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pose an estimation procedure which is an extension of that in Lewbel (1996), and exploits

a control function assumption to correct for the endogeneity of the true unobserved total

expenditure.
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1 Introduction

The choice of the most reliable empirical strategy to employ for understanding de-

mand patterns is an issue which is not uncontroversial. There is no general consensus

on the speci�c functional form, on how to address the endogeneity of consumption,

on how to model the e�ect of unobserved prices, and on the estimation approach to

employ. The aim of this paper is to address one speci�c aspect that hampers esti-

mation of the parameters of an Engel curve, by contributing to the literature with

an operational strategy to overcome the e�ects of measurement error in expenditure

data.

Signi�cant progress has been made in the recent years to understand the nature

of the endogeneity problem arising from error ridden data in demand analysis, and its

implications for drawing robust policy conclusions. When considering how expendi-

ture shares vary with total expenditure, even the simplest form of measurement error

enters non-linearly in both the right and the left hand side of the equation, thus inval-

idating the classical assumptions invoked in textbook models. Endogeneity of total

expenditure in the regression arises because of the nature of the measurement error,
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thus invalidating the conventional instrumental variable approach to estimation (see

Amemiya 1985).

In this paper we start by making the very simple point that the empirical chal-

lenges arising from measurement error come on top of the endogeneity of total ex-

penditure that may be already at work with error free data. The most common

interpretation of this problem builds upon a two stage budgeting idea, where in the

�rst step the allocation of total expenditure across time periods is determined, and

then the within period allocation is decided. If heterogeneity in preferences is cor-

related with unobserved taste shifters in the demand system, one would obtain that

the residuals of the latter are correlated, across individuals, with the allocation of

resources over time, and therefore with total expenditure.

Thus, in empirical applications one would need to follow a strategy which solves

for the endogeneity of total expenditure, and at the same time is robust to the pres-

ence of measurement error in the data. A bottom up approach to the problem starts

by considering estimation of the Engel curve when total expenditure is endogenous,

but there is no measurement error in the data. In this situation, identi�cation is

achieved through exogenous variability using a standard instrumental variable ap-

proach. It is not di�cult to show, as we will do further below, that the same proce-

dure will in general yield biased results if expenditure data are measured with error,

even if one is willing to make the assumption that the latter is not correlated with

the instrumental variable employed.

Similarly, one could deal with measurement error in expenditure data by address-

ing the di�culties arising because of the nature of the equation being estimated, and

hoping that this represents the way to draw correct inference. The procedure devel-

oped to this end by Lewbel (1996) works under the assumption that, with error free

data, total expenditure is exogenous. As a matter of fact, this assumption is not

uncontroversial (see, for example, the discussion in Blundell, Chen, and Kristensen

2007, and in Attanasio, Battistin, and Mesnard 2012).

It follows that the procedures available to estimate Engel curves represent es-

sential tools to solve for speci�c sources of endogeneity, but do not o�er a general

solution in the presence of concurrent sources. This is the gap that the paper aims

to �ll in dealing with measurement error, and marks something of a departure from

previous work in the literature.

A problem worth discussing is the type of instrumental variation that is needed

to achieve identi�cation for the case at hand. Throughout this paper we will main-

tain the assumption that a valid instrumental variable is available to deal with the

endogeneity of total expenditure that would arise in the absence of measurement

error. The validity of the exclusion restriction would of course depend on the expec-

tations about the mechanism at work while estimating the Engel curve. To derive

the identi�cation result contained in this paper, it is essential that such instrumental

variation is not related to measurement error, and thus serves a �magic bullet� for

both the sources of endogeneity that we consider.

In the empirical literature on the estimation of Engel curves, it is common practice

to think of measurement error as the main (if not the only) source of endogeneity.

In this context income typically serves as an instrumental variable, since it induces

variation in expenditure which is arguably not related to measurement error (see, for
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instance, Hausman, Newey, and Powell 1995, Lewbel 1996, Lyssiotou, Pashardes, and

Stengos 1999, Brannlund and Nordstrom 2004, Kedir and Girma 2007). Some other

papers, like Blundell, Duncan, and Pendakur (1998), Attanasio and Lechene (2002),

Blundell, Chen, and Kristensen (2007) and Attanasio, Battistin, and Mesnard (2012),

maintain the assumption that data are error-free, and argue that the endogeneity of

total expenditure originates from the underlying economic theory. In the latter case,

the existence of a valid instrument has to be discussed depending on the expectations

on the nature of the endogeneity, and income does not necessarily o�ers a valid

solution. Attanasio, Battistin, and Mesnard (2012) provide some detailed discussion

on the topic.

The point worth making here is that a valid instrument in the absence of mea-

surement error, most likely would also serve as a magic bullet in the sense described

above. Quite on the contrary, instrumental variation exploited when endogeneity is

totally attributed to measurement error, may not necessarily help identi�cation.

The main results of the paper can be summarized as follows. First, we show that

when total expenditure in the Engel curve is treated as endogenous and its mea-

surements are error ridden, the estimation methods usually employed yield biased

results for the parameters of interest. A standard instrumental variable approach

works only in the absence of measurement error, while the procedure proposed by

Lewbel (1996) corrects for measurement error when the latter is considered the only

source of endogeneity. If one wants to estimate Engel curves allowing for endogenous

expenditures and correcting for measurement error, which we claim is the relevant

situation in most empirical applications, neither of these two methods alone provides

correct inferential conclusions. Second, we show that, under the conditions stated, a

standard instrumental variable approach yields upward biased results for the param-

eters regulating the shape of the Engel curve. Thus, the e�ects of measurement error

are at odds with the usual attenuation bias found in the literature for the case of

linear speci�cations. Third, we propose a method to estimate the parameters of the

Engel curve for the case at hand. We take a control function approach, and derive

the conditions under which the availability of an instrument for total expenditure

is su�cient to retrieve estimates of the Engel curve parameters that are robust to

measurement error in the data. As we will discuss further below, these conditions

are very general in nature, or at least are as general as those already presented in

other studies that consider estimation of the Engel curves when measurement error

is the only source of endogeneity (Lewbel 1996). The results we provide may be

extended to allow for exogenous error-free regressors, thus o�ering a practical way to

estimate more general demand systems. The �nite sample properties of the proposed

estimator are evaluated with a Monte Carlo simulation study and compared to those

of alternative estimators. Finally, we provide an empirical application to show how

the method we propose can be applied to real data, using information from the Bank

of Italy panel survey.

The remainder of the paper is organised as follows. Section 2 de�nes the model

under study. Section 3 derives the identi�cation results for the case of budget shares

which are linear or quadratic speci�cations in the logarithm of total expenditure. Sec-

tion 4 develops the estimation procedure, whereas Section 5 presents the results from

the Monte Carlo study. Section 6 discusses the empirical application, and Section 7
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concludes. Proofs and additional materials are made available in the Appendix.

2 General formulation of the problem

The aim of this Section is twofold. First, we de�ne the channels through which

endogeneity of total expenditure operates, and how these a�ect the various estima-

tion methods employed. We then set out the assumptions about the measurement

error model that we will maintain throughout, replicating the same setting already

considered by Lewbel (1996).

2.1 Endogeneity of total expenditure

We focus throughout on identi�cation of the Engel curve for a single good. If one is

interested in the estimation of a system of I equations, the same procedure applies

by treating each good separately and discarding the one equation which is uniquely

identi�ed by the summing-up properties of demand functions. We restrict our at-

tention to speci�cations in which budget shares are polynomials in the logarithm of

total expenditure. This approach is quite general, and underpins most of the rele-

vant speci�cations encountered in the empirical literature. Notable examples are the

AIDS Deaton and Muellbauer (1980) or the Quadratic AIDS Banks, Blundell, and

Lewbel (1997), which correspond to polynomials of the �rst and second order, respec-

tively (for a detailed discussion on Engel curves, see Lewbel 2008). To ease notation,

in most of the paper we derive identi�cation results for the following equation:

W ∗
i = bi0 + bi1 logX

∗ + εi, (1)

and we discuss separately the extension to higher order polynomials. In the notation

employed, W ∗
i ≡ Y ∗

i /X
∗ is the budget share on the i-th good, Y ∗

i being expenditure

on the i-th good, while X∗ ≡
∑I

i=1 Y
∗
i is total expenditure. In what follows, bi ≡

(bi0, bi1) denotes the vector of the parameters of interest, and variables indexed with

a star refer to error-free measurements..

In most empirical applications, one would estimate (1) using instrumental vari-

ables (see, for instance, Blundell, Chen, and Kristensen 2007 and Attanasio, Bat-

tistin, and Mesnard 2012). This is motivated by the fact that there is no clear

economic justi�cation to assume exogeneity of expenditure on the right had side of

the equation, as in general X∗ and Y ∗
i may be chosen simultaneously by individuals.

Provided that a set of valid instruments (Z) is available, bi is consistently estimated

by 2SLS or by a standard control function estimator. The latter approach would

entail considering the following regression:

logX∗ = g(Z) + η∗, (2)

where g(Z) ≡ E[logX∗|Z]. In the remainder of this paper, we make the following

control function restriction. This is a standard assumption in the relevant literature

and it is also employed in semiparametric approaches (see, for example, Blundell,

Duncan, and Pendakur 1998).
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Assumption 1. (Control Function Restriction). Let η∗, Z and εi be such that:

E[εi|Z, η∗] = E[εi|η∗] = ρiη
∗.

Assumption 1 is more restrictive than it is required to identify bi if a valid in-

strument is available, but will be needed in the following to handle non-linearities

introduced by measurement error. It implies that identi�cation of the parameters of

interest can be achieved from the following regression:

W ∗
i = bi0 + bi1 logX

∗ + ρiη
∗ + ξi, (3)

where there is E[ξi|X∗, η∗] = 0 by construction. Using standard arguments, one

would estimate bi from a linear regression of W ∗
i on logX∗ and η̂∗, the latter term

denoting the estimated residual from the regression in (2).

2.2 Measurement error

In this Section we spell out the properties of measurement error that will be used

later in the paper. If expenditure data are mismeasured, another source of endo-

geneity in the estimation of (1) arises. Denoting by Wi and X the error ridden

measurements of W ∗
i and X∗, respectively, the feasible counterpart of equation (1)

obtained by regressing Wi on logX would in general yield biased estimates of the

parameters of interest. Moreover, as Amemiya (1985) �rst pointed out, in non-linear

settings instrumental variables do not help identi�cation. The result follows from

measurement error being is no longer additively separable in the functional form

speci�cation, and entering both sides of equation (1). Such a feature, not usually

encountered in the errors-in-variables literature, further complicates identi�cation

(see De Nadai and Lewbel 2012, for an example of this).

Suppose that Yi is observed in place of Y ∗
i , de�ned as:

Yi = Y ∗
i +X∗νi, (4)

where νi is a mean zero random variable independent of Y ∗
j , for j = 1, . . . , I, and

hence from X∗. This de�nition is consistent with observing (possibly correlated)

measurement errors in all goods. Note that this also allows for the variance of

measurement error on expenditure levels to increase with total expenditure, a feature

usually encountered in the data (see Bound, Brown, and Mathiowetz 2001). The

rationale for this speci�cation follows from the fact that summing up over all goods

we obtain classical measurement error in logX∗, since there is:

X =

I∑
i=1

Yi = X∗

(
1 +

I∑
i=1

νi

)
= X∗V, (5)

with V = 1 +
∑I

i=1 νi, and thus:

logX = logX∗ + log V. (6)

Equation (5) together with (1) implies:

Wi =
W ∗

i + νi
V

, (7)
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so that measurement error enters non-linearly the left hand side of equation (1). Such

a measurement error structure coincides with that considered by Hausman, Newey,

and Powell (1995) and Lewbel (1996).

3 Identi�cation

This Section is organised as follows. First, we set out the identi�cation strategy

for Engel curves that are linear in the logarithm of total expenditure, relying on

the control function restriction in Assumption 1. The main result is presented in

Theorem 1, where (15) represents the estimating equation that we propose to use

in empirical applications. Second, we discuss some threats to the validity of the

control function restriction, providing conditions to test it against data. We show

that in the worse case scenario, our procedure still retrieves the shape parameter

of the Engel curve, which represents the quantity of interest in most applications

(see, for example, Attanasio, Battistin, and Mesnard 2012). Finally, we discuss the

generalization of the identi�cation result to the case of a quadratic speci�cation for

the Engel curve. As discussed in the Introduction, this - together with the linear

case that we consider as working example - covers most of the empirical applications

encountered in the empirical literature.

3.1 Linear Engel curves

Consider the following set of assumptions, which will provide the basis for the iden-

ti�cation results derived below.

Assumption 2. (Validity of the Instruments). Let (X∗, X, Yi, Z, εi, νi) be a

vector of i.i.d. random variables such that:

(i) E[X|Z] ̸= 0,

(ii) E[εi|Z] = 0,

(iii) E[νi] = 0 and νi⊥(X∗, Z, εi).

Assumptions (i) and (ii) are standard and ensure the validity of the instrument,

while (iii) implies that the measurement errors are independent of total expendi-

ture. Full independence is required due to the non-linearities in the functional form

considered. Note also that (iii) implies E[V ] = 1.

Substitute equation (3) into (7) to obtain:

Wi =
bi0 + bi1 logX

∗ + ρiη
∗ + ξi + νi

V
.

Under Assumption 2, by multiplying either side by X and taking conditional expec-

tations with respect to Z, there is:

E[XWi|Z] = bi0E[X∗|Z] + bi1E[X∗ logX∗|Z] + ρiE[X∗η∗|Z]. (8)
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Following Lewbel (1996), it is easy to see that:

E[X∗|Z] = E[X|Z], (9)

E[X∗ logX∗|Z] = E[X logX|Z]− E[X|Z]E[V log V ], (10)

so that substitution of (9) and (10) into (8) yields:

E[Yi|Z] = α̃i1E[X|Z] + bi1E[X logX|Z] + ρiE[X∗η∗|Z], (11)

where α̃i1 ≡ bi0 − bi1E[V log V ].
When E[εi|X∗] = 0, then ρi is equal to zero and the last term on the right

hand side of equation (11) vanishes, implying that bi1 is identi�ed through a 2SLS

regression of Yi on X and X logX without a constant, using Z as instruments.

Identi�cation of bi0 follows along the same lines exploiting similar expressions for

E[X lWi|Z], with l ≥ 1 (see Lewbel 1996). When ρi ̸= 0, this procedure would in

general produce incorrect inference for bi1 because of an omitted variable problem.

In what follows, we will express E[X∗η∗|Z] in terms of observable moments.

De�ne η as the residual term from the regression of logX on the set of instruments

Z. That is, η is the analogue of η∗ when logX is substituted for logX∗ into equation
(2). It follows from the measurement error structure in equation (6) that:

η = η∗ + log V −E[log V ]. (12)

Now consider the conditional expectation:

E[Xη|Z] = E[X∗η∗|Z] + E[X∗|Z](E[V log V ]− E[log V ]),

where we exploit once again the independence of V from (X∗, η∗) and the fact that

E[V ] = 1. This, together with equation (9), implies:

E[X∗η∗|Z] = E[Xη|Z]− E[X|Z](E[V log V ]− E[log V ]). (13)

Hence substituting (13) into (11) and rearranging terms we obtain:

E[WiX|Z] = αi1E[X|Z] + bi1E[X logX|Z] + ρiE[Xη|Z], (14)

with αi1 = bi0 − bi1E[V log V ]− ρiCov(V, log V ).
This result can be seen as the particular case of the following theorem, that

generalizes the above argument to the conditional expectation E[X lWi|Z], for any
l, and whose proof is given in the Appendix A.

Theorem 1. (Identi�cation of Linear Curves). Let equations (1) and (4) hold.

Under Assumptions 1 and 2, for any integer l for which E[V l log V ] and E[νiV
l−1]

are �nite there is:

E[X lWi|Z] = αilE[X l|Z] + βilE[X l logX|Z] + ρ̃ilE[X lη|Z], (15)

where η is de�ned as in equation (12), and:

αil = bi0
E[V l−1]

E[V l]
− bi1

E[V l−1]E[V l log V ]

E[V l]2
− ρi

E[V l−1]Cov(V l, log V )

E[V l]2
+

E[V l−1νi]

E[V l]
,

βil = bi1
E[V l−1]

E[V l]
, ρ̃il = ρi

E[V l−1]

E[V l]
.
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The moments restrictions in (15) imply that a 2SLS regression of X lWi on X l,

X l logX and X lη̂, using Z as instruments, would consistently estimate αil, βil and
ρ̃il. As before, η̂ represents the empirical analogue of (12) obtained from the feasible

regression of logX on Z.
As we will discuss in the next Section, Theorem 1 de�nes a set of moment con-

ditions corresponding to di�erent values of l that can be used to estimate all the

parameters of the Engel curve, as well as ρi. More in general, the theorem o�ers an

important insight on the bias resulting from the application of a standard instru-

mental variable strategy to estimate the parameters of the curve. The result is easily

obtained upon discussing the properties of the estimating equation de�ned by (15),

once l is set to zero.

Corollary 1. (Failure of the Instrumental Variable Estimator). Under the

Assumptions of Theorem 1, there is for l = 0:

E[Wi|Z] = αi0 + βi0E[logX|Z], (16)

where:

αi0 = E[viV
−1] + E[V −1] (bi0 − bi1E[log V ]) ,

βi0 = bi1E[V −1]. (17)

Equation (16) implies that a 2SLS regression of Wi on logX, using Z as instru-

ments, yields biased results for bi1. This proves that instrumenting for endogeneity

without adjusting for the non-linearities introduced by measurement error will in

general result in incorrect inference on the parameters of interest.

Three implications of practical relevance are worth noting from Corollary 1, which

were left sort of implicit in the discussion by Lewbel (1996). First, from Jensen's

inequality there is E[V −1] > E[V ]−1 = 1, hence the naive instrumental variable

estimator is biased upward. Second, by taking a second order Taylor series expansion

of E[V −1] around its mean, there is:

E[V −1] ≈ E[V ] + V ar[V ] = 1 + V ar[V ], (18)

this implying that the magnitude of the bias is approximately proportional to the

variance of the measurement error. Note that, when V is log-normally distributed,

which may be a sensible assumption to make in practice, the above approximation

is exact. Finally, Corollary 1 o�ers an intuitive explanation for the informational

content brought by the set of moment conditions de�ned by di�erent values of l, and
how such information helps to the identi�cation of important features of the model.

For example, one could combine equations (14) and (17) to jointly estimate bi1 and
E[V −1], and thus the variance of measurement error if one is willing to assume that

the latter is log-normally distributed. We will come back to this point in the Section

about estimation.

3.2 Validity of the control function restriction

The estimation strategy brought forward through equation (14) requires some careful

discussion about the nature of the control function term E[Xη|Z]. It is crucial for
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identi�cation that this term is not collinear with the remaining terms that enter the

moment equation. It turns out that to achieve identi�cation of all parameters of the

Engel curve there must a certain degree of dependence between η∗ and the set of

instruments Z. Note that η∗ is uncorrelated by construction with the instruments Z,
therefore dependence between η∗ and Z might only be due to higher order moments,

for example through heteroskedasticity of η∗ with respect to the instruments Z. To
see this, rewrite equation (2) as X∗ = eg(Z)eη

∗
, so that there is:

X∗ = E[X∗|Z]
eη

∗

E[eη∗ |Z]
.

If η∗ is stochastically independent of Z, it is easy to see that:

E[X∗η∗|Z] =
E[eη

∗
η∗]

E[eη∗ ]
E[X∗|Z] = δE[X∗|Z].

It is then immediately clear that, when substituting the above expression back into

equation (11), and using (9), the equation in (14) becomes:

E[WiX|Z] = (bi0 − bi1E[V log V ] + ρiδ)E[X|Z] + bi1E[X logX|Z]. (19)

It follows that, when η∗ is independent of Z, Lewbel's (1996) estimator provides

consistent estimates for bi1 in the presence of endogenous unobserved total expen-

diture X∗. However, bi0 is no longer identi�ed from knowledge of moments of the

form E[X lWi|Z], for l ≥ 2, since bi0 and δ cannot be disentangled without additional
information.

It is worth noting that, under Assumption 2, the independence condition required

to avoid collinearity can be tested against data, as η∗ is independent of Z if and only

if η is independent of Z. In the remainder of this paper we will work as if this

condition is met in the data, and we will test for this in the empirical application.

3.3 Quadratic Engel curves

The generalization to the case of quadratic Engel curves is readily obtained at the

cost of complicating the algebra. Consider the following speci�cation:

W ∗
i = bi0 + bi1 logX

∗ + bi2(logX
∗)2 + εi. (20)

The same arguments employed above allow us to state the following theorem.

Theorem 2. (Identi�cation of Quadratic Curves). Let equations (20) and

(4) hold. Under Assumptions 1 and 2, for any integer l for which E[V l log V ] and
E[νiV

l−1] are �nite, there is:

E[X lWi|Z] = αilE[X l|Z] + βilE[X l logX|Z] + γilE[X l(logX)2|Z] + ρ̃ilE[X lη|Z],
(21)
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where η is de�ned as in equation (12), and:

αil = bi0
E[V l−1]

E[V l]
− bi1

E[V l−1]E[V l log V ]

E[V l]2

−bi2E[V l−1]

{
E[V l(log V )2]

E[V l]2
− 2

E[V l log V ]2

E[V l]3

}
−ρi

E[V l−1]Cov(V l, log V )

E[V l]2
+

E[V l−1νih]

E[V l]
,

βil = bi1
E[V l−1]

E[V l]
− 2bi2

E[V l−1]E[V l log V ]

E[V l]2
,

γil = bi2
E[V l−1]

E[V l]
,

ρ̃il = ρi
E[V 1−1]

E[V l]
.

Theorem 2, whose proof is reported in Appendix A, provides moment conditions

for the estimation of bi in a way completely similar to Theorem 1. In particular

consider the following result:

Corollary 2. Under the Assumptions of Theorem 2, when l = 1 there is:

E[XWi|Z] = αi1E[X|Z] + βi1E[X logX|Z] + γi1E[X(logX)2|Z] + ρ̃i1E[Xη|Z],

where:

αi1 = bi0 − bi1E[V log V ]− bi2
{
E[V (log V )2]− 2E[V log V ]2

}
− ρiCov(V, log V ),

βi1 = bi1 − 2bi2E[V log V ],

γi1 = bi2,

ρ̃i1 = ρi.

This implies that a 2SLS regression of XW on X, X logX, X(logX)2 and Xη̂,
using Z as instruments, would consistently estimate the quadratic coe�cient bi2
through the coe�cient on X(logX)2. As for the linear case, identi�cation of the

remaining components of bi is achieved through the additional moment restrictions

implied by equation (21) for di�erent values of l.

4 Estimation

The results in Section 3 imply that equation (15) can be used for l = 1 to estimate bi1
and ρi. Although η is not observed, it may be estimated through a (non)parametric

regression of the observed logX on the instruments Z, and then plugged into the

main regression. In what follows, we discuss how bi0 can be retrieved from raw data.

The general setting arising here is similar to that considered in Lewbel (1996), the

only di�erence being the additional term ρiCov(V, log V ).
First, note that the entire distribution of V is identi�ed by assuming the existence

of its moment generating function. The result follows using the additional restrictions
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provided by equation (15) in Theorem 1 when l ̸= 1, as one could identify any moment

of the distribution of V from knowledge of βi = (βi0, βi1, . . .). For instance, it is easy
to see that βi2/βi1 = E[V 2]. This in turn allows to nonparametrically estimate both

E[V log V ] and Cov(V, log V ) following the arguments in Lewbel (1996).

In empirical applications, however, there is little scope for using large values of l
because of the drawbacks on the standard errors of the βil's. One can get around this
problem by imposing parametric assumptions on the distribution of V . Suppose, for
instance, that V is log-normally distributed. This assumption is rather appealing,

as there is empirical regularity from various surveys worldwide suggesting that total

expenditure is log-normally distributed (see Battistin, Blundell, and Lewbel 2009 for

a discussion on the reasons for this pattern). Using the Cramér's (1936) characteriza-

tion result for normal distributions (see Johnson, Kotz, and Balakrishnan 1994, pag.

102-103) and the fact that X∗ is independent of V , log-normality of raw expenditure

data implies that V must be itself log-normal.

The ratio of βi1 to βi0, obtained from equations (14) and (16), respectively,

identi�es E[V −1]. Thus, using (18) and the assumption of log-normality of V , a
method of moments estimate for the variance of log V (σ2

V ) is obtained through:1

σ2
V = log

(
βi0
βi1

)
,

using the fact that 1+ V ar[V ] = eσ
2
V . This approach is to be preferred in general to

the one proposed by Lewbel (1996) which is based on knowledge of βi1 and βi2 since
the variance of βi2 is generally much larger than that of βi0.

2

With the distribution of V at hand, one may estimateE[V log V ] and Cov(V, log V )
and substitute these back into the expression for αi1, hence determining bi0. For ex-
ample, under log-normality of V there is:

E[V log V ] =
σ2
V

2
,

Cov(V, log V ) = σ2
V .

5 Monte Carlo Simulation

To assess the �nite sample properties of the proposed estimator, a simulation study

is performed. The goal of this exercise is to compare the endogeneity-corrected

estimator to the simple IV estimator, for which an expression for the bias was given

in Section 3, and to the one proposed by Lewbel (1996). We consider the following

model:

W ∗
i = 1− 0.05 logX∗ + εi,

logX∗ = 1.45 + 0.93 logZ +−0.03(logZ)2 + η∗,

1Note that, if V is log-normal, the fact that E[V ] = 1 implies that E[log V ] = −σ2
V /2, meaning

that the only parameter to be estimated is σ2
V .

2Combining estimates of βil for several values of l in a GMM framework, in a manner similar to
that discussed in Lewbel (1996), would in general increase the e�ciency of the resulting estimate.
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where we set εi ∼ N(0, σ2
ε) and logZ ∼ N(10.5, 2.52). Endogeneity of the unobserved

X∗ is induced by generating η∗ according to:

εi = θ1η
∗ + ξ,

η∗ ∼ N(0, kZ0.3),

with ξ ∼ N(0, σ2
ξ ). The parameters θ1, k and σ2

ξ were chosen to get Corr(εi, log η
∗) =

0, 0.3, 0.5 and 0.8, and to keep the R2 of the �rst and second stage regressions, in

the case of no endogeneity, at about 0.75. The parameters of the Engel curve and

of the �rst stage were calibrated such that the marginal distributions of logX∗ and
logZ roughly match the observed distributions in the data used for the application

in the next Section, while retaining su�cient variability in W ∗
i .

Measurement error of the form outlined in Section 3 is introduced, so that the

observed pair (Yi, X) is given by:

Yi = Y ∗
i +X∗vi,

logX = logX∗ + log V,

where V = 1+vi, hence assuming that only the expenditure of the good under study

Y ∗
i is measured with error. The amount of measurement error is decided by setting

the noise to signal ratio, that is V ar(log V )
V ar(logX∗) , to 0, 0.1, 0.3 or 0.5.

We compare the performance of the proposed estimator with OLS, 2SLS and

Lewbel's (1996) estimator using 10,000 replications from the process sketched above.

To ensure comparability with the study by Lewbel (1996) the set of instruments is

de�ned as: Z, logZ, (logZ)2, Z logZ, Z2 and Z2 logZ. The proposed estimator is

computed as in Section 4, by constructing a control function which is the interaction

between the observed X and the residuals of the regression of logX on the set of

instruments Z.

The results of the simulation are summarized in the tables below. Two scenarios

are considered, de�ned by values of the sample size equal to 1,000 (Table 1) and 5,000

(Table 2). Finite sample properties were also investigated for samples of 500 and

10,000 observations, for which results are reported in Appendix B. The presentation

of the results is organised as follows. The left hand side of the top panel of each

table considers the case of no measurement error and exogenous expenditures, for

which OLS estimates should be preferred. By moving to the right of the same panel

endogeneity of expenditures is added, so that IV estimates should be preferred.

By moving down in the table, increasingly larger measurement error is added for

scenarios de�ned by values of the noise to signal ratio set at 10%, 30% and 50% of the

variability in observed expenditure. Thus, �gures in the �rst column of each table are

derived under the setup considered by Lewbel (1996). Results at the bottom end of

each table are derived for the case considered in this paper, for di�erent combinations

of measurement error and endogeneity of expenditure.

As expected, departures from standard assumptions have strong negative impact

on the properties of the OLS estimator: already at relatively small values of mea-

surement error or of endogeneity, the percentage bias is substantial. Similarly, in the

absence of measurement error, the IV estimator does a pretty good job at dealing
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with endogeneity of expenditures. As documented in Section 4 (Corollary 1), the bias

of the IV estimator is una�ected by the extent of endogeneity when measurement

error is added to the model. The performance of the estimator worsen as measure-

ment error becomes more important, yielding larger bias which is proportional to

the variance of the error.

The estimator proposed by Lewbel (1996) generally outperforms OLS and IV

when measurement error comes into play, although this is less so in the presence of

sizeable endogeneity of expenditure. The estimator proposed in this paper adjusts

for both measurement error and endogeneity, re�ecting the properties discussed in

Section 3. It is of quality comparable to the estimator previously proposed by Lew-

bel (1996) when there is no endogeneity, although this result comes at the cost of

precision. It is however worth noting that, already for limited extents of endogene-

ity, the current estimator outperforms its competitors, uniformly across the various

scenarios considered for the sample size.

6 Application

In this Section we present an application using data from the 2010 wave of the

Bank of Italy's Survey on Households' Income and Wealth (SHIW). We select the

subsample of couples for which the male is between 30 and 60 years old, resulting in

a sample of 2, 723 households. Information is available for expenditures on a variety

of commodities, demographics and wages. We consider di�erent groups, and run

separate regressions depending on the number of children in the household (couples

without children, couples with one child, and couples with more than one child).

We decided to focus on the estimation of Engel curves for food, which we model as

a linear in logarithms Working (1943) and Leser (1963) budget share speci�cation

because of the substantial empirical evidence in support of this (see, for instance,

Banks, Blundell, and Lewbel 1997). We control for household regional variation

through a set of macro area dummies (North, Center, South), which enter linearly

in the speci�cation considered. Such covariates will be assumed exogenous to the

model and correctly measured throughout. The main descriptive statistics for the

variables employed in the analysis are documented in Appendix B.

The reference model is then:

W = b0 + b1 logX + γ ′Q+ ε, (22)

where Q is the vector of dummies. This is formally a shape invariant Engel curve

in which demographics are taste shifters inducing heterogeneity in the utility of

households (see Blundell, Duncan, and Pendakur 1998). As in Attanasio and Lech-

ene (2002), we decided to instrument total expenditure with the average of male

(logged) wages across areas. This is because income is not necessarily the ideal can-

didate, as endogeneity may be driven by non-separability of labour supply from food

in the utility function. Mean wages most likely are not correlated with household

unobserved characteristics and measurement errors, and in our data are strongly cor-

related with total expenditure. Very pragmatically, we decided to increase variability

in the instrument by stratifying households using region identi�ers and population
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size of the primary sampling unit, all variables required being available from public

use �les. This resulted in an instrument de�ned over 100 cells, comprising on average

27 observations. We however checked the sensitivity of our results to the choice of

the instrument, experimenting with total household income in place of, and on top

of, male wages. The results that we found proved informationally equivalent to those

presented in what follows, and we decided to omit them from the main text.

To ensure comparability with the procedure in Lewbel (1996), the following set

of instruments was considered: average of male logged wages, in both levels and logs,

and their interaction (for a total of three instruments). The �rst stage regression of

logged expenditure on Z andQ yields coe�cients on Z which are strongly statistically

signi�cant and an F statistic of 115.47. The instruments considered account for about

16% of the total variance of observed total expenditure.

Table 7 presents results from alternative estimation approaches, that would yield

correct inference on the parameters of interests depending on the features of the data

generating process. To ease readability, we decided to report estimates only for the

shape parameter b1 in (22).

The �rst set of results refers to estimates obtained from straight OLS, hence ig-

noring the presence of any source of endogeneity in total expenditure. These were

obtained by estimating the empirical counterpart of equation (22) from raw data.

Acknowledging endogeneity of total expenditure, we implemented a naive 2SLS re-

gression of W on logX and Q using the �rst stage regression discussed above. These

are the results that we present in the second row of the table. When the two re-

gression outputs are compared, the IV procedure yields point estimates that are in

general larger, in absolute terms, than those obtained through OLS. The third set

of results is obtained by replicating the procedure in Lewbel (1996), thus adjusting

for measurement error. The results presented were obtained by estimating:

XW = b0X + b1X logX + γ ′QX + ζ, (23)

through a 2SLS procedure, in which the endogenous variables X, X logX and QX
were instrumented with the Z's and their interactions with Q. Point estimates are

lower, in absolute terms, than those obtained with IV. As we have discussed in Section

3, this �nding in itself is consistent with having a large extent of measurement error in

the data: under the assumption that endogeneity of expenditure is solely determined

by error ridden data, the ratio between IV estimates and estimates obtained from

equation (23) should speak about the variance of measurement error. We checked

preliminarily for evidence against the stochastic independence between η and Z. We

run the regression of the square of η̂ on the instruments, separately for the household

types considered, detecting the presence of sizeable heterosckedasticity for two of the

three groups. We then estimated the following regression:

XW = b0X + b1X logX + γ ′QX + ρXη̂ + ω, (24)

η̂ being the residual term from the regression of logX on the Z's and their inter-

actions with Q. It turns out that the resulting point estimates are much closer in

magnitude to those obtained via IV. Intuitively, under the conditions stated in Sec-

tion 3, this points to a much lower extent of measurement error in the data than
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before. Finally, we followed the procedure sketched in Section 4 to estimate the

shape parameter of the Engel curve through a GMM system of moment conditions

de�ned from the instrumental variable estimands resulting from equations (22) and

(24). The results are presented in row (6) of the table.

To shed light on these sources of endogeneity in the data, reported in the table

are estimates of the variance of measurement error obtained assuming log-normality

of V . Since estimates of E[V −1] are produced, we employed (18) to derive the

quantity of interest. The �gures reported suggest that the extent of error in the

data is limited. It is worth noting that the size of measurement error that we would

have obtained by taking estimates in rows (2) and (3) at face value are much larger.

For example, for households with more than one child, the ratio between straight IV

estimate and Lewbel's estimate would yield a value for the variance which is almost

six times larger than the one reported in the table.

7 Conclusions

In this paper we have proposed an estimator for Engel curves which accounts for the

presence of two sources of endogeneity: measurement error on, and endogeneity of

total expenditure. The estimator builds upon a standard control function assumption

to derive consistent estimates of the parameters of interest. The approach suggested

de�nes a GMM procedure which is readily implementable using standard statistical

software. The small sample properties of the estimator have been analysed, and the

results point to a signi�cant improvement with respect to its alternative competitors

already for small departures form the standard setting. The proposed method was

applied to estimate Engel curves for food using data from the Bank of Italy's SHIW

Survey. The results suggest that ignoring the presence of endogeneity of unobserved

total expenditure may result in severely biased estimates. In particular, the extent

of measurement error would be signi�cantly overestimated.
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Appendix A

Proof of Theorem 1

From equation (1) and (7), which directly follows from (4), we have:

Wi =
bi0 + bi1 logX

∗ + εi + νi
V

.

Let g∗(Z) be the conditional mean of logX∗ given the instruments Z, then it is:

logX∗ = g∗(Z) + η∗.

Under Assumption 1 we can write:

Wi =
bi0 + bi1 logX

∗ + ρiη
∗ + ξi + νi

V
,

with E[ξi|X∗, η∗] = 0. Now multiplying by X l either side of the equation, using (5)

and taking the conditional expectation with respect to Z yields:

E[X lWi|Z] = E

[
(X∗V )l

bi0 + bi1 logX
∗ + ρiη

∗ + ξi + νi
V

|Z
]
,

= bi0E[V l−1X∗l|Z] + bi1E[V l−1X∗l logX∗|Z] + ρiE[V l−1X∗lη∗|Z] +

+E[V l−1X∗lξi] + E[V l−1X∗lνi|Z],

= bi0E[V l−1]E[X∗l|Z] + bi1E[V l−1]E[X∗l logX∗|Z] +

+ρiE[V l−1]E[X∗lη∗|Z] + E[V l−1νi]E[X∗l|Z], (25)

where the last equality follows from Assumption 2 (iii) and E[ξi|X∗, η∗] = 0. Hence
we may write:

E[X l|Z] = E[X∗lV l|Z],

= E[V l]E[X∗l|Z],

and:

E[X l logX|Z] = E[X∗lV l(logX∗ + log V )|Z],

= E[V l]E[X∗l logX∗|Z] + E[V l log V ]E[X∗l|Z].

Also by de�ning η as the residual of the linear projection of the observed X on the

instruments Z it follows from equation (6) that η = η∗+log V −E[log V ], where the
last expectation ensures that E[η] = 0. Thus:

E[X lηh|Z] = E[X∗lV l(η∗ + log V − E[log V ])|Z],

= E[V l]E[X∗lη∗|Z] + E[V l log V ]E[X∗l|Z]− E[V l
h]E[log V ]E[X∗l|Z],

= E[V l]E[X∗lη∗|Z] + Cov(V l, log V )E[X∗l|Z].
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The unobservable moments on the right hand side of (25) may then be written in

terms of observable ones as:

E[X∗l|Z] =
E[X l|Z]

E[V l]
, (26)

E[X∗l logX∗|Z] =
E[X l logX|Z]

E[V l]
− E[V l log V ]E[X l|Z]

E[V l]2
, (27)

E[X∗lη∗|Z] =
E[X lηh|Z]

E[V l]
− Cov(V l, log V )E[X l|Z]

E[V l]2
. (28)

Substituting equations (26), (27) and (28) into (25) and rearranging terms yields:

E[X lWi|Z] = bi0
E[V l−1]

E[V l]
E[X l|Z]− bi1

E[V l−1]E[V l log V ]

E[V l]2
E[X l|Z]−

−ρi
E[V l−1]Cov(V l, log V )

E[V l]2
E[X l|Z] + bi1

E[V l−1]

E[V l]
E[X l logX|Z] +

ρi
E[V l−1]

E[V l]
E[X lηh|Z] +

E[V l−1νi]

E[V l]
E[X l|Z],

= αilE[X l|Z] + βilE[X l logX|Z] + ρ̃ilE[X lη|Z],

where:

αil = bi0
E[V l−1]

E[V l]
− bi1

E[V l−1]E[V l log V ]

E[V l]2
− ρi

E[V l−1]Cov(V l, log V )

E[V l]2
+

E[V l−1νih]

E[V l]
,

βil = bi1
E[V l−1]

E[V l]
,

ρ̃il = ρi
E[V 1−1]

E[V l]
.

Q.E.D.

Proof of Theorem 2

Combining equations (20) and (7), as above, it is:

Wi =
bi0 + bi1 logX

∗ + bi2(logX
∗)2 + εi + νi

V
,

and under Assumption 1 we might write:

Wi =
bi0 + bi1 logX

∗ + bi2(logX
∗)2 + ρiη

∗ + ξi + νi
V

,

with E[ξi|X∗, η∗] = 0. Now multiplying by X l either side of the equation, using (5)

and taking the conditional expectation with respect to Z yields:

E[X lWi|Z] = bi0E[V l−1]E[X∗l|Z] + bi1E[V l−1]E[X∗l logX∗|Z] +

+bi2E[V l−1]E[X∗l(logX∗)2|Z] + ρiE[V l−1]E[X∗lη∗|Z] +

+E[V l−1νi]E[X∗l|Z]. (29)
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Now note that:

E[X l(logX)2|Z] = E[X∗lV l(logX∗)2|Z] + E[X∗lV l(log V )2|Z] +

+2E[X∗lV l logX∗ log V |Z],

= E[V l]E[X∗l(logX∗)2|Z] + E[V l(log V )2]E[X∗l|Z] +

+2E[V l log V ]E[X∗l logX∗|Z],

so that by substituting back equations (26) and (27) we obtain:

E[X∗l(logX∗)2|Z] =
E[X l(logX)2|Z]

E[V l]
− 2

E[V l log V ]

E[V l]2
E[X l logX|Z]

−
{
E[V l(log V )2]

E[V l]2
− 2

E[V l log V ]2

E[V l]3

}
E[X l|Z]. (30)

Now combining equations (26), (27) and (30) into (29) and rearranging terms it is:

E[X lWi|Z] = bi0
E[V l−1]

E[V l]
E[X l|Z]− bi1

E[V l−1]E[V l log V ]

E[V l]2
E[X l|Z]

−bi2E[V l−1]

{
E[V l(log V )2]

E[V l]2
− 2

E[V l log V ]2

E[V l]3

}
E[X l|Z]

−ρi
E[V l−1]Cov(V l, log V )

E[V l]2
E[X l|Z]

+bi1
E[V l−1]

E[V l]
E[X l logX|Z]− 2bi2

E[V l−1]E[V l log V ]

E[V l]2
E[X l logX|Z]

+bi2
E[V l−1]

E[V l]
E[X l(logX)2|Z] + ρi

E[V l−1]

E[V l]
E[X lηh|Z] +

+
E[V l−1νi]

E[V l]
E[X l|Z],

= αilE[X l|Z] + βilE[X l logX|Z] + γilE[X l(logX)2|Z] + ρ̃ilE[X lη|Z],

where:

αil = bi0
E[V l−1]

E[V l]
− bi1

E[V l−1]E[V l log V ]

E[V l]2

−bi2E[V l−1]

{
E[V l(log V )2]

E[V l]2
− 2

E[V l log V ]2

E[V l]3

}
−ρi

E[V l−1]Cov(V l, log V )

E[V l]2
+

E[V l−1νih]

E[V l]
,

βil = bi1
E[V l−1]

E[V l]
− 2bi2

E[V l−1]E[V l log V ]

E[V l]2
,

γil = bi2
E[V l−1]

E[V l]
,

ρ̃il = ρi
E[V 1−1]

E[V l]
.

Q.E.D.
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Appendix B

Table 4: Descriptive Statistics. SHIW 2010 Data.

No One More Than

Children Child One Child

Mean S.D. Mean S.D. Mean S.D.

Food Budget Shares 0.27 0.11 0.28 0.11 0.31 0.12

Total Expenditure (Logs) 10.04 0.43 10.14 0.44 10.15 0.47

Male Wages (Logs) 10.05 0.23 10.02 0.24 9.94 0.26

Dummy - North 0.54 0.5 0.47 0.5 0.35 0.48

Dummy - Center 0.2 0.4 0.25 0.43 0.17 0.38

Dummy - South 0.26 0.44 0.29 0.45 0.48 0.5

Number of Households 465 870 1388

Note. Summary of descriptive statistics for the variables used in application. These statis-

tics refer to the subsample of couples in the 2010 wave of the SHIW data.
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