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1 Introduction

The multi-phase sampling (M-PhS) scheme is useful when the interest is in the
estimation of the population mean of an expensive object variable which is strictly
connected with other cheaper (auxiliary) variables. Few authors studied the M-
PhS, specifically they proposed different estimators where the auxiliary information
is used in different ways. See for instance Mukerjee et al. (1987) and Ahmed (2003).
In order to unify all the different proposals, Diana et al. (2004) provide a quite
general class of estimators and find an optimum estimator in that class.

In sample surveys an accuracy measure of an estimator is its mean square error
(MSE), which usually decreases as the sample size increases. However, the sample
size cannot become arbitrarily large to get the desired accuracy since usually there
is a cost constraint. From a practical point of view it would be useful to know the
sample sizes, which guarantee the greatest accuracy of the estimates for fixed costs.
From now on these sample sizes are called “optimum”.
Both Mukerjee et al. (1987) and Ahmed (2003) make some cost considerations. This
paper develops further the results given in Diana et al. (2004) to cope with a cost
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constraint. Specifically, two cases are considered. In the first case, called “general”,
at each phase a new auxiliary variable is recorded and then it is observed at all the
subsequent phases. In the second case, called “simplified”, each auxiliary variable is
observed only twice: at the phase where it is recorded for the first time and at the
just subsequent phase. General and simplified cases are described in Section 2 and
3, respectively. For the simplified case the cost condition for using a single phase
instead of a two-phase sampling scheme given by Cochran (1977), can be extended.
Thus, given a cost constraint it is not always convenient to use a phase more. This
matter is carefully investigated for the three-PhS scheme.

In this paper only the M-PhS scheme with dependent samples is investigated
since the main aim is to control the costs. When independent samples at a low cost
are available it is possible to extend the results here reached, but the algebra is very
complex.

2 Optimality under a cost constraint

Let U = {1, . . . , j, . . . , N} be a finite population, Y the study variable and Xi,
i = 1, . . . , k, k auxiliary variables taking values Yj and Xij for the j-th population
unit. The intererest is in estimating the population mean of Y under the M-PhS
scheme: a first sample of n1 (n1 < N) units is drawn by a simple random sampling
without replacement (SRSWOR), then a sub-sample of size n2 (n2 < n1) is drawn
by a SRSWOR as well and so on up to the (k + 1)-th phase where the smallest
sub-sample of size nk+1 (nk+1 < nk < · · · < n1) is drawn. At the i-th phase
the variables X1, . . . , Xi, i = 1, . . . , k are observed while at the last phase all the
auxiliary variables as well as Y are measured:

Phase number 1 2 · · · i · · · k k + 1
Sample size n1 n2 · · · ni · · · nk nk+1

X1 X1 · · · X1 · · · X1 X1

X2 · · · X2 · · · X2 X2

. . .
...

...
...

...
Xi · · · Xi Xi

. . .
...

...
Xk Xk

Y

Let wiu = x
(u+1)
i − x

(u)
i , i = 1, . . . , k, u = i, . . . , k, be the difference between the

sample means at two subsequent phases, i.e. x
(u)
i is the sample mean of Xi at the u-

th phase.With this notation, Diana et al. (2004) define a general class of estimators
as a function of y, i.e. the sample mean of Y at the last phase, and wiu, i = 1, . . . , k,
u = i, . . . , k. In addition, they find an optimum estimator, i.e. an estimator which
reaches the minimum MSE (at the first order of approximation) in the class. This
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optimum estimator is

ȳk = y +
k

∑

u=1

wT
u g∗

u, (1)

where wT
u = (w1u, w2u, . . . , wuu) and g∗

u = −S−1
uu SY u, where SY u is the u × 1 vector

whose r-th element is the population covariance between Y and Xr, r = 1, . . . , u
and Suu is the covariance matrix of (X1, . . . , Xu)T , u = 1, . . . , k.

Let AMSE∗(yk) denote the minimum MSE, at the first order of approximation,
in the general class. The aim of this paper is to find the sampling sizes n∗

1 > n∗

2 >
· · · > n∗

k+1 which minimize

AMSE∗(yk) = S2
Y

[

ρ2
Y.1

n1
+

k
∑

i=2

ρ2
Y.1,...,i − ρ2

Y.1,...,i−1

ni

+
1 − ρ2

Y.1,...,k

nk+1
− 1

N

]

or equivalently

AMSE∗(yk)

S2
Y

+
1

N
=

k+1
∑

i=1

ai

ni

, (2)

under the following cost constraint

Ct = C0 +
k

∑

i=1

cini + ck+1nk+1 . (3)

Here, a1 = ρ2
Y.1, ai = ρ2

Y.1,...,i − ρ2
Y.1,...,i−1, ak+1 = 1 − ρ2

Y.1,...,k and ρ2
Y.1,...,i is the

multiple correlation coefficient between Y and X1, . . . , Xi, i = 1, . . . , k. Notice that
all the coefficients ai are positive by definition of multiple correlation coefficient.
The quantity S2

Y denotes the population variance of Y . Finally, terms ci and ck+1

are the per unit costs for the i-th auxiliary variable and Y , respectively and C0 is
the overhead cost.
In this paper the following ordering

c1 < c2 < . . . < ck < ck+1 (4)

is assumed for the per unit costs. That is, X1 is the cheapest auxiliary variable, X2

the second cheapest one and so on up to Xk, while Y is the most expensive variable.
Minimizing

(Ct − C0)
k+1
∑

i=1

ai

ni

gives, by the Cauchy-Schwartz inequality,

n∗

i ∝
√

ai

ci

, i = 1, . . . , k + 1 .

Using constraint (3),

n∗

i =
Ct − C0

D

√

ai

ci

, i = 1, . . . , k + 1 (5)
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where D =
∑k+1

i=1

√
ai ci. The minimum AMSE∗(yk) under the cost constraint is

AMSE∗

o(yk) = S2
Y

[

D2

Ct − C0
− 1

N

]

. (6)

The n∗

i ’s are admissible only if they satisfy the ordering n∗

1 > n∗

2 > · · · > n∗

k+1, i.e.
only if ci+1/ci > ai+1/ai for any i = 1, . . . , k. When this is not the case then at least
one auxiliary variable should be dropped, thus the M-PhS scheme will have at least
one phase less.
So far the number of phases to be used, k+1, was given, but actually it is unknown.
The best choice would be to use so many phases as to achieve a fixed threshold for
AMSE∗

o(·)
The following step by step procedure may be used.
Let k denote the number of auxiliary variables.

step 1. Set k = 0 and observe the study variable Y .
Compute AMSE∗

o(y0) (y0 = y), if it achieves the threshold the procedure stops
and a 1-PhS scheme is used, otherwise go to step 2.

step 2. Set k = k + 1 and observe another auxiliary variable.

step 3. Compute AMSE∗

o(yk).
If it is greater than AMSE∗

0(yk−1) than the procedure stops and a k−PhS
scheme is used. On the contrary, when AMSE∗

o(yk) < AMSE∗

o(yk−1), if
AMSE∗

o(yk) reaches the fixed threshold then the procedure stops and a (k +
1)−PhS scheme is used, otherwise go back to step 2.

Remark. Usually the population variances and covariances which appare in ex-
pression (1) are unknown. However, replacing suitable estimates of such quantities
a new estimator which is equivalent (at the first order of approximation) to yk may
be got.

3 A simplified case

When the number of phases becomes large, then many coefficients g∗

u must be com-
puted in order to find the optimal estimator (1). Sometimes, to overcome this
problem the auxiliary variable Xi is measured only at the i-th and (i+1)-th phases,
with i = 1, . . . , k. Thus, some information is ignored but only k coefficients, instead
of k(k + 1)/2, are computed. With this simplification the optimum estimator is

sȳk = ȳ +
k

∑

u=1

wuug∗u

where index “s” stands for “simplified case”. Here, wuu = x̄
(u+1)
u − x̄

(u)
u and g∗u =

−SY u/S2
u, where SY u is the population covariance between Y and Xu and S2

u the
population variance of Xu, u = 1, . . . , k. Expressions for n∗

i and AMSE∗

o(sȳk) are
given again by (5) and (6), but now ai = ρ2

Y.i − ρ2
Y.i−1, i = 2, . . . , k and ak+1 =
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Data sets I II III IV V

ρY.1 0.97 0.890 0.92 0.988 0.941

ρY.2 0.99 0.920 0.99 0.995 0.915

ρY.12 0.99 0.922 0.99 0.995 0.946

Table 1: Correlation coefficients for five data sets

1 − ρ2
Y.k+1, while a1 is unchanged.

From equation (5), the sample sizes n∗

i ’s exist only if ai are positive for any i =
1, . . . , k + 1. If this is not the case at least one auxiliary variable should be dropped
and the sampling scheme is a M-PhS with at least one phase less.

Cochran (1977) provides a condition for preferring a single phase against a double
phase sampling scheme. This condition can be generalized for preferring a k-PhS
scheme against the (k + 1)-phase one. The proof is straightforward. Let all the ai’s
be positive and the n∗

i ’s follow a decreasing order. If the per unit costs of Xi and
Xi+1 are such that

√

ci+1

ci

<
1√
ai

(√
ai + ai+1 +

√
ai+1

)

i = 1, . . . , k (7)

then, the k-PhS scheme got by dropping the i-th auxiliary variable is preferred to
the (k + 1)-PhS scheme, since

AMSE∗

o(yk−) < AMSE∗

o(yk),

where yk− denotes the optimum estimator under the k-phase sampling scheme got
by dropping the variable Xi.
Notice that the step by step procedure described at the end of the previous section
works well if condition (7) is not satisfied at each step.

4 2-PhS vs 3-PhS: an example

In this section, for explanatory purposes only the simple case of 2-PhS scheme vs
3-PhS scheme is analyzed. Thus, the previous step by step procedure is used for
choosing between a 2-PhS scheme, i.e. to observe only Y and X2, and a 3-PhS
scheme, i.e. to observe X1 too. The analysis is based on a population of size
N = 10.000 with the correlation coefficients given in Table 1. The five data sets are
taken from Mukerjee et al. (1987).
In addition, C0 = 10 and the following conditions on the ratio between the per unit
costs are imposed

c1

c2
=

c2

c3
= rc , rc ∈ (0, 1) .

Let

Eff(rc) =
AMSE∗

o(y1)

AMSE∗

o(y2)

be a measure of efficiency of the 3-PhS scheme with respect to the 2-PhS one.
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Figure 1 shows Eff(rc) only for the first four data sets of Table 1.
For the fifth data set a2 = ρ2

Y.2 − ρ2
Y.1 is negative since ρ2

Y.2 < ρ2
Y.1, thus n∗

2 cannot

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

rc

E
ff(

r c
)

IV

II

III

I

Figure 1: Efficiency of three-PhS vs two-PhS. Simplified case

be computed. In this case, the optimization problem (2) under the cost constraint
(3) leads to a 2-PhS scheme. This problem will be treated more in detail in the next
section.

For the other data sets there is a threshold 0rc, such that for rc greater than 0rc

condition (7) is satisfied and so the 2-PhS scheme is preferred to the 3-PhS one. For
instance, for the third data set 0rc = 0.462. Thus, when rc is greater than 0.462,
Eff(rc) is less than 1 and so the 2-PhS scheme is more efficient than the 3-PhS one.

A different case is the second data set. Here, when rc is greater than 0.354 the
optimal solutions n∗

i ’s are not well ordered and so, as stressed at the end of Section
2, at least one phase should be dropped. In other words, when rc is greater than
0.354 no optimal 3-phase sampling scheme exists.

In the general case described in Section 2 the analysis can be done for all the five
data sets since values ai’s are always positive. However, a figure for Eff(rc) in the
general case is not given. It would be like Figure 1 since only for the second data set
ρY.12 is greater than ρY.2 and even in this case the difference is very small (0.002). Of
course, the shape of Eff(rc) changes from the general case to the simplified one, as
ρY.12 is further away from ρY.2. This change in Eff(rc) is shown only for the second
data set. Figure 2 gives Eff(rc) in the general case for increasing values of ρY.12.
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Figure 2: Efficiency of three-PhS vs two-PhS for data set II in general case

5 Which variable should be dropped?

In the simplified case the optimum sample sizes exist only if all the coefficients
ai, i = 1, . . . , k + 1, are positive. Moreover they are admissible if they satisfy the
decreasing order n∗

1 > n∗

2 > · · · > n∗

k+1. Sometimes one of the previous conditions
can be unsatisfied. In these cases one or more auxiliary variables should be dropped
and so a M-PhS scheme has a lower number of phases. In the 3-PhS, useful conditions
for deciding which one between X1 and X2 should be dropped, may be given. Then,
the 2-PhS scheme which minimizes the AMSE is found.
Two possible cases are discussed:

a) coefficient a2 < 0 ;

b) coefficient a2 > 0 but n∗

1 > n∗

2 and n∗

2 < n∗

3 .

Case a
ρ2

Y.2 < ρ2
Y.1 thus a2 < 0. In this case, the optimum sample size n∗

2 cannot be
computed. The solution is given by dropping one of the two auxiliary variables.
There are two possibilities:

1. to drop X1, the variable with the largest correlation with Y ;

2. to drop X2, the variable with the smallest correlation with Y .
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The best solution is to drop X2 if one of the following conditions is satisfied

I.

√

a1 + a2

a1
<

√

c1

c2
< 1 and

√

c2

c3
<

√
a3 −

√
a2 + a3

√

a1
c1

c2
−√

a1 + a2

,

II.

√

c1

c2
<

√

a1 + a2

a1
.

If neither I. nor II. is satisfied the solution is to drop X1, which has the largest
correlation with Y and is the cheapest variable!

Case b
In this case a2 > 0 and so X2 is the most correlated variable with Y , but the sample
sizes are not admissible. Again the best solution is to drop X1, the variable with
the smallest correlation with Y , when

√

c2

c3
<

√
a2 + a3 −

√
a3

√
a1 + a2 −

√

a1
c1

c2

.

However, if the above condition is not satisfied the best solution is given by dropping
X2!

Remark: in both cases the best choice could be to keep the variable which has the
smallest correlation with Y .

Data sets II and V given in the previous section are examples of case b and case a,
respectively. In both cases the above conditions on the per unit costs are satisfied
and so the variable with the largest correlation with Y is maintained.

6 Conclusion

In the present paper the M-PhS scheme is analyzed, specifically the general and a
simplified case are considered. When there is a cost constraint it would be useful
to compute the optimum sample size at each phase, but it is not easy to reach this
goal. In the general case the optimum sample sizes are always computable but they
may be unadmissible. In the simplified case these optimum sample sizes could be
neither admissible nor computable. In both cases the solution is to consider a M-PhS
scheme with one or more phases less. The number of phases (or variables) to drop
depends on how many sample sizes are not in decreasing order, in both the general
and the simplified case. For the simplified case, it depends also on how many sample
sizes are not computable.

For the 3-PhS scheme, useful conditions on the per unit costs for choosing which
variable should be dropped are available, see the previous section. Of course with
more than three phases everything becomes more difficult. The more the phases,
the less likely the sample sizes are computable and/or admissible. Furthermore, the
conditions on the per unit costs for deciding which phases should be dropped become
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very complex. Thus, when the sample sizes are not computable and/or admissible,
for choosing which phases should be dropped, the advice is: compute and compare
directly the AMSE∗

o corresponding to the different eliminations of the phases and
take the M-PhS scheme with the least AMSE∗

o.
From these short notes, it is not always convenient to add more and more phases:
take into consideration the trade off between the efficiency gain and the computa-
tional effort.
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