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Abstract. An extension of a mathematical model for non-isothermal multiphase materials to 

consider the dissolution of air in liquid water and air mass sources during its desorption at 

lower water pressure is presented. The solid skeleton is assumed elasto-plastic; heat, water 

and air flows and water phase changes are taken into account. Physics of air dissolution and 

water cavitation in porous media is discussed. A numerical example where cavitation 

develops during strain localization in undrained water saturated dense sands is solved with the 

developed model as discretized in space and time with the Finite Element Method.  
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1 Introduction 

In recent years, increasing interest in thermo-hydro-mechanical analysis of saturated and 

partially saturated materials is observed, because of a wide spectrum of their engineering 

applications. Typical examples belong to environmental geomechanics, where some 

challenging problems are of interest, and among them, those due to soil failure situations 

caused by shear bands development.  

Strain localization in water saturated geomaterials has been modelled in recent years e.g. by 

Rudnicki and Rice (1975), Vardoulakis (1986), Shuttle and Smith (1990), Chambon et al. 

(1994), Schrefler et al. (1995), Schrefler et al. (1996), Gawin et al. (1998), Ehlers and Volk 



(1999), Zhang et al. (2001), Borja (2004), Ehlers et al. (2004), Mira et al. (2004), Sanavia et 

al. (2006) among others. 

There are also experimental results available, e.g. in the works of Mokni and Desrues (1998), 

Vardoulakis and Sulem (1995) and McManus and Davis (1997). The case of undrained tests 

on dense (i.e. dilatant) sand samples are interesting because the experimental results show that 

the water pressure decreases continuously almost from the beginning on. At the onset of 

localization this pressure is decisively smaller than the atmospheric pressure and is close to 

the cavitation pressure. This pressure was always reached at the onset of localization, 

irrespectively of the back pressure at the beginning of the experiment, and cavitation was 

observed. Cavitation, i.e. liquid water phase change to vapour, initiates in fully water 

saturated porous media when the absolute pressure of liquid water is equal to or smaller than 

the saturation vapour pressure at the temperature of surrounding water (neglecting the surface 

tension on the interface of the arising gas bubbles). Then desaturation of the porous material 

may take place if capillary pressure develops. The process can be accelerated by release of the 

air dissolved in liquid water.  

Usually the above mentioned experiments are performed by saturating the specimens with de-

aired water and making circulate fresh de-aired water in order to dissolve the rest of gas 

bubbles possibly trapped in the specimens and the circuits (Mokni and Desrues, 1998). In 

field conditions this is however not the case. The question how the air dissolved in water can 

influence the evolution of cavitation during strain localization is an important motivation for 

development of the proposed model. In fact, the low value of water pressure observed during 

strain localization in water saturated dense sands, causes a release of certain amount of air 

dissolved in water because the solubility of air in liquid water, according to Henry’s law, 

equation (1), decreases proportionally to the pressure drop (Figure 2). For example 1 dm3 of 

sand, saturated with water and having porosity of 20%, may contain at 20°C maximally about 

3.98 ml of dissolved (dry) air at atmospheric pressure (patm= 101325 Pa) and only 0.09 ml of 

water vapour at pressure of 2339 Pa (i.e. saturated vapour pressure at 20 °C). The excess 

amount of air is released in the form of small air bubbles. The process starts when the actual 

volume concentration of air dissolved in liquid water is equal to the equilibrium one 

corresponding to the actual water pressure. Hence release of air dissolved in liquid water may 

be indicated as a triggering mechanism for cavitation, as was shown by Baur et al. (1998) for 

the case of cavitation inception in free surface flows.  
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Cavitation in water saturated dense sand samples with impervious boundary was analyzed 

numerically by Schrefler et al. (1996) and Gawin et al. (1998), where the so-defined 

isothermal monospecies approach and the isothermal two phase flow model have been 

developed by neglecting the heat effects of phase change of liquid water to vapour. These 

effects were taken into account in the non-isothermal three-phase model developed by 

Sanavia et al. (2006), where it was assumed that water vapour was the only gas present in 

pores at cavitation.  

In this paper we extend the previous mathematical model of Sanavia et al. (2006) by 

considering, as a novel aspect, the air dissolved in pore water and its release to the gas phase 

after a liquid water pressure drop. Our aim is to analyse numerically the effect of air released 

during the desaturation initiated by cavitation due to strain localisation. 

 

Most mathematical and finite element models of coupled hydro-thermo-mechanical (CHTM) 

phenomena in porous media, also those used in Geomechanics for analyses of soil behaviour 

at various conditions, (e.g. Gawin and Schrefler, 1996; Ehlers and Volk, 1999; Lewis and 

Schrefler, 1998; Schrefler 2002; Borja 2004; Ehlers et al., 2004), do not consider the air 

dissolved in pore water. A general CHTM model considering air dissolved in the pore water 

has been theoretically formulated by Olivella et al. (1994) and Khalili and Loret (2001). A 

numerical solution has been presented in the work of Gens et al. (1998), where the behaviour 

of deep nuclear waste disposal was analyzed, concluding that the contribution of air dissolved 

in CTHM modelling is negligible for that kind of problems. To the authors’ knowledge, no 

previous attempt was made to study the influence of dissolved air on the progress of 

cavitation at strain localization. 

The paper is organized as follows. Physics of air dissolution in fully and partially water 

saturated porous media and its contribution to water cavitation are discussed in Section 2 and 

3, respectively. By recalling the classical nucleation theory for gaseous bubble formation, it 

will be explained how the presence of bubbles of dissolved air is an important factor that 

could trigger cavitation in porous media. Moreover, the amount of air which can be released 

to cavitation bubbles will be estimated.  

Then, in Section 4 the mathematical model for a non-isothermal multiphase porous media 

including dissolution of air in water is derived at macroscopic level. The multiphase medium 

is considered as an elasto-plastic porous continuum where heat, water and gas flow are taken 

into account. The gas phase is modelled as an ideal gas composed of dry air (including air 

released from water) and water vapour, considered as two miscible species. Small strains and 
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quasi-static loading conditions are assumed. For the numerical solution, the developed model 

has been simplified by neglecting advection and diffusion of released air.  

Finally, a finite element simulation is presented in Section 5 to analyze numerically the effect 

of the released air on the initiation and progress of cavitation during strain localization in 

undrained water saturated dense sands. It will be shown that the release of dissolved air is of 

importance during simulation of cavitation and subsequence desaturation process.  

A possible engineering application of the model is the analysis of onset of a rapid landslide 

when vaporization of pore water could be generated by frictional heating in the failure zone 

(as in case of Vajont landslide, Hendron and Patton, 1985 following the work of Habib, 1975) 

Another possible application is the simulation of the THM behaviour of earth dams, as 

suggested by LeBihan and Leroueil (2002) to describe the unexpected pore pressures 

observed in the core of some earth dams.   

2 Dissolution of air in fully and partially saturated porous media 

It is commonly believed that atmospheric air dissolves in ground water at the water table. But 

the significant excess of atmospheric noble gases observed in the liquid water, as compared to 

the solubility equilibrium concentrations, (Mercury et al., 2004), shows that there are also 

other air dissolution mechanisms. Those are, in general, related to the dissolution of the air 

bubbles trapped in pores of water saturated soils during seasonal fluctuations of water table, 

and to the direct dissolution of air in a partially water saturated ground (Mercury et al., 2004). 

Gas dissolution in water at equilibrium conditions can be described by Henry’s law in the 

following form, (Atkins and de Paula 2002), 

g
i xi i ci ip K x K c= ⋅ = ⋅ ,  (1)

where g
ip  means the partial pressure of the gas component i, xi and ci are the mol fraction and 

concentration of the gas i in liquid water at equilibrium, Kxi and  are 

the empirical Henry’s law constants, related to the mol fraction of gas component i in liquid 

water, 

( )/ w
ci xi w iK K M Mρ= ⋅ ⋅

/i i wx n n= , or its concentration, /i ic m Vw= , respectively. Mw and Mi are molar masses, 

while nw and ni quantities of liquid water and dissolved gas, expressed in moles, ρw the water 

density and Vw the water volume. )/(/ wawawii mMMmnnx == . 

As can be observed in Figure 1, the value of Henry’s law constant depends both on the water 

pressure and temperature, pw and T, (Mercury et al., 2004). Figure 1 clearly shows, that as 

pressure and/or temperature of water are increasing, the Henry’s law constant increases as 
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well, (Mercury et al. 2003), hence the concentration of gas i dissolved in liquid water, at 

equilibrium with gas of a given pressure, g
ip , decreases.  

A total change of concentration of the gas i dissolved in water, , can be calculated from the 

following relation,  

idc

( )2

g g
wi i ci ci

i w
ci ci

dp p K Kdc dp dT
K p TK

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

.  (2)

Thus, at constant gas pressure ( g
idp =0) and temperature (dT=0), the concentration  at 

equilibrium with gas of pressure 

ic

g
ip  decreases if water pressure is lowered because ci

w

K
p

∂
∂

 is 

positive, Figure 1. 

When a dissolving gas consists of several components, like for example atmospheric air does, 

one can apply Henry’s law to each of them separately and then sum up the contributions of all 

components considering their partial pressures. Using the thermodynamic data given by 

Mercury et al. (2003) and assuming that dry air consists in 21% of Oxygen and 79% of 

Nitrogen, the ‘apparent’ values of Henry’s law constants for the dry air have been calculated 

for different temperatures and pressures of liquid water, see Figure 1. 

When pressure of water, containing initially the equilibrium concentration of dissolved air, 

decreases,, an excess amount of the air is liberated in the form of air bubbles, as will be 

explained in next section. The gas pressure in these bubbles is equal to the sum of the water 

pressure, pw, and the pressure exerted by a curved gas–water interface due to surface tension, 

pc=2σwa/Rb, where σwa means the liquid water-air interfacial tension and Rb is the radius of the 

curvature. The latter pressure, for bubbles with radius greater than 10-4 m, has a value smaller 

than pc=1.445 kPa, which is negligible as compared to the atmospheric pressure, and hence 

also to the water pressure. Thus, assuming for simplicity, that the gas pressure inside the air 

bubbles is equal to the water pressure, a wp p≅ , and the Henry’s law coefficient is 

independent of pressure, = const, one can assess a rate at which the concentration of air 

dissolved in water is changing as follows, 

waK

1 w
wa

wa

c p
t K t

∂ ∂
=

∂ ∂
.  (3)

This clearly shows that effects related to the dissolved air may be particularly of importance 

when a fast water pressure decrease occurs. 
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In principle, Henry’s law is applicable to water at positive pressures and in several textbooks 

of Physics or Chemistry one can find the values of Henry’s law constant for different gases at 

various pressure and temperature, see e.g. Atkins and de Paula (2002). However, it is 

commonly known that capillary water is exposed to negative pressures, i.e. it is stretched, and 

hence it exists in a metastable state, (Mercury and Tardy, 2001, 2004; Zheng et al., 1991), 

which is thermodynamically possible up to the so called spinodal limit, i.e. the extreme tensile 

strength of water, for example -212.4 MPa at temperature of 30oC (Mercury et al., 2004). 

Applicability of Henry’s law, and especially values of its constant (measured at pw>0), also 

for capillary water is disputable, because experimental studies are possible only for positive 

water pressures (Mercury and Tardy 2004). During cavitation in porous media we deal with 

water pressures which are relatively close to zero, and Figure 1 shows that in this range of 

pressure the value of Henry’s law constant is practically dependent on temperature only. With 

this assumption, using Henry’s law (1) and data shown in Figure 1, the gas pressure 

dependence of solubility of air in liquid water (pw = 1kPa) at different three different 

temperatures has been plotted in Figure 2.  

 

Figure 1 and Figure 2 

3 Physics of cavitation in fully saturated soils 

An influence of dissolved air on the initiation of cavitation and further desaturation in water 

saturated soils will be briefly summarized here from the microscopic point of view. This will 

be not directly used in our model, but gives a deeper insight in physics of the phenomena 

dealt with in the paper. 

From the Classical Nucleation Theory, it is concluded that cavitation at low stretching 

pressures cannot be practically initiated by thermal fluctuations (Maris and Balibar, 2000). In 

such conditions, the most important factor which could trigger cavitation nucleation in soils is 

the presence of impurities or air bubbles in water (Or and Tuller, 2002; Maris and Balibar, 

2000; Tyree 1997), because only bubbles with radius greater than the critical value, Rc, can 

grow freely (i.e. without energy supply) and can seed cavitation. The critical radius of air 

bubbles in water is given by the following equation (see Figure 3), 

2 wa
c g wR

p p
σ

=
−

.  (4)
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For any critical radius and water pressure, taking into account the solubility of air in liquid 

water, one can assess the desaturation degree caused by the air mass released from liquid 

water after a decrease of water pressure to the value necessary to form gas bubbles of critical 

sizes and to start cavitation (Figure 4). For example, in this figure it can be seen that, after a 

decrease of water pressure to the value pw =-1 kPa, for bubbles with radius Rc= 4·10-3 m one 

obtains an additional water desaturation ΔSw= 4.55%. For larger bubbles the value of 

desaturation ΔSw is greater, e.g. for Rc= 6·10-3 m, one obtains ΔSw= 8.56% 

 

Figure 3 and Figure 4 

 

Thus it may be concluded that desorption of air from water saturated with dissolved air, after 

the onset of cavitation in soils, can cause faster water desaturation, affecting the evolution of 

the process. These phenomena will be simulated in Section 5 by means of the proposed 

numerical CHTM model. 

It should be underlined that the presented theory and analyses have a simplified character, 

because they assume an immediate air dissolution – desorption, and in reality the rate of these 

processes is finite, and furthermore there are some associated diffusion flows of dissolved air, 

which influence their time evolution (Kwak and Kim 1998). Then, the presented theory does 

not take into account influence of the porous structure upon the onset of cavitation.  

4 Macroscopic balance equations 

The full mathematical model necessary to simulate thermo-hydro-mechanical transient 

behaviour of fully and partially saturated porous media, neglecting air dissolved in water, was 

developed by Gawin and Schrefler (1996), Lewis and Schrefler (1998) and Schrefler (2002) 

using averaging theories according to Hassanizadeh and Gray (1979). Elasto-plasticity was 

introduced in the work of Sanavia et al. (2006). The underlying physical model is described in 

Schrefler (2002) and will be summarized here for sake of completeness. 

The partially saturated porous medium is treated as multiphase system composed of the 

solid skeleton (s) and voids filled with water (w) and gas (g). The latter is assumed to behave 

as an ideal mixture of two species: dry air (noncondensable gas, ga) and water vapour 

(condensable one, gw).  

At the macroscopic level the porous media material is modelled by a substitute continuum 

that simultaneously fills the entire domain, where each constituent π has a reduced density 
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which is obtained through the volume fraction ηπ(x,t) = dvπ(x,t) / dv(x,t), where x is the vector 

of the spatial coordinates and t is the current time. In the model, heat conduction and 

convection, vapour diffusion, water flow due to pressure gradients or capillary effects and 

water phase change (evaporation and condensation) inside the pores are taken into account. 

The solid is deformable and non-polar, and the fluids, solid and thermal fields are coupled. 

All fluids are in contact with the solid phase. The constituents are assumed to be isotropic, 

homogeneous, immiscible except for dry air and water vapour, and chemically non-reacting. 

Solid and liquid water constituents are incompressible at micro level, while gas is considered 

compressible. Local thermal equilibrium between solid matrix, gas and liquid phases is 

assumed.  

In the partially saturated zones liquid water is separated from the gas phase by a meniscus. 

Due to the curvature of this meniscus the equilibrium equation gives the relationship pc = pg – 

pw between the capillary pressure pc(x,t), the gas pressure pg(x,t) and the water pressure 

pw(x,t). The state of the medium is assumed to be described by capillary pressure, gas 

pressure, absolute temperature T(x,t) and displacements of the solid matrix u(x,t). For a 

detailed discussion about the chosen primary variables see Sanavia et al.( 2006). The motion 

of the solid is assumed as a reference, while that of the fluids is described with respect to the 

solid. 

The macroscopic balance equations of the model are now developed in the geometrically 

linear framework by considering quasi-static deformation processes and including the 

dissolution of air in liquid water and air mass sources during its desorption at lower water 

pressure. This model is developed by extending the previous one neglecting the air dissolved 

in liquid water. Hence the final equations of the model are summarized below (the interested 

reader can refer to Lewis and Schrefler, 1999 and Schrefler, 2002 for the full development). 

The linear momentum balance equation of the mixture in terms of modified effective 

Cauchy’s stress σ’(x, t) assumes the form, (Schrefler 1984; Schrefler and Gawin 1996; Lewis 

and Schrefler 1998) 

( )g c
wdiv p S p ρ′ ⎡ ⎤− − + =⎣ ⎦1 gσ 0 ,       (5)

where [ ]1 s w
w gn nS nS gρ ρ ρ= − + + ρ  is the density of the mixture, n(x,t) the porosity, Sw(x,t) 

and Sg(x,t) the water and gas degree of saturation, respectively, g is the gravity acceleration 

vector and 1 the second order identity tensor. 
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The mass conservation equation for liquid water and water vapour is (Gawin and Schrefler 

1996; Lewis and Schrefler 1998), 

( ) ( )

( )

2

0,

gw
w gw w gw sw

w g g

gw rw
g gw w g c wa w

g g w
g

rg
gw g g

swgg

Sn S S div nS
t t

M M p kdiv grad div grad p grad p
M p

k Tdiv grad p
t

ρρ ρ ρ ρ

ρ ρ
μ

ρ ρ β
μ

∂ ∂⎡ ⎤ ⎡ ⎤+ + + +⎣ ⎦ ⎣ ⎦∂ ∂
⎛ ⎞⎛ ⎞ ⎛

ρ
⎞⎡ ⎤− − −⎜ ⎟⎜ ⎟ ⎜ − ⎟⎣ ⎦⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

⎛ ⎞ ∂⎡ ⎤− − − =⎜ ⎟⎣ ⎦ ∂⎝ ⎠

v

kD g

k g

⎠
  (6)

where k(x,t) is the intrinsic permeability tensor [m2], krw(x,t) the water relative permeability 

parameter and μw(x, t) the dynamic viscosity of water. Similarly, krg(x,t) is the gas relative 

permeability parameter and μg(x, t) the dynamic viscosity of gas. βswg(x, t) combines the solid 

and liquid cubic thermal expansion coefficients (βswg = [1-n]βs[Sgρgw + ρwSw]). is the 

effective diffusivity tensor of water vapour in dry air, and M

gw
gD

a, Mw and Mg(x, t) the molar mass 

of dry air, liquid water and gas mixture, respectively. In equation (6) Fick’s law has been used 

to describe the non-advective flow, while advective flows are modelled with Darcy’s law. 

The mass balance equation for dry air is: 

( ) ( )

2

1 .

ga ga
ga ga s g gaw a w

g g g g
g

rg
ga g g ga

s g gag

S M M pn S div nS div grad
t t M

k Tdiv grad p n S m
t

ρρ ρ ρ

ρ ρ β ρ
μ

⎛ ⎞⎛ ⎞∂ ∂
− + + − ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝

⎛ ⎞ ∂⎡ ⎤− − − − =⎜ ⎟⎣ ⎦ ∂⎝ ⎠

v D

k g

p
+

⎠  (7)

where  is the effective diffusivity tensor of dry air in water vapour, βga
gD s(x, t) the solid 

cubic thermal expansion coefficient and  is a source term representing the rate of mass 

released in the gas phase by desorption of dissolved air at lower water pressure. This source 

term is zero when neglecting the air dissolved in liquid water. When considered it is given by 

the mass balance of dissolved air: 

gam

( )( )

( ) ( ) ,

w w s w ga ww wa
wa wa w w wa w

rw
w g c w

wa wa swg gaw

S cn c c S div div grad c n S
t t

k Tdiv c grad p grad p c m
t

ρ ρ ρ ρ

ρ ρ
μ

∂ ∂
+ − +

∂ ∂
⎛ ⎞ ∂⎡ ⎤− − − −⎜ ⎟⎣ ⎦ ∂⎝ ⎠

v D

k g β = −

  (8)

where cwa(x, t) is the concentration of air dissolved in water and  the effective 

diffusivity tensor of dissolved air in liquid water.  

ga
wD

The last balance equation of the model is the energy balance equation of the mixture, here 

written as (Gawin and Schrefler 1996; Lewis and Schrefler 1998): 
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( ) ( ) ( ) vapeff
gg

pg
ww

pweffp HmTgraddivTgradCC
t
TC Δ−=χ−⋅ρ+ρ+
∂
∂

ρ vv , (9)

where ( )
effpCρ  is the effective thermal capacity of porous medium,  and  the specific 

heat of water and gas mixture, respectively, χ

w
pC g

pC

eff the effective thermal conductivity of the 

porous medium and the right hand term considers the contribution of the evaporation and 

condensation. This balance equation takes into account the heat transfer through conduction 

and convection as well as latent heat transfer (see Gawin and Schrefler 1996; Lewis and 

Schrefler 1998) and neglects the terms related to the mechanical work induced by density 

variations due to temperature changes of the phases and induced by volume fraction changes. 

A more general balance equation can be found in the work of Khalili and Loret (2001). 

 

The model developed so far is composed by five balance equations, for which five state 

variables are needed. This model can be simplified when water flow in a fully saturated 

porous material is analyzed. In such a case, all the terms in equation (6) related to water 

vapour are equal to zero and can be omitted. Similar situation occurs also in a material where 

the saturation degree is very close to one (e.g. during initial stages of water outflow from fully 

saturated porous media) and the mass transport related to water vapour is very small in 

comparison to the liquid water flow and can be omitted. Multiplying the ‘reduced’ equation 

(6) (i.e. without the vapour-related terms) by the dissolved air concentration, cwa, and then 

subtracting it from equation (8) one obtains, 

( )

( ) ( ) ( ) .

w ga w wa
w wa w

rw
w g c w

wa gaw

cdiv grad c n S
t

kgrad c grad p grad p m

ρ ρ

ρ ρ
μ

∂⎡ ⎤− +⎣ ⎦ ∂
⎛ ⎞⎡ ⎤− ⋅ − − = −⎜ ⎟⎣ ⎦⎝ ⎠

D

k g
 (10)

The latter equation, with the assumption that the gradient of dissolved air concentration is 

small enough to neglect effects of both the diffusive and advective flows of dissolved air, i.e. 

, reduces to, ( ) 0wagrad c ≅

.w wa
ga w

cm n S
t

ρ
∂

= −
∂

 (11)

This assumption is reasonable when analyzing transient flows in porous materials, with the 

characteristic times smaller than those for diffusion or advection processes of the air dissolved 

in water.  
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Considering the Henry law for water within porous materials in fully saturated state, in its 

simplified form (3), one obtains  

.
w w

w
ga

wa

n S pm
K t
ρ ∂

= −
∂

 (12)

This defines the source term of the RHS of the mass balance equation (7). The latter equation 

makes any physical sense only when air occupies a part of the pores’ volume, i.e. . The 

latter condition is however not fulfilled for a fully saturated material. For this reason, to 

analyse release of the air dissolved in pore water within fully saturated materials, where water 

pressure is higher than or equal to atmospheric pressure, 

1wS <

w
atmp p≥ , it is necessary to introduce 

some ‘residual’ gas saturation degree, . Such a technique is sometimes used during 

modelling of ‘full - partial saturation’ transition, and it was shown to give results in a good 

agreement with the experimental data of Liakopoulos (1965), (Gawin and Schrefler 1996; 

Gawin et al. 1997). This method will be also used in Section 5 to analyse numerically the 

effects of dissolved air on the hygral performance of water saturated dense sands during water 

pressure decrease within dilatant shear bands. 

0res
gS >

4.1. Constitutive equations 

To close the previous model a sufficient number of suitable constitutive relationships have 

to be introduced. For the gas phase, the ideal gas law is used because the moist air is assumed 

to be a perfect mixture of two ideal gases. The equation of state of perfect gas (Clapeyron’s 

equation) and Dalton's law are applied to dry air (ga), water vapour (gw) and moist air (g). In 

the partially saturated zones, the equilibrium water vapour pressure pgw(x,t) can be obtained 

from the Kelvin-Laplace equation, where the water vapour saturation pressure, depending 

only upon the temperature, can be calculated from the Clausius-Clapeyron equation or from 

an empirical correlation. 

The saturation degree Sπ(x,t) and the relative permeability krπ(x,t) are experimentally 

determined functions of the capillary pressure and the temperature (π = w, g).  

 

The solid skeleton is assumed elasto-plastic, homogeneous and isotropic; its mechanical 

behaviour is described within the classical rate-independent elasto-plasticity theory for 

geometrically linear problems. The yield function restricting the effective stress state σ’(x,t) is 

developed in the form of temperature independent Drucker-Prager for simplicity, with linear 
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isotropic softening and non-associated plastic flow to take into account the post-peak and 

dilatant behaviour of dense sands, respectively. The return mapping and the consistent tangent 

operator is developed in the work of Sanavia et al. (2006), solving the singular behaviour of 

the Drucker-Prager yield surface in the zone of the apex using the concept of multi-surface 

plasticity following the formulation developed by Sanavia et al. (2002) for isotropic linear 

hardening/softening and volumetric-deviatoric non-associative plasticity in case of large 

strain elasto-plasticity.  

In this paper, the effect of the capillary pressure and temperature on the evolution of the 

yield surface is not taken into account. The interested reader can refer, for example, to Alonso 

et al. (1990), Bolzon et al. (1996), Borja (2004) and François and Laloui (2008) for capillary 

dependent constitutive relationships in isothermal or non isothermal conditions and to Zhang 

et al. (2001) for the numerical implementation of constitutive law proposed by Bolzon et al. 

(1996) and its application to strain localization analysis. 

4.2. Initial and boundary conditions 

The initial conditions specify the full fields of primary state variables at the reference time 

t=t0, in the whole domain and on its boundary as: 0 0 0 0, ,  ,  ong g c
cp p p p T T B B= = = = ∪u u ∂ .  

The boundary conditions (BCs) can be of Dirichlet's type on ∂BB

ˆ u

π for t ≥ t0: 

ˆˆ ˆ on ,    on ,   on ,   on g g c c
g c Tp p B p p B T T B= ∂ = ∂ = ∂ = ∂u u B  (13)

or of Neumann' BCs type on ∂Bq
π for t ≥ t0: 

( )
( ) ( )
( ) ( )

     on ,  

  on ,

  on ,

    on ,

ga g g gw ga q
g

gw g w w g gw gw gw gw w q
c c

w w T q
vap eff c T

q
u

q B

q q B

h T T T q B

B

ρ ρ

ρ ρ ρ β ρ ρ

ρ λ α
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+ + ⋅ = − + + ∂

− Δ − ∇ ⋅ = − + ∂

⋅ = ∂

v v n

v v v n

v n

n tσ

   
 (14)

where n(x, t) is the unit normal vector, pointing toward the surrounding gas, qga(x,t), qgw(x,t), 

qw(x,t) and qT(x,t) are the imposed fluxes of dry air, vapour, liquid water and the imposed heat 

flux, respectively, and t(x, t) is the imposed traction vector related to the total Cauchy stress 

tensor σ(x,t); ( ),gw tρ∞ x  and T∞(x,t) are the mass concentration of water vapour and the 

temperature in the far field of undisturbed gas phase, while αc(x,t) and βc(x,t) are convective 

heat and mass exchange coefficients.  
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The boundary conditions for the dissolved air are not needed because we use the mass balance 

equation (7) with the RHS term in its simplified form, i.e. equation (12). 

5 Numerical solution 

The finite element model is derived by applying the Galerkin procedure for spatial 

integration and the Generalised Trapezoidal Method for time integration of the weak form of 

the balance equations of Section 4. A non-symmetric, non-linear and coupled system of 

equation is obtained (implicit one-step time integration has been used). Owing to the strong 

coupling between the mechanical and the pore fluids fields, a monolithic solution of the 

discretized equations system is preferred using a Newton-Rapson scheme (e.g. Bianco et al. 

2003). Details concerning the matrices and the residuum vector of the linearized equations 

system of the finite element model without considering dissolved air (i.e. the source RHS 

term of equation (7)) can be found in the work of Sanavia et al. (2006).  

In the following, an example of rapid desaturation of initially water saturated porous 

media is analysed with the appropriately modified computer code Comes-Geo (Gawin and 

Schrefler, 1996; Sanavia et al., 2006) where the model developed in the previous sections has 

been implemented.  

The example was previously solved by Sanavia et al. (2006) without considering the 

effects of air dissolved in pore water. It is inspired by the undrained plane strain biaxial 

compression test on dense sands, (Mokni and Desrues, 1998), where strain localization and 

cavitation of the pore water were experimentally observed.  

Here the example is simulated with the numerical model considering the effects of air 

dissolved in liquid water (case 2) and neglecting them (case 1). 

The rectangular sample of homogeneous soil of 34 cm height and 10 cm width has been 

discretized using a regular mesh of 340 eight-node elements, Figure 5. The material was 

initially fully saturated with water and the boundaries of the sample were impervious and 

adiabatic. Imposed vertical displacements were applied on the top surface with the constant 

rate of 1.2 mm/s. Vertical and horizontal displacements were constrained at the bottom 

surface. Plane strains and quasi-static loading conditions were assumed. 

The initial temperature in the sample was constant and fixed at the ambient value (i.e. 

20°C). Gravity forces were taken into account. The mechanical behaviour of the solid 

skeleton was simulated using the elasto-plastic Drucker-Prager constitutive model, with 

isotropic linear softening behaviour as phenomenological description of damage effects and 
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non-associated plastic flow. The material parameters used in the computation are listed in 

Table 1.  

The constitutive relationships for the water degree of saturation Sw(pc) and water 

relative permeability krw(Sw) were those of Safai and Pinder (1979) in isothermal conditions. 

For the gas relative permeability krg(Sw), the relationship of Brooks and Corey (1966) in 

isothermal conditions has been assumed. These relationships have been used for sake of 

simplicity because of the lack of experimental data. 

 

Figure 5 and Table 1 

 

In the finite element analysis, the dilatant behaviour of dense sands is simulated 

selecting a positive value of the angle of dilatancy (20°). For this material in samples with 

impervious boundary, the increment of void ratio due to the dilatant behaviour of dense sand 

is modelled through volumetric plastic deformations and causes a drop of water pressure. As a 

result, cavitation may develop when water pressure equal to the saturation vapour pressure at 

the temperature of the sample is reached (i.e. pvsat = 2338 Pa at T=20°C). 

The results of simulations for the two considered cases are presented below as the 

contours in the entire domain at the end of the simulations and the time histories in two nodal 

points, inside and outside the shear bands (the position of these points is indicated in Figure 

6). For both analysed cases, the numerical results indicate the pronounced accumulation of 

inelastic strains in narrow zones, as it can be observed in Figure 6, where the equivalent 

plastic strain contours at the end of the numerical simulation are depicted.  

For both considered cases, the volumetric strain (Figure 7a) emphasizes the dilatant behaviour 

of the shear bands because positive values develop only inside the plastic zones, while the 

negative values are observed in the elastic domain (Figure 7b). As a consequence, water 

pressure decreases inside the plastic zones up to the development of negative water pressures, 

i.e. capillary pressures higher than zero exist, as depicted in Figure 8a. At these conditions a 

vapour phase appears (i.e. water cavitation starts) because the water pressure decreases below 

the saturation vapour pressure at ambient temperature of 2338.8 Pa (see Figures 9 and 10) and 

a gradual water desaturation in the strain localization bands initiates (Figure 8b). Cavitation of 

water is hence described directly by the model, as shown in Figures 9 and 10, where it can be 

observed that the vapour phase appears only inside the dilatant plastic zones (in the model, 

vapour pressure equal to the saturation values, pv = pvs, means relative humidity equal to 
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100%RH and full saturation with water, while pv < pvs means partial saturation). At the same 

time, the shear bands become partially saturated, as it can be seen in Figures 8b and 11.  

When the dissolved air is considered in the mathematical model (case 2), a decrease of water 

pressure inside the plastic zones causes release of the dissolved air there, see Figure 12, which 

visibly accelerates, as compared to case 1, the increase of capillary pressure and the initiation 

of cavitation and desaturation processes, about 12 s for the considered example, (Figures 8a, 9 

and 8b). One should underline that this happens at much lower values of the volumetric strain, 

despite of its’ very similar evolution for the both considered cases, Figure 7a. The shear bands 

start at the same time, but, when cavitation develops, they have different time evolutions 

(Figure 7b) due to the change of effective stresses (equation 5). Hence, by using the 

developed model, one may conclude that considering the air dissolved in pore water is of 

importance when water cavitation in saturated porous media is analyzed.  

 

Figures 6 – 12  

 

For the aspects of the regularization properties of the multiphase models at strain localization, 

due to the pore fluids viscosity, the interested reader can see, e.g., Schrefler et al. (1996), 

Ehlers and Volk, (1999), Zhang et al. (1999), Schrefler et al. (1999), Benallal and Comi, 

(2004), Schrefler et al. (2006), and Zhang et al. (2007). Here the main emphasis is given on 

the analysis of the effect of the dissolved air released during desaturation due to cavitation. In 

the numerical example solved in this work, the shear band width is fixed by the element size, 

which was selected close to the experimental band width. 

Conclusions 

A coupled mathematical model for the hydro-thermo-mechanical behaviour of saturated 

and partially saturated porous media was extended to consider in a simplified way the effects 

of air dissolved in water. Physics of air dissolution and water cavitation in porous media were 

briefly discussed. Numerical solution of the model equations is used to analyze an undrained 

plane strain biaxial test where cavitation took place. It was shown that considering the 

dissolved air is of importance during simulation of cavitation in water saturated dense sands.  
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Table 1. Material parameters assumed for dense sand in the example. 

Material parameter Value Material parameter Value 

Porosity, [-] 0.2 Solid thermal conductivity, 
[W/(m·K)] 1.442 

Intrinsic permeability, [m2] 1.0 10-14 Solid specific heat, [J/(kg K)] 810.0 

Solid skeleton density, [kg/m3] 2000.0 Water viscosity, [Pa s] 1.0 10-3

Water density, [kg/m3] 1000.0 Water heat conductivity, 
[W/(m·K)] 0.6 

Young’s modulus, [MPa] 30.0 Water vapour heat capacity, 
[J/(kg·K)] 1805 

Poisson’s ratio, [-] 0.4 Water vapour heat conductivity, 
[W/(m·K)] 0.0186 

Apparent cohesion, [MPa] 0.5 Gravity acceleration, [m/s2] 9.80665  

Plastic modulus, [MPa]  -1.0 Irreducible saturation point, [-] 0.21 

Internal friction angle, [deg] 30° Critical saturation point, [-] 0.909 

Dilatancy angle, [deg] 20° Cubic thermal expansion 
coefficient, [K-1] 0.9 10-4

Solid matrix heat conductivity, 
[W/(m K)] 2.5   
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Figure 1. Theoretical values of Henry’s law constants (Mercury et al., 2003) for dry air at 

different temperatures and pressures of water, and their linear approximations. 
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Figure 2. Dependence of the concentration of air dissolved in liquid water upon air pressure, 

for different values of pressure and temperature of water. 
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Figure 3. The critical radius of an air bubble in water at two temperatures, T=10oC (thin line) 

and T=25oC (solid line), and two values of water pressure, (pw= 0.1 MPa), as a function of the 

capillary pressure. 
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Figure 4. Additional pores desaturation caused by the dissolved air desorption into bubbles of 

different sizes from stretched water at temperature of 298.15 K (25oC) and different water 

pressures, from -8 kPa to 0 kPa. 
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Figure 5. Geometry and boundary conditions for the numerical example. 
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Figure 7. Comparison of the numerical simulation results in the points inside and outside the 

strain localisation band, obtained with the model neglecting (case 1) and considering the 

effects of the air dissolved in water (case 2):  

a) Volumetric strain vs. time, b) Equivalent plastic strain vs. time. 
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Figure 8. Comparison of the numerical simulation results in the points inside and outside the 

strain localisation band, obtained with the model neglecting (case 1) and considering the 

effects of the air dissolved in water (case 2):  

a) Capillary pressure vs. time, b) Saturation degree vs. time. 
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Figure 9. Comparison of vapour pressure vs. time in the points inside and outside the strain 

localisation band, obtained with the model neglecting (case 1) and considering the effects of 

the air dissolved in water (case 2). 
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    a      b 

Figure 6. Equivalent plastic strain [-] contours obtained at the end of the numerical 

simulation with the model: a) neglecting the effects of the air dissolved in water (case 1) – t= 

27.35 s,       b) considering these effects (case 2) – t= 22.0 s, and position of the two nodal 

points of the Figures 9-11. 

 

   a          b 

Figure 10. Vapour pressure [Pa] contours obtained at the end of the numerical simulation 

with the model: a) neglecting the effects of the air dissolved in water (case 1),  

b) considering these effects (case 2). 
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   a          b 

Fig. 11. Saturation degree [-] contours obtained at the end of the numerical simulation with 

the model: a) neglecting the effects of the air dissolved in water (case 1),  

b) considering these effects (case 2). 

 

 
Figure 12. Contours of total amount of dissolved air released from the pore water [kg/m3], 

obtained at the end of the numerical simulation (t= 22.0 s) with the model considering the 

effects of the air dissolved in water (case 2). 
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