
U N I V E R S I TÀ D E G L I S T U D I D I PA D O VA

D E PA RT M E N T O F I N F O R M AT I O N E N G I N E E R I N G
Ph.D. Course in Information Engineering:

Information and Communications Technology
XXXIV Cycle

N O N L I N E A R P R O PA G AT I O N A N D E F F E C T S I N
F E W- M O D E F I B E R S

Ph.D. Student
gianluca marcon

Supervisor
professor marco santagiustina

January 12, 2022



N O N L I N E A R P R O PA G AT I O N A N D E F F E C T S I N
F E W- M O D E F I B E R S

gianluca marcon

Ph.D. Course in Information Engineering:
Information and Communications Technology

January 12, 2022



Gianluca Marcon: Nonlinear Propagation and Effects in Few-mode Fibers ,
Ph.D. Course in Information Engineering:
Information and Communications Technology, © January 12, 2022



At times, our own light goes out and is rekindled by a spark from
another person. Each of us has cause to think with deep gratitude of

those who have lighted the flame within us.

— Albert Schweitzer

Dedicated to my love, Elena.



A B S T R A C T

Since their birth in the mid-twentieth century, optical fibers’ role
in the global technological and economical landscape has become
exponentially larger and more diverse, going from becoming the
backbone of today’s internet infrastructure, to enabling high-resolution
medical imaging, or permitting the discovery of novel light sources. In
each of these applications, nonlinear optical effects play an important
role: in certain cases they can be the spark that lights the fire of
innovation, while in others they can impose significant limitations.

In this thesis, the main results of my three-year period as a Ph.D
student are presented. The first part of my research has focused on
the nonlinear effect known as Raman scattering in the context of
next-generation space-division multiplexed transmissions. Firstly, ma-
chine learning techniques have been applied to spectrally and spatially
optimize the design of Raman amplifiers. Secondly, through the devel-
opment of a theoretical model and the use of numerical simulations,
the effect of fiber imperfections, such as birefringence and core ellip-
ticity, on the gain of Raman amplifiers has been studied. The second
and last part of the thesis is dedicated to the topic of Supercontinuum
Generation: some early results on the characterization of novel mi-
crostructured optical fibers, achieved in collaboration with the Institute
of Applied Physics (IAP) of the University of Bern, are presented.
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1
I N T R O D U C T I O N

Since the advent of the laser in 1960 [1], its application to communi-
cations technology seemed an obvious use. The thirst for bandwidth
by telecommunications carriers, justified by the growing telephone
and television traffic, demanded new methods to transmit information
at higher rate and longer distances. Optical frequencies were hun-
dreds of terahertz, and promised a far greater bandwidth than the
microwave technologies that were used at the time. The shift to laser
transmission then seemed natural, although finding suitable media
over which the optical signals could be transmitted proved to be a
serious challenge, as the signal attenuation introduced by the materials
were prohibitively high. In fact, when Ivan Kaminow proposed the
use of optical fibers as waveguides to transmit light, the best available
glass at the time, silica, showed losses of about 1 dB m−1 [2]. Thanks
to the 2009 Nobel Laureate Charles Kuen Kao and his visionary ideas,
the main sources of attenuation were identified in the glass purity,
rather than on fundamental physical phenomena such as scattering
[3]; this meant that with the appropriate manufacturing practices silica
impurities could be removed and ultra-low losses could be achieved.
In 1978, a few years after glass manufacturer Corning demonstrated
the possibility of producing optical fibers with losses of 7 dB km−1 [4],
researchers at Nippon Telegraph and Telephone (NTT) were able to
make fibers achieving attenuation coefficients as low as 0.2 dB km−1 at
the wavelength of 1550 nm, close the the fundamental limit imposed
by Rayleigh scattering [5].

Since then, optical fibers have been shown to be the perfect medium
for long-distance optical communications, and to this day constitute
the backbone of the world-wide telecommunications infrastructure.
With more than 4 billion kilometers of fibers installed worldwide, and
a projected market value of about $7 billion, fiber optic technology is
one of the most important enablers of today’s digital society [6].

1.1 space-division multiplexing

During the 4 previous decades, thanks to the research efforts in discov-
ering all-optical amplification devices in erbium-doped fiber amplifiers
(EDFAs), new multiplexing techniques such as wavelength-division
multiplexing (WDM), and high-spectral efficiency coherent modula-

1



1.1 space-division multiplexing 2

Figure 1.1: Network of undersea fiber-optic cables installed around the globe
[7].

tion formats, the capacity of standard single-mode fibers (SMFs) cables
has been increasing by an order of magnitude every 4 years [8].

This outstanding growth is however bound to be stopped. A fun-
damental limit to the transmission capacity of silica optical fibers
exists, and is dictated by the material’s nonlinear properties. In fact,
nonlinear phenomena such as self-phase modulation (SPM), cross-
phase modulation (XPM), and four-wave mixing (FWM) stemming
from silica’s Kerr coefficient, can accumulate over long propagation
distances and introduce an additional source of noise in the system.
As the effects are enhanced when the transmitted power is increased,
an increase in the number of parallel channels transmitted in a SMF is
met with a reduction of its total capacity, defining what is known as
the nonlinear Shannon limit (NSL) of the nonlinear fiber optic channel,
which sets a theoretical upper bound of SMFs’ transmission capacity
at about 100 Tbit s−1 when filling the entire C+L optical band at a
spectral efficiency of 10 bit s−1 Hz−1. [9, 10]. Experimentally, the record
capacity for SMF systems has reached 206.1 Tbit s−1, achieved on a
54 km span with distributed amplification over the S+L+C bands and
a spectral efficiency of approximately 11 bit s−1 Hz−1 [11].

Over the last 20 years, internet traffic experienced a growth similar
to Moore’s law for transistor densities, reaching a compound annual
growth rate (CAGR) of 40% over two decades, doubling every 2 years
[12]. This increase in bandwidth demand is set to continue in the com-
ing years, with Cisco forecasting an annual Internet Protocol traffic of
4.8 ZB per year by 2022, with machine-to-machine (M2M) connections
accounting for more than half of the global connected devices [13].
With these enormous growth rates, bandwidth demands will soon
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reach the upper limit of the current optical fiber infrastructure, causing
what has been known as the "capacity crunch" [14].

Although the deployment of new SMF links could in practice be
a viable solution to sustain the ever-growing demands in internet
traffic, this approach would not be favorable in terms of cost and
energy-efficiency scaling, which would depend linearly on the number
of newly installed links. The main candidate technology for next-
generation optical communications is instead found in space-division
multiplexing (SDM) [10], which, as its name suggests, aims at exploit-
ing the space of a single optical fiber cable as an additional dimension
over which parallel information streams can be transmitted simultane-
ously.

To this end, new types of optical fibers that can offer spatially-
multiplexed transmissions have been proposed as transmission medium:
few-mode fibers (FMFs) and multi-core fibers (MCFs). While MCFs
enable spatial diversity through the physical separation of different in-
formation streams across multiple cores embedded in a single cladding
structure, FMFs maintain a single-core geometry with a larger core-
radius compared to SMFs, supporting the propagation of multiple
guided configurations of the electromagnetic field (modes) over which
independent data streams can be transmitted (fig. 1.2). Although the
concept of using multimode fibers (MMFs) for data transmission has
in fact preceded that of SMFs, its use to date is limited to short reach
applications such as in data-centers, where the ability to support mul-
tiple modes is not exploited to increase transmission capacity, but
rather for ease of deployment.

Together with the increase in transmission capacity, these new fibers
bring a new set of challenges with them. One the major issues from a
technological standpoint consists in the crosstalk between the different
spatial channels, which results in an additional OSNR penalty at the
receiver and in an increase of the computational cost of equalization
algorithms. Although it can arise due to the vicinity of the individual
cores of a MCF, crosstalk in FMFs has its origins in the coupling
between modes as a result of imperfections (residual birefringence,
ellipticity of the core, etc.) or external perturbations (bending, twist,
etc.) breaking the ideal cylindrical symmetry of the fiber geometry
[15].

Although it might appear that nonlinear effects have played an
exclusively antagonistic role in the framework of optical communica-
tions, they also enabled several key technologies, with fiber-optical
parametric amplifiers [17], all-optical switching [18], and optical phase-
conjugation [19] being only a handful of examples of what nonlinear
fiber optics has made possible. Among the different types of nonlinear
effects arising in optical fibers, stimulated Raman scattering (SRS)
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Figure 1.2: Comparison of the cross-section of standard SMFs (left) with
FMFs (center) and MCFs (right). Adapted from [16].

has been particularly important for the realization of new all-optical
amplification schemes [20]. In fact, single-mode Raman amplifiers
have been thoroughly researched since the late 90s, and have enabled
dramatic increases in the reach and capacity of optical communication
systems thanks to their distributed nature enabling lower noise figures
compared to conventional EDFAs, and the possibility of using poly-
chromatic pumping schemes to achieve arbitrarily wide amplification
bands [21].

In the context of SDM, a great deal of research is performed to
design systems and components that can be efficiently integrated with
a favorable cost, energy, and capacity scaling [10]. For SDM Raman am-
plifiers, and particularly for FMF systems, these requirements translate
to the necessity of minimizing the mode-dependent gain and guaran-
teeing the flexibility and favorable characteristics demonstrated for
SMF links under the new challenges brought by modal crosstalk, while
leveraging the economic appeal guaranteed by component reduction
in pump-sharing circuits [22].

1.2 supercontinuum generation

The field of nonlinear optics has also benefited greatly from Charles
Kao’s work in reducing the attenuation of optical fibers. Before then,
since its birth with the invention of the laser in 1960, there was little
interest in using optical fibers as a nonlinear medium, as the already
small nonlinear coefficient of silica glass was further hindered by its
high attenuation. Traditional nonlinear optics revolved around the
use of bulk materials and crystals, which permitted the discovery
of second-harmonic generation, SRS, stimulated Brillouin scattering
(SBS), and FWM [23]. Bulk nonlinear optics was however limited by
practical issues such as focusing, beams overlap, and self-focusing,
which could easily cause damage to the material [24].

With the first low-loss fibers produced, the low nonlinearity of silica
was more than made up by the great increase in the length over which
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Figure 1.3: Scanning electron microscope images of different PCF structures
[25].

high optical intensities could be maintained, which was also possible
thanks to the small spot size of single-mode fibers. Coupled with the
far higher practicality of using an optical waveguide, the newly formed
field of nonlinear fiber optics began to flourish throughout the 70s and
the 80s [23, 24]. With improvements in fiber manufacturing processes
in the late 1990s, a new type of optical waveguide, formed by a periodic
lattice of air holes embedded in a silica cladding, called photonic-
crystal fiber (PCF) was demonstrated in 1996 by Philip Russell [25]
(fig. 1.3).

The guiding of light through a PCF is not based on conventional
index-guiding principles, but rather on a photonic bandgap created by
its Bragg-like periodic structure. This breakthrough in fiber-optics
enabled the possibility of guiding light through a core of materials
with a much lower index of refraction than the surrounding cladding,
potentially even air. The main benefits of using such fibers for ap-
plication in nonlinear optics came from two major features, namely
the possibility of confining light on a much smaller core than usual,
thus increasing the optical power density, and the ability to tailor the
dispersion properties of the waveguide through an accurate design of
the fiber’s structure in order to take full advantage of the available
high-power sources [23].
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Figure 1.4: Comparison of the spectrum of various broadband sources [25].

With advances in research, several new types of microstructured
optical fibers were developed, allowing for unprecedented nonlin-
ear efficiencies on interaction lengths of just a few centimeters. The
umbrella term that is aptly used for these novel waveguides is highly-
nonlinear fibers (HNLFs). One of the most successful applications of
PCFs, and HNLFs in general, is the so-called supercontinuum (SC)
generation. When high-power, pico- or femtosecond laser pulses are
injected in the fiber, the interplay of different nonlinear effects such
as SPM, SRS, FWM and the dispersive properties of the fiber cause a
massive broadening of the input spectrum (fig. 1.4).

A new type of light source, characterized by high brightness, high
coherence, and with spectral widths of several hundreds to few thou-
sands of nanometers was born [26]. In the years, SC sources have
found widespread applications in several different fields where coher-
ent broadband light is required, such as optical coherence tomography
[27], optical frequency metrology [28], spectroscopy [29], and even in
the simultaneous generation of WDM channels for optical communi-
cations [30].

In this context, research has focused on a particular type of HNLFs
characterized by a an all-normal dispersion (ANDi) profile. The main
benefits of these fibers consist in the generation of uniform and flat
SCs, a higher noise-suppression capability, and pulse-preservation
characteristics, which can be important in applications in ultra-fast
photonics or time-resolved spectroscopy to generate pulses in the
order of a few optical cycles with a high degree of coherence [31].
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1.3 thesis structure

In this thesis the main results achieved during my three-year Ph.D.
program will be presented. In order to give a clearer description of the
different topics that have been the focus of my research, the structure
of the thesis will be organized as follows:

1. Part i is dedicated to the study of Raman amplification in few-
mode fibers for application in space-division multiplexed sys-
tems:

• In chapter 2, methods based on machine learning are pre-
sented and applied to the case of distributed Raman amplifi-
cation schemes in order to spectrally and spatially optimize
their gain in few-mode fibers supporting up to 6 groups of
linearly polarized modes.

• In chapter 3, an analytical and numerical model that de-
scribes the dynamics of Raman amplification in few-mode
fibers in the presence of linear mode coupling caused by
the fiber manufacturing process is derived and presented.
With this tool, the statistic on the amplifier gain and on the
output signal power fluctuations are studied in different
regimes of linear coupling and for fibers supporting 2 and
4 groups of linearly polarized modes.

2. Part ii is dedicated the topic of supercontinuum generation:

• In chapter 4, an overview of the various nonlinear phenom-
ena that permit the massive spectral broadening in optical
fibers is given, discussing the main differences between
different supercontinuum generation regimes.

• In chapter 5, preliminary results of the experimental charac-
terization of novel microstructured ANDi suspended-core
fibers, achieved in collaboration with the Institute of Ap-
plied Physics (IAP) of the University of Bern (Switzerland),
and the Leibniz Institute of Photonic Technology, Jena (Ger-
many) are presented.

3. Finally, chapter 6 concludes the thesis, summarizing the main
results obtained during the Ph.D program, and highlighting
the possible future developments on the topics that have been
treated in this document.



Part I

R A M A N A M P L I F I C AT I O N I N F E W- M O D E
F I B E R S F O R S PA C E - D I V I S I O N M U LT I P L E X E D

T R A N S M I S S I O N S



2
M A C H I N E L E A R N I N G F O R R A M A N
A M P L I F I C AT I O N I N F E W- M O D E F I B E R S

2.1 introduction

As introduced in Chapter 1, the capacity of current optical fiber in-
frastructure based on SMFs is rapidly approaching the NSL imposed
by the Kerr nonlinearity [32], which coupled with the ever-increasing
demand of internet traffic during the last few decades, will result in a
"capacity crunch" [14]. SDM has emerged as the leading technology
to overcome the NSL, exploiting the spatial diversity of MCFs and
FMFs to transmit multiple data streams in a single optical fiber cable,
thus offering a cost-effective, energy-efficient, and scalable solution
[10]. In FMFs, SDM is implemented by using the orthogonality of the
guided modes to transmit independent data streams, thereby realizing
mode-division multiplexing (MDM) [33].

In order to benefit from the added capacity of spatially-multiplexed
transmissions, suitable network devices must be designed fully com-
patible with the already well-established techniques such as WDM.
To this end, the role of SDM-compatible amplifiers is of fundamental
importance, with several experimental works demonstrating the effec-
tiveness in MDM scenarios of EDFAs [34, 35] and Raman amplifiers
(RAs) in increasing the system capacity in both long-haul and short
reach scenarios [36–40].

The compensation of link losses with minimal signal-to-noise ratio
(SNR) reduction has always been a crucial aspect in optical communi-
cations, but additional care must be taken with SDM systems to mini-
mize both mode-dependent gain (MDG) and wavelength-dependent
gain (WDG), as they can be both detrimental to the multiple-input
multiple-output (MIMO) digital signal processing (DSP) algorithms
that mitigate the effect of mode-crosstalk to correctly recover the
transmitted signals [38].

While the simplicity and power efficiency of EDFAs made them
appealing for commercial communication systems, their reduced gain
bandwidth has made Raman amplification an attractive solution for
wideband WDM schemes [21]. The spectral flexibility of RAs, to-
gether with suitable optimization techniques, enables the design of
flat gain profiles over large bandwidths by means of multiple wave-
length pumps [21]. In the context of SDM, the additional degrees of
freedom can lead to higher control of WDG and MDG [41]. Addition-

9
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ally, RAs can offer distributed amplification, resulting in a reduced
noise contribution compared to EDFAs [42].

Different approaches have been proposed to optimize the gain
of multi-pump SMF RAs [43–45], however, they generally require
complex iterative algorithms involving multiple integrations of the
propagation equations and must be executed for each target gain spec-
trum. This aspect is particularly important for FMFs, as the number
of parameters to optimize increases with the number of modes of the
fiber [46].

A recent publication [47] proposed a new machine learning (ML)
technique to solve this problem. Specifically, a neural network (NN)
can be trained to learn the inverse relationship y = f−1(G) between
the vector y of pump wavelengths and powers and the corresponding
gain profile G, using a synthetic dataset D = {(yi, Gi)} of thousands
of gain curves generated with random pump parameters. The learned
mapping is then used to compute the required pump parameters
ỹ = f̃−1(Gtarget) to approximate a given target gain profile. This
eliminates the need to solve complex iterative algorithms that require
multiple integrations of the propagation equations for every new
target profile, which instead is replaced with a single evaluation of the
trained NN at a negligible computational cost making this method an
attractive solution for control-planes of next-generation self-adaptive
and autonomous optical networks, where low-latency, near real-time
operation is needed [47].

The authors of [47] used two additional techniques to refine the
prediction of the NN. The first is model-averaging, which consists in
training several NNs in parallel, each on a random permutation of
the dataset, and finally averaging their output. This approach, while
providing some improvements, is heavier in terms of computational
time, both for the training and the inference phase.

The second technique consists in a fine-tuning phase requiring an
additional NN trained to learn the direct mapping G = f (y). The pre-
diction error on the gain profile obtained with the approximate pump
parameters ỹ is estimated using the learned direct mapping f̃ and
minimized using an iterative gradient-descent algorithm without inte-
grating the propagation equations. Publication [47] showed promising
results, demonstrating the feasibility of the method with flat and tilted
gain profiles using a counter-propagating RA over the C and C+L
bands, achieving a maximum prediction error on the considered gain
profiles well below 1 dB for different levels of amplifications.

Since the publication of Ref. [47], this line of research has produced
several other contributions involving the use of NNs for Raman am-
plification in SMFs, including experimental demonstrations of both
Raman and hybrid Raman/EDFA schemes [48–50], the simultaneous
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gain design and corresponding noise figure prediction [51], and the
optimization of both the spectrum and the evolution of the Raman
gain along the fiber [52].

In the context of MDM, a similar approach to design flat gain
profiles both for 2-mode and 4-mode fibers has been demonstrated in
[53]. This work does not use neither model-averaging nor fine-tuning
algorithms; therefore, computational requirements for the inference
phase are reduced. For the 4-mode FMF, [53] showed encouraging
results in terms of MDG and gain flatness; nevertheless, the analysis
considers only flat gain profiles, is limited to the C band, and does not
provide accuracy metrics that take the average amplification level into
account, meaning that it is not known if the transmitted signals are
either over- or under-amplified.

2.2 effects of dataset design

While the optimization of the pump parameters in FMFs can be
improved employing more sophisticated unsupervised (i.e. that do
not rely on a dataset of (G, y) pairs for training) ML schemes [54, 55]
to obtain high accuracy predictions on the C+L bands and using fibers
with higher mode counts, as will be shown in the following sections
of this chapter, in this section we show that the performance of the
method in [53] can be increased if careful design choices are made
during the dataset generation phase. The ability of the NN to generate
tilted gain spectra, which can be important to e.g., offset the Raman
scattering-induced tilt of the transmitted signals, or compensate the
wavelength-dependent losses introduced by filters or multiplexers, is
also tested [47].

2.2.1 Raman amplification in few-mode fibers

In a few-mode RA supporting M modes, Ns signal wavelengths and
Np pump wavelengths, the power evolution of the ith frequency prop-
agating in the mth mode is described by the following set of nonlinear
ordinary differential equations [46, 56]:

ηi
dPm

i
dz

=− αiPm
i

+ Pm
i

Ns+Np

∑
j=i+1

M

∑
n=1
Im,ngR(| fi − f j|)Pn

j

− Pm
i

i−1

∑
j=1

M

∑
n=1

fi

f j
Im,ngR(| fi − f j|)Pn

j ,

(2.1)
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where Pm
i is the power in the m-th mode and i-th frequency, where

i ∈ {1, . . . , Ns + Np}, m ∈ {1, . . . , M}; αi is the attenuation coefficient
at the ith frequency and gR(∆ f ) is the Raman gain coefficient for
the frequency shift ∆ f . Frequencies fi are sorted in increasing order,
meaning that frequency f j with j > i acts as a pump for all frequencies
fk with k < i.

The strength of the nonlinear interaction is given by the coefficients
Im,n, i.e the overlap integrals between the mth and nth mode, defined
by

Im,n =

+∞∫∫
−∞

Fm(x, y)Fn(x, y)dxdy

+∞∫∫
−∞

Fm(x, y)dxdy
+∞∫∫
−∞

Fn(x, y)dxdy

, (2.2)

where Fk(x, y) is the intensity profile of the kth mode, which is
assumed to be wavelength-independent on the considered band-
width [56]. Finally, ηi determines the relative propagation direction
of the i-th frequency, so for the counter-propagating pumps ηi = −1,
∀i ∈ {Ns + 1, . . . , Ns + Np}, whereas ηi = 1 for the first Ns frequen-
cies. Modes with similar propagation constants, i.e. those within the
same mode group, exhibit high coupling efficiency, resulting in the
equalization of the amplifier gain for that particular group. For the
purpose of RA they can simply be treated as a unique mode [46, 57].
Conversely, linear mode coupling between different mode groups is
weak and will be neglected here, like in [46, 53, 57]. In a RA of length
L, the on-off gain G = [Gm

i ] is defined as

Gm
i =

Pm
i (z = L) with pumps turned on

Pm
i (z = L) with pumps turned off

, (2.3)

where i = 1, · · · , Ns.

2.2.2 Gain design using machine learning

If we consider the function G = f (y) that computes the Raman on-off
gain for a given vector y = [P,λ] of pump powers and wavelengths,
the optimization of the gain profile is achieved if the inverse function
ŷ = f−1(Ĝ) is determined for the given target Ĝ. The method pre-
sented in [47] for SMFs and later extended in [53] for the FMF case
aims at obtaining an approximation of f−1(·) over a wide region of
the space of possible Raman gain profiles using a NN. Starting from
a dataset D = {(Gi, yi)}D

i=1 of gain profiles and corresponding pump
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parameters, we can train the NN by finding its parameters θ that solve
the optimization problem

θ∗ = argmin
θ

1
D

D

∑
i=1
L (yi,N (Gi ; θ)) , (2.4)

where N (· ; θ) is the NN and L(·, ·) is a cost function. In practice,
(2.4) is generally solved using iterative gradient-based algorithms such
as stochastic gradient descent (SGD) or adaptive moment estimation
(Adam) [58]. After training, the NN approximates the inverse function
f−1, and can be queried on gain profiles that are not present in the
dataset to obtain the corresponding vector of pump parameters with
negligible computational cost.

2.2.3 Dataset generation

In order to approximate the function f−1 on a given region of its
domain (i.e. the region of approximately flat and tilted profiles), it
is essential to train the NN using a dataset that accurately samples
that particular region. In the case of Raman amplifiers, where the
dataset is constructed by solving (2.1) with random values of the
pump parameters, the space of gain profiles is sampled indirectly
through the function f . The selection of the pump parameters is
therefore critical, as it determines the quality of the available data.
This aspect is particularly important for wide-band RAs, where the
number of Raman pumps increases and the space of pump parameters
gets bigger, and even more so when considering the propagation on
multiple spatial channels.

In the dataset generation phase, as in [53], the pump power is
uniformly sampled from a certain interval Pi,m ∼ U (0, Pmax

i,m ). However,
instead of setting the same maximum power for each wavelength, here
we propose to prioritize shorter wavelength pumps (which experience
more depletion) by introducing an exponential allocation scheme that
divides the total maximum power per mode Ptot on the ith wavelength
according to

Pmax
i,m (α) = Ptot ·

exp[−α(i− 1)]

∑
Np
j=1 exp[−α(j− 1)]

, (2.5)

where we assumed that wavelengths are sorted in ascending order,
and α is a design parameter.
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Additionally, in order to account for the different pumping efficiency
of each mode of the fiber, we can scale the maximum pump power as
follows

P̄max
i,m = Pmax

i,m ·
Ī
Im,m

, Ī = max
n
In,n, (2.6)

where Im,n are the intensity overlap integrals defined in (2.2).
In [47] and [53], the pump wavelengths are uniformly sampled from

disjoint intervals of a selected portion of the optical band ∆λ. This
choice is forced to impose an ordering of outputs of the NNs, which
is necessary for the training algorithm effectively minimize the cost
function. However, with this approach many gain profiles are excluded
from the dataset, so we consider the case in which the partitions of ∆λ

partially overlap, trading a small penalty on the training accuracy for
a more complete description of the space of gains.

Finally, to reduce the number of gain profiles that lie outside the
selected region of interest (and that can possibly reduce the perfor-
mance of the NNs) we can apply rejection sampling to discard them.
A possible scheme could consist in accepting only gain profiles with
an average gain in a certain interval, or with an MDG lower than a
selected threshold. More stringent rules for the acceptance of the gen-
erated gains result in a higher rejection probability, and thus increase
simulation time.

2.2.4 Results

The proposed scheme is tested on a FMF with core diameter of 14 µm,
core refractive index of 1.46, and a relative refractive index difference
between core and cladding equal to 0.28%, supporting the propagation
of the LP01 and LP11 mode groups. Its intensity overlap integrals
are reported in Table 2.1. The Raman gain spectrum of the fiber is
computed using the method detailed in [59] and setting the peak
gain coefficient to 7× 10

−14 m W−1. The transmitted signals consist in
Ns = 50 wavelengths equally spaced on the C+L optical band, each
carrying −10 dBm per mode, while Np = 8 co-propagating Raman
pumps are used.

After a hyperparameter optimization phase consisting of a grid-
search algorithm on the number of layers and neurons per layer, and
considering different activation functions, we selected a feed-forward
NNs using 5 fully-connected linear layers of 1000 neurons each. Batch
normalization and parametric rectified linear unit (PReLU) activation
functions are applied to the output of each layer, with the exception of
the output layer. Batch normalization is used to normalize the output
of each layer and facilitate the training of the NNs [58].
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Table 2.1: Values of the overlap integrals for the considered FMF.

Im,n LP01 LP11

LP01 7.01× 10
−9 m−2

3.95× 10
−9 m−2

LP11 3.95× 10
−9 m−2

5.67× 10
−9 m−2

The predictions of the same NN architecture trained on two dif-
ferent datasets are compared: "Dataset A" is generated using a total
maximum pump power of 800 mW per mode uniformly divided
between wavelengths, and sampling the pump wavelengths from non-
overlapping partitions of the interval ∆λ from 1410 nm to 1525 nm;
"Dataset B" is instead computed with the exponential allocation scheme
with α = 0.3 and scaling the total maximum pump power of each
mode according to (2.6), while wavelengths are sampled from parti-
tions of ∆λ overlapping by 10 nm. In both cases, we apply rejection
sampling to exclude gain profiles with an average gain outside of the
interval from 5 dB to 15 dB, and with a total gain variation over the
C+L band greater than 5 dB. The described setting is illustrated in
fig. 2.1, although with a lower number of pumps for the sake of clarity.

The datasets contain 20000 gain curves each, of which 80% is dedi-
cated to training the NNs, while the remaining 20% is used for vali-
dation. An additional pre-processing step is applied to the generated
datasets, normalizing each gain and corresponding pump parameter
vector to speed up the convergence of the training algorithm.

The NNs are trained for 500 epochs, using the Adam algorithm with
a learning rate η = 5× 10−4 to update their weights and the mean
squared error cost function. In order to reduce overfitting and improve
performance on gain curves outside the training dataset, dropout regu-
larization is employed, randomly dropping the connections between
fully-connected layers with a probability p = 0.2 at each training
iteration [60].

After training, the two neural networks are evaluated on flat gain
profiles with different levels of average gain. The predicted pump
parameters are used to solve (2.1) and obtain the predicted on-off
gain G̃ using (2.3). We then test the accuracy of the predictions by
calculating their root-mean-square error (RMSE) with respect to the
input targets for each mode m as

RMSEm(G, G̃) =

√√√√ 1
Ns

Ns

∑
i=1

(
Gm

i − G̃m
i

)2. (2.7)
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Figure 2.1: Diagram for the creation of Dataset B: overlap ∆λ between wave-
length intervals for sampling the pump wavelengths is high-
lighted, as well the exponential distribution for the maximum
allowed power for each pump, scaled by the overlap integrals of
each mode. The resulting gain curves are then accepted in the
dataset following the rejection sampling rules described in the
text.

The resulting RMSE is reported for both datasets in Fig. 2.2 (a) for
different levels of amplification, showing that for Dataset B the error
is always smaller and stays below 0.4 dB, while the curve for Dataset
A quickly increases for low and high gains.

For a given gain profile G, its MDG and flatness can be evaluated
according to the following equations

Fm(G) = max
i

Gm
i −min

i
Gm

i , (2.8)

MDG(G) = max
i

(
max

m
Gm

i −min
m

Gm
i

)
. (2.9)

Applying them to the predicted gain profiles, we can make similar
considerations to the RMSE case both for the MDG in Fig. 2.2 (b),
where for Dataset B the curve is fairly constant and always lower than
0.3 dB, and for gain flatness in Fig. 2.2 (c), with a maximum value of
approximately 0.8 dB at a target gain level of 15 dB.

Finally, gain profiles obtained using the pump parameters predicted
by NN trained on Dataset B, along with the corresponding target
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Figure 2.2: RMSE (a), MDG (b), and gain flatness (c) for the flat profiles
generated using the pump parameters predicted by the NN as a
function of the target gain level.

curves, are reported in Fig. 2.3 (a) for different levels of amplifications,
showing the good accuracy achieved by the method. In Fig. 2.3 (b) we
also show the predicted gain profiles when interrogating the NN with
target gains with a total tilt of 2 dB on the considered bandwidth, with
similar accuracy to the flat profile case.
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Figure 2.3: Gain profiles generated using the pump parameters predicted by
the NN for (a) flat and (b) tilted input target gains for different
gain levels. For the tilted gain case, the total target tilt is set to
2 dB.

2.3 autoencoder-based approach

The main drawback of the methods of Refs. [47, 53] (and by extent, the
one reported in the previous section of this document) with respect to
iterative optimization algorithms, is that while the latter specifically
look at minimizing a cost function C(Gtarget, G̃) between a desired and
predicted gain profile by taking the propagation model into account,
the former is instead optimized to minimize a cost function C(y, ỹ) be-
tween pump parameters. The NNs are thus unaware of the underlying
mathematical and physical relations between pump parameters and
gain profile, which has to be learned from the available data. In order
to approximate the inverse function y = f−1(G) using a NN and gen-
erate flat gain profiles, the region of space of approximately flat Raman
gains, must be properly sampled. This cannot be easily achieved since
the training dataset is generated by solving the Raman equations with
randomly drawn pump powers and wavelengths, meaning that only
the codomain of f−1(·) is sampled with full control. As a result, only
a minor part of the generated gains fall inside the region of interest,
resulting in the NNs being trained to learn the inverse function on a
much bigger domain than required, potentially hindering its perfor-
mance on flat/tilted gains. This aspect is also more problematic when
increasing the amplification bandwidth or the number of modes and
pumps, as the dimensionality of the space to explore also increases.
As seen in section 2.2, the choice of parameters for the generation of
the dataset is critical for the effectiveness of these methods. In fact, the
powers and wavelengths of the pumps are selected a priori, meaning
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that the trained NNs might not able to predict the optimal pump
parameters if the preliminary selection of the dataset parameters are
not accurate.

Owing to automatic differentiation (AD) techniques [61], analytical
or numerical models describing dynamical systems can be embed-
ded in ML architectures [62]. By recording the series of elementary
operations performed on the model input in a computational graph,
AD libraries such as PyTorch [63] can compute the exact derivatives
of the model output with respect to any parameter to be optimized
[64]. In the context of optical communications, this approach has been
demonstrated to be able to perform end-to-end (E2E) optimization of
a intensity modulation/direct detection system by jointly optimizing
the transmitter and receiver using NNs, outperforming classical feed-
forward equalization [65]. The effectiveness of this technique has also
been demonstrated for coherent transmissions [66–69] where proba-
bilistic constellation shaping and geometric constellation shaping have
shown to be fundamental for achieving record spectral efficiencies in
short- and long-haul experiments [70].

In this section an unsupervised ML method based on autoencoders
(AEs) is proposed, employing AD to embed a differentiable FMF Ra-
man amplification model in the training procedure of a NN to predict
the pump parameters able to generate flat and tilted gain profiles
over a pre-determined range of amplification levels and gain tilts. The
trained NN can then be used to obtain the required pump parameters
for a desired gain profile with low time-complexity. The presented
method has the advantage to train the NN directly on the searched
(e.g. flat and tilted) gain profiles, thereby directly sampling the se-
lected region of space of possible gains, instead of building a dataset
by solving the Raman equations using random pump parameters.
The supervised dataset design phase, along with the issues related to
it, is thus completely avoided, with the relationship between target
gain and pump parameters being learned in the training phase of the
NN through the differentiable Raman model. The ability to directly
target an arbitrary region of the space of Raman gains makes this
method easily generalizable to any type of gain profiles, more robust
and scalable with respect to the changes in number of modes, Raman
pumps, and fiber parameters.



2.3 autoencoder-based approach 20

2.3.1 Proposed Method

2.3.1.1 Machine Learning Model Architecture

Many of the E2E learning methods in the literature are based on a ML
architecture called AE [58]. An AE is composed of two main blocks:
an encoder,

E( · ; θe) : Rp → Rq, (2.10)

and a decoder,
D( · ; θd) : Rq → Rp, (2.11)

where θe, θd are learnable parameters and q < p. The role of the
encoder is to learn a lower dimensionality representation x̂ of its input
data x in a way that enables the decoder to compute an estimate x̃ of
the original data from x̂:

x̃ = D(E(x; θe); θd). (2.12)

Typically, both E and D consist in NNs that are jointly trained to
minimize the average of the cost function CAE between original and
reconstructed samples of a dataset X = {xi}:

θ∗e , θ∗d = argmin
θe,θd

1
|X | ∑

x∈X
CAE

(
D(E(x; θe); θd), x

)
. (2.13)

By replacing the decoder D with a differentiable Raman model R that
maps a vector of pump powers and wavelengths

y = [λ | P] ∈ R
(M+1)Np
+ , (2.14)

to the corresponding on-off gain, we can train the AE using (2.13) on
a dataset X = {Gi} of gain curves to force the encoder NN to learn
a low-dimensional representation that minimizes the reconstruction
error through R. That is, the trained encoder approximates the inverse
of the Raman model

E( · ; θ∗e ) ≈ R−1( · ), (2.15)

meaning that the lower dimensionality representation of the input gain
G is the vector y of pump powers and wavelengths that approximates
it.

While the numerical integration of the Raman model R is still
required in the forward-pass of the training process to compute (2.13),
this computational cost is no longer needed to determine the pump
parameters that approximate a target gain profile, which are directly
obtained by using E( · ; θ∗e ).
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Here, the encoder E is a feed-forward (FF) NN with Nh hidden,
fully connected (FC) layers of Nn neurons and rectified linear unit
(ReLU) activation functions. Input and ouput layers have size Ns ×M
and Np × (M + 1), respectively, where the M + 1 factor accounts for
the fact that for each pump M pump power values and 1 wavelength
value has to be predicted.

In order to force a constraint on the predicted pump parameter
vector y, a sigmoidal function

σ(x) =
1

1 + e−x (2.16)

is used to limit the output x of the last FC layer of the NN to the open
interval (0, 1), as is customarily done in the ML framework [60]. The
resulting normalized pump vector ŷ can then be linearly mapped to
the desired interval of powers and wavelengths.

The decoder R consists of a fixed-step, fourth-order Runge-Kutta
integrator that solves (2.1) to compute the on-off gain using the pump
parameters generated by the encoder.

2.3.1.2 Training algorithm

The optimal encoder parameters, θ∗e , are found by solving (2.13) with
an iterative training algorithm and using the RMSE between target
and approximated gain as a cost function:

CAE(G, G̃) =
1
M

M

∑
m=1

RMSE
i

(
Gm

i , G̃m
i
)

, (2.17)

for i = 1, . . . , Ns. In the k-th iteration of the training algorithm, the AE
reconstruction of each curve in the dataset X is computed as

G̃ = E(R(G); θe(k)) ∀G ∈ X , (2.18)

where θe(k) are the encoder parameters at the current iteration. The
total cost function for the iteration is then evaluated by averaging
(2.17) over X

C(k) = 1
|X | ∑

G∈C
CAE(G, G̃). (2.19)

Finally, the encoder parameters are updated with a gradient descent
algorithm

θe(k + 1) = θe(k)− ε∇θe(k)C(k), (2.20)

where ε > 0 is the learning rate (LR) of the algorithm. The exact
computation of the gradients is performed by means of AD and
backpropagation [58]. Advanced optimization algorithms such as the
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Adam algorithm [71] are typically employed for the update step (2.20)
as they offer robust convergence properties and adaptive LR schemes
for each parameter.

During training, the relationship between input target gains and
their respective pump powers and wavelengths are learned through
the differentiable Raman solver R, meaning the vector of pump pa-
rameters yi associated to each gain profile Gi of the dataset is not
needed. This fact can be exploited by completely bypassing the dataset
generation phase and training the encoder on the targeted family of
desired ideal gain profiles.

Here the focus is on flat and tilted gain spectra, so in each training
iteration k we generate a batch Bk = {Gi}B

i=1 of B ideal gain pro-
files with average gain level lG and tilt tG (gain variation per unit
wavelength) randomly sampled from a uniform distribution

lG ∼ U
(

lmin
G , lmax

G

)
, (2.21)

tG ∼ U
(

tmin
G , tmax

G

)
, (2.22)

It is important to notice that this approach is completely general-
izable and not limited to flat and tilted gains only, but it could be
extended to other families of gain profiles by properly including them
in the training data.

As previously detailed, in supervised learning techniques such as
those presented in [47] and [53], the underlying physical model is only
described by and learned from the provided data, meaning that it is
essential to use datasets that are representative of the problem. In the
context of RA, this means that the dataset must properly sample the
region of possible Raman gains containing approximately flat gain
profiles in order for the NN to properly learn the inverse Raman
model. This cannot be done efficiently or easily, as there is actually no
direct control on which gain profiles are sampled, but rather on the
power and wavelength of each pump. Instead, the presented approach
avoids this issue by directly sampling the selected space of Raman
gains. Consequently, the problem of overfitting is completely avoided,
and regularization techniques are not required.

2.3.1.3 Initial conditions

When training the AE using the algorithm described above we face
the problem of local minima, which is common when dealing with
the optimization of many parameters with complex cost functions. An
important aspect to consider when dealing with local minima is the
initial conditions of the algorithm, which can significantly affect the
outcome of the optimization problem.
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Figure 2.4: Mean (a) and variance (b) of the output of the NN during the first
training iteration, as a function of the number of hidden layers
and for different values of neurons per layer.

The parameters of the encoder’s FC layers are initialized by sam-
pling a uniform distribution on the interval [−√n,

√
n], where n is

the inverse of the number of incoming connections to that layer [63].
This approach has been demostrated to be effective to mitigate the
problem of vanishing gradients when training multi-layer NNs [72].
While this random initialization strategy is beneficial in classic super-
vised learning models, it affects the initial condition of our AE, as it
imposes a random value to the initial normalized pump parameter
vector ŷ0. We analyzed the statistical distribution of the output of
the last FC layer, x0, during the first training iteration for different
number of hidden layers and neurons. We found that its elements
follow a Gaussian-like distribution with zero mean and a variance that
decreases as the number of layers and neurons increases. In Fig. 2.4 (a)
and (b) we show the mean and variance, respectively, of x0 for the case
of a 4-mode fiber with 50 wavelength channels and 8 pumps, resulting
into an input layer of 200 neurons and an output layer of 40 neurons.
For a sufficiently high number of hidden layers and neurons (which
is easily met in practice) we can then use the approximation x0 ≈ 0,
meaning that by (2.16) in the first training iteration ŷ0 ≈ σ(0) = 0.5,
so fixing the initial pump powers and wavelengths to the middle point
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of the interval of allowed values. By introducing a centering vector α
and subtracting it to the input of the sigmoids, we have:

ŷ = σ(x−α), (2.23)

which enables us to relate the initial pump parameters to α as follows

ŷ0 = σ(x0 −α) ≈ σ(−α) = 1
1 + eα

. (2.24)

We can use this result to force a more desirable initial condition on
the pump parameters by computing the appropriate value of α by
inverting (2.24).

2.3.1.4 Counter-propagating pumps

For the case of counter-propagating pumps it is customary to imple-
ment a differential equation solver based on a shooting algorithm to
determine the correct initial pumps powers to be injected at z = L. This
however would require significantly more computational resources,
as the propagation equation should be solved several times for each
training sample and, more importantly, could introduce convergence
problems [73].

However, the method proposed here presents a particularly advanta-
geous feature on this regard: in fact, the encoder E can direcly predict
the pumps powers at z = 0, P̃m

i (z = 0), eliminating the need to employ
shooting algorithms. By solving (2.1) with initial (z = 0) conditions
for pumps and signals, we obtain the predicted gain G̃ along with
pumps powers at the end of the link, P̃m

i (z = L), which are the values
of interest. We therefore trade a significant computation cost in the
training phase for a single integration of (2.1) in the inference phase.
The resulting AE-based system is represented in the diagram of Fig.
2.5, highlighting the various components of the architecture and its
input-output relations. Green boxes and arrows are related to the
training phase of the AE, during which the encoder parameters θe are
optimized. In order to compensate the significantly higher sensitivity
of the predicted gain to the optimization parameters and avoid fur-
ther problems with local minima, we introduce a modification to the
training algorithm by multiplying the output of the last FC layer x by
a mask Hk, where the subscript k indicates the k-th training iteration.
The normalized pump parameters for the k-th training iteration are
then determined by:

ŷk = σ(xk �Hk −α), (2.25)
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Figure 2.5: Diagram of the AE architecture for the design of the Raman
gain profile in FMFs. Green arrows and boxes are related to the
training phase of the AE.

where � indicates the Hadamard (element-by-element) product. Hk
can be suitably designed to "steer" the NN by weighting the computed
gradients of the cost function with respect to the pump parameters
during backpropagation. In our case, we set:

Hk = [Hi
k] =


0 1 ≤ i ≤ Np , k < K

1 Np + 1 ≤ i ≤ (M + 1)Np , k < K

1 1 ≤ i ≤ (M + 1)Np , k ≥ K ,

(2.26)

where the superscript i indicates the i-th element of the vector. Using
this definition, the pump wavelengths are fixed to their initial con-
ditions for the first K iterations, allowing the encoder to learn just
the relationship between predicted pump power and generated gain
profile, which is more critical during the first training iterations. The
training algorithm is summarized in Algorithm 1 and is completely
implemented using the PyTorch ML library [63], which enables us to
leverage AD and graphics processing unit (GPU) acceleration.

2.3.2 Results and validation

We test the presented method using counter-propagating pumps and a
L = 70 km long 4-mode step-index fiber (SIF) whose overlap integrals
are calculated in [46] and reported in Table 2.2. Hereinafter, we refer
to this fiber as FMF1. The Raman gain spectrum is computed using
the multi-vibrational-mode model of the Raman response function
for silica fibers [59], whereas the peak value for the Raman gain coef-
ficient gR = 7× 10

−14 W−1 m was used [42]. The spectral attenuation
coefficient of the fiber is obtained from a parabolic fit of attenuation



2.3 autoencoder-based approach 26

Algorithm 1 AE training algorithm

Compute centering vector α
Initialize encoder parameters: θe(0)
for k = 0 to Niter − 1 do

Compute the mask Hk
Generate batch Bk = {Gi}B

i=1 of gain profiles
Propagate batch to obtain the pump parameters from NN:
Ŷk = {ŷi

k} = {σ(x̂i
k �Hk −α)}, x̂i

k = NN(Gi; θe(k))
Map the normalized parameters to the selected range:
Yk = {yi

k} = Scale(Ŷk)
Integrate (2.1) to compute the predicted gain profiles:
B̃k = {G̃k

i } = {R(yi
k)}

Compute the cost function C(k) using (2.19)
Compute gradients with backpropagation: ∇θe(k)C(k)
Update the parameters θe(k + 1) using (2.20)

end for

Table 2.2: Overlap integrals of the FMFs used for simulation, in units of
1× 10

9 m−2.

FMF1 FMF2

LP01 LP11 LP02 LP21 LP01 LP11 LP02 LP21

LP01 6.24 4.12 4.62 2.85 5.47 3.6 3.87 2.45

LP11 4.12 4.36 2.33 3.81 3.6 5.7 1.95 3.28

LP02 4.62 2.33 6.15 2.12 3.87 1.95 4.94 1.76

LP21 2.85 3.81 2.12 3.88 2.45 3.28 1.76 4.95

data of a commercially available SMF, α(λ) = α0 + α1λ + α2λ2, with
coefficients α0 = 5.788 dB km−1, α1 = −7.1246× 10

−3 dB km−1 nm−1,
α2 =2.268× 10

−6 dB km−1 nm−2. This approximation is valid for the
entire range of considered wavelengths, and is reported in Fig. 2.6. As
in [46, 56] we assume the absence of mode-dependent losses (MDL).

We consider the transmission on Ns = 50 wavelengths on the C+L
band, for a total number of spatial and wavelength channels equal
to Nch = M× Ns = 200. The input power for each channel is set to
Pch = −10 dBm.

The encoder NN is composed of Nh = 5 hidden layers of Nn = 1000
neurons each, and its parameters are optimized using the Adam
algorithm with a LR ε = 1× 10−4. The AE is trained for Niter = 1000
iterations with batches of B = 1024 gain curves, which are sufficient
to fill the GPU random access memory (RAM) and ensure 100% GPU
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Figure 2.6: Attenuation profile of the considered fiber.

clock utilization. Each batch is generated according to the strategy
described in section 2.3.1, with average gain level and tilt uniformly
sampled from the intervals of 5 dB to 15 dB and −0.015 dB nm−1 to
0.015 dB nm−1, respectively.

We map the output of the sigmoids to limit the predicted power
at z = 0 and wavelength of each pump into the intervals IP(z=0) =

[−60, 20] dBm and Iλ = [1410, 1520] nm, respectively.
Using (2.24) we set the initial power on each pump to P0(z = 0) = 3

dBm, whereas the wavelengths are uniformly distributed over Iλ.
Additionally, we use (2.26) to fix the pumps wavelengths to their
initial value for the first K = 100 iterations.

Once the AE is trained, the encoder is used determine pump wave-
lengths and powers at z = 0 to approximate a given target gain profile:

ỹ = [λ̃ | P̃(z = 0)] = E(G ; θ∗e ), (2.27)

and the corresponding predicted gain G̃ and pumps powers at z = L
are obtained with a single integration of the Raman equations (2.1):

[G̃ | P̃(z = L)] = R(ỹ). (2.28)

The total training time for the employed NNs is approximately 45

minutes using an NVIDIA Quadro M4000 GPU. The computational
time to perform a prediction for a single target gain profile on an
Intel consumer laptop CPU is approximately 11 ms, of which 1 ms
is required for computing the output of the encoder NN, and the
remaining 10 ms are needed for integrating (2.1).
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Figure 2.7: RMSE as a function of the target gain level, for different number
of pumps. Solid lines represent the mean RMSE over the 4 modes,
whereas shaded areas indicate the total RMSE variation over the
modes.

2.3.3 Flat gain profiles

First, we assess the performance of the presented method using FMF1

for the case of flat target gain profiles in terms of RMSE, gain flatness
and MDG, for different levels of amplification and varying the number
of Raman pumps. Given that the number of pumps determines the
size of the input and output layers of the encoder NN, the training
algorithm must be run for every value that this parameter assumes.
For each target curve, we obtain the corresponding AE prediction
using (2.27), (2.28) and compute the RMSE for each mode m as in
eq. (2.7). In Figure 2.7 we report the RMSE in terms of percentage of
the target gain level, as a function of the amplification level and using
4, 5, 6, and 8 Raman pumps. Solid lines and shaded regions represent
the average RMSE and maximum to minimum RMSE variation over
the modes, respectively. For gain levels inside the target interval of
[5, 15] dB, the RMSE curves are almost constant, independently of the
number of pumps used. Conversely, the RMSE rapidly grows outside
the training interval, as the encoder NN is not able to extrapolate the
correct pump parameters. By increasing the number of Raman pumps
from 4 to 8 we improve the RMSE, going from 3% to about 1% of the
target gain.

A clear picture on the improvements brought by an increased num-
ber of pumps is given by the gain flatness, defined for each mode
as in eq. (2.9). The gain flatness in reported in Fig. 2.8 in terms of
percentage of target gain level, where the shaded areas represent the
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Figure 2.8: Gain flatness variation along the modes of FMF1, as a function of
the target gain level, using different number of pumps.

flatness variation over the modes. The most significant improvement is
obtained from 4 to 5 pumps, reducing the flatness from 15% to about
6%. For example, this means that for a 10 dB target gain, the total
flatness would be decreased to just 0.6 dB from 1.5 dB; this value is
further decreased to 0.35 dB using 8 pumps. Moreover, we can observe
that flatness is practically constant among the modes, with fluctuations
always lower than 0.5% of the target gain in the interval from 5 dB
to 15 dB. We can see an example of the achieved gain profiles for the
case of 8 pumps in Fig. 2.9, where we plot the flat target profiles and
the predicted gain curves for different amplification levels inside the
training interval. The gain profile for each mode is in fact the same up
to a residual MDG, which increases with the gain level.

For a given gain profile G, we quantify its MDG as detailed in
eq. (2.8). In Fig. 2.10 we report the MDG as percentage of the total
gain using 4, 5, 6, and 8 Raman pumps. Differently from the case
of gain flatness, the number of pumps does not influence the total
MDG, which is practically constant inside the interval of gain levels
on which the AE was trained, settling at about 2% of the target gain.
This residual MDG is caused mainly by the fact that LP01 and LP11

modes are systematically over-amplified with respect to the others.
By inspecting the values of overlap integrals of FMF1 in Table 2.2, we
can observe that the sum of the off-diagonal entries in the column-
s/rows associated with LP01 and LP11 are the first and second largest,
respectively, meaning that power is more efficiently coupled by the
nonlinear Raman interaction in these two modes. In Fig. 2.11 we plot
the total pump power in z = L on each mode of the FMF, as predicted
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Figure 2.9: Target and predicted flat gain profiles for a 4-mode fiber over the
C+L–band, using 8 pumps.
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Figure 2.10: Relative MDG as a function of the gain level, for different number
of pumps.

by the AE, as a function of the target gain level; the cases of 4, 5, 6,
and 8 pumps are considered, with solid lines representing the average
power and shaded areas depicting the power variation by employing
different numbers of pumps. Independently of the amplification level,
no power is launched in the LP01 and LP11 modes, with 70% of the
total power assigned to LP21, and the remaining 30% to LP02, confirm-
ing the results of [56] and [46]. Even though no power is injected in
LP01 and LP11, these two modes are those that experience the highest
amplification, predominantly contributing to the residual MDG of



2.3 autoencoder-based approach 31

6 8 10 12 14

Target gain level [dB]

0

200

400

600

800

1000

1200

To
ta

lp
um

p
po

w
er

[m
W

]

LP01

LP11

LP02

LP21

Figure 2.11: Total pump power at z = L in each mode of FMF1, as a function
of the target gain level. Shaded areas indicate the variation using
different number of pumps.

the system. In order to confirm the role of the overlap integrals in
determining the MDG we test two additional 4-mode fibers. The first,
which we label "FMF2", is a SIF with a core diameter of 18 µm, core
refractive index of 1.466, and a relative refractive index difference be-
tween core and cladding ∆ = 0.4%, supporting the propagation of the
LP01, LP11, LP02 and LP21 modes over the entire simulation bandwidth.
Its overlap integrals are reported in Table 2.2. The second fiber, which
we refer to as "FMF3", is instead an ideal 4-mode fiber whose overlap
integrals are equal to 5.47× 10

−9 m−2, i.e the overlap integral for the
LP01-LP01 mode pair of FMF2. All the other simulation parameters,
including the attenuation spectrum and Raman gain coefficient of the
fiber, remain unchanged. Training the AE under the same conditions,
we can observe the effect of the fiber design on the performance of the
system in terms of residual MDG. For the case of 8 Raman pumps,
we report the MDG for the three considered fibers as a function of
the gain level in Fig. 2.12: FMF2 exhibits the highest MDG among the
fibers, reaching a value of approximately 4% of the target gain inside
the training interval of 5 dB to 15 dB, while for FMF3 the AE correctly
predicts the power distribution among the modes that results in no
MDG, launching power only in the LP01 mode.

2.3.4 Tilted gain profiles

In order to account for tilted gain profiles, the AE is trained us-
ing ideal gain profiles with average gain and tilt uniformly sam-
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Figure 2.12: Relative MDG for flat target gain profiles, as a function of the
gain level, for three different fibers. The number of pumps is set
to Np = 8.

pled from the two-dimensional training region T = [5, 15] dB ×
[−0.015, 0.015] dB nm−1, resulting in a maximum total tilt on the C+L
band equal to Tmax = 0.015 dB nm−1 × 95 nm = 1.425 dB. In Fig. 2.13

we report the target gain profiles and corresponding AE predictions
using FMF1 and 8 pumps, for a total tilt equal to Tmax and for differ-
ent average gain levels inside the training region. Results show good
agreement between targets and predictions, with approximately the
same gain profile on each mode, up to the residual MDG.

An analysis similar to that of flat gain profiles is carried out for the
case of tilted profiles, evaluating the metrics of interest for FMF1 and
varying the number of employed Raman pumps, keeping the other
simulation parameters unchanged. We compute RMSE, flatness, and
MDG of the predicted gain profiles and visualize them in Fig. 2.14,
representing the metrics as a function of the target gain level and total
tilt on the C+L band. Each metric is reported in terms of percentage of
the target gain level; for RMSE and flatness we consider the worst-case
scenario among the modes, i.e. their maximum value. Fig. 2.14 is
organized such that columns 1 through 4 of the grid correspond to the
case of 4, 5, 6, and 8 pumps, whereas row 1, 2, and 3 correspond to
RMSE, flatness and MDG, respectively. The color scale for each metric
is saturated to different levels in order to improve the contrast of the
color maps. In Fig. 2.14 (a)–(d) we can appreciate the improvements
in terms of RMSE by using more pumps: the color map is increasingly
darker inside and in the vicinity of the training region T , whose
bounds are represented by a dashed rectangle. Additionally, by using
5 or more pumps, the level curves show that a RMSE lower than 3% of
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Figure 2.13: Target and predicted gain profiles for the tilted case, using
8 pumps and with a total tilt of 1.425 dB, i.e. the maximum
considered tilt during training.

the target gain level is achieved for (practically) all the gain level-tilt
combinations in T .

Similar observations can be made for the flatness from Fig. 2.14

(e)–(h), where a value of about 17% is reached for the points inside the
training region using 4 pumps; increasing the number of pumps leads
to progressively lower flatness values, down to 5% inside T with 8

pumps.
Similarly, for the MDG, Fig. 2.14, (i)–(l) show that a higher number

of pumps brings no significant changes, as the minimum achievable
MDG is determined by overlap integrals of the fiber. Its value stays
infact approximately constant inside the training region regardless of
the pump count, with the level curve showing that MDG values lower
than 4% are achieved for a region considerably wider than T .
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Figure 2.14: Calculated metrics for the tilted gain case, varying the number
of Raman pumps: RMSE (a)–(d), flatness (e)–(h), and MDG (i)–(l)
as a function of the target gain level and target tilt. For RMSE
and flatness their maximum value among the modes is reported.
Columns 1 through 4 refer to the case of 4, 5, 6, and 8 pumps,
respectively.

2.4 noise characteristics and sensitivity to power vari-
ation

As introduced in chapter 1 and section 2.2, one of the main benefits of
using distributed Raman amplification schemes is the improved noise
properties with respect to lumped optical amplifiers. Additionally,
with the advent of dynamic optical networks and advanced routing
and switching algorithms for MDM, accounting for changes in the
power of the information channels, especially in multi-span settings,
is necessary [74–76]. For this reason, in this section we assess the
robustness of the method presented in section 2.3 in terms of the
sensitivity of the predicted gain profiles to changes in the power of
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the signals to be amplified, and characterize the resulting noise figure
(NF) by evaluating its spectral and spatial dependence. The scalability
of the approach is demonstrated by considering a SIF supporting the
propagation of 6 groups of linearly polarized modes, requiring only
the computation of the overlap integrals of eq. (2.2) and changing the
size of the input and output layers of the NN to account for the new
data dimensionality prior to its training procedure.

2.4.1 Propagation model

In FMF RAs, the evolution of the signals, pumps in the presence of
amplified spontaneous emission (ASE) is governed by the following
nonlinear differential equations [46, 77]:

ξi
dPm

i
dz

=− αiPm
i + Pm

i ∑
j 6=i,n

Im,ngR(νi, νj)Pn
j , (2.29)

ξi
dNm

i
dz

=− αiNm
i + Nm

i ∑
j 6=i,n

Im,ngR(νi, νj)Pn
j

+ 2hνiBre f ∑
j 6=i,n

ηi,j Im,ngR(νi, νj)Pn
j , (2.30)

where Pm
i and Nm

i are the signal/pump and ASE power at the ith
frequency and mth mode, with i = 1, . . . , Ns + Np, m = 1, . . . , M, and
Ns, Np, M the number of signals, pumps and modes, respectively; ξi
is equal to −1 at the frequency of counterpropagating pumps and
+1 otherwise; αi is the attenuation coefficient at the ith frequency;
gR(νi, νj) is the Raman gain coefficient between frequencies νi and νj.
Finally, Im,n are the overlap integrals between mode m and n defined
in eq. (2.2). The noise source term ηi,j is the phonon occupancy factor
between the ith and jth frequencies, defined as [21, 77]

ηi,j = 1 +
1

exp
[

h|νi−νj|
kBT

]
− 1

, (2.31)

where h is the Planck constant, kB is the Boltzmann constant, T is
the temperature of the fiber and Bre f is the reference bandwidth
over which noise is computed for a specific wavelength. For signal
frequencies i = 1, . . . , Ns and mode m the on-off gain is again defined
as in eq. (2.3).
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Im,n LP01 LP11 LP21 LP02 LP31 LP12

LP01 4.42 2.97 2.14 3.56 1.58 2.84

LP11 2.97 4.76 2.87 1.83 2.44 2.84

LP21 2.14 2.87 4.48 1.69 2.8 1.43

LP02 3.56 1.83 1.69 5.12 1.73 2.48

LP31 1.58 2.44 2.8 1.73 4.25 1.3

LP12 2.84 2.84 1.43 2.48 1.3 4.2

Table 2.3: Values of Im,n as defined in Eq. (2.2) (units of 10
9 m−2).

2.4.2 Results

The considered fiber is a L = 70 km long SIF supporting 6 groups
of LP modes, and whose computed overlap integrals are reported
in Tab. 2.3. The fiber attenuation coefficient is again described by a
polynomial fitted to attenuation data of a commercial fiber, illustrated
in fig. 2.6.

The Raman response function that has been utilized in the previous
section, and detailed in [59] is employed with a peak Raman gain
coefficient gR = 7× 10

−14 W−1 m. The NN is a feed-forward NN with
5 fully-connected layers of 1000 hidden neurons each, rectified linear
unit activations, and a sigmoid function applied to the output to scale
the values predicted by the NN to actual wavelengths and powers in
a specified range.

The resulting NN is trained using the RMSE cost function and
the Adam algorithm, considering input signals distributed on a 50

wavelengths WDM comb on the C+L band, with an input power of -20

dBm per channel, while 6 counterpropagating pumps are employed.
The training algorithm detailed in the previous section is run for

1000 iterations, using batches of 1024 curves with average gain and
tilt uniformly sampled from the intervals from 5 to 15 dB, and from
-0.015 to 0.015 dB/nm, respectively.

In Fig. 2.15 (a) and (b) the excellent results in terms of mean error
and flatness are confirmed, for the case of flat and tilted gain profiles,
respectively, obtaining results that are comparable to those obtained
with 4-mode fibers presented in the previous section. Fig. 2.15 (c)
illustrates a close-up view of the predicted gain for the target gain
level of 11 dB, showing that the LP11 mode is the most amplified,
followed by the LP02, and then the rest of the modes with MDG close
to zero.

The robustness of the predictions is tested by evaluating flatness,
MDG, and mean error with respect to flat target profiles, varying the
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Figure 2.15: (a) Predicted gain for the flat case. (b) Predictions for the tilted
case. (c) Close-up view of the 11 dB gain profile.
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Figure 2.16: Mean error (a), flatness (b) and MDG (c) for flat target gains,
varying the signal input power.

input power of the transmitted signals. Mean error and flatness are
computed as their maximum value among the different modes.

The mean error is reported in Fig. 2.16 (a), showing that increasing
the signal power leads to under-amplification at higher gains. This is
clearly visible in Fig. 2.17, where the predicted gain curves for each
corresponding target are plotted for different gain levels when the
input signal power is either -5 dBm (a) or -10 dBm (b). The cause of
this behavior is found in the depletion of the Raman pumps that starts
occurring with increasing power. In fact, since the employed NN is
trained at low input signal power, the pump depletion is not captured
by the resulting model, which exhibits degraded generalization prop-
erties when this effect is not negligible. A potential approach to learn
the pump depletion dynamics and improve the model generalization
without training multiple NNs could consist in adding the input signal
power level as an additional input of the NN. By associating each
gain profile in the training batches to a different input power value
sampled from a selected interval, e.g. from -30 dBm to -5 dBm, the
NN can, in principle, learn to include pump depletion when the input
power is sufficiently high.

From Fig. 2.16 (b), similar comments can be made about flatness,
which rises to over 1 dB when using -5 dBm per channel. For the other
cases, the gain flatness is approximately 6% of the total gain. On the
contrary, varying the input signal power has no significant effect on
the MDG, which remains equal to about 3.5% of the target gain level
(Fig. 2.16 (b)).
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Figure 2.17: Predicted gain for the flat case when the input signal power is
(a) -5 dBm and (b) -10 dBm
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Figure 2.18: Maximum effective noise figure among modes as a function of
the gain, for every signal wavelength.

Regarding the analysis of the noise characteristics of the obtained
distributed amplifier, the output ASE spectrum is computed by solving
Eq. (2.30) with the predicted pump parameters and used to determine
the effective NF at the ith frequency and mth mode [21]:

NFeff(i, m) =
OSNRin

OSNRout
· 1
L(νi)

=
Pm

i (0)
hνiBre f

· Nm
i (L)

Pm
i (L)

· 1
L(νi)

, (2.32)

where L(νi) are the total link losses at frequency νi. In Fig. 2.18 we
report the maximum NFeff among the modes as a function of the
achieved gain, for each signal wavelength, using a reference noise
bandwidth of 0.5 nm. Recalling that the effective NF of a distributed
amplifier describes the NF that a lumped amplifier would need to
match its performance [21], fig. 2.18 shows that this RA always outper-
forms any quantum-limited lumped amplifier, whose noise figure can
be at most 3 dB. The NFeff difference among modes is then computed
varying the power of the input signals, using the pump parameters
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Figure 2.19: The mode-dependent effective noise figure as a function of the
Raman gain, for various signal power levels.

predicted by the model trained with -20 dBm per channel. These re-
sults are reported in Fig. 2.19, showing that for low input signal power
NFeff is mode-equalized, with the total variation remaining below 0.05

dB for every gain level, while rising to about 0.1 dB when -5 dBm per
channel are injected in the fiber.

2.5 simultaneous gain and osnr optimization

While the noise figure is essentially perfectly equalized over the spatial
channels, its variation over the considered bandwidth is substantial,
as can be seen from Fig. 2.18. In fact, the for higher gain levels, the
noise figure of the distributed amplifier shows a variation of almost
4 dB. This is a known issue that is also present in ultrawide band
SMF Raman amplifiers, caused mainly by the fact that all the Raman
pumps are employed in a counterpropagating scheme [21].

In fact, in all-counterpumping schemes, the interactions occurring
between pumps cause the shorter wavelength pumps to deplete more
quickly compared to longer wavelength. As a consequence, the pene-
tration depth of shorter wavelength pumps is significantly reduced,
providing little distributed amplification to the short wavelength sig-
nals. On the contrary, long wavelength pumps are amplified and are
thus able to penetrate deeper in the span, providing more distributed
amplification to long wavelength signals, and consequently improve
their noise figure, as seen in Fig. 2.18. Moreover, the same interaction
between pumps occurs between signals as well, causing the power
transfer from short to long wavelengths, especially in longer spans. As
a result, short signal wavelengths experience additional loss, resulting
in a degraded OSNR. A solution to overcome this issue, and compen-
sate the resulting OSNR tilt, is to preferentially copump the shorter
wavelengths and optimize the pump parameters accordingly [78, 79].



2.5 simultaneous gain and osnr optimization 41

Figure 2.20: Diagram of the ML model for simultaneous gain and OSNR
optimization. The computation of the cost function to minimize
is also displayed.

2.5.1 Proposed method

In order to test this approach also in the framework of FMF Raman
amplifiers, the AE that was presented in the previous section has been
modified to support bidirectional pumping schemes and to simultane-
ously optimize both the gain profile and the OSNR spectrum, with the
objective of compensating the tilt resulting from fully-conterpumping
amplifiers.

Specifically, the decoder network R implementing the differentiable
Raman model has been extended with the inclusion of eq. (2.30), de-
scribing the evolution of ASE noise, in addition of the usual equations
governing the interaction between pumps and signals. Owing to this
addition, while training the model, the backpropagation algorithm is
able to compute the gradients of the NN parameters also with respect
to quantities depending on ASE power, meaning that the NN can be
optimized for e.g. the OSNR spectrum.

In case of bi-directional pumping schemes, the output of the encoder
NN N needs to be interpreted accordingly. In particular, the pump
powers predicted by the encoder are all assumed at position z = 0, i.e.
at the start of the fiber. This means that for co-propagating pumps the
NN directly predicts the power to inject at a specific wavelength/mode
combination, while for counterpropagating pumps, the NN predicts
the power of the pump after it has propagated for the entire span. The
actual power to inject for counterpropagating pumps at position z = L,
i.e. at the end of the span, is given as the output of the decoder, after
the integration of the propagation equations, allowing us to avoid



2.5 simultaneous gain and osnr optimization 42

the use of shooting algorithms, as described in the previous section.
Additionally, at the output of decoder network the OSNR spectrum
is also computed for the specific combinations of pump parameters
predicted by the encoder, giving the following relations for the ML
model under consideration

λ̃k, P̃n
k (z = 0) = N (Gm

i ) (2.33)

G̃m
i , P̃n

k (z = L), Om
i = R(λ̃k, P̃n

k (0)), (2.34)

where λ̃k, P̃k are the predicted pump wavelength and power for wave-
length k and mode m, while G̃m

i , Gm
i , Om

i the predicted gain profile,
the target gain profiles, and the corresponding OSNR at wavelength k
and mode m.

With these additions to the ML model, we can now train the encoder
NN to learn the correct pump parameters to generate a given target
profile and simultaneously flatten the output OSNR spectrum for each
mode.

To do so, it is also necessary to update the cost function that the
training algorithm tries to minimize. Here we consider a cost function
that is made up of two contributions: the first contribution is un-
changed, and is the RMSE between target and predicted gain profiles;
the second instead must be proportional to the OSNR variation. A
differentiable and easy to compute metric is given by its variance over
the considered spectrum, averaged over the spatial channels. The two
terms are weighted by a design parameter γ ∈ [0, 1], obtaining a cost
function for each target gain profile given by the following

C(G, G̃, O; γ) =(1− γ)
1
M

M

∑
m=1

RMSE
i

(
Gm

i , G̃m
i
)

(2.35)

+ γ
1
M

M

∑
m=1

Var
i
(Om

i ) (2.36)

The total cost function is computed as the average of eq. (2.35) over
the gain profiles contained the batch of data in each iteration of the
training algorithm.

The newly defined model, along with the computational steps to
compute the cost function, are illustrated in fig. 2.20.

2.5.2 Results

The newly defined ML model has been tested on a 70 km long 4-
mode SIF with a core diameter of 18 µm, core refractive index of 1.466,
and a relative refractive index difference between core and cladding



2.5 simultaneous gain and osnr optimization 43

0.0 0.2 0.4 0.6 0.8
OSNR weight γ

0

1

2

3

4

5

6

7

Tr
ai

ni
ng

m
et

ri
cs

[d
B]

(a)

0.0 0.2 0.4 0.6 0.8
OSNR weight γ

(b)

Max OSNR variation
Gain RMSE

Figure 2.21: Maximum OSNR variation and gain RMSE for the trained model,
as a function of the parameter γ, for the fully counterpumping
case (a) and bidirectional pumping (b).

∆ = 0.4%, supporting the propagation of the LP01, LP11, LP02 and
LP21 modes over the entire simulation bandwidth. The encoder NN is
a FC NN with 5 hidden layers, consisting of 1000 neurons each, using
ReLU activation functions between each layer, and with a sigmoidal
activation at the output layer, enabling us to set the initial condition
for the pump parameters as described in the previous section. The
bandwidth dedicated to the pump remains unchanged with respect to
the previously tested models, as well as the number of WDM channels
(50), their bandwidth (C+L) and their initial power (−20 dBm).

We test the effect of the weight parameter γ in two scenarios: the
first where all the 8 Raman pumps are counter-propagating, and
the second one in which the 4 pumps at shorter wavelengths are
co-propagating with the signal. Each NN is trained with the Adam
algorithm running for 1000 iterations, with batches of 512 random
tilted profiles with average gain ranging from 5 dB to 15 dB; using
the technique previously detailed, we lock the updating of the pump
wavelengths for the first 100 iterations, facilitating the optimization
of the pump power first, which is critical for the convergence of the
algorithm.

In fig. 2.21 (a) we report both the gain RMSE and the total variation
of OSNR at the end of the last training iteration for different values of
the weighting parameter γ in the interval (0, 1). For moderate values
of γ the OSNR tilt improvement is very modest, going from almost
5 dB to slightly below 4 dB, with the gain RMSE being essentially
unaffected. When γ reaches the critical value of approximately 0.8
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Figure 2.22: Maximum OSNR variation (top) and gain flatness (bottom) over
the considered spectrum, for different values of average gain
levels, using different pumping schemes and values of the pa-
rameter γ.

we instead see a dramatic improvement for the OSNR, which reaches
below 0 dB, but at the expense of the accuracy on the predicted gain,
which instead quickly diverges to over 7 dB, confirming that the OSNR
optimization is not achievable without changing the pumping scheme.

The results for the bidirectional pumping scheme are instead re-
ported in fig. 2.21 (b). In this case, it is apparent how a significant
improvement of the OSNR is possible without seriously compromising
the error on the predicted gain. With increasing γ, the total OSNR
tilt decreasing from 3 dB when γ = 0, to approximately 0.3 dB when
γ = 1, while at the same time the total RMSE on the predicted gain
profiles increases from 0.2 dB to about 0.4 dB. A good trade-off is ob-
tained by weighting the two contributions equally by setting γ = 0.5,
for which the maximum OSNR variation decreases below 1 dB with
an increase in RMSE of 0.4 dB.

Now that a suitable value of γ is identified, we can evaluate how
the different schemes behave for the case of flat target profiles. In
fig. 2.22 we visualize the gain flatness (bottom) and OSNR variation
(top) as a function of different levels of average gain. We compare
the counterpumping and bidirectional pumping case when the NN is
trained to minimize only the gain error (γ = 0) and when a simulta-
neous optimization of gain and OSNR is demanded (γ = 0.5). All the
metrics reported consider the worst-case among the different spatial
channels, i.e. are computed as the maximum over the modes.
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As expected, in terms of OSNR variation the worse case is given by
the counterpropagating setup without OSNR optimization, exhibiting
variations of over 4 dB at high amplification levels. When including
the OSNR in the cost function with the value of γ = 0.5, a slight im-
provement is obtained, with a maximum decrease of 1 dB when a gain
of 15 dB is required. If considering a bidirectional pumping scheme, a
similar improvement is obtained, even when no optimization of the
OSNR is explicitly requested by adding it to the cost function. Finally,
using this scheme with γ = 0.5 we achieve the biggest improvement,
with the worst-case tilt, obtained at high-gain levels, reaching just over
0.5 dB.

Regarding the gain flatness instead the order is the opposite, with
the optimal configuration given by a fully counterpumping amplifier
with γ = 0, and with an OSNR-optimized bidirectional scheme yield-
ing the highest flatness values of about 6 percent of the average gain.
This behavior has two explanations. First, and maybe obvious obser-
vation, is that by reducing its contribution to the total cost function,
is it expected to obtain a higher error on the gain prediction under
the same pumping conditions. Secondly, the worse flatness value of
the bidirectional scheme compared to the counterpropagating one,
when the total number of pumps is the same, is also explained by
the fact that in bidirectionally-pumped amplifiers, co- and counter-
propagating pumps only partially interact, especially in longer spans,
virtually reducing the degrees of freedom in the optimization. This
has been shown also in [21], where the same flatness achieved in the
counterpumping scheme can only be reached with two additional
pump lasers in the bidirectional configuration.

An example of the predicted profiles when flat target gains are
given as the input to the NN trained using the bi-directional scheme
and with a weighting parameter γ = 0.5 is given in fig. 2.23 (left),
showing MDG values of approximately 4 percent of the average gain,
in line with the results presented so far in this thesis.

Finally, in fig. 2.23 (right) instead, we highlight the improvement
in the OSNR using this scheme with respect to the non-optimized,
fully-counterpumping case, for the reference gain level of 10 dB, going
from approximately 3.5 dB to less than 0.5 dB of total tilt.

2.6 conclusions

In this chapter, the use of a machine learning method that leverages
a neural network to learn the complex relationship between the gain
of a Raman amplifier and the corresponding values of pump pow-
ers and wavelengths, first proposed in the context of single-mode
fibers, has been applied to the case of few-mode fibers for space-
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Figure 2.23: Predicted flat gain profiles for the bi-directional pumping
scheme with γ = 0.5 (left), and comparison of the OSNR profiles
(right) between the worst-case and best-case scenarios, for an
average target gain of 10 dB.

division-multiplexing. The neural network is used to obtain the pump
parameters to shape the amplifier gain spectrum and approximate a
given target profile. The presented results show that careful design
choices in the dataset generation phase can lead to improved accuracy
of the predicted Raman gain profiles for the more practical case in
which flat or tilted profiles are needed. The proposed techniques have
been applied to a distributed Raman amplifier using a few-mode fiber
supporting the LP01 and LP11 mode groups and using 8 pumps, ob-
taining promising results for a wide interval of amplification levels,
obtaining root-mean-square error, gain flatness, and mode-dependent
gain values of approximately 0.25 dB, 0.75 dB, and 0.2 dB, respectively,
extending the results published in the literature to the broader C+L
optical band.

Due to the difficulty of applying this approach to fiber with a higher
mode-count, an improved unsupervised machine learning method
based on autoencoders has later been proposed. Thanks to automatic
differentiation, a numerical Raman model is embedded in the autoen-
coder, allowing to train it directly on ideal gain profiles (e.g. flat or
tilted) and obtaining a robust unsupervised learning method that does
not rely on a pre-computed dataset to learn the inverse model. In fact,
the relationship between input target gain and the pump parameters
that best approximate it are learned in the training phase from the em-
bedded numerical model, allowing to accurately sample the targeted
region of the space of possible gain profiles. As a result, this method
scales well with respect to the number of fiber modes, the number of
Raman pumps, and the amplification bandwidth. On this regard, the
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low root-mean-square error (quantified for various number of pump
wavelengths) demonstrated the achievement of the target profile.

This approach is tested on a 4-mode fiber using the counter-pumping
scheme, various numbers of pumps, up to 8, and for the C+L band. The
training process is further simplified by the fact that the autoencoder
can directly predict the pump powers at z = 0, eliminating the need
to employ costly shooting algorithms that are typically needed for
counter-propagating Raman amplification models. The pump power
to be injected in the fiber are in fact computed with a single integration
of the propagation equations. Very good results have been achieved
regarding flatness and mode-dependent gain over the entire C+L band
and the considered interval of gain levels and tilts, reaching a gain
flatness of 3% of the total gain using 8 pumps, and a residual mode-
dependent gain of 2% of the total gain, independently of the number
of Raman pumps.

The same method has later been applied to a fiber supporting the
propagation of 6 groups of LP modes, showing minimal degradation
of the aforementioned metrics with respect to the 4-mode case. Addi-
tionally, the robustness of the trained models to the variation of the
input power of the transmitted signals has been verified, showing that
power variations in the order of 10 dB do not significantly affect the
quality of the resulting gain spectra. Moreover, the noise characteristics
of the generated amplification profiles have been evaluated by solv-
ing the equations describing the evolution of amplified spontaneous
emission noise. The advantage of distributed amplification schemes
compared to lumped amplifiers has been confirmed by showing that
their equivalent noise figure is always lower than the quantum-limited
3 dB threshold on the entire bandwidth, and for each tested signal
power value. Furthermore, it has been shown that the minimized
mode-dependent gain generated by the neural networks results in
a negligible variation of the amplifier noise figure over the spatial
channels, reaching a maximum of 0.1 dB when the input signal power
is more than 20 dB higher than the value used in the training process.

Finally, the method has been modified to include the amplified
spontaneous emission equations in the embedded propagation model,
showing that by using a bi-directional pumping scheme in conjunc-
tion with a modified cost function for the neural network training
can lead to a system that is able to predict the pump parameters to
simultaneously approximate the required target gain and spectrally
equalize the optical signal-to-noise ratio spectrum.
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3.1 introduction

One of the major issues arising in space-division multiplexing (SDM)
systems is caused by coupling of light between the different spatial
channels during propagation [10].

Extensive research has been done to model and characterize the
effect of coupling in spatially-multiplexed transmissions, both for
multi-core fibers (MCFs) and few-mode fibers (FMFs), defining two
main regimes of propagation [80–83].

The first regime, in which mode coupling is strong, relies on mas-
sive multiple-input multiple-output (MIMO) digital signal processing
(DSP) techniques to equalize the channel distortions and undo the
mixing, arguing that the high-degree of coupling between the modes
reduces the group delay spread of the fiber, narrowing its impulse
response, and consequently lowering the complexity of MIMO equal-
izers. A strong mixing between spatial channels can be stimulated by
employing either coupled-core multi-core fibers (CC-MCFs), in which
the distance between cores is made small so that the cores become
coupled [84–86], or FMFs with carefully-designed index profiles [33,
87]. The additional benefit of strongly-coupled SDM transmissions
is found in the reduction of the variations of mode-dependent loss
(MDL) and mode-dependent gain (MDG), maximizing the channel ca-
pacity [88]. Several long-haul experiments have been carried out using
CC-MCFs, demonstrating the reliability of MIMO DSP on transmission
distances of several thousands of kilometers [89–92].

The second regime is instead characterized by a low degree of
coupling between spatial channels, aiming at reducing or outright re-
moving the need of MIMO techniques, using either fibers that support
orbital-angular-momentum (OAM) modes [93, 94] or weakly-coupled
multi-core fibers (WC-MCFs) [95–97] in which the core-to-core dis-
tance is substantially higher than the mode-field diameter of the
fundamental mode of each core, and where each core can be treated as
an independent waveguide [98]. This approach is however limited for
short-distance applications, as fiber imperfections and external pertur-
bations can induce random crosstalk, which can lead to transmissions

48
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in the strong coupling regime when accumulating with transmission
distance [98].

3.1.1 Modeling Nonlinear effects

Although SDM has emerged as the solution to surpass the nonlin-
ear Shannon limit of single-mode fibers (SMFs) through the lower
power-density enabled by physically separating multiple information
streams, nonlinear effects remain the ultimate factor determining the
maximum achievable capacity of optical fiber communications. The
modeling of such effects is then of paramount importance in the under-
standing of propagation limits in both FMFs and MCFs. In principle,
the interaction between all possible combinations of modes/cores and
wavelengths must be studied to completely describe the nonlinear
phenomena occurring in SDM transmissions, as was introduced in the
previous chapters regarding Raman amplification.

The most general description of such interaction in multimode fibers
(MMFs) is given by the Multimode Nonlinear Schrödinger Equation
(MM-NLSE) [99, 100], in which the nonlinear interaction is described
by a set of (2N)4 overlap integrals between the mode functions, where
N is the total number of spatial modes, and the factor 2 accounts for
polarization degeneracy.

In the regime of strong mode coupling, it is argued that the linear
mode mixing effects occur on length scales much shorter than the
nonlinear interaction length [101]. These considerations justify the sim-
plification of the equations by accounting for the nonlinear effects with
just a single coefficient, obtained by averaging the overlap integrals
appearing in the MM-NLSE, resulting in the generalized Manakov
equation [101], which extends the well-known Manakov-PMD equa-
tion used in the study of polarization coupling in SMFs [102]. An
equivalent equations has also been derived in [103] and extended to
the case of MCFs.

A further version of the generalized Manakov equation is obtained
when considering strong coupling occurring only between modes
belonging to the same group of quasi-degenerate modes of a FMF,
with no interaction occurring between different groups. In this case,
the propagation of the mode groups are described by the coupled
multi component Manakov equations [104], extending the results of
[101] by separating the intra-group and inter-group nonlinear effects
with two separate averaged nonlinear coefficients.

Using these models, it has been shown that the regime of strong
coupling exhibits beneficial properties for the reduction of nonlinear
penalties, with [105] and [106] demonstrating that Kerr-induced effects
are inversely proportional to the number of cores of a CC-MCF or
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modes of a FMF, respectively. Similar results have also been shown
in the study of intermodal four-wave mixing (IM-FWM) in FMFs,
with [107] demonstrating that suppression factors greater than 40 dB
are achievable when strong mode coupling is considered, and that
in general the four-wave mixing (FWM) efficiency is always reduced
compared to the case in which mode coupling is not present.

For the case of Raman amplification instead, literature is still not
as mature, with only [57] extending the coupled multi component
Manakov equations with terms describing the Raman interaction un-
der the hypothesis of strong coupling between degenerate modes of
the same group, and total absence of linear coupling between groups.
Additionally, numerical results showing the effects of mode coupling
on Raman amplifications are lacking, regardless of the regime of
coupling considered, with only [108] including Raman scattering ef-
fects, but only in the context of Raman induced crosstalk between
different channels of a wavelength-division multiplexing (WDM) trans-
mission. Furthermore, the models previously introduced generally
describe the coupling process through a fully stochastic approach for
mathematical convenience, without considering the different physical
mechanisms which cause the coupling process, such as the ellipticity
of the fiber core, twisting, or bending, as modeled in [15, 109]. Finally,
while the Manakov approach is useful to considerably simplify the
MM-NLSE and enable its analytical tractability, it only describes the
mode-averaged nonlinear effects, without considering its statistics,
which can be important to predict the variability among different fiber
realizations or due to time-variant effects. This aspect is particularly
important for Raman amplifiers, which exhibit considerable gain fluc-
tuations when polarization mode dispersion (PMD) is present in SMFs
[110–113]

In this chapter, following the footprints of [111], which presented a
model for SMF Raman amplifiers with PMD effects, a set of continuous-
wave equations is derived, describing the evolution of the modes at
two different wavelengths acting as pump and signal of a forward-
pumping Raman amplifier, modeling linear coupling based on the
underlying physical phenomena from which it stems. Through nu-
merical integration of the equations, the combined effect of stress
birefringence and core ellipticity on the gain statistics of FMF Raman
amplifiers over an ensemble of thousands of fiber realizations are
studied for different coupling conditions.
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3.2 derivation of the model

In silica optical fibers, nonlinear phenomena are related to the third
order nonlinear polarization of silica, which can be written as [111]

P(3)(r, t) =
ε0

2
σ[E(r, t) · E(r, t)]E(r, t) (3.1a)

+ E(r, t)
∫ ∞

0
ε0a(τ)[E(r, t− τ) · E(r, t− τ)]dτ (3.1b)

+ E(r, t) ·
∫ ∞

0
ε0b(τ)[E(r, t− τ)E(r, t− τ)]dτ (3.1c)

where eq. (3.1a) is the instantaneous Kerr contribution, while eq. (3.1b)
and eq. (3.1c) are the parallel and cross-polarized delayed Raman
responses.

Restricting ourselves to the case of forward-pumped Raman ampli-
fiers, signal and pump frequencies propagate together. By writing the
total electric field and third order nonlinear polarization as

E = Re
{

Epe−jωpt + Ese−jωst
}

, (3.2)

P(3) = Re
{

Ppe−jωpt + Pse−jωst
}

, (3.3)

and inserting them in eq. (3.1), the following expression is found
[111]

P(3)
` (ω`) =

ε0

8
[σ + 2b̃(0)](E` · E`)E∗` (p1N1) (3.4a)

+
ε0

4
[σ + 2ã(0) + b̃(0)](E∗` · E`)E` (p2N2) (3.4b)

+
ε0

4
[σ + 2ã(0) + b̃(ω` −ω f )](E∗f · E f )E` (p3N3) (3.4c)

+
ε0

4
[σ + b̃(0) + b̃(ω` −ω f )](E f · E`)E∗f (p4N4) (3.4d)

+
ε0

4
[σ + 2ã(ω` −ω f ) + b̃(0)](E∗f · E`)E f (p5N5) (3.4e)

where the subscripts ` and f can can either be p or s to indicate
pump or signal frequency, ωp and ωs, respectively. When ` = p, then
f = s, and viceversa. Inserting these expressions in the Maxwell
equations, Es and Ep are found to satisfy the nonlinear Helmholtz
equation at their respective frequencies [111]

∇2E` +
ω2
`

c2 ε`E` = −
ω2
`

ε0c2 P` (3.5)
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The extension for the case of a FMF begins by expressing the electric
field as the sum of the individual modes supported by the fiber as
follows

E` =
M`

∑
µ=1

F`µ(x, y)A`µ(z) exp
(

jβ`µz
)
=

M`

∑
µ=1

F`µ(x, y)L`µ(z), (3.6)

where M` is the number of polarization and spatial modes propagating
at frequency ω`, F`µ(x, y) is the mode functions of mode µ at the
frequency ω`, A`µ is its complex amplitude, β`µ is its propagation
constant, and L`µ(z) = A`µ(z) exp

(
jβ`µz

)
. From now on, the spatial

dependence of F`µ(x, y) and A`µ(z) will be omitted for brevity.
After substituting eq. (3.6) in eq. (3.5), we start by calculating the

Laplacian of the electric field expressed as the sum of the modes

∇2E` =
M`

∑
µ=1

[
L`µ∇2

⊥F`µ + F`µ

∂2L`µ

∂z2

]
(3.7)

=
M`

∑
µ=1

{
A`µ∇2

⊥F`µ + F`µ

[
∂2A`µ

∂z2 + 2jβ`µ

∂A`µ

∂z
− β2

`µ A`µ

]}
ejβ`µz,

(3.8)

where we expressed the Laplacian operator as its transversal and
longitudinal (with respect to the direction of propagation) components
∇2 = ∇2

⊥ + ∂2
z .

We can neglect the second derivative of the complex amplitude by
using the slowly-varying envelope approximation [114]∣∣∣∣∣∂2A`µ

∂z2

∣∣∣∣∣� β`µ

∣∣∣∣∂A`µ

∂z

∣∣∣∣ . (3.9)

Using this fact, and collecting A`µ exp
(

jβ`µz
)
, the left-hand side of

eq. (3.5) becomes

∇2E` +
ω2
`

c2 ε`E` =
M`

∑
µ=1

A`µ

[
∇2
⊥F`µ +

(
ω2
`

c2 ε` − β2
`µ

)
F`µ

]
ejβ`µz

(3.10a)

+
M`

∑
µ=1

F`µ2jβ`µ

∂A`µ

∂z
ejβ`µz (3.10b)
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3.2.1 Inclusion of linear mode coupling

To include the effect of linear coupling between the modes, a small
perturbation to the permittivity tensor is applied

ε` = ε
(u)
` + ∆ε`, (3.11)

where ε
(u)
` is the original, unperturbed, relative dielectric constant.

The right-hand side of eq. (3.10) then becomes

∇2E` +
ω2
`

c2 ε`E` =
M`

∑
µ=1

A`µ

[
∇2
⊥F`µ +

(
ω2
`

c2 ε
(u)
` − β2

`µ

)
F`µ

]
ejβ`µz

(3.12a)

+
M`

∑
µ=1

ω2
`

c2 ∆ε`F`µ A`µejβ`µz (3.12b)

+
M`

∑
µ=1

F`µ2jβ`µ

∂A`µ

∂z
ejβ`µz (3.12c)

The term in square brackets of the first term of eq. (3.12) is the
Helmholtz equation, which vanishes under the hypothesis of the
mode distributions not being affected by nonlinearity, giving

∇2E` +
ω2
`

c2 ε`E` =
M`

∑
µ=1

ω2
`

c2 ∆ε`F`µ A`µejβ`µz +
M`

∑
µ=1

F`µ2jβ`µ

∂A`µ

∂z
ejβ`µz.

(3.13)
We left-multiply by F†

`ν and integrate on the infinite transverse plane,
obtaining

M`

∑
µ=1

ω2
`

c2 A`µejβ`µz
∫∫

F†
`ν∆ε`F`µ dxdy+

M`

∑
µ=1

2jβ`µ

∂A`µ

∂z
ejβ`µz

∫∫
F†
`νF`µ dxdy.

(3.14)
In the weakly guiding approximation, the following orthogonality

conditions [15, 115]

β`ν

2ω`µ0

∫∫
F†
`ν,⊥F`µ,⊥ dxdy = δν,µ , (3.15)

are used to reduce the sum in the second term of eq. (3.14) to a single
term, obtaining
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M`

∑
µ=1

ω2
`

c2 A`µejβ`µz
+∞∫∫
−∞

F†
`ν∆ε`F`µ dxdy + 2jβ`ν

∂A`ν

∂z
ejβ`νz

+∞∫∫
−∞

F†
`νF`ν dxdy

(3.16)
Since eq. (3.15) only considers the components of the field perpen-

dicular to the propagation direction, in the derivation of the previous
equation we neglect the effect of the longitudinal components, whose
magnitude is much weaker in the case of LP modes [15].

The orthogonality conditions in eq. (3.15) also determine the units of
the mode functions F`ν(x, y), which become

√
Ω/m. Together with the

fact that the units of the total electric field must be V m−1, the complex
amplitude A`ν takes units of V/

√
Ω, meaning that the magnitude

squared of the complex amplitudes has units of W.
Indeed, the total power of the electromagnetic field at frequency ω`

can be calculated by integrating the Poyinting vector [115, 116]

Ptot(ω`) =
1
2

∫∫
(E`×H∗` ) · ẑ dxdy (3.17)

=
M`

∑
µ=1

∫∫ β`µ

2ω`µ0
|A`µ|2F†

`µF`µ dxdy (3.18)

+
M`

∑
ν,µ,ν 6=µ

∫∫
β`ν

2ω`µ0
A∗`ν A`µej(β`µ−β`ν)zF†

`νF`µ dxdy. (3.19)

The second summation vanishes due to eq. (3.15), while the terms
inside the first summation are reduced to |A`µ|2, meaning that the
total power at frequency ω` is given by

Ptot(ω`) =
M`

∑
µ=1
|A`µ|2 , (3.20)

and that the magnitude square of the complex amplitude gives the
power in Watts of each mode.

Using eq. (3.15), eq. (3.16) becomes

M`

∑
µ=1

ω2
`

c2 A`µejβ`µz
+∞∫∫
−∞

F†
`ν∆ε`F`µ dxdy + 4jω`µ0

∂A`ν

∂z
ejβ`νz. (3.21)

Dividing by 4jω`µ0, introducing the following change of variables,

a`µ = A`µejβ`µz , (3.22a)
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∂A`µ

∂z
= e−jβ`µz

(
∂a`µ

∂z
− jβ`µa`µ

)
, (3.22b)

and rearranging the terms, we can highlight the z-derivative of the
mode amplitude, the propagation constants, and perturbation tensor,
obtaining

∂a`ν

∂z
− jβ`νa`ν − j

M`

∑
µ=1

a`µ
ω`

4

+∞∫∫
−∞

F†
`νε0∆ε`F`µ dxdy . (3.23)

We now split the permittivity perturbation in its real and imaginary
parts:

∆ε` = ∆ε̃` − jε
′′
` . (3.24)

The real part of the permittivity perturbation inside the summation
in eq. (3.23) now defines the well known linear coupling coefficients
as the overlap integral [15, 82, 109, 117]

Kνµ(ω`) = ε0
ω`

4

+∞∫∫
−∞

F†
`ν∆ε̃`F`µ dxdy . (3.25)

The imaginary part instead defines the fiber losses. Assuming the
absence of MDL, and making use of eq. (3.15), the corresponding
summation in eq. (3.23) is reduced to a single term reading

ω`

4
2ω`µ0

β`ν
ε0ε

′′
` a`ν ,

αν

2
a`ν, (3.26)

where α` is the power attenuation coefficient at frequency `.
The linear propagation effects are finally completely described by

the following equation, which constitutes the left-hand side of the side
of the final equation

∂a`ν

∂z
+

α`

2
a` − jβ`νa`ν − j

M`

∑
µ=1

Kνµ(ω`)a`µ , (3.27)

Equation (3.27) can also be written in matrix form, describing the
evolution of the vector a` of complex mode amplitudes as

∂a`
∂z

+
α`

2
a` − j(B` + K`)a` , (3.28)

where B` is the diagonal matrix of propagation constants, and the
elements of K` are determined by eq. (3.25), finding the results of [117]
with the addition of fiber losses.
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3.2.2 Nonlinear terms

Here we complete the derivation of the propagation equations by
carrying out the calculation of the third-order nonlinear polarization.
Equation (3.4) can be written in a more compact form as

P(3) = p1N1 + p2N2 + p3N3 + p4N4 + p5N5 . (3.29)

Remembering to divide by j4ω`µ0 as done for the linear part, the
right-hand side of eq. (3.5) reads

jω`

4

5

∑
i=1

piNi (3.30)

Substituting the electric field of eq. (3.6) in eq. (3.4), we obtain the
expressions for each nonlinear term.

We begin by computing the dot product of eq. (3.4a), obtaining

E` · E` =

(
M`

∑
µ=1

F`µ A`µejβ`µz

)
·
(

M`

∑
η=1

F`η A`ηejβ`ηz

)
(3.31)

=
M`

∑
µ=1

M`

∑
η=1

(F`µ · F`η)A`µ A`ηej(β`µ+β`η)z (3.32)

Multiplying by E∗` we can then write

(E` · E`)E∗` =

(
M`

∑
µ=1

M`

∑
η=1

(F`µ · F`η)A`µ A`ηej(β`µ+β`η)z

)
·

M`

∑
ρ=1

F∗`ρ A∗`ρe−jβ`ρz

(3.33)

=
M`

∑
µ=1

M`

∑
η=1

M`

∑
ρ=1

(F`µ · F`η)F∗`ρ A`µ A`η A∗`ρej(β`µ+β`η−β`ρ)z (3.34)

=
M`

∑
µ=1

M`

∑
η=1

M`

∑
ρ=1

(F`µ · F`η)F∗`ρa`µa`ηa∗`ρ , (3.35)

where in the last line we applied the change of variable of eq. (3.22).
Multiplying by F∗`ν as done for the left-hand side of the equation,

and integrating on the transverse plane, we obtain the following

M`

∑
µ=1

M`

∑
η=1

M`

∑
ρ=1

a`µa`ηa∗`ρ

+∞∫∫
−∞

(F`µ · F`η)(F∗`ρ · F∗`ν)dxdy . (3.36)
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Rewriting the overlap integral as

Q(1)
νρµη(ω`) =

+∞∫∫
−∞

(F∗`ν · F∗`ρ)(F`µ · F`η)dxdy , (3.37)

we then obtain the expression of the first nonlinear term for mode ν,
which can be written as

N1,ν(ω`) =
M`

∑
µ=1

M`

∑
η=1

M`

∑
ρ=1
Q(1)

νρµηa`µa`ηa∗`ρ (3.38)

The other nonlinear terms are similar and the expression for their
overlap integrals are summarized in table 3.1. If the mode function
of the modes with indices ρ, µ, or η is complex-conjugated inside
the integral, then it must also be complex-conjugated in the triple
summation when computing the total nonlinear contribution.

Regrouping the linear part of the equation with the nonlinear terms
just described, the complete system of coupled nonlinear equations is
finally obtained

∂a`ν

∂z
= −α`

2
a`ν + jβ`νa`ν + j

M`

∑
µ=1

Kνµ(ω`)a`µ

+
jω`

4
ε0

8
[σ + 2b̃0]

M`

∑
µ=1

M`

∑
η=1

M`

∑
ρ=1
Q(1)

νρµηa`µa`ηa∗`ρ

+
jω`

4
ε0

4
[σ + 2ã0 + b̃0]

M`

∑
µ=1

M`

∑
η=1

M`

∑
ρ=1
Q(2)

νρµη(ω`)a∗`µa`ηa`ρ

+
jω`

4
ε0

4
[σ + 2ã0 + b̃Ω]

M f

∑
µ=1

M f

∑
η=1

M`

∑
ρ=1
Q(3)

νρµη(ω`)a∗f µa f ηa`ρ

+
jω`

4
ε0

4
[σ + b̃0 + b̃Ω]

M f

∑
µ=1

M`

∑
η=1

M f

∑
ρ=1
Q(4)

νρµη(ω`)a f µa`ηa∗f ρ

+
jω`

4
ε0

4
[σ + 2ãΩ + b̃0]

M f

∑
µ=1

M`

∑
η=1

M f

∑
ρ=1
Q(5)

νρµη(ω`)a∗f µa`ηa f ρ,

(3.39)

where we used the more compact subscript notation to indicate the
frequency at which the parallel- and cross-polarized Raman responses
ã and b̃ are evaluated.
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3.2.3 Nonlinear polarization parameters

Ideally, we would prefer to describe the intensity of the nonlinear
effects through the nonlinear refractive index parameter n2, which
is experimentally determined using a probe signal with a single fre-
quency and polarization, rather rather than using σ. Assuming a signal
with frequency ω` polarized along the x axis, and substituting it in
eq. (3.4), only the contributions eqs. (3.4a) and (3.4b) become non-zero.
The resulting polarization then reads:

P(3)
` (ω`) =

ε0

8
(
σ + 2b̃(0)

)
E2

xE∗xx +
ε0

4

(
σ + 2 ˜a(0) + ˜b(0)

)
E2

xE∗xx

(3.40)

=
ε0

4

(
3σ

2
+ 2ã(0) + 2b̃(0)

)
|Ex|2Exx

Inserting this expression in eq. (3.5), and recalling that ε` = n2
` , we

obtain

∇2Exx +
ω`

c2

[
ε` +

|Ex|2
4

(
3σ

2
+ 2ã(0) + 2b̃(0)

)]
Exx = 0 . (3.41)

Noting that σ, ã(0), and b̃(0) are real, the term inside square brackets
represents the total (linear and nonlinear) refractive index

ntot,` =

√
ε` +

|Ex|2
4

(
3σ

2
+ 2ã(0) + 2b̃(0)

)
. (3.42)

Assuming the second term is small compared to the first, we can write
its Taylor series expansion as

Table 3.1: Expression of the overlap integrals that define the strength of the
nonlinear interaction between modes.

Q(1)
νρµη(ω`) =

+∞∫∫
−∞

(F∗`ν · F∗`ρ)(F`µ · F`η)dxdy

Q(2)
νρµη(ω`) =

+∞∫∫
−∞

(F∗`ν · F`ρ)(F∗`µ · F`η)dxdy

Q(3)
νρµη(ω`) =

+∞∫∫
−∞

(F∗`ν · F`ρ)(F∗f µ · F f η)dxdy

Q(4)
νρµη(ω`) =

+∞∫∫
−∞

(F∗`ν · F∗f ρ)(F f µ · F`η)dxdy

Q(5)
νρµη(ω`) =

+∞∫∫
−∞

(F∗`ν · F f ρ)(F∗f µ · F`η)dxdy
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Figure 3.1: Nonlinear polarization parameters reported in [118]

ntot,` '
√

ε` +
1

2
√

ε`

|Ex|2
4

(
3σ

2
+ 2ã(0) + 2b̃(0)

)
(3.43)

= n` +
|Ex|2
8n`

(
3σ

2
+ 2ã(0) + 2b̃(0)

)
= n` + n2,`|Ex|2, (3.44)

where the nonlinear refractive index is defined as

n2,` =
1

8n`

(
3σ

2
+ 2ã(0) + 2b̃(0)

)
(3.45)

This quantity, however, is expressed in m2 V−2, while it is more cus-
tomary to defined it in units of m2 W−1. In order to convert one to the
other, we can exploit its relationship with the average intensity

I =
|Ex|2

2η
, (3.46)

with

η =

√
µ0

εε0
=

√
µ0ε0

εε2
0

=
1

cε0n
. (3.47)

Using the relation

n2|Ex|2 = n2,W
|Ex|2

2η
, (3.48)

it follows that the nonlinear refractive index expressed in units of
m2 W−1 is defined as

n2,W =
2n2

cε0n
=

3σ/2 + 2ã(0) + 2b̃(0)
4cε0n2 . (3.49)

Some reference values for the nonlinear polarization parameters are
reported in Table I of [118], which is reported in fig. 3.1.
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3.2.3.1 Raman gain coefficient

Let us consider the electric fields for pump and signal linearly polar-
ized along the x-axis:

Ep(t) = Re
{

Ep,xe−jωptx
}

(3.50)

Es(t) = Re
{

Es,xe−jωstx
}

(3.51)

The nonlinear polarization at the signal frequency is found by
summing the terms of eqs. (3.4c) to (3.4e) and reads

P(3)
s =

ε0

4
(
3σ + 2ã(0) + 2b̃(0) + 2ã(ωp −ωs) + 2b̃(ωp −ωs)

)
|Ep,x|2Es,xx .

(3.52)
The imaginary part of the previous equation determines the Raman

gain, meaning that σ, ã(0), and b̃(0) disappear, and the total refractive
index defined in eq. (3.43) becomes complex

nC ' n + n2|Es,x|2 + j
1
4

Im
{

2ã(ωp −ωs) + 2b̃(ωp −ωs)
}
|Ep,x|2 .

(3.53)
The propagation factor for a wave propagating in the z-direction is

written as

exp
(
−j

ωsnC

c
z
)
' exp

[
−jωs(n + n2|Esx|2)

z
c

]
(3.54)

exp
[
−j

ωs

c
j
4

Im(ã(ωp −ωs) + b̃(ωp −ωs))|Ep,x|2z
]

(3.55)

= exp(−jkNLz) exp(gz/2) , (3.56)

where g is the gain coefficient for the electric field amplitude in units
of m−1, defined as

g =
ωs

2c
Im[ã(ωp −ωs) + b̃(ωp −ωs)]|Ep,x|2 . (3.57)

We need to relate this coefficient to the familiar Raman gain coeffi-
cient gR in units of m W−1, using the definition of η in eq. (3.47)

g = η
ωs

c
Im[ã(ωp −ωs) + b̃(ωp −ωs)]

|Ep,x|2
2η

. (3.58)

and obtain the expression for gR as

gR = η
ωs

c
Im[ã(ωp −ωs) + b̃(ωp −ωs)] (3.59)
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Figure 3.2: Measured Raman susceptibility curves and their interpolation.
Data from [119].

.

=
ωs

c2ε0n
Im[ã(ωp −ωs) + b̃(ωp −ωs)] (3.60)

The shape of the Raman response functions ã and b̃ can be directly
obtained by experimental measurements, from e.g. [119]. Their shape
is illustrated in fig. 3.2. For simulation purposes, these curves are
appropriately scaled to obtain a desired Raman gain coefficient gR.
They also determine the value of the parameter σ that is required to
get a target nonlinear refractive index through eq. (3.49),

3.2.4 Single-mode case

In order to assess the correctness of the model it is useful to compare it
to the well known equations for forward-pumped Raman amplification
in a single mode fiber, which read [20]

dPs

dz
=

gR

Aeff
PsPp − αsPs (3.61a)

dPp

dz
= −ωp

ωs

gR

Aeff
PsPp − αpPp , (3.61b)

where Pp and Ps represent the power at the pump and signal frequency,
respectively, gR is the Ramain gain coefficient as defined in eq. (3.59),
and Aeff is the effective core area of the fiber. In the undepleted
pump approximation, the solution for the signal power is obtained
analytically as

Ps(z) = Ps(0) exp
[

gR

Aeff
Pp(0)

1− e−αpz

αp
− αsz

]
. (3.62)
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Adapting eq. (3.39) for the case of single-mode co-polarized signal
and pump waves, neglecting linear mode coupling and the first two
nonlinear terms which only account for instantaneous Kerr nonlinear-
ity, we can write the following equations, considering the undepleted
pump case

∂as

∂z
= −αs

2
as + jβsas (3.63)

+
jω`

4
ε0

4
[σ + 2ã0 + b̃Ω]Q(3)

1111(ωs)a∗papas (3.64)

+
jω`

4
ε0

4
[σ + b̃0 + b̃Ω]Q(4)

1111(ωs)apasa∗p (3.65)

+
jω`

4
ε0

4
[σ + 2ãΩ + b̃0]Q(5)

1111(ωs)a∗pasap (3.66)

∂ap

∂z
= −αp

2
ap + jβpap . (3.67)

Supposing that the mode field functions do not vary much in fre-
quency, we can consider F(ωs) ≈ F(ωp), and consequentlyQ(3)

1111(ωs) =

Q(4)
1111(ωs) = Q(5)

1111(ωs) = Q1111. The previous equations then become

∂as

∂z
= −αs

2
as + jβsas +

jωs

8
ε0

[
3σ

2
+ ã0 + b̃0 + ãΩ + b̃Ω

]
Q1111|ap|2as

(3.68)
∂ap

∂z
= −αp

2
ap + jβpap . (3.69)

The solution for the pump equation is straightforward, and leads to
the following expression for the evolution of the pump power

Ps(z) = |as(z)|2 = |ap0|2 exp
(
−αpz

)
. (3.70)

Substituting eq. (3.70) in the equation for the signal instead we obtain

∂as

∂z
= −αs

2
as + jβsas + G|ap0|2 exp

(
−αpz

)
as , (3.71)

with G = jωs/8ε0
[
3σ/2 + ã0 + b̃0 + ãΩ + b̃Ω

]
Q1111, and which leads

to the following solution for the complex amplitude

as(z) = exp
(
−αs

2
z + jβsz

) ∫ z′

0
G|ap0|2 exp

(
−αpz′

)
dz′ (3.72)

= exp
(
−αs

2
z + jβsz

)
exp

(
G|ap0|2 ·

1− e−αpz

αp

)
as0. (3.73)
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Figure 3.3: Comparison between analytical expression and numerical solu-
tion.

The signal power becomes

Ps(z) = |as(z)|2 = asa∗s = |as0|2 exp
(

2 Re[G]|ap0|2 ·
1− e−αpz

αp
− αsz

)
,

(3.74)

and considering that σ, ã0, b̃0, and Q1111 (for the case of LP modes)
are real numbers, and Re[G] = −ωs/8ε0Q1111 Im[ãΩ + b̃Ω], the final
expression for the signal power becomes

Ps(z) = |as0|2 exp
(
−ωs

4
ε0Q1111 Im[ãΩ + b̃Ω]|ap0|2 ·

1− e−αpz

αp
− αsz

)
.

(3.75)
Comparing with eq. (3.62), it is easy to see that

gR

Aeff
= −ωs

4
ε0Q1111 Im[ãΩ + b̃Ω]. (3.76)

In fig. 3.3 we compare the analytical solution given in eq. (3.75)
with the results of numerical integration of the derived model without
considering linear coupling, launching power in the x-polarization of
the LP01 mode of a 70 km long fiber supporting two mode groups,
using a peak Raman gain coefficient of gR = 1× 10−13 m W−1.

3.3 numerical methods

In order to study the propagation of the different modes of a FMF
under the effect of intrinsic and extrinsic perturbations, a suitable
numerical model must be defined. In this section we describe how
the perturbations acting on a ideal fiber are modeled, and outline
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the algorithm used to solve the propagation equations derived in the
previous section for the resulting forward-pumping Raman amplifier.

3.3.1 Linear propagation

The linear effects occurring during propagation in a FMF are accounted
for by the linear terms of eq. (3.39), describing the evolution of the
vector of the field complex amplititudes, and can be written in matrix
form as

∂a
∂z

= −α

2
a + j(B + K)a , (3.77)

which is the same used in [15, 82] with the addition of fiber losses.
For simplicity, we momentarily drop the subscript notation to indi-

cate the frequency dependence of each quantity, as the linear effects,
at least in first approximation, can be treated individually for each
frequency component.

The local coupling effects, caused by perturbations to the ideal fiber
profile, are described by the coupling matrix K, while B is the diagonal
matrix of propagation constants. The coupling strength of a specific
perturbation can be calculated from the eigenvalues κi of its coupling
matrix and related to the its coupling beat length Lκ as

Lκ =
2π

∆κ
, (3.78)

where ∆κ = maxi κi −mini κi is the coupling strength.
In the most general case, both the strength and the orientation of

the various perturbations can vary randomly along the fiber. It is then
necessary to account for this by explicitly highlighting the dependence
of the coupling matrix on the position along the fiber. If we consider
the normalized coupling matrices K̄, computed with the reference
perturbation aligned to the reference frame of the fiber, and scaled
such that their strength is equal to 1, the total coupling matrix of the
fiber, with multiple perturbations acting on it, reads [82]

K(z) = ∑
ζ

Γζ(z)R(θζ(z))K̄(ζ)R>(θζ(z)), (3.79)

where Γζ and θζ(z) are the strength and angle of perturbation ζ. Matrix
R is a rotation operator, which, by definition, does not change the
strength of the perturbation. The form of matrix R is that of a block
diagonal matrix, where each block corresponds to a different manifold
of degenerate modes [109]. Hereinafter, in each group of degenerate
modes, we order the modes by alternating x and y polarizations of the
even degeneracy, and then the x and y polarizations of odd degeneracy.
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With this notation, for manifolds with azimuthal order 0, e.g. the LP01

group, the corresponding block can be written as [15]

R0(θ) =

(
cos θ − sin θ

sin θ cos θ

)
, (3.80)

while for manifolds of order n, it reads [15]

Rn(θ) =

(
R0(θ) 0

0 R0(θ)

)(
cos(nθ)I − sin(nθ)I

sin(nθ)I cos(nθ)I

)
, (3.81)

where 0 and I are the 2× 2 zero-valued and identity matrices, respec-
tively.

Here, as in [82], we focus only on the effect of stress birefringence
and core ellipticity, which are perturbations that are closely related
one another, as they are mainly due to the fiber manufacturing process.
With this consideration, we assume that they act on the fiber with the
same perturbation angle, and contribute equally to the overall strength
[120, 121]. Following this hypothesis, the total coupling matrix for the
case of stress birefringence and core ellipticity can be simplified and
written as

K(z) = Γ(z)R(θ(z))K̄(t)R>(θ(z)), (3.82)

where K(t) = K̄(e) + K̄(b), is the total, unnormalized coupling matrix,
while K̄(e) and K̄(b) are the normalized coupling matrices for core
ellipticity and stress birefringence, respectively.

In order to model the evolution of these perturbations along the
fiber, we use the well-known fixed-modulus model (FMM), which is
commonly used in the study PMD in SMFs [122]. According to this
model, the strength of the perturbation remains constant along the
fiber, while their angle θ varies according to a Wiener process [122]

dθ

dz
= −σθw(z), (3.83)

where w is a Gaussian white noise process with zero mean and unit
variance, and σθ is related to the correlation length Lc of the process
[122]

σθ =
1√
2Lc

. (3.84)

Recalling that the multiplication of a matrix by a scalar has the effect
of scaling its eigenvalues by the same amount, we can set the strength
of the total perturbation, or equivalently, the coupling beat length, by
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simply multiplying the total normalized matrix K̄(t) by the appropriate
amount. Under the FMM, this translates to setting

Γ(z) = Γ0 =
2π

Lκ
. (3.85)

The use of the FMM is justified when considering intrinsic perturba-
tions such as birefringence and core ellipticity resulting from fiber
manufacturing; it is in fact reasonable to assume that the drawing pro-
cess is stable enough to induce negligible birefringence variations. On
the other hand, for extrinsic perturbations like e.g. twisting or bending
that depend on the deployment and installation of the fiber cable,
models that account for the change of the perturbation strength along
the fiber (such as the random modulus model) are more appropriate,
and better capture the localized nature of some of these effects.

The most common way to numerically model the evolution of the
perturbations along the fiber is to discretize the Wiener process defin-
ing the angle of the perturbations. This is accomplished by dividing the
optical fiber in a series of Ns plates, each of size δz = L/Ns, where L
is the total length of the fiber. [82, 112, 123–125]. The number of plates
must be sufficiently high so that the angle θ(z) can be considered
almost constant over their length, meaning that δz� Lc.

Over the length of the k-th plate, the propagation equation then
assumes the following form

∂a
∂z

= L(θk)a z ∈ [kδz, (k + 1)δz], (3.86)

with

L(θk) = −
α

2
+ j
[

B +
2π

Lκ
R(θk))K̄(t)R>(θk)

]
. (3.87)

This means that the propagation over a single plate has a closed form
solution written as

a(k + 1) = exp[L(θk)δz]a(k). (3.88)

This fact brings a significant advantage when dealing with the nu-
merical solution of the linear part of eq. (3.39): if this were not the
case, we would need to apply conventional integration schemes such
as the Euler or Runge-Kutta scheme with a step size that is substan-
tially smaller than the minimum beat length involved, which is a least
Lβ = 2π/∆β, resulting in integration steps of fractions of millimeters.

Numerically, the matrix exponential in eq. (3.88) can be computed
with a single eigenvalue decomposition. Indeed, recalling that B is
diagonal, that the rotation matrices R are orthogonal, that K is Hermi-
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tian and thus diagonalizable, and that for two n× n complex matrices
X, Y it holds that [126]

exp
[
XYX−1

]
= X exp[Y]X−1, (3.89)

we can solve eq. (3.88) by computing the eigenvalues λi and the matrix
of eigenvectors M of L(θk), obtaining

exp[L(θk)δz] = M exp[Λδz]M−1 (3.90)

with Λ = diag(λ0, . . . , λn−1). As a consequence, the step size required
to accurately follow the evolution of the vector of complex amplitudes
should only be a fraction of the correlation length of the Wiener
process describing the orientation of the perturbation, which is usually
in the order of tens of meters, allowing us to significantly speed up
the numerical integration of the propagation equations.

3.3.2 Nonlinear propagation

In the previous section we introduced the theoretical and numerical
model for the propagation of multiple modes of a FMF in the presence
of linear propagation effects, highlighting how a closed-form solution
can be determined on sub-intervals of the integration domain. Apart
from specific and simplified cases, this is not true when dealing with
only nonlinear phenomena, more so when both linear and nonlinear
effects act together during propagation.

The typical approach in such cases is to employ the so-called split-
step integration schemes [114, 127–129]. In this framework, we assume
that in the propagation over a short portion of the fiber of length h,
linear and nonlinear effects act independently. As such, the propaga-
tion from position z to z + h can be carried out in two separate steps.
In the first step, linear effects act alone, and the propagation is solved
using the methods detailed in the previous section. In the second
step, the nonlinear operator is applied on the linearly propagated field
computed in the first step.

Helped by the fact that the length scale of nonlinear effects is
typically much longer than that of linear effects [103, 125, 130], we can
safely use the same step size employed for the sole linear propagation,
that is, fractions of the perturbation orientation correlation length, as
done, for example, in [125].

Rewriting eq. (3.39) for the pump and signal frequencies ωp and
ωs, and collecting its linear and nonlinear components, the following
system of equations is found
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∂a(z; ωs)

∂z
= L [a(z; ωs)] +N

[
a(z; ωs), a(z; ωp)

]
(3.91)

∂a(z; ωp)

∂z
= L

[
a(z; ωp)

]
+N

[
a(z; ωp), a(z; ωs)

]
, (3.92)

where L and N contain all the linear and nonlinear contributions, re-
spectively. Using the split-step integration algorithm, the propagation
over the k-th plate of the fiber is then found to be

a(L)(k + 1; ωs) = exp[L(θk; ωs)δz]a(k; ωs) (3.93a)

a(L)(k + 1; ωp) = exp
[
L(θk; ωp)δz

]
a(k; ωp) (3.93b)

a(k + 1; ωs) = exp
[
N
[
a(L)(k + 1; ωs), a(L)(k + 1; ωp)

]
δz
]

(3.93c)

a(k + 1; ωp) = exp
[
N
[
a(L)(k + 1; ωp), a(L)(k + 1; ωs)

]
δz
]

(3.93d)

Numerically, eq. (3.93a) and eq. (3.93b) are solved using the formula
in eq. (3.90), while the nonlinear operators in eq. (3.93c) and eq. (3.93d)
are computed with a fourth-order Runge-Kutta scheme. It should be
noted that in this formulation, co-propagation of signal and pump is
assumed.

3.4 results

As detailed in the previous section, we consider a few-mode fiber
Raman amplified link in which only two wavelengths are propagat-
ing; one acting as the Raman pump, and the other consisting of the
information-bearing signal to be amplified, each in the constant-wave
(CW) regime. The signal frequency corresponds to the wavelength
λs = 1550 nm, while the pump is frequency up shifted by 12 THz,
approximately corresponding to the frequency detuning for which the
imaginary part of the Raman response is maximized.

We simulate two different FMFs, each with a step-index profile,
supporting 2 (LP01 and LP11) and 4 (LP01, LP11, LP21, and LP02) groups
of LP modes, respectively. Both fibers have a cladding diameter equal
to dcl = 120 µm and a core diameter equal to dco = 12 µm; the core
refractive index set to nco = 1.46, while their cladding refractive index
ncl is calculated to ensure that the number of supported modes at
signal and pump frequencies is the same.

The two fiber geometries have been simulated using the commercial
finite-element method (FEM) solver COMSOL ©Multiphysics [131],
which computes the propagation constant and the field distribution of
each guided mode.
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As the true modes supported by the fiber belong to the family
of hybrid modes, a standard combination procedure is applied to
convert them to LP modes [98, 132]. Additionally, since the solver
uses a reference frame which is rotated by an arbitrary angle for the
computation of each mode, an additional orthogonalization step is
applied to align the modes on a common Cartesian reference frame.
Finally, the mode distribution functions are normalized according to
eq. (3.15).

The integrals in eq. (3.25) and table 3.1 are then numerically eval-
uated for both signal and pump frequencies to obtain the linear and
nonlinear coupling coefficients, respectively.

3.4.1 Linear coupling matrices

As previously introduced, we only consider the combined effect of
stress birefringence and core ellipticity on the overall propagation
dynamics.

Their effect is included by properly modeling the tensor of dielectric
perturbation ∆ε̃ which appears in the expression of the linear cou-
pling coefficients of eq. (3.25). Depending on the form of the tensor,
coupling between different modes can occur either among transverse
components of the field, resulting in a strong interaction, or between
longitudinal components, causing weaker effects.

3.4.1.1 Birefringence

For the case of stress birefringence, the tensor of perturbation reads
[15, 109]

∆ε̃(x, y) = n(x, y)δn

1 0 0

0 −1 0

0 0 0

 , (3.94)

where n(x, y) and δn are the refractive index distribution of the fiber
and the fiber birefringence, respectively. The explicit computation of
the coupling coefficients reveals that birefringence is simply responsi-
ble for the detuning of the x- and y- polarization of each spatial mode
[15]. Consequently, due to orthogonality conditions, coupling only
occurs between transverse components of the modes belonging to the
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same group [109]. In fact, the theoretical coupling matrices for groups
LP0,p and LPn,p, with n > 0, read

K0,p = c0,p

(
1 0

0 −1

)
Kn,p = cn,p


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , (3.95)

where cn,p are properly defined coefficients [15].

3.4.1.2 Core ellipticity

In the case of an elliptical core, the perturbation in polar coordinates
reads [15, 109]

∆ε̃(r, φ) ' γ(n2
co − n2

cl)δ(r− rco) cos 2φ, (3.96)

where γ represents the overall ellipticity in terms of maximum radius
variation and δ(·) is the Dirac function. As detailed in [109], core
ellipticity causes coupling between the transverse components among
modes with azimuthal order 1 and among modes whose azimuthal
order differs by 2. Coupling between longitudinal components instead
occurs among modes with the same azimuthal order or with orders
differing by 4. This means that in a fiber supporting only the LP01 and
LP11 groups, no inter-group coupling occurs. Differently, if the fiber
also supports the propagation of the LP21 and LP02 groups, strong
inter-group coupling is expected for the LP01-LP21 and LP02-LP21 pairs,
while weak inter-group coupling is predicted between the LP01 and
LP02 groups.

3.4.1.3 Numerical computation

From the theoretical formulation of the tensor of perturbation, the
linear coupling integrals are numerically evaluated for both the pump
and the signal frequency, using reference values of birefringence δ̄n
and ellipticity γ̄.

Some post-processing steps are also applied:

1. given that the coupling coefficients must be real for both bire-
fringence and core ellipticity, the residual imaginary part of the
corresponding matrices is set to 0;

2. following eq. (3.25), Hermitian symmetry is imposed;

3. the coupling rules detailed in section 3.4.1.1 and section 3.4.1.2
are enforced in order to remove spurious interaction between
uncoupled modes;



3.4 results 71

LP01 LP11

LP01

LP11

(a)

−0.0005

−0.0004

−0.0003

−0.0002

−0.0001

0.0000

LP01 LP11

LP01

LP11

(b)

−6

−5

−4

−3

−2

−1

0

Figure 3.4: Linear coupling matrices for the 2-modes fiber for (a) stress bire-
fringence and (b) core ellipticity. Values are reported in logarith-
mic scale.
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Figure 3.5: Linear coupling matrices for the 4-modes fiber for (a) stress bire-
fringence and (b) core ellipticity. Values are reported in logarith-
mic scale.

4. in order to ensure that the computed matrices have unit strength,
they are then scaled by the difference between their biggest
and smallest eigenvalues, i.e. their coupling strength. As the
perturbation strength depends linearly on δn and γ, the reference
birefringence and ellipticity values can be scaled by the same
amount.

The absolute value of the resulting linear coupling matrices for the
2-modes (4-modes) fiber are reported in logarithmic scale in fig. 3.4
(fig. 3.5).

Once the normalized matrices K̄(e) and K̄(b) are obtained, along with
their reference birefringence δ̄n and ellipticity γ̄, the total normalized
linear coupling matrix K̄(t) is obtained by adding the two matrices
and normalizing it by its coupling strength.

This matrix is computed once for each frequency, and scaled accord-
ingly during simulation to obtain the desired total coupling strength
∆κ or beat length Lκ.
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Figure 3.6: Equivalent birefringence δn and core ellipticity γ for a given
coupling beat length Lκ , for the two fibers considered.

From this value, the corresponding birefringence and ellipticity
parameters are retrieved using the approximation

∆κ ≈ ∆κe + ∆κb =⇒ ∆κe = ∆κb ≈
1
2

∆κ, (3.97)

where ∆κ = 2π/Lκ is the overall coupling strength, obtaining

δn ≈ π

Lκ
δ̄n, γ ≈ π

Lκ
γ̄. (3.98)

Using these relations, we can simply map a given coupling beat
length to the corresponding physical parameters. They are illustrated
in fig. 3.6 for a wide range of possible beat lengths.

The approximation is validated numerically, determining that it
introduces relative error of ≈ 1 % on the total beat length.

3.4.2 Optimization of the nonlinear step

As pointed out in [99], depending on the symmetry properties of the
particular fiber that is being studied, many of the overlap integrals
Q(i)

νρµη compute to 0, not contributing to the propagation dynamics.
This detail can help us optimize the integration algorithm presented

earlier by reducing the number of combinations of modes to compute
at each integration step, which is the dominating contribution to the
total complexity of the numerical solver.

Since the mode distributions are computed with a FEM solver, nu-
merical errors can break their symmetry, resulting in overlap integrals
that are not identically equal to 0. We tackle the issue of identifying
which coefficients should be discarded by following the approach
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Figure 3.7: Statistics of the overlap integrals for the two considered fibers.
Represented is the maximum with respect to the index i, at the
signal frequency ωs, corresponding to λs = 1550 nm.

.

detailed in [99], comparing the relative magnitude of the coefficients
to their maximum value. Given a threshold coefficient ε, and the index
i defining which of the 5 nonlinear terms we are considering, we only
compute the nonlinear contributions for the overlap integrals that
satisfy

|Q(i)
νρµη | > ε max

νρµη
|Q(i)

νρµη |, i ∈ 1, . . . , 5. (3.99)

As an example, by setting ε = 0.01, we only consider the overlap
integrals which are, in magnitude, greater than 1 percent of the biggest
coefficient. This metric is visualized in fig. 3.7 as a function of the
threshold parameter ε, both for the 2-mode and the 4-mode fiber that
we are simulating, showing worst-case scenario, i.e. the maximum
over the 5 nonlinear terms.

We can observe that for both fibers, using ε = 0.01, only about
10 percent of the coefficients would not be discarded, resulting in a
significant speedup of the simulations.

We ran a series of simulations to evaluate the effect of using this
technique noting no significant changes, confirming the viability of
the approach. For this reason, the results presented in this thesis are
all obtained using a threshold parameter of ε = 0.01.

3.4.3 Simulation results

With the theoretical and numerical models defined, the equations
in eq. (3.39) can be integrated for the two different fibers that have
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been previously introduced, aiming to understand how different lev-
els of linear coupling can influence the statistics of the distributed
amplifier’s gain. For the specified levels of perturbation length Lκ

and correlation length Lc, we solve eq. (3.39) for an ensemble of Ne

different realizations of the process describing the orientation angle
θk(z) of the perturbations acting on the fiber, obtaining the evolution
of the vector of complex amplitudes a(z; ωs) for each realization.

Remembering the way in which the entries of a are organized, i.e.
with alternating x- and y- polarizations of a mode, the total power in
each spatial mode at the signal frequency ωs is given by

Pν(z) = |a2ν(z)|2 + |a2ν+1(z)|2, ν ∈ [0, . . . , Ns − 1], (3.100)

where Ns is the number of spatial modes, which is equal to 3 for the
2-mode fiber and to 6 for the 4-mode fiber. The amplifier gain for
mode ν is then computed for the kth realization of the process θk(z) as

Gν(k) =
Pν(L; θk)

Pν(0; θk)
, (3.101)

computing its ensemble mean as

〈Gν〉 =
1

Ne

Ne

∑
k=1

Gν(k). (3.102)

From the same quantities, the normalized signal power variance at
the end of the amplifier can also be evaluated as [111]

σ2
ν =
〈P2

ν (L; θk))〉
〈Pν(L; θk)〉2

− 1, (3.103)

where 〈·〉 indicates the mean over the ensemble of perturbation real-
izations, as in eq. (3.102).

Regarding the simulation parameters, we set to 0 the coefficient
σ related to Kerr effects, in order to focus only on Raman-related
phenomena. To this end, we set the peak Raman gain coefficient to
gR = 1× 10−13 m W−1, and use eq. (3.59) to obtain the corresponding
values of the response functions. We consider no MDL, and set the fiber
loss coefficient to αs = αp = 0.2 dB km−1. Recalling the considerations
made in section 3.4.2, a threshold parameter of ε = 10−2 was set
to optimize the computation of the nonlinear part of the equations
in the split-step algorithm, whose step size is set to δz = Lc/10.
The information-bearing signals have an initial power of −40 dBm per
spatial mode, while a total of 1 W is launched on the pump wavelength,
equally distributed among the supported modes.
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The length of the simulated fibers is set to 50 km, which has been
verified to be sufficient for the amplification dynamics to be fully
exhausted for our simulation conditions.

The metrics in eq. (3.102) are evaluated for two different initial
conditions on the polarization of both pump and signal modes. In the
first case, the polarization of each spatial mode at the start of the fiber
for the signal frequency is set to be linear and parallel to that of the
modes of the pump, with the corresponding sub-vector of complex
amplitudes at z = 0 reading

aν(0; ωs) =
√

Pν(0; ωs)

(
1

0

)
aν(0; ωp) =

√
Pν(0; ωp)

(
1

0

)
(3.104)

On the contrary, the second case considers orthogonal linear polariza-
tions between signal and pump, defining the following sub-vectors at
the start of the fiber

aν(0; ωs) =
√

Pν(0; ωs)

(
1

0

)
aν(0; ωp) =

√
Pν(0; ωp)

(
0

1

)
. (3.105)

3.4.3.1 2-mode fiber

Starting with the simulated 2-mode fiber, the ensemble average 〈Gν〉
for these two cases is represented as a function of the perturbation beat
length Lκ in fig. 3.8, indicated by the symbols ‖ and ⊥, respectively.
Correlation lengths of 10 m (left) and 100 m (right) are considered. The
number of simulated fibers for each combination of parameters is set
to Ne = 5000.

Focusing on the case of Lc = 10 m, we can clearly discern three
regimes of propagation for the given fiber length, similarly to the case
of randomly-birefringent SMFs [112]. For low degrees of birefringence,
i.e. Lκ � 1, the mean gain is maximized on each mode for parallel
input polarizations, reaching ≈ 41 dB for the LP11 modes, and ≈ 37 dB
for the LP01 mode. The higher gain experienced by the LP11 with
respect to the LP01 is explained by the fact that the higher order mode
group is pumped with twice the power of the fundamental one due
to its 4-fold degeneracy. The difference in pumping power, together
with the efficient nonlinear interaction between the two degenerate
spatial modes forming the LP11 group , counterbalances its larger
effective area (lower nonlinear overalap integral). In this regime, with
orthogonal input polarizations, the gain is instead minimized, almost
totaling the link-losses of 0.2 dB km−1 × 50 km = −10 dB; it is not
exactly equal since a small gain exists for orthogonally-polarized
pumps, as seen in section 3.2. In this regime, the only interaction
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Figure 3.8: Mean gain of the spatial modes of the considered 2-mode fiber
as a function of the coupling beat length, for two values of corre-
lation length. Represented are the cases when signal and pump
polarization are parallel (indicated with ‖), and when the two are
orthogonal (indicated with ⊥), at the start of the fiber.

.

between the three modes is determined by the nonlinear coupling
through the overlap integrals Qνµρη . The relative angle between the
pump and signal polarization remains almost constant along the fiber
due to the low values of coupling, explaining the observed behavior.

For intermediate birefringence values, when pump and signal polar-
izations are aligned at the input, the resulting gain quickly decreases,
as the effect of linear coupling begins to scramble their relative orien-
tation, reducing the Raman gain efficiency. It is interesting to note the
presence of several inflection points that are present in this regime for
all three modes, although they are more accentuated for the case of
the LP11 modes. The opposite is true for the case of orthogonal polar-
izations, where the effect of linear coupling is beneficial to increase the
amplifier gain. In this condition, similarly to the SMF case, the gain
for all three modes first reaches a maximum value before decreasing
again.

In the high-birefringence regime instead, for Lκ � 1, the alignment
between pump and signal polarization is quickly lost due to the rapid
exchange of power inside the group of degenerate modes, and the
gain converges to the same average value both for the parallel and
orthogonal input polarizations. Here we notice the first difference with
respect to the case of SMFs, where the amplifier gain in high PMD
conditions is approximately half (in dB) of that obtained with no PMD.
In fact, the gain of both LP11a and LP

11b modes is reduced to just 10 dB,
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Figure 3.9: Signal power variation of the gain of the 2-mode amplifier as a
function of the coupling beat length, for Lc = 100 m, for parallel
(left column, ‖) and orthogonal (right column, ⊥) relative polar-
ization orientation between pump and signal. Top row: power
variation of the individual modes. Bottom row: power variation
on the mode groups.

resulting in the reduction of the equivalent gain coefficient of about 4,
while the LP01 mode sees its average gain reduced to approximately
14 dB. Increasing the correlation length to 100 m, the dynamics remain
unaltered, but shifted toward higher beat length values.

At first sight it might seems that the MDG on modes of the LP11

group is zero for any value of birefringence, essentially confirming the
results of [57] stating that the Raman gain can be considered equalized
among the quasi-degenerate modes of each group.

Further insights can be gained by analyzing the signal power fluctu-
ations through the evaluation of its standard deviation, as in eq. (3.103).
In fig. 3.9, its value is represented as a percentage, and depicted for
each mode as a function of the coupling beat length for the paral-
lel (top left) and orthogonal (top right) polarization case, and for a
correlation length of Lc = 100 m.

We can observe two different behaviors, depending on the modes we
consider. Starting from the LP01 mode, for parallel polarizations, the
three birefringence regimes highlighted previously for the amplifier
gain are clearly recognizable. For extreme values of beat lengths, the
signal variation goes to 0, resulting in stable output power and a
clearly defined gain. On the other hand, for intermediate values of
Lκ, two clearly defined peaks reaching a value of approximately 45

% appear. This is consistent with what has been demonstrated in the
case of SMFs, albeit in the counterpumping configuration.
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Regarding the modes belonging to the LP11 group, a similar be-
havior is found for long beat lengths, where the signal fluctuations
are negligible. Differently, for intermediate values of birefringence,
the standard variation is fairly higher than the LP01 mode, reaching
70%, and showing a local maximum for much longer beat lengths.
Additionally, in the high birefringence regime, the fluctuations do not
decrease to 0 as for the fundamental mode, but instead remain con-
stant at approximately 50%. This behavior can be intuitively explained
by the fact that in the LP11 group is 4-fold degenerate, meaning that
the power exchange occurs both between polarizations and spatial
modes, as seen in the analysis of its linear coupling matrices. This
means that the LP11a and LP

11b modes act as the individual polar-
izations of e.g. the fundamental mode of a SMF system, in which
PMD makes the Stokes vector of the amplified signal to randomly
explore the Poincaré sphere, varying the power in each polarization
depending on the specific realization of the birefringence process. In
order to verify this, we compute eq. (3.103) on the total power con-
tained in the LP11 group, and illustrate the results for parallel input
polarizations in the bottom left graph of fig. 3.9. A similar behavior to
that of the fundamental mode is now obtained, with the group power
variation going to 0 for short beat lengths. This plot also emphasizes
the presence of two secondary peaks at approximately Lκ = 10−2.5 m
and Lκ = 103 m, with the latter being significantly more prominent
with a peak value of 30%. Interestingly, for the values of Lκ near this
peak, a small increase in the signal variance is observed for the LP01

mode, which, in absence of inter-group coupling, can be explained by
the Raman interaction between the two groups through the overlap
integrals Q. The location of these peaks correspond to that of the in-
flection points observed in the behavior of the average gain, in fig. 3.8.
The same considerations can be made for the case of orthogonal input
polarizations from the top right and bottom right graphs of fig. 3.9,
showing the same dynamics, although much more accentuated.

These results show that the gain equalization inside each mode
group is only obtained in the average sense, since random coupling
caused by residual stress birefringence and core ellipticity of the fiber
can make the power on each spatial mode fluctuate significantly for
realistic values of Lκ. The equalization of the LP11 mode reached for
Lκ � 1 is also, evidently, not resulting from coupling, but can be
instead explained the symmetry of the nonlinear coefficients Q.

Moreover, the total power of the entire group only shows negligible
fluctuations for really low values of beat length, observed typically in
polarization-maintaining FMFs [133].
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Figure 3.10: Mean gain of the spatial modes of the considered 4-mode fiber
as a function of the coupling beat length, for Lc = 100 m. Rep-
resented are the cases when signal and pump polarization are
parallel (indicated with ‖), and when the two are orthogonal
(indicated with ⊥).

3.4.3.2 4-mode fiber

Using the models for birefringence and core-ellipticity detailed in
section 3.4.1, and from the results of the previous sections, we saw
that no linear inter-group effects are present for a 2-mode fiber. When
considering a fiber that supports 4 groups of LP modes instead, inter-
group coupling is expected between the LP01, LP02, and LP21 groups,
as a result of the core-ellipticity perturbation tensor. Modes of the
LP11 group instead only experiences intra-group coupling, meaning
that similar behaviors to the 2-mode fiber are expected for this group.
Employing the same simulation conditions detailed in the previous
section, the average gain and signal power fluctuations are obtained
using an ensemble of Ne = 5000 realizations of the perturbation pro-
cess. Here, the analysis is limited to the case in which the correlation
length is Lc = 100 m since by changing its value equivalent results
are obtained, provided that the perturbation beat length is properly
scaled, as seen from the results for the 2-mode fiber.

The mean gain 〈Gν〉 is visualized in fig. 3.10 as a function of the
beat length Lκ, considering parallel (indicated with ‖) and orthogonal
(indicated with ⊥) input polarizations between pump and signals.

Similar results to the 2-mode fiber are found in the strong birefrin-
gence regime: for parallel polarizations, the gain is maximized, with
LP11 modes experiencing the highest amplification of approximately
42 dB and the LP02 mode showing instead the smallest gain, at 24 dB.
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LP01 and LP21 groups instead exhibit a maximum gain of 35 and 37 dB,
respectively. For orthogonal input polarizations the gain is minimized,
and equal to approximately -8 dB for each mode, showing a 2 dB
reduction of the total link losses due to the minimal contribution of
the cross-polarized Raman response on the amplification process.

Decreasing the beat length, the effect of inter-group coupling can be
readily observed for parallel polarizations, and is most apparent on the
behavior of the average gain of the LP02 mode, which quickly merges
with the curves for the LP21 modes for beat length values in the order
of 102 m. Soon after, the LP01 gain joins the aforementioned curves,
becoming fully coupled for Lκ ≈ 101.5 m and forming a "supergroup".
This is in accordance with the computed coupling matrix for core-
ellipticity in fig. 3.5 (b), where we can observe the slightly higher
coupling coefficients between the LP02-LP21 group pair with respect
to the LP01-LP21 combination. For typical values of birefringence δn ≈
10−7 for SMFs, corresponding to a beat length Lκ ≈ 10 m following
fig. 3.6, the effect of linear inter-group coupling has to be accounted
for even when modest span lengths of 50 km are considered. When
extrinsic perturbations such as twisting and bending, deriving mostly
from cabling and installation, are considered, the effect of inter-group
coupling on the Raman gain is expected to be enhanced, and valid
for shorter spans under the same birefringence and core ellipticity
parameters. Regarding the orthogonal polarizations case, the effect of
inter-group coupling is similar, although the convergence between the
LP21 and LP02 group pairs is reached for slightly longer beat lengths.
The general behavior of reaching a local maximum gain observed in
the 2-mode case is also present for all the modes except the LP02, for
which the increase is monotonic.

Finally, for high birefringence values corresponding to beat lengths
Lκ < 1 m, the curves for parallel and orthogonal polarizations con-
verge to a common average gain of 10 dB and 13 dB for the LP01-LP21-
LP02 supergroup and the LP11 group, respectively.

As a general remark, modes belonging to groups with 4-fold de-
generacy, i.e. LP11 and LP21, maintain the same average gain for the
entire interval of considered beat lengths, regardless of the relative
orientation of pump and signal polarizations, similarly to the case of
the 2-mode fiber.

Next, the signal power fluctuation is evaluated for each mode with
eq. (3.103) and illustrated in fig. 3.11 as a function of the beat length
Lκ. The figure is organized similarly to the case of the 2-mode fiber,
with the left and right columns corresponding to the parallel and
orthogonal polarizations cases, indicated with ‖ and ⊥, respectively;
the top row corresponds to the power fluctuation evaluated on each
individual spatial mode, while the same metric computed on the total
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Figure 3.11: Signal power variation of the 4-mode amplifier as a function of
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.

power of the LP11 and the LP01-LP21-LP02 supergroup is depicted in
the bottom row.

Starting from the parallel polarizations case, we can see from the
top-left graph of fig. 3.11 that the signal power variation on each
mode behaves similarly, presenting negligible fluctuations when the
birefringence is unrealistically low, for Lκ > 104 m. Decreasing the
beat length, the variance quickly increases up to a maximum of 100%
when Lκ ≈ 101.5 m, i.e. when the LP01-LP21-LP02 supergroup is formed.
Interestingly, even though no inter-group coupling affects the LP11

group, its variance is increased with respect to the 2-mode fiber case,
which can be explained by the nonlinear coupling occurring with
each mode forming the supergroup. For low birefringence, the power
fluctuation stabilizes to about 50% for the LP11 mode, and to 55%
for the modes that constitute the supergroup. In this case, the high
power fluctuation that we have so far encountered just for the 4-
fold degenerate modes is also present for the LP0,p groups consisting
of just the two polarization degeneracies, as a consequence of core
ellipticity causing inter-group coupling between those modes, as seen
in section 3.4.1.

If we consider the variance of the total power of the LP11 groups and
LP01-LP21-LP02 supergroup, the high-fluctuations that are present in
the high-birefringence regime quickly decay for beat lengths approach-
ing Lκ = 1 m, as can be observed in the bottom-left graph of fig. 3.11.
The highest signal variation is still obtained at Lκ ≈ 101.5 m for both
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supergroups, each reaching fluctuations of about 55%. Comparing
these results with those obtained for the 2-mode fibers, we can notice
the absence of multiple prominent peaks; instead, a weak increase can
be noticed at Lκ ≈ 103 m for the LP11 group, where an inflection point
is present in the corresponding gain curve in fig. 3.10.

These effects become enhanced when considering orthogonal input
polarizations, as seen in top- and bottom- right graphs of fig. 3.11,
where the peak we observed at Lκ ≈ 103 m for parallel polarizations is
dramatically more evident for modes belonging to both groups. Con-
sidering the variation on the individual spatial modes, the fluctuation
increases with the average gain of the respective mode, as seen in
fig. 3.10.

3.5 conclusions

In this chapter, a theoretical and numerical model that describes the
propagation dynamics of the modes on two different wavelengths of
a distributed Raman-amplified FMF links has been derived. Using
analytical models present in the literature, the effect of intrinsic per-
turbations such as stress birefringence and core ellipticity, originating
from the fiber manufacturing process, have been used to derive the
linear coupling coefficients for two FMFs, supporting 2 and 4 groups
of LP modes, respectively. The statistics on the gain of the amplifier
have been gathered by simulating thousands of realizations of the
stochastic linear coupling process described by the angle θ(z) along
which the birefringence and core ellipticity perturbations are aligned.

For the 2-mode fiber, the considered perturbations induce coupling
among the quasi-degenerate modes belonging to the same LP group.
Interaction between the two groups only occur through the nonlinear
coupling coefficients that determine the Raman amplification process.
Three coupling regimes are identified, extending the results of SMF
systems. When mode coupling is weak or negligible, the average gain
on each mode is maximized (minimized) when signal and pump po-
larizations are parallel (orthogonal) at the fiber input, with the output
signals showing no power fluctuations. As coupling increases, the aver-
age gain starts to decrease (increase), and the power variation on each
mode group is maximized. Finally, for high values of birefringence,
the average gain on each mode group for parallel and orthogonal
input polarizations reach the same value. In this condition, the total
power of each group of modes also shows reduced fluctuations.

When considering a FMF supporting the propagation of 4 groups
of LP modes similar effects can be observed, with the addition of
core ellipticity causing inter-group coupling between the LP01, LP21,
and LP02 groups. For typical values of birefringence, the average gain
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of each mode belonging to this "supergroup" converges to the same
value for a 50 km-long fiber. At the same time, in this regime, high
fluctuations of the signal power can be observed.

In general, in the strong-coupling regime characterized by high
birefringence values, the fluctuations of the total power of the group
of coupled modes tends to zero, but the power on each spatial mode
keeps exhibiting high variance, behaving similarly to the individual
polarization components in a SMF system, in which PMD causes the
Stokes vector of the fundamental mode to rotate on the Poincaré sphere
and causing a rapid exchange of power between each orthogonal
polarization states. Furthermore, this regime is unlikely to be reached
in a single span, with practical values of birefringence corresponding
to beat lengths in the order of tens of meters, becoming relevant only
when considering long-haul multi-span transmissions.
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P R I N C I P L E S O F S U P E R C O N T I N U U M G E N E R AT I O N

4.1 introduction

As introduced in chapter 1, when a short, high-power optical pulse
propagates through a medium, the interplay between its dispersive
and nonlinear properties contributes to a massive broadening of the
initial pulse spectrum, forming what is known as supercontinuum (SC).
Spectral broadening and the generation of new frequency components
is an inherent feature of nonlinear optics, and has been studied in
bulk materials since the 1960s after the discovery of the laser. In fact,
in just a few years, from 1961 to 1966, second harmonic generation,
frequency mixing, parametric generation, third harmonic generation,
four-wave mixing (FWM), self-phase modulation (SPM), self-focusing,
stimulated Brillouin scattering (SBS), and stimulated Raman scattering
(SRS) were all characterized in a variety of different materials [134].

However, it was not until the early 1970s, thanks to the seminal work
by Robert R. Alfano and Stuart L. Shapiro [135], that mechanisms to
generate an extended "white light" source where first demonstrated
and later applied for time resolved spectroscopy using picosecond
pulses in a borosilicate glass sample [136].

During these years of early research in the field, this phenomenon
was commonly referred to as frequency broadening, anomalous fre-
quency broadening, or white light generation; the first use of the term
"supercontinuum" is attributed to Gersten, Alfano, and Belic after
describing the theory of the interaction between SPM and SRS [137].
Thanks to the development of low-loss optical fibers, the same effects
characterized previously in bulk media were soon demonstrated in
silica fibers at much lower power levels. Optical fibers then became
the preferred medium to study nonlinear optical effects, leading to
the birth of the field of nonlinear fiber optics. From 1972 to 1978, most
of the effects that play a major role in supercontinuum generation in
optical fibers were demonstrated, including SRS, SBS, the optical Kerr
effect, FWM, SPM [134].

Optical soliton generation, a key process in supercontinuum genera-
tion in fibers, arising from the balance between SPM and anomalous
dispersion, was first theorized in optical fibers in 1973 [138] and ex-
perimentally demonstrated only in 1980 [139] due to technological
challenges involved in developing sources capable of delivering pi-
cosecond pulses in the anomalous dispersion regime of silica-based
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fibers, near 1.3 µm. When the fiber pumped in this region, these unper-
turbed sub-picosecond pulses forming in the fiber propagate with high
peak power, barely affected by pulse broadening due to dispersion,
and interact with SRS and FWM to produce a continuum extending to
the long-wavelength region of the spectrum [140].

Even though theoretically solitons form under strict conditions on
the input pump pulse, it was demonstrated that any reasonable pulse
shape will evolve into a soliton [141]. The energy that is not required
to form solitons, in such cases, is "shed" into what are known as
"dispersive waves", which are mainly responsible for short-wavelength
generation [142].

For a given pump wavelength the generated supercontinuum is
critically dependent on the nonlinearity and the dispersion. With the
advent of photonic-crystal fibers (PCFs), however, it was shown that
by adjusting the size of the air holes forming the photonic crystal and
their relative distance, control of the dispersion profile was possible
[134]. Fibers could then be manufactured with their zero dispersion
wavelength (ZDW) tuned to the available high power sources, in order
to take full advantage of the soliton dynamics for the generation of
SC.

Furthermore, PCFs supporting the propagation of a single mode
for any wavelength were demonstrated, improving the output beam
characteristics compared to conventional fibers due to precise con-
trol of the dispersion profile and avoiding inter-modal effects [143].
In addition, much higher nonlinear coefficients derived from a re-
duced effective mode field diameter could be achieved compared to
conventional fibers [144].

Combining the dispersion tailoring capabilities of PCFs with ad-
vances in fiber manufacturing process using materials with different
transmission windows than silica, such as tellurite, fluoride, or chalco-
genide, SC multiple-octave SC sources could be developed from the
visible [145] to the mid-infrared portion of the spectrum [146].

This flexibility, coupled with their extremely high brightness and
broad bandwidths, made SC sources a candidate for several appli-
cations, such as optical coherence tomography [147] and optical fre-
quency metrology [148], where a high degree of temporal coherence
is needed.

However, as detailed in [149], the soliton-driven dynamics that
generate SC by pumping in the anomalous dispersion region of the
fiber cause the temporal breakup of the injected pulse and a high
sensitivity to noise, which translates to high fluctuations of the output
spectrum and therefore loss of coherence.

A solution was proposed in [150], in the form of all-normal dis-
persion (ANDi) PCFs, which are designed to have a flattened convex
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profile of normal dispersion. By pumping the fiber near its minimum
dispersion wavelength (MDW) the pulse broadening is minimized,
and noise-sensitive soliton dynamics are avoided, with spectral broad-
ening being mainly associated to highly coherent SPM and FWM
processes. As a consequence, low noise-sensitivity and preservation of
the input pulse can be achieved, with uniform spectral and temporal
profiles [31].

In the following sections, the different linear and nonlinear phenom-
ena that are at the base of SC generation in optical fibers are reviewed.
A comparison between the conventional anomalous dispersion-based
SC and the ANDi SC regime is also given, highlighting the dynamics
at play.

The content of this chapter serves as a review of the physical processes
driving the phenomenon of SC, and is based on Refs. [26, 31, 134].

4.2 fundamental processes for sc generation

In the simplest case in which a single optical pulse, linearly polarized
at the carrier frequency ω0, is launched in the fiber as to excite only
a single mode, it can be shown [151] that its slowly varying complex
envelope A(z, t) satisfies the following propagation equation
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where α is the usual attenuation coefficient, γ is the nonlinear
parameter defined as

γ =
ω0n2(ω0)

c0Aeff
Aeff =

[∫∫
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]2∫∫
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, (4.3)

where n2 is the nonlinear refractive index of the considered fiber, Aeff
is its fundamental mode’s effective area, c0 is the speed of light in
vacuum, and the βm terms are the Taylor expansion coefficients of
the frequency-dependent propagation constant around the central
frequency ω0
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(ω−ω0)

2β2 + . . . , βm =

(
dmβ

dωm

)
ω=ω0

.

(4.4)



4.2 fundamental processes for sc generation 88

The integral in eq. (4.1) contains the nonlinear electronic and nu-
clear response of the material, contributing, respectively, to the Kerr
and Raman effects, as detailed in chapter 3. When considering pulse
propagation dynamics, it is usually decomposed in the following way

R(t) = (1− fR)δ(t) + fRhR(t), (4.5)

where fR is the fractional Raman contribution to the overall third order
nonlinearity.

As seen in chapters 2 and 3, the form of the response function can
either be obtained experimentally by measuring the Raman gain of the
material and using the Kramers-Kronig relation [152], or analytically
approximated as in [59, 153].

Although eq. (4.1) must be solved when considering the propagation
of ultrashort pulses, it can be simplified considerably pulses large than
a few picoseconds are considered. In fact, the Raman response function
hR(t) has an appreciable magnitude only for t < 1 ps, and can be
approximated with δ(t) for pulses wider than 3 to 4 ps. The derivative
term containing ω0, and dispersive terms higher than the third order
can be ignored, leading to the following equation:
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iβ2

2
∂2A
∂t2 −

β3

6
∂3A
∂t3 = iγ|A|2A. (4.6)

When losses and the third-order dispersion are neglected (α = 0,
β3 = 0), the equation is reduced to the familiar Nonlinear Schrödinger
Equation (NLSE) [151].

It is useful to introduced some normalized variables. Any input
pulse injected in a fiber has its amplitude described by A(0, t) =√

P0S(t/T0), where P0 is the peak pulse power, S(t) describes the
pulse shape, and T0 is a measure of the pulse width.

For a fiber of length L, the following normalized variables are
introduced

Z = z/L, τ = (t− β1z)/T0, A =
√

P0, exp(αz/2)U. (4.7)

defining a reference time frame moving with the pulse at the group
velocity, and including the exponential decay of the pulse amplitude
in the definition of the normalized amplitude U. Equation (4.6) then
assumes the form
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Figure 4.1: Effect of SPM on the spectrum of a Gaussian pulse for φmax = 40
[26].

where s = sign(β2), and the dispersion and nonlinear lengths, defined
as

LD =
T2

0
|β2|

, LNL =
1

γP0
. (4.9)

provide the length scales over which dispersive and nonlinear effects
become important.

The ratio between the two quantities can be used to determine if
either dispersion or nonlinear effects dominate each other. Defining

N2 =
LD

LNL
=

γP0T2
0

|β2|
, (4.10)

nonlinear effects become negligible when the fiber and the pulse
parameters are such that N2 � 1, and only the well-known dispersive
pulse-distortion dynamics are considered.

4.2.1 Self-phase modulation

When the fiber length L is such that L � LLD but L � LNL, the
dispersion terms become negligible with respect to the nonlinear term.
In this case, pulse propagation is dominated by SPM, which, when
acting alone, produces changes to the pulse spectrum but leaves its
temporal profile intact.

When N � 1, eq. (4.8) has a closed form solution which reads

U(L, τ) = U(0, τ) exp (iφNL(L, τ)) , (4.11)

where φNL(L, τ) = |U(0, τ)|2(Le f f /LNL), and Le f f = [1− exp(−αL)]/L
is the fiber effective length.

The time dependent phase φNL induces a chirp on the pulse, creat-
ing new frequency components as the pulse propagates in the fiber,
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broadening its spectrum. The maximum phase shift φmax occurs at the
pulse center, and is given by

φmax =
Le f f

LNL
= γP0Le f f . (4.12)

An example is given in fig. 4.1, where the original (dashed green)
Gaussian input pulse spectrum and the effect of SPM (solid blue),
are illustrated using γ = 2 W km−1, Le f f = 20 km, and φmax = 40 at
P0 = 1 W.

4.2.2 Soliton generation and fission

When the dispersion and nonlinear lengths are shorter or comparable
to the fiber length, dispersion and nonlinearity act together. When
third-order dispersion is negligible, β3 = 0, and the distance is nor-
malized as ξ = z/LD, eq. (4.8) becomes

∂U
∂ξ

+
is
2

∂2U
∂τ2 = N2e−αz|U|2|U|. (4.13)

In the anomalous dispersion case, it has been shown by Shabat and
Zakharov in their seminal paper that any system described by the
NLSE admits exact solutions in the form of solitons [154].

Under appropriate conditions, the balancing between dispersion
and SPM enables the spatial, temporal, and spectral preservation
of the propagating pulse. This happens when the initial pulse has
shape U(0, τ) = sech(τ), with peak power P0 and width T0 such that
N = 1. If the loss coefficient of the fiber α is sufficiently small, the
soliton propagates unperturbed over long distances. The value of the
parameter N determines the order of the soliton; the soliton that is
created for N = 1 is called "fundamental".

For integer values of N, higher order solitons are formed in the
fiber; instead of maintaining their temporal and spectral shape during
propagation, these solitons evolve in a periodical fashion. High order
solitons are, in fact, a nonlinear superposition of N fundamental
solitons, and their periodic interference can be efficiently used to
generate ultrashort pulses of only a few optical cycles, and is at the
basis of the soliton laser [26].

This behavior is caused by the fact that the fundamental solitons
forming the higher order soliton are propagating at the same speed
inside the fiber. When third-order dispersion is non negligible, their
propagation speed becomes slightly different and the high-order soli-
ton breaks up into N individual solitons with their own peak power
and temporal width in a phenomenon known as "soliton fission". Ad-
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Figure 4.2: Temporal (left) and (spectral) evolution of the fission process of a
high-order soliton(N = 3) caused by third-order dispersion. [26].

ditionally, during the fission process each individual soliton sheds
some of its energy in the form of dispersive waves. Due to phase-
matching considerations, these waves are blue-shifted with respect
to the original soliton, and are equivalent to the blue light emitted
from a Cherenkov radiation process [149]. This effect is clearly visible
in fig. 4.2, where the temporal (left) and spectral (right) evolution of
the fission process of a third-order soliton is illustrated when setting
δ3 = β3LD/6T3

0 = 0.02, N = 3, and using a sech input pulse.
After an initial phase in which the injected pulse compresses due to

the interference process between the three fundamental solitons, the
pulse breaks up and the individual soliton propagate with a slightly
different propagation velocity. At the same time, the high frequency
dispersive waves, identified on the right image as the vertical blue
line, rapidly lag behind the solitons.

Although from theory only hyperbolic secant pulses with specific
durations and peak powers can turn into soliton, it has however been
known since the early years of soliton physics that any reasonably
shaped pulse can evolve into a soliton, with their excess energy con-
verted in a blue-shifted dispersive wave [141].

4.2.3 Influence of Raman scattering

Another effect that disturbs the propagation of higher order soli-
tons and contributes to the soliton fission phenomenon is the pres-
ence of the Raman term in eq. (4.1). The Raman gain amplifies the
low-frequency components of the pulse at the expense of the high-
frequency content of the same pulse that overlap in time. After fission,
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Figure 4.3: Fission of a third-order soliton and corresponding red-shift due
to intrapulse Raman scattering. [26].

the spectrum of each fundamental soliton is shifted towards the longer
wavelengths due to SRS, inducing what is known as Raman-induced
frequency shift (RIFS). Its effect on the soliton fission process is shown
in fig. 4.3 under the same conditions as fig. 4.2.

The higher peak power soliton, corresponding to a shorter pulse
width, suffers a considerable shift towards the longer wavelengths due
to SRS, and its temporal characteristics highlight a rapid slowdown
caused by the change in group velocity during its continuous red-shift.

4.2.4 Cross-phase modulation, four-wave mixing, and trapping of dispersive
waves

Although the combination of SPM, anomalous dispersion, soliton
dynamics, and SRS causes a significant broadening of the injected
pulse’s spectrum, the example shown in fig. 4.3 is still not a continuum.

When increasing the soliton order by injecting higher power or
shorter pulses, considering the derivative term of the nonlinear re-
sponse of eq. (4.1), responsible of self-steepening, and including higher-
order dispersion terms, new dynamics come into play.

After soliton fission occurs, the frequency-shifting solitons and the
higher-frequency waves propagating in the normal dispersion region
of the spectrum can temporally overlap and phase-match through
cross-phase modulation (XPM). The interaction between short- and
long- wavelength components of the spectrum is a consequence of the
"U" shape of the group-velocity (or group-index) profile stemming
from the typical dispersion curves of the fibers used for SC generation.
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Figure 4.4: Spectrogram of the output supercontinuum generated by a 50 fs,
10 kW peak power pulse at 835 nm launched in a fiber with a
ZDW of 780 nm. Adapted from [26].

The soliton RIFS consequently causes the blue-shift of the dispersive
wave. This effect can be exploited by carefully designing the fiber
dispersion and extend the generated SC on the short-wavelength side
of the spectrum [155].

In fact, dispersive waves and solitons become "trapped" to each
other, and propagate together in the fiber. This mechanism has been
thoroughly studied, and can be explained by considering that initially
the dispersive wave has a slower group velocity than the soliton, but
the latter is continuously slowed down by the RIFS and will eventually
collide. In the collision, the dispersive wave is reflected backward, i.e.
with a slower group velocity and corresponding blue-shift [134]. This
process then repeats as a consequence of the continuous RIFS of the
soliton until the phase-matching cannot occur, for example when a
second ZDW is encountered by the soliton, or due to losses.

Moreover, increasing the soliton order N enriches the generated SC,
and new spectral components can arise due to XPM and FWM [151].

An example is shown in fig. 4.4, depicting the spectrogram of the
generated SC when N ≈ 8.6, obtained with 50 fs, 10 kW peak power
pulses centered at 835 nm are injected in a PCF with ZDW of 780
nm. The U-shape of the group-velocity profile is clearly shown, with
the central SPM-generated components arriving first. The red-shifting
solitons and corresponding blue-shifting trapped dispersive waves are
also indicated. The complex spectral and temporal characteristics of
the output light are self evident.
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4.3 all-normal dispersion fibers

Although SC sources have revolutionized the world of nonlinear fiber
optics and found widespread application in different scientific areas,
their use in noise-sensitive or ultrafast photonics applications such as
time-resolved spectroscopy, in which broad spectral bandwidths and
coherent ultrashort pulses are required, is still not as common [31].

In fact, as seen in the previous section, the complex soliton dynamics
that arise when a PCF is pumped in the anomalous dispersion region
contributes to the temporal breakup of the output pulse, which is
often comprised of several bursts of individual solitons and lower-level
pedestals caused by dispersive waves. While it theoretically possible
to compress the complex temporal structure of conventional SC pulses
in a single ultra-short pulse, it could not be practically demonstrated
due to the fine structure of its spectrum and the group delay shape
[31].

Additionally, the soliton fission process that is responsible for the
SC generation has been shown to be highly sensitive to quantum noise
and to technical noise of the pump, such as relative intensity noise
(RIN) or time jittering [149].

These phenomena, especially when using picosecond pulses, con-
tribute to incoherent FWM and modulation instability (MI) processes
seeded by noise fluctuations, which result in high variability of the
generated spectrum and the respective temporal characteristics be-
tween subsequent output pulses, thereby deteriorating the coherence
of the SC [149].

Although is has been known since the early days of SC genera-
tion that the temporal breakup of the pulse could be avoided when
coherent SPM and FWM processes are stimulated by pumping the
fibers in the normal dispersion region, the unavailability of short pulse
sources resulted in incoherent SC caused by the Raman amplification
of noise. When sub-picosecond sources became available, the interest
in pumping fibers in the normal dispersion region faded due to the
reduced spectral width caused by fast temporal broadening of the
input pulse dictated by the steep dispersion profile of the available
fibers. With the unprecedented flexibility that PCFs introduced in
engineering the dispersion curve, all-normal dispersion (ANDi) fibers
could be manufactured [150].

As their name suggests, these fibers are designed to have a disper-
sion curve entirely in the normal region, but close to zero and mostly
flat near its minimum. An example is given in fig. 4.5, where the dis-
persion of a conventional commercially-available PCF with a ZDW at
780 nm is compared to that of an ANDi PCF, which is characterized by
its minimum dispersion wavelength (MDW) at 1050 nm. By pumping
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Figure 4.5: Typical PCF dispersion profiles for the conventional and ANDi
SC generation regimes. The PCFs are preferably pumped on the
anomalous dispersion region near their ZDW in conventional SC,
or in the vicinity of the MDW for ANDi SC [31].

Figure 4.6: Projected axes spectrogram of (a) conventional SC and (b) ANDi
SC after the broadening dynamics are concluded [31].

the ANDi fiber near its MDW, the temporal broadening of the input
pulse is minimized and slowed down thanks to the flat dispersion
profile in its vicinity.

The major differences in the obtainable SC between conventional
and ANDi fibers can be understood by comparing their generated
spectra and corresponding temporal characteristics. In fig. 4.6, the SC
obtained by pumping the fibers in fig. 4.5 near their ZDW and MDW
with 50 fs pulses of 10 kW and 90 kW peak power, respectively, are
visualized in [31].

From the spectrogram of the conventional SC we can clearly dis-
tinguish the U-shape profile deriving from the group-velocity curve
and the main features that characterize the soliton fission process.
The corresponding spectrum shows the complex fine structures that
are typical of conventional SC, while the pulse breakup is visible in
the plot of the output pulse. On the other hand, the pulse shape is
preserved in the case of the ANDi fiber, albeit with a much larger
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Figure 4.7: Dynamics of SC generation in ANDi fibers. Adapted from [31].

width compared to the individual solitons formed in the conventional
SC. Correspondingly, the output spectrum shows similar width but a
much smoother and flatter shape, with no evidence of distinct spectral
features.

From its spectrogram we can observe a clearly defined distribution,
partly due to group velocity strictly increasing with the wavelength.
This almost-linear chirp greatly facilitates the compression of the
pulse using spatial light modulators, enabling the generation of near
transform-limited pulses narrower than 2 optical cycles and with
higher peak power than the initial pump pulse [156]. From here it
is intuitive to understand that having each wavelength located at
a unique temporal position in the pulse is important to avoid the
spectral or temporal interference that may cause irregularities either
on the pulse shape or in its spectrum.

4.3.1 Spectral broadening dynamics in ANDi fibers

Contrary to conventional SC generation where the spectral broadening
is mostly due to soliton fission and SRS, ANDi SC is mainly the result
of SPM and FWM.

In fig. 4.7 the three main phases of the process of spectral broadening
are highlighted.

In the initial phase (left), SPM is the dominating effect. Since the
power is higher in the central part of the pulse, SPM broadening
is more pronounced on the corresponding time interval; due to the
normal dispersion, the longer generated wavelengths gain velocity
while the shorter wavelengths slow down, giving the characteristic
"S" shape to the pulse spectrogram. The presence of the same spectral
components in different time instants generate the typical oscillations
of SPM-broadened pulses.

While propagating, the group velocity dispersion accumulates and
the trailing edge of the pulse, which has not been effected much
by SPM due to the lower peak power, eventually catches up to the
slower newly generated short wavelengths (middle). This has two main
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consequence: first, the trailing pulse edge gets steeper, and second, the
temporal overlap of two separate instantaneous frequencies leads two
the generation of new frequency components via a degenerate FWM
process called optical wave breaking (OWB). OWB then continuously
transfer energy from the central part of the spectrum to its edge,
contributing to the broadening phenomenon. The same process occurs
also between the longer SPM-generated components and the leading
pulse edge, generating new wavelengths on the opposite side of the
spectrum. When the process is complete (right), no more temporal
overlap between different spectral components is possible, and the
broadening stops.



5
C H A R A C T E R I Z AT I O N O F S U S P E N D E D - C O R E
F I B E R S

In the previous chapter the main advantages of ANDi fibers have been
presented, arguing that their pulse-preserving, spectrally flat, coherent
supercontinuum generation capabilities has opened the door for SC
sources to be employed in ultrafast photonics applications, specifically
in those areas in which ultrashort coherent pulses are required, like
seeding broadband high-power amplifiers [157], or for time-resolved
absorption spectroscopy [158].

While PCFs have generally been the main option for dispersion-
engineered highly-nonlinear fibers (HNLFs), several fiber designs have
been proposed in the recent years. In fact, for the realization of silica
PCFs with an ANDi profile, a large number of closely spaced air holes
in the cladding is necessary for reducing confinement losses, which
results in difficulty in the manufacturing process [31].

In [159], a new suspended-core fiber (SCF) design consisting in a
sub-micrometer core suspended in air, connected to the cladding with
thin silica bridges, was proposed. These fibers showed a similar level
of design freedom compared to PCFs, with their dispersion being
controlled through the core diameter and the number of bridges, but
proved to be much easier to fabricate. So far they have been tested for
SC ANDi generation in the visible range, with MDWs in the vicinity
of 500 nm, but with difficulty in tuning it to the near infrared region,
where the difficulty in reducing the confinement losses of silica PCFs
is higher [31].

In the recent years, following the idea of new microstructured
ZBLAN glass fibers [160], a new degree of freedom has been added to
the SCF design, consisting in adding a nano-hole in the center of the
suspended silica core [161].

With this additional design parameter, the tunability of the MDW
was greatly improved, showing the possibility of extending the ANDi
regime beyond 2 µm. A comparison with a typical ANDi PCFs ge-
ometry is also given in [161], showing that their guiding capability
is greatly reduced when the MDW exceeds 1 µm limit. At the same
time, SCFs are able to maintain low confinement losses and nonlinear
coefficient with over an order of magnitude of improvement compared
to similar PCFs.

By elongating one side of the core and using an elliptical nano-hole,
extremely birefringent fibers with vastly different dispersion charac-

98
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Figure 5.1: Scanning-electron microscope images of the fiber under test,
showing the structure of the cladding with silica bridges sup-
porting the core (left) and closeup of the suspended core (right).

Figure 5.2: Dispersion profiles of the considered SCF for input polarizations
aligned (‖) or orthogonal (⊥) to the long core axis.

teristics on the two principal polarization modes can be realized. In
principle, these fibers could open the possibility of ultra-broadband
ANDi SC using multiple pumps located at different central wave-
lengths.

In particular, a sample fabricated using 4 silica bridges, a 1.06×
2.18 µm core, with a 0.16× 0.8 µm nano-hole, whose microscope im-
ages are reported in fig. 5.1, showed ANDi profiles with MDWs located
near 1600 nm and 800 nm for polarization modes aligned with the
long and short core axis, respectively (fig. 5.2).

In this chapter, preliminary results regarding the experimental char-
acterization of this fiber sample are presented for the first time, show-
ing the difference in terms of generated SC and noise characteristics
when pumped near the two MDWs. Fabrication of the fiber sample
and the finite-element method (FEM) simulations were performed by
the Leibniz Institute of Photonic Technology, Jena, Germany.

5.1 fiber dispersion and multimodal characteristics

Although the fiber sample under consideration is designed to support
ANDi profiles on the two fundamental mode polarizations, the design
parameters used for the fabrication also dictate the presence of guided
higher order modes [161].

The dynamics of multimodal SC generation have been a topic of
research in the past years, with results in the literature showing a
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Figure 5.3: Mode intensity distributions and field orientations calculated
using FEM simulations at λ = 900.

Figure 5.4: Dispersion profile of the first 6 modes calculated using FEM
simulations.

significant dependence of the output spectrum on the pumping condi-
tions as a result of mode coupling, intermodal FWM and XPM [162,
163].

Even though the use of multimode fibers for SC generation has
enabled unprecedented power handling capabilities and high output
beam quality [164, 165], the presence of higher order modes can
also pose a limit to the SC bandwidth due to the depletion of the
fundamental mode or due to polarization coupling [166, 167].

For the fiber under test, a FEM simulation of the core geometry
obtained from scanning-electron microscope images of the suspended-
core structure reported in fig. 5.1 revealed the presence of 6 total
spatial and polarization modes; their intensity distribution and field
orientation at 900 nm is reported in fig. 5.3, while their dispersion and
group velocity curves are illustrated in figs. 5.4 and 5.5, respectively.

Apart from the first two ANDi modes (labeled mode 1 and mode
2) with MDWs at 800 nm and 1600 nm, the remaining modes present
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Figure 5.5: Group velocity curve of the first 6 modes calculated using FEM
simulations.

dispersion curves with two or more ZDWs, in part caused by the diver-
gence at approximately 1100 nm. This unconventional feature is more
accentuated for modes 5 and 6, and contributes to the formation of
additional ZDWs at shorter wavelengths than typical dual-ZDW PCF
designs, at 1050 nm and 1150 nm respectively. Modes 3 and 4 instead
exhibit a less pronounced divergence, with the latter characterized by
the second ZDWs at over 1600 nm.

5.2 sc generation using a ti :sapphire laser

As seen in the previous sections, the polarization of the fundamental
mode aligned along the short core axis of the SCF presents an ANDi
profile with a MDW located near 800 nm. Consequently, the fiber can
be efficiently pumped using Titanium Sapphire lasers, whose radiation
can be generally tuned from the visible to the near-infrared, covering a
a portion of the spectrum from 650 nm to 1100 nm. The specific source
used for characterizing the fiber in this spectral region is a Ti:Sapphire
mode-locked oscillator (Coherent Chameleon Vision-S) emitting 80 fs
pulses with a 80 MHz repetition rate, and with a maximum average
power of approximately 4 W at the central wavelength of 800 nm.

The rest of the setup that was built for characterizing the fiber is
reported in fig. 5.6.

The femtosecond pulses coming from the pump first pass through
an isolator (EURYS Broadband Optical Isolator) in order to avoid
unwanted reflections that may cause instability of the mode-locking
of the source, and then through a power adjustment stage composed
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Figure 5.6: Setup for measuring the SC and output modes. Description is
given in the text.

by an half-wave plate and a polarization beam splitter (PBS). The
attenuated beam is then routed with a series of silver mirrors and
periscopes (not illustrated in the figure) to a second half-wave plate
for controlling the polarization orientation of light injected in the
fiber. Using an aspheric lens, the beam is focused on the core of the
SCF, whose start and end are fixed on high-precision 3D mechanical
translation stages. The beam coming from the output of the fiber is
then collected with a 40X magnification microscope objective and
routed to two different paths using a silver flip-mirror. The first path is
for the measurement of the generated SC, and consists in a broadband
lens which focuses the beam on a large mode area fiber connected
either to a spectrometer to measure the portion of spectrum from
300 nm to 900 nm or to an optical spectrum analyzer (OSA) covering
the remaining part of the spectrum up to 1700 nm. When acquiring the
long-wavelength portion of the spectrum with the OSA, an additional
measurement with a long-pass filter with a cutoff wavelength of
1400 nm was used to remove the replicas of the short-wavelength
components appearing at twice their wavelength. The three total
spectral measurements are then numerically stitched together to obtain
the complete SC spectrum.

The second path instead is dedicated to the measurement of the
different modes of the SC, and consists in a tunable interference filter
to isolate a selected portion of the spectrum, a variable neutral density
filter to attenuate the beam, and finally a charged-coupled device
(CCD) camera to capture the light distribution. The camera is located
several meters from the output fiber to get a sufficiently high beam
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Figure 5.7: Fiber input facet after core collapsing and cleaving. Photo taken
from the fusion splicer display.

magnification, while the focus adjustment is performed by controlling
the distance of the microscope objective from the fiber facet using the
output translation stage.

5.2.1 Coupling light in the SCF

In order to couple light in the SCF core, the first few centimeters of fiber
are first stripped of their protective coating, exposing the cladding,
and then hand-cleaved using a ceramic blade. Finally, the fiber is taped
to a metal V-groove fiber holder with copper tape to facilitate thermal
dissipation and limit the effect of heat on the alignment, and finally
fixed to the input translation stage. The same procedure was applied
to the fiber end, which is then fixed to the output translation stage
using a FC/PC bare fiber adapter.

Due to the small core area of≈ 2 µm2, the coupling efficiency proved
to be a limiting factor. Using lenses with focal lengths ranging from
2 mm to 7 mm, only a maximum of 15% of the input power is mea-
sured at the fiber output. Additionally, the coupling conditions were
extremely sensitive to environmental noise and vibrations, causing
rapid changes to the generated SC that prevent its measurement with
the procedure previously described.

The coupling efficiency can be greatly increased following the proce-
dure outlined in [168]. The aim is to virtually increase the core of the
SCF by splicing it to a "dummy" fiber with a similar cladding diameter,
causing a collapse of the suspended-core structure. After cleaving the
resulting fiber close to the collapsed core using a precision cleaver, the
increased core size of the dummy fiber guides the coupled light in the
now tapered SCF.

The collapsed core obtained by splicing the SCF to a 1060 HI single-
mode fiber is visualized in fig. 5.7, and it enables coupling efficiencies
of almost 60% using an aspheric lens with a 6.1 mm focal length.
The stability of the generated SC also increased significantly due to
vibrations and environmental changes only marginally affecting the
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alignment of the increased core. This procedure is applied only to the
input facet of the fiber, while the output facet is simply hand cleaved
as initially described in order to preserve the light distributions of the
SC modes.

5.2.2 Evolution of the supercontinuum

First, the orientation of the fiber axis at the input and output are
determined by placing a broadband polarizer at the fiber output and
measuring the transmitted power with a power meter. The angle of
the input half-wave plate and of the polarizer are iteratively adjusted
until the measured power is maximized, corresponding to the case
in which light is injected and collected on the same core axis. This
procedure is performed by lowering the pump power in order to avoid
nonlinear coupling between orthogonal polarizations.

Aligning the half-wave plate with the short core axis, the translation
stage was adjusted to maximize spectral broadening. Although the
input polarization corresponds to the fundamental ANDi mode with
MDW at 800 nm, the resulting SC did not exhibit the typical features
associated to the ANDi case for any combination of pump wavelength,
input focusing lens, and coupling conditions.

This is illustrated in fig. 5.8, where the spectral broadening dynam-
ics are visualized for different input powers, tuning the Ti:Sapphire
laser to 810 nm. The input power was limited to 500 mW, which was
determined to be a safe threshold to avoid damaging the collapsed
core structure, and sufficiently high to guarantee the completion of
the spectral broadening process.

Apart from the initial SPM-induced broadening occurring with
limited input power, the evolution of the spectrum is characterized
by the presence of several peaks and fine structures, with the first
soliton appearing near 600 nm at 12 mW, corresponding to the ZDW
of modes 3 and 4

1.
Increasing the power, more peaks appear in the region from 600 to

900 nm, which transform in a continuum extending up to 1300 nm for
49 mW 2. On the short-wavelength edge, the formation of prominent
peaks can be associated to the generation of dispersive waves, as de-
scribed in section 4.2.4. Increasing the power leads to the formation
of new short-wavelength peaks and their continuous blue-shift associ-
ated to the Raman-induced soliton red-shift. The sharp loss peak at

1 The different noise floor levels at short and long wavelengths are the result of
measuring the spectrum with multiple instruments.

2 The pedestal appearing at short wavelengths for higher input powers is a measure-
ment artifact of the spectrometer; it has been experimentally verified using an UV
filter that no signal was generated in those spectral regions.
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Figure 5.8: Evolution of the output spectrum as a function of the input power,
when the fiber is pumped with a Ti:Sapphire laser at 810 nm with
input polarization orthogonal to the long core axis.

1400 nm caused by the high OH concentration in silica is also clearly
identified.

The broadening process then stops at approximately 1600 nm on
the long wavelength edge, where the second ZDW of mode 3 and
4 is located. On the short-wavelength side instead, the SC extends
to 350 nm, which corresponds to the shortest wavelength that can be
achieved considering the group-velocity matching and dispersive wave
trapping arguments detailed in section 4.2.4 and using the curves of
fig. 5.5 for modes 3 and 4, resulting in a SC spanning more than two
octaves.

The modal content of the SC acquired using the CCD camera reveals
the presence of light distributions similar to those of modes 2, 3, and
4 independently of the input power and over most of the spectrum,
with intensity patterns covering the two main lobes adjacent to the
nano-hole, with the exception of the region near the pump, where the
power is higher and the entire suspended-core structure is illuminated,
as seen in fig. 5.9. These results suggest preferential coupling of modes
with similar intensity distributions, and in absence of ANDi character-
istics, support the reasoning for considering the dispersion and group
velocity curves of modes 3 and 4 when discussing the broadening
dynamics.
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Figure 5.9: Modes measured at the output of the fiber when the input po-
larization is orthogonal to the long-core axis of the fiber when
pumped with a Ti:Sapphire laser at 810 nm, with input power
500 mW.
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Figure 5.10: Measured polarization extinction ratio when the input polariza-
tion is parallel (left) and orthogonal (right) to the long-core axis
of the fiber when pumped with a Ti:Sapphire laser at 810 nm
with input power 500 mW.

5.2.3 Polarization extinction ratio

Using a broadband polarizer at the fiber output, the polarization
extinction ratio (PER) can be measured by acquiring the SC on the
two fiber axis. These measurements are reported in fig. 5.10 when the
input polarization is parallel (left) and orthogonal (right) to the long
core axis of the fiber.

In both cases, the PER is close to 0 over the majority of the spectrum,
suggesting strong coupling also between modes with orthogonal po-
larizations. The shape of the generated SC is also appreciably different
in the two cases, showing a narrower spectrum both on the short and
long wavelength edge and a poorer spectral content in the visible
range when the input polarization is aligned with the long core axis.
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In this case, the sharp drop-off at approximately 1100 nm is caused by
the ZDW of the (5,6) mode pair, which can be more efficiently excited
due to their polarization being aligned with the long core axis, and
whose presence is detected with the CCD camera.

(a) Input polarization parallel to long
core axis.

(b) Input polarization orthogonal to
long core axis.

Figure 5.11: Photos of the output SC when the fiber is pumped at 810 nm.

The difference in generated SC when the fiber is pumped on the
two axis is also well appreciated by naked eye. In fig. 5.11 are reported
the photos of the fiber in the two pumping conditions; when the
input polarization is aligned along the short core axis (right), which
corresponds to the polarization of the ANDi mode with MDW at 800

nm, the fiber has an almost perfect white glow. On the other hand,
when the input polarization is aligned with the long core axis (left), the
dip in the green region of the spectrum gives the fiber a pink/purple
hue, resulting from the strong red spectral content mixing with the
violet/blue peak from 400 to 500 nm.

5.2.4 RIN measurements

The coherence degradation of SC sources caused by quantum noise
amplification or induced by technical noise of the pump is generally
quantified through the computation of the modulus of the complex
degree of first-order coherence, defined at each wavelength by

|g(1)12 (λ, t1 − t2)| =
∣∣∣∣∣ 〈E∗1(λ, t1)E2(λ, t2)〉√
〈|E1(λ, t1)|2〉〈|E2(λ, t2)|2〉

∣∣∣∣∣ , (5.1)

where the angular brackets denote the ensemble average over inde-
pendently generated pairs of SC spectra [149]. This quantity is useful
to describe the phase stability characteristics of SC spectra and its
shot-to-shot fluctuations.

Wavelength-dependent intensity fluctuations can also be quantified
through the relative intensity noise (RIN), which is calculated from



5.2 sc generation using a ti :sapphire laser 108

the radio-frequency (RF) noise spectrum within a particular optical
bandwidth, yielding a value that is directly related to the percentage
of pulse-to-pulse amplitude fluctuations [149]. Although |g(1)12 | and
the RIN describe different things, it has been shown that SC spectra
exhibiting strong phase fluctuations also exhibit strong intensity fluc-
tuations, and hence the two parameters are strongly correlated, with
the latter being considerable easier to evaluate experimentally [149].

The RIN of the generated SC is thus measured using the setup in
fig. 5.6, replacing the CCD camera with a high-speed photodiode, a
low-pass filter, and an electronic spectrum analyzer (ESA) to capture
the RF noise spectrum. For each noise measurement, the reference
DC power was calculated by measuring the root-mean-square (RMS)
voltage Vrms over a signal trace acquired using a digital oscilloscope
as PDC = V2

rms/RL, where RL = 50 Ω is the load resistance of the ESA.
This value is used to normalize the ESA measurements and obtain the
final RIN spectrum.

Due to the availability of the equipment, specifically the Si-based
detector covering the bandwidth up to 1100 nm and the low-pass filter
with a cutoff frequency that is lower than half the repetition rate of
the source, the measurements underestimate the true RIN, but can be
useful to qualitatively describe the noise-enhancing mechanisms that
occur in in the SC generation process.

To this end, the RIN of the total SC is first measured and com-
pared to the source. In fig. 5.12 the RIN spectrum (top) and integrated
RIN (bottom) are both reported, with the latter showing an approxi-
mately three-fold increase of the SC RIN with respect to the source,
approaching 0.65%.

Indeed, from the noise spectrum in fig. 5.12 (top) we can observe
an upward shift of the SC trace, attributable to a white noise-like
process covering the entire band. This feature is typically observed
in conventional SC sources, but can also manifest itself in ANDi
fibers due to quantum noise amplification deriving from Raman and
parametric FWM gain [31, 157, 169].

Additionally, the significant increase in integrated RIN at higher
frequencies can also be explained by noting the more prominent high-
frequency components of the SC RIN spectrum, which is generally
associated to polarization-related processes such as polarization mod-
ulation instability (PMI), causing rapid oscillations in the polarization
state of the SC, explaining the poor PER reported in section 5.2.3 [157,
170].

Similar measurements are performed on individual sections of the
spectrum by placing the interference filter before the photodiode. The
total integrated RIN and the corresponding SC are reported in fig. 5.13.
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Figure 5.12: RIN spectrum (top) and corresponding integrated RIN (bottom)
when the fiber is pumped using a Ti:Sapphire laser at 810 nm
with input polarization orthogonal to the long core axis. The
measured noise floor includes the contributions of both the
photodiode and the ESA.
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Figure 5.13: Output spectrum (top) and RIN values (bottom) measured at spe-
cific wavelengths when the fiber is pumped with a Ti:Sapphire
laser at 810 nm, with input polarization orthogonal to the long
core axis and input power 290 mW.
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Similar to previously reported cases in the literature, both in anoma-
lous and normal dispersion pumping, the total intensity noise is the
minimum near the pump wavelength and increases moving towards
the edges of the SC, reaching a maximum of nearly 4.7%, correspond-
ing to almost a 20 times increase with respect to the source RIN [171,
172]. The individual RIN spectra highlight similar features to those
reported in fig. 5.17 for the SC, with a significant upward shift of the
entire spectrum and accentuated high frequency noise.

5.3 sc generation using an erbium fiber laser

As previously detailed, the fundamental polarization mode aligned
along the long core axis of the fiber presents a MDW located at 1600 nm
that can be conveniently pumped using Er:fiber lasers, which can emit
radiation centered at approximately 1550 nm. The specific source used
in this case is characterized by 80 fs pulses at a repetition rate of
40 MHz and average power of 500 mW. The rest of setup described
in fig. 5.6 was adapted using equivalent components for this spectral
region. In this case, the entire spectrum can be acquired with a single
OSA covering the bandwidth from 1200 nm to 2400 nm.

After aligning the input polarization to the long core axis of the
fiber using the half-wave plate in order to excite the ANDi mode with
MDW at 1600 nm, a series of spectral measurements varying the pump
power was acquired.

Contrary to the previous case, here the ANDi regime can be readily
achieved; in fact, the characteristic broadening dynamics typical of
ANDi SC can be identified from the results reported in fig. 5.14, show-
ing the simple and regular evolution of the spectrum with increasing
input power.

In the first stage of SC generation, up to the curve corresponding
to input power of 67 mW, the gradual broadening associated with
SPM can be observed. With increasing input power, the process of
OWB initiates the energy transfer from the center to the edge of
the spectrum, as described in section 4.3.1, causing the formation of
lower level shoulders that can be detected starting from the curve
corresponding to 128 mW.

The reduced power of the laser caused by reflections and losses in
the optical setup, the typical higher peak powers required for ANDi
SC generation in comparison to conventional SC [31], and the lower
nonlinear coefficient of the fiber at longer wavelengths [161], combine
in halting the spectral broadening process before it is fully developed,
resulting in a SC spanning the region from 1300 nm to approximately
1900 nm.
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Figure 5.14: Evolution of the SC spectrum varying the input power, when
the input polarization is parallel to the long core axis. Pump is
an Erbium fiber laser centered at 1550 nm.

5.3.1 Polarization extinction ratio

Similarly to previous case, using a broadband polarizer at the output
of the SCF the polarization extinction ratio was measured for both
input fiber axes, and reported in fig. 5.15.

Compared to the conventional regime reached when pumping the
fiber at 800 nm, the achieved ANDi SC shows a significant improve-
ment for both input polarization axes, reaching a PER of nearly 25 dB
on the edge of the spectrum when the pump is aligned with the long
core axis (indicated with ‖). Instead, when the input polarization is
orthogonal to the long core axis (indicated by ⊥ in the plot), the fiber
showed an appreciable reduction of the generated SC spectrum while
maintaining its ANDi characteristics; the PER is also decreased com-
pared to the previous case, being less than 10 dB in the central part of
the spectrum and approximately 15 dB on the edges.

The ease with which the ANDi was reached is readily explained
by inspecting the output modes of the SC, showing the same light
distribution over the entire spectrum for both input polarizations. The
modes measured at 1550 nm are reported in fig. 5.16, exhibiting a sig-
nificantly different shape than those measured from 400 nm to 1000 nm
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Figure 5.15: Measured polarization extinction ratio when the input polariza-
tion is orthogonal (left) and parallel (right) to the long-core axis
of the fiber when pumped at 1550 nm with an Er:fiber laser at
290 mW input power.
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Figure 5.16: Modes captured at the fiber output at 1550 nm for input pump
polarization (a) orthogonal and (b) parallel to the long core
axis, when pumped with an Er:fiber laser with input power
= 290 mW.

when using the Ti:Sapphire laser and from the FEM-computed modes
reported in fig. 5.3.

5.3.2 RIN measurements

Similarly to the conventional SC regime showed when using the
Ti:Sapphire laser, the RIN of the generated SC is measured and com-
pared to that of the source, replacing the photodiode with an InGaAs
detector covering the bandwidth from 900 to 2600 nm. The integrated
RIN curves graphed in fig. 5.17 (bottom) show that the SC has virtu-
ally the same RIN of the Er:fiber laser at about 0.1%, confirming the
noise-resilient characteristics of ANDi fibers.
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Figure 5.17: RIN spectrum (top) and corresponding integrated RIN (bottom)
when the fiber is pumped using a Er:fiber laser at 1550 nmnm.

From the noise spectrum reported in fig. 5.17 (top), no significant
quantum noise amplification process is perceived. More specifically,
the absence of high-frequency components also suggest a strong sup-
pression of PMI compared to the conventional SC regime, consequence
of the excellent PER just discussed. The excess noise peaks that appear
in the low frequency range, up to 1 kHz have been observed before
with the same source and different fiber samples, and has been at-
tributed to mechanical vibrations at the free-space coupling port of
the fiber [173].

Measuring the RIN on different portions of the SC highlights a sim-
ilar behavior to that encountered in the case of Ti:Sapphire pumping,
with fig. 5.18 showing a minimum at the center of the SC, near the
pump, and an increase to approximately 5% on the edges of the spec-
trum, corresponding to an amplification factor of 5X compared to the
source RIN. Inspecting the individual noise spectra, the RIN increase is
determined by a uniform upward shift of the individual traces with re-
spect to the reference source noise, without additional high-frequency
components, suggesting the presence of quantum noise-seeded mixed
Raman and parametric gain [169, 170].

5.4 conclusions

In this chapter, the preliminary results from the characterization of a
SCF sample carried out in collaboration with the University of Bern
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Figure 5.18: Output spectrum (top) and RIN values (bottom) measured at
specific wavelengths when pumped with an Erbium fiber laser
centered at 1550nm, with input polarization parallel to the long
core axis and input power 290 mW.

have been presented. The sample presents ANDi profiles on the two or-
thogonal polarizations of the fundamental mode with MDWs located
at vastly different wavelengths, at 800 nm and 1600 nm respectively.
The location of the MDWs is designed to employ widely available
Ti:Sapphire and Er:fiber lasers, opening the possibility for the de-
velopment of ultra-broad dual-pump ANDi SC sources. While the
ANDi regime could be readily obtained when the fiber is pumped
near its long-wavelength MDW, showing simple spectral broadening
dynamics dominated by SPM and OWB, excellent PER, and great
noise characteristics, the presence of higher order modes proved to
be a limiting factor in stimulating ANDi SC in the visible range us-
ing a Ti:Sapphire oscillator. In this case, the generated SC exhibited
the typical characteristics of conventional SC, with individual peaks
and fine structures appearing in the spectrum as the consequence of
the soliton fission process and consequent generation of dispersive
waves. Although the final SC spanned two octaves, from 350 nm to
approximately 1600 nm, the analysis of its RIN hinted at the presence
of polarization-related noise-amplifying processes, which can also be
appreciated from the degraded PER on both polarization axes.



6
C O N C L U S I O N S

In this thesis I presented the main results obtained during my three-
year journey as a Ph.D student at the University of Padova, regarding
the interplay of nonlinear effects and multimodal propagation in
optical fibers.

Thanks to the collaborations with different research groups, I have
been able to test my ability on various aspects of fiber optics research,
ranging from the application of modern techniques based on machine
learning (ML) to analytical and numerical modeling of nonlinear
propagation, and concluding with experimental characterization of
specialty fibers.

In the context of space-division multiplexing (SDM) communica-
tions, different aspects of Raman amplification have been explored.

First, ML techniques have been applied to design and optimization
the gain of distributed Raman amplifiers in few-mode fibers (FMFs).
Here, neural networks (NNs) have been trained to learn the relation-
ship between a given target gain profile and the corresponding value
of pump parameters that are necessary to approximate it. This method
has been applied to FMFs supporting up to 6 groups of linearly
polarized modes, achieving good results on wide-band wavelength-
division multiplexing (WDM) systems in terms of root-mean-square
error (RMSE) and gain flatness, minimizing the mode-dependent gain
(MDG) of the amplifiers to few percents of the average gain. The
robustness of the method has been tested with respect to the change of
the input power of the information-bearing signals, showing minimal
changes to the predicted gain when signal power fluctuations of 10 dB
are present. The noise performance of the amplifiers have also been
demonstrated, confirming the superior characteristics of distributed
schemes with respect to lumped amplifiers, and showing negligible
mode-dependency of its noise figure. The extension to bidirectional
pumping schemes has also been tested in order equalize the OSNR tilt
that is typical of wide-band counterpumping amplifiers, showing that
a good compromise between gain accuracy and OSNR flatness can
be achieved by properly designing the cost function that the training
algorithms tries to minimize.

The focus has then shifted to the study of the effects of linear cou-
pling caused by stress birefringence and core ellipticity on the gain
statistics of few-mode Raman amplifiers. To this aim, the analytical
equations that describe the propagation of two different wavelengths
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in a few-mode fiber has been derived. In conjunction with the nu-
merical models for birefringence and core ellipticity available in the
literature, the equations have been numerically solved to gather a
statistical ensemble of the amplifier gain on thousands of fiber re-
alizations. Fibers supporting 2 and 4 groups of linearly polarized
modes have been simulated for a wide range of coupling strengths
and for two correlation lengths, showing the effects on intra-group and
inter-group coupling. Extending the results obtained for the case of po-
larization mode dispersion (PMD) for single-mode fiber amplifiers, we
identify three different coupling regimes. In the low-coupling regime,
the average gain of each spatial mode is maximized or minimized
depending on the relative orientation of signal and pump polarization,
with the gain variance being minimized. As groups start to couple,
their average gain converges to a common intermediate value, but
with high fluctuations in the output power. When groups are fully
coupled, the average gain of the newly formed "supergroup" reaches
the minimum value when pump and signal are co-polarized. While
the gain variance of the new supergroup is substantially reduced
compared to the intermediate coupling regime, the gain variance of
the individual modes remains fairly high. The spatial modes of the
new supergroup behave similarly to the polarization degeneracies of
the fundamental mode of a single-mode fiber: while the total power
of the LP01 mode is stable at high PMD values, its Stokes vector
rapidly moves on the Poincaré sphere, causing the power on the two
orthogonal polarizations to fluctuate.

Finally, the last part of my research has been dedicated to the charac-
terization of highly-nonlinear fibers for supercontinuum (SC) genera-
tion. In collaboration with the University of Bern, Switzerland, I carried
out experimental measurements on a sample of suspended-core fiber
manufactured by the Leibniz Institute of Photonic Technology, Jena,
Germany, and presented preliminary results involving the measure-
ment of the evolution dynamics of the SC, its polarization-extinction
ratio, and its noise characteristics. Although the output SC spanned
more than two octaves, the multimodal characteristics proved to be a
limiting factor in reaching the low-noise, high-coherence all-normal
dispersion (ANDi) regime that these fibers where manufactured for,
when pumped using a femtosecond Ti:Sapphire laser at 800 nm. When
pumped using an Er:fiber laser at 1550 nm instead, the ANDi SC was
generated, showing no impairments related to multimodal interac-
tions, exhibiting an excellent polarization-extinction ratio exceeding
20 dB, and a total relative intensity noise (RIN) virtually equal to that
of the source.
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6.1 future works

During these three years, different aspects of nonlinear fiber optics
have been investigated and interesting results have been obtained.
Nevertheless, there is room for further research, with some details
requiring additional work.

Regarding the presented ML method to shape the amplification
profile of few-mode fiber Raman amplifiers, when using bidirectional
pumps in conjunction with ad-hoc cost functions to flatten the OSNR
spectrum, the contribution of nonlinear interference noise (NLIN) on
the WDM spectrum could become important. In fact, while amplified
spontaneous emission (ASE) noise is generally suppressed when using
copropagating pumps, the path-averaged power of the signals is higher
when compared to counterpropagating schemes, meaning that cross-
phase modulation (XPM) between WDM channels is enhanced. A more
complete approach should account for these effects by computing the
NLIN using the models presented in [174, 175], and embedding them
in the differentiable solver. This would allow the NNs to learn how
to optimally distribute the power between forward- and backward-
propagating pumps, provided that the cost function used to train them
has been appended with an additional term that is proportional to the
NLIN.

Moreover, although the study on effects of linear coupling on Ra-
man amplification highlighted some interesting results, the analysis
has been limited only to perturbations that are intrinsic to the manu-
facturing process of optical fibers. Extrinsic effects, such as bending
and twisting, could be readily studied. Additionally, the presented
results are limited to the case of the Raman pump co-propagating
with the transmitted signals; with proper changes to the numerical
models used, the case of counterpropagating pumps could be studied.

Finally, regarding the research on supercontinuum generation, while
the experimental measurements are necessary for the characterization
of the fiber samples, they must be combined with numerical simu-
lations in order to fully understand the interplay between the main
nonlinear effects responsible for spectrum broadening and inter-modal
propagation. This aspect is subject of ongoing research in collaboration
with the University of Bern.
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