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1 Introduction

A rating is a score given to some subjects by a rater, which can be either a person,
i.e. a judge or an expert, or a tool, such as a diagnostic test, a performance measure
etc. The rating, which in some ways is similar to a classification system, is a matter
of great interest in finance, where ratings are assigned to countries, to credits, to
bonds, to managed portfolios, etc. (Krink et al. 2007; Krishnan and Lawrence,
2007; Jewell and Livingston, 2002; Blake and Morey, 1999). In the mutual funds
industry, then, the rating is particularly important because the score given to funds
by rating agencies affects and leads the investment decisions of both private and
institutional financial agents (Del Guercio and Tkac, 2008; Knuutila et al., 2006).
The number of agencies providing funds evaluations is not large. Among them, stand
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out Morningstar, Standard & Poor, Lipper and Fitch1. Another rating system for
mutual funds has been recently proposed by Bechmann and Rangvid (2007). Each
produces a rating differing for characteristics and for methodologies used. Among
these, the Morningstar rating system is surely the most widespread and the most
influential, so much so that a “Morningstar effect” on fund flows, which has been
widely documented in the financial literature (Del Guercio and Tkac, 2008; Knuutila
et al., 2006).
Morningstar classifies funds in 5 categories, giving them from 1 to 5 stars accord-
ing to a specific performance measure called Morningstar Risk-Adjusted Return
(MRAR). Such a measure considers risk-adjusted and load-adjusted returns: this
means that, in principle, the final evaluation of a fund is affected by the level of risk
and costs, beside of the profitability component.
To be an efficient and operative tool, the rating must be continuously updated and,
fo this reason, Morningstar updates its ratings at a monthly frequency. Del Guer-
cio and Tkac (2008) report positive abnormal flows following rating upgrades, and
negative abnormal flows following rating downgrades, ranging from 13 to 30 percent
of normal flows. In particular, an upgrade from four to five stars would result in
an increasing of fund subscriptions of 25 per cent above normal. A much smaller
impact has been found for a downgrade to four from five stars. Adkisson and Fraser
(2006) present significant evidence that investors witheld funds from mutual funds
that lost stars, but did not proportionately reward funds that gained stars.
These results explain and motivate the interest for a deep analysis of the Morn-
ingstar rating system. Since, the risk component has been often underestimated by
raters - not only in the mutual funds field - one can legitimately and usefully wonder
how much risk really weights in the Morningstar’s final evaluation, and whether it
is adequately accounted for. Answering this question is the main objective of this
work.
The MRAR measure derives from an utility function that accounts for risk through
a parameter, γ, representing the investor risk aversion. To assess the relevance of
the risk component, in this paper we compare the ratings obtained with different
values of γ, that is using different intensities of risk aversion and, thus, assigning
different weight to the risk component in the whole evaluation.
Although other works were concerned about the role of risk in the Morningstar rat-
ing (Amenc and Le Sourde (2007), Vinod and Morey (2002), among others), to our
best knowledge, this kind of investigation is new.
In statistical terms the problem we face is a rater agreement one, where the two
raters are given by a same performance measure with different values of a param-
eter (γ). We are interested in testing the hypothesis that two raters are, in some
sense, equivalent. Given the way the Morningstar rating is implemented, the hy-
pothesis of identical raters is too strong because this implies a perfect agreement
and, thus, is only relatively interesting. So, we introduce the weaker condition of
β-equivalence: we say that two raters are β-equivalent if the probability that both of
them classify a fund in the same category is β and the probability that their ratings
differ for just one class is 1− β. Building on this definition, we introduce a suitable

1See, respectively, www.morningstar.com, www.funds-sp.com, www.lipperweb.com and

www.fitchratings.com
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measure of β-equivalence, which is a modification of the weighted Cohen’s Kappa
statistic (Cohen, 1960; Cohen, 1968), called κ∗. Finally, we outline a Monte Carlo
procedure to obtain the distribution of κ∗ under the hypothesis of β-equivalence.
This distribution allows us to do a formal test of β-equivalence for a given value of
β and to find a suitable upper confidence bound for β.
Using this methodology we find that the ratings obtained with the setting of Morn-
ingstar are very similar to those obtained by assuming that the investor is risk-
indifferent and that the similarity decreases for higher values of the risk aversion
parameter. This suggests that the Morningstar rating system is mainly influenced
by profitability, and only marginally by riskiness.
The paper proceeds as follows. Section 2 contains a summary of the Morningstar
methodology; Section 3 introduces the problem of the raters agreement, the notion of
β−equivalence as well as the statistic κ∗, useful for measuring the rater agreement.
In Section 4 a Monte Carlo procedure for testing the β−equivalence is provided.
Section 5 answers the question about the role of risk in the Morningstar rating by
analyzing a dataset of US mutual funds. Section 6 concludes the work and suggests
some additional lines of research.

2 The Morningstar rating

The Morningstar rating methodology is based on two key characteristics: the consid-
eration of peer groups, that are categories of fund styles defined by Morningstar, and
the use of risk-adjusted and load-adjusted returns. Peer groups are used to classify
mutual funds in coherent categories with respect to reference financial markets (US,
Europe...), investment styles (Large, Medium, Small, Value, Blend, Growth...), and
exposure to risk factors. With this approach, funds within the same groups can be
considered as perfect substitutes and this provides the need for a rating system to
rank them. Instead, the comparison across groups is not considered nor is possible
with the Morningstar rating.
Morningstar ranks funds inside each category using a specific performance measure:
the Morningstar Risk-Adjusted Return (MRAR). Morningstar motivates MRAR
using the expected utility theory and assuming that an investor ranks alternative
portfolios using the mathematical expectation of a power utility function, based on
the terminal value of a given investment.
In deriving MRAR, Morningstar uses some additional elements which affect the com-
putation of mutual funds returns. First, all returns are adjusted for the impact of
sales loads. Second, Morningstar recognizes that the investor always has the choice
to buy a risk-free asset instead of holding a risky portfolio. Therefore, Morningstar
measures a fund’s excess returns over and above the return on the risk-free asset
(RF) taking into account investment costs that are charged to agents.
The definition of the Morningstar Risk-Adjusted Return is the following:

MRAR(γ) =











[

1
n

∑n
t=1(1 + ERt)

−γ
]

−12/γ
− 1 γ 6= 0

[
∏n

t=1(1 + ERt) ]12/n − 1 γ = 0

(1)
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where ERt = [(1 + LRt)/(1 + RFt)] − 1 is the monthly geometric excess return
and RFt and LRt are the monthly return of a risk-free asset and the load-adjusted
monthly return for the fund, respectively. Expression (1) is an annualized value.
The load-adjusting permits to consider front loads, deferred loads, or redemption
fees applied during the month-end under consideration.
Finally, the parameter γ defines the degree of risk aversion. When γ < −1 the
investor is risk-lover rather than risk-averse.
For γ = −1, the degree of risk aversion is zero, meaning that the investor is indiffer-
ent between a risk-free choice and a risky choice as long as the arithmetic average
expected return is the same.
For γ = 0, the investor is indifferent between a risk-free choice and a risky choice as
long as the geometric average expected return is the same.
When γ > 0, the investor is risk-averse and demands a risk premium for choosing a
risky portfolio.
“A rating system based solely on performance would rank funds on their geometric
mean return, or equivalently, on MRAR(0)” (Morningstar, 2007, pag.12). Evalua-
tion systems that provide a heavier penalty for risk require that γ > 0. Morningstar’s
fund analysts concluded that γ = 2 results in fund rankings that are consistent with
the risk tolerances of typical retail investors. Hence, Morningstar uses γ = 2 in the
calculation of its star ratings.
By converting all return series to their riskless equivalents, Morningstar can compare
one fund to another on a risk-adjusted basis. This equalizes the playing field for
funds in the same category that have different exposures to risk factors.
Once the funds are ranked inside their category, they are scored from one to five
“stars” according to their position in the category. The score follows the bell-curve
listed in Table 1.
Morningstar calculates ratings for the three-, five-, and 10-year periods, and then
the Overall Morningstar Rating is based on a weighted average of the available
time-period ratings. Investments must have at least 36 continuous months of total
returns in order to receive a rating. Additional details can be recovered in Morn-
ingstar (2007).

Table 1: The Morningstar score.

Score 1 2 3 4 5

Percent bottom 10% next 22.5% next 35.5% next 22.5% top 10%

3 The rater agreement and the β−equivalence

In this section we describe the statistical framework of our analyses. Let us consider
two raters that evaluate n subjects on a common ordinal scale composed by m
categories. In our context, the two raters are given by MRAR(γ1) and MRAR(γ2).
By means of MRAR(γ1) and MRAR(γ2) we can obtain two different ratings; then,
we can consider a cross-classification table like Table 2, where fij denote the number
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of subjects (funds) classified in the i−th category by the first rater and rater in theS
j−th category by the second rater.

Table 2: Example of cross-classification table.

MRAR(γ2) Total

MRAR(γ1) 1 ... m

1 f11 ... f1m f1.
...

... fij
...

...

m fm1 ... fmm fm.

Total f.1 ... f.m n

Let dk = [MRAR(γ1) = i ∩ MRAR(γ2) = j ∩ | i − j |= k], (k = 0, 1, ...,m−1; i, j =
1, ...,m) be the difference between ratings, that is, the variable describing the cir-
cumstance where the two raters give an evaluation that differs for k categories. The
variable dk assumes absolute frequencies fk =

∑m
i=1

∑m
j=1 fij · I(| i− j |= k), where

I(·) denotes the indicator function, and relative frequencies pk = fk/n. We have
that n =

∑m
i,j=1 fij =

∑m−1
k=0 fk.

We define two raters as β−equivalent when the distribution of dk is:

P (dk) ≡ πk =







β k = 0
1 − β k = 1 k = 0, ...,m − 1.
0 k > 1

(2)

Thus, for β−equivalent raters, the probability that they give to a fund the same
rating is β, the probability that ratings differ for just a category is (1-β) and the
probability they disagree for more than one category is zero. Thus, for β−equivalent
raters, the probability that they give to a fund the same rating is β, the probability
that ratings differ for just a category is (1-β) and the probability they disagree for
more than one category is zero. Distribution (2) is suitable for evaluation scales
with a relatively small number of categories, for instance m = 4 or m = 5 which are
widespread cases. In the mutual fund context, Morningstar (Morningstar, 2007) as
well as Lipper (Lipper, 2007) and Standard & Poor, give an evaluation based on 5
ordinal categories.
In the mutual fund context, Morningstar (Morningstar, 2007) as well as Lipper (Lip-
per, 2007) and Standard & Poor (Standard & Poor, 2009), give an evaluation based
on 5 ordinal categories.
When the number of categories is substantially higher, and if reasonable, the notion
of β−equivalence can be generalized allowing dk to follow some specific multinomial
distribution Mult(π0, ..., πm−1), with π0 = β and

∑

k πk = 1. In this work, however,
we will not pursue this case but we focus on definition (2) of β−equivalence.
To study the level of agreement connected to the β−equivalence between raters
MRAR(γ1) and MRAR(γ2), we propose the following variant of the weighted Co-
hen’s κ (Cohen, 1968) statistic:

κ∗(β) =

∑m−1
k=0 wkπk −

∑m−1
k=0 wkpk

∑m−1
k=0 wkπk

(3)
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where wk is a weighting scheme such that w0 = 1, 0 ≤ wi ≤ 1 for i > 0 and wi ≥ wj

if j > i. The weighting system is important in order to modulate the severity of
disagreement. Indeed, in some contexts, it would not be reasonable to consider only
a full agreement or a full disagreement.
The statistic κ∗ measures the ’distance’ between the observed weighted relative
frequencies pk and the expected weighted frequencies πk and, thus, the ’distance’
from the β−equivalence.
When considering the statistic κ∗, the following cases occur:

• κ∗ = 0 if
∑m−1

k=0 wkπk =
∑m−1

k=0 wkpk, when the observed frequencies are exactly
those expected under the hypothesis of β−equivalence;

• κ∗ reaches its maximum value (κ∗

max), when there is the maximum deviation
from the β−equivalence. In particular, if

∑m−1
k=0 wkpk = 0 then κ∗ = 1. In the

case of definition (1), this may occur if the rater evaluations always differ for
two or more categories;

• 0 < κ∗ < κ∗

max for intermediate cases, when frequencies do not support a com-
plete accord nor a complete disagreement with respect to the β−equivalence;

• κ∗ < 0 if
∑m−1

k=0 wkπk <
∑m−1

k=0 wkpk, when the observed agreement is higher
than that expected by the definition of β−equivalence for a given β.

Of course, also the classical κ statistic can be used to measure dependence. How-
ever, it differs from κ∗ in that κ is based on the expected frequencies under inde-
pendence, whereas κ∗ is built using the expected frequencies under the hypothesis
of β−equivalence and, thus, it seems more appropriate. But the main difference
between κ and κ∗ is their interpretation: while, for example, κ∗ = 0.90 has a precise
and clear interpretation according to distribution (2), κ = 0.90 means only a generic
high level agreement.
The value assumed by the statistic κ∗ depends also on the weighting system wk. In
turn, this may depend both on the number of categories, m, and on the features of
the specific problem that is being studied.
The rater agreement literature contains several proposals of weighting schemes (see
Vanbelle and Albert, 2009 and references therein). Although they share the nice
feature of having a statistical interpretation, for some applications they do not seem
appropriate since they decrease too slowly with k. Instead, when m is small, also
small values of k may indicate important level of disagreement. Thus, we propose
the following function for the weights:

wk = exp (−a
kb

m
) (k = 0, 1, ...,m − 1) (4)

where a, b > 0 are suitable parameters which control how fast weights decrease. This
kind of function always gives w0 = 1 and depends both on k and m.
The weighting function and its calibrated parameters could be chosen with respect
to the problem under study and the purposes of the work. In our case, we specified
a weighting function allowing us to give a relevant weight to the mis-rating by one
category and weights close to zero to differences larger than one category. This is
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obtained by setting a = 3.5 and b = 3. Indeed, this gives w0 = 1 and makes function
(4) decreasing very quickly with k, depending also on m. In particular, for m = 5,
it leads to wk = (1, 0.497, 0.003,∼ 0,∼ 0). Different parameters could be chosen if
the number of categories is higher or when it is accaptable to consider disagreement
for more than one class as a partial agreement.

4 A Monte Carlo test of β−equivalence

We want now to test - at a significance level α - the null hypothesis that two raters
R1 and R2, are β0−equivalent, for a given β0 and for a given weighting system. In
particular, we want to consider the following hypothesis system:

{

H0 : R1 and R2 are β0 − equivalent,
H1 : R1 and R2 are not β0 − equivalent,

(5)

where the raters can be not β0-equivalent because they are, for example, β-equivalent
with β < β0 or because they are not β-equivalent at all and dk follows some multi-
nomial distribution.
Since the standard likelihood ratio test for H0 : dk ∼ Mult(β, 1− β, 0, ..., 0) against
H1 : dk ∼ Mult(π0, π1, ..., πm−1), is not feasible due to the zero expected frequencies
under the null hypothesis, we test system (5) through the statistic κ∗.
In order to obtain the distribution of κ∗ under the hypothesis of β0-equivalence, we
suggest the following Monte Carlo procedure:

1. let n =
∑

k fk be the number of subjects to be evaluated and κ∗

obs the value of
the statistic κ∗ computed for the observed data;

2. fix a degree of equivalence β0 and draw a Monte Carlo sample of size n from
the multinomial distribution πk with β = β0;

3. denoted by pmc
k the relative frequency for dk on the Monte Carlo sample,

compute the statistic:

κ∗(β) =

∑m−1
k=0 wkπk −

∑m−1
k=0 wkp

mc
k

∑m−1
k=0 wkπk

4. repeat steps (b) and (c) N times (with N large) in order to obtain N realiza-
tions κ∗

i , i = 1, ..., N . The N values κ∗

i represent a sample of size N from the
distribution of κ∗ under the null of β0−equivalence;

5. let us denote by

pval =

∑N
i=1 I(κ∗

i > κ∗

obs)

N

the p-value of the test. If pval > α then, H0 is accepted at the significance
level α .
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The acceptance region of this test allows us to identify a (1-α) upper confidence
bound for β, that is the highest value of β0, called βu, such that H0 is accepted at
level α.
Note that, since we are looking for the highest value of β0 for which H0 is accepted,
κ∗ will be always positive and this is why the test is one-sided.
The above procedure is nonparametric and does not require any distributional as-
sumption on the scores. Since the test is not based on asymptotic considerations,
but is calibrated on the sample size n, it is expected to work better for small sam-
ples.
One could argue that considering the upper confidence bound for the traditional
kappa calculated following Fleiss and Cicchetti (1978) will give similar results. For
the application considered in this work it tends to give very high values of κ, some-
times larger than 1. However, they cannot be directly compared with the value of
βu, because they refer to κ rather than to β and, thus, they have different interpre-
tations.

4.1 Validation of the procedure

To assess the performance of the test just described, we conducted a series of simula-
tion trials. They have three purposes. The first was to analyze how the test behaves
for different sample sizes and for different levels of β-equivalence. In particular, we
are interested in studying the behavior of the test when the true distribution of πk

cannot be fully described by distribution (2). The other two goals were to study the
effective level and power of the test and the coverage of the confidence upper bound.
We always assumed that two raters were assessing n subjects with two methods that
classify them into m = 5 mutually exclusive categories. The variable dk described
the difference between ratings and called πk the true and unknown distribution of
dk. For πk, two groups of settings were considered: in the first group, data were
generated for different values of β according to Definition 2, while in the second one
no value of β fully satisfied the Definition of β−equivalence. The specific values of
πk (k=0,...,4) for each setting (S) are given in column two of Tables 3, 5 and 4. In
all the simulations, the distribution of κ∗ has been obtained by drawing N = 10000
Monte Carlo realizations were generated. Also, to set the weights we used function
(4) with a = 3.5 and b = 3.
As a first step, to better understand how the procedure works, for each setting we
generated 500 data sets of length n = 100, 500 and 1000 and, for each data set, we
found the upper confidence bound, βu, at the 95% level. Columns three to eight of
Table 3 give the mean (β̄u) and the standard error of βu over the 500 simulations.
For the first group of settings (S1 to S4), results show that for n increasing, the
mean of βu, β̄u, tends to get closer to the true value of β, with decreasing standard
error. As expected, when the underlying data generator satisfies the definition of
β−equivalence, β̄u is always greater than the true value of β, that is, of the true
proportion of full agreement given by π0. On the contrary, when the data generator
does not satisfy the definition of β−equivalence (2), the procedure tries to force the
β−equivalence, leading to values of βu that are - on average - smaller than π0. The
bigger the ‘distance’ from the β−equivalence, the smaller the value of β̄u. As an
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example, the setting S5 is not very far from β−equivalence. As a result the β̄u is
only a little smaller that π0. Instead, settings S8 and - even more - S9 represent
distributions very different from (2). This entails very small values of β̄u and in the
case of S9 a large number of cases for which βu = 0. In these cases we conclude
that the two raters cannot be considered β−equivalent for any beta. The effective

Table 3: Simulation results for different sample sizes and settings of π.

Setting (π0, π1, π2, π3, π4) n=100 n=500 n=1000

β̄u se β̄u se β̄u se

S1 (0.8,0.2,0,0,0) 0.854 0.035 0.826 0.017 0.815 0.011

S2 (0.6,0.4,0,0,0) 0.667 0.046 0.632 0.021 0.621 0.015

S3 (0.4,0.6,0,0,0) 0.474 0.051 0.432 0.022 0.421 0.0161

S4 (0.2,0.8,0,0,0) 0.261 0.044 0.225 0.019 0.219 0.013

S5 (0.8,0.1,0.1,0,0) 0.768 0.054 0.729 0.027 0.721 0.020

S6 (0.7,0.1,0.1,0.1,0) 0.574 0.079 0.535 0.035 0.520 0.025

S7 (0.6,0.2,0.15,0.05,0) 0.473 0.084 0.434 0.035 0.421 0.025

S8 (0.4,0.3,0.2,0.1,0) 0.136 0.097 0.119 0.041 0.41 0.028

S9 (0.3,0.3,0.2,0.1,0.1) 0.006 0.028 0.000 0.000 0.000 0.000
Notes: se=standard error of βu.

level and the power of the test are analyzed referring to a similar simulation frame-
work. Again, two groups of data generators were involved. The first one, defined
by settings S1, S2 and S3, generates data under the null hypothesis allowing the
study of the effective level. The second group, defined by settings S5, S6 and S7,
produces data that, with different intensities, are not fully consistent with the defi-
nition of β−equivalence and allows us to study the power of the test. In this case,
for each setting, 2000 data sets were generated and the hypothesis H0: A and B
are β0−equivalent, with β0 = π0, is tested. We considered sample sizes n = 100,
n = 500 and n = 1000 and significance levels α = 0.01, α = 0.025 and α = 0.05.
Table 4 lists the effective levels and powers, rounded to the third decimal figure.
Results show that nominal levels are basically respected for all settings, sample sizes
and levels; moreover, the test has good power against alternatives close to the null
and for relatively small sample sizes as, for example, for setting S4 and n = 100.
For more distant alternatives and/or for larger sample sizes, the power is always
very high. Several other settings were considered in the Monte Carlo simulations
but results were not reported since they basically confirm those listed in this paper.
Finally, for studying the effective coverage, (1−α)obs, of the upper confidence bound
with respect to the nominal one, (1 − α), a third set of simulations was performed.
In this case, only settings S1, S2 and S3 were considered. For each of these, we gen-
erated 2000 data sets of size n and, for each data set, we computed upper confidence

bounds at the nominal level (1 − α), β
(i)
u (i=1,...,2000) and the effective coverage,

defined as:

(1 − α)obs =

∑2000
i=1 I(β

(i)
u − π0)

2000
(6)
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Table 4: Effective levels and powers for different nominal levels (α), sample sizes (n)
and settings (S) of π.

Setting (π0, π1, π2, π3, π4) n α = 0.01 α = 0.025 α = 0.05

S1 (0.8,0.2,0,0,0) n=100 0.011 0.030 0.053

n=500 0.009 0.023 0.049

n=1000 0.009 0.023 0.049

S2 (0.6,0.4,0,0,0) n=100 0.011 0.029 0.062

n=500 0.013 0.030 0.059

n=1000 0.009 0.023 0.054

S3 (0.4,0.6,0,0,0) n=100 0.016 0.031 0.061

n=500 0.012 0.028 0.056

n=1000 0.010 0.025 0.053

S5 (0.8,0.1,0.1,0,0) n=100 0.472 0.597 0.683

n=500 0.982 0.991 0.995

n=1000 1 1 1

S6 (0.7,0.1,0.1,0.1,0) n=100 0.857 0.905 0.941

n=500 1 1 1

n=1000 1 1 1

S7 (0.6,0.2,0.15,0.05,0) n=100 0.869 0.915 0.946

n=500 1 1 1

n=1000 1 1 1
Notes: All the computation are based on 2000 replications.

where I(u) = 0 for u ≥ 0 and 0 otherwise. Table 5, lists the results for n = 100 and
n = 500 and for levels (1 − α) = 0.99, (1 − α) = 0.975 and (1 − α) = 0.95. It shows
that effective and nominal coverages are quite close, confirming the correctness of
the procedure.

5 Does really Morningstar account for risk?

The notion of β−equivalence between raters and the procedure previously described
provide a tool allowing to analyse the role of risk in the Morningstar rating and to
determine to what extent risk is relevant in the current practice.
To that end, we analyze the degree of β−equivalence between couples of ratings
obtained giving different relevance to risk in the final rating. The idea is to evaluate
how much different is the final result of ratings that weight differently the risk com-
ponent of a fund. In particular, we wish to compare the rating bases on the setting
currently used by Morningstar and the rating obtained ignoring the risk.
To answer the original question about the role of risk in Morningstar rating for
mutual funds, we apply the methodology of Section 4 to 1763 monthly return time
series of US mutual funds for the period January 2003 - December 2007.
Our ’Morningstar rating’ slightly differs from the original one in so far as loads are
not considered. This implies that (1) was applied considering simple returns instead
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Table 5: Effective coverages, (1 − α)obs, against the nominal coverage (1 − α), for
different settings, sample sizes and levels.

Setting (π0, π1, π2, π3, π4) n 1 − α = 0.99 1 − α = 0.975 1 − α = 0.95

S1 (0.8,0.2,0,0,0) n=100 0.990 0.970 0.954

n=500 0.985 0.971 0.941

S2 (0.6,0.4,0,0,0) n=100 0.987 0.977 0.941

n=500 0.985 0.974 0.947

S3 (0.4,0.6,0,0,0) n=100 0.986 0.972 0.940

n=500 0.987 0.968 0.937
Notes: All the computation are based on 2000 replications.

of LRt, the load-adjusted returns. We are forced to this because the data referring
to fund loads were not available to us. However, this does not affect our analysis,
because our interest is centered in comparing different MRARs with respect to risk,
rather than to study the performance of the rating itself. Thus, it is possible to
work conditionally to a given level of costs. To further simplify the analysis, we did
not consider the entire set of Morningstar categories, but only classes implicit in the
Morningstar style box, which classify funds with respect to market capitalization
(Large, Medium, Small) and investment style (Value, Blend, Growth). Crossing the
capitalization and the investment style leads to nine classes, that will be denoted
by LV(245), LB(343), LG(412), MV(60), MB(197), MG(119), SV(80), SB(170) and
SG(137), where the numbers in brackets are the number of fuds in each class.
Results of our analyses are listed in Tables 7 - 12 where, for each category, we re-
ported: the number of funds; the 95% upper confidence bound; βu, for which the
null hypothesis is accepted, at a 5% level; the value of the statistic κ∗; p0 and p1,
the observed relative frequencies for d0 and d1.
For each of the nine categories the rating was performed by using the Morningstar
risk-adjusted return as a function of the parameter γ, which represents the risk
component in the final evaluation. In our analysis, we compared the ratings result-
ing from MRAR(γ), with γ = −1, 0, 2, 5, 10, considering them different raters. Since
Morningstar is a five-class rating we set m = 5. When testing for the β−equivalence,
in the computation of κ∗ we used function (4), with a = 3.5 and b = 3 to set weights.
This gives: w0 = 1, w1 = 0.497, w2 = 0.003, w3 = 1 × 10−8 and w5 = 1 × 10−19. To
practical purposes, this is equivalent to define as a full agreement evaluations that
coincide, “an half agreement” evaluations that differ of just one category and a full
disagreement evaluations differing for more than one category. Finally, in the com-
putation of the test p-values, N = 10000 Monte Carlo replications were considered.
The first step in our analyses consists in comparing the ratings produced by γ = −1
and γ = 0 because both parameters imply a condition of indifference to risk. Thus,
we expect that the corresponding ratings are very similar. Indeed, the column βu

in Table 7 shows that the degree of β−equivalence between this two raters is very
large and ranges from 0.94 to 0.98. Note also that, when γ = −1 and γ = 0 are
involved, we have always p0 + p1 = 1, meaning that there are not funds for which
the two ratings differ for more than one class. On the whole the difference between
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these two raters, in terms of final rating, is negligible.
Bearing this comparison in mind, in subsequent analysis we focus on comparing the
rating produced by MRAR(0) with those achieved with different values of γ.
The parameter γ = 2 is that used in the current practice by Morningstar (Morn-
ingstar 2007) because it is believed that this adequately represents the risk aversion
of the typical investor. However, as Table 9 shows, the level of agreement - in terms
of β−equivalence - between the rating obtained in a framework of indifference to
risk (γ = 0) and that produced by MRAR(2) is quite elevated and not so different
from the case in which to parameters not accounting for risk were involved. This is
true, in particular, for the Large and Medium classes, whereas for the Small class,
differences seem to be a little higher. Moreover, the percentage of cases for which
the rating differs for at most one “star” is almost always equal to 100%.
On the whole, these results lead us to believe that in the Morningstar rating the
risk component plays only a marginal role and that - perhaps - a greater weight of
riskiness in the rating procedure would be suitable in order to avoid to underesti-
mate the risk.
These conclusions are supported by the results obtained comparing ratings produced
by γ = 0 with those derived by considering γ = 5 and γ = 10. Indeed, increasing the
value of γ, that is increasing the weight of risk, the level of β−equivalence sensibly
decreases, with βu ranging from 0.69 to 0.85 in the case of γ = 5 (Table 10) and
from 0.405 to 0.685 in the case of γ = 10 (Table 12). Also the number of cases where
the raters disagree for more than one class increases . This suggests that the raters
are becoming really different.
This further results point out that if we want that risk really matters in the Morn-
ingstar rating, the value of γ should be increased.
Note that, even though βu is generally higher than the observed relative frequency
of d0 (p0), this is not always true. For example, for MB in Table 12 the p0 = 50.4,
but βu = 0.45. This is because, what we actually do is testing the whole distribution
(2) and not only π0.
With respect to the macro-categories of funds Large, Medium and Small, we found
that the agreement is always higher for the Large category, followed by Medium and
Small.
Finally, to study the impact on the β−equivalence of scoring funds following Table
1, we repeat the analyses scoring funds according the equally-spaced scheme of Table
6. The results are not reported here, apart from those related to the comparison
γ = 0 and γ = −1 (see Table 8). On the whole they point out that considering an
equally-spaced scheme slightly decreases the level of the β−equivalence, but it does
not change the conclusion reached by analyzing the Morningstar’s approach.

Table 6: The equally-spaced score.

Score 1 2 3 4 5

Percent bottom 20% next 20% next 20% next 20% top 20%
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Table 7: MRAR(0) vs MRAR(-1): Morningstar categories.

Category n βu κ∗
oss

p0 p1

LV 245 0.975 0.0075 95.9 4.1

LG 343 0.975 0.0051 96.5 3.5

LB 412 0.98 0.0046 97.1 2.9

MV 60 0.965 0.0161 93.3 6.7

MG 197 0.94 0.0109 91.9 8.1

MB 119 0.945 0.0149 91.6 8.4

SV 80 0.94 0.0206 90 10

SV 170 0.94 0.0215 90.3 9.7

SB 137 0.965 0.0119 94.2 5.8
Notes: βu=95% upper confidence bound, for which the null hypothesis is accepted, at the

5% of significance level; p0 and p1=relative frequencies of d0 and d1.

Table 8: MRAR(0) vs MRAR(-1), 5 equally spaced categories.

Category n βu κ∗
oss

p0 p1

LV 245 0.945 0.0095 92.7 7.3

LG 343 0.95 0.0073 93.6 6.4

LB 412 0.96 0.0068 94.7 5.3

MV 60 0.965 0.0161 93.3 6.7

MG 197 0.935 0.0136 90.9 9.1

MB 119 0.945 0.0149 91.6 8.4

SV 80 0.92 0.0234 87.5 12.5

SG 170 0.91 0.0176 88.2 11.2

SB 137 0.975 0.0095 95.6 4.4

Notes: βu=95% upper confidence bound, for which the null hypothesis is accepted, at the

5% of significance level; p0 and p1=relative frequencies of d0 and d1.

6 Conclusions

This paper focuses on testing the level of agreement between two raters when or-
dinal scales of rating are involved. The test we propose is based on the notion of
β−equivalence between raters that is useful in defining the level of agreement be-
tween two rankings. First, a suitable statistic for measuring β−equivalence has been
defined, then a Monte Carlo procedure for testing the β−equivalence and finding an
upper confidence bound for β has been outlined.
The usefulness of this approach has been shown in the context of mutual fund rating,
in particular referring to the Morningstar rating. The application of the test led us
to conclude that risk plays only a marginal role in the final Morningstar rating and
that it is probably underestimated. We think that our results are important because
the literature suggests that individual investors, as well as many financial advisors,
believe the Morningstar rating and base their investment decisions “following stars”.
In periods when the concepts of risk and volatility appear to be less and less abstract
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Table 9: MRAR(0) vs MRAR(2), Morningstar classes.

Category n βu κ∗
oss

p0 p1

LV 245 0.95 0.012 92.7 7.3

LG 343 0.925 0.0095 90.7 9.3

LB 412 0.945 0.0092 92.7 7.3

MV 60 0.94 0.0206 90 10

MG 197 0.925 0.0138 89.8 10.2

MB 119 0.875 0.023 83.2 16.8

SV 80 0.875 0.0267 82.5 17.5

SG 170 0.85 0.0207 81.2 18.8

SB 137 0.88 0.0216 84.7 14.6
Notes: βu=95% upper confidence bound, for which the null hypothesis is accepted, at the

5% of significance level; p0 and p1=relative frequencies of d0 and d1.

Table 10: MRAR(0) vs MRAR(5), Morningstar categories.

Category n βu κ∗
oss

p0 p1

LV 245 0.825 0.0204 79.6 19.6

LG 343 0.775 0.0178 75.5 23.3

LB 412 0.85 0.0134 83.5 15.5

MV 60 0.83 0.0528 73.3 26.7

MG 197 0.78 0.0247 76.1 21.3

MB 119 0.695 0.0382 66.4 30.3

SV 80 0.63 0.0491 57.5 40

SG 170 0.63 0.0328 60.6 36.5

SB 137 0.74 0.031 70.1 28.5

Notes: βu=95% upper confidence bound, for which the null hypothesis is accepted, at the
5% of significance level; p0 and p1=relative frequencies of d0 and d1.

it is crucial that investors are conscious of their choices and of the level of risk they
take.
Note that, even though we showed an application in the financial field, scenarios
where raters give categorical ratings to subjects commonly occur in several other
fields and thus, the outlined procedure may be useful in a wide range of applications.
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