ERRATA - CORRIGE

Correction to my Paper: « Pontryagin Type Dualities Over Commutative Rings » (*).

SILVANA BAZZONI (Padova) (*)

There is a mistake in the proof of Lemma 5.8 of [B] due to the application of Lemma 2.1 in [S] which is incorrect because of a misprint.

Thus in the main theorem the statement: $(A_1: \mathfrak{D}(E) \to C(E))$ is a duality $A_1: \mathfrak{D}(E) \to C(E)$ is a good duality $A_2: \mathfrak{D}(E) \to C(E)$ is a good duality $A_2: \mathfrak{D}(E) \to C(E)$ is a duality $A_2: \mathfrak{D}(E) \to C(E)$ is a good duality $A_2: \mathfrak{D}(E) \to C(E)$ is a duality $A_2: \mathfrak{D}(E) \to C(E)$ is a good duality $A_2: \mathfrak{D}(E)$

So the correct version of the theorem is:

THEOREM. – Let $E \in CMR$ be a faithful module. The following are equivalent:

- (a) $\Delta_1 : \mathfrak{D}(E) \to \mathfrak{C}(E)$ is a good duality.
- (b) E has properties P_1 , P_2 , P_3).
- (c) If $P = \operatorname{Chom}_{\mathbf{Z}}(E, \mathbf{K})$ (\mathbf{K} denotes the compact group of complex numbers of modulo 1), P is a projective and finitely generated R-module with endomorphism ring isomorphic to R.

Moreover, if any of the previous condition holds, then

- 1) $\mathfrak{D}(E) = Mod R$;
- 2) C(E) = CMR;

and, if Γ denotes the Pontryagin duality between Mod-R and CMR, then:

- 3) $\Delta_1(M) = \Gamma(M \underset{R}{\otimes} P)$, for every $M \in \mathfrak{D}(E)$;
- 4) $\Delta_2(M) = \operatorname{Hom}_R(P, \Gamma(M))$, for evergy $M \in C(E)$;

^(*) Entrata in Redazione il 1º febbraio 1980.

that is the duality Δ_E is the composition of the equivalence $-\otimes P \colon Mod-R \to Mod-R$ with the Pontryagin duality.

PROOF. – The equivalence of (b) and (c) is proved in Theor. 4.6; the implication $(b) \Rightarrow (a)$ is proved by Theor. 4.9 and 2.7.

The implication $(a) \Rightarrow (b)$ is proved by the results in § 5 where in each statement the hypothesis A_E is a duality has to be replaced by A_E is a good duality has

With this change Lemma 5.8 can be proved in the following way:

LEMMA 5.8. – Let Δ_E be a good duality. Then Im T = Gen (P), $\text{Gen }(P) = \overline{\text{Gen }}(P)$ and P is a flat R-module.

PROOF. – Since E is s.q.i., E^n is s.q.i. by Lemma 2.5 [B]. This means that for each closed submodule E of E^n , $E^n/E \in C(E)$.

Now, if L is a submodule of P^n , $\Gamma_1(L)$ is topologically isomorphic to E^n/L^\perp thus, $L \approx \Gamma_2(\Gamma_1(L)) \approx \Gamma_2(E^n/L^\perp) \in \Gamma(\mathbb{C}(E))$ which is Gen (P) by Lemma 5.7 [B]. We then get that P generates every submodule of P^n and thus, by Lemma 1.4 [ZH], P is a flat R-module and Gen $(P) = \overline{\operatorname{Gen}}(P)$.

REFERENCES

- [B] S. BAZZONI, Pontryagin type dualities over commutative rings, Ann. Mat. Pura Appl., 121 (1979), pp. 373-385.
- [S] M. Sato, On equivalence between module categories, Proceedings of the 10th Symposium on Ring Theory, Shinshu University, Matsumoto, August 1977.
- [ZH] B. ZIMMERMANN-HUISGEN, Endomorphism rings of self-generators, Pac. Journal of Math., 61 (1975), pp. 587-602.