049

GneCii | 1.0204 1.0339 1.0163 0.9467 1.0037 0.6644 0.6795 0.6719 0.8369  0,8720

GneDfdFce | 0.9370  0.9094 0.9000 0.8956  0.9104 0.8077 0.8395 0.8234 0.6708  0.8469

GneDfdGfc | 0.9875 0.9790 0.9768 0.9663 0.9774 0.8480 0.9829 0.9130 0.7052  0.9149

GneCiiPnf | 0.8501 0.8479 0.8625 0.9379 0.8738 0.7933 0.7834 0.7883 0.7799  0.8348
GneDfdFceGvt | 0.8485 0.8657 0.8652 0.9246  0.8755 0.8663  0.8580 0.8621  0.7005  0.8443
GneDfdFceHfc | 1.0250 1.0672 1.0255 0.9787 1.0236 0.7785 0.7895 0.7840 0.5944  0.8776
GneDfdGfcPub | 0.8643 0.9285  0.9176  0.9409 0.9124 0.7842 0.8682 0.8251  0.8702  0.8806
GneDfdGfcPvt | 0.8290  0.8952 0.8468 0.8916 0.8652 0.7773 09181 0.8448 0.6741  0.8292
GneDfdFceGvtNat | 0.9086 0.9008 0.8933  0.9318 0.9085 0.8641 0.8978 0.8808 0.8124  0.8862
GneDfdGfcPubGvt | 0.8599  0.9343  0.7932  0.8807 0.8655 0.8383 0.7961 0.8169 0.7544  0.8348
GneDfdGfcPubPcp | 0.9938 09916 0.9119  0.9064 0.9500 0.9720  0.9471  0.9595 0.8065  0.9307
GneDfdGfcPvtTdw | 0.9532  0.9844  0.9401 0.9095 0.9464 0.7186 0.9949 0.8455 0.7863  0.8925
GneDfdGfcPvtPbi | 0.8625 0.9208 0.9430 0.9744 0.9242 0.8503 1.0061 0.9249 0.5682  0.8624
GneDfdFceHfcAbt | 1.0867 1.0971 1.0349 1.0142 1.0576 0.9317 1.0186 0.9742 0.8757 1.0056
GneDfdFceHfcMis | 0.9363  0.9543 1.0433 1.0801 1.0017 0.8615 1.0061 0.9310 0,9030  0.9666
GneDfdFceHfcTpt | 1.1389 1.0709 1.0706 1.0513 1.0824 0.6258 0.6862 0.6553 0.6535  0.8726
GneDfdFceHfcHer | 0.9404  0.9255 0.9726  0.9357 0.9434 0.9331 1.0633 0.9961 0.7631  0.9296
GneDfdFceHfcHIt | 0.9541  0.9869  0.9544  0.9794  0.9686 0.9389 0.9729 0.9557 0.8498  0.9470
GneDfdFceHfcFhe | 0.9750 1.0099 0.9925 0.9514  0.9819 0.8601  0.8253 0.8425 0.7890  0.9110
GneDfdFceHfcHwe | 0.8295 0.8210 0.7756  0.8306 0.8138 0.6030 0.6997  0.6495 0.5411  0.7198
GneDfdGfcPubGvtNat | 0.9022  0.8630 0.9046  0.9082 0.8943 1.0159 0.9920 1.0039 0.8869  0.9232
GneDfdGfcPvtPbilpr | 0.7580  0.8055 0.7982 0.7986 0.7898  0.6854 0.7744 0.7286  0.489  0.7207
GneDfdGfcPvtPbiNdc | 0.8078  0.7993  0.8344  0.8719  0.8279  0.7079  0.7977 0.7514  0.5697  0.7634
GneDfdGfcPvtPbiNdm | 0.8987  0.9073  0.9094 0.9198 0.9088  0.8796  0.9345 0.9066 0.7301  0.8802
TfiGosCopNfnPub | 1.0060 1.0175 1.0274 1.0445 1.0238 0.9281 0.9828 0.9550 0.7917 0.9674
TfiGosCopNfnPvt | 0.9785 0.9978  0.9665 1.0179 0.9900 0.8523 0.9552 0.9023  0.8833  0.9485
TfiGosCopFin | 0.9264 0.9412 0.8925 0.8960 0.9138  0.8303 1.0900 0.9513  0.8157  0.9095

TfiGosGvt | 1.1884 1.0359 1.0207 0.9938 1.0571 0.4645 0.6590 0.5533  0.2945  0.7320

TfiGosDwl | 0.9823 09730 0.9475 0.9691 0.9679 0,8750 0.9310 0.9026  0.5720  0.8801

TfiGmi | 1.0383 1.0587 1.0928 1.0429 1.0580 0.9620 1.0476 1.0039 0.9309 1.0234

TfiCoeWns | 1.1326 1.0899 1.0939 1.0650 1.0951 0.7574 0.8575 0.8059 0.5714  0.9142

TfiCoeEsc | 1.0755 1.0422 1.0333 1.0126 1.0407 0.7990 0.9389 0.8661 0.6334  0.9199

Tsi | 0.9740 1.0260 0.9856 0.9849 0.9924 0.8616 0.8601 0.8608 0.7764  0.9201

Sdi | 0.9899 0.9956 1.0215 1.0257 1.0081 0.9388 0.9262 0.9324  0.9297  0.9745
GneDfdFceGvtNatNdf | 0.8627  0.8833  0.8436  0.9268 0.8786  0.8964 0.9087  0.9025 0.8096  0.8751
GneDfdFceGvtNatDef | 1.0128 1.0286 0.9698 0.9756  0.9964 0.9434 1.0131 0.9776 0.7918  0.9590
GneDfdFceGvtSnl | 0.8297  0.8522 0.8584 0.8712 0.8528 0.8441 0.8636  0.8538 0.6632  0.8230
GneDfdGfcPubGvtNatNdf | 0.9984 1.0601 1.0537 0.9853 1.0239 0.9624 1.0885 1.0235 0.9063 1.0061
GneDfdGfcPubGvtNatDef | 0.9778 1.0456 1.0619 0.9103 0.9971 0.8483 0.9099 0.8785 0.9422  0.9539
GneDfdGfcPubGvtSnl | 1.0391 1.0417 1.0757 1.1463 1.0748 0.8358 0.9376 0.8852 1.0145 1.0085
GneDfdGfcPubPcpCmw | 0.9434  0.9811 1.0716 1.0479 1.0097 1.0529 0.9727 1.0120 0.7440 0.9672
GneDfdGfcPubPcpSnl | 0.9395  0.9187  0.9069 0.8937 0.9146 0.8515 0.8228 0.8370 0.8352  0.8802
GneDfdGfcPvtTdwNnu | 0.9612  0.9809  0.9787 0.9822  0.9757  0.7427 0.9949 0.8596  0.8502  0.9227
GneDfdGfcPvtTdwAna | 0.9730 1.0340 1.0172 1.0286 1.0129 0.8620 1.0287 0.9416 0.9087  0.9767
GneDfdGfcPvtPbilprRnd | 1.1194 1.0564 1.0259 1.0202 1.0548 0.5016 0.6962 0.5910  0.3157  0.7524
GneDfdGfcPvtPbilprMnp | 0.9788 1.0103 1.0412 1.0450 1.0185 0.9161 1.0077 0.9608 0.7530  0.9593
GneDfdGfcPvtPbilprCom | 1.0296 0.9829  0.9779  0.9728 0.9905 0.4225 0.6540 0.5257  0.3746  0.7193
GneDfdGfcPvtPbilprArt | 1.0244 0.9931  0.9700 0.9428 0.9821 0.4625 0.6204 0.5356  0.3124  0.7012
GneDfdGfcPvtPbiNdcNbd | 1.0989 1.1592 1.1435 1.0994 1.1249 0.8755 1.0669 0.9665 0.8077 1.0274
GneDfdGfcPvtPbiNdcNec | 0.8632  0.8604 0.8526  0.8464  0.8556  0.7980  0,9080 0.8512  0.492 0.7894
GneDfdGfcPvtPbiNdcSha | 0.9393  0.9627 1.0198 1.0385 0.9893 0.8678 0.9552  0.9105 0.9393  0.9589
GneDfdGfcPvtPbiNdmNew | 0.9355  0.9320 0.9270  0.9451 0.9349 0.8382 0.9506 0.8926  0.7469  0.8935
GneDfdGfcPvtPbiNdmSha | 0.9738 1.0117 1.0283 1.0081 1.0053 0.9461 0.9261 0.9360 0.7667  0.9476
GneDfdGfcPvtPbiCbr | 0.9244  0.9264 0.9298 0.9169 0.9244 0.5896  0.8850 0.7224  0.6411  0.8176
GneDfdGfcPvtOte | 0.9763  0.9854  0.9268 0.9373 0.9561 0.7745 0.9964 0.8785 0.7430  0.9002
GneDfdFceHfcAbtAlc | 0.9680 0.9304 0.9003 0.8904 0.9218 0.8987 0.9342 0.9163 0.8099  0.9034
GneDfdFceHfcAbtCig | 0.8942  0.9510  0.9008  0.9650 0.9272  0.7626  0.8869  0.8224  0.9193  0.8949
GneDfdFceHfcMisOgd | 1.0316 0.9771  0.8980 0.8674 0.9413 0.8628 0.9555  0,9080  0.8347  0.9158
GneDfdFceHfcMisOsv | 1.0683 1.0450 1.0414 1.0274 1.0454 0.8185 0.8957 0.8562 0.5773  0.9072
GneDfdFceHfcMisIfs | 0.8070  0.8497  0.7680  0.8001  0.8057  0.8123 0.9076  0.8586  0.8851  0.8316
GneDfdFceHfcTptTsv | 1.0496 1.0672 1.0126 1.0016 1.0324 0.8324 1.0180 0.9205 0.6518  0.9356
GneDfdFceHfcTptPvh | 0.9780 0.9982 1.0136 1.0309 1.0050 0.7892 0.9984 0.8877 0.8114  0.9408
GneDfdFceHfcTptOvh | 1.0781 1.0171 0.9848 0.9719 1.0122 0.7574 0.9082 0.8294 0.7045  0.9079
GneDfdFceHfcHerAsv | 1.0129  0.9481  0.9556  0.9626  0.9695 0.8891  0.9330 0.9108 0.8331  0.9319
GneDfdFceHfcHerCsv | 0.9482  0.9519  0.9571  0.9318 0.9472 0.9216 0.9765 0.9486  0.7862  0.9227
GneDfdFceHfcHItHsv | 0.9672  0.9640 1.0386 1.0239 0.9979 0.8718 0.9848 0.9266 0.8337  0.9522
GneDfdFceHfcHItMed | 0.9920 0.9395 0.8674 0.8693 0.9156 0.8571 0.9692 0.9114 0.8988  0.9120
GneDfdFceHfcFheFnt | 0.9936  0.9878 1.0581 1.0217 1.0149 0.8918 0.9431 0.9171  0.9247 0.9729
GneDfdFceHfcFheTls | 1.0526 1.0407 1.0544 1.0354 1.0457 0.8555 0.9198 0.8871 0.6782  0.9379
GneDfdFceHfcFheApp | 1.0651 1.1067 1.0606 1.0882 1.0800 0.9213 1.0611 0.9887 0.9346 1.0316
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GneDfdFceHfcHweRnt | 1.1249 1.0070 0.9527  0.9535 1.0072 0.7317 0.7403  0.7360  0.3396  0.7884
GneDfdFceHfcHweWsc | 0.9278  0.8946  0.8863  0.9039  0,9030 0.9905 1.0043 0.9973 0.7529  0.9052
GneDfdFceHfcHweEgf | 0.9421  0.9792 0.9894 0.9650 0.9687 0.8533 0.9184 0.8853 0.8144  0.9210

GneDfdFceHfcFud | 1.0435 1.0365 0.9907 0.9714 1.0101 0.7503 1.0102 0.8706 0.8632  0.9466
GneDfdFceHfcCnf | 0.9746 1.0060 0.9876 0.9926 0.9901 0.9570 0.9684 0.9627 0.8526  0.9614
GneDfdFceHfcRne | 0.9749  0.9896  0.9583  0.9592  0.9704 0.8803 0.9830 0.9302 0.8437  0.9398
GneDfdFceHfcEde | 1.0082 0.9805 0.9827 1.0081 0.9948 0.9367 1.0012 0.9684 0.8615 0.9671
GneDfdFceHfcCom | 1.0925 1.0582 1.0683 1.0551 1.0684 0.8563 0.8699 0.8631 0.7969  0.9640
GneCiiPnfMin | 0.9377  0.8841  0.9428 0.9264 0.9224 0.9394 0.9824  0.9607 1.0198 0.9467
GneCiiPnfMan | 0.9430 0.9251 0.9609 0.9602 0.9472 0.9170 0.8988 0.9079 0.9215 0.9321
GneCiiPnfWht | 0.7980 0.9312 0.8766 0.9580 0.8888 0.8230 0.9124 0.8666  0.9199  0.8867
GneCiiPnfRet | 0.9031  0.9505 0.8642  0.9907 0.9259 0.8784 0.8738 0.8761 0.9632  0.9166
GneCiiPnfOnf | 1.0213 0.9987 0.9996 0.9824 1.0004 0.9445 0.8540 0.8981 1.0200 0.9728
GneCiiPba | 0.9935 0.9250 0.9422  0.9341 0.9483 0.9923 1.0497 1.0206 1.7805 1.0596
GneCiiPfm | 0.8704 0.8621 1.0791 1.0098 0.9509 0.8902 0.8407 0.8651 1.1774 0.9543
Sde | 0.9570 1.0176 0.9798 1.0568 1.0021 0.8473 0.9905 0.9161 1.3012 1.0138
ExpMinlmp | 1.0178 0.8726  0.9322  0.9092 0.9315 0.7708 0.9876  0.8725 0.9505 0.9169
ite-acov-shr
Gdp | 1.0503 0.9808 0.9027 0.8853 0.9526  0.6281 0.7730  0.6968  0.5427  0.8039
Tfi | 0.8995 0.9428 0.8663 0.8134 0.8792 0.6141 0.7909 0.6969 0.5642  0.7722
TfiGos | 0.9673 0.8943 0.8985 0.8810 0.9097 0.8338 1.0147 0.9199 0.8083  0.8973
TfiCoe | 1.0060 1.0417 1.0778 1.0668 1.0477 0.7326 0.8859 0.8056  0.5931  0.8961
TfiGosCop | 0.9469 0.9853 1.0014 1.0065 0.9847 0.7892 0.9713 0.8755 0.9006  0.9401
TfiGosCopNfn | 1.0063 0.9287 0.9271 0.9560 0.9540 0.8066 0.9684 0.8838 0.8988  0.9255
Gne | 0.9723  0.9925 0.9155 0.9094 0.9467 0.8244 0.8158 0.8201 0.6156  0.8545
GneDfd | 0.8843 1.0014 1.0049 1.0161 0.9751 0.8119 0.9662 0.8857 0.6758  0.9003
GneCii | 1.0317 1.0239 0.9908 0.9285 0.9929 0.6776 0.6676 0.6726  0.8407 0.8674
GneDfdFce | 0.9263 0.8804 0.8963 0.8913 0.8984 0.7861 0.8331 0.8093 0.6593  0.8343
GneDfdGfe | 0.9524 0.9827 0.9651 0.9859 0.9714 0.8453 0.9973 0.9182 0.7097  0.9140
GneCiiPnf | 0.8666 0.8509 0.8404 0.9291 0.8711 0.8035 0.7587 0.7808 0.7786  0.8308
GneDfdFceGvt | 0.8454  0.8445 0.8649 0.9338 0.8714 0.8451 0.8558 0.8504  0.6878  0.8366
GneDfdFceHfc | 1.0162 1.0394 1.0147 0.9684 1.0093 0.7623 0.7784 0.7703  0.5828  0.8638
GneDfdGfcPub | 0.8709 0.9452  0.9147 0.8984 0.9069 0.7924 0.8516 0.8215 0.8647  0.8756
GneDfdGfcPvt | 0.8405 0.9016 0.8503 0.9082 0.8746  0.7809 0.9325 0.8533  0.6798  0.8378
GneDfdFceGvtNat | 0.9130 0.8756  0.8912  0.9447 0.9058 0.8549  0.8896 0,8720 0.8011  0.8804
GneDfdGfcPubGvt | 0.8371 0.9725 0.7800 0.8719 0.8626 0.8439 0.7915 0.8173 0.7567  0.8337
GneDfdGfcPubPcp | 1.0211 0.9864 0.9330 0.8628 0.9489 0.9778 0.9312 0.9542 0.8001  0.9275
GneDfdGfcPvtTdw | 0.8821  0.9746  0.9697 0.9299 0.9383 0.6893 1.0221 0.8393 0.7878  0.8865
GneDfdGfcPvtPbi | 0.8743  0.9179 0.9281  0.9910 0.9269 0.8449 1.0104 0.9239 0.5654  0.8629
GneDfdFceHfcAbt | 1.0924 1.1226 1.0503 1.0058 1.0669 0.9450 1.0234 0.9834 0.8878 1.0153
GneDfdFceHfcMis | 0.9939  0.9567 1.0443 1.0663 1.0144 0.8831 0.9964 0.9380 0.9047  0.9759
GneDfdFceHfcTpt | 1.1068 1.0590 1.0422 1.0518 1.0647 0.6126 0.6776  0.6443  0.6419  0.8580
GneDfdFceHfcHer | 0.9414  0.9096  0.9626  0.9247 0.9344  0.9234 1.0441 0.9819 0.7512 0.9186
GneDfdFceHfcHIt | 0.9491  0.9810 0.9434 0.9751 0.9620 0.9233  0.9625 0.9427 0.8377  0.9377
GneDfdFceHfcFhe | 0.9650 0.9910 1.0171 0.9350 0.9765 0.8504 0.8164 0.8332 0.7804  0.9038
GneDfdFceHfcHwe | 0.8474  0.8519 0.7860 0.8663 0.8373 0.6165 0.7217 0.6670  0.5547  0.7398
GneDfdGfcPubGvtNat | 0.8976  0.8804 0.8753 0.8914 0.8861 1.0092 0.9717 0.9903 0.8826  0.9142
GneDfdGfcPvtPbilpr | 0.6879  0.7129  0.8399 0.7943 0.7563  0.6014 0.7899  0.6892 0.4661 0.6873
GneDfdGfcPvtPbiNdc | 0.8620 0.8151  0.8412 0,8780 0.8487  0.7123  0.7993 0.7546  0.5685  0.7750
GneDfdGfcPvtPbiNdm | 0.8808 0.9430  0.8947 0.9102 0.9069 0.8773 0.9175 0.8972  0.7217  0.8751
TfiGosCopNfnPub | 1.0362 1.0450 1.0366 1.0539 1.0429 0.9479 0.9834 0.9654 0.7965 0.9816
TfiGosCopNfnPvt | 0.9629 0.9729 0.9712 1.0374 0.9857 0.8290 0.9636  0.8937 0.8806  0.9432
TfiGosCopFin | 0.9972  0.9786 0.8963 0.8999  0.9419 0.8536 1.0729 0.9570 0.8119  0.9263
TfiGosGvt | 0.5358 0.7129 1.3109 1.0656 0.8547 0.2511 0.7581 0.4363 0.2687  0.5978
TfiGosDwl | 1.0001 0.9626 0.9489 0.9914 0.9755 0.8734 0.9451 0.9086 0.5766  0.8867
TfiGmi | 1.1342 1.0692 1.1044 1.0804 1.0967 0.9891 1.0765 1.0319 0.9637 1.0581
TfiCoeWns | 1.0448 1.0563 1.0847 1.1042 1.0722 0.7223 0.8731 0.7941 0.5722  0.8996
TfiCoeEsc | 0.9991 1.0325 1.0185 1.0098 1.0149 0.7818 0.9317 0.8535 0.6263  0.9015
Tsi | 09819 1.0379 0.9905 0.9725 0.9954 0.8496 0.8509 0.8503 0.7685  0.9171
Sdi | 0.9996 1.0017 1.0261 1.0335 1.0151 0.9619 0.9287 0.9452 0.9430 0.9842
GneDfdFceGvtNatNdf | 0.8543  0.8603  0.8333  0.9455 0.8723 0.8836  0.9082 0.8958 0.8011  0.8683
GneDfdFceGvtNatDef | 1.0334 1.0215 0.9856 0.9549 0.9984 0.9510 1.0063 0.9783 0.7901  0.9600
GneDfdFceGvtSnl | 0.8522  0.8550 0.8711  0.8852  0.8658  0.8400 0.8751 0.8574 0.6613  0.8308
GneDfdGfcPubGvtNatNdf | 1.0439 1.0364 1.0495 0.8870 1.0018 0.9719 1.0724 1.0209 0.9191 0.9949
GneDfdGfcPubGvtNatDef | 0.9707 1.1055 1.0034 0.8721 0.9844 0.8412 0.8641 0.8525 0.9461  0.9394
GneDfdGfcPubGvtSnl | 1.0106 1.0769 1.0823 1.1501 1.0788 0.8436 0.9434 0.8921 1.0235 1.0141
GneDfdGfcPubPcpCmw | 0.9304 1.0180 1.0428 1.0574 1.0109 1.0800 0.9793 1.0284 0.7536  0.9741
GneDfdGfcPubPcpSnl | 0.9669  0,9090 0.9206 0.8554 0.9121 0.8540 0.8050 0.8291 0.8238  0.8748
GneDfdGfcPvtTdwNnu | 0.8792  0.9471 1.0114 0.9946 0.9567 0.6944 1.0151 0.8396 0.8379  0.9043
GneDfdGfcPvtTdwAna | 0.9532 1.0602 1.0387 1.0497 1.0245 0.8679 1.0535 0.9562 0.9289  0.9906
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GneDfdGfcPvtPbilprRnd | 0.7186  0.8211 1.3404 1.0933 0.9643 0.3203 0.8051  0.5078  0.2956  0.6781
GneDfdGfcPvtPbilprMnp | 0.9702 1.0647 1.0146 1.0348 1.0205 0.9229 0.9941 0.9579 0.7514  0.9593
GneDfdGfcPvtPbilprCom | 0.6086 0.8125 1.2119 1.0191 0.8840 0.2733 0.7282 0.4461 0.3397  0.6343
GneDfdGfcPvtPbilprArt | 0.7032  0.7705 1.1453 0.9671 0.8802 0.3217 0.6735  0.4655 0.2882  0.6255
GneDfdGfcPvtPbiNdcNbd | 1.0485 1.1286 1.1367 1.0777 1.0973 0.8485 1.0544 0.9459 0.7934 1.0041
GneDfdGfcPvtPbiNdcNec | 0.8956  0.8537  0.8668  0.8709  0.8716 0.8109 0.9229 0.8651  0.5003  0.8034
GneDfdGfcPvtPbiNdcSha | 0.9375 1.0458 1.0399 1.1169 1.0330 0.8758 0.9709  0.9221  0.9583  0.9894
GneDfdGfcPvtPbiNdmNew | 0.9321  0.9600 0.9147 0.9322 0.9346 0.8370 0.9358 0.8850 0.7396  0.8899
GneDfdGfcPvtPbiNdmSha | 0.9776 1.0359 1.0257 1.0135 1.0129 0.9609 0.9321 0.9464 0.7747  0.9561
GneDfdGfcPvtPbiCbr | 0.8155 0.8778 0.9476  0.8536  0.8723 0.5334 0.8462 0.6718 0.5956  0.7666
GneDfdGfcPvtOtc | 0.9320 0.9956  0.9249 0.9536 0.9511 0.7648 1.0003 0.8746 0.7426  0.8964
GneDfdFceHfcAbtAlc | 0.9518  0.9601  0.9464 0.8789  0.9337 0.9049 0.9437 0.9241 0.8143  0.9129
GneDfdFceHfcAbtCig | 0.8882 0.9739  0.9065 0.9487 0.9287 0.7700 0.8872 0.8265 0.9257  0.8979
GneDfdFceHfcMisOgd | 0.9093  0.9425  0.9006 0.8500  0.9000 0.8110 0.9443 0.8751  0.8133  0.8800
GneDfdFceHfcMisOsv | 1.0824 1.0292 1.0411 1.0394 1.0478 0.8032 0.8981 0.8493  0.5731  0.9053
GneDfdFceHfcMislfs | 0.8486 0.8667 0.7748 0.8003 0.8218 0.8325 0.9093 0.8701  0.8959  0.8457
GneDfdFceHfcTptTsv | 1.0575 1.0736 0.9851 1.0265 1.0351 0.8275 1.0137 0.9159 0.6489  0.9350
GneDfdFceHfcTptPvh | 0.9901  0.9969 1.0096 1.0300 1.0065 0.7928 0.9964 0.8888 0.8123  0.9421
GneDfdFceHfcTptOvh | 1.0795 1.0135 0.9723  0.9752 1.0092 0.7587 0.9018 0.8271  0.6974  0.9044
GneDfdFceHfcHerAsv | 1.0257  0.9290  0.9375  0.9754  0.9661 0.8751 0.9301  0.9022  0.8266  0.9265
GneDfdFceHfcHerCsv | 0.9417  0.9649  0.9547  0.9353  0.9491 0.9282 0.9710 0.9493 0.7866  0.9240
GneDfdFceHfcHItHsv | 0.9682  0.9699 1.0277 1.0237 0.9970 0.8758 0.9804 0.9266 0.8336  0.9517
GneDfdFceHfcHItMed | 1.0044  0.9508  0.8533  0.8809  0.9205 0.8571 0.9684 0.9111  0.8982  0.9146
GneDfdFceHfcFheFnt | 0.9744  0.9737 1.0983 0.9984 1.0099 0.8827 0.9315 0.9068 0.9149  0.9656
GneDfdFceHfcFheTls | 1.0373 1.0295 1.0517 1.0252 1.0358 0.8445 0.9115 0.8773 0.6713  0.9285
GneDfdFceHfcFheApp | 1.0463 1.0927 1.0855 1.0780 1.0755 0.9031 1.0627 0.9797 0.9301 1.0257
GneDfdFceHfcHweRnt | 1.0610 1.0044 0.9952 0.9794 1.0095 0.7141 0.7662 0.7397 0.3469  0.7930
GneDfdFceHfcHweWsc | 0.9339  0.8884 0.9194 0.9284  0.9173 0.9945 1.0071 1.0008 0.7566  0.9149
GneDfdFceHfcHweEgf | 0.9702  0.9870 1.0138 1.0018 0.9930 0.8588 0.9345 0.8959  0.8190  0.9381
GneDfdFceHfcFud | 1.0486 1.0071 0.9851 0.9794 1.0047 0.7412 1.0080 0.8644 0.8570  0.9408
GneDfdFceHfcCnf | 0.9923  0.9877 1.0112 1.0161 1.0017 0.9621 0.9931 0.9775 0.8706  0.9750
GneDfdFceHfcRne | 1.0117  0.9875 0.9854  0.9227 0.9762 0.8915 0.9786 0.9341 0.8486  0.9449
GneDfdFceHfcEde | 0.9959  0.9750 0.9771 1.0301 0.9943 0.9274 1.0082 0.9669 0.8607  0.9663
GneDfdFceHfcCom | 1.0688 1.0976 0.9987 1.0621 1.0562 0.8396 0.8427 0.8411 0.7769  0.9472
GneCiiPnfMin | 0.9251  0.8961 0.9455 0.9604 0.9315 0.9480 0.9762 0.9620 1.0225 0.9527
GneCiiPnfMan | 0.9535 0.9425 0.9915 0.9782 0.9662 0.9407 0.8913 0.9157 0.9369  0.9473
GneCiiPnfWht | 0.8238  0.9497  0.8799  0.9912 0.9089 0.8272 0.9184 0.8716 0.9119  0.8985
GneCiiPnfRet | 0.9062 0.9592  0.8869 0.9990 0.9368 0.8749 0.8831 0,8790 0.9750  0.9252
GneCiiPnfOnf | 1.0128 1.0146 1.0061 0.9822 1.0038 0.9406 0.8489 0.8936 1.0147 0.9725

GneCiiPba | 1.0176 0.8940 0.9289 0.9737 0.9524 0.9782 1.0607 1.0186 1.7323 1.0575

GneCiiPfm | 0.8413 0.8623 1.2053 1.0031 0.9677 0.8758 0.8690 0.8724 1.2023 0.9691

Sde | 0.9470 1.0034 0.9645 1.0752 0.9963 0.8439 0.9878 0.9130 1.3072 1.0102

ExpMinlmp | 0.9817  0.8665 0.9291  0.9253  0.9247 0.7558 0.9985 0.8687 0.9526  0.9122

oct-acov

Gdp | 1.0696 0.9689 0.8975 0.8926  0.9545 0.6245 0.7745 0.6954 0.5402  0.8039

Tfi | 0.8819 09335 0.8635 0.8131 0.8719 0.6078 0.7907 0.6932 0.5603  0.7666

TfiGos | 0.9524 0.9233 09181 0.8826 0.9187 0.8534 1.0301 0.9376 0.8262 0.9102

TfiCoe | 1.0585 1.0662 1.0576 1.0251 1.0517 0.7560 0.8567 0.8048  0.5853  0.8960

TfiGosCop | 0.9307 1.0153 1.0213 1.0053 0.9925 0.8061 0.9838 0.8905 0.9185 0.9516
TfiGosCopNfn | 0.9853 0.9589 0.9416 0.9482 0.9584 0.8238 0.9746 0.8960 0.9125 0.9336

Gne | 1.0071 1.0002 0.9278 0.9031 0.9585 0.8193 0.8075 0.8133  0.6064  0.8567

GneDfd | 0.9274 1.0114 1.0088 0.9956 0.9852 0.8142 0.9428 0.8761 0.6608  0.8999

GneCii | 1.0074 1.0401 1.0087 0.9540 1.0021 0.6813 0.7051 0.6931 0.9084  0.8894

GneDfdFce | 0.9691  0.9489 0.9310 0.9373 0.9464 0.8277 0.8673 0.8473 0.6888  0.8763
GneDfdGfc | 0.9498 09511 0.9539 0.9246 0.9448 0.8149 0.9476 0.8787 0.6726  0.8816
GneCiiPnf | 0.8789 0.8723 0.8662 0.9412 0.8892 0.8262 0.8142 0.8202 0.8360  0.8613
GneDfdFceGvt | 0.8871  0.9403  0.9355 0.9800 0.9352 0.9317 0.9127 0.9221  0.7534  0.9031
GneDfdFceHfc | 1.0387 1.0608 1.0167 0.9972 1.0281 0.7718 0.7929 0.7822 0.5914  0.8786
GneDfdGfcPub | 0.8458  0.9331  0.9421  0.9405 0.9144 0.7839 0.8882 0.8344 0.8822  0.8863
GneDfdGfcPvt | 0.8664 0.8983  0.8528 0.8617 0.8696 0.7893 0.9025 0.8440 0.6605  0.8290
GneDfdFceGvtNat | 0.9452  0.9430 0.9274 0.9687 0.9459 0,9020 0.9309 0.9163 0.8500  0.9232
GneDfdGfcPubGvt | 0.8439  0.9215 0.7755 0.8614 0.8490 0.8218 0.7851 0.8032  0.7440  0.8200
GneDfdGfcPubPcp | 1.0110 0.9826 0.9732 0.9349 0.9751 0.9913 0.9981  0.9947 0.8475  0.9612
GneDfdGfcPvtTdw | 0.8914 0.9563 0.9584  0.9156  0.9300 0.6751 1.0044 0.8234 0.7694  0.8742
GneDfdGfcPvtPbi | 0.9201  0.9276 0.9615 0.9768 0.9462 0.8738 1.0176 0.9430 0.5707 0.8794
GneDfdFceHfcAbt | 1.1008 1.1005 0.9931 0.9876 1.0440 0.9352 0.9862 0.9603 0.8573  0.9911
GneDfdFceHfcMis | 1.0120 0.9569 1.0391 1.0467 1.0131 0.8855 0.9787 0.9309 0.9012  0.9725
GneDfdFceHfcTpt | 1.0922 1.0662 1.0367 1.0803 1.0686 0.6114 0.6853 0.6473 0.6464 0.8619
GneDfdFceHfcHer | 0.9297  0.9056  0.9665 0.9845 0.9461 0.9144 1.0865 0.9967 0.7674  0.9320
GneDfdFceHfcHIt | 0.9525 1.0220 0.9576  0.9626 0.9733 0.9658 0.9789  0.9723  0.8685 0.9573




Appendix 89
GueDfdFceHfcFhe | 09782 0.9749  0.9617 0.9142 09569 0.8415 07836 0.8121 07530  0.8823
GneDfdFceHfcHwe | 07829 0.8061 08020 0.8759 0.8160 0.5803 0.7330 0.6522 05549 0.7244

GneDfdGfcPubGvtNat | 0.8693  0.8991  0.8749  0.8987  0.8854 0.9940 0.9754 0.9846 0.8661  0.9098
GneDfdGfcPvtPbilpr | 0.7368  0.7365  0.8195 0.8122  0.7752  0.620  0.7903 0.7051  0.4687  0.7022
GneDfdGfcPvtPhiNde | 09218  0.8003  0.8633 0.8812  0.8655 0.7415 0.8047 07725 05741  0.7901
GueDfdGEcPvtPbiNdm | 0.9173 09770 09587  0.9495 0.9504 0.9245 0.9733 0.9486 0.7686  0.9215
ThiGosCopNfPub | 1.0016 1.0412 1.0607 1.0340 1.0341 09171 09816 0.9488 0.7800  0.9692
TfiGosCopNfPvt | 09434 1.0018 09856 1.0337 0.9906 0.8472 09728 09078 0.8974  0.9527
ThGosCopFin | 0.9809 09822  0.9031 0.9084 0.9429 0.8502 1.0841 0.9600 0.8139  0.9280
ThGosGvt | 04877 07056 1.3238 1.0690 0.8354 0.244  0.7631 04315 02685  0.5881

ThiGosDwl | 0.9918  0.9713  0.9552 1.0063 0.9809 0.8762 09549 0.9147 0.5828  0.8926

TfiGmi | 1.1443 1.0645 1.1509 1.161 1.1295 0.9743 1.1162 1.0428 0.9672 1.0798

ThiCoeWns | 1.0989 1.0804 1.0627 1.0580 1.0749 0.7456 0.8424 07926 0.5638  0.8985

TfiCoeEsc | 1.0464 1.0622 1.0256 1.0076 1.0353 0.8006 0.9317 0.8637 0.6312  0.9159

Tsi | 09800 1.0072 09806 0.9789 0.9866 0.8440 0.8613 0.8526 0.7756  0.9143

Sdi | 1.0238 09810 1.0248 1.0520 1.0201 0.9248 09225 09237 09316 0.9788
GneDfdFceGvtNatNdf | 0.8833  0.9167 0.8587 09349  0.8979  0.9222 09186 0.9204 0.8259  0.8935
GneDfdFceGvtNatDef | 1.0215 1.0254 0.9876  0.9842 1.0045 09515 1.0331 09914  0.8047  0.9695
GueDfdFceGvtSnl | 0.8582 0.9340 09254 09301 09114 09075 09289 09182 07139  0.8820
GneDfdGfcPubGvtNatNdf | 1.0342 1.0294 1.0788 0.9181 1.0134 0.9583 1.0909 1.0225 0.9261 1.0030
GneDfdGfcPubGvtNatDef | 0.9315 1.1008 0.9848 0.8561 09643 0.8219 0.8659 0.8436  0.9115  0.9207
GueDfdGfcPubGvtSnl | 1.0277 1.0412 1.0708 1.1085 1.0616 0.8322 09173 0.8737 1.0070  0.9966
GneDfdGfcPubPepCmw | 0.9570  0.9945 1.0921 1.0609 1.0248 1.0341 0.9760 1.0046 0.7358  0.9719
GneDfdGfcPubPepSnl | 09580  0.9262  0.9891  0.9125 0.9460 0.8789 0,8760 0.8774 0.8836  0.9169
GueDIAGfcPvtTdwNnu | 0.8836 09404 1.0184 09877 09562 0.6803 1.0139 0.8305 0.8283  0.8998
GneDfdGfcPvtTdwAna | 0.9815 1.0145 1.0126 1.0608 1.0169 0.8532 1.0383 0.9412 0.9122 0.9794
GneDfdGfcPvtPhilprRnd | 1.1117 09269 1.3607 1.0916 1.1123 0.3338 08038 05180 02955  0.7399
GneDfdGfcPvtPbilprMnp | 1.0928 1.1272 1.0563 1.0712 1.0866 0.9976 1.0270 1.0122 0.7844 1.0164
GneDfdGfcPvtPhilprCom | 0.9976  0.8462 1.2141 1.0134 1.0095 02907 07248 04590 0.3428  0.6907
GneDfdGfcPvtPhilprArt | 07091 07849 1.1884 0.9932 09003 0.3258 0.6951 04759 02981  0.6408
GneDfdGfcPvtPbiNdcNbd | 1.1235 1.1681 1.1751 1.1007 1.1414 0.8597 1.0663 0.9575 0.7994 1.0317
GneDfdGfcPvtPhiNdeNec | 0.8851  0.9479 09126  0.8933  0.9094 0.8731 0.9312 09017 05098  0.8352
GneDfdGfcPvtPhiNdcSha | 0.9358  0.9322 1.0481 1.2128 1.0262 0.8895 0.9950 0.9408  0.9783  0.9942
GueDIdGfcPvtPhiNdmNew | 0.9673  0.9953  0.9699  0.9702  0.9756  0.8751 0.9868 0.9293 0.7816  0.9321
GueDfdGfcPvtPhiNdmSha | 0.9915 1.0864 1.0226 1.0306 1.0322 1.0002 09334 09662 07902  0.9750
GueDIdGfcPvtPbiCbr | 0.7887  0.8593  0.9426  0.8716  0.8638 0.5176  0.8534  0.6646  0.5937  0.7597
GneDfdGfcPvtOte | 0.9479 1.0171 09721 09913 09818 0.7797 1.0441 0.9023 0.7708  0.9258
GueDfdFceHfcAbtAle | 0.9641 09483 09207 09044 09341 0.8954 0.9511 09228 0.8187 0.9135
GueDfdFceHfcAbtCig | 0.9157 09709 0.8606 0.9110 0.9138 0.7877 0.8525 0.8194 09068 0.8848
GneDfdFceHfcMisOgd | 0.9909  0.9969  0.9202 0.8788 09454 0.8684 09701 0.9179  0.8513  0.9235
GneDfdFceHfcMisOsv | 1.1270 1.0481 1.0705 1.0580 1.0755 0.8277 09191 0.8722 05894  0.9296
GueDfdFceHfcMislfs | 0.8477  0.8555  0.7626  0.7800 0.8104 0.8205 0.8852 0.8523 0.8802  0.8319
GueDfdFceHfcTptTsv | 1.0504 1.0566 0.9890 1.0421 1.0342 08171 1.0261 0.9157 0.6493  0.9346
GneDfdFceHfcTptPvh | 1.0020 0.9745 09790 1.0104 09914 0.7842 0.9665 0.8706 0.7938  0.9254
GneDfdFceHfcTptOvh | 1.0781 1.0424 0.9802 1.0050 1.0257 0.7666 0.9178  0.8388  0.7049  0.9179
GueDfdFceHfcHerAsy | 1.0484  0.9574  0.9592  0.9901 09881  0.9043  0.9467 0.9252 0.8515  0.9493
GneDfdFceHlfcHerCsy | 0.9037  0.9265  0.9297  0.9647 09309 0.8810 09771 09278  0.7726  0.9056
GneDfdFceHfcHItHsv | 1.0243 0.9789 1.0253 1.0315 1.0148 0.9034 0.9959 0.9485 0.8553 0.9714
GueDfdFceHfcHltMed | 0.9724 09402 0.8777 0.8787 09164 0.8524 09922 09197 09205 0.9179
GneDfdFceHfcFheFnt | 0.9896  0.9737 1.0431 0.9987 1.0010 0.8857 0.9101 0.8978  0.9007  0.9558
GneDfdFceHfcFheTls | 1.0329 1.0147 1.0473 1.0314 1.0315 08361 0.9116 08730 0.6675  0.9242
GueDfdFceHfcFheApp | 1.0461 1.0383 1.0133 0.9939 1.0227 0.8656 09818 09219 0.8633  0.9691
GueDfdFceHfcHweRnt | 0.9950  0.9935 1.0154 0.9780 09954 0.6946 07724  0.7325  0.3467  0.7843
GueDfdFceHfcHweWsc | 0.8913 09115 09054 0.9420 09126 0.9941 1.0230 1.0085 0.7682 0.9162
GueDfdFceHfcHweEgf | 0.8985 09390 1.0639 1.0187 0.9779 0.8090 09700 0.8858 0.8187  0.9268
GueDfdFceHfcFud | 1.0874  0.9888  0.9358  0.9199 09694  0.729  0.9476 0.8311 0.8163  0.9052
GneDfdFceHfcCnf | 1.0198  0.9951 1.0080 0.9905 1.0033 0.9679 0.9789 0.9734 0.8676  0.9742
GueDfdFceHfcRne | 1.0177 1.0375 1.0039 09791 1.0093 09191 1.0199 0.9682 0.8729  0.9769
GueDfdFceHfcEde | 1.0208  0.9706  0.9665 1.0192 09938 09337 09954 0.9640  0.8580  0.9647
GneDfdFceHfcCom | 1.0404 1.0744 09819 1.0429 1.0343 08142 08252 0.8197 07513  0.9246
GneCiiPnfMin | 0.9453  0.9163  0.9425 0.9457 09374 09560 0.9830 0.9694 1.0411 0.9607
GueCiiPnfMan | 0.9869  0.9883  0.9556  0.9907 0.9803 0.9637 09360 0.9498 0.9819  0.9717
GueCiiPnfWht | 0.8146  0.9418 0.8848 0.9635 0.8993 0.8516 0.8953 0.8732 0.9501  0.8988
GueCiiPnfRet | 0.9023  0.9444 08563 1.0055 09255 0.8659 0.8979 0.8818  0.9643  0.9182
GueCiiPnfOnf | 1.0042 1.0045 1.0013 1.0055 1.0038 0.9382 0.8856 09115 1.0522 0.9831
GneCiiPba | 1.0124 09215 09421 09099 0.9456 1.0004 0.9931 09968 1.7281 1.0463

GueCiiPfm | 0.8615  0.8361 1.1608 0.9709 0.9492 0.8832 0.8369 0.8597 1.1658 0.9502

Sde | 0.9577 09302 0.9364 1.0400 0.9651 0.8141 09336 0.8718 1.2500 0.9728

ExpMinlmp | 0.9491  0.8524 09237 0.9221 09111 0.7363 09913 0.8543  0.9363  0.8980
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Table A.3: AvgReIMAE at any temporal aggregation level and any forecast horizon
for all 95 time series and selected reconciliation procedures.

Quarterly ‘ Semi-annual ‘ Annual All
Series 1 2 3 4 14 1 2 1-2

cs-shr

Gdp | 1.0083 0.9940 1.0029 0.9939 0.9997 0.9670 0.9911 0.9790  0.9444  0.9857

Tfi | 0.9229 1.0063 0.9720 0.9519 0.9628 0.9513 0.9818 0.9664  0.9044  0.9553

TfiGos | 0.9642 0.9437 0.9695 0.9398 0.9542 1.0514 1.0135 1.0323 0.9691  0.9781

TfiCoe | 0.9369 0.9572 09447 0.9439 09456 1.0014 0.9931 0.9972  0.9514  0.9609

TfiGosCop | 0.9392  0.9828 1.0053 0.9777 0.9760 1.0058 0.9988 1.0023 0.9806  0.9841
TfiGosCopNfn | 0.9477  0.9443  0.9540 0.9449 0.9477 0.9816 0.9848 0.9832  0.9747  0.9616

Gne | 09710 1.0084 0.9639 1.0092 0.9879 1.0541 0.9822 1.0175 1.1008 1.0118

GneDfd | 0.9952 0.9952 1.0130 1.0508 1.0133 0.9813 1.0398 1.0101 1.0772 1.0213

GneCii | 0.9950 1.0076 1.0274 0.9538 0.9956  0.8318 0.8827 0.8569  0.9364  0.9455

GneDfdFce | 0.9609 0.9127 09132  0.8959  0.9204 0.9684 09762 0.9723 1.0374 0.9510

GneDfdGfc | 0.9500 0.9628 0.9503 0.9749 0.9595 1.0215 1.0063 1.0139 0.9608  0.9749

GneCiiPnf | 0.9298  0.9256 0.9465 1.0091 0.9522 0.9066 0.8831 0.8948  0.9162  0.9303
GneDfdFceGvt | 0.9240 0.9025 0.9275 0.9491  0.9256  0.9207 0.9220 0.9213  0.9215  0.9238
GneDfdFceHfc | 0.9512 1.0229 0.9821 0.9593 0.9785 0.9645 0.9477  0.9561 0.9282  0.9647
GneDfdGfcPub | 0.9199  0.9369 0.9500 1.0026 0.9519 0.9291 0.9708 0.9497  0.9884  0.9564
GneDfdGfcPvt | 0.9156  0.9419  0.8990 0.9520 0.9269 0.9275 0.9527 0.9400  0.9569  0.9349
GneDfdFceGvtNat | 0.9529  0.9175 0.9336 0.9484 0.9380 0.9550 0.9574  0.9562  0.9711  0.9478
GneDfdGfcPubGvt | 0.9324  0.9679  0.9358  0.9425 0.9446 0.9153 0.9022  0.9087  0.9461  0.9344
GneDfdGfcPubPcp | 0.9256  0.9669  0.9420 0.9284  0.9406 0.9965 0.9807 0.9886  0.9168  0.9506
GneDfdGfcPvtTdw | 0.9850 0.9806 0.9696  0.9598 0.9737 0.9131 1.0060 0.9584  0.9857  0.9710
GneDfdGfcPvtPbi | 0.9456  0.9453  0.9345 0.9853  0.9525 0.9243  0.9848 0.9541  0.9414  0.9513
GneDfdFceHfcAbt | 1.0419 1.0717 1.0265 1.0278 1.0418 0.9796 1.0246 1.0018 0.9494 1.0166
GneDfdFceHfcMis | 1.0266 1.0216 1.0318 1.0408 1.0302 1.0034 1.0271 1.0152 1.0299 1.0258
GneDfdFceHfcTpt | 0.9312  0.9336  0.9345 0.9201  0.9298 0.8731  0.9258 0.8991  0.9612  0.9253
GneDfdFceHfcHer | 0.9848  0.9764 0.9839  0.9814 0.9816  0.9473 1.0057 0.9761  0.9922  0.9815
GneDfdFceHfcHIt | 0.9429  0.9786  0.9740 0.9906  0.9714 0.9917  0.9857 0.9887  0.9843  0.9781
GneDfdFceHfcFhe | 0.9824  0.9937 0.9911  0.9759  0.9858 0.9612 0.9639 0.9626  0.9548  0.9746
GneDfdFceHfcHwe | 0.8579  0.9115 0.9036  0.9510 0.9054 0.8419 0.9286  0.8842 1.0041 0.9127
GneDfdGfcPubGvtNat | 0.9182  0.9676 0.9761 0.9696 0.9576 1.0266 0.9778 1.0019 0.9901  0.9747
GneDfdGfcPvtPbilpr | 0.8379  0.9157 0.8817 0.8874 0.8802 0.9358 0.9391 0.9374  0.9955  0.9121
GneDfdGfcPvtPbiNdc | 0.8882  0.8864 0.9092 0.9105 0.8985 0.8477 0.8878 0.8675  0.8782  0.8866
GneDfdGfcPvtPbiNdm | 0.9946  0.9565 0.9787  0.9824 0.9779 0.9440 0.9780 0.9609  0.9947  0.9754
TfiGosCopNfnPub | 1.0210 1.0367 1.0227 1.0408 1.0302 1.0112 0.9879 0.9995 0.9973 1.0166
TfiGosCopNfnPvt | 0.9961 0.9738  0.9851  0.9951  0.9875 0.9981  0.9902  0.9941 0.9622  0.9857
TfiGosCopFin | 1.0074 1.0106 1.0014 0.9950 1.0036 1.0341 1.0189 1.0265 1.0334 1.0143

TfiGosGvt | 1.0219 1.0063 0.9965 0.9938 1.0045 1.0083 0.9931 1.0007 0.9478  0.9951

TfiGosDwl | 0.9824  0.9928 1.0008 0.9878 0.9909 1.0000 0.9937 0.9968  0.9612  0.9883

TfiGmi | 1.0579 1.0540 1.0929 1.0718 1.0690 1.0422 1.0459 1.0440 1.0485 1.0589

TfiCoeWns | 0.9607 0.9761  0.9613  0.9663 0.9661 0.9885 0.9824 0.9855  0.9578  0.9704

TfiCoeEsc | 0.9668  0.9596  0.9669  0.9749  0.9670 0.9921 1.0032 0.9977  0.9783  0.9773

Tsi | 1.0039 1.0232 0.9997 0.9900 1.0041 1.0101 0.9976 1.0038 0.9793 1.0005

Sdi | 1.0046 1.0254 0.9819 1.0187 1.0075 1.0243 1.0462 1.0352 1.0233 1.0176
GneDfdFceGvtNatNdf | 0.9545  0.9463  0.9565 0.9726  0.9574  0.9527  0.9429  0.9478  0.9275  0.9503
GneDfdFceGvtNatDef | 1.0024 1.0008 0.9834 0.9525 0.9846 0.9740 1.0089 0.9913  0.9891  0.9871
GneDfdFceGvtSnl | 0.9552  0.9451  0.9197  0.9078  0.9318 0.8992 0.8586  0.8787  0.8599  0.9058
GneDfdGfcPubGvtNatNdf | 0.9768 1.0145 0.9905 1.0000 0.9953 1.0011 1.0002 1.0006 0.9624  0.9921
GneDfdGfcPubGvtNatDef | 0.9296 1.0107 1.0013 0.9465 0.9714 0.9664 0.9355 0.9508  0.9953  0.9688
GneDfdGfcPubGvtSnl | 1.0292 1.0194 1.0242 1.0392 1.0280 0.9840 1.0509 1.0169 1.0651 1.0300
GneDfdGfcPubPcpCmw | 0.9841 1.0255 1.0541 1.0493 1.0279 0.9873 0.9856 0.9865 1.0003 1.0119
GneDfdGfcPubPcpSnl | 0.9130  0.9451  0.9185 0.9009 0.9192 0.9268 0.9239 0.9254  0.9294  0.9224
GneDfdGfcPvtTdwNnu | 0.9738 0.9968 1.0008 1.0293 1.0000 0.9221 1.0043 0.9623 1.0286  0.9931
GneDfdGfcPvtTdwAna | 0.9998 1.0145 1.0127 1.0077 1.0087 0.9472 0.9901 0.9684  0.9836  0.9934
GneDfdGfcPvtPbilprRnd | 1.0219 1.0004 1.0002 0.9988 1.0053 1.0169 0.9898 1.0033 0.9683  0.9993
GneDfdGfcPvtPbilprMnp | 1.0032 1.0032 1.0567 1.0391 1.0253 0.9672 0.9955 0.9812  0.9856  1.0068
GneDfdGfcPvtPbilprCom | 0.9767  0.9865  0.9878  0.9937  0.9862 0.9805 0.9841 0.9823  0.9498  0.9798
GneDfdGfcPvtPbilprArt | 0.9983  0.9924 0.9968 0.9902  0.9944 1.0019 0.9680 0.9848  0.9449  0.9845
GneDfdGfcPvtPbiNdcNbd | 1.0211 1.0228 1.0503 1.0467 1.0351 1.0543 1.0788 1.0665 1.0968 1.0526
GneDfdGfcPvtPbiNdcNec | 0.9535  0.9619  0.9639  0.9509 0.9575 1.0102 1.0009 1.0056 0.9061  0.9634
GneDfdGfcPvtPbiNdcSha | 0.9841 1.0156 1.0941 1.1379 1.0562 0.9666 1.0353 1.0004 0.9778 1.0285
GneDfdGfcPvtPbiNdmNew | 1.0326  0.9867  0.9937 1.0109 1.0058 0.9241 0.9813 0.9523 1.0137  0.9913
GneDfdGfcPvtPbiNdmSha | 1.0055 1.0203 1.0461 1.0415 1.0282 0.9736 1.0274 1.0001 1.0069 1.0171
GneDfdGfcPvtPbiCbr | 1.0263 1.0107 0.9982  0.9967 1.0079 0.9678 0.9823 0.9750 1.0262 1.0010
GneDfdGfcPvtOtc | 0.9948 1.0129 1.0078 1.0115 1.0067 0.9702 09725 0.9714  0.9637  0.9903
GneDfdFceHfcAbtAlc | 0.9617  0.9721  0.9850 0.9586  0.9693  0.9883 0.9719  0.9801 1.0000  0.9767
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GneDfdFceHfcAbtCig | 0.9480 09524  0.9609  0.9875 0.9621 09481 0.9702 09591 1.0085 0.9677
GneDfdFceHfcMisOgd | 0.9874  0.9974  0.9657  0.9562 0.9765 0.9873  0.9655 0.9763  0.9839  0.9782
GneDfdFceHfcMisOsv | 1.0072  0.9851  0.9911  0.9944  0.9944  0.9661 1.0123 0.9889 1.0146 0.9957
GneDfdFeeHfcMislfs | 0.9320  0.9580  0.9120  0.9525 0.9384  0.9246  0.9243  0.9245 0.9291  0.9331
GneDfdFceHfcTptTsv | 0.9825  0.9934 09804 09798 09862 1.0017 1.0187 1.0102 0.9813  0.9923
GneDfdFceHfcTptPvh | 0.9944  0.9979 09811 1.0111 0.9961 0.9879 1.0586 1.0226 1.0050 1.0049
GneDfdFceHfcTptOvh | 0.9909  0.9799  0.9655 0.9624 09746 1.0117 1.0374 1.0245 0.9976  0.9919
GneDfdFceHfcHerAsv | 1.0096  0.9904  0.9763  0.9856  0.9904 0.9845 0.9686 0.9765 0.9620 0.9823
GneDfdFceHfcHerCsv | 1.0014  1.0067 1.0024  0.9836  0.9998  0.9953  0.9616  0.9783 1.0115 0.9952
GneDfdFceHfcHItHsv | 0.9614  0.9940 1.0250 0.9941  0.9934 09733 1.0330 1.0027 1.0301 1.0012
GneDfdFceHfcHltMed | 1.0145  0.9713  0.9669  0.9575 0.9773 1.0132 0.9756 0.9942 0.9463  0.9776
GneDfdFceHfcFheFnt | 1.0073  0.9839 1.0197 1.0192 1.0074 0.9667 1.0128 0.9895 1.0064 1.0021
GneDfdFceHfcFheTls | 0.9949 1.0114 1.0065 1.0044 1.0043 1.0053 1.0041 1.0047 1.0107 1.0053
GneDfdFceHfcFheApp | 1.0093 1.0340 1.0510 1.0461 1.0350 0.9899 1.0475 1.0183 1.0447 1.0316
GneDfdFceHfcHweRnt | 1.0319  0.9694  0.9808  0.9815  0.9906  0.9701  0.9692  0.9696 0.9342  0.9764
GneDfdFceHfcHweWsc | 1.0423 1.0116 1.0045 09710 1.0070 0.9701  0.9908 0.9804 0.9772  0.9951
GneDfdFceHfcHweEgf | 0.9883  0.9773  1.0299 0.9899  0.9962 0.9671 09764 0.9717 0.9940  0.9888

GneDfdFceHfcFud | 1.0149 1.0148 1.0275 1.0355 1.0231 0.9783 1.0331 1.0053 1.0087 1.0159
GneDfdFceHfcCnf | 1.0074 1.0151 1.0336 1.0571 1.0281 0.9954 0.9910 0.9932 0.9679 1.0093
GneDfdFceHfcRne | 0.9870  1.0010 1.0048 0.9915 0.9961 0.9725 1.0188 0.9954  0.9955  0.9958
GneDfdFceHfcEde | 0.9796 1.0026 1.0092 1.0021 0.9983 1.0160 1.0083 1.0122 0.9559  0.9961
GneDfdFceHfcCom | 1.0350 1.0364 1.0434 1.0500 1.0412 0.9948 1.0113 1.0030 1.0150 1.0264
GneCiiPnfMin | 0.9887 09692 0.9822 1.0342 0.9933 0.9970 0.9945 0.9957 1.0434 1.0010
GneCiiPnfMan | 0.9925 0.9595 1.0311 0.9793  0.9902 0.9528 0.9760 0.9643 1.0474 0.9907
GneCiiPnfWht | 0.9781  0.9740 09763 1.0088 0.9842 0.9561 0.9730 0.9645 0.9706  0.9766
GneCiiPnfRet | 0.9811  0.9785 09769 1.0164 0.9831 0.9602 1.0001 0.9799  0.9487  0.9800
GneCiiPnfOnf | 1.0081 1.0256 1.0187 1.0077 1.0150 0.9912 0.9630 0.9770 0.9847  0.9997
GneCiiPba | 1.0257 1.0655 1.1043 1.149 1.0852 1.1592 1.1990 1.1790 1.1116 1.1150
GneCiiPfm | 0.9820 0.9804 0.9993 09917 0.9883 09737 1.0172 09952 1.0093 0.9933
Sde | 0.9474 09853 0.9978 1.0756 1.0005 1.0181 1.0161 1.0171 1.1369 1.0237
ExpMinImp | 0.9521  0.9408 0.9716 09735 0.9594 09274 09920 09592 1.0348 0.9698
t-acov
Gdp | 1.0382 1.0009 1.0367 1.0076 1.0207 0.8466 0.9004 0.8731 0.7892  0.9409
Tfi | 1.0004 1.0513 1.0032 1.0016 1.0139 0.8512 0.9630 0.9054 0.8025 0.9494
TfiGos | 1.0039  0.9841 0.9969 0.9825 0.9918 0.9893 1.0307 1.0098 0.9324  0.9882
TfiCoc | 1.0144 1.0080 1.0326 1.0094 1.0161 0.9099 0.9287 0.9193 0.7519  0.9458
TfiGosCop | 1.0018 0.9934 1.0143 1.0019 1.0028 0.9480 0.9936 0.9705 0.9358  0.9837
TfiGosCopNfn | 1.0043 0.9863 0.9835 0.9762 0.9875 0.9537 0.9964 0.9748  0.9615  0.9801
Gne | 0.9942 1.0222 1.0015 1.0135 1.0078 0.9503 0.9443 0.9473 0.8272  0.9626
GneDfd | 0.9907 1.0147 1.0039 1.0232 1.0081 0.9317 0.9524 0.9420 0.8093  0.9582
GneCii | 1.0333  1.0417 1.0087 0.9953 1.0196 0.8719 0.8783 0.8751 0.9200 0.9618
GneDfdFce | 0.9883 1.0127 0.9998 1.0116 1.0031 0.9364 0.9751  0.9555 0.9009  0.9742
GneDfdGfc | 0.9782 1.0042 09948 1.0015 0.9946 0.9808 0.9922 0.9865 0.8394  0.9685
GneCiiPnf | 1.0108  0.9712  0.9986 1.0159 0.9990 0.9612 0.9245 0.9427 0.9184  0.9708
GneDfdFeeGvt | 0.9749 1.0143 1.0325 0.9967 1.0044 1.0025 0.9684 0.9853 09322  0.9883
GneDfdFceHfc | 1.0092 1.0504 1.0210 1.0267 1.0267 0.8537 0.8908 0.8721  0.7826  0.9426
GneDfdGfcPub | 0.9961 1.0151 0.9813 1.0156 1.0019 0.9384 0.9799 0.9589 0.9868 0.9873
GneDfdGfcPvt | 0.9964 1.0079 0.9918 1.0006 0.9992 0.9485 0.9840 0.9661 0.8267  0.9632
GneDfdFceGvtNat | 0.9883  0.9855 0.9732 1.0060 0.9882  0.9699 0.9592  0.9645 0.9518  0.9761
GneDfdGfcPubGvt | 0.9878 1.0074 0.9790 0.9741  0.9870 0.9511 0.9683 0.9597 0.9826  0.9785
GneDfdGfcPubPep | 0.9858  0.9982  0.9998  0.9708  0.98%6  0.9895 1.0229 1.0061 0.9242  0.9840
GneDfdGfcPvtTdw | 1.0027 1.0121 1.0166 0.9985 1.0074 0.8015 1.0280 0.9077 0.8288  0.9510
GneDfdGfcPvtPbi | 0.9561 1.0215 1.0001 1.0009 0.9944 09784 09919 09851 0.7715  0.9564
GneDfdFeeHfcAbt | 0.9755  0.9905  0.9866 1.0140 0.9916 0.9211 0.9613 0.9410 0.8734  0.9593
GneDfdFceHfcMis | 0.9546  0.9814  0.9777 0.9661 0.9699 0.8969 0.9179  0.9073 0.9158  0.9438
GneDfdFeeHfcTpt | 1.0572 1.0130 1.0243 1.0304 1.0311 0.782 09158 0.8462 0.8726  0.9515
GneDfdFceHfcHer | 0.9849  0.9695  0.9869  0.9610  0.9755 0.9574 1.0070 0.9819  0.8298  0.9550
GneDfdFceHfcHlt | 0.9827  0.9940 09964 1.0029 0.9940 0.9916 0.9775 0.9845 09348  0.9826
GneDfdFceHfcFhe | 1.0097 1.0144 1.0192 1.0172 1.0151 0.9437 0.9477  0.9457  0.8940  0.9769
GneDfdFceHfcHwe | 1.0139  0.9989  0.9938 1.0233 1.0074 0.8367 0.9331 0.8836  0.7924  0.9377
GneDfdGfcPubGvtNat | 1.0145 0.9914 1.0109 0.9945 1.0028 1.0016 0.9614 0.9813  0.9573  0.9900
GneDfdGfcPvtPhilpr | 0.9693 1.0173 0.9940 1.0127 0.9981 08671 0.9429 09042 0.7450  0.9306
GneDfdGfcPvtPbiNdc | 0.9962 1.0247 1.0182 1.0146 1.0134 09886 1.0019 0.9952 0.8385 0.9812
GneDfdGfcPvtPbiNdm | 0.9826 1.0041 0.9879  0.9748  0.9873 0.9771  0.9927 0.9849 0.8626  0.9678
TfiGosCopNfnPub | 1.0036 1.0235 0.9896 1.0015 1.0045 0.9673 0.9893 0.9782  0.9099  0.9829
TfiGosCopNfnPvt | 0.9866 0.9950  0.9932 1.0050 0.9949 0.9443 09729 09585 0.9129 0.9724
TfiGosCopFin | 1.0123 1.0029 0.9695 0.9843 0.9921 0.9068 1.0523 0.9768 0.8755  0.9702
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TfiGosGvt | 0.7047  0.8383 1.1628 1.0574 0.9232 0.5274 0,8760 0.6797 0.4881  0.7723

TfiGosDwl | 1.0242 1.0012 0.9841 1.0124 1.0053 0.9317 0.9834 0.9572 0.7493  0.9506

TfiGmi | 1.0362 0.9838 1.0045 0.9933 1.0043 0.9156 0.9609 0.9380 0.9220  0.9729

TfiCoeWns | 1.0187 1.0129 1.0455 1.0207 1.0244 0.8766 0.9120 0.8941 0.7372  0.9401

TfiCoeEsc | 1.0035 1.0112 1.0170 0.9927 1.0061 0.9310 0.9693 0.9499 0.8353  0.9637

Tsi | 1.0031 1.0070 1.0135 1.0114 1.0088 0.8993 0.9551 0.9268 0.9153  0.9710

Sdi | 1.0271 1.0203 1.0434 1.0213 1.0280 0.9388 0.9533 0.9460 0.9908  0.9986
GneDfdFceGvtNatNdf | 0.9647  0.9748  0.9561 0.9899  0.9713 0.9388 0.9748 0.9566 0.9018  0.9569
GneDfdFceGvtNatDef | 1.0271 1.0171 0.9849 0.9974 1.0065 0.9637 1.0210 0.9920 0.9382  0.9923
GneDfdFceGvtSnl | 0.9808  0.9791  0.9866 0.9947 0.9853  0.9740 0.9829 0.9784 0.9292  0.9751
GneDfdGfcPubGvtNatNdf | 1.0304 0.9883 0.9962 0.9670 0.9952 0.9926 1.0112 1.0019 0.9568 0.9915
GneDfdGfcPubGvtNatDef | 1.0122 1.0398 1.0017 0.9340 0.9961 0.9310 0.9303 0.9306 0.9630 0.9723
GneDfdGfcPubGvtSnl | 1.0166 0.9931  0.9550 1.0062 0.9924 0.9243  0.9557 0.9399 1.0085 0.9794
GneDfdGfcPubPcpCmw | 0.9544  0.9941 1.0154 1.0223 0.9962 0.9931 0.9882 0.9906 0.8508 0.9724
GneDfdGfcPubPcpSnl | 1.0033 1.0144 1.0143 1.0173 1.0123 0.9636 0.9834 0.9735 0.9465 0.9915
GneDfdGfcPvtTdwNnu | 0.9721  0.9803 1.0127 1.0040 0.9921 0.7663 0.9619 0.8586  0.8232  0.9269
GneDfdGfcPvtTdwAna | 1.0036 1.0301 0.9930 0.9896 1.0039 0.9228 0.9871  0.9544 0.8989  0.9740
GneDfdGfcPvtPbilprRnd | 0.8484  0.9225 1.1955 1.0725 1.0009 0.5919 0.9104 0.7341  0.5026  0.8302
GneDfdGfcPvtPbilprMnp | 1.0388 1.0300 1.0166 1.0206 1.0265 0.8876 0.9629 0.9245 0.8095  0.9630
GneDfdGfcPvtPbilprCom | 0.7995  0.9047 1.1277 1.0394 0.9596 0.5533  0.8411 0.6822 0.6019  0.8143
GneDfdGfcPvtPbilprArt | 0.8095 0.9152 1.1030 1.0285 0.9575 0.6165 0.8121 0.7076  0.5184  0.8045
GneDfdGfcPvtPbiNdcNbd | 1.0084 0.9982  0.9867 0.9860 0.9948  0.9400 0.9601 0.9500 0.7782  0.9480
GneDfdGfcPvtPbiNdcNec | 1.0340 1.0026 0.9971 0.9721 1.0012 1.0299 1.0007 1.0152 0.7591 0.9662
GneDfdGfcPvtPbiNdcSha | 1.0328 1.0242 1.0466 1.0311 1.0336 0.9803 0.9440 0.9620 0.9757 1.0043
GneDfdGfcPvtPbiNdmNew | 0.9996 1.0211 0.9975 0.9911 1.0023 0.9502 0.9689  0.9595 0.8825  0.9720
GneDfdGfcPvtPbiNdmSha | 1.0381 1.0142 1.0322 1.0395 1.0310 1.0066 0.9734 0.9898 0.9106 1.0011
GneDfdGfcPvtPbiCbr | 0,8780  0.9541  0.9540 0.9216  0.9264 0.7348 0.8803 0.8043  0.7498  0.8632
GneDfdGfcPvtOtc | 0.9980  0.9829 0.9671  0.9836  0.9829  0.8562 0.9890  0.9202 0.8118  0.9385
GneDfdFceHfcAbtAlc | 1.0061  0.9863 1.0004 0.9807 0.9933 0.9759 0.9765 0.9762 0.9260  0.9785
GneDfdFceHfcAbtCig | 0.9920 0.9961  0.9854  0.9752  0.9872  0.9274 0.9682 0.9476 1.0337 0.9821
GneDfdFceHfcMisOgd | 0.9603  0.9986  0.9393  0.9344  0.9578  0,9040 0.9826  0.9425 0.8324  0.9345
GneDfdFceHfcMisOsv | 1.0564 1.0256 1.0228 1.0215 1.0315 0.9238 0.9810 0.9520 0.7637  0.9658
GneDfdFceHfcMisIfs | 0.9776  0.9573  0.9469  0.9314 0.9531  0.9336  0.9863  0.9596  0.9707  0.9575
GneDfdFceHfcTptTsv | 1.0212 1.0314 0.9889 0.9996 1.0102 0.9409 0.9854 0.9629 0.8678  0.9750
GneDfdFceHfcTptPvh | 1.0079 09876  0.9770  0.9738  0.9865 0.9350 0.9694  0.9521  0.9270  0.9679
GneDfdFceHfcTptOvh | 1.0135 1.0013 1.0013 1.0193 1.0088 0.9097 0.9781 0.9433  0.8552  0.9666
GneDfdFceHfcHerAsv | 1.0034  0.9648  0.9911 1.0003 0.9898 0.9400 1.0026 0.9708 0.9093  0.9725
GneDfdFceHfcHerCsv | 0.9951  0.9685  0.9806  0.9959  0.9850 0.9452  0.9886  0.9667 0.8646  0.9616
GneDfdFceHfcHItHsv | 1.0181 1.0079 1.0130 0.9891 1.0070 0.9390 0.9826  0.9605 0.8682  0.9727
GneDfdFceHfcHItMed | 1.0109  1.0024 0.9669 0.9768  0.9891  0.9705 1.0360 1.0027 0.9789  0.9915
GneDfdFceHfcFheFnt | 1.0057 1.0075 1.0096 0.9817 1.0011 0.9563 0.9546  0.9554  0.9338  0.9780
GneDfdFceHfcFheTls | 1.0414 1.0118 1.0280 1.0107 1.0229 0.8724 0.9214 0.8966 0.8138  0.9534
GneDfdFceHfcFheApp | 1.0113 1.0084 0.9871  0.9892  0.9989  0.9463 1.0259 0.9853 0.9203  0.9834
GneDfdFceHfcHweRnt | 1.0092  0.9905  0.9975 0.9796  0.9942 0.8243  0.8473  0.8357 0.5999  0.8802
GneDfdFceHfcHweWsc | 0.9445  0.9764  0.9747  0.9820  0.9693  0.9624 1.0218 0.9916 0.8046  0.9500
GneDfdFceHfcHweEgf | 1.0090 1.0196 1.0128 1.0258 1.0168 0.9430 0.9563 0.9496 0.8785  0.9765
GneDfdFceHfcFud | 1.0423 0.9942 0.9770 09750 0.9967 0.8211 0.9824 0.8981 0.9321  0.9583
GneDfdFceHfcCnf | 1.0082 1.0202 1.0155 0.9876 1.0078 0.9698 0.9779  0.9738  0.8998  0.9819
GneDfdFceHfcRne | 1.0064 1.0019 0.9954  0.9837 0.9968 0.9355 1.0012 0.9678 0.9305 0.9787
GneDfdFceHfcEdc | 1.0065 0.9820  0.9840 0.9981 0.9926 0.9616 0.9929 0.9771  0.9217  0.9777
GneDfdFceHfcCom | 1.0207 1.0284 0.9880 1.0142 1.0127 09163 0.9211 0.9187 0.8307 0.9574
GneCiiPnfMin | 0.9698  0.9433  0.9757 0.9684 0.9642 0.9979 1.0084 1.0032 1.0669 0.9894
GneCiiPnfMan | 0.9443  0.9879  0.9795 0.9547 0.9664 0.9504 0.9333 0.9418 1.0139 0.9659
GneCiiPnfWht | 0.9650 1.0031 0.9691 1.0098 0.9865 0.9481 0.9750 0.9615 0.9895  0.9797
GneCiiPnfRet | 0.9507 1.0012 0.9697 1.0074 0.9820 0.9816 0.9630 0.9722 0.9974  0.9814
GneCiiPnfOnf | 0.9878  0.9978  0.9920 1.0117 0.9973 0.9595 0.9402 0.9498 1.0465 0.9903

GneCiiPba | 0.9557  0.9145 0.9690 0.9701  0.9521 0.9696 1.0178 0.9934 1.2212 0.9986

GneCiiPfm | 0.9707 0.9443 1.0172 1.0033 0.9835 0.9592 0.9056 0.9320 1.1074 0.9850

Sde | 1.0085 0.9701 1.0198 1.0127 1.0026 0.9212 0.9457 0.9334 1.1245 0.9985

ExpMinImp | 1.0344 0.9759  0.9523  0.9466  0.9767 0.8969 0.9728  0.9341  0.9008  0.9532

kah-wlsv-shr

Gdp | 1.0494 1.0050 1.0262 1.0119 1.0230 0.8543 0.9134 0.8834 0.7892  0.9453

Tfi | 0.9400 1.0209 0.9677 0.9527 0.9699 0.8314 0.9182 0.8737 0.7714  0.9111

TfiGos | 0.9685 0.9659 0.9677 0.9348 0.9591  0.9693 0.9825 0.9758 0.8994 0.9551

TfiCoe | 0.9856 0.9586 0.9890 0.9539 0.9716 0.8569 0.8893 0,8730 0.7155  0.9021
TfiGosCop | 0.9426  0.9977 1.0043 0.9725 0.9790 0.9294 09729 0.9509  0.9317  0.9641
TfiGosCopNfn | 0.9565 0.9481 0.9451 0.9383 0.9470 0.9169 0.9544 0.9355 0.9222  0.9401
Gne | 0.9668 1.0589 0.9604 1.0215 1.0011 0.9473 0.9441 0.9457 0.8196 0.9572
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GueDfd | 1.0008 1.0197 1.0155 1.0708 1.0264 0.8925 0.9881 0.9391 0.8350 0.9716

GueCii | 0.9889 1.0053 1.0034 09549 09879 0.8202 0.8146 08174 08531 0.9164

GneDfdFce | 0.9782  0.9560 0.9549  0.9311  0.9549 0.9102 0.8950 0.9025 0.8345 0.9217

GueDfdGfe | 0.9800 09599 09481  0.9660 0.9634 0.9344  0.9394 09369 0.7774  0.9269

GueCiiPnf | 0.9085 0.9122  0.9439 09983 09400 0.9023 0.8496 0.8755 0.8323  0.9053
GueDfdFceGvt | 0.9257 09368 09518  0.9602 0.9435 0.9134 09095 09114 0.8531  0.9209
GueDfdFceHfc | 0.9753 1.0719 1.0115 09981 1.0135 08714 0.8591 0.8652 0.7629  0.9302
GneDfdGfcPub | 0.9402  0.9617 09587 1.0199 09697 0.8874 09642 09250 0.9476  0.9536
GueDfdGfcPvt | 0.9022  0.9339  0.9009 0.9283 0.9162 0.8610 0.8998 0.8802 0.7509  0.8804
GueDfdFceGvtNat | 0.9358 0.9319  0.9289 09477 09361 09204 09200 09202 0.8858  0.9242
GneDfdGfcPubGvt | 0.9382  0.9684  0.9194 09221 09368 0.8801 0.8917 0.8859  0.9098  0.9181
GueDfdGfcPubPep | 0.9211  0.9780  0.9475  0.9377 09459 09752 09720 0.9741  0.8965  0.9466
GneDfdGfcPvtTdw | 1.0017  0.9872  0.9699  0.9593 0.9794 0.8184 09979 09037 0.8202  0.9332
GueDIAGEcPvtPbi | 0.9186  0.9381 09471 09832  0.9465 0.9021  0.9583 0.9208 0.7137  0.9045
GueDfdFceHfcAbt | 1.0274 1.0414 1.0015 1.0123 1.0206 09584 1.0108 0.9843 0.9285  0.9965
GneDfdFceHfcMis | 0.9630 0.9924 1.0208 1.0302 1.0012 09110 09730 0.9415 09364 09744
GueDfdFceHfcTpt | 0.9938  0.9709  0.9594  0.9615 0.9713  0.7421  0.8417  0.7903  0.7992  0.8906
GueDfdFceHfcHer | 0.9737  0.9626  0.9889 09755 09751 09593 1.0229 0.9906 0.8557 0.9614
GneDfdFceHIfcHlt | 0.9308  0.9732  0.9834 09973 09709 09766 0.9611 0.9688 0.9212  0.9630
GneDfdFceHfcFhe | 0.9843 1.0135 1.0045 0.9888  0.9977 0.9201 09214 09208 0.8574  0.9542
GneDfdFceHfcHwe | 08730 09100 09011 09545 09092 0.7513 08549 0.8014 0716  0.8476
GneDfdGfcPubGvtNat | 09712 0.9514  0.9906  0.9613  0.9685 0.9852  0.9648 0.9750 09454  0.9670
GneDfdGfcPvtPhilpr | 0.8684 09428  0.9109  0,9090 0.9074 0.8134 0.8564 0.8346 0.6892 0.8518
GneDfdGfcPvtPhiNde | 0.8789  0.8873  0.9066  0.9006  0.8933 0.8426 0.8826 0.8624 07220  0.8578
GueDfdGfcPvtPhiNdm | 0.9623 09489 09599  0.9598 0.9577 0.9333  0.9727 09528 0.8412 0.9388
TfiGosCopNfaPub | 1.0080 1.0197 1.0122 1.0079 1.0120 09690 0.9951 0.9820 0.9161  0.9891
TfiGosCopNfPvt | 1.0031  0.9878  0.9824  0.9933  0.9916 09394 09599 09496 0.9012  0.9661
ThGosCopFin | 0.9763 09855 0.9492  0.9693 0.9700 0.8983 1.0575 0.9746 0.8824 0.9583
TfiGosGvt | 1.1027 1.0218 1.0220 1.0062 1.0375 0.7487 0.7972 0.7726 05026  0.8599

TfiGosDwl | 1.0011 1.0093 0.9839  0.9873 0.9954 09406 09657 0.9531 0.7421  0.9427

TfiGmi | 1.0601 1.0599 1.0668 1.0405 1.0568 0.9655 1.0251 0.9948 0.9826 1.0279

ThiCoeWns | 1.0092 09698 1.0060 09714 0.9890 0.8410 0.8754 0.8580 0.7076  0.9053

TfiCoeEsc | 1.0104 0.9888 1.0003 0.9802 0.9949 0.9219 0.9546 09381 0.8236  0.9523

Tsi | 09785 1.0223 09870 0.9766 0.9909 09070 09235 09152 0.8861 0.9533

Sdi | 1.0096 1.0057 1.0179 1.0008 1.0085 0.9660 0.9683 0.9672 1.0726 1.0053
GneDfdFceGvtNatNdf | 0.9127  0.9511 09237 09385 0.9314 09121 09409 0.9264 0.8655  0.9203
GneDfdFceGvtNatDef | 1.0035 1.0215 0.9695 0.9722  0.9914 09612 1.0016 0.9812 0.9201  0.9780
GneDfdFceGvtSnl | 0.9273 09129 0.8933 0.8804 09033 0.8877 0.8564 0.8719 08187 0.8817
GneDfdGfcPubGvtNatNdf | 0.9854 1.0115 1.0069 0.9908  0.9986 09861 1.0127 0.9993  0.9204  0.9872
GneDfdGfcPubGvtNatDef | 0.9739  0.9938 1.0012 09160 09706 09161 0.9369 0.9264  0.9407  0.9535
GueDIdGfcPubGvtSnl | 1.0368  0.9999 09772 1.0341 1.0117 09233 09962 09591 1.0312  0.9991
GneDfdGfcPubPcpCmw | 0.9604  0.9916 1.0421 1.0238 1.0040 1.0193 1.0029 1.0111 0.8735 0.9862
GneDfdGfcPubPepSnl | 09325 0.9593  0.9409  0.9339  0.9416 09122 09104 09113 08712  0.9226
GneDfdGfcPvtTdwNnu | 0.9841 1.0015 1.0017 1.0288 1.0039 0.7855 0.9766 0.8758 0.8465  0.9423
GneDfdGfcPvtTdwAna | 0.9881 1.0156 0.9986  0.9940  0.9990  0.9086  0.9988 0.9526  0.8993  0.9708
GneDfdGfcPvtPhilprRnd | 1.0803 1.0529 1.0506 1.0196 1.0506 0.7729 0.8334 0.8026 05217  0.8802
GneDfdGfcPvtPbilprMnp | 1.0163 1.0314 1.0434 1.0260 1.0292 0.8984 0.9762 0.9365 0.8303  0.9715
GneDfdGfcPvtPbilprCom | 1.0253  0.9986  0.9977 09933 1.0036 0.6914 07781 0.7335 0.6116  0.8549
GneDfdGfcPvtPhilprArt | 1.0202 1.0114 1.0180 09959 1.0113 0.7365 0.7679 0.7521 05401  0.8496
GneDfdGfcPvtPbiNdcNbd | 1.0482 1.0514 1.0588 1.0474 1.0514 0.9712 1.0269 0.9986 0.8274 1.0012
GneDfdGfcPvtPhiNdeNec | 0.9799  0.9740 09759 09379  0.9668 1.0050 0.9722 0.9884 0.7353  0.9356
GneDfdGfcPvtPhiNdcSha | 0.9617 1.0211 1.0397 1.0240 1.0112 09380 09881 0.9627  0.9596  0.9897
GueDIdGfcPvtPhiNdmNew | 0.9898  0.9781  0.9793  0.9852 0.9831 09110 09733 09416 0.8693  0.9542
GueDfdGfcPvtPhiNdmSha | 1.0187 1.0018 1.0411 1.0279 1.0223 0.9760 09852 0.9806 0.9049  0.9927
GneDfdGfcPvtPhiCbr | 0.9335  0.9436  0.9462  0.9559 0.9448 0.7475 0.9136 0.8264 0.7813  0.8850
GueDIdGEcPvtOte | 0.9951  0.9961  0.9559  0.9738  0.9801 0.8715 0.9898 0.9288 0.8192  0.9407
GueDfdFceHfcAbtAle | 0.9897 09489 09599 09528 0.9627 09612 0.9448 09530 0.8989  0.9505
GueDfdFceHfcAbtCig | 0.9420 09556  0.9280  0.9749  0.9504 0.8796  0.9430 09108 09657 0.9410
GneDfdFceHfcMisOgd | 1.0065 0.9846  0.9235 09143 09564 0.9216  0.9469 0.9342  0.8239  0.9300
GneDfdFceHfcMisOsv | 1.0397 1.0150 1.0108 1.0037 1.0172 09137 09676 0.9402 0.7545  0.9530
GueDfdFceHfcMislfs | 0.8833  0.9256  0.8614  0.8869 0.8800 0.8813 09258 0.9033  0.9094  0.8960
GueDfdFceHfcTptTsv | 1.0142 1.0127 09950 09804 1.0005 0.9309 0.9841 0.9571 0.8554  0.9660
GneDfdFceHfcTptPvh | 0.9702  0.9672 0.9864 09944 09795 09345 09894 0.9616  0.9401  0.9686
GueDfdFceHfcTptOvh | 1.0195  0.9951  0.9837  0.9823  0.9950 0.8899  0.9495 0.9192  0.8370  0.9490
GneDfdFceHfcHerAsy | 1.0071  0.9600  0.9707 09722 09774 09335 09781 0.9556  0.8913  0.9584
GneDfdFceHIfcHerCsv | 0.9897  0.9806  0.9848  0.9760  0.9828  0.9309 09694 09500 0.8544  0.9540
GueDfdFceHfcHItHsv | 0.9948  0.9991 1.0321 1.0108 1.0091 0.9446 1.0264 09846 0.8981  0.9855
GueDfdFceHfcHItMed | 1.0318 09705 09514  0.9486  0.9750 0.9626 1.0065 0.9843 09423  0.9729
GneDfdFceHfcFheFnt | 0.9886  0.9958 1.0254 1.0301 1.0098 0.9480 0.9853 0.9665 0.9585  0.9898
GneDfdFceHfcFheTls | 1.0470 1.0106 1.0352 1.0114 1.0259 0.8761 09254  0.9004 0.8160  0.9566
GueDfdFceHfcFheApp | 1.0154 1.0423 1.0211 1.0208 1.0248 09700 1.0660 1.0169 0.9607 1.0132
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