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Abstract: We consider stationary state space models for which the stationary distribution

is not known analytically. We analyze the problem of static parameter estimation based

on pairwise likelihood functions, motivated by the fact that for these general models the

evaluation of the full likelihood function is often computationally infeasible. We quantify

the bias in stationary models where the invariant distribution is unknown. For these models,

an on line Expectation- Maximization algorithm to obtain the maximum pairwise likelihood

estimate is developed. We illustrate the method for a linear gaussian model and we give an

empirical evidence of our Bias theorem.

Keywords: Composite likelihood, Stationary distribution, Bias, Expectation Maximization

algorithm.

1 Introduction

State space models are a general class of time series capable of modeling dependent
observations in a natural and interpretable way. They consist of a Markov process
(called hidden/latent state process) not observed directly, but only through another
process. If the parameter describing the model were known, the inferential problem
would be focused on the latent process through the sequence of joint posterior distri-
bution. Sequential estimation of these distributions is achieved by optimal filtering
recursions. Such recursions rarely admit a closed form expression, but it is possible
to resort to efficient numerical approximations. (e.g. Sequential Monte Carlo (SMC)
methods (aka particle filters) as described in Doucet et al. [2001]). This method-
ology is now well developed and the theory supporting this approach is also well
established [Del Moral, 2004].

More realistically, the parameter will be unknown and need to be estimated.
Although apparently simpler than optimal filtering, the static parameter estimation
problem has proved to be much more difficult: no closed form solutions are, in
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general, available, even for linear gaussian and finite state space hidden Markov
models. There have been many attempts to develop elaborate sequential algorithms,
but all of them suffer from a common intrinsic problem, namely path degeneracy:
with limited resources, it is not possible to consistently estimate the sequence of
posterior distributions at every instant time [Del Moral, 2004]. Direct application
of SMC techniques is hence inappropriate for static parameter inference [Chopin,
2004, Kitagawa, 1998, Liu and West, 2001, Andrieu et al., 1999, Fernhead, 2002,
Gilks and Berzuini, 2001, Storvik, 2002].

Douc et al. [2004] have recently proved some theoretical results on the consis-
tency and asymptotic normality of the maximum likelihood estimator in state space
models. Anyway, in the cases when the latent process is continuous, evaluation of the
full likelihood function is infeasible. Approximated solutions, based on Monte Carlo
or numerical methods, have been considered, but none of them are completely satis-
factory. It is possible to overcome this problem by replacing the likelihood function
with another function, easier to determine. In this direction, composite likelihood
functions have been suggested. They consist of likelihood type object formed by
taking the product of individual component likelihoods, each of which corresponds
to a marginal or conditional event. This is useful when the joint density is difficult
to evaluate but computing likelihoods for some subsets of the data is possible, as
in general state space models framework. This idea dates back probably to Besag
[1974] even though the term composite likelihood was stated by Lindsay [1988].

In this paper, we aim at analyzing the problem of static parameter estimation
based on pairwise likelihood functions. We will focus on stationary state space
models for which the stationary distribution underlying the process is unknown.
The main interest of the work is the evaluation of the bias in the estimate when the
invariant distribution is replaced by a generic distribution. The outline of the paper
is as follows. Section 2 presents the model and justifies the inferential procedure we
will focus on. Section 3 provides the main results of the paper, giving an expression
for the bias of the estimate in the case where the invariant distribution is unknown.
In addition, we suggest a possible way to choose a suitable approximation for the
invariant distribution. Section 4 describes an on line Expectation- Maximization
algorithm in order to obtain the maximum pairwise likelihood estimate in a general
state space framework and in Section 5 we illustrate this method for a linear gaussian
model, giving an empirical evidence of our Bias theorem. Section 6 gives some
concluding remarks.

2 The Framework

State space models can be defined in the following form. For any parameter θ ∈ Θ,
the hidden/latent state process {Xk; k ≥ 1} ⊂ XN is a Markov process, characterized
by its Markov transition probability distribution fθ(x

′|x), i.e. X1 ∼ ν and for n ≥ 1,

Xn+1|(Xn = x) ∼ fθ(·|x). (1)

The process {Xk; k ≥ 1} is observed, not directly, but through another process
{Yk; k ≥ 1} ⊂ YN. The observations are assumed to be conditionally independent
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given {Xk; k ≥ 1}, and their common marginal probability distribution is of the
form gθ(y|x), i.e. for 1 ≤ n ≤ m,

Yn|(X1, . . . , Xn = x, . . . , Xm) ∼ gθ(·|x). (2)

From now on, we will assume that the process {Zk; k ≥ 1} = {(Xk, Yk); k ≥ 1} is
stationary (in the strict sense) with joint distribution given by

pθ(x1:n, y1:n) = πθ(x1)gθ(y1|x1)
n
∏

i=2

fθ(xi|xi−1)gθ(yi|xi), (3)

where we denote by πθ the marginal for {Xk; k ≥ 1} of the invariant distribution. We
assume that there is a ‘true’ parameter value θ∗ generating the data {Yk; k ≥ 1} and
that this value is unknown. We focus here on point estimation methods developing
an inferential procedure based on likelihood quantities to compute point estimates
of θ∗ from {Yk; k ≥ 1} rather than a series of estimates of the posterior distributions
{p(θ, Y1:n);n ≥ 1}.

The most natural approach of point estimate consists of maximizing the series
of likelihoods {pθ(Y1:n);n ≥ 1}. With our notation, the likelihood for a sequence of
observations y1, . . . , yn is

L(θ; y1:n) = pθ(y1:n) =

∫

Xn

πθ(x1)gθ(y1|x1)

n
∏

i=2

fθ(xi|xi−1)gθ(yi|xi)dx1:n, (4)

which is simply obtained by taking into account the dependence structure charac-
terizing the model. In general, finding the invariant distribution requires solving an
integral equation. This is not a simple task even for a specific kind of model. Hence,
in many situations πθ, i.e. the stationary distribution, is not known analytically.
We denote with pθ(y1:n|µ) the joint distribution of the observations when X1 ∼ µ,
obtained by substituting µ for the true invariant distribution πθ in (4). With this
notation, pθ(y1:n) := pθ(y1:n|πθ).

Recently, some results on the consistency and asymptotic normality of the max-
imum likelihood estimator (MLE) can be found in Douc et al. [2004] (see also the
references therein). Their results allow one to consider the case where πθ, and hence
the true likelihood, is unknown. The technique relies primarily on the forgetting
properties of the filter, uniformly in θ. Anyway, when {Xk; k ≥ 1} is continuous,
evaluation of the full likelihood requires an integration over an n-dimensional space.
This task is insurmountable for typical values of n and exact methods for computing
and maximizing the likelihood function are usually not feasible. Approximated solu-
tions, based on Monte Carlo or numerical methods, have been considered, but none
of the proposed solutions are completely satisfactory. Markov Chain Monte Carlo
(MCMC) methods are usually difficult to implement while Particle Filters (PF) are
well suited but suffer from the well known degeneracy problem.

Even if the full likelihood approach is the most natural and leads to an efficient
estimation of the parameter, the computational effort required in the evaluation and
maximization of the function suggests to develop new procedures in order to reduce
the computational burden. In this way it is possible to fit highly structured statis-
tical models, even when the use of standard likelihood methods is not practically
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possible. A possible way to overcome this problem is to replace the likelihood by
another function, easier to determine. Any function which (asymptotically) has its
maximum at the true parameter point is a potential candidate. In this direction
composite likelihood approaches have been suggested. Given the observations y1:n,
a composite likelihood is defined by specifying a set of K marginal or conditional
events Ak(y1:n), k = 1, . . . ,K, with likelihood given by Lk(θ; y1:n) = L(θ;Ak(y1:n)).
Then, the composite likelihood is obtained by composing these likelihood objects
and it corresponds to

LC(θ; y1:n) =
K
∏

k=1

Lk(θ; y1:n)
ωk ,

with ωk suitable non-negative weights. This class contains, and thus generalizes, the
usual ordinary likelihood, as well as many other interesting alternatives. Examples
include the Besag pseudolikelihood [Besag, 1974, 1977], the m-th order likelihood
for stationary processes [Azzalini, 1983] and composite likelihoods constructed from
marginal densities [Cox and Reid, 2004]. Typical attention is paid to compositions
of low-dimensional marginals, since their computation involves usually lower dimen-
sional integrals. This is the case of the pairwise likelihood (PL) [Le Cessie and
Van Houwelingen, 1994],

LP,ω(θ; y1:n) =
n−1
∏

i=1

n
∏

j=i+1

pθ(yi, yj)
ωij , (5)

where ωij , i = 1, . . . , n − 1, j = i + 1, . . . , n are suitable non-negative weights, or
of the split data likelihood (SDL) proposed by Ryden [1994] as an alternative to
maximum likelihood for inference in hidden Markov models. This is a composite
likelihood constructed by splitting the n = mL observations into m groups of fixed
size L and assuming these groups are independent.

From now on, we focus on the so called L-th order PL, which is based on all the
pairs of observations with a lag distance not greater than L ∈ {1, . . . , n− 1}, that is

L
(L)
P (θ; y1:n) =

n−1
∏

i=1

min{i+L,n}
∏

j=i+1

pθ(yi, yj). (6)

Note that L
(n−1)
P (θ; y1:n) corresponds to

LP (θ; y1:n) =
n−1
∏

i=1

n
∏

j=i+1

pθ(yi, yj), (7)

obtained choosing ωij = 1, ∀i = 1, . . . , n− 1, j = i+ 1, . . . , n in (5). This function
takes into account all the n(n − 1)/2 pairs of observations. Given the dependence
structure of the model (1, 2), for every i = 1, . . . , n− 1, j = i+ 1 . . . , n

pθ(yi, yj) =

∫

X j−i+1

πθ(xi)gθ(yi|xi)

[

j
∏

k=i+1

fθ(xk|xk−1)

]

gθ(yj |xj)dxi:j . (8)
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As discussed in Frigo [2010], the use of (6) instead of (7) is justified by theoretical
and practical motivations. In particular, Frigo [2010] points out the asymptotic
behavior of the normalized log likelihood

l
(L)
P (θ; y1:n) =

1

n− 1

n−1
∑

i=1





1

L

min{i+L,n}
∑

j=i+1

log[pθ(yi, yj)]



 (9)

as n goes to infinity. Under suitable ergodic assumptions

lim
n→+∞

l
(L)
P (θ; y1:n) = l

(L)
P (θ),

where l
(L)
P (θ) is defined by

l
(L)
P (θ) =

1

L

L+1
∑

j=2

∫

Y2

log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj .

In addition, by ergodic and stationary assumptions,

lim
L→+∞

1

L

L+1
∑

j=2

∫

Y2

log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj = 2

∫

Y
log[pθ(y1)]pθ∗(y1)dy1.

So, if L goes to infinity, all the information about the dependence structure of the
model are lost. Moreover, in the case where the invariant distribution is unknown,
all the inference is carried out from pθ(y1|µ) =

∫

X µ(x1)gθ(y1|x1)dx1, that might be
completely wrong.

The characterization of the bias of the estimate introduced when πθ is unknown
is hence of great importance. Therefore we need an approximation for the bivariate
density (8).

3 Bias of the estimate when πθ is unknown

In many situations (exceptions are, for example, linear gaussian models for the
dynamic of {Xk} and the discrete case), invariant distribution is unknown. Denoting
by pθ(yi, yj |µ) the bivariate density of the observations yi, yj when the process is
wrongly initialized by X1 ∼ µ(·) we have that

pθ(yi, yj |µ) =

∫

X j

µ(x1)

[

j
∏

k=2

fθ(xk|xk−1)

]

gθ(yi|xi)gθ(yj |xj)dx1:j .

The definition above yields the following approximation of the likelihood defined in
(6)

L
(L)
P (θ; y1:n, µ) =

n−1
∏

i=1

min{i+L,n}
∏

j=i+1

pθ(yi, yj |µ). (10)

The following result quantifies the bias of the estimate introduced when the true
invariant distribution πθ is replaced with a generic distribution µ. We denote θ̂P (µ)
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a generic maximum of the resulting approximate pairwise likelihood (10). Assump-
tions under which Theorem 1 holds are summarized in the Appendix A. Middle
results can be found in the Appendix B.

Theorem 1 (Bias theorem). There exist C ∈ (0,+∞) and ρ ∈ [0, 1) such that for
any µ ∈ P(X )

|θ̂P (µ)− θ∗| ≤ C
∣

∣[∇2lP (θ
∗)]−1

∣

∣

[

||µ− πθ∗ ||

1− ρ
+ ||∇µ−∇πθ∗ ||

]

.

Proof. Let us consider the following Taylor expansion around θ∗ and µ ∈ P(X ) such

that [θ∗, θ̂P (µ)] ⊂
◦
Θ,

∇lP (θ̂P (µ)) = ∇lP (θ
∗) + (θ̂P (µ)− θ∗)

∫ 1

0
∇2lP (θ

∗ + t(θ̂P (µ)− θ∗))dt

= ∇lP (θ
∗) + (θ̂P (µ)− θ∗)[R(µ) +∇2lP (θ

∗)], (11)

where

R(µ) :=

∫ 1

0
∇2lP (θ

∗ + t(θ̂P (µ)− θ∗)−∇2lP (θ
∗))dt.

Since the set of parameters maximizing lP (θ) includes the true parameter, ∇lP (θ
∗) =

0. Moreover, by definition, ∇lP (θ̂P (µ), µ) = 0. Hence (11) can be written as

∇lP (θ̂P (µ)) = ∇lP (θ̂P (µ), µ) + (θ̂P (µ)− θ∗)[R(µ) +∇2lP (θ
∗)],

leading to

(θ̂P (µ)− θ∗) = [R(µ) +∇2lP (θ
∗)]−1[∇lP (θ̂P (µ))−∇lP (θ̂P (µ), µ)].

We have that R(µ) vanishes as ||µ−πθ|| goes to zero. This follows from the Theorem
4 and from the continuity in θ of the function ∇2lP (θ). Using the result in Theorem
3, we can easily conclude.

In the theorem above, the constant ρ characterizes the forgetting properties of
{Xk} a priori and conditional upon {Yk}. This result confirms the intuition that
the bias introduced when using µ instead of πθ∗ in the pairwise likelihood depends
on how close µ is to πθ∗ and on the ergodic properties of {Xk}.

The problem now is how to choose the distribution µ. In the cases in which the
invariant distribution πθ is unknown but transitions fθ(·|x) are simple, the idea is to
approximate the invariant distribution πθ sampling from the transition kernel fθ(·|x)
and to take advantage of the geometric ergodicity of the process. More precisely,
the idea is to take

µ(xi−r:i) = µ(xi−r)
i

∏

k=i−r+1

fθ(xk|xk−1), (12)

where, under geometric ergodicity, the marginal

µ(xi) → πθ(xi),

as r goes to +∞.
In more complex situations, the choice of µ has to be carefully done, taking into
account that this will affect the bias of the estimate.
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4 Pairwise likelihood inference via EM algorithm

In this section we describe how to obtain estimates for the parameter θ describing
a general state space model. We focus on an on line Expectation- Maximization
(EM) technique to minimize, with respect to θ, the Kullback- Leibler divergence

K
(L)
P (θ, θ∗), or equivalently to minimize l

(L)
P (θ). The key advantage of the average

log pairwise likelihood function compared to the full likelihood is that it only requires
the estimation of expectations with respect to distributions defined on XL+1. More
precisely, this technique allows us to find

min
θ∈Θ

K
(L)
P (θ, θ∗),

where

K
(L)
P (θ, θ∗) =

1

L

L+1
∑

j=2

Eθ∗

[

log
pθ∗(y1, yj)

pθ(y1, yj)

]

=
1

L

L+1
∑

j=2

∫

Y2

log
pθ∗(y1, yj)

pθ(y1, yj)
pθ∗(y1, yj)dy1dyj . (13)

This is clearly equivalent to maximize l
(L)
P (θ), where

l
(L)
P (θ) =

1

L

L+1
∑

j=2

∫

Y2

log[pθ(y1, yj)]pθ∗(y1, yj)dy1dyj .

The EM algorithm is a general method to find the maximum likelihood estimate
of the parameters of an underlying distribution from a given data set when the
data are incomplete or have missing values. There are two main applications of
the EM algorithm. The first occurs when the data indeed have missing values,
due to problems with or limitations of the observation process. The second occurs
when optimizing the likelihood function is analytically intractable but the likelihood
function can be simplified by assuming the existence of values for additional but
missing (or hidden) parameters. The latter application is more common in the
computational pattern recognition community.

In summary, each iteration of the EM algorithm consists of two steps:

(E-step) In the expectation step (from now on E-step) the missing data are estimated
given the observed data and current estimate of the model parameters. This
is achieved using the conditional expectation, explaining the choice of termi-
nology.

(M-step) In the maximization step (from now on M-step), the likelihood function is
maximized under the assumption that the missing data are known. The esti-
mate of the missing data from the E-step are used in lieu of the actual missing
data.
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These steps define an efficient iterative procedure to compute the maximum like-
lihood estimate and convergence is assured, since the algorithm is guaranteed to
increase the likelihood at each iteration.

This general method can be modified in order to obtain the maximum pairwise
likelihood estimate in a state space framework, provided that the algorithm increases
the pairwise likelihood at each iteration.

Instead of the full likelihood, we want to minimize here, with respect to θ, the

Kullback- Leibler divergence K
(L)
P (θ, θ∗) as defined in (13). Given an estimate θk of

θ∗, at iteration k + 1 we update our estimate via

θk+1 = argmax
θ∈Θ

Q(θ, θk),

where we define Q(θ, θk) as

Q(θ, θk) =
1

L

L+1
∑

j=2

∫

X j×Y2

log[pθ(y1, yj , x1:j)]pθk(x1:j |y1, yj)pθ∗(y1, yj)dx1:jdy1dyj

=
1

L

L+1
∑

j=2

∫

X j×YL+1

log[pθ(y1, yj , x1:j)]pθk(x1:j |y1, yj)pθ∗(y1:L+1)dx1:jdy1:L+1

=
1

L

L+1
∑

j=2

∫

X j×YL+1

log[pθ(y1, yj , x1:j)]pθk(x1:j |y1, yj)pθ∗(y1)dx1:jdy1,

where ys = ys:s+L denote the s-th block of observations. For every θ ∈ Θ, we see

that an iteration of this EM algorithm decreases the value of K
(L)
P (θ, θ∗), and the

stationary points correspond to the zeros of K
(L)
P (θ, θ∗). In particular, we have that

0 ≤ Q(θk+1, θk)−Q(θk, θk) ≤ K
(L)
P (θk, θ

∗)−K
(L)
P (θk+1, θ

∗). (14)

Note that the inequality in (14) does not depend on the initial distribution. It holds
even if the initial invariant distribution is replaced with any initial distribution. In
practice for the model we will consider, it is necessary to compute a set of sufficient
statistics Φ(θk, θ

∗) at time k in order to evaluate the function Q(θ, θk). To do
that we have to compute the expectation with respect to pθk(x1:j |y1, yj) × pθ∗(y1).
Even if it is possible to maximize Q(θ, θk) analytically, in practice Q can not be
computed as the expectation is with respect to a measure dependent on the unknown
parameter value θ∗. However, thanks to the ergodicity and stationary assumptions,
the observed process {Yn} provides us with a sample from pθ∗(y1) which can be used
for the purpose of Monte Carlo integration.

In what follows, we illustrate this method for a linear and gaussian model. It is a
simple example, where the invariant distribution is known, as well as the conditional
distribution of the latent states given the pairs of observations.
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5 EM calculations for the linear gaussian model

Let us consider the linear gaussian model

Xn+1 = φXn +Wn, Wn ∼ N(0, τ2)

Yn = Xn + Vn, Vn ∼ N(0, σ2).

The choice of the parameter vector θ = (φ, τ2, σ2) ∈ (−1, 1) × R
+ × R

+ ensures
stationarity. So

πθ(x) = N

(

x; 0,
τ2

1− φ2

)

fθ(x
′|x) = N(x′;φx, τ2)

gθ(y|x) = N(y;x, σ2).

We develop here an on line EM procedure, as suggested above. In order to compute
the function Q(θ, θk), we have to derive log[pθ(y1, yj , x1:j)], for every j = 2, . . . , L+1.
We have that

log[pθ(y1, yj , x1:j)] = log[πθ(x1)] + log[gθ(y1|x1)] + log[gθ(yj |xj)] +

+

j
∑

k=2

log[fθ(xk|xk−1)].

From the definition of the model and by linearity of Q we have that

Q(θ, θk) =
1

2
log[1− φ2]−

log[τ2]

2
−

1

2
log[τ2]

(

1

L

L(L+ 1)

2

)

− log[σ2]+

−
1

2τ2
1

L

L+1
∑

j=2

[

E
(j)
θk,θ∗

[X2
1 +X2

j ] + (1 + φ2)

j−1
∑

k=2

E
(j)
θk,θ∗

[X2
k ]− 2φ

j
∑

k=2

E
(j)
θk,θ∗

[XkXk−1]

]

+

−
1

2σ2

1

L

L+1
∑

j=2

[

E
(j)
θk,θ∗

[Y 2
1 +X2

1 − 2X1Y1 + Y 2
j +X2

j − 2XjYj ]
]

.

In practice, for this model, it is necessary to compute a set of sufficient statistics
Φi(θk, θ

∗), i = 1, . . . , 4 at time k, where

Φ1(θk, θ
∗) =

1

L

L+1
∑

j=2

E
(j)
θk,θ∗

[Y 2
1 +X2

1 − 2X1Y1 + Y 2
j +X2

j − 2XjYj ]

Φ2(θk, θ
∗) =

1

L

L+1
∑

j=2

E
(j)
θk,θ∗

[X2
1 +X2

j ]

Φ3(θk, θ
∗) =

1

L

L+1
∑

j=1

E
(j)
θk,θ∗

[

j−1
∑

k=2

X2
k

]

Φ4(θk, θ
∗) =

1

L

L+1
∑

j=2

E
(j)
θk,θ∗

[

j
∑

k=2

XkXk−1

]

.
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With this definition

Q(θ, θk) =
1

2
log[1− φ2]−

log[τ2]

2
−

(L+ 1) log[τ2]

4
− log[σ2]+

−
1

2τ2
(

Φ2(θk, θ
∗) + (1 + φ2)Φ3(θk, θ

∗)− 2φΦ4(θk, θ
∗)
)

−
1

2σ2
Φ1(θk, θ

∗).

Now, dropping for simplicity the dependence on θ, θ∗, θk,

∂Q

∂φ
=

φ

1− φ2
+

1

τ2
(φΦ3 − Φ4) = 0

∂Q

∂τ2
= 1 +

L+ 1

2
−

1

τ2
(Φ2 + (1 + φ2)Φ3 − 2φΦ4) = 0

∂Q

∂σ2
= 1−

1

2σ2
Φ1,

so

σ2 =
Φ1

2
0 = φτ2 + (1− φ2)(φΦ3 − Φ4)

τ2 =
2

L+ 3
(Φ2 + (1 + φ2)Φ3 − 2φΦ4).

One can solve the equations above analytically (discarding solutions for φ that fall
outside the interval [−1, 1] and keep among the remaining values).

For every i = 1, . . . , 4, we recursively approximate the sufficient statistics Φi(θk, θ
∗)

with the following update, given here at time k,

Φ̂
(k)
i = (1− γk)Φ̂

(k−1)
i + γk





1

L

L+1
∑

j=2

E
(j)
θk

[Ψi(X1:j , Yk, Yk+j−1)|Yk]



 , (15)

where, for every function h(·), E
(j)
θk

[h(X1:j)|Yk] denotes the expectation of h with
respect to pθk(x1:j |yk, yk+j−1) and for i = 1, . . . , 4 we have implicitly defined

Φi(θk, θ
∗) :=

1

L

L+1
∑

j=2

E
(j)
θk,θ∗

[Ψi(X1:j , Yk, Yk+j−1)].

We then substitute Φ̂
(k)
i for Φi(θk, θ

∗) and obtain θk by maximizing the Q function.

If θk was constant and γk = k−1, then Φ̂
(k)
i would simply compute the arithmetic

average of {E
(j)
θk

[Ψi(X1:j , Yk, Yk+j−1)|Yk]} for every j = 2, . . . , L + 1, and converge
towards Φ(θk, θ

∗) by ergodicity. In fact, under mild suitable conditions, convergence
is in general ensured for any non- increasing positive sequence {γk} such that

∑

γk <
∞ and

∑

γ2k < ∞. We can select γk = Mk−α where M > 0 and 1
2 < α ≤ 1 thanks

to the theory of stochastic approximation [Benveniste et al., 1990].

In a linear gaussian setup, E
(j)
θk

[Ψi(X1:j , Yk, Yk+j−1)|Yk] is known for every j =
2, . . . , L + 1, since pθ(x1:j |y1, yj) is normal Nj(x1:j ;µ,Σ). In this case, we do not
need to use a further Monte Carlo approximation.
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Remark 1. The on line algorithm described above takes a block of observations yk

for each iteration of the Expectation- Maximization steps. It can be modified in order
to consider more blocks in each iteration or to run more than one iteration for a
single block.

Calculation of the posterior density pθ(x1:j |y1, yj), and in particular its first and
second moments, can be achieved by a modification of the general Kalman filter
and smoother. Unlike the standard Kalman filter equations, in this contest, the
conditioning is on the observations y1 and yj and not on all the observations between
1 and j. Prediction and update steps need to be modified in order to obtain the right
moments of the posterior distributions pθ(x1:j |y1, yj). Roughly speaking, we pretend
to run a Kalman filter with all the observations y1:j setting an infinity variance for
the missing observations from time 2 to time j − 1.

In those steps, quantities that depend on the variance σ2 disappear. The inno-
vation at time k and its covariance do not need to be computed, and this allows
us to avoid dealing with infinite quantities. Moreover, the meaning of the steps
for k = 2, . . . , j − 1 is quite sensible: if we do not take into account the observa-
tions y2:j−1, the update step is missing and so the predicted and updated estimates
coincide.

The parameters µ and Σ of the density pθ(x1:j |y1, yj) can be obtained from the
smoothing recursions.

We implement the on line EM algorithm described above in order to estimate
the parameter θ = (φ, τ, σ) of the linear gaussian model. We consider a simulated
time series of length n = 10000 from the linear gaussian model, with φ∗ = 0.7,
σ∗ = 1, τ∗ = 1 as true parameter values. We fix the maximum lag distance between
the observations as L = 4. In order to reduce the variance of the estimate, we used
the Polyak- Ruppert averaging procedure. The algorithm was run with γk = k−0.5

for k ≤ 2000 and γk = (k − 2000)−0.8 for k > 2000. The results of this method are
displayed in Figure 1. The convergence to the true value is reached in few iteration
steps.

This simple example, where the invariant distribution is known, as well as the
conditional distribution of the latent states given the pairs of observations, allows us
to apply the idea of approximating the stationary distribution by sampling from the
transition kernel. We give an empirical evidence of our Bias theorem. In light of this,
we develop the strategy suggested in Equation (12), since the invariant distribution
is supposed to be unknown, but transitions fθ(·|x) are simple. In practice, we
approximate the invariant distribution sampling from the transition kernel fθ(·|x)
and we take advantage of the geometric ergodicity of the process.

5.1 Approximation of the invariant distribution

We take a generic initial distribution µ(·) for x−z and we simulate a sufficiently long
Markov chain from the transition kernel. Under geometric ergodicity, the marginal
distribution of x1 converges to π(x1) as z goes to +∞.

In order to take into account the state before time 0, we define the function
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Figure 1: AR(1) model plus observation noise with θ∗ = (0.7, 1, 1). Pairwise likeli-
hood estimation using the on line EM algorithm with lag=4 denoting the maximum
distance between the observations. Calculations based on a simulated series of length
10000. Initial value θ(0) = (0.2, 0.5, 0.5).

Qz(θ, θk) as follows

Qz(θ, θk) =
1

L

L+1
∑

j=2

E
(j)
θk,θ∗

[log[pθ(y1, yj , x−z:j)]] =

=
1

L

L+1
∑

j=2

E
(j)
θk,θ∗

[

log[µx−z(x)] + log[gθ(y1|x1)] + log[gθ(yj |xj)]+

+

j
∑

k=−z+1

log[fθ(xk|xk−1)]

]

, (16)

where E
(j)
θk,θ∗

now denotes the expectation wrt pθk(x−z:j |y1, yj)pθ∗(y1, yj). If we
choose µx−z(·) independent of θ, calculation of (16) and its maximization is derived
in the same way as above.

We implement this idea for the AR(1) model, where stationary distribution is
supposed to be unknown. We set as initial distribution X−z ∼ δ6(x−z), where δa(x)
denotes the Dirac delta mass density function at a and we take z = 100.

We report the distance between the estimate obtained taking δx, x = 6 as initial
distribution and the estimate when the stationary distribution is known. In order
to see how the idea suggested in (12) is useful, we compare it with the distance
between the estimate obtained by approximate the invariant distribution by running
a Markov chain of length z = 100 and the estimate when the stationary distribution
is known. Reduction of the bias is displayed in Figure 2.
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Figure 2: AR(1) model plus observation noise with θ∗ = (0.7, 1, 1). Bias of the
estimates when the invariant distribution is unknown and is approximated by taking
as initial distribution X1 ∼ δ(x), where x = 6 (top) and X−z ∼ δ(x), where x = 6
and z = 100 (bottom).

Figure 3 reports the distance of the estimate with respect to the true parameter
values.

6 Conclusion

In this paper we analyzed the problem of static parameter estimation in general
state space models. Given the difficulties arising in this framework, we have focused
on inferential procedures based on pairwise likelihood functions.

Even if the models we considered are strictly stationary, in many situations
invariant distribution is difficult (or even impossible) to compute. In this cases, it
becomes important to quantify the bias in the estimate when stationary distribution
is replaced with a generic approximation. When stationary distribution is unknown,
objective functions need to be approximated and this leads to biased estimate of the
parameters. We proved that the bias introduced when using a generic distribution
instead of the stationary distribution in the pairwise likelihood function depends on
how close the two distributions are, and on the ergodic properties of the latent pro-
cess. To prove this result, we need uniform convergence of the pairwise likelihood
function and of its gradient. In addition, we suggested a possible way to choose
a suitable approximation for the invariant distribution. In the case in which the
invariant distribution is unknown, but transitions for the latent process are simple,
the idea is to approximate the invariant distribution sampling from this transition
kernel and to take advantage of the geometric ergodicity of the process.

We focused on numerical methods to compute estimates of the parameter de-
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Figure 3: AR(1) model plus observation noise with θ∗ = (0.7, 1, 1). Bias of the
estimates with respect to the true parameter values when the invariant distribution
is unknown and is approximated by taking as initial distribution X1 ∼ δ(x), where
x = 6 (top) and X−z ∼ δ(x), where x = 6 and z = 100 (bottom).

scribing a general state space model. We presented an on line Expectation- Maxi-
mization algorithm to obtain the maximum pairwise likelihood estimate in a general
state space framework. This algorithm is proved to increase the pairwise likelihood
at each iteration step. We illustrated this method for a linear gaussian model, de-
riving the update equations in fairly explicit details. We modified standard Kalman
filter recursions in order to take into account conditioning on pairs of observations
instead of all observations. In this simple example, we gave an empirical evidence
of our Bias theorem, i.e. starting from a generic distribution and sampling from the
transition kernel reduces the bias in the estimates for each parameter in the model.

Further research will focus on numerical methods to compute estimate of the
parameter in more general contexts.

In scenarios where E
(j)
θk

[Ψi(X1:j , Yk, Yk+j−1)|Yk], i.e. the expectation of Ψ with re-
spect to pθk(x1:j |yk, yk+j−1) as defined in (15), does not admit an analytical ex-
pression, a further Monte Carlo approximation can be used. Assume that a good
approximation qθk(x1:j |yk, yk+j−1) of pθk(x1:j |yk, yk+j−1) is available, and that it is
easy to sample from qθk(x1:j |yk, yk+j−1). In this case, the expectation step will be
altered as follows

• Sample X
(i)
1:j from qθk(·|yk, yk+j−1), for i = 1, . . . , N

• Approximate Φ(θk, θ
∗) as

Φ̂(k) = (1− γk)Φ̂
(k−1) + γk





1

L

L+1
∑

j=2

N
∑

i=1

W
(i)
k Ψ(X

(i)
1:j , Yk, Yk+j−1)



 ,



Section A Assumptions 15

where

W
(i)
k ∝

pθk(x1:j |yk, yk+j−1)

qθk(x1:j |yk, yk+j−1)
,

N
∑

i=1

W
(i)
k = 1.

As N increases, the importance sampling approximation converges towards the
true expectation. Note that if it is possible to sample from pθk(x1:j |yk, yk+j−1)
exactly, then it is not necessary to have a large number N of samples and a sin-
gle one might even be sufficient. Indeed it is only necessary to produce estimates

of E
(j)
θk

[Ψi(X1:j , Yk, Yk+j−1)|Yk]. We underline that the algorithm above leads to
asymptotically biased estimates, but that this can be corrected by considering the
following recursion for the estimation of the conditional expectation

F̂k = (1− γk)F̂k−1 + γk





1

L

L+1
∑

j=2

1

N

N
∑

i=1

pθk(x1:j |yk, yk+j−1)

qθk(x1:j |yk, yk+j−1)
Ψ(X

(i)
1:j , Yk, Yk+j−1)



 ,

N̂k = (1− γk)N̂k−1 + γk





1

L

L+1
∑

j=2

1

N

N
∑

i=1

pθk(x1:j |yk, yk+j−1)

qθk(x1:j |yk, yk+j−1)



 ,

and let Φ̂(k) = F̂k

N̂k

. It is also possible to use rejection sampling or SMC techniques

to approximate this expectation.
This idea may represent a starting point for subsequent extensions to more com-

plex models.

A Assumptions

Our results hold under the following assumptions

(A1) Θ is a compact set, θ∗ is a unique global maximum of lP (θ) and belongs to the

interior of Θ, denoted
◦
Θ. Moreover lP (θ) is twice continuously differentiable

on
◦
Θ and HP (θ

∗) := ∇2lP (θ
∗) is positive definite.

(A2) We assume that fθ and gθ are twice continuously differentiable and that there
exist f0, g0 > 0 and f0, g0, f1, g1, f2, g2 < +∞ such that for all x, x′, y, θ ∈
X 2 × Y ×Θ

f0 ≤ fθ(x
′|x) ≤ f0, g0 ≤ gθ(y|x) ≤ g0

|∇ log fθ(x
′|x)| < f1, |∇ log gθ(y|x)| < g1

|∇2 log fθ(x
′|x)| < f2 and |∇2 log gθ(y|x)| < g2.

In addition, we assume that ∇2 log fθ(x
′|x) and ∇2 log gθ(y|x) are continuous

in θ, uniformly in x, x′, y,∈ X 2 × Y and that supθ∈Θ |∇ logµ| ≤ µ̄, with µ̄ ∈
(0,∞), µ ∈ P(X ).

Assumptions (A2) implies that for all x ∈ X , A ∈ B(X ),

P (x,A) :=

∫

A

fθ(x
′|x)dx′ ≥ f0λ(A),
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where λ denotes the Lebesgue measure. This means that X has a unique invariant
measure πθ and is uniformly ergodic [Meyn and Tweedie, 1993].

B Technical and middle results

In this section we prove some uniform convergence results for l
(L)
P (θ, µ) and its deriva-

tive. Hereafter, for simplicity, we drop the L index in l
(L)
P (·, ·) := lP (·, ·).

The first result states that lP (θ, µ) converges uniformly in θ to lP (θ, ν) as the total
variation distance between µ and ν tends to zero (even if µ, ν can depend on θ, we
omit the explicit dependence for notational convenience).

Theorem 2. There exists a constant C ∈ (0,+∞) such that for any µ, ν ∈ P(X ),
θ ∈ Θ and L ≥ 1

|lP (θ, µ)− lP (θ, ν)| ≤ C||µ− ν||.

Proof. By definition

lP (θ, µ)− lP (θ, ν) =
1

L

L+1
∑

j=2

Eθ∗ [log pθ(y1, yj |µ)− log pθ(y1, yj |ν)]

and using the following identity valid for any x, y ∈ (0,+∞),

| log x− log y| ≤
|x− y|

x ∧ y
, (17)

we have

|lP (θ, µ)− lP (θ, ν)| ≤
1

L

L+1
∑

j=2

Eθ∗

[

|pθ(y1, yj |µ)− pθ(y1, yj |ν)|

pθ(y1, yj |µ) ∧ pθ(y1, yj |ν)

]

≤
1

L

L+1
∑

j=2

C||µ− ν|| = C||µ− ν||.

Now we look at the derivative of lP (θ, µ). For every µ, ν ∈ P(X ) the difference
of the gradient of two approximated pairwise likelihood of order L is

∇lP (θ, µ)−∇lP (θ, ν) =
1

L

L+1
∑

j=2

Eθ∗ [∇ log pθ(y1, yj |µ)−∇ log pθ(y1, yj |ν)] (18)

and

∇ log pθ(y1, yj , x1:j |µ) =∇ logµ(x1) +∇ log gθ(y1|x1)+

+

j
∑

k=2

∇ log fθ(xk|xk−1) +∇ log gθ(yj |xj).

We prove the following result.
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Theorem 3. There exists a constant C ∈ (0,+∞) and ρ ∈ [0, 1) such that for every
µ, ν ∈ P(X ), θ ∈ Θ, L ≥ 1,

|∇lP (θ, µ)−∇lP (θ, ν)| ≤ C

[

||µ− ν||

1− ρ
+ ||∇µ−∇ν||

]

.

Proof. Let us analyze the generic term of the sum (18). By an extension of the
Fisher’s identity

∇ log pθ(y1, yj |µ)−∇ log pθ(y1, yj |ν)

=Eθ∗ [∇ log pθ(y1, yj , x1:j |µ)|Y1, Yj , µ]− Eθ∗ [∇ log pθ(y1, yj , x1:j |ν)|Y1, Yj , ν]

=

∫

∇ log gθ(y1|x1) (pθ(x1:j |y1, yj , µ)− pθ(x1:j |y1, yj , ν)) dx1:j

+

∫

∇ log gθ(yj |xj) (pθ(x1:j |y1, yj , µ)− pθ(x1:j |y1, yj , ν)) dx1:j

+

j
∑

k=2

∫

∇ log fθ(xk|xk−1) (pθ(x1:j |y1, yj , µ)− pθ(x1:j |y1, yj , ν)) dx1:j

+

[
∫

∇ logµ(x1)pθ(x1:j |y1, yj , µ)dx1:j −

∫

∇ log ν(x1)pθ(x1:j |y1, yj , ν)dx1:j

]

:=T1 + T2 + T3 + T4.

We study the terms T1, T2, T3, T4 separately. Let us start with T1.

T1 :=

∫

∇ log gθ(y1|x1) (pθ(x1:j |y1, yj , µ)− pθ(x1:j |y1, yj , ν)) dx1:j

=

∫

∇ log gθ(y1|x1) [pθ(x1|y1, yj , µ)− pθ(x1|y1, yj , ν)] dx1.

Under Assumptions (A2),

|T1| ≤ sup
x1

|∇ log gθ(y1|x1)| · ||pθ(X1 ∈ ·|y1, yj , µ)− pθ(X1 ∈ ·|y1, yj , ν)||

≤ C||µ− ν||. (19)

Analogous calculations for T2 yield to

|T2| ≤ Cρj−1||µ− ν||. (20)

Now, for every k = 2, . . . , j

∫

∇ log fθ(xk|xk−1) (pθ(x1:j |y1, yj , µ)− pθ(x1:j |y1, yj , ν)) dx1:j

=

∫

(pθ(x1:k−2, xk−1:k, xk+1:j |y1, yj , µ)− pθ(x1:k−2, xk−1:k, xk+1:j |y1, yj , ν))

· ∇ log fθ(xk|xk−1)dx1:j

=

∫

∇ log fθ(xk|xk−1) [pθ(xk−1, xk|y1, yj , µ)− pθ(xk−1, xk|y1, yj , ν)] dxk−1:k
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=

∫

[pθ(xk|xk−1, y1, yj , µ)pθ(xk−1|y1, yj , µ)− pθ(xk|xk−1, y1, yj , ν)pθ(xk−1|y1, yj , ν)]

· ∇ log fθ(xk|xk−1)dxk−1:k

=

∫

∇ log fθ(xk|xk−1)pθ(xk|xk−1, y1, yj) [pθ(xk−1|y1, yj , µ)− pθ(xk−1|y1, yj , ν)] dxk−1:k

=

∫
[
∫

∇ log fθ(xk|xk−1)pθ(xk|xk−1, y1, yj)dxk

]

· [pθ(xk−1|y1, yj , µ)− pθ(xk−1|y1, yj , ν)] dxk−1

=

∫

Ψ(xk−1) [pθ(xk−1|y1, yj , µ)− pθ(xk−1|y1, yj , ν)] dxk−1,

where Ψ(xk−1) :=
∫

∇ log fθ(xk|xk−1)pθ(xk|xk−1, y1, yj)dxk. Moreover,

sup
xk−1

|Ψ(xk−1)| ≤ f1

∫

pθ(xk|xk−1, y1, yj)dxk = f1. (21)

|T3| ≤

j
∑

k=2

Cρk−2||µ− ν|| ≤
C||µ− ν||

1− ρ
. (22)

The last term in the sum can be written as
∫

∇ log µ(x1)pθ(x1:j |y1, yj , µ)dx1:j −

∫

∇ log ν(x1)pθ(x1:j |y1, yj , ν)dx1:j

=

∫

∇ log µ(x1)pθ(x1, x2:j |y1, yj , µ)dx1:j −

∫

∇ log ν(x1)pθ(x1x2:j |y1, yj , ν)dx1:j

=

∫

∇ log µ(x1)pθ(x1|y1, yj , µ)dx1 −

∫

∇ log ν(x1)pθ(x1|y1, yj , ν)dx1

=

∫

∇µ(x1)

µ(x1)

pθ(x1, y1, yj |µ)

pθ(y1, yj |µ)
dx1 −

∫

∇ν(x1)

ν(x1)

pθ(x1, y1, yj |ν)

pθ(y1, yj |ν)
dx1

=

∫

∇µ(x1)
pθ(y1, yj |x1)

pθ(y1, yj |µ)
dx1 −

∫

∇ν(x1)
pθ(y1, yj |x1)

pθ(y1, yj |ν)
dx1

=

∫

pθ(y1, yj |x1)

[

∇µ(x1)

pθ(y1, yj |µ)
−

∇ν(x1)

pθ(y1, yj |ν)

]

dx1.

Since pθ(y1, yj |x1) is a bounded function of x1 and the term in square brackets can
be written as

∇µ(x1)

pθ(y1, yj |µ)
−

∇ν(x1)

pθ(y1, yj |ν)
=

∇µ(x1)pθ(y1, yj |ν)−∇ν(x1)pθ(y1, yj |µ)

pθ(y1, yj |µ)pθ(y1, yj |ν)

=
(∇µ(x1)−∇ν(x1))pθ(y1, yj |ν)−∇ν(x1)(pθ(y1, yj |µ)− pθ(y1, yj |ν))

pθ(y1, yj |µ)pθ(y1, yj |ν)
.

Under Assumptions (A2) we have that

|T4| ≤ C(||∇µ−∇ν||+ ||µ− ν||). (23)
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From the results (19, 20, 22, 23), we conclude that

|∇lP (θ, µ)−∇lP (θ, ν)| ≤
1

L

L+1
∑

j=2

Eθ∗ |∇ log pθ(y1, yj |µ)−∇ log pθ(y1, yj |ν)|

≤ C

[

||µ− ν||

1− ρ
+ ||∇µ−∇ν||

]

.

Let us define the set
θ̂P (µ) := argmax

θ∈Θ
lP (θ, µ),

where, as usual

lP (θ, µ) =
1

L

L+1
∑

j=2

Eθ∗ [log pθ(y1, yj |µ)]

and lP (θ, πθ) := lP (θ), being πθ the unique stationary distribution. The set θ̂P (µ)
is not empty since Θ is compact and lP (θ, µ) is continuous from Assumptions (A2)
whenever µ is continuous. For any ǫ ∈ (0,+∞) and θ0 ∈ Θ, let B(θ0, ǫ) = {θ ∈ Θ :
|θ − θ0| ≤ ǫ} and for any set A ∈ Θ let d(θ0, A) = inf{|θ − θ0| : θ ∈ A} the distance
between θ0 and the set A. Theorem 1 quantifies the bias when the (unknown)
invariant distribution πθ is replaced with a generic µ, that is the bias of the estimate
introduced by maximizing lP (θ, µ) instead of lP (θ). The result says that the bias
depends on how close µθ∗ is to πθ∗ and on the ergodicity properties of {Xk}, where
θ∗ denotes the true parameter. We prove the following statement.

Theorem 4. Assume (A1). Then for any sequence of measures {µk, k ≥ 1} with
uniformly continuous (in θ) density such that ||µk − πθ|| goes to zero and for any

ǫ > 0 such that B(θ∗, ǫ) ⊂
◦
Θ, there exists k such that ∀k ≥ k, lP (θ, µk) has its

maxima θ̂(µk) in B(θ∗, ǫ) and

lim
||µk−πθ||→0

d(θ∗, θ̂(µk)) = 0. (24)

Proof. Let ǫ be a strictly positive constant. We proceed by contradiction. Assume
there exists a sequence of measures {µk, k ≥ 1} with uniformly continuous (in θ)
density such that ||µk − πθ|| goes to zero and θ̂(µk) /∈ B(θ∗, ǫ). This means that the
estimates obtained by maximizing lP (θ, µk) with respect to θ are far from the true
parameter value. Hence |θ̂(µk)− θ∗| > ǫ ≥ 0. By definition of θ̂(µk), we have that

lP (θ
∗, µk) ≤ lP (θ̂(µk), µk).

Since {θ̂(µk)} ⊂ Θ, and Θ is bounded, it has at least an accumulation point θ̃∗

corresponding to a subsequence of {θ̂(µk)}. From Theorem 2, lP (θ, µk) converges
uniformly to lP (θ) as ||µk − πθ|| goes to zero and consequently

lP (θ̃
∗) ≥ lP (θ

∗)

with |θ̃∗ − θ∗| > ǫ ≥ 0. This contradicts the fact that θ∗ is the unique strong
maximum of lP (θ). Equation (24) obviously holds.
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