

# Modern likelihood inference for the parameter of skewness: An application to monozygotic twin studies 

Mameli Valentina<br>Department of Mathematics and Computer Science<br>University of Cagliari<br>Italy<br>Brazzale Alessandra R.<br>Department of Statistical Sciences<br>University of Padua<br>Italy


#### Abstract

We consider the use of modern likelihood asymptotics in the construction of confidence intervals for the parameter which determines the skewness of the distribution of the maximum/minimum of an exchangeable bivariate normal random vector. This distribution represents the reference model for assessing the degree of concordance of a continuos mono-zygotic twin trait when interest focuses on the pairwise maximum or minimum. Simulation studies were conducted to investigate the accuracy of the proposed method and to compare it to available alternatives. Accuracy is evaluated in terms of both coverage probability and expected length of the interval. We, furthermore, illustrate the suitability of our method by re-analyzing the data from a study which compares different measurements taken on the brains of mono-zygotic twins.


Keywords: Bivariate normal distribution; Higher order likelihood inference; Modified likelihood ratio; Skew-normal distribution; Twin study.

## Contents

1 Introduction ..... 1
2 Likelihood-based inference ..... 2
2.1 First order theory ..... 2
2.2 Higher order theory ..... 3
2.3 Approximations for Bayesian inference ..... 4
2.3.1 Matching priors ..... 4
3 The skew-normal model ..... 5
4 Inference on the skewness parameter $\gamma=\sqrt{\frac{1-\rho}{1+\rho}}$ ..... 6
4.1 Background results ..... 6
4.1.1 Exact confidence interval ..... 6
4.1.2 Large-sample confidence intervals ..... 8
4.2 Small-sample confidence intervals ..... 9
4.2.1 No nuisance parameter ..... 9
4.2.2 Nuisance parameters ..... 9
5 A real-data example ..... 10
6 Numerical assessment ..... 11
6.1 Considered scenarios ..... 12
6.2 Discussion ..... 12
7 Concluding remarks ..... 15

Department of Statistical Sciences
Via Cesare Battisti, 241
35121 Padova
Italy
tel: +39 0498274168
fax: +39 0498274170
http://www.stat.unipd.it

## Corresponding author:

Brazzale Alessandra R.
tel: +39 0498274168
alessandra.brazzale@unipd.it
http://www.stat.unipd.it/
~brazzale

# Modern likelihood inference for the parameter of skewness: An application to mono-zygotic twin studies 

Mameli Valentina<br>Department of Mathematics and Computer Science University of Cagliari<br>Italy<br>Brazzale Alessandra R.<br>Department of Statistical Sciences<br>University of Padua<br>Italy


#### Abstract

We consider the use of modern likelihood asymptotics in the construction of confidence intervals for the parameter which determines the skewness of the distribution of the maximum/minimum of an exchangeable bivariate normal random vector. This distribution represents the reference model for assessing the degree of concordance of a continuos mono-zygotic twin trait when interest focuses on the pairwise maximum or minimum. Simulation studies were conducted to investigate the accuracy of the proposed method and to compare it to available alternatives. Accuracy is evaluated in terms of both coverage probability and expected length of the interval. We, furthermore, illustrate the suitability of our method by re-analyzing the data from a study which compares different measurements taken on the brains of mono-zygotic twins.


Keywords: Bivariate normal distribution; Higher order likelihood inference; Modified likelihood ratio; Skew-normal distribution; Twin study.

## 1 Introduction

Since Sir Francis Galton's (1876) seminal paper, twin studies have extensively been used for the quantitative ascertainment of genetic and environmental influences. Twin registries worldwide represent nowadays a valuable resource for the investigation of the similarities and dissimilarities between twins. The very large twin studies carried out during the past two decades led to much novel work, especially in genetic research van Dongen et al. (2012). Classical twin designs remain, nonetheless, a valuable tool in fields such as biomedicine, psychiatry and behavioral sciences, where the number of available observations is far smaller than those typical in modern twin studies.

Small sample sizes are rather common to researchers in fields such as biology, genetics, medical sciences and psychology. Inference based on the classical first order normal and $\chi^{2}$ approximations may then be unreliable. The last four decades have seen the development of so-called higher order likelihood approximations, which require little more effort than is needed for their first order counterparts while providing highly accurate inferences in
small samples. We refer the reader to Brazzale et al. (2007) for a rich collection of realistic examples and case studies, which show how to use the new theory. The aim of this paper is to encourage the use of modern likelihood-based solutions for the analysis of continuous data on mono-zygotic twins.

There are several views of how the degree of concordance between twins should be assessed Kraemer (1997); Lyons et al. (1997). Here, we promote the use of Azzalini's (1985) skew-normal distribution, which generalizes the standard normal distribution by allowing for asymmetry. In particular, we will use Loperfido's (2002) results, according to which the maximum, or minimum, of two random variables, whose joint distribution is bivariate exchangeable normal with correlation coefficient $\rho$, is skew-normally distributed with skewness parameter $\gamma$, or $-\gamma$, where $\gamma=\sqrt{(1-\rho) /(1+\rho)}$. This distribution becomes the reference model when we have censoring on the maximum (or minimum) value for each twin pair.

Estimation of the shape parameter of the skew-normal distribution can be, at times, tricky. In particular, it is not easy to compute confidence intervals. Recently, Mameli et al. (2012), borrowing from Loperfido's result and Fisher's $z$ transform for $\rho$, obtained an asymptotic confidence interval for the skewness parameter of the distribution of the maximum/minimum under this framework. Their simulation results revealed that actual and nominal coverage of the asymptotic confidence interval are close, though its expected length increases for decreasing sample size and correlation coefficient close to -1 . In this paper we explore the performance of confidence intervals for $\gamma$ obtained from the small-sample solutions recently proposed in Fraser et al. (1999), and this in terms of both actual coverage and expected length.

The paper organizes as follows. Section 2 reviews modern likelihood-based inference. The skew-normal distribution and Loperfido's results will be introduced in Section 3. Inference on $\gamma$ will be discussed in Section 4. Section 5 re-analyzes the twin data collected by Tramo et al. (1998) using the large- and small-sample solutions of Section 4. Their finitesample properties will be investigated in Section 6 through simulation. Some concluding remarks are given in Section 7.

## 2 Likelihood-based inference

### 2.1 First order theory

Let $y=\left(y_{1}, \ldots, y_{n}\right)$ be a sample of size $n$ with joint log-likelihood function $l(\theta)=l(\theta ; y)$, where $\theta=(\psi, \lambda)$ is a $k$-dimensional parameter, $\psi$ is the scalar parameter of interest, and $\lambda$ a vector of nuisance parameters of dimension $k-1$. Under broad regularity conditions, the maximum likelihood estimate of $\theta$, denoted by $\hat{\theta}$, may be obtained by solving the score equation $l_{\theta}(\hat{\theta} ; y)=0$, with $l_{\theta}(\theta ; y)=\partial l(\theta ; y) / \partial \theta$. Let $j(\theta)=\partial^{2} l(\theta ; y) / \partial \theta \partial \theta^{\top}$ represent the observed information function for $\theta$ and $j(\hat{\theta})$ the observed Fisher information. The decomposition of the parameter $\theta$ into $\psi$ and $\lambda$ leads to an analogous decomposition of the score vector $l_{\theta}(\theta ; y)$ and of the observed information function $j(\theta)$.

The recommended likelihood pivot for making inference on $\psi$ is the signed likelihood root

$$
\begin{equation*}
r(\psi)=\operatorname{sign}(\hat{\psi}-\psi) \sqrt{2\left(l_{p}(\hat{\psi})-l_{p}(\psi)\right)} . \tag{1}
\end{equation*}
$$

Here $l_{p}(\psi)=l\left(\hat{\theta}_{\psi}\right)$, with $\hat{\theta}_{\psi}=\left(\psi, \hat{\lambda}_{\psi}\right)$, is the profile log-likelihood, while $\hat{\lambda}_{\psi}$ represents the constrained maximum likelihood estimate obtained by maximizing the log-likelihood $l(\psi, \lambda)$ with respect to $\lambda$ holding $\psi$ fixed. The signed likelihood root (1) is asymptotically standard normal up to the order $n^{-1 / 2}$, which leads to the first order $(1-\alpha) 100 \%$ confidence interval for $\psi$

$$
\begin{equation*}
\left\{\psi:|r(\psi)| \leq z_{1-\alpha / 2}\right\}, \tag{2}
\end{equation*}
$$

where $z_{p}$, with $p \in(0,1)$, is the $p$ th quantile of the standard normal distribution. The standard normal approximation provides a satisfactory approximation for large sample sizes, but can be highly unreliable for small values of $n$. The value of $\psi$ which satisfies equation (2) can be found numerically by calculating the function $r(\psi)$ on a grid of points $\psi$, which are then interpolated using a suitable smoothing function. The numerical issues, which may arise in the interpolation step, can be avoided by excluding the values of $\psi$ close to the maximum likelihood estimate $\hat{\psi}$. The details are given in (Brazzale et al., 2007, Section 9.3).

### 2.2 Higher order theory

A nowadays broadly known improvement to the signed likelihood root (1), which was originally introduced by Barndorff-Nielsen (1983), is the modified likelihood ratio

$$
\begin{equation*}
r^{*}=r+\frac{1}{r} \log \left(\frac{q}{r}\right), \tag{3}
\end{equation*}
$$

whose finite-sample distribution may be approximated by the standard normal up to the order $n^{-\frac{3}{2}}$. Several expressions for the correction term $q$ have been proposed, both from the frequentist and the Bayesian perspective. Here, we will focus on the developments by Fraser and Reid (1995).

To derive their formula for $q$, Fraser and co-author used the notion of 'tangent exponential model' which, at a fixed value of $y$, denoted $y_{0}$, approximates the true model by a local exponential model with canonical parameter $\varphi=\varphi(\theta)$, defined as

$$
\begin{equation*}
\varphi^{\top}(\theta)=l_{; V}\left(\theta ; y_{0}\right)=\left.\sum_{i=1}^{n} \frac{\partial l(\theta ; y)}{\partial y_{i}}\right|_{y=y_{0}} V_{i} . \tag{4}
\end{equation*}
$$

Here, $l_{; V}$ indicates differentiation of the log-likelihood function in the directions given by the $n$ columns $V_{1}, \ldots, V_{n}$ of the $n \times k$ matrix $V$, while $\top$ denotes matrix transposition. The matrix $V$ can be constructed using a vector of pivotal quantities $z=\left\{z_{1}\left(y_{1}, \theta\right), \ldots, z_{n}\left(y_{n}, \theta\right)\right\}$, where each component $z_{i}\left(y_{i}, \theta\right)$ has a fixed distribution under the model. The matrix $V$ is defined from $z$ by

$$
V=-\left.\left(\frac{\partial z}{\partial y^{\top}}\right)^{-1}\left(\frac{\partial z}{\partial \theta^{\top}}\right)\right|_{\left(y_{0}, \hat{\theta}_{0}\right)},
$$

where $\hat{\theta}_{0}$ is the maximum likelihood estimate at $y_{0}$. The expression of the correction term $q$ is then

$$
\begin{equation*}
q=\frac{\left|\varphi(\hat{\theta})-\varphi\left(\hat{\theta}_{\psi}\right) \quad \varphi_{\lambda}\left(\hat{\theta}_{\psi}\right)\right|}{\left|\varphi_{\theta}(\hat{\theta})\right|}\left\{\frac{|j(\hat{\theta})|}{\left|j_{\lambda \lambda}\left(\hat{\theta}_{\psi}\right)\right|}\right\}^{\frac{1}{2}}, \tag{5}
\end{equation*}
$$

where $\varphi_{\theta}(\theta)=\partial \varphi(\theta) / \partial \theta^{\top}$ represents the matrix of partial derivatives of $\varphi(\theta)$ with respect to $\theta$, while $\varphi_{\lambda}(\theta)=\partial \varphi(\theta) / \partial \lambda^{\top}$ identifies the $k-1$ columns of this matrix which correspond to the nuisance parameter $\lambda$. Analogously, the matrix $j_{\lambda \lambda}(\theta)$ is the $(k-1) \times(k-1)$ sub-matrix of the observed information function $j(\theta)$ with respect to the nuisance parameter $\lambda$.

The higher order $(1-\alpha) 100 \%$ confidence interval for $\psi$ is given by

$$
\begin{equation*}
\left\{\psi:\left|r^{*}(\psi)\right| \leq z_{1-\alpha / 2}\right\} . \tag{6}
\end{equation*}
$$

Again, pivot profiling (Brazzale et al., 2007, Section 9.3) can be used to identify the upper and lower bounds of the confidence interval. Furthermore, the $r^{*}$ pivot-like its first order counterpart $r$-is invariant under interest-respecting re-parametrizations, that is reparametrizations of the form $\tau(\theta)=\tau(\psi, \lambda)=(\zeta, \eta)$ with $\zeta=\zeta(\psi)$ and $\eta=\eta(\psi, \lambda)$.

The expression of $q$ for the case in which the nuisance parametrization is not given explicitly can be found in Fraser et al. (1999).

### 2.3 Approximations for Bayesian inference

In the Bayesian setting with a prior density $\pi(\theta)$ for $\theta$, the analogue of the first order results of Section 2.1 is the asymptotic normality of the posterior density $\pi(\theta \mid y)$ for $\theta$. The Bayesian counterpart of the correction term $q$ in (3), which we will denote by $q_{B}$, was obtained by DiCiccio and Martin (1991) under the assumption that the nuisance parametrization is given explicitly, and results to

$$
\begin{equation*}
q_{B}=l_{p}^{\prime}(\psi) j_{p}(\hat{\psi})^{-\frac{1}{2}}\left\{\frac{\left|j_{\lambda \lambda}\left(\hat{\theta}_{\psi}\right)\right|}{\left|j_{\lambda \lambda}(\hat{\theta})\right|}\right\}^{\frac{1}{2}} \frac{\pi(\hat{\theta})}{\pi\left(\hat{\theta}_{\psi}\right)}, \tag{7}
\end{equation*}
$$

where $l_{p}^{\prime}(\psi)=d l_{p}(\psi) / d \psi$ is the profile score function and $j_{p}(\psi)=d^{2} l_{p}(\psi) / d \psi^{2}$ the profile observed information function. Posterior quantiles for the parameter $\psi$ can be found exploiting the fact that the posterior distribution function

$$
\Pi\left(\psi_{0} \mid y\right)=\operatorname{Pr}\left(\psi \leq \psi_{0} \mid y\right) \doteq 1-\Phi\left(r_{B}^{*}\right)
$$

may be approximated to the order $n^{-3 / 2}$ by the standard normal distribution function $\Phi\left(r_{B}^{*}\right)$, evaluated at

$$
\begin{equation*}
r_{B}^{*}=r+\frac{1}{r} \log \left(\frac{q_{B}}{r}\right) . \tag{8}
\end{equation*}
$$

Again, pivot profiling provides the upper and lower bounds of the $(1-\alpha) 100 \%$ credible interval for $\psi$ given by

$$
\begin{equation*}
\left\{\psi:\left|r_{B}^{*}(\psi)\right| \leq z_{1-\alpha / 2}\right\} \tag{9}
\end{equation*}
$$

Like for $q$, Fraser et al. (1999) provide the expression of the correction term $q_{B}$ for the case in which the nuisance parametrization is not given explicitly.

### 2.3.1 Matching priors

Given the prior $\pi(\theta)$ for $\theta$, let $\theta_{1-\alpha}^{\pi}$ denote the $(1-\alpha)$ th approximate posterior quantile of $\theta$ of order $n^{-r}$, that is, the value of $\theta$ for which

$$
\begin{equation*}
\operatorname{Pr}_{\theta \mid y}\left(\theta \leq \theta_{1-\alpha}^{\pi} \mid y\right)=1-\alpha+O_{p}\left(n^{-r}\right), \tag{10}
\end{equation*}
$$

with $r>0$ and $0<\alpha<1$. If we also have that

$$
\begin{equation*}
\operatorname{Pr}_{Y \mid \theta}\left(\theta_{1-\alpha}^{\pi} \geq \theta \mid \theta\right)=1-\alpha+O_{p}\left(n^{-r}\right), \tag{11}
\end{equation*}
$$

with $\theta_{1-\alpha}^{\pi}$ the upper bound of a frequentist one-sided $(1-\alpha) 100 \%$ confidence interval, the prior $\pi$ is called a probability matching prior to the $r$ th order of approximation. For such priors, Bayesian and frequentist inference for the parameter $\theta$ are in perfect agreement up to the order $r$.

If $r=1, \pi(\theta)$ is called a first order probability matching prior, while for $r=3 / 2$ we have a second order probability matching prior. Welch and Peers (1963) showed that the unique first order probability matching prior, when no nuisance parameter is present, is Jeffrey's prior.

The same result does not necessarily hold when $\theta$ includes a nuisance component $\lambda$. For an orthogonal parametrization, Staicu and Reid (2008) proposed to use the following prior for $\theta$ in (7),

$$
\begin{equation*}
\pi(\psi, \lambda) \propto i_{\psi \psi}^{1 / 2}(\psi, \lambda) \tag{12}
\end{equation*}
$$

where $i_{\psi \psi}(\psi, \lambda)$ represents the value of the expected Fisher information function corresponding to $\psi$. The authors call this prior the "unique prior", as it leads to an approximation of the marginal posterior distribution of $\psi$ accurate to the order $n^{-3 / 2}$. When the parametrization $\theta=(\psi, \lambda)$ is not orthogonal, their suggestion is to find an orthogonal parametrization $(\psi, \eta)$ of the original model for which the prior can be expressed as (12), and then to re-express the prior in the original parametrization $(\psi, \lambda)$, leading to

$$
\begin{equation*}
\pi(\psi, \lambda) \propto i_{\psi \psi, \lambda}^{1 / 2}(\psi, \lambda)\left|\frac{\partial \eta}{\partial \lambda}\right|, \tag{13}
\end{equation*}
$$

with $i_{\psi \psi . \lambda}(\psi, \lambda)=i_{\psi \psi}(\psi, \lambda)-i_{\psi \lambda}(\psi, \lambda) i_{\lambda \lambda}^{-1}(\psi, \lambda) i_{\lambda \psi}(\psi, \lambda)$, where the indices $\psi$ and $\lambda$ indicate which sub-blocks of the expected Fisher information function to take. Furthermore, $|\partial \eta / \partial \lambda|$ represents the Jacobian of the transformation from $(\psi, \eta)$ to $(\psi, \lambda)$.

## 3 The skew-normal model

The skew-normal distribution was introduced by Azzalini (1985) to define a class of asymmetric parametric models which includes the standard normal as a special case. We say that a continuous random variable $Z \sim S N(\gamma)$, distributes as a skew-normal indexed by the real parameter $\gamma$, if it has density function

$$
p(z ; \gamma)=2 \phi(z) \Phi(\gamma z) \quad \text { with } \quad z \in \mathbb{R}
$$

Here $\phi(\cdot)$ and $\Phi(\cdot)$ denote, respectively, the density and the distribution functions of the standard normal distribution. The class of skew-normal distributions can be widened by including a location parameter $\mu \in \mathbb{R}$ and a scale parameter $\sigma>0$. Thus, if $X \sim S N(\gamma)$, then $Y=\mu+\sigma X$ is a skew normal random variable with parameters $\mu, \sigma, \gamma$, or, $Y \sim$ $S N(\mu, \sigma, \gamma)$ for short. Making inference on the skewness parameter is quite challenging, as the expected Fisher information becomes singular as $\gamma \rightarrow 0$. Functions for manipulating the skew-normal probability distribution and for fitting it to data are given in the $R$ package
sn Azzalini (2013). We refer the reader to Genton (2004) for a general treatment of the skew-normal distribution and its extensions.

In this paper we focus on the distribution of the maximum (or minimum) of an exchangeable bivariate normal random vector. Loperfido (2002) showed that a linear combination of the maximum and the minimum of a bivariate exchangeable normal random vector is skew-normally distributed with parameters specified by the following theorem.

Theorem 3.1 Let $X_{1}$ and $X_{2}$ be two random variables whose joint distribution is bivariate normal with common mean $\mu \in \mathbb{R}$, common variance $\sigma^{2}>0$ and correlation coefficient $\rho \in(-1,1)$. Then for any two real constants $h$ and $k \neq-h$, the distribution of $h \min \left(X_{1}, X_{2}\right)+k \max \left(X_{1}, X_{2}\right)$ is

$$
S N\left(\mu(h+k), \sigma \sqrt{h^{2}+k^{2}+2 \rho h k}, \gamma=\frac{k-h}{|k+h|} \sqrt{\frac{1-\rho}{1+\rho}}\right) .
$$

Theorem 3.1 was subsequently generalized by Loperfido (2008) to the case where $X_{1}$ and $X_{2}$ are exchangeable, elliptical and continuous random variables. It follows that the distribution of $\max \left(X_{1}, X_{2}\right)$ is $S N(\mu, \sigma, \gamma)$ with $\gamma=\sqrt{(1-\rho) /(1+\rho)} \geq 0$, whereas the distribution of $\min \left(X_{1}, X_{2}\right)$ is $S N(\mu, \sigma, \gamma)$ with $\gamma=-\sqrt{(1-\rho) /(1+\rho)} \leq 0$. The special case of $\rho=0$ translates into $\gamma=1$ and $\gamma=-1$, respectively. Figure 1 shows how the shape of the distributions of $\max \left(X_{1}, X_{2}\right)$ (bold) and $\min \left(X_{1}, X_{2}\right)$ (solid) changes when $\rho$ varies from -0.9 to +0.9 .

Theorem 3.1 provides the reference models for mono-zygotic twin studies for which information on the pair ( $X_{1}, X_{2}$ ) is missing, and only their maximum (or minimum) value is recorded. This may, for instance, happen because of practical reasons; see Roberts (1966) for a rather early treatment. As pointed out there, because healthy mono-zygotic twins share an identical genetic mark-up, time of onset for a particular event in the first twin-such as getting a cold or developing leukaemia-is likely to closely follow in the second twin, so that only the smaller or larger record may be kept. Furthermore, working with the maximum (or minimum) of two correlated measurements can be, at times, more reliable than the study of the original values, especially if the measurements of the smaller (or larger) values are less accurate.

## 4 Inference on the skewness parameter $\gamma=\sqrt{\frac{1-\rho}{1+\rho}}$

### 4.1 Background results

### 4.1.1 Exact confidence interval

Let $Y=\left(X_{1}, X_{2}\right)$ be a bivariate normal vector with common mean 0 , common variance 1 and correlation coefficient $\rho \in(-1,1)$. Given an i.i.d. sample $\left\{\left(x_{11}, x_{21}\right), \ldots,\left(x_{1 n}, x_{2 n}\right)\right\}$ of size $n$ from $Y$, Haddad and Provost (2011) proposed a range-based exact confidence interval for $\rho$. The construction of the confidence interval makes use of the two random variables $D_{+}=\sum_{i=1}^{n}\left(X_{1 i}+X_{2 i}\right)^{2}$ and $D_{-}=\sum_{i=1}^{n}\left(X_{1 i}-X_{2 i}\right)^{2}$. Taking advantage of the independence of $X_{1 i}+X_{2 i}$ and $X_{1 i}-X_{2 i}$ along with the fact that $X_{1 i}+X_{2 i} \sim$


(c) $\rho=0$


Figure 1: Contour plots of the bivariate standard normal distributions with correlation coefficient $\rho$, and corresponding distribution of the maximum (bold) and minimum (solid), for $\rho \in\{-0.9,-0.5,0,0.5,0.9\}$.
$N(0,2(1+\rho))$ and $X_{1 i}-X_{2 i} \sim N(0,2(1-\rho))$, the authors derive the following pivotal quantity

$$
\begin{equation*}
\frac{D_{+}}{D_{-}} \frac{(1-\rho)}{(1+\rho)} \sim F_{n, n}, \tag{14}
\end{equation*}
$$

where $F_{n, n}$ is Fisher's F distribution with $(n, n)$ degrees of freedom. This gives an exact $(1-\alpha) 100 \%$ confidence interval for the parameter $\gamma$ of the form

$$
\begin{equation*}
\left\{\gamma \in[0, \infty): \sqrt{\frac{D_{-}}{D_{+}} F_{n, n}(1-\alpha / 2)}<\gamma<\sqrt{\frac{D_{-}}{D_{+}} F_{n, n}(\alpha / 2)}\right\}, \tag{15}
\end{equation*}
$$

where $F_{n, n}(p)$, with $p \in(0,1)$, represents the $p$ th quantile of Fisher's F distribution with $(n, n)$ degrees of freedom.

### 4.1.2 Large-sample confidence intervals

Haddad and Provost (2011) considered also the construction of a confidence interval for $\rho$ when the means and variances of the bivariate random vector are unknown. In this case, the solution is no longer exact. Let $\left(X_{1}, X_{2}\right)$ be a bivariate normal random vector with parameters $\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)$ where $\left(\mu_{1}, \sigma_{1}\right) \in \mathbb{R} \times \mathbb{R}_{+}$and $\left(\mu_{2}, \sigma_{2}\right) \in \mathbb{R} \times \mathbb{R}_{+}$are, respectively, the means and variances of $X_{1}$ and $X_{2}$, and $\rho \in(-1,1)$ their correlation. The first step is to standardize the two components $X_{1 i}$ and $X_{2 i}$; let $X_{1 i}^{*}$ and $X_{2 i}^{*}$ be the standardized variables. An approximate confidence interval for the parameter $\rho$ is obtained, likewise above, by using the fact that $X_{1 i}^{*}-X_{2 i}^{*}$ and $X_{1 i}^{*}+X_{2 i}^{*}$ are nearly independent, $X_{1 i}^{*}+X_{2 i}^{*} \sim N(0,2(1+\rho))$ and $X_{1 i}^{*}-X_{2 i}^{*} \sim N(0,2(1-\rho))$. The pivot

$$
\begin{equation*}
\frac{D_{+}^{*}}{D_{-}^{*}} \frac{(1-\rho)}{(1+\rho)}=\left(\frac{1+R}{1-R}\right) \frac{(1-\rho)}{(1+\rho)}, \tag{16}
\end{equation*}
$$

where $D_{+}^{*}=\sum_{i=1}^{n}\left(X_{1 i}^{*}+X_{2 i}^{*}\right)^{2}$ and $D_{-}^{*}=\sum_{i=1}^{n}\left(X_{1 i}^{*}-X_{2 i}^{*}\right)^{2}$ and $R$ is the sample correlation coefficient defined as

$$
R=\frac{\sum_{i=1}^{n}\left(X_{1 i}-\bar{X}_{1}\right)\left(X_{2 i}-\bar{X}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{1 i}-\bar{X}_{1}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(X_{2 i}-\bar{X}_{2}\right)^{2}}},
$$

follows approximately an $F_{n-1, n-1}$ distribution. The corresponding $(1-\alpha) 100 \%$ confidence interval for $\gamma$ is

$$
\begin{equation*}
\left\{\gamma \in[0, \infty): \sqrt{\left(\frac{1-R}{1+R}\right) F_{n-1, n-1}(1-\alpha / 2)}<\gamma<\sqrt{\left(\frac{1-R}{1+R}\right) F_{n-1, n-1}(\alpha / 2)}\right\} \tag{17}
\end{equation*}
$$

A second approximate solution to the inferential problem we are interested in can be found in Mameli et al. (2012). Because of the difficulties of obtaining the finite sample distribution of $R$, inference for $\rho$ is commonly based on the monotonic transformation $\frac{1}{2} \ln ((1+R) /(1-R))$, called Fisher's $z$-transform. In particular, the distribution of

$$
\begin{equation*}
Z=\frac{\frac{1}{2} \ln \left(\frac{1+R}{1-R}\right)-\frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho}\right)}{\frac{1}{\sqrt{n-3}}} \tag{18}
\end{equation*}
$$

for $n>50$ is approximately standard normal.This turns into an $(1-\alpha) 100 \%$ confidence interval for $\gamma$ of the form

$$
\begin{equation*}
\left\{\gamma \in[0, \infty): \exp \left(\frac{-z_{\frac{\alpha}{2}}}{\sqrt{n-3}}\right) \sqrt{\left(\frac{1-R}{1+R}\right)}<\gamma<\exp \left(\frac{z_{\frac{\alpha}{2}}}{\sqrt{n-3}}\right) \sqrt{\left(\frac{1-R}{1+R}\right)}\right\} \tag{19}
\end{equation*}
$$

Note that the upper and lower bounds of both, the confidence interval (19) proposed by Mameli et al. (2012) and solution (17) derived by Haddad and Provost (2011), include the multiplying factor $\sqrt{(1-R) /(1+R)}$.

### 4.2 Small-sample confidence intervals

### 4.2.1 No nuisance parameter

Reid (2003) provides the expression of the higher-order pivot $r^{*}$ when interest relies on $\theta=\rho$, the correlation coefficient of a bivariate normal vector $\left(X_{1}, X_{2}\right)$ with common means 0 and variances 1 . The reference model in this case is a $(2,1)$ curved exponential family. A key quantity for the determination of the canonical parameter (4) of the approximating tangent full exponential model is the vector $V=(1-\hat{\theta})^{-1}(t-\hat{\theta} s, s-\hat{\theta} t)^{\top}$, obtained from the two independent pivots $Z_{1}=(T+S) /(1+\theta)$ and $Z_{2}=(T-S) /(1-\theta)$, with $S=n^{-1} \sum_{i=1}^{n} X_{1 i} X_{2 i}$ and $T=(2 n)^{-1} \sum_{i=1}^{n}\left(X_{1 i}^{2}+X_{2 i}^{2}\right)$, whose distribution is $\chi_{n}^{2} / n$. The canonical parameter takes the form $\varphi(\theta)=n\left\{\left(1-\theta^{2}\right)\left(1-\hat{\theta}^{2}\right)\right\}^{-1}\{\theta(t-\hat{\theta} s)-(s-\hat{\theta} t)\}$. Later, Reid and Fraser (2010) proposed an alternative formulation, $\bar{\varphi}(\theta)=n \theta /\left(1-\theta^{2}\right)$, of the canonical parameter. As shown there, both formulations lead to almost the same numerical results as far as the approximation of tail areas is concerned.

Turning to the Bayesian world, we may adopt Jeffreys' prior for $\rho$, given by

$$
\begin{equation*}
\pi(\rho) \propto \frac{\sqrt{\left(1+\rho^{2}\right)}}{\left(1-\rho^{2}\right)} \tag{20}
\end{equation*}
$$

which, as stated in Section 2.3.1, provides a first order probability matching prior for a scalar parameter in the absence of nuisance parameters.

Confidence intervals for the parameter $\gamma$ can be derived from the $r(\rho), r^{*}(\rho)$ and $r_{B}^{*}(\rho)$ pivots due to their invariance under interest-respecting re-parametrizations.

### 4.2.2 Nuisance parameters

Let $\left\{\left(x_{11}, x_{21}\right), \ldots,\left(x_{1 n}, x_{2 n}\right)\right\}$ be a sample from a bivariate normal distribution with real means $\mu_{1}, \mu_{2}$, variances $\sigma_{1}^{2}>0, \sigma_{2}^{2}>0$ and correlation $\rho \in(-1,1)$. The log-likelihood function

$$
\begin{aligned}
l(\theta) & =-n\left(\log \left(\sigma_{1} \sigma_{2}\right)+\frac{1}{2} \log \left(1-\rho^{2}\right)+\frac{\mu_{1}^{2}}{2\left(1-\rho^{2}\right) \sigma_{1}^{2}}+\frac{\mu_{2}^{2}}{2\left(1-\rho^{2}\right) \sigma_{2}^{2}}-\frac{\mu_{1} \mu_{2} \rho}{\left(1-\rho^{2}\right) \sigma_{1} \sigma_{2}}\right)+ \\
& -\frac{1}{2\left(1-\rho^{2}\right) \sigma_{1}^{2}} \sum_{i=1}^{n} x_{1 i}^{2}-\frac{1}{2\left(1-\rho^{2}\right) \sigma_{2}^{2}} \sum_{i=1}^{n} x_{2 i}^{2}+\frac{\mu_{1} \sigma_{2}-\mu_{2} \sigma_{1} \rho}{\left(1-\rho^{2}\right) \sigma_{1}^{2} \sigma_{2}} \sum_{i=1}^{n} x_{1 i}+ \\
& +\frac{\mu_{2} \sigma_{1}-\mu_{1} \sigma_{2} \rho}{\left(1-\rho^{2}\right) \sigma_{1} \sigma_{2}^{2}} \sum_{i=1}^{n} x_{2 i}+\frac{\rho}{\left(1-\rho^{2}\right) \sigma_{1} \sigma_{2}} \sum_{i=1}^{n} x_{1 i} x_{2 i},
\end{aligned}
$$

Table 1: Measurements of the corpus callosum surface area for ten mono-zygotic twins Tramo et al. (1998). Bivariate Shapiro-Wilk test for normality: $W=0.97, p$-value $=0.86$.

| 1st twin | 6.08 | 6.22 | 7.99 | 7.44 | 6.48 | 8.76 | 6.32 | 7.62 | 6.03 | 7.67 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2nd twin | 5.73 | 5.80 | 8.42 | 6.84 | 6.43 | 7.99 | 6.32 | 7.60 | 6.59 | 7.52 |

with $\theta=\left(\rho, \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}\right)$, characterizes an exponential family with canonical parameter

$$
\varphi(\theta)=\left(-\frac{1}{\left(1-\rho^{2}\right) \sigma_{1}^{2}},-\frac{1}{\left(1-\rho^{2}\right) \sigma_{2}^{2}}, \frac{\mu_{1} \sigma_{2}-\mu_{2} \sigma_{1} \rho}{\left(1-\rho^{2}\right) \sigma_{1}^{2} \sigma_{2}}, \frac{\mu_{2} \sigma_{1}-\mu_{1} \sigma_{2} \rho}{\left(1-\rho^{2}\right) \sigma_{1} \sigma_{2}^{2}}, \frac{\rho}{\left(1-\rho^{2}\right) \sigma_{1} \sigma_{2}}\right)
$$

Setting $\psi=\rho$ and $\lambda=\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}\right), q$ and $r^{*}$ can readily be obtained from equations (5) and (3), respectively.

The computation of the Bayesian credible interval of Section 2.3 requires that we specify a prior for the parameter $\theta$. The "unique prior" defined by Staicu and Reid (2008) may be calculate by referring to the orthogonal re-parametrization

$$
\begin{equation*}
p\left(x_{1}, x_{2} \mid \psi, \eta\right) \propto \frac{1}{\eta_{4}} \exp \left\{-\frac{1}{2\left(1-\psi^{2}\right)^{1 / 2}}\left[\frac{\left(x_{1}-\eta_{1}\right)^{2}}{\eta_{3}}+\eta_{3}\left(x_{2}-\eta_{2}\right)^{2}-2 \psi\left(x_{1}-\eta_{1}\right)\left(x_{2}-\eta_{2}\right)\right]\right\} \tag{21}
\end{equation*}
$$

with $\psi=\rho$ and $\eta_{1}=\mu_{1}, \eta_{2}=\mu_{2}, \eta_{3}=\sigma_{1} / \sigma_{2}$ and $\eta_{4}=\sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)^{1 / 2}$. Note that Gosh et al. $(2009,2010)$ used the same parametrization but with $\mu_{1}=\mu_{2}=0$, so that Fisher's expected information function only includes the parameters $\psi, \eta_{3}$ and $\eta_{4}$.

Confidence and credible intervals for the parameter $\gamma$ can be readily derived from the $r(\rho), r^{*}(\rho)$ and $r_{B}^{*}(\rho)$ pivots thanks to their invariance under interest-respecting reparametrizations.

## 5 A real-data example

We consider the data collected by Tramo et al. (1998), as available on StatLib. The data set submitted by the authors includes different measurements on the brains of ten pairs of mono-zygotic twins. Five twin pairs are male and the remaining five are female. Here we focus on the variable corpus callosum surface area; see Table 1. To assure that all conditions of Theorem 3.1 hold, we first standardize the pairs of observations $\left\{\left(x_{11}, x_{21}\right), \ldots,\left(x_{1 n}, x_{2 n}\right)\right\}$ as in paragraph 4.1.2. The bivariate Shapiro-Wilk normality test $(W=0.97, p$-value $=0.86)$ supports the hypothesis of bivariate normality of the standardized data. The maximum likelihood estimate of $\gamma$ is $\hat{\gamma}=0.324$. The five $95 \%$ confidence intervals for $\gamma$, computed using the methods outlined in Section 4, are given in Table 2. The interval based on the third order Bayesian solution $r_{B}^{*}$ is wider than the confidence intervals obtained from the first order pivot $r$, the higher order frequentist pivot $r^{*}$, the large sample $(H P)$ confidence interval by Haddad and Provost (2011) and the (ACI) confidence interval by Mameli et al. (2012).

Figure 2 shows how to compute the lower and upper bounds numerically. The intervals based on $r(1 s t), r^{*}(3 r d), r_{B}^{*}$ (Bayes) and ACI can be read off from the intersections of the corresponding pivots with the horizontal black lines, which represent the $2.5 \%$ and the $97.5 \%$ quantiles of the standard normal distribution. The lower and upper bounds of the $H P$ confidence interval are computed similarly, but this time by referring to the horizontal


Figure 2: Tramo et al. (1998) corpus callosum surface area data. Pivot functions for the parameter $\gamma$ obtained from: likelihood root $r$ (solid), modified likelihood root $r^{*}$ (bold); Bayesian modified likelihood root $r_{B}^{*}$ (long-dashes); expression (16) by Haddad and Provost (2011) (dotted); approximate pivot used in (18) by Mameli et al. (2012) (dashed). Black horizontal lines: $2.5 \%$ and $97.5 \%$ normal quantiles; grey horizontal lines: $2.5 \%$ and $97.5 \%$ quantiles of the $F(9,9)$ distribution.
grey lines, which represent the $2.5 \%$, and the $97.5 \%$ quantiles of the $F$ distribution with $(9,9)$ degrees of freedom.

## 6 Numerical assessment

We designed two simulations studies to assess and compare the finite-sample properties of the methods discussed in this paper. The summary statistics used are: empirical coverage $(C P)$, upper error probability $(U E)$, that is, the percentage of the true parameter values falling above the upper bound, lower error probability $(L E)$, that is, the percentage of the true parameter values falling below the lower bound, and average length $(A L)$ of the five confidence intervals considered in Section 4. All simulations were run using the numerical computing environment R R Core Team (2013).

Table 2: Tramo et al. (1998) corpus callosum surface area data. Lower (LB) and upper (UB) bounds of $95 \%$ confidence intervals for the parameter $\gamma$. Pivots used, with corresponding confidence intervals: $1 s t$ - likelihood root $r$ (2); $3 r d$ - modified likelihood root $r^{*}$ (6); Bayes - Bayesian modified likelihood root $r_{B}^{*}$ (9); HP - Haddad and Provost (2011) (17); ACI - Mameli et al. (2012) (19)

| Method | LB | UB | Length |
| :--- | :--- | :--- | :--- |
| 1st | 0.121 | 0.435 | 0.314 |
| 3rd | 0.119 | 0.493 | 0.374 |
| Bayes | 0.114 | 0.518 | 0.404 |
| HP | 0.114 | 0.460 | 0.346 |
| ACI | 0.109 | 0.481 | 0.372 |

### 6.1 Considered scenarios

Simulation 1 considers a bivariate normal model with zero means, unit variances and unknown correlation $\rho$, which takes values from -0.9 to +0.9 , with step size 0.1 . The purpose is to compare the behavior of the higher order pivot $r^{*}$ with its first order counterpart $r$, the Bayesian small-sample solution $r_{B}^{*}$ and the exact method (14), which apply when no nuisance parameter is present, and this for small sample sizes.

Simulation 2 wants to investigate the finite-sample performance of the confidence intervals obtained when nuisance parameters are present, again while emphasizing small sample sizes. The pivots used are the higher order solution $r^{*}$, its first order counterpart $r$, the Bayesian competitor $r_{B}^{*}$, and the large-sample solutions (17) and (19). We used $\mu_{1}=\mu_{2}=7, \sigma_{1}=\sigma_{2}=0.9$, while again $\rho \in\{-0.9,0.8, \ldots, 0.8,0.9\}$. Note that the simulation set-up borrows from the twin data example of Section 5 , for which the maximum likelihood estimate is $\hat{\theta}=(0.900,7.061,6.924,0.905,0.872)$.

In both simulations, 10,000 replicates are generated for the four sample sizes $n=$ $5,10,15,20$. The simulation error amounts to $\pm 0.004$.

### 6.2 Discussion

Figure 3 shows the actual coverage of the nominal $95 \%$ confidence intervals for $\gamma$ derived from equation (15) (exact), and by using the pivots $r(1 s t), r^{*}(3 r d)$, and $r_{B}^{*}$ (Bayes) for the no-nuisance parameter case. The higher order likelihood pivots $r^{*}$ and, to a somewhat lesser extent, $r_{B}^{*}$ outperform their first order counterpart $r$, even for the very limited sample sizes considered in the four scenarios of Simulation 1. The differences among the four pivots fade out as the sample size increases.

Tables 3-6 summarize the performance of the nominal $95 \%$ confidence intervals for $\gamma$ derived from the four pivots considered in Simulation 1. Being there no nuisance parameter present, the corresponding true coverage probabilities are very close to the nominal level, as we may have expected. Inspection of the upper and lower error probabilities reveals that the $r^{*}$ and $r_{B}^{*}$ pivots also improve in terms of symmetry over $r$. The exact method produces confidence intervals for $\gamma$ which are, on average, wider than the confidence intervals obtained from the first order solution $r$ and the higher order pivots $r^{*}$ and $r_{B}^{*}$. The average

(a) $n=5$

(c) $n=15$

(b) $n=10$

(d) $n=20$

Figure 3: Simulation 1: bivariate normal with means 0 and variances 1 . Empirical coverage of nominal two-sided $95 \%$ confidence intervals for $\gamma$ for varying values of $\rho$ and sample sizes $n=5,10,15,20$. Pivots used: likelihood root $r$ ( $1 s t$ ), modified likelihood root $r^{*}(3 r d)$; Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (14) by Haddad and Provost (2011) (exact). Based on 10,000 replicates.
length of all four confidence intervals is larger for negative values of $\rho$, and increases when the correlation tends to -1 .

Figure 4 reports the actual coverage of the nominal $95 \%$ confidence intervals for $\gamma$ obtained from expressions (16) (HP) and (18) (ACI), and by using the pivots $r(1 s t), r^{*}$ (3rd) and $r_{B}^{*}$ (Bayes), as in Simulation 2. In terms of real coverage, $r^{*}$ again outperforms its first order counterpart $r$. It also outperforms the large-sample $(H P)$ proposal by Haddad and Provost (2011) and, surprisingly, the Bayesian solution $r_{B}^{*}$. The most accurate method is the large-sample confidence interval developed by Mameli et al. (2012), although the differences fade out for increasing sample size.

Tables $7-10$ summarize the performance of the nominal $95 \%$ confidence intervals for $\gamma$ derived from the five methods considered in Simulation 2. The results reveal that $r^{*}$


Figure 4: Simulation 2: bivariate normal with means 7 and variances 0.9 . Empirical coverage of nominal equi-taled $95 \%$ confidence intervals for $\gamma$ for varying values of $\rho$ and sample sizes $n=5,10,15,20$. Pivots used: likelihood root $r$ ( 1 st), modified likelihood root $r^{*}$ (3rd); Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (16) by Haddad and Provost (2011) (HP) and expression (18) by Mameli et al. (2012) (ACI). Based on 10,000 replicates.
is more accurate than $r$, especially when the sample size is small, because of both an, on average, larger width and its capability of correctly centering the confidence intervals. The $r_{B}^{*}$ pivot consistently over-estimates the real coverage, while guaranteeing symmetry on the tails, because of the, on average, longer confidence intervals it produces. The $A C I$ and $H P$ methods lead to confidence intervals for $\gamma$ which are remarkably asymmetric. Their better performance with respect to, respectively, $r^{*}$ and $r$ may be explained by the, on average, larger widths of the corresponding confidence intervals. For all five methods considered, the expected length becomes larger for negative values of $\rho$, especially when $\rho$ is close to -1 . This is in agreement with Mameli et al. (2012), who noted the same behavior for their ACI confidence interval.

## 7 Concluding remarks

In this paper we investigate the behavior of likelihood-based small-sample procedures to compute confidence intervals for the parameter of skewness which characterizes the distribution of the maximum/minimum of a bivariate normal exchangeable random vector. This distribution represents the reference model for assessing the degree of concordance of a continuos mono-zygotic twin trait when interest focuses on the pairwise maximum or minimum, as in Section 5. Extensive numerical investigation revealed that the higher order frequentist pivot $r^{*}$ is highly accurate, especially for the rather small sample sizes which may be encountered, and for the challenging situation where $\rho$ is close to -1 . This is in agreement with the findings by Sun and Wong (2007), though their contribution focuses on $\rho$ and does not consider the custom-tailored statistics of Section 4. When no nuisance parameter is present, $r^{*}$ yields confidence intervals which, for practical purposes, may be considered exact. Among the four alternatives available in the presence of nuisance parameters, the only real competitor to $r^{*}$, in terms of both real coverage and required computational efforts, is the $A C I$ confidence intervals, though it leads to, on average, longer confidence intervals which counterbalance the lack of symmetry on the tails. The potential applicability of the ACI method to studies on twins was already put forward in Mameli et al. (2012).

## References

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12 171-178.

Azzalini, A. (2013). R package $s n$ : The skew-normal and skew- $t$ distributions (version 0.4-18). Università di Padova, Italia. http://azzalini.stat.unipd.it/SN.

Barndorff-Nielsen, O. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika 70 343-365.

Brazzale, A. R., Davison, A. C. and Reid, N. (2007). Applied Asymtpotics: Case Studies in Small-Sample Statistics. Cambridge University Press.

DiCiccio, T. J. and Martin, A. (1991). Approximations of tail probabilities for a class of smooth functions with applications to Bayesian and conditional inference. Biometrika 78 891-902.
van Dongen, J., Slagboom, P. E., Draisam, H. H. M., Martin, N. G., Boomsma, D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13 640653.

Fraser, D. A. S. and Reid, N. (1995). Ancillary and third order significance, Utilitas Mathematica, 47 33-53.

Fraser, D. A. S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika 86 249-264.

Galton, F. (1876). The history of twins, as a criterion of the relative powers of nature and nurture. The Journal of the Anthropological Institute of Great Britain and Ireland 5 391406.

Genton, M. G. (2004). Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. Chapman \& Hall / CRC, Boca Raton, FL.

Gosh, M., Mukherjee, B. and Santra, U. (2009). Objective priors: an introduction for frequentists. International Journal of Statistical Sciences 9 255-271.

Gosh, M., Mukherjee, B., Santra, U. and Kim, D. (2010). Bayesian and likelihood-based inference for the bivariate normal correlation coefficient. Journal of Statistical Planning and Inference, 140 1410-1416.

Haddad, J. H. and Provost, S. B. (2011). Approximations to the distribution of the sample correlation coefficient. World Academy of Science, Engineering and Technology 52 910915.

Kraemer, H. C. (1997). What is the 'right' statistical measure of twin concordance (or diagnostic reliability and validity)? Archives of Genetic Psychiatry 54 1121-1124.

Loperfido, N. (2002). Statistical implications of selectively reported inferential results. Statistics \& Probability Letters 56 13-22.

Loperfido, N. (2008). A note on skew-elliptical distributions and linear functions of order statistics. Statistics and Probability Letters 78 3184-3186.

Lyons, M. J., Faraone, S.V., Tsuang, M. T., Goldberg, J., Eaves, L. J., Meyer, J. M., True, W. R., Eisen, S.A. (1997). Another view on the 'right' statistical measure of twin concordance. Archives of Genetic Psychiatry 54 1126-1128.

Mameli, V., Musio, M., Saleau, E. and Biggeri, A. (2012). Large sample confidence intervals for the skewness parameter of the skew-normal distribution based on Fisher's transformation. Journal of Applied Statistics 39 1693-1702.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Reid, N. (2003). Asymptotics and the theory of inference. Annals of Statistics 31, 16951731.

Reid, N. and Fraser, D. A. S. (2010). Mean log-likelihood and higher-order approximations. Biometrika 97 159-170.

Roberts, C. (1966). A correlation model useful in the study of twins. Journal of the American Statistical Association, 61 1184-1190.

Staicu, A.-M and Reid, N. (2008). On probability matching priors. The Canadian Journal of Statistics, 36 613-622.

Sun, Y. and Wong, A.C.M. (2007). Interval estimation for the normal correlation coefficient. Statistics \& Probability Letters 7716521661.

Tramo, M. J., Loftus, W. C., Green, R. L., Stukel, T. A., Weaver, J. B. and Gazzaniga, M. S. (1998). Brain size, head size, and IQ in monozygotic twins. Neurology 50 1246-1252.

Welch, B. L. and Peers, B. L. (1963). On formulae for confidence points based on integrals of weighted likelihoods. Journal of the Royal Statistical Society Series B 25 318-329.

Table 3: Summary statistics for Simulation 1: bivariate normal with means 0 and variances 1. Empirical coverage $(C P)$, upper $(U E)$ and lower $(L E)$ error probability and average length $(A L)$ of nominal two-sided $95 \%$ confidence intervals for $\gamma$, for varying values of $\rho$ and sample size $n=5$. Pivots used: likelihood root $r$ (1st), modified likelihood root $r^{*}(3 r d)$; Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (15) by Haddad and Provost (2011) (exact). Based on 10,000 replicates; simulation error: $\pm 0.004$.

| $\rho$ | Method | CP | $U E$ | LE | AL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | 1st | 0.924 | 0.039 | 0.037 | 6.714 |
|  | 3 rd | 0.954 | 0.024 | 0.022 | 6.556 |
|  | Bayes | 0.953 | 0.024 | 0.022 | 6.604 |
|  | exact | 0.950 | 0.024 | 0.026 | 11.329 |
| -0.8 | 1 1st | 0.938 | 0.038 | 0.024 | 4.753 |
|  | 3 rd | 0.952 | 0.023 | 0.026 | 4.600 |
|  | Bayes | 0.947 | 0.024 | 0.029 | 4.587 |
|  | exact | 0.951 | 0.023 | 0.026 | 7.803 |
| -0.7 | 1 st | 0.939 | 0.038 | 0.023 | 3.861 |
|  | 3 rd | 0.948 | 0.024 | 0.029 | 3.702 |
|  | Bayes | 0.940 | 0.024 | 0.036 | 3.648 |
|  | exact | 0.949 | 0.025 | 0.026 | 6.144 |
| -0.6 | 1 st | 0.934 | 0.040 | 0.026 | 3.345 |
|  | 3 d d | 0.948 | 0.024 | 0.028 | 3.198 |
|  | Bayes | 0.943 | 0.023 | 0.034 | 3.130 |
|  | exact | 0.952 | 0.025 | 0.024 | 5.244 |
| -0.5 | 1 st | 0.930 | 0.038 | 0.033 | 2.946 |
|  | 3 d d | 0.945 | 0.024 | 0.031 | 2.807 |
|  | Bayes | 0.942 | 0.025 | 0.033 | 2.727 |
|  | exact | 0.947 | 0.025 | 0.028 | 4.483 |
| -0.4 | 1 st | 0.932 | 0.037 | 0.031 | 2.659 |
|  | 3 rd | 0.950 | 0.022 | 0.027 | 2.531 |
|  | Bayes | 0.945 | 0.024 | 0.030 | 2.441 |
|  | exact | 0.953 | 0.024 | 0.023 | 3.948 |
| -0.3 | 1st | 0.922 | 0.042 | 0.035 | 2.426 |
|  | 3 d d | 0.942 | 0.027 | 0.031 | 2.314 |
|  | Bayes | 0.934 | 0.032 | 0.033 | 2.234 |
|  | exact | 0.948 | 0.026 | 0.027 | 3.552 |
| -0.2 | 1 st | 0.926 | 0.039 | 0.034 | 2.241 |
|  | 3 rd | 0.949 | 0.026 | 0.025 | 2.141 |
|  | Bayes | 0.940 | 0.030 | 0.030 | 2.055 |
|  | exact | 0.952 | 0.025 | 0.023 | 3.189 |
| -0.1 | $1 s t$ | 0.927 | 0.037 | 0.036 | 2.087 |
|  | $3 \mathrm{~d} d$ | 0.951 | 0.023 | 0.026 | 1.995 |
|  | Bayes | 0.937 | 0.031 | 0.032 | 1.911 |
|  | exact | 0.953 | 0.023 | 0.024 | 2.854 |
| 0 | 1 st | 0.925 | 0.037 | 0.038 | 1.927 |
|  | $3 r d$ | 0.949 | 0.024 | 0.027 | 1.842 |


|  |  | (b) |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\rho$ | Method | $C P$ | $U E$ | $L E$ | $A L$ |
|  | Bayes | 0.937 | 0.031 | 0.032 | 1.758 |
|  | exact | 0.952 | 0.023 | 0.025 | 2.579 |
| 0.1 | 1st | 0.927 | 0.038 | 0.035 | 1.806 |
|  | 3rd | 0.951 | 0.025 | 0.024 | 1.732 |
|  | Bayes | 0.941 | 0.031 | 0.029 | 1.647 |
|  | exact | 0.953 | 0.024 | 0.022 | 2.346 |
| 0.2 | 1st | 0.925 | 0.033 | 0.042 | 1.695 |
|  | 3rd | 0.948 | 0.025 | 0.026 | 1.636 |
|  | Bayes | 0.936 | 0.030 | 0.034 | 1.550 |
|  | exact | 0.949 | 0.024 | 0.028 | 2.110 |
| 0.3 | 1st | 0.925 | 0.036 | 0.040 | 1.577 |
|  | 3rd | 0.948 | 0.027 | 0.024 | 1.526 |
|  | Bayes | 0.938 | 0.031 | 0.030 | 1.439 |
|  | exact | 0.950 | 0.026 | 0.024 | 1.903 |
| 0.4 | 1st | 0.929 | 0.032 | 0.039 | 1.460 |
|  | 3rd | 0.948 | 0.028 | 0.024 | 1.421 |
|  | Bayes | 0.942 | 0.032 | 0.026 | 1.347 |
|  | exact | 0.952 | 0.025 | 0.024 | 1.701 |
| 0.5 | 1st | 0.927 | 0.032 | 0.040 | 1.350 |
|  | 3rd | 0.943 | 0.031 | 0.026 | 1.324 |
|  | Bayes | 0.940 | 0.033 | 0.027 | 1.257 |
|  | exact | 0.947 | 0.026 | 0.026 | 1.499 |
| 0.6 | 1st | 0.928 | 0.031 | 0.041 | 1.236 |
|  | 3rd | 0.940 | 0.035 | 0.025 | 1.209 |
|  | Bayes | 0.937 | 0.037 | 0.025 | 1.157 |
|  | exact | 0.948 | 0.027 | 0.025 | 1.313 |
| 0.7 | 1st | 0.935 | 0.023 | 0.042 | 1.061 |
|  | 3rd | 0.945 | 0.029 | 0.026 | 1.054 |
|  | Bayes | 0.935 | 0.038 | 0.026 | 1.039 |
|  | exact | 0.950 | 0.026 | 0.024 | 1.097 |
| 0.8 | 1st | 0.936 | 0.025 | 0.038 | 0.865 |
|  | 3rd | 0.948 | 0.027 | 0.024 | 0.864 |
|  | Bayes | 0.946 | 0.029 | 0.024 | 0.905 |
|  | exact | 0.951 | 0.026 | 0.023 | 0.874 |
| 0.9 | 1st | 0.925 | 0.035 | 0.040 | 0.554 |
|  | 3rd | 0.954 | 0.022 | 0.024 | 0.563 |
|  | Bayes | 0.953 | 0.023 | 0.024 | 0.652 |
|  | 0.952 | 0.026 | 0.023 | 0.598 |  |

Table 4: Summary statistics for Simulation 1: bivariate normal with means 0 and variances 1. Empirical coverage $(C P)$, upper $(U E)$ and lower $(L E)$ error probability and average length $(A L)$ of nominal two-sided $95 \%$ confidence intervals for $\gamma$, for varying values of $\rho$ and sample size $n=10$. Pivots used: likelihood root $r$ ( $1 s t$ ), modified likelihood root $r^{*}$ (3rd); Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (15) by Haddad and Provost (2011) (exact). Based on 10,000 replicates; simulation error: $\pm 0.004$.

| $\rho$ | Method | $C P$ | $U E$ | LE | AL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | 1st | 0.942 | 0.037 | 0.021 | 4.907 |
|  | $3 \mathrm{~d} d$ | 0.951 | 0.024 | 0.025 | 4.826 |
|  | Bayes | 0.951 | 0.024 | 0.025 | 4.834 |
|  | exact | 0.952 | 0.022 | 0.025 | 6.496 |
| -0.8 | 1st | 0.945 | 0.034 | 0.020 | 3.174 |
|  | 3rd | 0.950 | 0.025 | 0.025 | 3.144 |
|  | Bayes | 0.949 | 0.025 | 0.026 | 3.154 |
|  | exact | 0.949 | 0.024 | 0.027 | 4.484 |
| -0.7 | 1st | 0.946 | 0.035 | 0.019 | 2.588 |
|  | $3 \mathrm{~d} d$ | 0.953 | 0.025 | 0.023 | 2.556 |
|  | Bayes | 0.949 | 0.025 | 0.026 | 2.551 |
|  | exact | 0.953 | 0.025 | 0.022 | 3.545 |
| -0.6 | 1st | 0.943 | 0.033 | 0.024 | 2.242 |
|  | 3rd | 0.948 | 0.023 | 0.029 | 2.205 |
|  | Bayes | 0.944 | 0.023 | 0.034 | 2.185 |
|  | exact | 0.952 | 0.024 | 0.024 | 2.968 |
| -0.5 | 1st | 0.944 | 0.034 | 0.022 | 1.999 |
|  | 3 rd | 0.951 | 0.023 | 0.026 | 1.961 |
|  | Bayes | 0.947 | 0.025 | 0.028 | 1.931 |
|  | exact | 0.954 | 0.025 | 0.021 | 2.583 |
| -0.4 | 1st | 0.937 | 0.036 | 0.027 | 1.801 |
|  | 3 d d | 0.946 | 0.026 | 0.028 | 1.766 |
|  | Bayes | 0.943 | 0.028 | 0.030 | 1.730 |
|  | exact | 0.949 | 0.025 | 0.026 | 2.275 |
| -0.3 | 1st | 0.937 | 0.034 | 0.029 | 1.649 |
|  | $3 \mathrm{~d} d$ | 0.947 | 0.025 | 0.028 | 1.615 |
|  | Bayes | 0.944 | 0.027 | 0.029 | 1.577 |
|  | exact | 0.952 | 0.023 | 0.024 | 2.034 |
| -0.2 | 1st | 0.933 | 0.036 | 0.031 | 1.503 |
|  | 3rd | 0.945 | 0.027 | 0.028 | 1.472 |
|  | Bayes | 0.940 | 0.029 | 0.031 | 1.433 |
|  | exact | 0.947 | 0.027 | 0.026 | 1.825 |
| -0.1 | 1 st | 0.936 | 0.034 | 0.030 | 1.395 |
|  | 3rd | 0.948 | 0.027 | 0.025 | 1.368 |
|  | Bayes | 0.947 | 0.028 | 0.025 | 1.328 |
|  | exact | 0.951 | 0.026 | 0.024 | 1.648 |
| 0 | 1st | 0.937 | 0.032 | 0.031 | 1.290 |
|  | $3 r d$ | 0.949 | 0.026 | 0.025 | 1.268 |


| (b) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\rho$ | Method | $C P$ | $U E$ | $L E$ | $A L$ |
| 0 | Bayes | 0.945 | 0.029 | 0.026 | 1.227 |
|  | exact | 0.951 | 0.025 | 0.024 | 1.485 |
| 0.1 | 1st | 0.936 | 0.031 | 0.034 | 1.192 |
|  | 3rd | 0.949 | 0.026 | 0.025 | 1.177 |
|  | Bayes | 0.945 | 0.027 | 0.028 | 1.138 |
|  | exact | 0.951 | 0.024 | 0.025 | 1.345 |
| 0.2 | 1st | 0.935 | 0.033 | 0.032 | 1.106 |
|  | 3rd | 0.948 | 0.029 | 0.023 | 1.098 |
|  | Bayes | 0.946 | 0.030 | 0.024 | 1.060 |
|  | exact | 0.952 | 0.027 | 0.021 | 1.223 |
| 0.3 | 1st | 0.937 | 0.028 | 0.036 | 1.011 |
|  | 3rd | 0.947 | 0.026 | 0.027 | 1.008 |
|  | Bayes | 0.945 | 0.026 | 0.029 | 0.974 |
|  | exact | 0.949 | 0.024 | 0.027 | 1.091 |
| 0.4 | 1st | 0.938 | 0.027 | 0.035 | 0.920 |
|  | 3rd | 0.948 | 0.028 | 0.025 | 0.922 |
|  | Bayes | 0.948 | 0.027 | 0.025 | 0.896 |
|  | exact | 0.951 | 0.024 | 0.025 | 0.974 |
| 0.5 | 1st | 0.941 | 0.023 | 0.035 | 0.817 |
|  | 3rd | 0.947 | 0.026 | 0.027 | 0.827 |
|  | Bayes | 0.945 | 0.027 | 0.027 | 0.807 |
|  | exact | 0.950 | 0.024 | 0.026 | 0.860 |
| 0.6 | 1st | 0.942 | 0.022 | 0.036 | 0.704 |
|  | 3rd | 0.948 | 0.027 | 0.025 | 0.719 |
|  | Bayes | 0.943 | 0.031 | 0.026 | 0.716 |
|  | exact | 0.954 | 0.023 | 0.023 | 0.743 |
| 0.7 | 1st | 0.945 | 0.020 | 0.036 | 0.574 |
|  | 3rd | 0.950 | 0.023 | 0.026 | 0.594 |
|  | Bayes | 0.946 | 0.028 | 0.026 | 0.606 |
|  | exact | 0.949 | 0.025 | 0.026 | 0.627 |
| 0.8 | 1st | 0.943 | 0.020 | 0.037 | 0.415 |
|  | 3rd | 0.954 | 0.022 | 0.024 | 0.438 |
|  | Bayes | 0.952 | 0.023 | 0.025 | 0.459 |
|  | exact | 0.952 | 0.023 | 0.026 | 0.496 |
| 0.9 | 1st | 0.943 | 0.022 | 0.034 | 0.259 |
|  | 3rd | 0.949 | 0.029 | 0.023 | 0.275 |
|  | Bayes | 0.949 | 0.028 | 0.023 | 0.283 |
|  | 0.949 | 0.026 | 0.025 | 0.343 |  |

Table 5: Summary statistics for Simulation 1: bivariate normal with means 0 and variances 1. Empirical coverage $(C P)$, upper $(U E)$ and lower $(L E)$ error probability and average length $(A L)$ of nominal two-sided $95 \%$ confidence intervals for $\gamma$, for varying values of $\rho$ and sample size $n=15$. Pivots used: likelihood root $r$ (1st), modified likelihood root $r^{*}(3 r d)$; Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (15) by Haddad and Provost (2011) (exact). Based on 10,000 replicates; simulation error: $\pm 0.004$.

| $\rho$ | Method | CP | $U E$ | LE | AL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | 1st | 0.948 | 0.034 | 0.018 | 3.706 |
|  | $3 \mathrm{~d} d$ | 0.950 | 0.026 | 0.025 | 3.676 |
|  | Bayes | 0.950 | 0.026 | 0.025 | 3.676 |
|  | exact | 0.952 | 0.025 | 0.023 | 4.980 |
| -0.8 | 1 st | 0.948 | 0.034 | 0.019 | 2.499 |
|  | 3 d d | 0.951 | 0.026 | 0.023 | 2.489 |
|  | Bayes | 0.951 | 0.026 | 0.024 | 2.492 |
|  | exact | 0.950 | 0.027 | 0.023 | 3.441 |
| -0.7 | $1 s t$ | 0.948 | 0.034 | 0.018 | 2.065 |
|  | 3 d d | 0.953 | 0.024 | 0.022 | 2.053 |
|  | Bayes | 0.951 | 0.024 | 0.025 | 2.053 |
|  | exact | 0.953 | 0.023 | 0.023 | 2.716 |
| -0.6 | 1st | 0.947 | 0.032 | 0.021 | 1.805 |
|  | 3rd | 0.951 | 0.024 | 0.024 | 1.789 |
|  | Bayes | 0.947 | 0.024 | 0.029 | 1.780 |
|  | exact | 0.950 | 0.024 | 0.025 | 2.286 |
| -0.5 | 1 st | 0.949 | 0.030 | 0.020 | 1.613 |
|  | 3rd | 0.954 | 0.023 | 0.023 | 1.594 |
|  | Bayes | 0.950 | 0.024 | 0.026 | 1.578 |
|  | exact | 0.953 | 0.025 | 0.022 | 1.978 |
| -0.4 | 1st | 0.947 | 0.030 | 0.023 | 1.457 |
|  | 3 d d | 0.954 | 0.022 | 0.024 | 1.438 |
|  | Bayes | 0.951 | 0.023 | 0.026 | 1.418 |
|  | exact | 0.951 | 0.025 | 0.024 | 1.741 |
| -0.3 | 1st | 0.939 | 0.033 | 0.028 | 1.331 |
|  | 3 d d | 0.946 | 0.026 | 0.028 | 1.313 |
|  | Bayes | 0.945 | 0.026 | 0.029 | 1.289 |
|  | exact | 0.950 | 0.024 | 0.025 | 1.553 |
| -0.2 | 1st | 0.938 | 0.032 | 0.030 | 1.224 |
|  | 3 d d | 0.946 | 0.026 | 0.028 | 1.207 |
|  | Bayes | 0.945 | 0.027 | 0.028 | 1.182 |
|  | exact | 0.947 | 0.026 | 0.027 | 1.398 |
| -0.1 | 1 st | 0.939 | 0.030 | 0.030 | 1.126 |
|  | 3 rd | 0.949 | 0.024 | 0.027 | 1.112 |
|  | Bayes | 0.948 | 0.024 | 0.027 | 1.085 |
|  | exact | 0.952 | 0.023 | 0.025 | 1.260 |
| 0 | 1st | 0.939 | 0.031 | 0.030 | 1.037 |
|  | 3 rd | 0.948 | 0.027 | 0.026 | 1.026 |


| (b) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\rho$ | Method | $C P$ | $U E$ | $L E$ | $A L$ |
| 0 | Bayes | 0.945 | 0.028 | 0.027 | 1.000 |
|  | exact | 0.950 | 0.025 | 0.025 | 1.139 |
| 0.1 | 1st | 0.940 | 0.030 | 0.031 | 0.951 |
|  | 3rd | 0.949 | 0.025 | 0.025 | 0.944 |
|  | Bayes | 0.947 | 0.028 | 0.025 | 0.919 |
|  | exact | 0.952 | 0.025 | 0.023 | 1.027 |
| 0.2 | 1st | 0.942 | 0.027 | 0.031 | 0.879 |
|  | 3rd | 0.952 | 0.025 | 0.023 | 0.876 |
|  | Bayes | 0.950 | 0.026 | 0.024 | 0.853 |
|  | exact | 0.953 | 0.024 | 0.023 | 0.934 |
| 0.3 | 1st | 0.940 | 0.025 | 0.035 | 0.798 |
|  | 3rd | 0.947 | 0.025 | 0.027 | 0.798 |
|  | Bayes | 0.946 | 0.027 | 0.028 | 0.779 |
|  | exact | 0.948 | 0.025 | 0.027 | 0.836 |
| 0.4 | 1st | 0.940 | 0.027 | 0.034 | 0.716 |
|  | 3rd | 0.945 | 0.028 | 0.027 | 0.722 |
|  | Bayes | 0.944 | 0.029 | 0.027 | 0.708 |
|  | exact | 0.947 | 0.027 | 0.026 | 0.749 |
| 0.5 | 1st | 0.944 | 0.025 | 0.032 | 0.620 |
|  | 3rd | 0.949 | 0.027 | 0.024 | 0.630 |
|  | Bayes | 0.946 | 0.030 | 0.024 | 0.625 |
|  | exact | 0.949 | 0.025 | 0.026 | 0.657 |
| 0.6 | 1st | 0.949 | 0.020 | 0.031 | 0.524 |
|  | 3rd | 0.955 | 0.023 | 0.022 | 0.537 |
|  | Bayes | 0.951 | 0.027 | 0.022 | 0.539 |
|  | exact | 0.951 | 0.025 | 0.025 | 0.569 |
| 0.7 | 1st | 0.946 | 0.019 | 0.035 | 0.419 |
|  | 3rd | 0.949 | 0.023 | 0.027 | 0.434 |
|  | Bayes | 0.947 | 0.025 | 0.027 | 0.441 |
|  | exact | 0.947 | 0.029 | 0.024 | 0.481 |
| 0.8 | 1st | 0.952 | 0.019 | 0.029 | 0.303 |
|  | 3rd | 0.955 | 0.023 | 0.021 | 0.317 |
|  | Bayes | 0.954 | 0.024 | 0.021 | 0.322 |
|  | exact | 0.953 | 0.025 | 0.022 | 0.380 |
| 0.9 | 1st | 0.947 | 0.021 | 0.033 | 0.193 |
|  | 3rd | 0.949 | 0.026 | 0.025 | 0.203 |
|  | Bayes | 0.949 | 0.026 | 0.025 | 0.203 |
|  | 0.948 | 0.027 | 0.025 | 0.263 |  |

Table 6: Summary statistics for Simulation 1: bivariate normal with means 0 and variances 1. Empirical coverage $(C P)$, upper $(U E)$ and lower $(L E)$ error probability and average length $(A L)$ of nominal two-sided $95 \%$ confidence intervals for $\gamma$, for varying values of $\rho$ and sample size $n=20$. Pivots used: likelihood root $r$ ( $1 s t$ ), modified likelihood root $r^{*}(3 r d)$; Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (15) by Haddad and Provost (2011) (exact). Based on 10,000 replicates; simulation error: $\pm 0.004$.

| $\rho$ | Method | $C P$ | $U E$ | LE | AL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | 1st | 0.947 | 0.033 | 0.020 | 3.088 |
|  | $3 \mathrm{~d} d$ | 0.951 | 0.025 | 0.025 | 3.073 |
|  | Bayes | 0.950 | 0.025 | 0.025 | 3.073 |
|  | exact | 0.948 | 0.026 | 0.026 | 4.194 |
| -0.8 | 1st | 0.949 | 0.032 | 0.019 | 2.126 |
|  | 3rd | 0.950 | 0.027 | 0.023 | 2.121 |
|  | Bayes | 0.950 | 0.027 | 0.023 | 2.121 |
|  | exact | 0.950 | 0.027 | 0.023 | 2.876 |
| -0.7 | 1st | 0.951 | 0.030 | 0.019 | 1.761 |
|  | $3 \mathrm{~d} d$ | 0.953 | 0.024 | 0.023 | 1.754 |
|  | Bayes | 0.951 | 0.024 | 0.024 | 1.755 |
|  | exact | 0.952 | 0.024 | 0.024 | 2.276 |
| -0.6 | 1st | 0.947 | 0.032 | 0.022 | 1.550 |
|  | 3rd | 0.951 | 0.024 | 0.024 | 1.540 |
|  | Bayes | 0.947 | 0.024 | 0.029 | 1.537 |
|  | exact | 0.948 | 0.026 | 0.027 | 1.916 |
| -0.5 | 1st | 0.943 | 0.032 | 0.025 | 1.387 |
|  | 3 rd | 0.947 | 0.025 | 0.028 | 1.375 |
|  | Bayes | 0.944 | 0.025 | 0.032 | 1.366 |
|  | exact | 0.948 | 0.024 | 0.027 | 1.656 |
| -0.4 | 1st | 0.947 | 0.029 | 0.024 | 1.259 |
|  | 3 d d | 0.951 | 0.022 | 0.027 | 1.246 |
|  | Bayes | 0.947 | 0.023 | 0.030 | 1.232 |
|  | exact | 0.951 | 0.023 | 0.026 | 1.459 |
| -0.3 | 1st | 0.944 | 0.031 | 0.025 | 1.149 |
|  | $3 \mathrm{~d} d$ | 0.950 | 0.025 | 0.026 | 1.137 |
|  | Bayes | 0.949 | 0.025 | 0.026 | 1.119 |
|  | exact | 0.950 | 0.024 | 0.026 | 1.302 |
| -0.2 | 1st | 0.942 | 0.033 | 0.026 | 1.061 |
|  | 3rd | 0.948 | 0.029 | 0.024 | 1.050 |
|  | Bayes | 0.947 | 0.028 | 0.025 | 1.031 |
|  | exact | 0.951 | 0.027 | 0.022 | 1.173 |
| -0.1 | 1 st | 0.941 | 0.033 | 0.026 | 0.972 |
|  | 3rd | 0.948 | 0.028 | 0.024 | 0.963 |
|  | Bayes | 0.948 | 0.028 | 0.024 | 0.944 |
|  | exact | 0.950 | 0.026 | 0.023 | 1.060 |
| 0 | 1st | 0.944 | 0.029 | 0.027 | 0.896 |
|  | $3 r d$ | 0.950 | 0.026 | 0.024 | 0.889 |


| (b) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\rho$ | Method | $C P$ | $U E$ | $L E$ | $A L$ |
| 0 | Bayes | 0.948 | 0.027 | 0.025 | 0.870 |
|  | exact | 0.952 | 0.025 | 0.023 | 0.958 |
| 0.1 | 1st | 0.940 | 0.029 | 0.030 | 0.818 |
|  | 3rd | 0.948 | 0.026 | 0.026 | 0.814 |
|  | Bayes | 0.946 | 0.027 | 0.027 | 0.797 |
|  | exact | 0.949 | 0.026 | 0.025 | 0.866 |
| 0.2 | 1st | 0.944 | 0.028 | 0.028 | 0.745 |
|  | 3rd | 0.951 | 0.027 | 0.022 | 0.744 |
|  | Bayes | 0.949 | 0.028 | 0.023 | 0.729 |
|  | exact | 0.950 | 0.026 | 0.023 | 0.781 |
| 0.3 | 1st | 0.944 | 0.025 | 0.031 | 0.673 |
|  | 3rd | 0.949 | 0.025 | 0.026 | 0.675 |
|  | Bayes | 0.948 | 0.026 | 0.026 | 0.663 |
|  | exact | 0.951 | 0.024 | 0.025 | 0.702 |
| 0.4 | 1st | 0.941 | 0.027 | 0.032 | 0.598 |
|  | 3rd | 0.946 | 0.028 | 0.025 | 0.603 |
|  | Bayes | 0.945 | 0.030 | 0.026 | 0.596 |
|  | exact | 0.948 | 0.026 | 0.026 | 0.628 |
| 0.5 | 1st | 0.946 | 0.023 | 0.031 | 0.520 |
|  | 3rd | 0.951 | 0.026 | 0.023 | 0.528 |
|  | Bayes | 0.948 | 0.028 | 0.023 | 0.526 |
|  | exact | 0.951 | 0.026 | 0.024 | 0.554 |
| 0.6 | 1st | 0.946 | 0.023 | 0.031 | 0.433 |
|  | 3rd | 0.949 | 0.026 | 0.026 | 0.443 |
|  | Bayes | 0.946 | 0.029 | 0.025 | 0.445 |
|  | exact | 0.948 | 0.027 | 0.025 | 0.479 |
| 0.7 | 1st | 0.946 | 0.020 | 0.034 | 0.342 |
|  | 3rd | 0.949 | 0.024 | 0.028 | 0.352 |
|  | Bayes | 0.947 | 0.025 | 0.028 | 0.356 |
|  | exact | 0.948 | 0.025 | 0.027 | 0.403 |
| 0.8 | 1st | 0.947 | 0.019 | 0.035 | 0.250 |
|  | 3rd | 0.950 | 0.022 | 0.028 | 0.259 |
|  | Bayes | 0.950 | 0.023 | 0.027 | 0.261 |
|  | exact | 0.950 | 0.023 | 0.028 | 0.318 |
| 0.9 | 1st | 0.949 | 0.019 | 0.032 | 0.162 |
|  | 3rd | 0.950 | 0.024 | 0.025 | 0.167 |
|  | Bayes | 0.950 | 0.025 | 0.025 | 0.167 |
|  | 0.952 | 0.023 | 0.024 | 0.219 |  |

Table 7: Summary statistics for Simulation 2: bivariate normal with means 7 and variances 0.9 . Empirical coverage $(C P)$, upper $(U E)$ and lower $(L E)$ error probability and average length $(A L)$ of nominal two-sided $95 \%$ confidence intervals for $\gamma$, for varying values of $\rho$ and sample size $n=5$. Pivots used: likelihood root $r$ (1st), modified likelihood root $r^{*}(3 r d)$; Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (17) by Haddad and Provost (2011) (HP); expression (19) by Mameli et al. (2012) (ACI). Based on 10,000 replicates; simulation error: $\pm 0.004$.

| $\rho$ | Method | CP | UE | LE | AL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | 1 st | 0.842 | 0.118 | 0.041 | 11.313 |
|  | 3rd | 0.938 | 0.035 | 0.026 | 12.490 |
|  | Bayes | 0.970 | 0.016 | 0.014 | 14.316 |
|  | HP | 0.904 | 0.072 | 0.024 | 18.031 |
|  | $A C I$ | 0.956 | 0.034 | 0.010 | 24.343 |
| -0.8 | 1st | 0.849 | 0.107 | 0.044 | 8.565 |
|  | 3 d d | 0.940 | 0.035 | 0.025 | 9.071 |
|  | Bayes | 0.968 | 0.017 | 0.015 | 10.617 |
|  | HP | 0.909 | 0.066 | 0.025 | 12.216 |
|  | $A C I$ | 0.953 | 0.034 | 0.013 | 16.492 |
| -0.7 | 1st | 0.847 | 0.102 | 0.051 | 7.001 |
|  | 3 d d | 0.938 | 0.034 | 0.028 | 7.743 |
|  | Bayes | 0.968 | 0.018 | 0.014 | 9.189 |
|  | HP | 0.906 | 0.064 | 0.030 | 9.559 |
|  | $A C I$ | 0.955 | 0.031 | 0.014 | 12.906 |
| -0.6 | 1st | 0.843 | 0.101 | 0.056 | 5.865 |
|  | 3 d d | 0.939 | 0.034 | 0.027 | 6.644 |
|  | Bayes | 0.969 | 0.017 | 0.014 | 7.967 |
|  | HP | 0.906 | 0.062 | 0.031 | 7.785 |
|  | $A C I$ | 0.954 | 0.031 | 0.015 | 10.510 |
| -0.5 | 1st | 0.839 | 0.100 | 0.061 | 5.078 |
|  | 3 rd | 0.940 | 0.033 | 0.028 | 5.883 |
|  | Bayes | 0.969 | 0.017 | 0.014 | 7.096 |
|  | HP | 0.906 | 0.059 | 0.035 | 6.647 |
|  | $A C I$ | 0.954 | 0.029 | 0.016 | 8.974 |
| -0.4 | 1st | 0.840 | 0.096 | 0.064 | 4.439 |
|  | $3 r d$ | 0.937 | 0.034 | 0.029 | 5.206 |
|  | Bayes | 0.967 | 0.017 | 0.015 | 6.317 |
|  | HP | 0.905 | 0.058 | 0.038 | 5.807 |
|  | ACI | 0.950 | 0.031 | 0.020 | 7.840 |
| -0.3 | 1st | 0.845 | 0.089 | 0.067 | 3.892 |
|  | 3 rd | 0.939 | 0.032 | 0.030 | 4.637 |
|  | Bayes | 0.969 | 0.016 | 0.015 | 5.650 |
|  | HP | 0.906 | 0.053 | 0.040 | 5.044 |
|  | $A C I$ | 0.954 | 0.027 | 0.020 | 6.810 |
| -0.2 | 1st | 0.835 | 0.088 | 0.077 | 3.426 |
|  | 3 d d | 0.938 | 0.030 | 0.032 | 4.143 |
|  | Bayes | 0.969 | 0.013 | 0.018 | 5.066 |
|  | HP | 0.903 | 0.050 | 0.047 | 4.417 |
|  | $A C I$ | 0.951 | 0.024 | 0.025 | 5.963 |
| -0.1 | 1st | 0.842 | 0.082 | 0.076 | 3.055 |
|  | 3 rd | 0.937 | 0.032 | 0.031 | 3.726 |
|  | Bayes | 0.969 | 0.014 | 0.017 | 4.569 |
|  | HP | 0.905 | 0.048 | 0.047 | 3.956 |
|  | $A C I$ | 0.951 | 0.025 | 0.024 | 5.341 |
| 0 | 1st | 0.833 | 0.083 | 0.084 | 2.762 |
|  | 3 d d | 0.937 | 0.031 | 0.032 | 3.405 |
|  | Bayes | 0.969 | 0.015 | 0.015 | 4.186 |



Table 8: Summary statistics for Simulation 2: bivariate normal with means 7 and variances 0.9 . Empirical coverage $(C P)$, upper $(U E)$ and lower $(L E)$ error probability and average length ( $A L$ ) of nominal two-sided $95 \%$ confidence intervals for $\gamma$, for varying values of $\rho$ and sample size $n=10$. Pivots used: likelihood root $r$ (1st), modified likelihood root $r^{*}(3 r d)$; Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (17) by Haddad and Provost (2011) (HP); expression (19) by Mameli et al. (2012) (ACI). Based on 10,000 replicates; simulation error: $\pm 0.004$.

| (a) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho$ | Method | $C P$ | $U E$ | LE | AL |
| -0.9 | $1 s t$ | 0.914 | 0.055 | 0.031 | 7.005 |
|  | $3 \mathrm{~d} d$ | 0.948 | 0.026 | 0.026 | 7.427 |
|  | Bayes | 0.960 | 0.020 | 0.020 | 7.903 |
|  | $H P$ | 0.938 | 0.041 | 0.021 | 7.477 |
|  | ACI | 0.952 | 0.032 | 0.016 | 8.037 |
| -0.8 | $1 s t$ | 0.911 | 0.059 | 0.031 | 4.830 |
|  | $3 r d$ | 0.949 | 0.027 | 0.025 | 5.128 |
|  | Bayes | 0.962 | 0.020 | 0.018 | 5.487 |
|  | HP | 0.934 | 0.044 | 0.022 | 5.137 |
|  | ACI | 0.951 | 0.033 | 0.016 | 5.521 |
| -0.7 | $1 s t$ | 0.917 | 0.053 | 0.031 | 3.749 |
|  | $3 r d$ | 0.948 | 0.029 | 0.023 | 4.015 |
|  | Bayes | 0.959 | 0.022 | 0.019 | 4.304 |
|  | HP | 0.939 | 0.040 | 0.021 | 4.049 |
|  | $A C I$ | 0.949 | 0.033 | 0.018 | 4.352 |
| $-0.6$ | 1st | 0.911 | 0.053 | 0.035 | 3.091 |
|  | $3 r d$ | 0.948 | 0.026 | 0.026 | 3.318 |
|  | Bayes | 0.961 | 0.020 | 0.019 | 3.557 |
|  | HP | 0.936 | 0.038 | 0.026 | 3.371 |
|  | $A C I$ | 0.951 | 0.030 | 0.019 | 3.623 |
| -0.5 | $1 s t$ | 0.910 | 0.051 | 0.038 | 2.647 |
|  | $3 r d$ | 0.949 | 0.026 | 0.026 | 2.846 |
|  | Bayes | 0.963 | 0.018 | 0.019 | 3.050 |
|  | HP | 0.934 | 0.039 | 0.027 | 2.903 |
|  | $A C I$ | 0.951 | 0.029 | 0.020 | 3.121 |
| -0.4 | 1st | 0.910 | 0.050 | 0.040 | 2.305 |
|  | 3 rd | 0.948 | 0.026 | 0.026 | 2.487 |
|  | Bayes | 0.961 | 0.019 | 0.020 | 2.664 |
|  | HP | 0.935 | 0.036 | 0.029 | 2.534 |
|  | ACI | 0.951 | 0.028 | 0.021 | 2.723 |
|  | 1st | 0.917 | 0.049 | 0.034 | 2.059 |
| $-0.3$ | $3 r d$ | 0.952 | 0.026 | 0.022 | 2.227 |
|  | Bayes | 0.962 | 0.020 | 0.018 | 2.386 |
|  | HP | 0.939 | 0.037 | 0.024 | 2.266 |
|  | ACI | 0.951 | 0.028 | 0.020 | 2.435 |
| $-0.2$ | 1st | 0.910 | 0.046 | 0.043 | 1.816 |
|  | $3 r d$ | 0.947 | 0.025 | 0.028 | 1.972 |
|  | Bayes | 0.960 | 0.019 | 0.021 | 2.113 |
|  | $H P$ | 0.933 | 0.034 | 0.033 | 2.000 |
|  | ACI | 0.948 | 0.026 | 0.026 | 2.150 |
| -0.1 | 1st | 0.912 | 0.047 | 0.041 | 1.637 |
|  | $3 r d$ | 0.946 | 0.027 | 0.026 | 1.785 |
|  | Bayes | 0.958 | 0.021 | 0.021 | 1.913 |
|  | HP | 0.934 | 0.035 | 0.031 | 1.804 |
|  | ACI | 0.947 | 0.028 | 0.025 | 1.938 |
| 0 | $1 s t$ | 0.914 | 0.044 | 0.042 | 1.466 |
|  | $3 r d$ | 0.946 | 0.027 | 0.026 | 1.605 |
|  | Bayes | 0.959 | 0.021 | 0.020 | 1.720 |


| $\rho$ | Method | $C P$ | $U E$ | LE | AL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | HP | 0.935 | 0.033 | 0.033 | 1.615 |
|  | $A C I$ | 0.947 | 0.027 | 0.026 | 1.736 |
| 0.1 | $1 s t$ | 0.909 | 0.046 | 0.045 | 1.330 |
|  | 3 rd | 0.949 | 0.026 | 0.026 | 1.463 |
|  | Bayes | 0.963 | 0.018 | 0.018 | 1.569 |
|  | $H P$ | 0.934 | 0.033 | 0.033 | 1.465 |
|  | $A C I$ | 0.950 | 0.024 | 0.026 | 1.575 |
| 0.2 | $1 s t$ | 0.912 | 0.040 | 0.048 | 1.178 |
|  | $3 r d$ | 0.950 | 0.025 | 0.025 | 1.304 |
|  | Bayes | 0.960 | 0.020 | 0.020 | 1.398 |
|  | HP | 0.935 | 0.029 | 0.036 | 1.298 |
|  | $A C I$ | 0.950 | 0.023 | 0.027 | 1.395 |
| 0.3 | $1 s t$ | 0.913 | 0.040 | 0.047 | 1.060 |
|  | 3 rd | 0.951 | 0.024 | 0.025 | 1.180 |
|  | Bayes | 0.962 | 0.019 | 0.019 | 1.266 |
|  | HP | 0.936 | 0.029 | 0.036 | 1.168 |
|  | $A C I$ | 0.952 | 0.021 | 0.027 | 1.255 |
| 0.4 | $1 s t$ | 0.914 | 0.042 | 0.044 | 0.941 |
|  | $3 \mathrm{~d} d$ | 0.947 | 0.030 | 0.024 | 1.055 |
|  | Bayes | 0.961 | 0.022 | 0.016 | 1.132 |
|  | HP | 0.936 | 0.031 | 0.033 | 1.037 |
|  | $A C I$ | 0.949 | 0.025 | 0.026 | 1.114 |
| 0.5 | $1 s t$ | 0.914 | 0.037 | 0.050 | 0.821 |
|  | $3 r d$ | 0.951 | 0.025 | 0.024 | 0.928 |
|  | Bayes | 0.961 | 0.020 | 0.019 | 0.997 |
|  | HP | 0.937 | 0.026 | 0.037 | 0.905 |
|  | $A C I$ | 0.952 | 0.021 | 0.028 | 0.972 |
| 0.6 | $1 s t$ | 0.915 | 0.032 | 0.053 | 0.703 |
|  | $3 r d$ | 0.950 | 0.024 | 0.026 | 0.803 |
|  | Bayes | 0.963 | 0.018 | 0.020 | 0.863 |
|  | HP | 0.938 | 0.023 | 0.038 | 0.774 |
|  | $A C I$ | 0.952 | 0.018 | 0.031 | 0.832 |
| 0.7 | 1st | 0.912 | 0.034 | 0.054 | 0.590 |
|  | 3 d d | 0.948 | 0.027 | 0.025 | 0.682 |
|  | Bayes | 0.962 | 0.019 | 0.018 | 0.734 |
|  | HP | 0.933 | 0.025 | 0.042 | 0.649 |
|  | $A C I$ | 0.951 | 0.018 | 0.031 | 0.698 |
| 0.8 | $1 s t$ | 0.918 | 0.029 | 0.054 | 0.465 |
|  | 3 rd | 0.952 | 0.023 | 0.025 | 0.551 |
|  | Bayes | 0.962 | 0.019 | 0.019 | 0.593 |
|  | $H P$ | 0.940 | 0.021 | 0.039 | 0.510 |
|  | $A C I$ | 0.954 | 0.016 | 0.030 | 0.548 |
| 0.9 | 1st | 0.914 | 0.027 | 0.059 | 0.328 |
|  | $3 r d$ | 0.946 | 0.024 | 0.030 | 0.420 |
|  | Bayes | 0.960 | 0.018 | 0.021 | 0.453 |
|  | $H P$ | 0.935 | 0.019 | 0.046 | 0.347 |
|  | $A C I$ | 0.948 | 0.015 | 0.037 | 0.373 |

Table 9: Summary statistics for Simulation 2: bivariate normal with means 7 and variances 0.9 . Empirical coverage $(C P)$, upper $(U E)$ and lower $(L E)$ error probability and average length $(A L)$ of nominal two-sided $95 \%$ confidence intervals for $\gamma$, for varying values of $\rho$ and sample size $n=15$. Pivots used: likelihood root $r$ (1st), modified likelihood root $r^{*}(3 r d)$; Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (17) by Haddad and Provost (2011) (HP); expression (19) by Mameli et al. (2012) (ACI). Based on 10,000 replicates; simulation error: $\pm 0.004$.

| $\rho$ | Method | CP | $U E$ | LE | AL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | $1 s t$ | 0.926 | 0.046 | 0.028 | 5.407 |
|  | 3 rd | 0.946 | 0.028 | 0.026 | 5.552 |
|  | Bayes | 0.954 | 0.023 | 0.023 | 5.771 |
|  | HP | 0.939 | 0.038 | 0.023 | 5.410 |
|  | $A C I$ | 0.948 | 0.033 | 0.019 | 5.629 |
| -0.8 | 1st | 0.924 | 0.047 | 0.029 | 3.562 |
|  | 3 rd | 0.944 | 0.030 | 0.027 | 3.747 |
|  | Bayes | 0.953 | 0.025 | 0.022 | 3.905 |
|  | HP | 0.937 | 0.039 | 0.024 | 3.696 |
|  | $A C I$ | 0.946 | 0.034 | 0.019 | 3.846 |
| -0.7 | $1 s t$ | 0.928 | 0.043 | 0.029 | 2.757 |
|  | 3 rd | 0.949 | 0.026 | 0.026 | 2.884 |
|  | Bayes | 0.955 | 0.022 | 0.023 | 3.005 |
|  | HP | 0.941 | 0.035 | 0.024 | 2.911 |
|  | $A C I$ | 0.950 | 0.030 | 0.021 | 3.029 |
| -0.6 | 1st | 0.925 | 0.045 | 0.030 | 2.314 |
|  | 3 rd | 0.948 | 0.027 | 0.025 | 2.417 |
|  | Bayes | 0.956 | 0.022 | 0.021 | 2.518 |
|  | HP | 0.939 | 0.036 | 0.024 | 2.453 |
|  | $A C I$ | 0.949 | 0.031 | 0.020 | 2.553 |
| -0.5 | 1st | 0.928 | 0.040 | 0.032 | 1.988 |
|  | 3 rd | 0.949 | 0.026 | 0.025 | 2.079 |
|  | Bayes | 0.956 | 0.022 | 0.021 | 2.166 |
|  | HP | 0.942 | 0.033 | 0.025 | 2.110 |
|  | $A C I$ | 0.950 | 0.029 | 0.021 | 2.195 |
| -0.4 | 1st | 0.927 | 0.042 | 0.032 | 1.753 |
|  | 3 rd | 0.948 | 0.027 | 0.025 | 1.837 |
|  | Bayes | 0.956 | 0.022 | 0.022 | 1.913 |
|  | HP | 0.940 | 0.034 | 0.026 | 1.861 |
|  | $A C I$ | 0.948 | 0.029 | 0.022 | 1.936 |
| -0.3 | 1st | 0.926 | 0.041 | 0.033 | 1.560 |
|  | 3 rd | 0.948 | 0.025 | 0.026 | 1.637 |
|  | Bayes | 0.958 | 0.020 | 0.022 | 1.705 |
|  | HP | 0.940 | 0.032 | 0.028 | 1.655 |
|  | ACI | 0.948 | 0.027 | 0.024 | 1.722 |
| -0.2 | 1st | 0.925 | 0.040 | 0.035 | 1.393 |
|  | 3 rd | 0.951 | 0.025 | 0.024 | 1.466 |
|  | Bayes | 0.958 | 0.022 | 0.020 | 1.527 |
|  | HP | 0.943 | 0.031 | 0.026 | 1.478 |
|  | $A C I$ | 0.952 | 0.027 | 0.022 | 1.538 |
| -0.1 | $1 s t$ | 0.928 | 0.038 | 0.034 | 1.250 |
|  | 3 rd | 0.950 | 0.026 | 0.024 | 1.319 |
|  | Bayes | 0.956 | 0.023 | 0.021 | 1.375 |
|  | HP | 0.942 | 0.031 | 0.027 | 1.327 |
|  | ACI | 0.949 | 0.027 | 0.024 | 1.381 |
| 0 | $1 s t$ | 0.926 | 0.038 | 0.036 | 1.127 |
|  | 3 rd | 0.949 | 0.025 | 0.026 | 1.192 |
|  | Bayes | 0.958 | 0.021 | 0.022 | 1.242 |


| (b) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho$ | Method | CP | $U E$ | LE | AL |
|  | HP | 0.941 | 0.030 | 0.029 | 1.195 |
|  | $A C I$ | 0.949 | 0.025 | 0.026 | 1.244 |
| 0.1 | $1 s t$ | 0.929 | 0.033 | 0.037 | 1.015 |
|  | 3 rd | 0.950 | 0.025 | 0.026 | 1.078 |
|  | Bayes | 0.958 | 0.019 | 0.022 | 1.123 |
|  | HP | 0.942 | 0.027 | 0.030 | 1.077 |
|  | ACI | 0.950 | 0.024 | 0.026 | 1.121 |
| 0.2 | 1st | 0.924 | 0.035 | 0.041 | 0.910 |
|  | 3 rd | 0.948 | 0.024 | 0.028 | 0.970 |
|  | Bayes | 0.957 | 0.020 | 0.023 | 1.011 |
|  | HP | 0.939 | 0.027 | 0.033 | 0.965 |
|  | ACI | 0.949 | 0.022 | 0.029 | 1.004 |
| 0.3 | $1 s t$ | 0.925 | 0.032 | 0.043 | 0.815 |
|  | 3 rd | 0.948 | 0.024 | 0.028 | 0.873 |
|  | Bayes | 0.956 | 0.019 | 0.024 | 0.910 |
|  | HP | 0.938 | 0.025 | 0.037 | 0.865 |
|  | ACI | 0.948 | 0.021 | 0.031 | 0.900 |
| 0.4 | 1st | 0.928 | 0.032 | 0.040 | 0.722 |
|  | 3rd | 0.951 | 0.025 | 0.024 | 0.776 |
|  | Bayes | 0.961 | 0.021 | 0.018 | 0.809 |
|  | HP | 0.942 | 0.026 | 0.031 | 0.766 |
|  | ACI | 0.952 | 0.022 | 0.026 | 0.797 |
| 0.5 | 1st | 0.927 | 0.033 | 0.040 | 0.639 |
|  | 3 rd | 0.951 | 0.025 | 0.024 | 0.690 |
|  | Bayes | 0.960 | 0.020 | 0.020 | 0.720 |
|  | HP | 0.944 | 0.025 | 0.031 | 0.677 |
|  | ACI | 0.953 | 0.020 | 0.027 | 0.705 |
| 0.6 | 1st | 0.929 | 0.028 | 0.043 | 0.548 |
|  | 3rd | 0.949 | 0.024 | 0.027 | 0.596 |
|  | Bayes | 0.956 | 0.021 | 0.023 | 0.622 |
|  | HP | 0.941 | 0.023 | 0.036 | 0.582 |
|  | ACI | 0.950 | 0.020 | 0.031 | 0.605 |
| 0.7 | 1st | 0.930 | 0.029 | 0.041 | 0.461 |
|  | 3 rd | 0.950 | 0.026 | 0.024 | 0.505 |
|  | Bayes | 0.958 | 0.023 | 0.020 | 0.527 |
|  | HP | 0.943 | 0.024 | 0.033 | 0.490 |
|  | ACI | 0.952 | 0.021 | 0.027 | 0.509 |
| 0.8 | 1st | 0.932 | 0.028 | 0.040 | 0.364 |
|  | 3rd | 0.950 | 0.026 | 0.024 | 0.404 |
|  | Bayes | 0.957 | 0.022 | 0.021 | 0.422 |
|  | HP | 0.943 | 0.024 | 0.033 | 0.386 |
|  | ACI | 0.952 | 0.019 | 0.029 | 0.402 |
| 0.9 | 1st | 0.929 | 0.028 | 0.043 | 0.255 |
|  | 3 rd | 0.949 | 0.027 | 0.024 | 0.305 |
|  | Bayes | 0.956 | 0.024 | 0.021 | 0.319 |
|  | HP | 0.942 | 0.023 | 0.035 | 0.265 |
|  | ACI | 0.950 | 0.020 | 0.030 | 0.275 |

Table 10: Summary statistics for Simulation 2: bivariate normal with means 7 and variances 0.9. Empirical coverage $(C P)$, upper $(U E)$ and lower $(L E)$ error probability and average length $(A L)$ of nominal two-sided $95 \%$ confidence intervals for $\gamma$, for varying values of $\rho$ and sample size $n=20$. Pivots used: likelihood root $r$ ( $1 s t$ ), modified likelihood root $r^{*}$ (3rd); Bayesian modified likelihood root $r_{B}^{*}$ (Bayes); expression (17) by Haddad and Provost (2011) (HP); expression (19) by Mameli et al. (2012) (ACI). Based on 10,000 replicates; simulation error: $\pm 0.004$.

| $\rho$ | Method | $C P$ | $U E$ | LE | AL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | 1st | 0.935 | 0.040 | 0.025 | 4.488 |
|  | $3 r d$ | 0.949 | 0.025 | 0.025 | 4.718 |
|  | Bayes | 0.956 | 0.023 | 0.021 | 4.852 |
|  | $H P$ | 0.947 | 0.033 | 0.020 | 4.414 |
|  | $A C I$ | 0.952 | 0.030 | 0.018 | 4.536 |
| -0.8 | $1 s t$ | 0.930 | 0.043 | 0.027 | 2.945 |
|  | $3 r d$ | 0.946 | 0.028 | 0.026 | 3.060 |
|  | Bayes | 0.952 | 0.025 | 0.023 | 3.152 |
|  | $H P$ | 0.940 | 0.037 | 0.022 | 3.043 |
|  | $A C I$ | 0.947 | 0.034 | 0.019 | 3.128 |
| $-0.7$ | $1 s t$ | 0.932 | 0.040 | 0.028 | 2.303 |
|  | $3 r d$ | 0.950 | 0.024 | 0.026 | 2.376 |
|  | Bayes | 0.954 | 0.022 | 0.024 | 2.446 |
|  | $H P$ | 0.942 | 0.034 | 0.024 | 2.404 |
|  | $A C I$ | 0.948 | 0.030 | 0.022 | 2.471 |
| -0.6 | 1st | 0.933 | 0.038 | 0.029 | 1.926 |
|  | 3rd | 0.950 | 0.024 | 0.025 | 1.986 |
|  | Bayes | 0.956 | 0.021 | 0.023 | 2.045 |
|  | HP | 0.944 | 0.032 | 0.024 | 2.010 |
|  | $A C I$ | 0.949 | 0.029 | 0.022 | 2.066 |
| -0.5 | 1st | 0.935 | 0.036 | 0.028 | 1.662 |
|  | 3rd | 0.951 | 0.025 | 0.024 | 1.716 |
|  | Bayes | 0.957 | 0.021 | 0.021 | 1.766 |
|  | HP | 0.946 | 0.031 | 0.023 | 1.734 |
|  | ACI | 0.951 | 0.028 | 0.021 | 1.782 |
| $-0.4$ | $1 s t$ | 0.932 | 0.038 | 0.030 | 1.469 |
|  | 3rd | 0.946 | 0.028 | 0.026 | 1.519 |
|  | Bayes | 0.953 | 0.025 | 0.022 | 1.564 |
|  | HP | 0.941 | 0.033 | 0.026 | 1.533 |
|  | $A C I$ | 0.947 | 0.030 | 0.023 | 1.576 |
| -0.3 | $1 s t$ | 0.929 | 0.039 | 0.032 | 1.305 |
|  | 3 d d | 0.946 | 0.028 | 0.026 | 1.351 |
|  | Bayes | 0.952 | 0.025 | 0.023 | 1.391 |
|  | HP | 0.941 | 0.033 | 0.027 | 1.361 |
|  | ACI | 0.946 | 0.030 | 0.024 | 1.399 |
| -0.2 | $1 s t$ | 0.936 | 0.032 | 0.032 | 1.165 |
|  | 3rd | 0.952 | 0.022 | 0.026 | 1.209 |
|  | Bayes | 0.957 | 0.020 | 0.023 | 1.245 |
|  | HP | 0.946 | 0.027 | 0.027 | 1.216 |
|  | ACI | 0.952 | 0.024 | 0.025 | 1.250 |
| -0.1 | $1 s t$ | 0.935 | 0.033 | 0.032 | 1.046 |
|  | $3 r d$ | 0.951 | 0.025 | 0.024 | 1.088 |
|  | Bayes | 0.957 | 0.022 | 0.022 | 1.120 |
|  | HP | 0.946 | 0.028 | 0.026 | 1.091 |
|  | ACI | 0.951 | 0.026 | 0.024 | 1.122 |
| 0 | $1 s t$ | 0.932 | 0.035 | 0.033 | 0.952 |
|  | $3 r d$ | 0.947 | 0.027 | 0.026 | 0.992 |
|  | Bayes | 0.954 | 0.024 | 0.023 | 1.021 |


| $\rho$ | Method | $C P$ | $U E$ | LE | $A L$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | HP | 0.940 | 0.031 | 0.029 | 0.994 |
|  | ACI | 0.947 | 0.027 | 0.026 | 1.021 |
| 0.1 | $1 s t$ | 0.934 | 0.032 | 0.034 | 0.856 |
|  | 3 rd | 0.950 | 0.025 | 0.025 | 0.894 |
|  | Bayes | 0.955 | 0.023 | 0.022 | 0.920 |
|  | HP | 0.944 | 0.028 | 0.028 | 0.893 |
|  | $A C I$ | 0.950 | 0.025 | 0.025 | 0.918 |
| 0.2 | 1st | 0.936 | 0.030 | 0.034 | 0.769 |
|  | $3 \mathrm{~d} d$ | 0.953 | 0.023 | 0.024 | 0.805 |
|  | Bayes | 0.959 | 0.019 | 0.022 | 0.829 |
|  | HP | 0.947 | 0.025 | 0.029 | 0.802 |
|  | ACI | 0.953 | 0.022 | 0.025 | 0.824 |
| 0.3 | $1 s t$ | 0.930 | 0.032 | 0.038 | 0.687 |
|  | $3 \mathrm{~d} d$ | 0.947 | 0.024 | 0.029 | 0.722 |
|  | Bayes | 0.954 | 0.021 | 0.025 | 0.744 |
|  | HP | 0.940 | 0.026 | 0.035 | 0.717 |
|  | ACI | 0.946 | 0.022 | 0.031 | 0.737 |
| 0.4 | $1 s t$ | 0.936 | 0.029 | 0.035 | 0.612 |
|  | $3 \mathrm{~d} d$ | 0.951 | 0.025 | 0.024 | 0.645 |
|  | Bayes | 0.957 | 0.021 | 0.022 | 0.664 |
|  | $H P$ | 0.945 | 0.025 | 0.030 | 0.638 |
|  | ACI | 0.951 | 0.022 | 0.027 | 0.656 |
| 0.5 | $1 s t$ | 0.932 | 0.030 | 0.037 | 0.539 |
|  | $3 r d$ | 0.946 | 0.027 | 0.027 | 0.571 |
|  | Bayes | 0.952 | 0.025 | 0.023 | 0.588 |
|  | HP | 0.941 | 0.026 | 0.032 | 0.563 |
|  | ACI | 0.946 | 0.024 | 0.030 | 0.578 |
| 0.6 | 1st | 0.932 | 0.032 | 0.036 | 0.467 |
|  | 3rd | 0.948 | 0.028 | 0.023 | 0.496 |
|  | Bayes | 0.954 | 0.025 | 0.021 | 0.511 |
|  | HP | 0.942 | 0.027 | 0.031 | 0.487 |
|  | ACI | 0.950 | 0.023 | 0.027 | 0.501 |
| 0.7 | $1 s t$ | 0.934 | 0.027 | 0.039 | 0.390 |
|  | 3rd | 0.950 | 0.025 | 0.026 | 0.417 |
|  | Bayes | 0.955 | 0.022 | 0.023 | 0.430 |
|  | HP | 0.943 | 0.023 | 0.034 | 0.408 |
|  | ACI | 0.949 | 0.020 | 0.031 | 0.419 |
| 0.8 | $1 s t$ | 0.933 | 0.027 | 0.040 | 0.309 |
|  | 3rd | 0.948 | 0.026 | 0.027 | 0.332 |
|  | Bayes | 0.955 | 0.022 | 0.024 | 0.343 |
|  | HP | 0.944 | 0.021 | 0.035 | 0.322 |
|  | ACI | 0.950 | 0.019 | 0.031 | 0.331 |
| 0.9 | $1 s t$ | 0.938 | 0.024 | 0.038 | 0.215 |
|  | $3 \mathrm{~d} d$ | 0.953 | 0.024 | 0.023 | 0.248 |
|  | Bayes | 0.958 | 0.021 | 0.021 | 0.256 |
|  | HP | 0.948 | 0.020 | 0.032 | 0.221 |
|  | ACI | 0.954 | 0.018 | 0.028 | 0.228 |

## Acknowledgements

The data set used in Section 5 was obtained from StatLib (http://lib. stat.cmu. edu/datasets/IQ_Brain_Size). We would like to express our gratitude to Tramo et al. (1998) who have uploaded the data and authorized us to use them. This research was supported by the "Progetto di Ricerca di Ateneo" (2010) grant no. CPDA101912.

# Working Paper Series <br> Department of Statistical Sciences, University of Padua 

You may order paper copies of the working papers by emailing wp@stat.unipd.it
Most of the working papers can also be found at the following url: http://wp.stat.unipd.it

