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Abstract: The study of the determinants of contests between animals is an important
issue in understanding animal behavior. Tournament experiments among a set of animals
are used by zoologists for this purpose. From a statistical point of view, the results of these
tournament experiments are naturally analyzed by paired comparison models such as the
Bradley-Terry and the Thurstone models. A major complication is the presence of depen-
dence between the outcomes of couples of contests with an animal in common. Likelihood
analysis of this type of animal behavior experiments in presence of interdependence between
contests is computationally demanding. An alternative fitting method that mixes optimal
estimation equations and pairwise likelihood inference is then suggested. The performance
of the proposed methodology is investigated by simulation studies and then applied to a real
data set about adult male Cape Dwarf Chameleons.

Keywords: Animal behavior experiments, Generalized estimating equations, Multivariate
probit regression, Pairwise comparisons, Pairwise likelihood, Thurstone model.

1 Introduction

In nature it is common to observe fights between animals belonging to the same
species. The results of such contests are of vital importance since they determine
the access to food and the possibility to reproduce. Often, the competitions between
animals are settled through aggressive behavior of the contestants and the withdraw
of one animal, but sometimes they escalate to real contests. Experiments on con-
tests between animals are performed with different aims, as for example finding the
reasons of the escalation to real contests, analyzing the length of the contests, de-
termining whether animals can assess the strength of the opponent and decide to
withdraw early from the contest.

The outcomes of contests can be viewed as the results of paired comparisons
from which a winner and a loser can be detected. Paired comparison data arise in
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many areas, from sport tournaments to psychometric analysis, from sensory testing
to genetics, see Bockenholt (2006) and Cattelan (2011) for reviews on this topic.
Stuart-Fox et al. (2006) employ a paired comparison model to study the association
between the results of contests fought by chameleons and various covariates related
to the size and the mass of the animals. Another work along this direction is Brown
et al. (2006) that analyze the outcomes of fights between house crickets as a function
of relative size and relative body mass of animals.

Stuart-Fox et al. (2006) list many advantages in designing the animal behavior
study as a sort of tournament and using a paired comparison model for the analysis
of the data. In particular, models for paired comparison data allow to include in the
model multiple independent variables whose importance is assessed simultaneously
and they take into account the participation of the same animal in more than one
contest. Moreover, those models can be applied to incomplete tournaments data
in which an animal fights against several other animals, but not against all other
animals included in the study.

In tournament experiments, the same animal is used in different contests, hence
inducing dependence between pairs of outcomes with an animal in common. In
Stuart-Fox et al. (2006) the dependence in the observed data is accounted for through
a covariate that counts the number of wins of the animals in previous contests. Also
Kemp et al. (2006) recognize the problem of dependence since they observe animals
in three subsequent contests. Kemp et al. employ an ordinal logistic model for
the probability of an animal winning none, one, two or all three contests. Reference
animals are identified and the results of animals competing with them are discarded,
thus losing also a part of the total comparisons, namely only 102 out of 128 matches
were used. The covariates included in the regression were computed as the value of
the covariate for the reference animal minus the mean value of the three opponents.

In this manuscript, we suggest to analyze animal behavior experiments with a
marginal Thurstone model designed in way to take into account the dependence of
contests involving a common animal. The methodology is motivated and illustrated
by the data analyzed in Stuart-Fox et al. (2006) and made publicly available through
the R (R Development Core Team, 2011) package BradleyTerry2 (Turner and Firth,
2011). The data consist in 106 outcomes of contests between 35 adult male Cape
Dwarf Chameleons. The chameleons were grouped according to the size. KEach
animal fought against every other animal in the same quad. Then, animals competed
with other chameleons of the next larger or smaller quad depending on whether they
won or lost contests with animals in the same quad. The number of contests per
animal varies from 3 to 9, the average number is 6.06. Ten animals lost all the
contests in which they were involved and only two won all contests fought. Several
covariates were recorded for each animal: the snout-vent length, body mass, tail
length, jaw length and casque height. These measures were converted into size-free
variables by taking the residuals of the variables regressed against the snout-vent
length. A particular feature of the Cape Dwarf Chameleons is an irregular oval patch
in the flank, which sometimes presents small peripheral patches. The extension of
the entire flank patch and the main pink patch on the flank were computed as a
proportion of the total flank area and then reported on the arcsine scale. See Table
1 for a list of the available covariates.
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Table 1: Description of the covariates available for the male Cape Dwarf Chameleons
data (Stuart-Fox et al., 2006). Source: BradleyTerry2 package (Turner and Firth,
2011).

SVL snout-vent length

CH residuals of casque height regression on SVL
JL residuals of jaw length regression on SVL
TL residuals of tail length regression on SVL

MASS  residuals of body mass regression on SVL

MP proportion (arcsin transformed) of area of the flank occupied
by the main pink patch on the flank

FP proportion (arcsin transformed) of area of the flank occupied
by the entire flank patch

The manuscript is organized as follows. Section 2 introduces basic models for the
analysis of paired comparison data, such as the Bradley-Terry and the Thurstone
models. In Section 3 a version of the Thurstone model that accounts for dependence
in the data is described. Ordinary likelihood inference for this model is particu-
larly cumbersome. In order to overcome the difficulties with the computation of the
likelihood function, we suggest to resort to an iterative fitting method that cycles
between optimal estimating equations and composite likelihood inference. Section
4 illustrates the finite sample performance of the proposed methodology by simula-
tions, while Section 5 applies the proposed model to the chameleons data. Section 6
discusses the extension needed to analyze paired comparison experiments that allow
for ties and Section 7 concludes. The R code implementing the analysis discussed in
this manuscript is available upon request from the Authors.

2 The Thurstone independence model

Consider a pairwise experiment involving n different animals and let Y;;, denote the
binary random variable measuring the outcome of the rth contest between animals
1 and j,
{1, if animal 7 beats animal j,
Yijr =

0, if animal j beats animal i,

with 4,7 =1,...,nand r = 1,...,m;;. Generally, animal behavior experiments are
incomplete tournaments in the sense that not all contests between all the possible
pairs that can be formed from the n animals are observed. Often these tournaments
are also unbalanced because the number of contests vary from animal to animal.
To account for the incompleteness and unbalanceness of the tournament, we let m;;
be zero if no contests between animals ¢ and j are observed. The total number of
contests is denoted by m = ZKJ. mj-
We focus on situations where the interest lies in evaluating whether a p-dimensional
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vector of animal-specific covariates x;, ¢ = 1,...,n, has some predictive value about
the contest outcome. In paired comparisons models, the expected value of the ob-
served outcome in the rth paired comparison between object 7 and object j is ex-
pressed as

Tijr = E(Yyj0) = F {(z; — z;) "B}, (1)

where 3 is a p-dimensional vector of unknown regressor coefficients which does not
include an intercept term because this cannot be identified. Function F(-) in (1) is
the cumulative distribution function of a zero symmetric continuous variate. Popu-
lar choices for F(-) are the logistic distribution leading to the Bradley-Terry model
(Bradley and Terry, 1952) and the normal distribution leading to the Thurstone pro-
bit model (Thurstone, 1927). As it is well known, the similarity between the shapes
of the normal and logistic distributions implies that logistic and probit regressions
differ very slightly. However, for the subsequent developments in this manuscript, the
probit Thurstone specification is more convenient and thus it is henceforth adopted.
Accordingly, expectation (1) becomes

Tijr = @ {(x; — mj)T,@} )

where ®(-) is the cumulative distribution function of a standard normal variate.

The standard analysis is based on maximum likelihood estimation of 8 under
the assumption of independence of the outcomes of the pairwise comparisons condi-
tionally on the observed covariates. The independence likelihood for 3 is

n Mij

ZnaB =[] T]® {@uijr — V(@i —2;)"8}, (2)

i<jr=1

where it is implicitly intended that if there are no observed contests between animals
i and j for some choice of indices 7 and j, then m;; = 0 and the corresponding terms
are dropped from the product. The value of the parameter that maximises the inde-
pendence likelihood is denoted by Bind. Let w be the vector containing the model-
based expectations for all the observed comparisons {mj : i < j,r = 1,...,m;}
and let y be the vector of the corresponding observations. Then, the maximum in-
dependence likelihood estimator Bind is obtained by solving the likelihood equations

D(8)" Vina(8) " {y — =(B)} =0, (3)

where D(3) is the Jacobian of 7w and Viyq(8) = var(Y) is the model-based variance
of the outcomes under the independence assumption, that is a diagonal matrix
with entries m;;,(8){1 — m;;»(8)}. Under the independence assumption, ,@ind has
asymptotic normal distribution with mean 3 and variance D(8) ' Vi,q(8)D(8) " .

3 Accounting for dependence between contests

The main reason of criticism of the above standard analysis is the assumption of
independence between contests sharing an animal. The intent of this paper is to
suggest an approach to handle dependence in paired comparisons data while keeping
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the simplicity of the marginal interpretation of the regression coefficients of the
independence analysis.

The independence Thurstone model can be written as a censored linear regression
model

Yijr =1 <+ Zijr > 0,
Zijr = (zi — )" B + €ijr, (4)
where the hidden errors €;5 are independent and identically distributed standard

normal variables, €;;, b N(0,1). A sensible extension of the independence model
which takes into account the dependence among comparisons consists in replacing
the independent hidden errors with the following correlated hidden errors

€ijr = Ui — Uj + Nijr,

ui N0, 02),

e XN (0,1 = 20, (5)
where u; and 7,5, are animal-specific and match-specific components, respectively.
The variance of 7, is constrained to 1 — 202 in order to retain the same scale
of the hidden errors as in the independence Thurstone model and thus make the
comparison of the results easier. This constraint causes no loss of generality because
in any case the variance of the hidden errors must be constrained to ensure model
identifiability. Clearly, this model specification requires that parameter o2 lies in
the interval (0,1/2).

The hidden errors defined in (5) are not independent standard normal variates
anymore but they follow a multivariate normal distribution with zero mean vector,
unit variances and correlation matrix P, whose non-diagonal entries are zero ex-
cept for those corresponding to couples of contests with one or both the animals in
common. More precisely, the correlation matrix P is

P =0?AAT + (1-207) 1, (6)

where A is the m x n matrix that identifies the pairwise comparisons and I,,, is the
m x m identity matrix. The typical row of A corresponding to a contest between
animals ¢ and j has zero entries everywhere but at the ¢th and jth columns which
have entries 1 and —1, respectively. Consequently, the entries of P = [p] depend on
which animals are involved in the couple of contests, that is the correlation between
the rth contest fought by animals ¢ and j and the sth contest fought by animals &
and [ is

(62, ifi=lorj=k,

o, ifi=kandj#lorj=1andi#k,

p=1< 202 ifi=k,j=1andr #s, (7)

1, ifi=k, j=landr=s,

[ 0, otherwise.

As an illustration, consider a small tournament with four animals and five con-
tests observed, namely two contests between animals 1 and 2 and one for each of
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the following pairs: 1 vs 3, 3 vs 4 and 1 vs 4. Then, the tournament is identified by
the following matrix A

1 -1 0 O
1 -1 0 0
A=1]1 0 -1 0
0 0 1 -1
1 0 0 -1

and the corresponding correlation matrix of the errors is

1 202 o? 0 o?

202 1 o? 0 o?

P= o2 o 1 —o0? o2
0 0 —o? 1 o?

o2 o2 o? o2 1

The dependence model defined by equations (4)-(5) is, thus, characterized by:

(a) amarginal interpretation of the regression coefficients because ;. = @ {(ml —x j)Tﬂ}
as in the independence model;

(b) cross-correlation between couples of contests sharing one or both the animals.
In fact, the bivariate probability function of the proposed marginal dependence
Thurstone model is

pr(Yijr = Yijrs Yiis = Ykis) = P2 { Quijr — 1) (i — ;)" B, Quris — 1) (@x — 1) Bs p}
(8)

with correlation p specified by equation (7).

The model described in this section will be called the marginal dependence Thur-
stone model.

3.1 Likelihood inference

The marginal dependence Thurstone model is an example of multivariate probit
model. Inference in multivariate probit models is notoriously difficult because the
likelihood requires the computation of the probability distribution function of a
multivariate normal variate. Let w be the vector containing the terms w;j, =
(2yijr — 1)(z; — ;)T B. Then, the likelihood of the marginal dependence Thurstone
model is

gdep(;@a 02) =9, (w; P) ’ (9>

where ®,,(-;P) is the probability distribution function of an m-dimensional multi-
variate standard normal variate with correlation matrix P as defined in equation
(6). Clearly, if 0 = 0, then likelihood (9) reduces to the likelihood (2) of the
independence Thurstone model.

Given the central role of the normal distribution, computation of multivariate
normal probability functions has been extensively studied. For low dimensions,
various deterministic numerical integration rules are available (Joe, 1995; Miwa et
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al., 2003). However, these rules are subject to the curse of dimensionality and cannot
be employed for moderate to large dimensions, as those occurring in the type of
animal behavior experiments that motivated this paper. For example, in the Male
Cape Dwarf Chameleons data later analyzed the number of contests is m = 106, a
dimension large enough to prevent the use of deterministic numerical integration, at
least with actual technologies. The alternative is, then, to resort to Monte Carlo or
Quasi Monte Carlo integration rules; some useful references are Hajivassiliou et al.
(1996), Chib and Greenberg (1998), Genz and Bretz (2002) and Jeliazkov and Lee
(2010).

However, also Monte Carlo methods have some limitations because the compu-
tational cost for accurate approximation of the likelihood raises with the dimension,
although not as heavily as for the deterministic rules. Hence, Monte Carlo approx-
imations may not be appropriate if the intent is to identify a method that can be
applied to a generic animal behavior experiment with a potentially large value of
contests m. Furthermore, the statistical robustness of likelihood inference for the
marginal dependence Thurstone model can be questioned because of the underlying
multivariate normal assumption which seems very difficult to fully assess with any
diagnostic method.

3.2 The hybrid pairwise likelihood approach

The optimal estimating equations for 8 under the dependence Thurstone model
have the same form as the independence likelihood equations (3) but with a different
variance matrix

D(B)" Vaep(B,0°) " {y — =(B)} = 0, (10)

where the variance matrix Vgep (8, 0?) is now computed under the assumed depen-
dence model and thus it has entries of type

cov(Yijr, Yrrs) = pr(Yijr = 1, Ypus = 1) — pr(Yijr = 1)pr(Yes = 1)
=0y {(xi — ;)" B, (wr — )" B;p} — @ {(xi — ;)" B} @ { (@ — )" B} .

The optimal estimating equations are not only theoretically attractive because they
provide the optimal linear combination of the unbiased score equations {Y — w(3)}
but also appealing both from a computational point of view and for their robustness
since only bivariate normal probabilities are involved.

Let Bdep(O'Q) denote the solution of the optimal estimating equations (10). The
dependence parameter o appearing in the optimal estimating equations for 3 is not
known and it is neither possible to estimate it from some estimating function that
does not depend on 3. We choose, then, to resort to the hybrid pairwise likelihood
approach by Kuk (2007). This is an iterative algorithm that cycles between optimal
estimating equations for estimation of 3 given the current value of o> and maximum
pairwise likelihood estimation of o2 given the current value of 3. This hybrid method
is particularly attractive in our context because it provides a receipt for estimation
of 0% that again involves only bivariate distributional aspects.

Given the current value of 3, the hybrid parwise likelihood approach suggests to
estimate o2 by maximization of the pairwise likelihood (Varin, Reid and Firth, 2011).
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This is an example of a more general class of pseudolikelihoods called composite
likelihoods (Lindsay, 1988) constructed by pooling together valid likelihoods for
subsets of data. Composite likelihoods are used as surrogate of the full likelihood
when this is difficult to compute or to specify. See, for example, Cox and Reid
(2004), Molenberghs and Verbeke (2005) and the review by Varin, Reid and Firth
(2011). The pairwise likelihood is the product of the likelihoods for all the couples
of contests

n n Mij my

palr H H H H pT ijr = yzjraYkls = ykls)

1<j k<lr=1s=1

with the bivariate probabilities computed as in (8). Since only pairs of contests with
one or both the animals in common are correlated, and thus informative on o2, then
the pairwise likelihood reduces to

n Mij no Mig mg
2
Zair(0%) = [T T or(Yisr = wige: Yijs = wigs) [T TITTpr(Yiir = vijrs Yies = ins) %
i<jr<s i<j<kr=1s=1
n M4j Mg n o Mg M
X H H H pr(Yi]r yzjr‘aijs - ykjs H H H pr igr — yij‘anks yjks)~
i<k<jr=1ls=1 i<j<kr=1ls=1

Under regularity conditions, that involve essentially the correct specification of the
univariate and bivariate marginal distributions, the maximum pairwise likelihood es-

timator &galr is consistent and asymptotically normal. Let épair(UQ) = log Zpair (?),
then the asymptotic variance of 6 Upalr has the “sandwich” form H=1(02)J(c?)H1(0?),

where H(0?) = —E {Kpalr( )} and J(0?) = var {ﬁpalr(JQ)}, see Varin, Reid and
Firth (2011).

Natural starting points for the hybrid pairwise likelihood algorithm are the max-
imum independence likelihood estimates Bmd Then, the algorithm proceeds by cy-
cling between estimation of o by Upalr(ﬁdep) and estimation of 3 by ,Bdep( palr) until

convergence is achieved. At convergence, (,Bdep, f)air) solve simultaneously the opti-
mal estimating equations for the regression parameters and the pairwise likelihood
for the dependence parameter. It is immediate to verify that if the first two mo-
ments are correctly specified, than the hybrid pairwise likelihood estimates for the
regression coefficients Bdep are consistent and asymptotically normally distributed
with the same asymptotic variance as if 02 was known, namely

Baep ~ N {B,D(B) ' Vyep(B,0)D(B) T} .

Standard errors for ﬁdep are then computed by replacing the unknown 3 and o2

with their estimates ,Bdep and 6 apalr

3.2.1 Generalized estimating equations

Because of the difficulties in dealing with high-dimensional categorical distributions,
various authors have proposed methods that involve only the mean vector and co-
variance matrix of the data. The most popular is likely the method of generalized
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estimating equations (GEEs) by Liang and Zeger (1986). At first glance, the optimal
estimating equations (10) may appear a particular version of GEEs. However, there
is a key difference. In GEEs, the variance matrix of the outcomes is modeled in terms
of a working correlation matrix that does not depend on the parameters included
in the mean. As stated by Nikoloulopoulos, Joe and Chaganty (2011) the working
correlation matrices used in GEEs ignore the fact that correlations for non-normal
data are constrained by the univariate margins. As a consequence, the consistency of
GEEs may fail. See the introduction of Nikoloulopoulos, Joe and Chaganty (2011)
for more discussion and references. In contrast, in the hybrid pairwise likelihood
method discussed in the previous section, the variance matrix Vgep (8, 0?) is spec-
ified according to a probabilistic model and it depends also on univariate margins
(and thus on the regression parameters (3). Hence, the hybrid pairwise likelihood
method correctly takes into account the natural restrictions on the correlations in
binary variables.

4 Simulations

Simulation studies are carried out in order to investigate the finite sample perfor-
mance of the proposed methodology. Here, we present the results of just one of the
studies, since all the others yield similar conclusions. The simulation study consists
of several sets of simulated tournaments. Each tournament comprises 106 contests
among 35 animals following the same schedule as the chameleons data analyzed in
Section 5. We choose to mimic the chameleons data in way to better assess the
importance of accounting for dependence in real data. The contests outcomes were
generated according to the marginal dependence Thurstone model specified by equa-
tions (4)-(5) with a single continuous animal-specific covariate z; simulated from a
normal distribution with mean 0.5 and variance 0.25 using as regression coefficient
the value 5 = 1. Various degrees of dependence as expressed by parameter o2 are
considered. More specifically, 1,000 simulated tournaments are generated for each
of the following ten values of o2 € {0,0.05,0.1,...,0.45}.

In our simulations the hybrid pairwise likelihood algorithm is numerically very
stable, hence requiring very few cycles to reach convergence. In the majority of
the cases convergence is reached in about 3 cycles. Table 2 shows the results of
fitting the simulated tournaments with the independence and dependence models.
As expected, the estimate of the regressor parameter is not much different under in-
dependence and dependence assumptions. However, simulation results clearly show
that the independence model fails to take into account the increased variability as
the dependence parameter o2 increases. In fact, the underestimation of uncertainty
of the independence analysis is reflected in a poor coverage of the confidence intervals
for the regression coefficient 5. The empirical coverage of the confidence intervals
for 3 based on the independence likelihood falls as o2 raises. On the contrary, the
dependence model fitted by the hybrid pairwise likelihood method performs well for
all the values of o2.
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Table 2: Simulation study: Average simulated estimates (est.), average model-
based standard errors (s.e.) and empirical coverage of 95% and 99% confidence
intervals of the regression parameter estimated under the independence and the
dependence assumptions for increasing values of the parameter o2. True value for
the regression coefficient is 1.

independence dependence

o est. s.e. 095 0.99 est. se. 095 0.99
0 1.033 0.204 0.953 0.996 1.033 0.210 0.956 0.997
0.05 1.032 0.204 0.933 0.988 1.032 0.217 0.944 0.993
0.10 1.024 0.204 0.930 0.984 1.021 0.223 0.952 0.991
0.15 1.036 0.205 0.896 0.976 1.034 0.235 0.942 0.989
0.20 1.035 0.205 0.913 0.981 1.034 0.242 0.958 0.994
0.25 1.042 0.207 0.893 0.965 1.039 0.256 0.962 0.989
0.30 1.059 0.209 0.854 0.953 1.0563 0.267 0.940 0.989
0.35 1.063 0.210 0.859 0.955 1.056 0.276 0.950 0.990
0.40 1.055 0.210 0.810 0.939 1.049 0.286 0.946 0.991
0.45 1.080 0.213 0.827 0.928 1.072 0.299 0.949 0.988

5 Application to male Cape Dwarf Chameleons

The analysis of the outcomes of contests between male Cape Dwarf Chameleons is
aimed at determining whether some covariates related to the size of the animals
or the dimension of the flank patch influence the results of contests. Our intent is
to illustrate that not accounting for the dependence among contests may result in
imprecise inferential conclusions. For the purpose of illustration, we analyze in detail
the independence Thurstone model selected on the basis of the Akaike Information
Criterion. This model includes four covariates, namely tail length, snout-vent length,
casque height and the proportion of the flank patch. The first three columns of
Table 3 display the estimates and standard errors computed under the independence
assumption. All four covariates are strongly significant according to the Wald test,
as can be seen from the reported absolute z values defined as the absolute value of
the ratio between estimates and standard errors. In particular, casque height and
tail length are positively associated with victory while snout-vent length and the
proportion of the flank patch are negatively associated.

The next step is to check whether the data support the presence of dependence
or not. For this purpose we compute a first estimate of the dependence parameter
0% by maximizing the pairwise likelihood with B set equal to its estimate under
the assumption of independence. This provides a consistent estimation of o2 under
the dependence model because Bmd is a consistent estimator of B also under the
dependence model. The resulting estimate is tf)air(éind) = 0.282. The obvious
question is whether this estimate is suggestive of the presence of dependence or if its
relatively large value — remember that o2 is constrained to lie in the interval (0,0.5)
— can instead be due to randomness. In other words, we are interested in validating
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Table 3: Application to Male Cape Dwarf Chameleons: Estimates, standard errors
and absolute z values for the best model according to AIC. Columns 1-3 report esti-
mates obtained with the Thurstone independence model, while columns 4-6 report
estimates obtained with the marginal dependence Thurstone model.

indipendence dependence
est. s.e. z-value est. s.e. z-value
CH 0.289 0.121 2.388 0.311 0.166 1.873
TL  -0.069 0.021 3.286 -0.064 0.028 2.286
SVL -0.092 0.034 2.706 -0.039 0.031 1.258
FP 0.030 0.013 2.308 0.023 0.018 1.278

the null hypothesis of independence Hy : 62 = 0 versus the alternative H; : 62 > 0.
Since the null hypothesis corresponds to the limiting case of ¢ approaching zero,
that is the border of the parameter space, then standard asymptotic results do not
apply here. This difficulty can be overcome by relying on a parametric bootstrap
assessment. We simulate 1,000 bootstrap samples from the independence Thurstone
model and compute the corresponding 1,000 estimates 6gair(Bind)- The maximum of
these simulated estimates is 0.22; that is none of the simulated estimates is greater
than the estimate computed at the observed data. Hence, we conclude that it is
extremely unlikely that the independence hypothesis holds.

We then fitted the dependence marginal Thurstone model by the hybrid pair-
wise likelihood approach. The algorithm converges in 7 cycles. At convergence, the
estimated dependence parameter is 6§air = 0.368. Estimates, standard errors and z
values for the regressor coefficients are displayed in the last three columns of Table
3. As expected, the standard errors of the model accounting for dependence are
larger than those derived under the assumption of independence. Indeed, only the
tail length covariate now appears to be significantly associated with the outcomes of
the contests. The overall conclusion is that the effect of dependence in paired com-
parison experiments can be quite substantial, thus leading to considerably different
inferential conclusions.

6 Extension to contests with ties

In the chameleons data, biologists terminated the interactions between animals once
a clear winner was identified. However, in some instances it is not possible to detect
a clear winner of the contest, hence a tie is observed. In this case the contest outcome
Y;jr is a categorical variable that assumes Q = 3 ordered categories here arbitrarily
coded as

0, if animal j beats animal 1,

Yijr =41, if a tieis observed,

2, if animal 7 beats animal j.

Hence, to analyze data that include ties it is necessary to extend the Thurstone
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model described in this paper for ordinal observations. More generally, consider
an outcome Y, that can assume one of Q different values where 0 denotes the
worst result for animal ¢ and Q — 1 denotes the best possible result for animal .
The Thurstone model for ordinal data is derived by considering the corresponding
censored linear regression model

Yiir=q < 79 <Zijr < Tgy1,
Zijr = (xi — )T B + €ijr, (11)

where parameters 7, are threshold parameters such that —co =70 <7 < ... <
TQ-1 < Tq = 0o. Model identifiability requires that thresholds satisfy the following
condition of symmetry: 7, = —7q—¢, ¢ = 0,...,Q — 1, and 7q/; = 0 if Q is even.
To illustrate the need of this condition consider the win-tie-loss case (Q = 3) and
assume for simplicity that all the contests are observed only once, m;; = 1 for any
choice of indeces ,j. The model must assure that the probability that animal 7
beats animal 7,
pr(Yi; =2) = @ {-n + (x; —z;)" B},

is the same as the probability that animal j is beaten by animal 1,
pr(Yji =0) =@ {-m — (x; — =)' B},

and such a requirement is satisfied only if 71 = —79.

Dependence between comparisons with common animals is introduced by as-
suming the same structure for the hidden errors as that proposed in formula (5) for
binary outcomes. Hence, the correlation matrix of the hidden errors is equal to the
one described in formula (6).

In order to employ the optimal estimating equations framework it is necessary
to transform each categorical variable Y;;. into a set of Q — 1 binary variables
Y5, = 1if Yy < g and Yj;,, = 0 otherwise, for ¢ = 0,...,Q — 2. Let Yj;, =
(Yijr0s--+» Yijrq_2) be the vector of the binary variables corresponding to Y;j and
Y* = (Y;,,4 < j,m =1,...,my;) be the vector of all the binary variables for each
contest. The relative observations are denoted by y* and the corresponding vector
of model based probabilities is 7w*(3). Then, equation (10) becomes

D*(8)' V¥ iep(B,0%) Hy" —m*(B)} = 0, (12)
where D*(3) is the Jacobian of m* and V*4ep (3, 02) is the covariance matrix of the
Y*. The elements of the covariance matrix are

COV(Y:jrq’YZ;lsij) = pr(Y:jrq = LYZZS@ = 1) - pr(Y;(jrq = 1)PY(Yleq = 1) (13)

The univariate probabilities can be easily computed as pr(Yj;,, = 1) = pr(Y <
q) = ®{rg41 — (z; — )18} — ®{ry — (z; — =;)TB}. Some care is needed in the
computation of the bivariate probabilities in equation (13). In fact, these bivari-
ate probabilities can involve either binary variables related to the same contest or
variables related to different contests with one or two animals in common or vari-
ables related to different contests with no common animals. In the latter case the
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covariance (13) is zero. When variables refer to the same contest, then pr(Y7;,, =

LY} =1) = pr(Y;,; = 1), where t = min{qg, ¢}. In the other cases, when r # s,
then pr(Yj,, =1, Yie = 1) = ®o{7rg01— (@i — ;)" B, 7411 — (21, — )" B; p}, where
the correlation p is as described in (7).

7 Conclusions

We have presented a method to handle dependence in paired comparison experi-
ments with specific attention to tournament data used in animal behavior experi-
ments. The proposed methodology can be of interest for other areas where paired
comparison data are collected. These include analysis of sport data, psychomet-
ric experiments about perception and genetics. The complicated cross-correlation
structure in tournament-like data causes major difficulties in the computation of the
full likelihood function. As a viable alternative, we have considered the combination
of optimal estimating equations for the regressor parameters and pairwise likelihood
for the dependence parameter following the suggestion by Kuk (2007). Simulation
studies suggest that the hybrid pairwise likelihood method works well and a real
application shows that the practical effect of accounting for dependence can have a
substantial impact on inferential conclusions.

The issue of dependence has been considered also in other contexts in which
paired comparison data arise. For example, in the analysis of preference data it is
natural to assume that preferences expressed by the same person in different com-
parisons involving common objects are dependent (Thurstone, 1927; Dittrich et al.,
2002; Bockenholt and Tsai, 2007). When normality is assumed and the objects
compared are more than four, different methods have been applied to overcome
the computational difficulties of maximum likelihood estimation (Mosteller, 1951;
Bockenholt and Tsai, 2001; Train, 2009). A viable alternative proposed in the psy-
chometric literature is to rely on limited information estimation, that is a class of
estimating functions constructed from low dimensional marginals. A popular limited
information method used for preference data is due to Maydeu-Olivares (2001). This
consists in minimizing some Mahalanobis distance between the model-based univari-
ate and bivariate margins and the corresponding empirical proportions. Hence, the
method described in Maydeu-Olivares (2001) requires independent replicates of the
data which are unavailable in the context of animal behavior experiments considered
in this manuscript. The hybrid pairwise likelihood method used in this paper can
be viewed as a further type of limited information estimation since it requires only
the first two moments. Application of the hybrid pairwise likelihood method to data
that typically arise in the psychometric literature is a topic for future research.
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