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Abstract: This paper examines the problem of evaluating the presence of asymmetry in
the marginal distribution of financial returns, by means of a suitable statistical test. After
a brief description of existing tests, a bootstrap procedure is proposed which leads to an
approximation of the Bai and Ng test under weaker assumptions. A Monte Carlo study
showed that our test works properly and that, in terms of power, it is competitive with
existing tests. An application to real financial time series is also presented.
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1 Introduction

Financial time series and their statistical modeling has been studied in depth in
the last few decades, and the huge amount of work in this area has led to a quite
general consensus on some empirical features known as stylized facts. Non-normality
of financial returns, excess of kurtosis, havy tails and clustering effects are examples
of stylized facts. However, there are some statistical characteristics that are still
disputable both because empirical findings are not univocal and because the tools
to detect them correctly are relatively recent.
One of the questionable features of financial time series is skewness of the uncondi-
tional distribution of returns1. Although some authors found or assumed relevant
asymmetries in the return distributions (e.g. Kim and White (2004), Engle and
Patterson (2001), Cont (2001), Chen et al. (2001)), others (e.g. Premaratne and
Bera (2005), Peiró (2004)) are more doubtful about the pervasive presence of skew-
ness in returns and believe that, in many cases, it is due to the use of unsuitable
measurement tools.
However, relatively little work has been done to detect skewness with respect to
other characteristics. This is curious, considering that skewness, besides being im-
portant from a statistical point of view, is also relevant from a financial one because
it may be considered as a further measure of risk. For example, Kim and White
(2003) stress that, if investors prefer right-skewed portfolios then, for equal vari-
ance, one should expect a “skew premium” to reward investors willing to invest in
left-skewed portfolios. With respect to optimal portfolio allocation, Chunhachinda

1Note that here we are not referring to the asymmetrical effects that negative and positive
returns can have on volatility, but to the symmetry of the marginal distribution of returns.
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et al. (1997) showed that it can change considerably if higher than second moments
are considered in selection. Along the same lines, Jondeau and Rockinger (2004)
measured the advantages of using a strategy based on high-order moments. Other
examples of the economic and financial importance of asymmetry are given by Peiró
(2004).
In view of the importance attributed to symmetry in the literature, we believe it
is of interest on one hand to go deeper into this point and, on the other, to have
available statistical tests that can correctly identify the presence of asymmetry in
data.
Over the years, various measures of sample skewness have been proposed and studied
(e.g. Kim and White, 2004; Joanes and Gill, 1998). However, most of the empir-
ical and theoretical works regarding financial markets have used the conventional
measure of skewness given by the standardized third moment

S =
µ3

µ
3/2
2

, (1)

where µj is the j−th central moment. It is well-known (e.g. Kendall and Stuart,
1969) that the estimate Ŝ of S, obtained by replacing the corresponding sample
moments in (1), under the hypothesis S = 0, has a gaussian asymptotic distribution
which allows symmetry to be tested. However, the variance of this distribution
depends crucially on hypotheses of gaussianity and independence of data. Several
authors (e.g. Bai and Ng 2005; Premaratne and Bera 2005, Peiró 1999, 2004; Lupi
and Ordine 2001) have noted that the assumptions of gaussianity and independence
are not realistic in several contexts, including that of financial returns. Some of
these authors have also shown how the variance of the asymptotic distribution of
the sample skewness coefficient changes when one or more of these assumptions are
relaxed.
Within this context, the aim of the present work was to examine the problem of
asymmetry in financial time series, starting from a comparative analysis of various
existing tests. In order to overcome some of their limitations, a bootstrap test is
proposed, and its performance was studied by means of Monte Carlo simulations.
The tests were the applied to 72 real time series.

2 Testing for skewness

This section briefly reviews some symmetry tests proposed in the literature, based
on the standardized third moment in order to highlight their adavantages and dis-
advantages.
When data are generated by an i.i.d. gaussian process, it is well-known (see, for
example Kendall and Stuart, 1969) that, asymptotically,

√
n

6
Ŝ

d−→ N(0, 1). (2)

Thus, for practical purposes, we can consider the relationship Ŝ ∼ N(0,
√

6
n) for

testing symmetry.
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Although this limiting distribution has been widely used in several contexts, and
often in the analysis of financial data, it is clear that its applicative framework
cannot be generalized and that, in particular, it cannot be extended to time series.
In this regard, it is curious to note that, several types of software, even those created
for applications to dependent data, make use of distribution (2) for their analyses.
For example, when implementing the Jarque and Bera test, which in turn is based
on the distribution of Ŝ, the distribution implied by (2) is used by EViews, the
Finmetrics module of S+, the G@rch module of OX, and the library tseries di R.
When data are correlated, Lomnicki (1961) proved that, for gaussian generator
processes that can be written in a moving average form such as yt = θ(L)εt, con
εt ∼ N(0, σ2

ε ), then asymptotically

√
n

6

⎛
⎝ ∞∑

j=−∞
ρ3

j

⎞
⎠

−1/2

Ŝ
d−→ N(0, 1), (3)

where ρj is the autocorrelation coefficient at lag j.
However, for non-gaussian data, and specifically for data the distribution of which is
leptokurtic or platikurtic, previous results no longer hold good either in the depen-
dent or independent case. In particular, for leptokurtic distributions the variance of
the test statistics is underestimated and leads to rejection of the null hypothesis of
symmetry too often, whereas the opposite occurs for platikurtic distributions, mak-
ing the test too conservative with respect to the hypothesis of symmetry. Leaving for
the moment normality, Premaratne and Bera (2005), exploiting a result of Godfrey
and Orme (1991), derived the distribution of Ŝ under the hypothesis of symmetry
for i.i.d. but not necessaily gaussian data. In particular, assuming the existence of
moments up to the sixth, they showed that asymptotically V

−1/2
1 (Ŝ) d−→ N(0, 1)

with
V1 =

1
n

(
9 + µ6µ

−3
2 − 6µ4µ

−2
2

)
(4)

and µj j-th central moment. In this case, therefore, the variance of the distribution
of Ŝ depends on the second, fourth and sixth moments.
In their work, Premaratne and Bera (2005) show by Monte Carlo simulations that
their test works properly for i.i.d. data but apply it to real time series without any
simulation. Recently, Bai and Ng (2005) derived the limiting distribution of Ŝ in
the more general case of dependent data, not necessarily gaussian, and under an
arbitrary skewness coefficient S. Assuming the existence of the sixth moment and
some mixing conditions which guarantee that the central limit theorem holds for the
4× 1 vector series Wt = [Yt − µ, (Yt − µ)2 − σ2, (Yt − µ)3 − µ3, (Yt − µ)4 − µ4], they
found that, under the hypothesis S = 0, V

−1/2
2 (Ŝ) d−→ N(0, 1) with

V2 =
1
n

αΓα′

σ6
, (5)

where α = [1,−3σ2] and Γ is the 2 × 2 matrix defined as Γ = limn→∞ nE(Z̄Z̄ ′),
with Z̄ sample mean of

Zt =
[

(Yt − µ)3

(Yt − µ)

]
. (6)
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In this framework, the serial dependence in Yt is explained through Γ, which rep-
resents the spectral density matrix of Zt at frequency 0. It is not difficult to show
that, in the independent case, the Bai and Ng test reduces to that of Premaratne
and Bera which is, thus, a particular case of the former.

Both Bai and Ng’s and Premaratne and Bera’s test have the drawback of requir-
ing the existence of the sixth moment. This means, for example, that they cannot
be applied to t−Student distributions, tν , with ν ≤ 6, because clearly only moments
of orders less than the degree of freedom exist.
This fact, which is not particularly important in some contexts, becomes very im-
portant in the case of financial time series, since they have leptokurtic and heavy
tail marginal distribution and, therefore, the existence of high-order moments can
not taken for granted and should generally be verified. Instead, in real applications
is quite common to estimate models which do not admit the sixth moment. An
example is given by a common GARCH(1,1) model with t−Student innovations.
Table 1 lists the results of parameter estimation of such a model for four cases in
which conditional distributions do not have the sixth moment. In addition, if we
consider that the marginal distribution has higher kurtosis than the conditional this
problem is clearly one which can influence several real financial time series. This
consideration is in line with the findings of Chen (2001), which in an empirical study
investigated the moment conditions of daily excess returns of twelve major stock in-
dices and found that all the returns have finite third moments but not finite sixth
moments. Other authors who showed that the existence of the sixth moment is too
restrictive for economic and financial data are Jansen and de Vries (1991), Loretan
and Phillips (1994), and de Lima (1997).

Series Period ω α β ν

Motorola 01/03/95 - 09/02/01 1.8 ∗ 10−4 0.055 0.925 5.4
Pepsi 01/03/95 - 09/02/01 4.0 ∗ 10−6 0.041 0.943 5.9
3M 10/01/99 – 01/10/04 2.1 ∗ 10−6 0.036 0.956 5.2
SEAT pg 22/09/98 – 10/01/04 6.1 ∗ 10−6 0.0800 0.911 4.9

Table 1: Estimates of a GARCH(1,1) model with t-Student innnovations for some
real time series. Parameters α, β and ν are all significant at 5% level. Parameter ν
represents degrees of freedom.

3 A bootstrap test of skewness

To bypass the problem of the existence of the moments, in this section we propose
a bootstrap test which only requires the existence of moments up to the third. This
is the minimum requirement for the asymmetry coefficient to exist. The procedure
involves a first filtering phase through ARMA models, in order to account for possible
linear dependence in the data. On the whole, however, the algorithm can be made
completely automatic.
The basic idea of the procedure is to use observed data to obtain a distribution in
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such a way that it is symmetric, and use it to calculate critical values. The procedure
for testing the hypothesis system H0 : S = 0, H1 : S �= 0 is the following:

1. Given a time series {yt}, t = 1, ..., n, fit a suitable ARMA(p, q) model. Orders
p and q can be chosen by automatic criteria, i.e. those of Akaike or Schwarz.
Let et be the series of the residuals of the model, i.e. et = yt − ŷt.

2. For the series et calculate Ŝe.

3. Define e∗t =| et − me |, where me is the median of et and | · | denotes the
absolute value.

4. Generate the bootstrap series

ẽt = me + e∗t ∗ zt t = 1, 2, ..., n

where e∗t is sampled with replacement from the empirical distribution of e∗,
and zt is such that P (zt = −1) = P (zt = 1) = 1/2. The series ẽt represents a
symmetrized version of et.

5. For the series ẽt calculate the skewness coefficient Ŝ.

6. Repeat steps 4) and 5) M times, with large M , yielding M bootstrap replica-
tions ẽ

(i)
t and the corresponding estimates Ŝ(i) for i = 1, ...,M.

7. Consider the bootstrap distribution of Ŝ obatined through M estimates Ŝ(i)

and find quantiles Ŝα/2 and Ŝ1−α/2.

8. Accept H0 at level α if Ŝα/2 ≤ Ŝ ≤ Ŝ1−α/2.

At the end of the algorithm, the following note is appropriate. In step 4) the
data were handled as if they were independent, whereas, in general, they are not.
However, this simplification is less strong it might appear at first glance. After some
algebra, it is possible to show that an estimate of Γ in (5) is given by

Γ̂ =

⎡
⎣ m6 +

∑n−1
j=1 γ̂y3(j) m4 +

∑n−1
j=1 γ̂y3,y(j)

m4 +
∑n−1

j=1 γ̂y3,y(j) m2 +
∑n−1

j=1 γ̂y(j)

⎤
⎦

where mj is an estimate of the j−th central moment, γyr(j) is the autocovariance of
yr

t , and γy3,y(j) is the cross-covariance between y3
t and yt. This means that the only

dynamic quantities that enter variance V2 are the autocorrelations of yt, those of y3
t

and the cross-covariance between yt and y3
t . The other quantities, i.e. the second,

fourth and sixth moments, are not dynamic features.
Since the autocorrelation of yt has already been accounted for in step 1), we only
neglect the cross-correlation between third moments and the correlation between
first and third moment. When these quantities are not important or even absent,
the bootstrap distribution can be considered a good approximation of the true dis-
tribution.
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4 Validation

After describing the procedure for the bootstrap test we now must validate it, and
Monte Carlo simulations are used to study the real level and power of the test and
to compare them with those of other tests. For the bootstrap test, the orders of
model at step 1) are chosen by minimizing the Schwarz criterion. In addition, the
bootstrap distribution of Ŝ is obtained using M = 10000 replications; in some pilot
analyses, increasing M to 25000 did not change the results in any particular way.
Lastly, in all simulations, bilateral tests at level α = 10%, 5% and 1% are carried
out.
The data are generated by processes (DGP) unlike the dependence structure and
the characteristics of marginal distributions. The 18 processes and their coefficients
of asymmetry and kurtosis are listed in the Appendix.
For each generator process, evaluation of the real level and power of the test is based
on 2000 Monte Carlo replications of length n = 100, 200 and 500. When working
with financial time series, these values correspond to series of very short, short, and
medium lengths.
The analyses are divided into three parts: i) for independent data, comparison with
test performance based on (2), called ASS (asymptotic sample skewness), of the
Premaratne and Bera (BP), Bai and Ng (BN) and Bootstrap (BTP) test; 2) the
same analyses are conducted on dependent data; 3) some applications to real time
series are also considered.
For full comparisons, all the results of the simulations refer to the application of the
tests on the same time series.

4.1 Independent data

To study the real level of the tests in the i.i.d. case, four symmetrical distribu-
tions are considered, S1, S2, S3 and S4. They are: standard normal, t-Student
with seven degrees of freedom; Beta(2,2) and a distribution belonging to the Gen-
eralized Lambda family, which was also considered by Bai and Ng (2005). This
family contains symmetrical and asymmetrical distributions which can be gener-
ated in terms of the inverse of the cumulative distribution function F−1(u) =
λ1 +

[
uλ3 − (1 − u)λ4

]
/λ2, 0 < u < 1 (see, for example, Karian and Dudewicz

(2000)).
To evaluate the adequacy of the nominal and real levels a binomial, the following
hypothesis system was verified by a binomial test

H0 : p = p0 (7)
H1 : p �= p0

with p = 0.1, 0.05, 0.01, depending on significance level. The results (Table 4)
indicate that only ASS in the gaussian case gives real levels statistically equal to
the nominal ones for all three values of n. For gaussian data, the other three tests
give real levels not significant different from the nominal ones only for n = 500. For
n = 200 and 100 the real levels are lower but on the whole satisfactory at levels 10%
and 5%, slightly less at 1%. For non-gaussian but symmetrical distributions with
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leptokurtosis, the ASS test rejects the hypothesis of symmetry too often. The higher
the kurtosis, the higher the real level. Instead, when the distribution is platikurtic,
the test is too conservative and the null hypothesis is almost never rejected. In both
these situations, nominal and real sizes are very different.
With regard to BOOT, PB and BN tests, the results of Table 4 clearly face leptokur-
tosis and platikurtosis correctly and have similar real levels. In addition, although
the null hypothesis of system (7) is not always acceptable, real levels are comparable
with nominal ones, particularly as n grows. The only exception is the 1% level for
which all three test have much smaller real levels.
Note also that, in the i.i.d. case, PB and BN are the same and provide almost
identical results. Analyses concerning the power of the tests were conducted on five
asymmetrical distributions (A1, A2,...,A5) with different degrees of kurtosis. In this
case distributions were Beta(2,1), two Generalized Lambda, Skew Normal, and Skew
t. The last two distribution families were introduced by Azzalini (1985, 1986). The
general framework of the experiment is identical to that for study of test levels.
The results of simulations are given in Table 5. As expected, power grows with series
length, intensity of asymmetry and nominal test level.
For the reasons described above ASS test always has the greatest power, and the
largest differences are found between ASS and the other three tests. Differences
between BTP, PB and BN are smaller. To assess their significance, a binomial test
was applied to the test powers. In this case, the binomial test concerns couples of
powers p1 and p2 and the examined hypothesis system is

H0 : p1 ≤ p2 (8)
H1 : p1 > p2.

where, conventionally, it is assumed that p1 is always the larger of the two powers
in question.
The hypothesis system (8) is verified only for the powers of BTP and BN, BP being
a particular case of BN. In Table 5, the asterisk means that the null hypothesis is
rejected at 5% level and the circle denotes the same conclusion at 1% level. For
example, if we consider the power of BTP for A6, at a nominal level of 5% and for
n = 500, the circle means that the power 78.8 is significantly greater, at 1% level,
than the value 71.2% reached by the BN test.
This kind of analysis shows that in two out of the five processes, the power of BTP
is significantly greater than that of BN; the opposite, is true only in a few isolated
cases. In more detail, it indicates that, when kurtosis is very high, BTP has more
power.

4.2 Dependent data

If we wish to apply the tests to financial time series, we must to study their behav-
iors and performances under more general assumptions. We therefore concentrate
on data with some dependence structure.
As the BP test is based on the independence hypothesis, hereafter only BTP and
BN will be examined and compared. For the same reason, the results of the ASS
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test are reported for the sake of comparison but are not discussed.
When data are serially correlated, the distribution of Ŝ changes. If autocorrelation
is neglected test performances can be seriously affected. The effect of autocorrela-
tion is shown in Table 6, which lists the real levels of the tests for a gaussian AR(1),
with parameter φ. Here, the marginal distribution of the data is gaussian and thus
symmetric. When the correlation structure is weak, it has no particular effects on
the tests. However, when it becomes stronger, if not explained, it leads to a real
level which is definitely greater than the nominal one and thus appears to cause
asymmetry even where there is none.
Note that, in the case of φ = 0.9, pointed out by Bai and Ng (2005) as problematic,
BTP again gives quite satisfactory results and significantly better than those of BN.
Thus, in applications it is important to account for dependence and, in particular,
for correlation. Conversely, it is also interesting to note that low levels of correlation
do not have dramatic consequences on test performances.
Analyses of the real levels of dependent data were conducted on data generated
from six models with different dependence structures and degrees of kurtosis (S5,
S6,...,S10). In particular, data were generated by AR(1) and ARMA(1,1) models,
with gaussian and t-Student innovations, which have a linear dependence structure.
They also have marginal distributions which are symmetric but leptokurtic in the
non-gaussian case. The family of GARCH processes was then used, because they
produce uncorrelated, but not independent, data. The marginal distributions of the
considered GARCH models are symmetric and, also in the gaussian case, leptokur-
tic. In order to have distributions with higher kurtosis, we also considered models
with t-Student innovations. Another reason for interest in the GARCH models is
their extensive use on the finance literature.
To evaluate the real dimension of the tests and to compare their powers, hypothesis
systems (7) and (8) were again considered within the same framework of Section
4.1. The results are shown in Table 7. As for the independent case, the hypothesis
of equal nominal and real levels cannot always be accepted, but the real levels are
satisfactory, on average, at nominal levels of 10% and 5%, but are much lower at
the nominal level of 1%. Note that, for very high levels of kurtosis, as in S10, BTP
provides real levels more similar to nominal ones.
With regard to test power, our study was based on a bilinear model and two GARCH
models with A4 and A5 innovations, called A6, A7 and A8. They produce uncorre-
lated data with asymmetric marginal distributions and different levels of kurtosis;
all of them have in common not too high asymmetry and quite high kurtosis. Since
power also depends on asymmetry intensity, it is clear that if very asymmetrical
distributions are chosen very high power can be reached. In this work, instead, we
prefer to consider processes with not too asymmetrical marginal distributions, in
order to verify performances in relatively more difficult situations. In this sense,
here the main interest lies in comparing the powers of the various test, more than
the powers themselves. Table 8 shows that, in all three analyzed cases, BTP has
significantly more power than BN. In general, as expected, power grows with n and
with level test and asymmetry.
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5 Empirical applications

After verifying that the bootstrap test works properly and comparing it, tis section
applies compares the ASS, BTP and BN tests in 72 real daily financial time series.
Again, the Premaratne and Bera test is not considered because it is a particular case
of BN. Instead, the ASS test higlights the differing results which may be obtained.
The time series describe the returns of 30 stocks belonging to the Dow-Jones index,
30 belonging to the MIB30 index (the Italian stock index of the most higly capi-
talized firms) and 12 well-known international stock indexes (Dow-Jones, S&P500,
Nasdaq100, Nikkei, FTSE100, SMI, CAC40, DAX, Mibtel, MIB30, Midex, Hang-
Seng). The data refer to different periods, but most of them concern the interval
January 1999 – October 2004. The lengths of the series range between n = 575 and
n = 4982.
Since some series clearly have outliers, these were removed and replaced with the
means of the previous data. Outliers were detected by visual inspection but all
of them were at least 20 times the standard deviation of the data. Since previous
analyses had shown that none of the proposed tests works well at a level of 1%,
here we consider only the usual 5% level, which seems to be more reliable. The
comparison was only made in terms of acceptance or rejection of the null hypothesis
of symmetry.
As expected, ASS rejects the hypothesis symmetry very often - in 51 cases out of
72 (for 20 MIB30 stocks, 23 Dow-Jones stocks, and 8 stock indexes). The number
of rejections for the bootstrap test and BN is much smaller: the former rejects the
symmetry in 8 cases (6 MIB30 stocks, 1 Dow-Jones stock, and 1 index). Instead,
BN rejects H0 in 4 cases of MIB30 stocks, 1 Dow-Jones stock and 1 index; i.e. 6
series out of 72.
It is interesting to note that only for 23 series out of 72 do BTP and ASS reach the
same conclusions about the presence or otherwise of asymmetry in the data. Table
2 illustrates some of the moste representative cases.
Conversely, there is very good agreement between BTP and BN, not surprising, as
the performance of these two tests do not differ dramatically. However, there are
three cases (3M, Seat Pagine Gialle, ST Microlectronics) in which the hypothesis of
symmetry is rejected by BTP but not by BN (Table 2). It is interesting to note that
two of these three cases were precisely those considered in Section 2 as examples of
time series whose distributions may not have the sixth moment (see Table 1).

6 Conclusion

In this work describes some symmetry tests and connected problems when applied
to financial time series. Since one of these problems is the existence of the sixth
moment, a bootstrap test requiring only the existence of the moments up to the
third is proposed. The procedure leads to a test that approximates the true distri-
bution of Ŝ, the sample skewness coefficient neglecting some correlations between
high order moments. The test is very simple and intuitive and gives good results
for dependent data and non-gaussian distributions. Its performance in term of real
level and power were compared through Monte Carlo simulations considering several
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Serie Ŝ ASS BTP BN

3M 0.45 S S NS
Intel -0.41 S NS NS

Banca Intesa 0.24 S S S
Capitalia 0.50 S NS NS
Seat Pagine Gialle 0.78 S S NS
ST Microelectronics 0.20 S S NS
Tim 0.23 S S S

Ftse100 -0.26 S S S
Nasdaq100 0.28 S NS NS
Mibtel -0.46 S NS NS

Table 2: Results of the tests at the level of 5% on some real time series.
S=Significant; NS=Not Significant.

generator processes. Results suggest that the test works well.
Regarding asymmetry in returns distribution, first of it should be noted that results
referring to ASS are not reliable. Analyses of BTP and BN indicate that skewness
is not pervasive in financial time series and that, when it is present, it seems to be
the exception more than the rule.
Another practical indication emerging from this study is that all tests provide un-
satisfactory results at low levels (i.e., 1%) and that, when leptokurtosis occurs, they
tend to be conservative with respect to the null hypothesis.
At the standard 5% level, simulations indicate that BTP is slightly more powerful
than BN.
Lastly, we believe that asymmetry in financial time series is a topic which should be
studied in more depth, by means of both tests and models. At the same time, more
accurate empirical exploration of series at different frequencies and, in paticular, at
intradaily frequence, would be appropriate.
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Appendix

Symmetric model for i.i.d. data

• S1: N(0, 1);

• S2: t7;

• S3: Beta(2, 2);

• S4: F−1(u) = λ1 +
[
uλ3 − (1 − u)λ4

]
/λ2 with λ1 = 0, λ2 = −1, λ3 = −0.24

λ4 = −0.24, u ∼ U(0, 1).

Asymmetric model for i.i.d. data:

• A1: Beta(2, 1);

• A2: Skew Normal(0, 1,−2);

• A3: Skew t(0, 1,−2, 10);

• A4: F−1(u) = λ1 +
[
uλ3 − (1 − u)λ4

]
/λ2 with λ1 = 0, λ2 = −1, λ3 = −0.0075

λ4 = −0.03, u ∼ U(0, 1);

• A5: F−1(u) = λ1 +
[
uλ3 − (1 − u)λ4

]
/λ2 with λ1 = 0, λ2 = −1, λ3 = −0.1

λ4 = −0.18.

Symmetrica models for dependent data:

• S5: yt = 0.7yt−1 + εt, εt ∼ N(0, 1);

• S6: yt = 0.7yt−1 + εt, εt ∼ t7;

• S7: yt = 0.7yt−1 + εt − 0.6εt−1, εt ∼ N(0, 1);

• S8: yt = 0.7yt−1 + εt − 0.6εt−1, εt ∼ t7;

• S9: yt = εt, εt | It−1 ∼ N(0, σ2
t ), σ2

t = 0.2 + 0.3 ε2
t−1 + 0.6 σ2

t−1;

• S10: yt = εt, εt | It−1 ∼ t7(0, σ2
t ), σ2

t = 0.2 + 0.3 ε2
t−1 + 0.6 σ2

t−1.

Asymmetric models for dependent data

• A6: yt = 0.6 yt−1 εt−1 + εt, εt ∼ N(0, 1);

• A7: GARCH(1, 1) with A4 innovations and σ2
t = 0.2 + 0.3 ε2

t−1 + 0.6 σ2
t−1;

• A8: GARCH(1, 1) with A5 innovations and σ2
t = 0.2 + 0.3 ε2

t−1 + 0.6 σ2
t−1.
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DGP S K PGD S K
S1 0 3 A1 -0.56 2.4
S2 0 5 A2 -0.45 3.3
S3 0 2.14 A3 -0.86 5.01
S4 0 37.5 A4 1.51 7.4
S5 0 3 A5 1.98 19.4
S6 0 3.7 A6 1.10 9.64
S7 0 3 A7 1.52 7.44
S8 0 3.7 A8 2.00 19.6
S9 0 10
S10 0 160.5

Table 3: Asymmetry (S) and kurtosis (K) coefficients of DGP’s. The values of S
and K are the mean of 5000 coefficient estimates on series of length n = 10000
generated from the different processes.

PGD ASS ASS ASS BTP BTP BTP PB PB PB BN BN BN
(S,K) 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

S1
(0, 3)

n=100 8.8∗ 4.1∗ 1.1∗ 7.1 2.1 0.2 8.5◦ 3.8◦ 0.4◦ 8.8∗ 3.5 0.3
n=200 9.0∗ 4.1∗ 0.8∗ 9∗ 3.1 0.2 9.8∗ 3.6 0.5◦ 9.8∗ 3.8◦ 0.4◦

n=500 9.8∗ 4.5∗ 0.9∗ 9.8∗ 4.1∗ 0.5∗ 10∗ 4.2∗ 0.6∗ 9.8∗ 4.3∗ 0.6∗

S2
(0, 5)

n=100 37.7 29.5 18.4 9.7∗ 2.5 0.1 10.6∗ 4.1∗ 0.4◦ 10.5∗ 4◦ 0.2
n=200 42 34.2 23.4 9.2∗ 3.2 0.4◦ 9.6∗ 3.8◦ 0.4◦ 9.7∗ 3.6 0.2
n=500 46.3 38.8 27.2 10.1∗ 4.2∗ 0.1 9.9∗ 4.3∗ 0.2 9.8∗ 4.5∗ 0.2

S3
(0, 2.14)

n=100 0.6 0.1 0 8.7∗ 3.7◦ 0.3 9.5∗ 4.4∗ 0.5∗ 9.4∗ 4.1∗ 0.4◦

n=200 0.5 0.1 0 8.9∗ 3.8◦ 0.5∗ 9.2∗ 4.2∗ 1.1∗ 9.1∗ 4.1∗ 0.8∗

n=500 0.4 0.1 0 10.2∗ 5.1∗ 0.7∗ 10.4∗ 5.1∗ 0.7∗ 10.2∗ 4.9∗ 0.6∗

S4
(0, 37.5)

n=100 68.5 63.3 53.5 7.5 2.2 0 7.8 3.1 0.2 8.0 3.0 0.2
n=200 76.8 72.2 64.8 8.7∗ 2.4 0 7.3 2.2 0 7.0 2.1 0
n=500 82.8 79.5 73.9 8.8∗ 2.9◦ 0.2 6.9 2.1 0.1 6.9 2.0 0.1

Table 4: Independent data: real test levels based on 2000 Monte Carlo replications.
The two numbers under the process name are the asymmetry (S) and kurtosis (K)
coefficients. The asterisk (∗) means that the null hypothesis of the system (7) is
accepted at 5% level while the circle (◦) denotes the same conclusion 1%.
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PGD ASS ASS ASS BTP BTP BTP PB PB PB BN BN BN
(S, K) 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
A1
(−0.56, 2.4)
n=100 83.6 68.7 30.8 96.9 91.9 60.2 97.2 93.8 75.2 96.9 92.8 68.3◦
n=200 99.4 98 84.8 100 99.9 98.9 100 99.9 99.3 100 99.8 99
n=500 100 100 100 100 100 100 100 100 100 100 100 100
A2
(−0.67, 3.3)
n=100 50.5 38.5 20 46.5 23.9 1.8 48.6 30.5 7.0 48.1 29.6◦ 5.8◦
n=200 80.8 70.7 48.4 79.7 63.5 23.9 80.3 66 29.1 79.9 65.1 27.1∗
n=500 99.2 98 92.9 99.2 97.5 85.5 99.2 97.8 87.4 99.2 97.8 86.8
A3
(−0.86, 5)
n=100 82.1 75 58.7 63 36.2 3.5 62.3 40.8 10.7 62.4 38.8 9.4◦
n=200 97 95 87.6 87.8 72.1 30.2 85.1 70.5 34 85.5 69.8 32.2
n=500 100 100 99.7 99.4 96.5 84.5 98.5 95.6 84 98.5 95.6 83.6
A4
(1.51, 7.4)
n=100 99.4 98.6 95 89◦ 68.7◦ 13.8 83.6 67.6 30.3 83 64.8 26.8◦
n=200 100 100 100 98.3◦ 92◦ 62.6◦ 94 85.7 60 93.8 84.7 57.3
n=500 100 100 100 99.9◦ 98.7◦ 93.1◦ 98.9 96.8 89.5 98.9 96.7 89.2
A5
(2, 19.4)
n=100 88.5 85.2 78.5 44 21.1 1.8 44.8 26.1 5.4 44.5 24.9 4.2
n=200 97.2 96.4 94.1 71.8◦ 51.1◦ 13.1 66.4 45.5 15.1 66.5 45.2 13.8
n=500 99.9 99.8 99.6 91◦ 78.8◦ 49.2◦ 84.1 71.5 42.4 83.9 71.2 41.6

Table 5: Independent data: test powers based on 2000 Monte Carlo replications.
The two numbers under the process name are the asymmetry (S) and kurtosis (K)
coefficients. The asterisk (∗) means that the null hypothesis of the system (8) is
rejected at 5% level while the circle (◦) denotes the same conclusion 1%.

PGD ASS ASS ASS BTP BTP BTP PB PB PB BN BN BN
n=200 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

φ = 0.1 9.3∗ 4.7∗ 0.9∗ 9.7∗ 4.2∗ 0.2 10.3∗ 4.3∗ 0.5◦ 9.9∗ 4.2∗ 0.5◦

φ = 0.2 10.2∗ 5.5∗ 1.1∗ 9.5∗ 4.1∗ 0.2 10.4∗ 4.2∗ 0.4◦ 10.4∗ 3.9◦ 0.4◦

φ = 0.4 11.1◦ 6.4 1.5◦ 9.0∗ 4.0◦ 0.3 11.5◦ 5.6∗ 0.9∗ 9.2∗ 4.2∗ 0.4◦

φ = 0.7 20.4 13.2 4.5 9.5∗ 3.7◦ 0.4◦ 23.9 15.2 4.8 10.2∗ 3.8◦ 0.2
φ = 0.9 35.2 27.2 15.2 8.9∗ 3.0 0.2 47.2 37.5 22.6 6.5 1.4 0

Table 6: Real test levels for the process yt = φyt−1 + εt. The symbols have the same
meaning that in Table 4.
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PGD (S, K) ASS ASS ASS BTP BTP BTP BN BN BN
10% 5% 1% 10% 5% 1% 10% 5% 1%

S5
(0, 3)

n=100 15.5 9.6 3 8.8∗ 3 0.1 7.4 2.2 0.1
n=200 20.3 13.5 4.2 9.7∗ 3.6 0.3 10.3∗ 3.7 0.2
n=500 22.1 14.6 5.7 9.9∗ 4.9∗ 0.9∗ 9.3∗ 3.8◦ 0.4◦

S6
(0, 3.7)

n=100 27.8 20.2 11.3 7 2.5 0.1 8.4◦ 2.5 0.1
n=200 32.9 26.2 14.2 8.9∗ 2.9 0.2 9.6∗ 3.3 0.2
n=500 41.1 32.9 20.3 9.7∗ 3.5 0.4◦ 10.4∗ 4.7∗ 0.4◦

S7
(0, 3)

n=100 22.4 14.8 5.7 9∗ 2.8 0.1 6.2 1.4 0
n=200 25.1 17.4 9.4 9.2∗ 3.4 0.2 8.6◦ 2.6 0
n=500 30.2 21.9 10.7 8.8∗ 4.1∗ 0.6∗ 10.3∗ 3.8◦ 0.2

S8
(0, 3.5)

n=100 30.9 22.8 13 8.1 2.6 0 7 1.8 0
n=200 35.8 27.6 16.4 9.6∗ 3.5 0.2 7.1 2.3 0.1
n=500 42.2 34.1 21.7 8.9∗ 3.7◦ 0.3 9.3∗ 3.5 0.2

S9
(0, 10)

n=100 23.5 16.9 9.4 7.7 2.3 0.2 8.2 2.9 0.2
n=200 37.5 30.4 19.9 10.1∗ 3.6 0.4◦ 8.5◦ 3.4 0.4◦

n=500 50.3 43 31.9 10.1∗ 4.2∗ 0.6 8.0 2.8 0.3

S10
(0, 141)

n=100 47.3 40.4 29.9 7.1 1.7 0 7.5 2.4 0.2
n=200 63.5 58 49.2 9.6∗ 3.6 0.2 7.8 2.0 0.1
n=500 78.8 75.8 69.7 8.4◦ 3.5 0.2 5.8 1.8 0.1

Table 7: Dependent data: real test levels based on 2000 Monte Carlo replications.
Under the process name the asymmetry (S) and kurtosis (K) coefficients. The
symbols have the same meaning that in Table 4.



16 Francesco Lisi

PGD −(S,K) ASS ASS ASS BTP BTP BTP BN BN BN
10% 5% 1% 10% 5% 1% 10% 5% 1%

A6
(1.1, 9.6)

n=100 67.8 61.4 48.6 38.7◦ 17.3◦ 0.8 30.2 13 1.2
n=200 89.9 86.7 77.9 67◦ 45.6◦ 9.8◦ 50.8 28.5 4.8
n=500 98.8 98.3 97 88.5◦ 78.1◦ 48.2◦ 78.2 63.5 28.5

A7
(1.5, 7.5)

n=100 99.2 98.5 95 89.1◦ 66.5 16.3 83.5 64.1 24.9◦

n=200 100 100 99.9 98◦ 92.5◦ 64.6◦ 93.9 85.6 58.7
n=500 100 100 100 99.9 98.9◦ 93.8◦ 99.2 96.9 89.6

A8
(2, 19.6)

n=100 86.8 84.2 75.9 44∗ 20.6 1.1 40.1 21.6 5.2◦

n=200 96.9 96.2 93.9 70.1◦ 47.7◦ 12 60.3 40.9 12.4
n=500 99.8 99.7 99.6 92◦ 81.1◦ 49.5◦ 85.5 72.9 42.1

Table 8: Dependent data: test powers based on 2000 Monte Carlo replications. Un-
der the process name the asymmetry (S) and kurtosis (K) coefficients. The symbols
have the same meaning that in Table 5.
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