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1 Introduction

That a high level of ozone is dangerous for health is nowadays an acquired fact. Three recent

meta-analyses commissioned by U.S. Environmental Protection Agency, Bell et al. (2005),

Ito et al. (2005) and Levy et al. (2005), consider, respectively, 39, 28 and 43 epidemiological

studies of the effect of ozone on mortality, finding coherent results.

A number of studies, showing analogous results, consider hospital admissions as well

as mortality; Medina-Ramón et al. (2006) is a very recent example of a multicity study,

Biggeri et al. (2001) and Biggeri et al. (2004) are examples based on data from Italy.

Results similar to those found for general non-accidental mortality and morbidity are

found analyzing events due to respiratory (sometime, particular subclasses) causes Ander-

son et al. (2004), whereas it is relatively rare to consider cerebrovascular causes.

Epidemiological studies such as those above cited consider as a measure of population

exposure to ozone (pollutant, in general) a function of the concentrations of ozone mea-

sured, usually hourly, at fixed sites generally located in the city. This function is usually a

daily summary such as 1-hour maximum, day average or 8-hours average. This, as evidenci-

ated by WHO (2003), might pose a problem, since such summary may be not representative

of actual personal exposure of individuals for various reasons, for example because people

do not spend all of their time outdoor or because of a non uniform spatial distribution of
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the pollutant, the latter remark being particularly true for ozone. Moreover, the usual daily

measures may be inadequate summaries of the daily pattern of concentration. Despite these

problems, the choice of a daily measure is usually overlooked in published studies, where

one of the usual summaries is chosen as if they were equivalent, and no attempt is made to

seek a better (in representing exposure) measure.

In order to investigate this aspect, we shall restrict our attention to morbidity and we

shall measure exposure by considering alternative daily measures of ozone derived from

hourly concentrations, which are described in Section 3. In fact, daily variations of the

hourly values of ozone concentration generally show a well-marked daily pattern with the

maximum occurring in the early afternoon. By taking into account this behaviour, we adopt

the exposure paradigm of Chiogna and Bellini (2002), and we compare its performances

with respect to traditional exposure measures by exploiting model selection.

For investigating model selection stability issues, we then apply the idea of bootstrap-

ping the modelling process, as described in Section 4, although we do not attempt to incor-

porate model uncertainty into the estimates of ozone effects.

Finally, Section 5 describes the application on real data and Section 6 summarizes our

findings. All computations have been performed using the freely available statistical soft-

ware R R Development Core Team (2006).

2 Data

It is customary in investigating the relationship between ozone and mortality or morbidity

to limit analysis to the summer period. This is done either because ozone is produced

by a chemical reaction driven by solar radiation and so its concentration reaches dangerous

levels only during summer when solar radiation is higher; and because indoor concentration

is much lower than the outdoor one, so population is more exposed during summer (when

more time is spent outdoors). For this reason, we consider data for summer periods only

(June-July-August).

In order to match population exposure and collected data, which are measured at stations

in the city center, we consider hospital admissions for people resident in the town of Milano

only. Moreover, since it is generally believed that high pollutant levels can adversely affect

health conditions of population groups which are already weakened, like the elderly, the

youngest and those with chronic diseases, we focus the analysis on people aged more than

75 years at the time of the event and we exclude hospital admissions due to all accidental

causes (codes ICD-IX 800-999).

Daily hospital admissions data for the period 1995-2003 were obtained from the Re-

gional Health Informative System, for all hospitals located in Milano (Figure 1). In order

to consider relevant events, only admissions not required by the general practitioner, not

related to a surgical event and not scheduled to last less than one day were selected. We

excluded events for which the reason for admission was not specified.

Meteorological and environmental data for the same period were obtained from the Re-

gional Agency for Environmental Protection (ARPA) of Lombardia, which collects hourly

data on temperature, rain, wind velocity and direction and, from year 2000, humidity. The

same agency collects data about air pollution. The monitoring network consists of eight sta-

tions (see http://www.arpalombardia.it/qaria/ for details). Concentration of
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Figure 1: Summer time series of daily average ozone concentration (continuous line, left

y axis), and daily number of hospital admissions (dots, right y axis).

Ozone (Figure 1) is measured at three sites (called Juvara, Parco Lambro, Verziere after the

toponomymy). Missing data are present due to temporary inactivity of monitoring stations.

In the analysis only days with at least 75% of hourly data were considered.

3 Methods

Let Yk,t be the number of hospital admissions, in day t for age class k, where, upon prelim-

inary analysis, we consider classes 74-89 and 90-ω. We assume

Yk,t ∼ Poisson(λk,t), (1)

with

log(λk,t) = β0,k + confounding(k, t) + ozone(t), (2)

where confounding(k, t) is a term including all variables relevant to confounding control,

and ozone(t) is a function of ozone concentration measuring the effect of the pollutant.

As for confounding, we let confounding(k, t) = f(t) + gk(Tt) + zt + γh(t) + αw(t),
where f(t) is a smooth function of time, Tt is the mean of day temperature in the previous

three days and gk(Tt) is a age class-specific smooth function of it, zt is the daily average of

PM10 concentration in day t, h(t) is a holiday indicator, and w(t) associates to t an integer

value corresponding to the day of the week (monday=1, . . ., saturday=6, sunday is base

value). Such confounding control is quite customary. Temperature is traditionally present in

models for health impact of pollution and has a significant effect on health conditions of the

elderly. Similarly, particulate matter (PM10) is usually included as effect modifier, whereas

other pollutants are generally ignored (Bell et al. (2005), Ito et al. (2005), Levy et al. (2005)).
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It is worth saying that, at first, more complicated formulations were tried. Complications

included both a finer stratification (age classes: 75-80, 80-85, 85-90, 90-ω) and the use of

other explanatory variables such as humidity or temperature difference between the current

day and the mean lagged over the previous three days. Such complications, however, did

not significantly improve goodness of fit, so they were not considered in order to reduce the

computational burden. In particular, we ignored humidity because of lack of data (available

from 2000) and its non significance in the available periods.

Traditionally, effect of ozone in the linear predictor is considered to be proportional

to the daily average concentration or to the maximum of the daily hourly concentrations,

i.e. ozone(t) = βot, where ot is the chosen daily indicator. In this work, aside of these

standard summaries of ozone daily pattern, we consider other alternatives, which try to

measure other features of the daily exposure, potentially more suitable to capture effects

on the health status. By using a daily average or the maximum, in fact, we summarize in

one figure the daily behaviour of ozone, thus potentially ignoring relevant aspects such as

excursions or persistence of high values of the concentration.

In Figure 2(a) we show the daily pattern of hourly concentration by plotting the distri-

butions of hourly concentration for a summer month (August). Given this average pattern,

day to day variability can be observed, as seen in Figure 2(b), where two hypothetical daily

patterns of concentration are shown.

Taking into account such behaviour and following Chiogna and Bellini (2002), the idea

that we pursue here is to approximate exposure to ozone by substituting the one-figure

summary with a set of indicators allowing to grasp some aspects of the shape of the con-

centration curve.

In particular, given a threshold S, we consider three measures, denoted as d, i and m,
where d is the number of hours during which the daytime hourly concentration is above

S, i is the difference between the daytime maximum hourly concentration and S, m is the

nighttime average concentration. Figure 2(c) shows a typical daily pattern and the values

of the three measures for that day. In the figure, daytime is defined to be between 8 am to

9 pm. As it can be seen, i and d measure the extent and the duration of the exceedance of

the threshold S: it is clearly seen that they allow to approximate the area of the portion of

the concentration curve above the threshold. Using the new measures, we are now able to

distinguish between the two patterns shown in Figure 2(b), where the maximum is the same

but the behaviour of the pollutant is clearly different.

The new measures are included as linear contribution in the term ozone(t); furthermore,

we consider also substituting the pair d, i by the product of the twos. For such measures,

we consider also the lagged values over the previous three days, conventionally denoted by

the suffix (lag). In Table 1, all alternative formulations for the term ozone(t) are listed.

As a final remark, it is worth noting that the use of d and i implies a non linear (thresh-

old) effect of ozone on health, as such measures are null for days with concentrations below

the threshold. This makes such indicators particularly interesting. Some authors (see, for

example, Kim et al. (2004)) explicitely question the linearity assumption, to conclude that

a threshold model does in fact perform better (threshold for summer period is at 40ppb).

Nevertheless, the existence of a threshold for short term ozone effect is still an open issue.
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Figure 2: (a): distributions of hourly concentrations for the month of August; (b): com-

parison of possible one day pattern implying the same maximum but different population

exposure; (c): typical one day pattern of O3 concentration (black dots connected by dashed

line) and representation of measures d, i and m corresponding to threshold S; vertical lines

limit the daytime hours.
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model

1 base

2 ave

3 max

4 AV E(lag)

5 MAX(lag)

6 m

7 m(lag)

8 i

9 d

10 di

11 i(lag)

12 d(lag)

13 di(lag)

14 i + m

15 d + m

16 di + m

17 i + m(lag)

18 d + m(lag)

19 di + m(lag)

20 i(lag) + m

21 d(lag) + m

22 di(lag) + m

23 i(lag) + m(lag)

24 d(lag) + m(lag)

25 di(lag) + m(lag)

Table 1: Ozone related model component, in other words, terms to be included in ozone(t).
ave stands for daily average, max for daily maximum.

4 Model Selection

Two typical criteria to select among models of different complexity are the Un-Biased Risk

Estimate (UBRE) and the Generalized Cross Validation (GCV), which are suggested in

Wood (2000) in the context of Generalized Additive Models (GAMs) for choosing the de-

gree of smoothness of non linear components and for variable selection. The first, in partic-

ular, is suggested when the scale parameter of the GAM model is known, as in the Poisson

case. The formula for the UBRE score, given that the scale parameter is 1, is

D

n
+ 2

p

n
, (3)

where D is the deviance, i.e., twice the difference between the log-likelihood for the sat-

urated model and the log-likelihood for the present model, and p is the total degrees of

freedom (including the estimated d.o.f. of the smooth functions). With the same notation,

the GCV criterion is given by
nD

(n − p)2
. (4)

The two criteria are implemented in the package mgcv within the software R.

It should be noted that, conditionally on the choice of one such criterion, the model

selection process itself is a source of uncertainty in final estimates, especially if cardinality
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of the set of alternative models is high. In other words, in a setting like ours, where we

consider one model not involving ozone and tens of models including some ozone function,

we can not rule out the possibility that a model involving ozone is selected over the model

not involving it only by chance.

In order to investigate the uncertainty due to model selection (in our case, uncertainty

in the estimate of the selection criterion), we adopt an approach mutuated from Sauerbrei

(1999), who suggests to replicate the model selection process on bootstrap resamples and to

consider as an indicator of the worthiness of a model its frequency of selection. A similar

approach has also been taken by other authors such as Buckland et al. (1997), Veall (1992)

and Freedman and Navidi (1986). Despite the lack of a formal justification for such a

procedure, it seem to us an effective method to attach a measure of reliability to the outcome

of the model selection process, a need which has been emphasized by many authors in

different contexts (Chatfield (1995), Clyde (2000)).

5 Results

For the selected summer window in years 1995-2003, we considered 2 outcomes, i.e., all

admissions and respiratory admissions. To compute the exposure measures, we considered

as daytime the interval 8am - 9pm and we computed the exposure measures d and i for S
equal to: the mean of hourly ozone concentrations (58.96µg/m3), denoted by M , their third

empirical quartile (85.90µg/m3), denoted by 3Q, and the law alarm threshold (120µg/m3),

denoted by L. Table 2 shows the number of days for which measures d and i are non zero,

i.e., the number of exceedances.

None M 3Q L

Threshold value (µg/m3) 58.96 85.90 120

Admission data 956 942 896 696

Table 2: Number of observations for which measures d and i are greater than zero for each

threshold.

To compute the indicators, hourly data from different stations were first aggregated over

space (only stations showing no more than 25% missing data were considered).

Table 3 shows for threshold M pairwise collinearity among variables entering ozone(t),
which is useful to discharge redundant variables. It is worth noting that variables d and i
are highly correlated (this is an effect of the typical behaviour of ozone during the day), so

inclusion of both may lead to an issue. This is the reason why we never linearly insert both

indicators in the term ozone(t) (see Table 1).

The model space included 61 models: seven model (1-7 in Table 1) involving traditional

measures or m, which does not depend on the threshold S; the remaining 54 models (8-25

in Table 1) are defined for each possible threshold (M, 3Q, L in pictures). Selection of

smoothness for non linear terms in the predictor was made using the UBRE score; model
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d i m max d(lag) i(lag) m(lag) max(lag) di di(lag) ave ave(lag)

d − .59 .41 .35 .23 .30 .04 .47 .69 .45 .49 .52

i .59 − .18 .61 .28 .51 −.06 .79 .97 .66 .68 .62

m .41 .18 − −.02 .36 .43 .37 .40 .28 .45 .24 .62

max .35 .61 −.02 − .11 .31 −.14 .51 .59 .40 .79 .35

d(lag) .23 .28 .36 .11 − .66 .49 .55 .29 .57 .20 .71

i(lag) .30 .51 .43 .31 .66 − .28 .89 .52 .83 .39 .85

m(lag) .04 −.06 .37 −.14 .49 .28 − .11 −.03 .13 −.03 .47

max(lag) .47 .79 .40 .51 .55 .89 .11 − .80 .91 .58 .87

di .69 .97 .28 .59 .29 .52 −.03 .80 − .69 .69 .67

di(lag) .45 .66 .45 .40 .57 .83 .13 .91 .69 − .49 .85

ave .49 .68 .24 .79 .20 .39 −.03 .58 .69 .49 − .48

ave(lag) .52 .62 .62 .35 .71 .85 .47 .87 .67 .85 .48 −

Table 3: Correlation matrix of covariates computed with threshold M.

selection was performed using both UBRE and GCV. As the two criteria led to the same

model for all outcomes, and taking into account that in bootstrap resampling differences in

frequencies were ignorable, in what follows we shall always refer to UBRE.

Estimated coefficients for pollutant concentrations in models selected as best according

to UBRE criterion are reported in Table 4. It is immediate to see that the best models

included the new exposure measures.

For each considered outcome, we then generated 500 bootstrap replications and for each

of them we selected the best model. The frequencies of selection for models in Table 1 is

reported in Figure 3. Overall, for all admissions threshold L was selected 48% times, 3Q
5% times and M 47% times; for respiratory admissions the percentages were, respectively:

55% , 7% , 38% .

Figure 3 shows the selection frequencies of models appearing in bootstrap replications.

The bootstrap selection led to the model selected as best on the original data for either

admissions due to all causes and admissions due to respiratory causes. The model without

ozone was never the best in any bootstrap replication.

In Table 4 we report the coefficients for the models selected on the original data and

on bootstrap resampling and for models involving traditional measures ( daily average and

daily maximum). For respiratory admissions, we notice that, contrary to what happens to

the new indicators, the effects of the traditional measures are not significantly different from

zero when modelling.

To perform some residuals analysis on final models, we considered normal probability

plots of randomized residuals, that is, of quantities

ri = (1 − ui)F (yi − 1; λ̂i) + uiF (y; λ̂i), (5)

where ui are IID uniform r.v. on [0, 1], F is the Poisson distribution function and λ̂i its

estimated parameter. The normal probability plots (see Figure 4) do not evidenciate neither

significant departures from normality, nor differences among models.

In studies on short term health effects of air pollution, it is customary to report final

results on pollution effects in terms of relative risk (RR) corresponding to a fixed increase

in the pollutant concentration. The RR is computed as the ratio of average number of

episodes for the increased pollutant concentration and the average number of episodes for

the base concentration level; for the special case of the Poisson model, the RR is simply
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Figure 3: Frequency of model selection in bootstrap resampling for admissions for all

causes (upper panel) and admissions for respiratory causes (lower panel).
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Figure 5: Change in relative risk due to a variation in ozone concentrations measures. Each

of the thick lines represents the percentage change in RR as a function of the variation in i or

di measure (for all admissions and respiratory admissions respectively) for a fixed variation

in m measure; horizontal lines represent the change in RR according to models based on

average and maximum value.
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Variable Estimate s.e. z-stat p-value

all admissions

PM10 0.0034439 0.0007272 4.736 0.0000

i
(lag)
L 0.0017362 0.0005519 3.146 0.0017

m(lag) 0.0021925 0.0005971 3.672 0.0002

PM10 0.0034439 0.0007272 4.736 0.0000

i
(lag)
L 0.0017362 0.0005519 3.146 0.0017

m(lag) 0.0021925 0.0005971 3.672 0.0002

PM10 0.0026390 0.0007584 3.480 0.0005

ave 0.0013092 0.0005074 2.580 0.0099

PM10 0.0028594 0.0008195 3.489 0.0005

max 0.0002530 0.0002613 0.968 0.3329

respiratory admissions

PM10 0.0026387 0.0018993 1.389 0.1647

diL 0.0002510 0.0000913 2.749 0.0060

m(lag) 0.0028568 0.0015327 1.864 0.0623

PM10 0.0026387 0.0018993 1.389 0.1647

diL 0.0002510 0.0000913 2.749 0.0060

m(lag) 0.0028568 0.0015327 1.864 0.0623

PM10 0.002366 0.0018986 1.246 0.2126

diL 0.000225 0.0000902 2.495 0.0126

PM10 0.0027482 0.0019469 1.412 0.1581

ave 0.0012376 0.0013243 0.935 0.3500

PM10 0.0035933 0.0021082 1.704 0.0883

max −0.0002017 0.0006769 −0.298 0.7657

Table 4: For each outcome, estimated coefficients for the best model on the original sample,

best bootstrap choice, models based on traditional measures.
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the exponential of the increase. Using the above described non-standard measures, we can

not univocally associate an increase of ozone concentration to a relative risk, because the

increase in ozone concentration might differently act on the ozone indicators, increasing

only one of the three measures, or two of them, or all three of them.

RRs can, nevertheless, be obtained from the estimates of the coefficients of the linear

predictor. In Figure 5, we report, for the best models according to bootstrap, the percentage

change in risk due to changes in the indicators of ozone concentration. For a fixed variation

in m, ∆m, with ∆m = ±10,±20,±30µg/m3, each of the thick lines represents the change

in RR, ∆RR, as a function of the variation in i, ∆i, or in di, ∆di. As a term of comparison,

for models based on the traditional ozone indicators, the changes in RR due to an increase

of 10µg/m3 have been added to the plots (see the horizontal dotted lines). Such plots seem

to us particularly interesting. For admissions due to all causes, for example, they show

that the same variation in RR happens if the night average stays the same and i increases

of 10µg/m3, or if the night average drops down of 10µg/m3and i increases of roughly

25µg/m3. In other words, they allow to explore which changes in the daily patterns of

concentration are relevant and how they affect health.

6 Discussion

In this paper, we have attempted to explore a range of concerns that arise in measuring short

term ozone effects on morbidity. In particular, we have tackled measuring of exposure,

as discussed in Section 3, and we have tried to address model selection uncertainty, as

discussed in Section 4.

For measuring exposure, we have used three indicators, which grasp some aspects of the

ozone concentration curve. Advantages of the new measures include the following. First,

they allow to easily incorporate a threshold effect of ozone. This can be particularly impor-

tant. According to Martuzzi et al. (2006), there is at present no evidence of such a threshold;

the use of a threshold model (at 35ppb, approximatively 70µg/m3) is, however, suggested

in order to get round the uncertainty on the shape of the concentration response curve at low

concentration levels (UNECE (2004)). Second, and perhaps most important, they allow to

grasp which variations of concentration are relevant for health. The fact that, for respiratory

admissions, only the new indicators lead to an estimated ozone effect which is significantly

different from zero, may be a confirmation that the proposed exposure paradigm effectively

reflects important aspects of exposure.

For addressing model selection uncertainty, we have relied on bootstrap validation. Be-

side substantially confirming results on the original samples, bootstrap analysis indicates

that there are ozone effects and these are better grasped by the new measures. By selecting

a model from a (relatively) high number of alternatives as is done above, one still runs the

risk of obtaining estimates of pollution effect which are upward biased. One possibility is

to limit alternatives by considering a (relatively) reduced number of models (as Gryparis

et al. (2004), for example, who decide to explore only a limited number of lags). Thus, one

avoids bias but renounces exploring alternative models which are legitimate. Final results

would depend, however, on the definition of the model space.

Finally, it may be interesting to compare results here obtained with findings in Biggeri

et al. (2004), being Milano one of the cities considered by the authors. Estimates of RR
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change due to an increase of 10µg/m3 in O3 concentration in hot period in Milano (see

Figure 7a and 7b in the study) are approximately +2% for admissions due to respiratory

causes, whereas estimates for admissions due to all causes are not available. This value is

comparable with RR reported in Figure 5 for admissions. In doing the comparison it must,

however, be kept in mind that the summer period in Biggeri et al. (2004) included also May

and September, which are instead excluded here.
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