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a b s t r a c t

We construct a normal form suited to fast driven systems. We call so systems
including actions I, angles ψ, and one fast coordinate y, moving under the action
of a vector-field N depending only on I and y and with vanishing I-components. In
the absence of the coordinate y, such systems have been extensively investigated
and it is known that, after a small perturbing term is switched on, the normalised
actions I turn to have exponentially small variations compared to the size of
the perturbation. We obtain the same result of the classical situation, with the
additional benefit that no trapping argument is needed, as no small denominator
arises. We use the result to prove that, in the three-body problem, the level sets
of a certain function called Euler integral have exponentially small variations in a
short time, closely to collisions.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Description of the results

We consider a (n+1+m)-dimensional vector-field N which, expressed in local coordinates (I, y, ψ) ∈ P =
× Y × Tm (where I ⊂ Rn, Y ⊂ R are open and connected; T = R/(2πZ) is the standard torus), has the form

N(I, y) = v(I, y)∂y + ω(I, y)∂ψ . (1)

he motion equations of N ⎧⎨⎩İ = 0
ẏ = v(I, y)
ψ̇ = ω(I, y)

an be integrated in cascade: ⎧⎪⎪⎨⎪⎪⎩
I(t) = I0
y(t) = η(I0, t)

ψ(t) = ψ0 +
∫ t

t0

ω(I0, η(I0, t
′))dt′

(2)
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with η(I0, ·) being the general solution of the one–dimensional equation ẏ(t) = v(I0, y). This formula
shows that along the solutions of N the coordinates I (“actions”) remain constant, while the motion of
the coordinates ψ (“angles”) is coupled with the motion of the “driving” coordinate y. We assume that v is
suitably far from vanishing (for the problem considered in the paper |v| has a positive lower bound). It is to
be noted that, without further assumptions on the function v (like, for example, of being “small”, or having
a stationary point) nothing prevents to the y coordinate to move fast. For this reason – with slight abuse
due to the fact that fastness may nowise occur – we refer to the solutions in (2) as fast driven system. The
main risk of such kind of system is that the solution q(t) = (I(t), y(t), ψ(t)) of N in (2) leaves the domain P
t a finite time. It is then convenient to define the exit time from P under N , or, more in general, the exit

time from a given W ⊆ P under the vector-field X, and denote it as tX,Wex , the (possibly infinite) first time
hat q(t) leaves W .

Let us now replace the vector-field N(I, y) with a new vector-field of the form

X(I, y, ψ) = N(I, y) + P (I, y, ψ) (3)

here the “perturbation”

P = P1(I, y, ψ)dI + P2(I, y, ψ)dy + P3(I, y, ψ)dψ

s, in some sense, “small” (see the next section for precise statements). Let tX,Wex be the exit time from
under X, and let ϵ be a uniform upper bound for the absolute value of P1 on W . Then, one has a

inear-in-time a-priori bound for the variations of I, as follows

|I(t) − I(0)| ≤ ϵt ∀ t : |t| < tX,Wex W ⊆ P . (4)

e are interested in improving the bound (4). To the readers who are familiar with Kolmogorov–Arnold–
oser (kam) or Nekhorossev theories, this kind of problems is well known: see [3,24,38,44], or [11,22,25,29,47]

or applications to realistic models. Those are theories originally formulated for Hamiltonian vector-fields
next extended to more general ODEs), hence, in particular, with n = m and the coordinate y absent. In
hose cases the unperturbed motions of the coordinates (I, ψ) are

I(t) = I0 , ψ(t) = ψ0 + ω(I0)t (5)

nd the properties of the motions after the perturbing term is switched on depend on the arithmetic
roperties of the frequency vector ω(I0). Under suitable non-commensurability assumptions of ω(I0) (referred
o as “Diophantine conditions”), kam theory ensures the possibility of continuing the unperturbed motions
5) for all times. Conversely, if ω(I) satisfies, on an open set, an analytic property known as “steepness”
which is satisfied, e.g., if ω does not vanish and moreover if it is the gradient of a convex function),
ekhorossev theory allows to infer – for all orbits – a bound as in (4), with e−C/ϵa replacing ϵ and
X,W
ex = eC/ϵ

b , with suitable a, b, C > 0. It is to be remarked that in the Nekhorossev regime the
xponential scale of tX,Wex is an intrinsic consequence of steepness, responsible of a process known as “capture
n resonance”. In the case considered in the paper such phenomenon does not seem to exist and hence the
xit time tX,Wex has no reason to be long. Nevertheless, motivated by an application to celestial mechanics
escribed below, we are interested with replacing ϵ in (4) with a smaller number. We shall prove the following
esult (note that steepness conditions are not needed here).

heorem A. Let X = N +P be real-analytic, where N is as in (1), with v ̸≡ 0. Under suitable “smallness”
ssumptions involving ω, ∂ω, ∂v and P , the bound in (4) holds with e−C/ϵa replacing ϵ, with a suitable a,

> 0.
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A quantitative statement of Theorem A is given in Theorem 2.1. In addition, in view of our application,
we also discuss a version to the case when analyticity in ψ fails; this is Theorem 2.2.

To describe how we shall use Theorem A (more precisely, Theorem 2.2), we make a digression on the
three-body problem and the renormalizable integrability of the simply averaged Newtonian potential [40].
The Hamiltonian governing the motions of a three-body problem in the plane where the masses are 1, µ and
appa, is (see, e.g., [18])

H3b =
(

1 + 1
κ

)
∥y∥2

2 +
(

1 + 1
µ

)
∥y′∥2

2 − κ

∥x∥
− µ

∥x′∥
− κµ

∥x − x′∥
+ y · y′

where y, y′ ∈ R2; x, x′ ∈ R2, with x ̸= 0 ̸= x′ and x ̸= x′, are impulse-position coordinates; ∥ · ∥ denotes
the Euclidean norm and the gravity constant has been chosen equal to 1, by a proper choice of the units
system. We rescale

(y′,y) → κ2

1 + κ
(y′,y) , (x′,x) → 1 + κ

κ2 (x′,x)

multiply the Hamiltonian by 1+κ
κ3 and obtain

H3b(y′,y,x′,x) = ∥y∥2

2 − 1
∥x∥

+ δ

(
∥y′∥2

2 − α

∥x − x′∥
− β

∥x′∥

)
+ γy · y′ (6)

with
α := µ2(1 + κ)

κ(1 + µ) , β := µ2(1 + κ)
κ2(1 + µ) , γ := κ

1 + κ
, δ := κ(1 + µ)

µ(1 + κ) .

n order to simplify the analysis a little bit, we introduce a main assumption. The Hamiltonian H3b in (6)
ncludes the Keplerian term

∥y∥2

2 − 1
∥x∥

= − 1
2Λ2 . (7)

e assume that this term is “leading” in the Hamiltonian. By averaging theory, this assumption allows us
o replace (at the cost of a small error) H3b by its ℓ-average

H = − 1
2Λ2 + δH (8)

here ℓ is the mean anomaly associated to (7), and1

H := ∥y′∥2

2 − αU − β

∥x′∥
(9)

with
U := 1

2π

∫ 2π

0

dℓ

∥x′ − x(ℓ)∥
eing the “simply2 averaged Newtonian potential”. We recall that the mean anomaly ℓ is defined as the area

spanned by x on the Keplerian ellipse generated by (7) relatively to the perihelion P of the ellipse, in 2π
units. From now on we focus on the motions of the averaged Hamiltonian (9), bypassing any quantitative
statement concerning the averaging procedure, as this would lead much beyond the purposes of the paper.3

1 Remark that y(ℓ) has vanishing ℓ-average so that the last term in (6) does not survive.
2 Here, “simply” is used as opposed to the more familiar “doubly” averaged Newtonian potential, most often encountered in

he literature; e.g. [14,15,18,27,39].
3 As we consider a region in phase space close where x′ is very close to the instantaneous Keplerian orbit of x, quantifying

the values of the mass parameters and the distance which allow for the averaging procedure is a delicate (even though crucial)
question, which, by its nature, demands careful use of regularisations. Due to the non-trivial underlying analysis, we choose to
limit ourselves to point out that the renormalizable integrability of the Newtonian potential has a nontrivial dynamical impact
on the simply averaged three-body problem, which explain the existence of the motions herewith discussed, which would not be
justified otherwise.
3
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Neglecting the first term in (8), which is an inessential additive constant for H and reabsorbing the constant
with a time change, we are led to look at the Hamiltonian H in (9). We denote as E the Keplerian ellipse

enerated by Hamiltonian (7), for negative values of the energy. Without loss of generality, assume E is not a
ircle and4 Λ = 1. Remark that, as the mean anomaly ℓ is averaged out, we lose any information concerning
he position of x on E, so we shall only need two couples of coordinates for determining the shape of E and
he vectors y′, x′. These are:

• the “Delaunay couple” (G, g), where G is the Euclidean length of x ×y and g detects the perihelion. We
remark that g is measured with respect to x′ (instead of with respect to a fixed direction), as the SO(2)
reduction we use a rotating frame which moves with x′ (compare the formulae in (66) below);

• the “radial–polar couple” (R, r), where r := ∥x′∥ and R := y′·x′

∥x′∥ .

Using the coordinates above, the Hamiltonian in (9) becomes

H(R,G, r, g) = R2

2 + (C − G)2

2r2 − αU(r,G, g) − β

r (10)

here C = ∥x×y+x′×y′∥ is the total angular momentum of the system, and we have assumed x×y ∥ x′×y′,
o that ∥x′ × y′∥ = C − ∥x × y∥ = C − G.

The Hamiltonian (10) is now wearing 2 degrees-of-freedom. As the energy is conserved, its motions evolve
n the 3-dimensional manifolds Mc = {H = c}. On each of such manifolds the evolution is associated to a
-dimensional vector-field Xc, given by the velocity field of some triple of coordinates on Mc. As an example,
ne can take the triple (r,G, g), even though a more convenient choice will be done below. To describe the
otions we are looking for, we need to recall a remarkable property of the function U, pointed out in [40].
irst of all, one has to note that U is integrable, as it is a function of (r,G, g) only. But the main point is
hat there exists a function F of two arguments such that

U(r,G, g) = F(E(r,G, g), r) (11)

here
E(r,G, g) = G2 + r

√
1 − G2 cos g . (12)

he function E is referred to as Euler integral, and we express (11) by saying that U is renormalizable
ntegrability via the Euler integral. Such circumstance implies that the level sets of E, namely the curves

G2 + r
√

1 − G2 cos g = E (13)

re also level sets of U. On the other hand, the phase portrait of (13) keeping r fixed is completely explicit
nd has been studied in [41]. We recall it now. Let us fix (by periodicity of g) the strip [−π, π] × [−1, 1]. For
< r < 1 or 1 < r < 2 it includes two minima (±π, 0) on the g-axis; two symmetric maxima on the G-axis

nd one saddle point at (0, 0). When r > 2 the saddle point disappears and (0, 0) turns to be a maximum.
he phase portrait includes two separatrices when 0 < r < 1 or 1 < r < 2; one separatrix if r > 2. These are

he level sets {
S0(r) = {E = r} , 0 < r < 1 , 1 < r < 2
S1(r) = {E = 1} , 0 < r < 1 , 1 < r < 2 , r > 2

with S0(r) being the separatrix through the saddle; S1(r) the level set through circular orbits. Rotational
otions in between S0(r) and S1(r), do exist only for 0 < r < 1. The minima and the maxima are surrounded

y librational motions and different motions (librations about different equilibria or rotations) are separated
y S0(r) and S1(r). All of this is represented in Fig. 1.

4 We can do this as the Hamiltonian H rescale by a factor β−2 as (y′,y) → β−1(y′,y) and (x′,x) → β2(x′,x).
3b
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Fig. 1. Sections, at r fixed, of the level surfaces of E. (a) 0 < r < 1; (b) 1 < r < 2; (c) r > 2.

Fig. 2. Logs of the level surfaces of E in the space (g, G, r). (a) 0 < r < 1; (b) 1 < r < 2; (c) r > 2.

In Fig. 2 the same level sets are drawn in the 3-dimensional space (r,G, g). The spatial visualisation
turns out to be useful for the purposes of the paper, as the coordinate r, which stays fixed under E, is
instead moving under H, due to its dependence on R; see (10). We denote as S0 the union of all the S0(r)
with 0 ≤ r ≤ 2. It is to be noted that, while E is perfectly defined along S0, U is not so. Indeed, as

S0(r) =
{

(G, g) : G2 + r
√

1 − G2 cos g = r , −1 ≤ G ≤ 1 , g ∈ T
}

0 ≤ r < 2 (14)

e have5 U(r,G, g) = ∞ for (G, g) ∈ S0(r), for all 0 ≤ r ≤ 2.
The natural question now raises whether any of the E-levels in Fig. 2 is an “approximate” invariant

anifold for the Hamiltonian H in (10). In [42] and [16] a positive answer has been given for case r > 2,
orresponding to panels (c). In this paper, we want to focus on motions close to S0 with r in a left
eighbourhood of 2 (panels (b)). Such portion of phase space is denoted as C. By the discussion above,
otions in C are to be understood as “quasi-collisional”.
To state our result, we denote as rs(A) the value of r such that the area encircled by S0(rs(A)) is A. Then

he set {∃ A : r = rs(A)} corresponds to S0. We prove:

5 Rewriting (14) as

r =
G2

1 −
√

1 − G2 cos g
ells us that (G, g) ∈ S (r) if and only if x′ occupies in the ellipse E the position with true anomaly ν = π − g.
0

5
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Theorem B. Inside the region C there exists an open set W such that along any motion with initial datum
in W , for all t with |t| ≤ tX,Wex , the ratio between the absolute variations of the Euler integral E from time 0
to time t, for all |t| ≤ tX,Wex , and the a-priori bound ϵt (where ϵ := |P1|∞, with P1 being the action component
of the vector-field) does not exceed Ce−L3/C , provided that the initial value of r is e−L away from rs(A), with
L > 0 sufficiently large.

The proof of Theorem B, fully given in the next section, relies on a careful choice of coordinates (A, y, ψ)
on Mc, where y is diffeomorphic to r, while (A,ψ) are the action–angle coordinates of E(r, ·, ·), such that
the associated vector-field has the form in (3) with n = m = 1. The diffeomorphism r → y allows Xc to keep
its regularity upon S0.

Before switching to proofs, we recall how the theme of collisions in N -body problems (with N ≥ 3) has
been treated so far. As the literature in the field in countless, by no means we claim completeness. In the late
1890s H. Poincaré [43] conjectured the existence of special solutions in a model of the three-body problem
usually referred to as planar, circular, restricted three-body problem (pcrtbp). According to Poincaré’s
conjecture, when one of the primaries has a small mass µ, the orbit of an infinitesimal body approaching a
close encounter with the small primary consists of two Keplerian arcs glueing so as to form a cusp. These
solutions were named by him second species solutions, and their existence has been next proved in [4–8,26,30].
In the early 1900s, J. Chazy classified all the possible final motions of the three-body problem, including
the possibility of collisions [12]. The study was reconsidered in [1,2]. After the advent of kam theory, the
existence of almost-collisional quasi-periodic orbits was proven [13,17,48]. The papers [19,20,31–34,45,46]
deal with rare occurrence of collisions or the existence of chaos in the proximity of collisions. In [23] it is
proved that for pcrtbp there exists an open set in phase space of fixed measure, where the set of initial
points which lead to collision is O(µα) dense with some 0 < α < 1. In [28] it is proved that, after collision
regularisation, pcrtbp is integrable in a neighbourhood of collisions. In [9,10] the result has been recently
extended to the spatial version, often denoted scrtbp.

2. A Normal Form Theorem for fast driven systems

In Sections 2.1–2.4 we state and prove a Normal Form Theorem (nft) for real-analytic systems. For
the purpose of the paper, in Section 2.5 we generalise the result, allowing the dependence on the angular
coordinate ψ to be just Cℓ∗ (ℓ∗ ∈ N), rather than holomorphic. In all cases, we limit to the case n = m = 1.
Generalisations to n, m ≥ 1 are straightforward.

2.1. Weighted norms

Let us consider a 3-dimensional vector-field

(I, y, ψ) ∈ Pr,σ,s := Ir × Yσ × Ts → X = (X1, X2, X3) ∈ C3

where I ⊂ R, Y ⊂ R are open and connected; T = R/(2πZ), which has the form (3). As usual, if A ⊂ R and
r, s > 0, the symbols Ar, Ts denote the complex r, s-neighbourhoods of A, T:

Ar :=
⋃
x∈A

Br(x) , Ts :=
{
ψ = ψ1 + iψ2 : ψ1 ∈ T , ψ2 ∈ R , |ψ2| < s

}
,

with Br(x) being the complex ball centred at x with radius r. We assume each Xi to be holomorphic in
Pr,σ,s, meaning the it has a finite weighted norm defined below. If this holds, we simply write X ∈ O3

r,σ,s.
For functions f : (I, y, ψ) ∈ Ir × Yσ × Ts → C, we write f ∈ Or,σ,s if f is holomorphic in Pr,σ,s. We let

∥f∥u :=
∑

sup
I ×Y

|fκ(I, y)| e|k|s u = (r, σ, s) (15)

k∈Z r σ

6
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where
f =

∑
k∈Z

fk(I, y)eikψ

is the Fourier series associated to f relatively to the ψ-coordinate. For ψ-independent functions or vector-
fields we simply write ∥ · ∥r,σ.

For vector-fields X : (I, y, ψ) ∈ Ir×Yσ×Ts → X = (X1, X2, X3) ∈ C3, we write X ∈ O3
r,σ,s if Xi ∈ Or,σ,s

for i = 1, 2, 3. We define the weighted norms

�X�wu :=
∑
i

w−1
i ∥Xi∥u

here w = (w1, w2, w3) ∈ R3
+ are the weights. The weighted norm affords the following properties.

• Monotonicity:
�X�wu ≤ �X�wu′ , �X�w′

u ≤ �X�wu ∀ u ≤ u′ , w ≤ w′ (16)

where u ≤ u′ means ui ≤ u′
i for i = 1, 2, 3.

• Homogeneity:
�X�αwu = α−1�X�wu ∀ α > 0 . (17)

.2. The Normal Form Theorem

We now state the main result of this section. Observe that the nature of the system does not give rise to
ny non-resonance condition or ultraviolet cut-off. We name Normal Form Theorem the following

heorem 2.1 (nft). Let u = (r, σ, s); X = N + P ∈ O3
u and let w = (ρ, τ , t) ∈ R3

+. Put

Q := 3 diam(Yσ)
1
v


r,σ

nd6 assume that for some p ∈ N, s2 ∈ R+, the following inequalities are satisfied:

0 < ρ <
r

8 , 0 < τ < e−s2 σ

8 , 0 < t <
s

10 (18)

nd

χ := diam(Yσ)
s2

∂yvv

r,σ

≤ 1 (19)

θ1 := 2 es2diam(Yσ)
∂yωv


r,σ

τ

t
≤ 1 (20)

θ2 := 4 diam(Yσ)
∂Iv

v


r,σ

ρ

τ
≤ 1

θ3 := 8 diam(Yσ)
∂Iω

v


r,σ

ρ

t
≤ 1 (21)

η2 := max
{

diam(Yσ)
t

ω
v


r,σ

, 27 e2s2Q2(�P�wu )2
}
<

1
p
. (22)

hen, with
u∗ = (r⋆, σ⋆, s⋆) , r⋆ := r − 8ρ , σ⋆ = σ − 8es2τ , s⋆ = s− 10t

here exists a real-analytic change of coordinates Φ⋆ such that X⋆ := Φ⋆X ∈ O3
u⋆

and X⋆ = N + P⋆, with

�P⋆�wu⋆
< 2−(p+1)�P�wu .

6 diam(A) denotes diameter of the set A.
7
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Remark 2.1 (Proof of Theorem A). Theorem 2.1 immediately implies Theorem A, with C = min{2−7Q−2

e−2s2ϱ2 log 2 , t/diamYσ}, a = 2, provided that ϱ := ϵ2

(�P�w
u )2 is of “order one” with respect to ϵ. The

mentioned “smallness assumptions” correspond to conditions (18)-(21) and
ω
v


r,σ

≪ (�P�wu )2.

2.3. The step lemma

We denote as

eLY =
∑
k≥0

LkY
k! (23)

he formal Lie series associated to Y , where

[Y,X] = JXY − JYX , (JZ)ij := ∂jZi

enotes Lie brackets of two vector-fields, with

LY := [Y, ·]

eing the Lie operator.

emma 2.1. Let X = N + P ∈ O3
u, with u = (r, σ, s), N as in (36), s1, s2 > 0. Assume

diam(Yσ)
s1

ω
v


r,σ

≤ 1 , diam(Yσ)
s2

∂yvv

r,σ

≤ 1 (24)

nd that P is so small that

Q�P�wu < 1 Q := 3diam(Yσ)
1
v


r,σ

, w = (ρ, τ, t) (25)

et ρ∗, τ∗, t∗ be defined via

1
ρ∗

= 1
ρ

− diam(Yσ)
∂Iv

v


r,σ

(
1
τ

− es2diam(Yσ)
∂yωv


r,σ

1
t

)

− diam(Yσ)
(∂Iω

v


r,σ

+ es2diam(Yσ)
∂Iv

v


r,σ

∂yωv

r,σ

)
1
t

1
τ∗

= e−s2

τ
− diam(Yσ)

∂yωv

r,σ

1
t

t∗ = t (26)

nd assume
w∗ = (ρ∗, τ∗, t∗) ∈ R3

+ , u∗ = (r − 2ρ∗, σ − 2τ∗, s− 3s1 − 2t∗) ∈ R3
+ . (27)

hen there exists Y ∈ O3
u∗+w∗ such that X+ := eLY X ∈ O3

u∗ and X+ = N + P+, with

�P+�w∗
u∗ ≤ 2Q (�P�wu )2

1 −Q �P�wu
(28)

In the next section, we shall use Lemma 2.1 in the following “simplified” form.
8
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Lemma 2.2 (Step Lemma). If (24), (25) and (27) are replaced with

2 es2diam(Yσ)
∂yωv


r,σ

τ

t
≤ 1

4 diam(Yσ)
∂Iv

v


r,σ

ρ

τ
≤ 1

8 diam(Yσ)
∂Iω

v


r,σ

ρ

t
≤ 1

(29)

diam(Yσ)
t

ω
v


r,σ

≤ 1 , diam(Yσ)
s2

∂yvv

r,σ

≤ 1 (30)

0 < ρ <
r

4 , 0 < τ <
σ

4 e
−s2 , 0 < t <

s

5 (31)

2Q�P�wu < 1 (32)

then X+ = N + P+ ∈ O3
u+ and

�P+�wu+ ≤ 8es2Q(�P�wu )2 . (33)

with
u+ := (r − 4ρ, σ − 4τes2 , s− 5t) .

Proof. The inequality in (30) guarantees that one can take s1 = t, while the inequalities in (29) and (31)
imply

1
ρ∗

≥ 1
2ρ ,

1
τ∗

≥ e−s2

2τ
hence, as t∗ = t,

w∗ < 2es2w , u∗ ≥ u+ > 0 .

hen (33) is implied by (28), monotonicity and homogeneity (16)–(17), and the inequality in (32). □

To prove Lemma 2.1, we look for a change of coordinates which conjugates the vector-field X = N +P to
new vector-field X+ = N+ + P+, where P+ depends on the coordinates I at higher orders. The procedure
e follow is reminiscent of classical techniques of normal form theory, where one chooses the transformation

o that X+ = eLY X, with the operator eLY being defined as in (23). As in the classical case, Y will be
hosen as the solution of a certain “homological equation” which allows to eliminate the first order terms
epending on ψ of P . However, as stated in Lemma 2.1, differently from the classical situation, one can take

= N+, which is another way of saying that it is possible to choose Y such in a way to solve

LN [Y ] = P (34)

egardless P has vanishing average or not — or, in other words, that also the resonant terms of the perturbing
erm will be killed. Note also that no “ultraviolet cut-off” is used. Eq. (34) is precisely what is discussed in
emma 2.3 and Proposition 2.1.

Fix y0 ∈ Y; v, ω : I × Y → R, with v ̸≡ 0. We define, formally, the operators Fv,ω and Gv,ω as acting on
unctions g : I × Y × T → R as

Fv,ω[g](I, y, ψ) :=
∫ y

y0

g
(

I, η, ψ +
∫ η
y
ω(I,η′)
v(I,η′) dη

′
)

v(I, η) dη

Gv,ω[g](I, y, ψ) :=
∫ y g

(
I, η, ψ +

∫ η
y
ω(I,η′)
v(I,η′) dη

′
)
e

−
∫ η

y

∂yv(I,η′)
v(I,η′) dη′

dη (35)

y0 v(I, η)

9
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Observe that, when existing, Fv,ω, Gv,ω send zero-average functions to zero-average functions.
The existence Fv,ω, Gv,ω is established by the following

emma 2.3. If inequalities (24) hold, then

Fv,ω , Gv,ω : Or,σ,s → Or,σ,s−s1

and
∥Fv,ω[g]∥r,σ,s−s1 ≤ diam(Yσ)

g
v


r,σ,s

, ∥Gv,ω[g]∥r,σ,s−s1 ≤ es2 diam(Yσ)
g
v


r,σ,s

The proof of Lemma 2.3 is obvious from the definitions (35).

roposition 2.1. Let

N = (0, v(I, y), ω(I, y)) , Z = (Z1(I, y, ψ), Z2(I, y, ψ), Z3(I, y, ψ)) (36)

elong to O3
r,σ,s and assume (24). Then the “homological equation”

LN [Y ] = Z (37)

as a solution Y ∈ Or,σ,s−3s1 verifying

�Y �ρ∗,τ∗,t∗
r,σ,s−3s1 ≤ diam(Yσ)

1
v


r,σ

�Z�ρ,τ,tr,σ,s (38)

with ρ∗, τ∗, t∗ as in (26).

Proof. We expand Yj and Zj along the Fourier basis

Yj(I, y, ψ) =
∑
k∈Z

Yj,k(I, y)eikψ , Zj(I, y, ψ) =
∑
k∈Z

Zj,k(I, y)eikψ , j = 1, 2, 3

sing
LN [Y ] = [N,Y ] = JYN − JNY

here (JZ)ij = ∂jZi are the Jacobian matrices, we rewrite (37) as

Z1,k(I, y) = v(I, y)∂yY1,k + ikω(I, y)Y1,k

Z2,k(I, y) = v(I, y)∂yY2,k + (ikω(I, y) − ∂yv(I, y))Y2,k − ∂Iv(I, y)Y1,k

Z3,k(I, y) = v(I, y)∂yY3,k + ikω(I, y)Y3,k − ∂Iω(I, y)Y1,k − ∂yω(I, y)Y2,k . (39)

Regarding (39) as equations for Yj,k, we find the solutions

Y1,k =
∫ y

y0

Z1,k(I, η)
v(I, η) e

ik
∫ η

y

ω(I,η′)
v(I,η′) dη

′
dη

Y2,k =
∫ y

y0

Z2,k(I, η) + ∂IvY1,k

v(I, η) e

∫ η

y

ikω(I,η′)−∂yv(I,η′)
v(I,η′) dη′

dη

Y3,k =
∫ y

y0

Z3,k(I, η) + ∂Iω(I, η)Y1,k + ∂yω(I, η)Y2,k

v(I, η) e
ik
∫ η

y

ω(I,η′)
v(I,η′) dη

′
dη

ultiplying by eikψ and summing over k ∈ Z we find

Y = F [Z ]
1 v,ω 1

10
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Y2 = Gv,ω[Z2] + Gv,ω[∂Iv Y1] ,

Y3 = Fv,ω[Z3] + Fv,ω[∂Iω Y1] + Fv,ω[∂yω Y2] . (40)

hen, by Lemma 2.3,

∥Y1∥r,σ,s−s1 ≤ diam(Yσ)
1
v


r,σ

∥Z1∥r,σ,s

∥Y2∥r,σ,s−2s1 ≤ es2diam(Yσ)
1
v


r,σ

∥Z2∥r,σ,s−s1
+ es2diam(Yσ)2

1
v


r,σ

∂Iv

v


r,σ

∥Z1∥r,σ,s

∥Y3∥r,σ,s−3s1 ≤ diam(Yσ)
1
v


r,σ

∥Z3∥r,σ,s−2s1
+ es2diam(Yσ)2

1
v


r,σ

∂yωv

r,σ

∥Z2∥r,σ,s−s1

+ diam(Yσ)2
1
v


r,σ

(∂Iω

v


r,σ

+ es2diam(Yσ)
∂Iv

v


r,σ

∂yωv

r,σ

)
∥Z1∥r,σ,s

ultiplying the inequalities above by ρ−1
∗ , τ−1

∗ , t−1
∗ respectively and taking the sum, we find (38), with

1
ρ

= 1
ρ∗

+ es2diam(Yσ)
∂Iv

v


r,σ

1
τ∗

+ diam(Yσ)
(∂Iω

v


r,σ

+ es2diam(Yσ)
∂Iv

v


r,σ

∂yωv

r,σ

)
1
t∗

1
τ

= es2

τ∗
+ es2diam(Yσ)

∂yωv

r,σ

1
t∗

1
t

= 1
t∗
.

e recognise that, under conditions (27), ρ∗, τ∗, t∗ in (26) solve the equations above. □

emma 2.4. Let w < u ≤ u0; Y ∈ O3
u0 , W ∈ O3

u. Then

�LY [W ]�u0−u+w
u−w ≤ �Y �wu−w�W�u0−u+w

u + �W�u0−u+w
u−w �Y �u0−u+w

u0 .

Proof. One has

�LY [W ]�u0−u+w
u−w = �JWY − JYW�u0−u+w

u−w

≤ �JWY �u0−u+w
u−w + �JYW�u0−u+w

u−w

Now, (JWY )i = ∂IWiY1 + ∂yWiY2 + ∂ψWiY3, so, using Cauchy inequalities,

∥(JWY )i∥u−w ≤ ∥∂IWi∥u−w∥Y1∥u−w + ∥∂yWi∥u−w∥Y2∥u−w + ∥∂ψWi∥u−w∥Y3∥u−w

≤ w−1
1 ∥Wi∥u∥Y1∥u−w + w−1

2 ∥Wi∥u∥Y2∥u−w + w−1
3 ∥Wi∥u∥Y3∥u−w

= �Y �wu−w∥Wi∥u
11
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Similarly,
∥(JYW )i∥u−w ≤ �W�u0−u+w

u−w ∥Yi∥u0 .

aking the u0 − u+ w-weighted norms, the thesis follows. □

emma 2.5. Let 0 < w < u ∈ R3, Y ∈ O3
u+w, W ∈ O3

u. Then

�LkY [W ]�wu−w ≤ 3kk!
(�Y �wu+w

)k �W�wu−w .

roof. We apply Lemma 2.4 with W replaced by Li−1
Y [W ], u replaced by u − (i − 1)w/k, w replaced by

/k and, finally, u0 = u+w. With � ·�wi = � ·�wu−iw
k

, 0 ≤ i ≤ k, so that � ·�w0 = � ·�wu and � ·�wk = � ·�wu−w,

�LiY [W ]�w+w/k
i =

���[Y,Li−1
Y [W ]

]���w+w/k

i

≤ �Y �w/ki �Li−1
Y [W ]�w+w/k

i−1 + �Y �w+w/k
u+w �Li−1

Y [W ]�w+w/k
i .

Hence, de-homogenizating,

k

k + 1�LiY [W ]�wi ≤ k
k

k + 1�Y �wi �Li−1
Y [W ]�wi−1 + k2

(k + 1)2 �Y �wu+w�Li−1
Y [W ]�wi

≤ k2

k + 1

(
1 + 1

k + 1

)
�Y �wu+w�Li−1

Y [W ]�wi−1

Eliminating the common factor k
k+1 and iterating k times from i = k, by Stirling, we get

�LkY [W ]�wu−w ≤ kk
(

1 + 1
k

)k (�Y �wu+w
)k �W�wu−w

≤ ekk!
(�Y �wu+w

)k �W�wu−w

< 3kk!
(�Y �wu+w

)k �W�wu−w

as claimed. □

Proposition 2.2. Let 0 < w < u, Y ∈ O3
u+w,

q := 3�Y �wu+w < 1 .

Then the Lie series eLY defines an operator

eLY : O3
u → O3

u−w

and its tails
eLY
m =

∑
k≥m

LkY
k!

verify ���eLY
m W

���w
u−w

≤ qm

1 − q
�W�wu ∀ W ∈ O3

u .

roof of Lemma 2.1. We look for Y such that X+ := eLY X has the desired properties.

eLY X = eLY (N + P ) = N + P + LYN + e
LY
2 N + e

LY
1 P

= N + P − LNY + P+
12
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with P+ = e
LY
2 N + e

LY
1 P . We choose Y so that the homological equation

LNY = P

is satisfied. By Proposition 2.1, this equation has a solution Y ∈ O3
r,σ,s−3s1 verifying

q := 3�Y �w∗
r,σ,s−3s1 ≤ 3diam(Yσ)

1
v


r,σ

�P�wu = Q�P�wu < 1 .

By Proposition 2.2, the Lie series eLY defines an operator

eLY : W ∈ Ou∗+w∗ → Ou∗

and its tails eLY
m verify ���eLY

m W
���w∗

u∗
≤ qm

1 − q
�W�w∗

u∗+w∗

≤ (Q�P�wu )m

1 −Q�P�wu
�W�w∗

u∗+w∗

for all W ∈ O3
u∗+w∗ . In particular, eLY is well defined on O3

u ⊂ O3
u∗+w∗ , hence P+ ∈ O3

u∗ . The bounds on
P+ are obtained as follows. Using the homological equation, one finds

�eLY
2 N�w∗

u∗ =

������
∞∑
k=1

Lk+1
Y N

(k + 1)!

������
w∗

u∗

≤
∞∑
k=1

1
(k + 1)!

���Lk+1
Y N

���w∗

u∗

=
∞∑
k=1

1
(k + 1)!

���LkY P
���w∗

u∗

≤
∞∑
k=1

1
k!

���LkY P
���w∗

u∗

≤ Q (�P�wu )2

1 −Q �P�wu
(41)

he bound
�eLY

1 P�w∗
u∗ ≤ Q (�P�wu )2

1 −Q �P�wu
(42)

s even more straightforward. □

.4. Proof of the Normal Form Theorem

The proof of nft is obtained – following [44] – via iterate applications of the Step Lemma. At the base
tep, we let7

X = X0 := N + P0 , w = w0 := (ρ, τ, t) , u = u0 := (r, σ, s)

ith X0 = N + P0 ∈ O3
u0 . We let

Q0 := 3 diam(Yσ)
1
v


r,σ

7 With slight abuse of notations, here and during the proof of Theorem 2.2, the sub-fix j will denote the value of a given
uantity at the jth step of the iteration.
13
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Conditions (29)–(32) are implied by the assumptions (20)–(22). We then conjugate X0 to X1 = N + P1 ∈
3
u1 , where

u1 = (r − 4ρ, σ − 4τes2 , s− 5t) =: (r1, σ1, s1) .

hen we have
�P1�w0

u1 ≤ 8es2Q0
(�P0�w0

u0

)2 ≤ 1
2�P0�w0

u0 . (43)

e assume, inductively, that, for some 1 ≤ j ≤ p, we have

Xj = N + Pj ∈ O3
uj
, �Pj�w0

uj
< 2−(j−1)�P1�w0

u1 (44)

where
uj = (rj , σj , sj) (45)

ith
rj := r1 − 4(j − 1)ρ

p
, σj := σ1 − 4es2(j − 1)τ

p
, sj := s1 − 5(j − 1) t

p
.

he case j = 1 trivially reduces to the identity �P1�w0
u1 = �P1�w0

u1 . We aim to apply Lemma 2.2 with u = uj
s in (45) and

w = w1 := w0

p
, ∀ 1 ≤ j ≤ p .

onditions (29)–(31) are easily seen to be implied by (20), (19), (18) and the first condition in (22) combined
ith the inequality pη2 < 1, implied by the choice of p. We check condition (32). By homogeneity,

�Pj�w1
uj

= p�Pj�w0
uj

≤ p�P1�w0
u1 ≤ 8pes2Q0

(�P0�w0
u0

)2

hence, using

Qj = 3 diam(Yσj
)
1
v


rj ,σj

≤ Q0

e see that condition (32) is met:

2Qj�Pj�w1
uj

≤ 16pes2Q2
0
(�P0�w0

u0

)2
< 1 .

Then the Iterative Lemma can be applied and we get Xj+1 = N + Pj+1 ∈ O3
uj+1 , with

�Pj+1�w1
uj+1 ≤ 8es2Qj

(
�Pj�w1

uj

)2
≤ 8es2Q0

(
�Pj�w1

uj

)2
.

Using homogeneity again to the extreme sides of this inequality and combining it with (44), (43) and (22),
we get

�Pj+1�w0
uj+1 ≤ 8pes2Q0

(
�Pj�w0

uj

)2
≤ 8pes2Q0�P1�w0

u1 �Pj�w0
uj

≤ 64pe2s2Q2
0
(�P0�w0

u0

)2 �Pj�w0
uj

≤ 1
2�Pj�

w0
uj

< 2−j�P1�w0
u1 .

fter p iterations,
�Pp+1�w0

up+1 < 2−p�P1�w0
u1 < 2−(p+1)�P0�w0

u0

o we can take X = X , P = P , u = u . □
⋆ p+1 ⋆ p+1 ⋆ p+1

14
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2.5. A generalisation when the dependence on ψ is smooth

efinition 2.1. We denote C3
u,ℓ∗ , with u = (r, σ), the class of vector-fields

(I, y, ψ) : Pu := Ir × Yσ × T → X = (X1, X2, X3) ∈ C3 u = (r, σ)

where each Xi ∈ Cu,ℓ∗ , meaning that Xi is Cℓ∗ in P := I × Y × T, Xi(·, ·, ψ) is holomorphic in Ir × Yσ for
each fixed ψ in T.

In this section we generalise Theorem 2.1 to the case that X ∈ C3
u,ℓ∗ . We use techniques going back to J.

Nash and J. Moser [35–37].
First of all, we need a different definition of norms8 and, especially, smoothing operators.

1. Generalised weighted norms. We let

�X�wu,ℓ :=
∑
i

w−1
i ∥Xi∥u,ℓ , 0 ≤ ℓ ≤ ℓ∗ (46)

where w = (w1, w2, w3) ∈ R3
+ where, if f : Pr,σ := Ir × Yσ × T → C, then

∥f∥u := sup
Ir×Yσ×T

|f | , ∥f∥u,ℓ := max
0≤j≤ℓ

{∥∂jφ f∥u} u = (r, σ) . (47)

Clearly, the class O3
r,σ,s defined in Section 2.1 is a proper subset of C3

u,ℓ∗
Observe that the norms (46) still verify monotonicity and homogeneity in (16) and (17).

2. Smoothing. We call smoothing a family of operators

TK : f ∈ Cu,ℓ∗ → TKf ∈ Cu,ℓ∗ , K ∈ N

verifying the following. Let RK := I − TK . There exist c0 > 0, δ ≥ 0 such that for all f ∈ Cu,ℓ∗ , for all K,
0 ≤ j ≤ ℓ ≤ ℓ∗,

• ∥TK f∥u,ℓ ≤ c0 K
(ℓ−j+δ)∥f∥u,j ∀ 0 ≤ ℓ ≤ ℓ∗

• ∥RK f∥u,j ≤ c0 K
−(ℓ−j−δ)∥f∥u,ℓ ∀ 0 ≤ ℓ ≤ ℓ∗

As an example, as suggested in [3], one can take

TK f(I, y, ψ) :=
∑

k∈Z,|k|1≤K

fk(I, y)eikψ

which, with the definitions (46)–(47), verifies the inequalities above with δ = 2.
We name Generalised Normal Form Theorem (gnft) the following

Theorem 2.2 (gnft). Let u = (r, σ); X = N + P ∈ C3
u,ℓ∗ , p, ℓ, K ∈ ♮ and let wK =

(
ρ, τ, 1

c0 K1+δ

)
∈ R3

+
and assume that for some s1, s2 ∈ R+, the following inequalities are satisfied. Put

Q := 3 es1diam(Yσ)
1
v


r,σ

(48)

hen assume:
0 < ρ <

r

8 , 0 < τ < e−s2 σ

8 (49)

8 The series in (15) is in general diverging when f ∈ C .
u,ℓ∗

15
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and

χ := max
{

diam(Yσ)
s1

ω
v


r,σ

,
diam(Yσ)

s2

∂yvv

r,σ

}
≤ 1 (50)

θ1 := 2 es1+s2diam(Yσ)
∂yωv


r,σ

c0 K
1+δτ ≤ 1

θ2 := 4 es1diam(Yσ)
∂Iv

v


r,σ

ρ

τ
≤ 1

θ3 := 8 es1diam(Yσ)
∂Iω

v


r,σ

c0 K
1+δρ ≤ 1 (51)

η := 24 es2Q�P�wK
u <

1
√
p
. (52)

hen, with
u∗ = (r⋆, σ⋆) , r⋆ := r − 8ρ , σ⋆ = σ − 8es2τ

there exists a real-analytic change of coordinates Φ⋆ such that X⋆ := Φ⋆X ∈ C3
u⋆,ℓ∗ and X⋆ = N + P⋆, with

�P⋆�wK
u⋆

≤ max
{

2−(p+1)�P�wK
u , 2c0 K

−ℓ+δ�P�wK
u,ℓ

}
∀ 0 ≤ ℓ ≤ ℓ∗ .

The result generalising Lemma 2.1 is

emma 2.6. Let X = N + P ∈ C3
u,ℓ∗ , with u = (r, σ), N as in (36), ℓ, K ∈ N. Assume (24) and that P is

o small that
Q�P�wK

u < 1 Q := 3es1diam(Yσ)
1
v


r,σ

, wK =
(
ρ, τ,

1
c0 K1+δ

)
(53)

et ρ∗, τ∗ be defined via

1
ρ∗

= 1
ρ

− diam(Yσ)
∂Iv

v


r,σ

(
es1

τ
− e2s1+s2diam(Yσ)

∂yωv

r,σ

c0 K
1+δ

)

− diam(Yσ)
(
es1

∂Iω

v


r,σ

+ e2s1+s2diam(Yσ)
∂Iv

v


r,σ

∂yωv

r,σ

)
c0 K

1+δ

1
τ∗

= e−s2

τ
− es1diam(Yσ)

∂yωv

r,σ

c0 K
1+δ (54)

ssume
ŵ∗ = (ρ∗, τ∗) ∈ R2

+ , u∗ = (r − 2ρ∗, σ − 2τ∗) ∈ R2
+

nd put

w∗,K :=
(
ŵ∗,

1
c0 K1+δ

)
.

hen there exists Y ∈ TKC3
u∗+ŵ∗,ℓ∗ such that X+ := eLY X ∈ C3

u∗,ℓ∗ and X+ = N + P+, with

�P+�w∗,K
u∗ ≤

2Q
(�P�wK

u

)2

1 −Q �P�wK
u

+ cK−ℓ+δ�P�wK
u,ℓ ∀ 0 ≤ ℓ ≤ ℓ∗ (55)

The simplified form of Lemma 2.6, corresponding to Lemma 2.2, is
16
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Lemma 2.7 (Generalised Step Lemma). Assume (24) and replace (53) and (54) with

2 es1+s2diam(Yσ)
∂yωv


r,σ

c0 K
1+δτ ≤ 1

4 es1diam(Yσ)
∂Iv

v


r,σ

ρ

τ
≤ 1

8 es1diam(Yσ)
∂Iω

v


r,σ

c0 K
1+δρ ≤ 1 (56)

0 < ρ <
r

4 , 0 < τ <
σ

4 e
−s2 (57)

2Q�P�wK
u < 1 (58)

then X+ = N + P+ ∈ C3
u+,ℓ∗

and

�P+�wK
u+ ≤ 8es2Q(�P�wK

u )2 + cK−ℓ+δ�P�wK
u,ℓ (59)

with
u+ := (r − 4ρ, σ − 4τes2) .

Proof. The inequalities in (56) guarantee

1
ρ∗

≥ 1
2ρ ,

1
τ∗

≥ e−s2

2τ

hence
w∗,K < 2es2wK , u∗ ≥ u+ > 0 .

hen (59) is implied by (55), monotonicity and homogeneity and the inequality in (58). □

Let now Fv,ω and Gv,ω be as in (35). First of all, observe that Fv,ω, Gv,ω take TKCu,ℓ∗ to itself. Moreover,
eneralising Lemma 2.3,

emma 2.8. If inequalities (24) hold, then

Fv,ω , Gv,ω : Cu,ℓ∗ → Cu,ℓ∗

and
∥Fv,ω[g]∥r,σ ≤ es1diam(Yσ)

g
v


r,σ

, ∥Gv,ω[g]∥r,σ ≤ es1+s2 diam(Yσ)
g
v


r,σ

.

roposition 2.3. Let

N = (0, v(I, y), ω(I, y)) , Z = (Z1(I, y, ψ), Z2(I, y, ψ), Z3(I, y, ψ))

belong to C3
u,ℓ∗ and assume (24). Then the “homological equation”

LN [Y ] = Z

has a solution Y ∈ Cu,ℓ∗ verifying

�Y �ρ∗,τ∗,t∗
u ≤ es1diam(Yσ)

1
 �Z�ρ,τ,tu u = (r, σ) (60)

v u

17
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a

I

P

M

W
Z

L

P

with ρ∗, τ∗, t∗ defined via

1
ρ∗

= 1
ρ

− diam(Yσ)
∂Iv

v


u

(
es1

τ
− e2s1+s2diam(Yσ)

∂yωv

u

1
t

)
− diam(Yσ)

(
es1

∂Iω

v


u

+ e2s1+s2diam(Yσ)
∂Iv

v


u

∂yωv

u

)
1
t

1
τ∗

= e−s2

τ
− es1diam(Yσ)

∂yωv

u

1
t

t∗ = t (61)

nd provided that
(ρ∗, τ∗) ∈ R2

+ . (62)

n particular, if Z ∈ TKC3
u,ℓ∗ for some K ∈ N, then also Y ∈ TKC3

u,ℓ∗ .

roof. The solution (40) satisfies

∥Y1∥u ≤ es1diam(Yσ)
1
v


u

∥Z1∥u

∥Y2∥u ≤ es1+s2diam(Yσ)
1
v


u

∥Z2∥u + e2s1+s2diam(Yσ)2
1
v


u

∂Iv

v


u

∥Z1∥u

∥Y3∥u ≤ es1diam(Yσ)
1
v


u

∥Z3∥u + e2s1+s2diam(Yσ)2
1
v


u

∂yωv

u

∥Z2∥u

+ diam(Yσ)2
1
v


u

(
e2s1

∂Iω

v


u

+ e3s1+s2diam(Yσ)
∂Iv

v


u

∂yωv

u

)
∥Z1∥u

ultiplying the inequalities above by ρ−1
∗ , τ−1

∗ , t−1
∗ respectively and taking the sum, we find (60), with

1
ρ

= 1
ρ∗

+ es1+s2diam(Yσ)
∂Iv

v


u

1
τ∗

+ diam(Yσ)
(
es1

∂Iω

v


u

+ e2s1+s2diam(Yσ)
∂Iv

v


u

∂yωv

u

)
1
t∗

1
τ

= es2

τ∗
+ es1+s2diam(Yσ)

∂yωv

u

1
t∗

1
t

= 1
t∗
.

e recognise that, under conditions (62), ρ∗, τ∗, t∗ in (61) solve the equations above. Observe that if
∈ TKC3

u,ℓ∗ , then also Y ∈ TKC3
u,ℓ∗ , as Fv,ω, Gv,ω do so. □

emma 2.9. Let u0 ≥ u > w ∈ R2
+ × {0}; Y ∈ TKC3

u0,ℓ∗
, W ∈ TKC3

u,ℓ∗ . Put wK :=
(
w1, w2,

1
c0 K1+δ

)
.

Then
�LY [W ]�u0−u+wK

u−w ≤ �Y �wK
u−w�W�u0−u+wK

u + �W�u0−u+wK
u−w �Y �u0−u+wK

u0 .

roof. By Cauchy inequalities, the definitions (46)–(47) and the smoothing properties,

∥(JWY )i∥u−w ≤ ∥∂IWi∥u−w∥Y1∥u−w + ∥∂yWi∥u−w∥Y2∥u−w + ∥∂ψWi∥u−w∥Y3∥u−w

≤ w−1
1 ∥Wi∥u∥Y1∥u−w + w−1

2 ∥Wi∥u∥Y2∥u−w + ∥Wi∥u,1∥Y3∥u−w

≤ w−1
1 ∥Wi∥u∥Y1∥u−w + w−1

2 ∥Wi∥u∥Y2∥u−w + c0 K
1+δ∥Wi∥u∥Y3∥u−w

wK
= �Y �u−w∥Wi∥u
18
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Similarly,
∥(JYW )i∥u−w ≤ �W�u0−u+wK

u−w ∥Yi∥u0 .

aking the u0 − u+ wK-weighted norms, the thesis follows. □

emma 2.10. Let 0 < w < u ∈ R2
+ × {0}, wK :=

(
w1, w2,

1
c0 K1+δ

)
; Y ∈ TKC3

u+w,ℓ∗ , W ∈ TKC3
u,ℓ∗ . Then

�LnY [W ]�wK
u−w ≤ 3nn!

(�Y �wK
u+w

)n �W�wK
u−w .

Proof. The proof copies the one of Lemma 2.5, up to invoke Lemma 2.9 at the place of Lemma 2.4 and
hence replace the w’s “up” with wK . □

Proposition 2.4. Let 0 < w < u ∈ R2
+ × {0}, wK :=

(
w1, w2,

1
c0 K1+δ

)
, Y ∈ TKC3

u+w,ℓ∗ ,

q := 3�Y �wK
u+w < 1 .

Then the Lie series eLY defines an operator

eLY : TKC3
u,ℓ∗ → TKC3

u−w,ℓ∗

and its tails
eLY
m =

∑
k≥m

LnY
k!

verify ���eLY
m W

���wK

u−w
≤ qm

1 − q
�W�wK

u ∀ W ∈ TKC3
u,ℓ∗ .

Proof of Lemma 2.6. All the remarks before Lemma 2.3 continue holding also in this case, except for the
fact that, differently from Lemma 2.1 here we need a “ultraviolet cut-off” of the perturbing term. Namely,
we split

eLY X = eLY (N + P ) = N + P + LYN + e
LY
2 N + e

LY
1 P

= N + TKP − LNY + P+

with P+ = e
LY
2 N + e

LY
1 P +RKP . We choose Y so that the homological equation

LNY = TKP

is satisfied. By Proposition 2.3, this equation has a solution Y ∈ TKC3
u,ℓ∗ verifying

q := 3�Y �w∗
u ≤ 3es1diam(Yσ)

1
v


u

�P�wK
u = Q�P�wK

u < 1 .

ith w∗ = (ρ∗, τ∗, t∗) as in (61). As t∗ = t = 1
c0 K1+δ , We let

w∗,K := w∗ , ŵ∗ := (ρ∗, τ∗)

ith (ρ∗, τ∗) as in (54). By Proposition 2.4, the Lie series eLY defines an operator

eLY : W ∈ TKCu∗+ŵ∗,ℓ∗ → TKCu∗,ℓ∗

nd its tails eLY
m verify ���eLY

m W
���w∗,K ≤

(
Q�P�wK

u

)m
wK

�W�w∗,K

u∗+ŵ∗
u∗ 1 −Q�P�u
19
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w
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for all W ∈ TKC3
u∗+ŵ∗,ℓ∗ . In particular, eLY is well defined on TKC3

u,ℓ∗ ⊂ TKC3
u∗+ŵ∗,ℓ∗ , hence P+ ∈ C3

u∗,ℓ∗ .
he bounds on P+ are obtained as follows. The terms �eLY

2 N�w∗,K
u∗ and �eLY

1 P�w∗,K
u∗ are treated quite

imilarly as (41) and (42):

�eLY
2 N�w∗,K

u∗ ≤
Q
(�P�wK

u

)2

1 −Q �P�wK
u

, �eLY
1 P�w∗,K

u∗ ≤
Q
(�P�wK

u

)2

1 −Q �P�wK
u

Moreover, here we have the term RKP , which is obviously bounded as

�RKP�w∗,K
u∗ ≤ cK−ℓ+δ�P�w∗,K

u∗,ℓ ≤ cK−ℓ+δ�P�wK
u,ℓ . □

We are finally ready for the

Proof of Theorem 2.2. Analogously as in the proof of nft, we proceed by iterate applications of the
eneralised Step Lemma. At the base step, we let

X = X0 := N + P0 , w0 := w0,K :=
(
ρ, τ,

1
c0K1+δ

)
, u0 := (r, σ)

with X0 = N + P0 ∈ C3
u0,ℓ∗

. We let

Q0 := 3 es1diam(Yσ)
1
v


u0

onditions (56)–(58) are implied by the assumptions (48)–(52). We then conjugate X0 to X1 = N + P1 ∈
3
u1,ℓ∗

, where
u1 = (r − 4ρ, σ − 4τes2) =: (r1, σ1) .

Then we have
�P1�w0

u1 ≤ 8es2Q0
(�P0�w0

u0

)2 + c0 K
−ℓ+δ�P0�w0

u0,ℓ
.

If 8es2Q0
(�P0�w0

u0

)2 ≤ c0 K
−ℓ+δ�P0�w0

u0,ℓ
, the proof finishes here. So, we assume the opposite inequality,

which gives
�P1�w0

u1 ≤ 16es2Q0
(�P0�w0

u0

)2 ≤ 1
2�P0�w0

u0 . (63)

e assume, inductively, that, for some 1 ≤ j ≤ p, we have

Xj = N + Pj ∈ C3
uj ,ℓ∗ , �Pj�w0

uj
< 2−(j−1)�P1�w0

u1 (64)

here
uj = (rj , σj) (65)

ith
rj := r1 − 4(j − 1)ρ

p
, σj := σ1 − 4es2(j − 1)τ

p
.

The case j = 1 is trivially true because it is the identity �P1�w0
u1 = �P1�w0

u1 . We aim to apply Lemma 2.7
with u = uj as in (65) and

w = w1 := w0

p
, ∀ 1 ≤ j ≤ p .

onditions (56) and (57) correspond to (50)–(51), while (58) is implied by (52). We check condition (58).
y homogeneity,

�Pj�w1
uj

= p�Pj�w0
uj

≤ p�P1�w0
u1 ≤ 16pes2Q0

(�P0�w0
u0

)2

hence, using
Qj = 3 diam(Yσj

)
1
v

 ≤ Q0

rj ,σj

20



Q. Chen and G. Pinzari Nonlinear Analysis 208 (2021) 112306

A

s

w

we see that condition (32) is met:

2Qj�Pj�w1
uj

≤ 32 pes2Q2
0
(�P0�w0

u0

)2
< 1 .

Then the Iterative Lemma can be applied and we get Xj+1 = N + Pj+1 ∈ C3
uj+1,ℓ∗

, with

�Pj+1�w1
uj+1 ≤ 8es2Qj

(
�Pj�w1

uj

)2
≤ 8es2Q0

(
�Pj�w1

uj

)2

Using homogeneity again to the extreme sides of this inequality and combining it with (64), (63) and (52),
we get

�Pj+1�w0
uj+1 ≤ 8pes2Q0

(
�Pj�w0

uj

)2
≤ 8pes2Q0�P1�w0

u1 �Pj�w0
uj

≤ 128 pe2s2Q2
0
(�P0�w0

u0

)2 �Pj�w0
uj

≤ 1
2�Pj�

w0
uj

< 2−j�P1�w0
u1 .

fter p iterations,
�Pp+1�w0

up+1 < 2−p�P1�w0
u1 < 2−(p+1)�P0�w0

u0

o we can take X⋆ = Xp+1, P⋆ = Pp+1, u⋆ = up+1. □

3. Symplectic tools

In this section we describe various sets of canonical coordinates that are needed to our application. We
remark that during the proof of Theorem B, we shall not use any of such sets completely, but rather a “mix”
of action–angle and regularising coordinates, described below.

3.1. Starting coordinates

We begin with the coordinates⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C = ∥x × y + x′ × y′∥
G = ∥x × y∥

R = y′ · x′

∥x′∥
Λ =

√
a

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ = αk(i,x′) + π

2
g = αk(x′,P) + π
r = ∥x′∥
ℓ = mean anomaly of x in E

(66)

here:

• i =

⎛⎝1
0
0

⎞⎠, j =

⎛⎝0
1
0

⎞⎠ is a orthonormal frame in R2 × {0} and k = i × j (“×” denoting, as usual, the

“skew-product”);
• after fixing a set of values of (y,x) where the Kepler Hamiltonian (7) takes negative values, E denotes

the elliptic orbit with initial values (y0,x0) in such set;
• a is the semi-major axis of E;
• P, with ∥P∥ = 1, the direction of the perihelion of E, assuming E is not a circle;
• ℓ is the mean anomaly of x on E, defined, mod 2π, as the area of the elliptic sector spanned from P to

x, normalised to 2π;
• αw(u,v) is the oriented angle from u to v relatively to the positive orientation established by w, if u,

v and w ∈ R3 \ {0}, with u, v ⊥ w.
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The canonical9 character of the coordinates (66) has been discussed, in a more general setting, in [40]. The
hifts π

2 and π in (66) serve only to be consistent with the spatial coordinates of [40].

3.2. Energy–time coordinates

We now describe the “energy-time” change of coordinates

ϕet : (R, E , r, τ) → (R,G, r, g) = (R + ρ(E , r, τ), G̃(E , r, τ), r, g̃(E , r, τ)) (67)

which integrates the function E(r,G, g) in (12), where E (“energy”) denotes the generic level-set of E, while
τ is its conjugated (“time”) coordinate. The domain of the coordinates (67) is

R ∈ R , 0 ≤ r < 2 , −r < E < 1 + r2

4 , τ ∈ R , E /∈ {r, 1} . (68)

The extremal values of E are taken to be the minimum and the maximum of the function E for 0 ≤ r < 2.
The values r and 1 have been excluded because they correspond, in the (g,G)-plane, to the curves S0(r) and
S1(r) in Fig. 1, where periodic motions do not exist.

The functions G̃(E , r, ·), g̃(E , r, ·) and ρ(E , r, ·) appearing in (67) are, respectively, 2τp periodic, 2τp
periodic, 2τp quasi-periodic, meaning that they satisfy

Per :

⎧⎨⎩G̃(E , r, τ + 2jτp) = G̃(E , r, τ)
g̃(E , r, τ + 2jτp) = g̃(E , r, τ)
ρ(E , r, τ + 2jτp) = ρ(E , r, τ) + 2jρ(E , r, τp)

∀ τ ∈ R , ∀ j ∈ Z (69)

ith τp = τp(E , r) the period, defined below. Note that one can find a unique splitting

ρ(E , r, τ) = B(E , r)τ + ρ̃(E , r, τ) (70)

uch that ρ̃(E , r, ·) is 2τp-periodic. It is obtained taking

B(E , r) = ρ(E , r, τp(E , r))
τp(E , r) , ρ̃(E , r, τ) = ρ(E , r, τ) − ρ(E , r, τp(E , r))

τp(E , r) τ . (71)

The transformation (67) turns to satisfy also the following “half-parity” symmetry:

P1/2 :

⎧⎨⎩G̃(E , r, τ) = G̃(E , r,−τ)
g̃(E , r, τ) = 2π − g̃(E , r,−τ)
ρ(E , r, τ) = −ρ(E , r,−τ)

∀ − τp < τ < τp . (72)

In addition, when −r < E < r, one has the following “quarter-parity”

P1/4 :

⎧⎨⎩G̃(E , r, τ) = −G (E , r, τp − τ)
g̃(E , r, τ) = g̃ (E , r, τp − τ)
ρ(E , r, τ) = ρ (E , r, τp) − ρ (E , r, τp − τ)

∀ 0 ≤ τ ≤ τp . (73)

The change (67) will be constructed using, as generating function, a solution of the Hamilton–Jacobi
equation

E(r,G, ∂GSet) = G2 + r
√

1 − G2 cos (∂GSet) = E . (74)

e choose the solution

S+
et(R, E , r,G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π
√
α+(E , r) −

∫ √
α+(E,r)

G
cos−1 E − Γ 2

r
√

1 − Γ 2
dΓ + Rr − r ≤ E < 1

π −
∫ √

α+(E,r)

G
cos−1 E − Γ 2

r
√

1 − Γ 2
dΓ + Rr 1 ≤ E ≤ 1 + r2

4

9 Namely, the change of coordinate (66) satisfies
∑2 (dy ∧ dx + dy′ ∧ dx′ ) = dC ∧ dγ + dG ∧ dg + dR ∧ dr + dΛ ∧ dℓ.
i=1 i i i i
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T

where we denote as
α±(E , r) = E − r2

2 ± r
√

1 + r2

4 − E (75)

he real roots of
x2 − 2

(
E − r2

2

)
x+ E2 − r2 = 0 (76)

Note that the equation in (76) has always a positive real root all r, E as in (68), so α+(E , r) is positive. S+
et

generates the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g = − cos−1 E − G2

r
√

1 − G2

τ = +
∫ √

α+(E,r)

G̃(E,r,τ)

dΓ√
(Γ 2 − α−(E , r))(α+(E , r) − Γ 2)

R = R − 1
r

∫ √
α+(E,r)

G̃(E,r,τ)

(E − Γ 2)dΓ√
(Γ 2 − α−(E , r))(α+(E , r) − Γ 2)

=: R + ρ(E , r, τ)

r = r

(77)

The equations for g and r are immediate. We check the equation for τ . Letting, for short, σ(E , r) :=√
α+(E , r), we have

τ = ∂ES
+
et(R, E , r,G)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π∂Eσ(E , r) − ∂Eσ(E , r)g+(E , r) −

∫ σ(E,r)

G
∂E cos−1 E − Γ 2

r
√

1 − Γ 2
dΓ −r ≤ E < 1

−∂Eσ(E , r)g+(E , r) −
∫ σ(E,r)

G
∂E cos−1 E − Γ 2

r
√

1 − Γ 2
dΓ 1 ≤ E ≤ 1 + r2

4

= −
∫ σ(E,r)

G
∂E cos−1 E − Γ 2

r
√

1 − Γ 2
dΓ

=
∫ √

α+(E,r)

G̃(E,r,τ)

dΓ√
(Γ 2 − α−(E , r))(α+(E , r) − Γ 2)

(78)

here, by (75),

g+(E , r) := cos−1 E − σ(E , r)2

r
√

1 − σ(E , r)2
= cos−1 sign

(
r
2 −

√
1 + r2

4 − E

)
=

⎧⎨⎩π − r ≤ E < 1

0 1 ≤ E ≤ 1 + r2

4

bserve that (g+, σ) are the coordinates of the point where E reaches its maximum on each level set (Fig. 1).
he equation for R is analogous.
Eqs. (77) define the segment of the transformation (67) with 0 ≤ τ ≤ τp, where

τp(E , r) :=
∫ √

α+(E,r)

β(E,r)

dΓ√
(Γ 2 − α−(E , r))(α+(E , r) − Γ 2)

(79)

s the half-period, with

β(E , r) =
{

−
√
α+(E , r) if α−(E , r) < 0√
α−(E , r) if α−(E , r) > 0 .

(80)

he transformation is prolonged to −τp < τ < 0 choosing the solution

S− +

et := −2πG − Set
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of (74). It can be checked that this choice provides the symmetry relation described in (72). Considering
next the functions S±

k = S±
et + 2kΣ (E , r), where Σ solves10

∂EΣ = τp(E , r) , ∂rΣ = ρ(E , r, τp(E , r))

ne obtains the extension of the transformation to τ ∈ R verifying (69).
Observe that quarter period symmetry (67), holding in the case −r < E < r, is an immediate consequence

f the definitions (77).
The coordinates (R, E , r, τ) are referred to as energy–time coordinates.
The regularity of the functions G̃(E , r, τ), ρ̃(E , r, τ), B(E , r) and τp(E , r), which are relevant for the paper,

s studied in detail in Section 4. Their holomorphy is not discussed.

.3. Action–angle coordinates

We look at the transformation

ϕaa : (R∗, A∗, r∗, φ∗) → (R, E , r, τ)

efined by equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩
A∗ = A(E , r)
φ∗ = π

τ

τp(E , r)
r∗ = r
R∗ = R + B(E , r)τ

(81)

ith B(E , r) as in (71), τp(E , r) as in (79) and A(E , r) the “action function”, defined as

A(E , r) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√
α+(E , r) − 1

π

∫ √
α+(E,r)

β(E,r)
cos−1 E − Γ 2

r
√

1 − Γ 2
dΓ − r ≤ E ≤ 1

1 − 1
π

∫ √
α+(E,r)

β(E,r)
cos−1 E − Γ 2

r
√

1 − Γ 2
dΓ 1 < E ≤ 1 + r2

4

ith α+(E , r) and β(E , r) being defined in (75), (80).
Geometrically, A(E , r) represents the area of the region encircled by the level curves of E in Fig. 1 in the

ormer case, the area of its complement in the second case, divided by 2π.
The canonical character of the transformation (81) is recognised looking at the generating function

Saa(R, E , r∗, φ∗) = φ∗A(E , r∗) + Rr∗ (82)

nd using the following relations (compare the formulae in (77) and (79))

Ar(E , r) = − 1
πr

∫ √
α+(E,r)

β(E,r)

(E − Γ 2)dΓ√
(Γ 2 − α−(E , r))(α+(E , r) − Γ 2)

= 1
π
ρ(E , r, τp)

AE(E , r) = 1
π

∫ √
α+(E,r)

β(E,r)

dΓ√
(Γ 2 − α−(E , r))(α+(E , r) − Γ 2)

= 1
π
τp(E , r) (83)

10 The existence of the function Σ(E, r) follows from the arguments of the next section: compare the formula in (83).
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which allow us to rewrite (81) as the transformation generated by (82):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A∗ = A(E , r)
φ∗ = τ

AE(E , r)
r∗ = r

R∗ = R + Ar(E , r)
AE(E , r)τ .

(84)

he coordinates (R∗, A∗, r∗, φ∗) are referred to as action–angle coordinates.

emark 3.1. We conclude this section observing a non-negligible advantage while using action–angle
oordinates compared to energy–time — besides the obvious one of dealing with a constant period. It is
he law that relates R to R∗, which is (see (67), (70) and (81))

R = R∗ + ρ∗(A∗, r∗, φ∗) , with ρ∗(A∗, r∗, φ∗) := ρ̃ ◦ ϕaa(A∗, r∗, φ∗) (85)

here ρ̃ is as in (70). Here ρ∗(A∗, r∗, φ∗) is a periodic function because so is the function ρ̃. This benefit is
vident comparing with the corresponding formula with energy–time coordinates:

R = R + B(E , r)τ + ρ̃(E , r, τ)

hich would include the uncomfortable linear term B(E , r)τ . Incidentally, such term would unnecessarily
omplicate the computations we are going to present in Section 6.

.4. Regularising coordinates

In this section we define the regularising coordinates. First of all we rewrite S0(r) in (14) in terms of
A∗, φ∗):

S0(r∗) =
{

(A∗, φ∗) : A∗ = As(r∗) , φ∗ ∈ R
}

0 < r∗ < 2

ith As(r∗) being the limiting value of A(E , r∗) when E = r∗:

As(r∗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

r∗(2 − r∗) − 1
π

∫ √
r∗(2−r∗)

0
cos−1 r∗ − Γ 2

r∗
√

1 − Γ 2
dΓ 0 < r∗ < 1

1 − 1
π

∫ √
r∗(2−r∗)

0
cos−1 r∗ − Γ 2

r∗
√

1 − Γ 2
dΓ 1 < r∗ < 2

We observe that the function As(r∗) is continuous in [0, 2] (in particular, As(1−) = As(1+)), with

As(0) = 0 , As(2) = 1

nd increases smoothly between those two values, as it results from the analysis of its derivative. Indeed,
etting, for short, σ0(r∗) :=

√
r∗(2 − r∗) and proceeding analogously as (78), we get

A′
s(r∗) = − 1

π

∫ σ0(r∗)

0
∂r∗ cos−1 r∗ − Γ 2

r∗
√

1 − Γ 2
dΓ

= 1
πr∗

∫ σ0(r∗)

0

ΓdΓ√
σ0(r∗)2 − Γ 2

= 1
π

√
2 − r∗

r∗
∀ 0 < r∗ < 2 (86)
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We denote as A∗ → rs(A∗) the inverse function

rs := A−1
s (87)

nd we define two different changes of coordinates

ϕkrg : (Yk, Ak, yk, φk) → (R∗, A∗, r∗, φ∗) k = ±1

ia the formulae ⎧⎪⎪⎨⎪⎪⎩
R∗ = Yke

kyk

A∗ = Ak
r∗ = −ke−kyk + rs(Ak)
φ∗ = φk + Yke

kyr′
s(Ak)

(88)

he transformations (88) are canonical, being generated by

Skrg(Yk, Ak, r∗, φ∗) := −Yk
k

log
⏐⏐⏐⏐ rs(Ak) − r∗

k

⏐⏐⏐⏐+Akφ∗ .

The coordinates (Yk, Ak, yk, φk) with k = ±1 are called regularising coordinates.

. A deeper insight into energy–time coordinates

In this section we study the functions G̃(E , r, τ), ρ̃(E , r, τ), B(E , r) and τp(E , r), described in Section 3.2.
We prove that G̃(E , r, τ), ρ̃(E , r, τ) are C∞ provided that (E , r) vary in a compact subset set of (68) and we
tudy the behaviour of B(E , r) and τp(E , r) closely to S0(r).

It reveals to be useful to perform this study via suitable other functions Ğ(κ, θ), ρ̆(κ, θ), A(κ) and T0(κ),
hich we now define. We rewrite

G̃(E , r, τ) = σ(E , r)Ğ
(
κ(E , r), θ(E , r, τ)

)
, τp(E , r) =

Tp
(
κ(E , r)

)
σ(E , r) (89)

nd
ρ(E , r, τ) = −Eτ

r + σ(E , r)
r ρ̂(κ(E , r), θ(E , r, τ)) 0 ≤ θ ≤ Tp(κ) (90)

here (changing, in the integrals in (77), the integration variable Γ = σξ) Ğ(κ, θ) is the unique solution of∫ 1

Ğ(κ,θ)

dξ√
(1 − ξ2)(ξ2 − κ)

= θ , 0 ≤ θ ≤ Tp(κ) (91)

ρ̂(κ, θ) =
∫ 1

Ğ(κ,θ)

ξ2dξ√
(1 − ξ2)(ξ2 − κ)

0 ≤ θ ≤ Tp(κ) (92)

nd
Tp(κ) =

{
T0(κ) 0 < κ < 1
2T0(κ) κ < 0 (93)

with
T0(κ) :=

∫ 1

G0(κ)

dξ√
(1 − ξ2)(ξ2 − κ)

, where G0(κ) :=
{√

κ 0 < κ < 1
0 κ < 0 (94)

he function ρ̂(κ, θ) in (92) is further split as

ρ̂(κ, θ) = A(κ)θ + ρ̆(κ, θ) (95)

here
A(κ) = ρ̂(κ, Tp(κ))

, ρ̆(κ, θ) = ρ̂(κ, θ) − A(κ)θ . (96)

Tp(κ)
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Finally, σ(E , r), κ(E , r) and θ(E , r, τ) are given by

σ(E , r) :=
√
α+(E , r) =

√
E − r2

2 + r
√

1 + r2

4 − E

κ(E , r) := α−(E , r)
α+(E , r) = E2 − r2(

E − r2
2 + r

√
1 + r2

4 − E
)2

θ(E , r, τ) := τ

√
E − r2

2 + r
√

1 + r2

4 − E . (97)

he periodicity of ρ̆(κ, ·) (see Eq. (100)), the uniqueness of the splitting (70) and the formulae in (90) and
95) imply that A(κ) and ρ̆(κ, θ) are related to B(E , r) and ρ̃(E , r, τ) in (70) via

B(E , r) = −E
r + σ(E , r)2

r A(κ) , ρ̃(E , r, τ) = σ(E , r)
r ρ̆(κ(E , r), θ(E , r, τ)) . (98)

In view of relations (89), (93) and (98), we focus on the functions Ğ(κ, θ), ρ̆(κ, θ), A(κ) and T0(κ). The
roofs of the following statements are postponed at the end of the section.

Let us denote Ğij(κ, θ) := ∂i+j
κiθj Ğ(κ, θ), ρ̆ij(κ, θ) := ∂i+j

κiθj ρ̆(κ, θ).

roposition 4.1. Let 0 ̸= κ < 1 fixed. The functions Ğij(κ, ·) and ρ̆ij(κ, ·) are continuous for all θ ∈ R.

This immediately implies

orollary 4.1. Let K ⊂ R a compact set, with 0, 1 /∈ K. Then Ğ, ρ̆ are C∞(K × T).

Concerning T0(κ), we have

roposition 4.2. Let 0 ̸= κ < 1, and let T0(κ) be as in (94). Then one can find two real numbers C∗, R∗,
∗ and two functions R(κ), S(κ) verifying

R(0) = 1 = S(0) , 0 ≤ R(κ) ≤ R∗ , 0 ≤ S(κ) ≤ S∗ ∀ κ ∈ (−1, 1)

uch that
T ′

0(κ) = −R(κ)
2κ , T ′′

0 (κ) = S(κ)
4κ2 , ∀ 0 ̸= κ < 1

n particular,

|T0(κ)| ≤ R∗

2

⏐⏐⏐ log |κ|
⏐⏐⏐+ C∗ , |T ′

0(κ)| ≤ R∗

2

⏐⏐⏐κ⏐⏐⏐−1
, |T ′′

0 (κ)| ≤ S∗

4

⏐⏐⏐κ⏐⏐⏐−2
.

Finally, as for A(κ), we have

Proposition 4.3. Let 0 ̸= κ < 1, and let A(κ) be as in (96). Then one can find C∗ > 0 such that

|A(κ)| ≤ C∗
⏐⏐⏐ log |κ|

⏐⏐⏐−1
, |A′(κ)| ≤ C∗

⏐⏐⏐κ⏐⏐⏐−1
, |A′′(κ)| ≤ C∗

⏐⏐⏐κ⏐⏐⏐−2
.
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Proof of Propositions 4.1–4.3. Relations (69), (72) and (73) provide⎧⎪⎨⎪⎩
Ğ(κ, θ + 2jTp) = Ğ(κ, θ) ∀ θ ∈ R , j ∈ Z ∀ 0 ̸= κ < 1
Ğ(κ,−θ) = Ğ(κ, θ) ∀ 0 ≤ θ ≤ Tp(κ) ∀ 0 ̸= κ < 1
Ğ(κ, Tp − θ) = −Ğ(κ, θ) ∀ 0 ≤ θ ≤ T0(κ) ∀ κ < 0.

(99)

⎧⎪⎨⎪⎩
ρ̆(κ, θ + 2jTp) = ρ̆(κ, θ) , ∀ θ ∈ R , j ∈ Z ∀ 0 ̸= κ < 1
ρ̆(κ,−θ) = −ρ̆(κ, θ) ∀ 0 ≤ θ ≤ Tp(κ) ∀ 0 ̸= κ < 1
ρ̆(κ, Tp − θ) = −ρ̆(κ, θ) ∀ 0 ≤ θ ≤ T0(κ) ∀ κ < 0.

(100)

The following lemmata are obvious

Lemma 4.1. Let g(κ, ·) verify (99) with Tp(κ) = π for all κ and T0 as in (93). Then the functions
gij(κ, θ) := ∂i+j

κi,θjg(κ, θ) are continuous on R if and only if they are continuous in [0, T0] and verify⎧⎪⎪⎪⎨⎪⎪⎪⎩
no further condition if j ∈ 2N , 0 < κ < 1
gij(κ, π2 ) = 0 if j ∈ 2N , κ < 0
gij(κ, 0) = 0 = gij(κ, π) if j ∈ 2N + 1 , 0 < κ < 1
gij(κ, 0) = 0 if j ∈ 2N + 1 , κ < 0

(101)

emma 4.2. Let g(κ, ·) verify (100) with Tp(κ) = π for all κ and T0 as in (93). Then gij(κ, ·), where
ij(κ, θ) := ∂i+j

κi,θjg(κ, θ), are continuous on R if and only if they are continuous in [0, T0(κ)] and verify⎧⎪⎨⎪⎩
gij(κ, 0) = gij(κ, π) = 0 if j ∈ 2N , 0 < κ < 1
gij(κ, 0) = gij(κ, π2 ) = 0 if j ∈ 2N κ < 0
no further condition if j ∈ 2N + 1

(102)

roof of Proposition 4.1. (i) The function Ğ(κ, ·) is C∞(R) for all 0 ̸= κ < 1 [21]. Then so is the function
g(κ, ·), where g(κ, θ) := Ğ(κ, Tp(κ)

π θ). Then (101) hold true for g(κ, θ) with i = 0. Hence, the derivatives
ij(κ, θ), which exist for all 0 ̸= κ < 1, also verify (101). Then gij(κ, ·) are continuous for all 0 ̸= κ < 1 and
o are the Ğij(κ, ·).

(ii) We check conditions (102) for the function g(κ, θ) := ρ̆(κ, Tp(κ)
π θ), in the case j = 0. Using (92), (91)

nd (96), we get, for 0 < κ < 1,

g (κ, 0) = ρ̆(κ, 0) = 0 , g (κ, π) = ρ̆(κ, Tp(κ)) = ρ̂(κ, Tp) − ρ̂(κ, Tp)
Tp

Tp = 0. (103)

hile, for κ < 0,

g (κ, 0) = ρ̆(κ, 0) = 0 , g
(
κ,
π

2

)
= ρ̆(κ, T0(κ)) = ρ̂(κ, T0) − ρ̂(κ, T0)

T0
T0 = 0. (104)

The identities (103) and (104) still hold replacing g with any gi0(κ, θ), with i ∈ N, therefore, any gi0(κ, θ)
satisfies (102). Let us now consider the case j ̸= 0. Again by (92), (91) and (96),

ρ̆θ(κ, θ) = Ğ(κ, θ)2 − A(κ) (105)

so, for any j ̸= 0,
ρ̆ij(κ, θ) = ∂i+j−1

κiθj−1

(
Ğ(κ, θ)2

)
hen the ρ̆ij(κ, ·) with j ̸= 0 are continuous because so is Ğij(κ, ·). □
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Proof of Proposition 4.2. The function T0(κ) in (94) is studied in detail in Appendix A. Combining
emma A.1 and Proposition A.1 and taking the κ-primitive of such relations, one obtains Proposition 4.2.

Proof of Proposition 4.3.

A(κ) = 1
T0(κ)

∫ 1

G0(κ)

√
ξ2 − κ√
1 − ξ2

dξ + κ

A′(κ) = 1
2 + (κ− A(κ))T

′
0(κ)
T0(κ) = 1

2 − (κ− A(κ)) R(κ)
2κT0(κ)

= 1
2 − R(κ)

2T0(κ) + A(κ)R(κ)
2κT0(κ)

nd

A′′(κ) = (1 − A′(κ))T
′
0(κ)
T0(κ) + (κ− A(κ))

(
T ′′

0 (κ)
T0(κ) −

(
T ′

0(κ)
)2(

T0(κ)
)2

)

= T ′
0(κ)

2T0(κ) − 2(κ− A(κ))
(
T ′

0(κ)
)2(

T0(κ)
)2 + (κ− A(κ))T

′′
0 (κ)
T0(κ)

= − R(κ)
4κT0(κ) − 2(κ− A(κ)) R(κ)2

4κ2T0(κ)2 + (κ− A(κ)) S(κ)
4κ2T0(κ) □

. The function F(E, r)

In this section we study the function F(E , r) in (11). Specifically, we aim to prove the following

roposition 5.1. F(E , r) is well defined and smooth for all (E , r) with 0 ≤ r < 2 and −r ≤ E < 1 + r2

4 ,
≠ r. Moreover, there exists a number C > 0 and a neighbourhood O of 0 ∈ R such that, for all 0 ≤ r < 2

and all −r ≤ E < 1 + r2

4 such that E − r ∈ O,

|F(E , r)| ≤ C log |E − r|−1
, |∂E,rF(E , r)| ≤ C|E − r|−1

, |∂2
E,rF(E , r)| ≤ C|E − r|−2

. (106)

To prove Proposition 5.1 we need an analytic representation of the function F, which we proceed to
rovide. In terms of the coordinates (66), the function U in (10) is given by (recall we have fixed Λ = 1)

U(r,G, g) = 1
2π

∫ 2π

0 (
1 −

√
1 − G2 cos ξ

)
dξ√

(1 −
√

1 − G2 cos ξ)2 + 2r
(

(cos ξ −
√

1 − G2) cos g − G sin ξ sin g
)

+ r2
(107)

here ξ is the eccentric anomaly. By [40], U remains constant along the level curves, at r fixed, of the
function E(r, ·, ·) in (12). Therefore, the function F(E , r) which realises (11) is nothing else than the value
hat U(r, ·, ·) takes at a chosen fixed point (G0(E , r), g0(E , r)) of the level set E in Fig. 1. For the purposes11

f the paper, we choose such point to be the point where the E-level curve attains its maximum. It follows
rom the discussion in Section 3.2 that the coordinates of such point are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

G+(E , r) =
√
α+(E , r)

g+(E , r) =

⎧⎨⎩π − r ≤ E < 1

0 1 ≤ E ≤ 1 + r2

4

(108)

11 Compare (109) with the simpler formula proposed in [42], however valid only for values of E in the interval [−r, r).
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where α+(E , r) is as in (75). Replacing (108) into (107), we obtain

F(E , r) = 1
2π

∫ 2π

0

(1 − |e(E , r)| cos ξ)dξ√
(1 − |e(E , r)| cos ξ)2 + 2s(E , r)r(cos ξ − |e(E , r)|) + r2

(109)

ith

e(E , r) = r
2 −

√
1 + r2

4 − E , s(E , r) := sign
(
e(E , r)

)
=

⎧⎨⎩−1 − r ≤ E < 1

+1 1 < E ≤ 1 + r2

4
o study the regularity of F, it turns to be useful to rewrite the integral (109) as twice the integral on the
alf period [0, π] and next to make two subsequent changes of variable. The first time, with z = s(E , r) cosx.
t gives the following formula, which will be used below.

F(E , r) = 1
π

∫ 1

−1

1√
1 − z2

(1 − e(E , r)z)dz√
(1 − e(E , r)z)2 + 2r(z − e(E , r)) + r2

(110)

We denote as
z±(E , r) := e(E , r) − r

e(E , r)2 ±
√

r(r − 2e(E , r))(1 − e(E , r)2)
e(E , r)2 (111)

he roots of the polynomial under the square root, which, as we shall see below, are real under conditions (68).
s a second change, we let z = 1−β2t2

1+β2t2 . This leads to write F(E , r) as

F(E , r) = 2(1 − e(E , r))
π|e(E , r)|

√
(z−(E , r) + 1)(z+(E , r) − 1)

(
1 + e(E , r)
1 − e(E , r)j0(κ(E , r))

− 2e(E , r)
1 − e(E , r)jβ(E,r)(κ(E , r))

)
(112)

here jβeta(κ) is the elliptic integral

jβ(κ) :=
∫ +∞

0

1
1 + βt2

dt√(
1 + t2

)(
1 + κt2

) (113)

nd β, κ are taken to be

β(E , r) := z−(E , r) − 1
1 + z−(E , r) , κ(E , r) := (1 + z+(E , r))(z−(E , r) − 1)

(1 + z−(E , r))(z+(E , r) − 1) .

The elliptic integrals jβ(κ) in (113) are studied in Appendix A: compare Proposition A.1.
In terms of (e, r), the inequalities in (68) become

r ∈ [0, 2] , e ∈
[
−1, r

2

]
\ {0, r − 1} ⊂ [−1, 1] (114)

here {e = −1} corresponds to the minimum level {E = −r}; {e = r − 1} corresponds to the separatrix
evel S0(r); {e = 0} corresponds to the separatrix level S1(r) and, finally, {e = r

2 } corresponds to maximum
evel {E = 1 + r2

4 }. It is so evident that the discriminant in (111) is not negative under conditions (114), so
z±(E , r) are real under (68), as claimed. In addition, one can easily verify that,for any (r, e) as (114), it is

2 + e− r ≤ 0. This implies

z+ + 1 = e(E , r)2 + e(E , r) − r
e(E , r)2 +

√
r(r − 2e(E , r))(1 − e(E , r)2)

e(E , r)2 < 0 ∀ e ̸= r − 1 .

Moreover, since
z−(E , r) < z+(E , r) ∀ r ̸= 0 , E ̸= 1 + r2

, E ̸= −r , (E , r) ̸= (2, 2) (115)
2
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we have
β(E , r) > 0 ∀ (E , r) as in (115)

nd
0 < κ(E , r) < 1 ∀ (E , r) as in (115) and E ̸= r − 1 .

Combining these informations with the formula in (112) and with Proposition A.1, we conclude that
(E , r) is smooth for all r ̸= 0 , E ≠ 1 , E ≠ 1 + r2

2 , E ≠ ±r , (E , r) ̸= (2, 2) and that (106) holds. However,
the representation in (110) allows to extend regularity for F(E , r) to the domain 0 ≤ r < 2, −r ≤ E < 1 + r2

4 ,
̸= r, as claimed. □

. Proof of theorem B

In this section we state and prove a more precise statement of Theorem B, which is Theorem 6.1.
The framework is as follows:

• fix an energy level c;
• change the time via

dt

dt′
= e−2ky k = ±1 (116)

where t′ is the new time and t the old one. The new time t′ is soon renamed t;
• look at the ODE

∂tqk = X(k)(qk; c)

for the triple qk = (Ak, yk, ψ) where Ak, yk are as in (88), while ψ = φ∗, with φ∗ as in (81) in Pk, where

Pk(ε−, ε+, L−, L+, ξ) :=
{

(Ak, yk, ψ) : 1 − 2ε+ < Ak ≤ 1 − 2ε− , L− + 2ξ ≤ kyk ≤ L+ − 2ξ,

ψ ∈ T
}

with ξ < (L+ − L−)/4. Observe that
• the projection of P+ in the plane (g,G) in Fig. 1 is an inner region of S0(r) and r varies in a ε-left

neighbourhood of 2;
• the projection of P− in the plane (g,G) in Fig. 1 is an outer region of S0(r) and r varies in a ε-left

neighbourhood of 2;
• the boundary of Pκ includes S0 if L+ = ∞; it has a positive distance from it if L+ < +∞.

e shall prove

heorem 6.1. There exist a graph Gk ⊂ Pk(ε−, ε+, L−, L+, ξ) and a number L⋆ > 1 such that for any
− > L⋆ there exist ε−, ε+, L+, ξ, an open neighbourhood Wk ⊃ Gk such that along any orbit qk(t) such that
k(0) ∈ Wk,

|A(qk(t)) −A(qk(0))| ≤ C0ϵe
−L3

− t ∀ t : |t| < tex

here tex is the first t such that q(t) /∈ Wk and ϵ is an upper bound for ∥P1∥Wk
(with P1 being the first

omponent of P ).

roof. For definiteness, from now on we discuss the case k = +1 (outer orbits). The case k = −1 (inner
rbits) is pretty similar. We neglect to write the sub-fix “+1” everywhere. As the proof is long and technical,
e divide it in paragraphs. We shall take

G =
{

(A, y, ψ◦(A, y)), 1 − 2ε+ ≤ A ≤ 1 − 2ε− , L− + 2ξ ≤ y ≤ L+ − 2ξ
}

⊂ P
ith ε−, ε+, L−, L+, ψ◦ to be chosen below.
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Step 1. The vector-field X. As ψ is one of the action–angle coordinates, while A, y are two among the
regularising coordinates, we need the expressions of the Hamiltonian (10) written in terms of those two
sets. The Hamiltonian (10) written in action–angle coordinates is

Haa(R∗, A∗, r∗, φ∗) = (R∗ + ρ∗(A∗, r∗, φ∗))2

2 + αF∗(A∗, r∗) + (C − G∗(A∗, r∗, φ∗))2

2r2
∗

− β

r∗

here
G∗(A∗, r∗, φ∗) := G ◦ ϕaa(A∗, r∗, φ∗) , F∗(A∗, r∗) := F ◦ ϕaa(A∗, r∗) (117)

ith ϕaa as in (81), while G̃(E , r, τ), F(E , r) as in (67), (11), respectively, ρ∗ is as in (85). The Hamilto-
ian (10) written in regularising coordinates is

Hrg(Y,A, y, φ) = (Y ey + ρ∗(A, r◦(A, y), φ◦(Y,A, y, φ)))2

2 + αF∗(A, r◦(A, y))

+ (C − G∗(A, r◦(A, y), φ◦(Y,A, y, φ)))2

2r◦(A, y)2 − β

r◦(A, y)

here r◦(A, y), φ◦(Y,A, y, φ) are the right hand sides of the equations for r∗, φ∗ in (88), with k = +1.
Taking the φ∗-projection of Hamilton equation of Haa, and the (A, y)-projection of Hamilton equation of

rg, changing the time as prescribed in (116) and reducing the energy via

R∗ + ρ∗(A, r◦(A, y), ψ) = Y ey + ρ∗(A, r◦(A, y), ψ) = Y(A, y, ψ; c)

ith

Y(A, y, ψ; c) := ±

√
2
(
c− αF∗(A, r◦(A, y)) − (C − G∗(A, r◦(A, y), ψ))2

2r◦(A, y)2 + β

r◦(A, y)

)
(118)

e find that the evolution for the triple q = (A, y, ψ) during the time t is governed by the vector-field⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1(A, y, ψ; c) = e−2yC − G∗(A, r◦(A, y), ψ)
r◦(A, y)2 G∗,3(A, r◦(A, y), ψ) − e−2yρ∗,3(A, r◦(A, y), ψ)

× Y(A, y, ψ; c)

X2(A, y, ψ; c) = −e−yC − G∗(A, r◦(A, y), ψ)
r◦(A, y)2 G∗,3(A, r◦(A, y), ψ)r′

s(A)

+e−y(1 + ρ∗,3(A, r◦(A, y), ψ)r′
s(A)

)
Y(A, y, ψ; c)

X3(A, y, ψ; c) = α e−2yF∗,1(A, r◦(A, y)) − e−2yC − G∗(A, r◦(A, y), ψ)
r◦(A, y)2 G∗,1(A, r◦(A, y), ψ)

+e−2yρ∗,1(A, r◦(A, y), ψ)Y(A, y, ψ; c)

here we have used the notation, for f = ρ∗, G∗, F∗,

f1(A, r∗, ψ) := ∂Af(A, r∗, ψ) , f3(A, r∗, ψ) := ∂ψf(A, r∗, ψ) .

tep 2. Splitting the vector-field. We write

X(A, y, ψ; c) = N(A, y; c) + P (A, y, ψ; c)

ith ⎧⎪⎨⎪⎩
N1(A, y; c) = 0
N2(A, y; c) = v(A, y; c) := e−y

√
2
(
c− αF∗(A, r◦(A, y))

)
−2y
N3(A, y; c) = ω(A, y; c) := α e F∗,1(A, r◦(A, y))
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hence,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = e−2yC − G∗(A, r◦(A, y), ψ)
r◦(A, y)2 G∗,3(A, r◦(A, y), ψ) − e−2yρ∗,3(A, r◦(A, y), ψ)Y(A, y, ψ; c)

P2 = −e−yC − G∗(A, r◦(A, y), ψ)
r◦(A, y)2 G∗,3(A, r◦(A, y), ψ)r′

s(A) + e−yρ∗,3(A, r◦(A, y), ψ)r′
s(A)

·Y(A, y, ψ; c) + e−y
(

Y(A, y, ψ; c) −
√

2
(
c− αF∗(A, r◦(A, y))

))
P3 = −e−2yC − G∗(A, r◦(A, y), ψ)

r◦(A, y)2 G∗,1(A, r◦(A, y), ψ) + e−2yρ∗,1(A, r◦(A, y), ψ)Y(A, y, ψ; c)

(119)

The application of nft relies on the smallness of the perturbing term P . In the case in point, the “greatest”
erm of P is the component P2, and precisely ρ∗,3. This function is not uniformly small. For this reason,
e need to look at its zeros and localise around them. The localisation (described in detail below) carries

he holomorphic perturbation P to a perturbation P̃ , which is smaller, but no longer holomorphic. We shall
pply gnft to the new vector-field X̃ = N + P̃ .

tep 3. Localisation about non-trivial zeros of ρ∗,3. The following lemma gives an insight on the term ρ∗,3,
ppearing in (119). It will be proved in Appendix B.

emma 6.1. For any As(r∗) < A < 1 (0 < A < As(r∗)) there exists 0 < ψ∗(A, r∗) < π (0 < ψ∗(A, r∗) <
/2) such that ρ∗,3(A, r∗, ψ∗(A, r∗)) ≡ 0 (and ρ∗,3(A, r∗, π−ψ∗(A, r∗)) ≡ 0). Moreover, there exists C > 0 such
hat, for any δ > 0 one can find a neighbourhood V∗(A, r∗; δ) of ψ∗(A, r∗) (and a neighbourhood V ′(A, r∗; δ)
f π − ψ∗(A, r∗)) such that

|ρ∗,3(A, r∗, ψ)| ≤ C
σ∗(A, r∗)

r∗
δ ∀ ψ ∈ V∗(A, r∗; δ) .(

|ρ∗,3(A, r∗, ψ)| ≤ C
σ∗(A, r∗)

r∗
δ ∀ ψ ∈ V∗(A, r∗; δ) ∪ V ′(A, r∗; δ) .

)
(120)

We now let
ψ◦(A, y) := ψ∗(A, r(A, y)) , V◦(A, y; δ) := V∗(A, r(A, y); δ) .

For definiteness, from now on, we focus on orbits with initial datum (A0, y0, ψ0) such that ψ0 is close to
◦(A0, y0). The symmetrical cases can be similarly treated.
Let W◦(A, y; δ) ⊂ V◦(A, y; δ) an open set and let g(A, y, ·) be a C∞, 2π-periodic function such that, in

ach period [ψ◦(A, y) − π, ψ◦(A, y) + π) satisfies

g(A, y, ψ; δ)

⎧⎨⎩ ≡ 1 ∀ ψ ∈ W◦(A, y; δ)
≡ 0 ∀ ψ ∈ [ψ◦(A, y) − π, ψ◦(A, y) + π) \ V◦(A, y; δ)
∈ (0, 1) ∀ ψ ∈ V◦(A, y; δ) \W◦(A, y; δ)

(121)

The function g is chosen so that
sup

0≤ℓ<ℓ∗
∥g∥u,ℓ ≤ 1 . (122)

As an example, one can take g(A, y, ψ; δ) = χ(ψ − ψ◦(A, y)), with

χ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 |θ| ≤ a

1 −
∫ θ

a
e

− ζ
(θ−a)(b−θ) dζ∫ b

a
e

− ζ
(θ−a)(b−θ) dζ

a < θ ≤ b

0 θ > b

χ(−θ) θ < −a
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with 0 < a < b so small that Ba(ψ◦(A, y)) ⊂ W◦(A, y; δ), Bb(ψ◦(A, y)) ⊂ V◦(A, y; δ). If ζ ∈ (0, 1) is
ufficiently small (depending on ℓ∗), then (122) is met.

Let
P̃ (A, y, ψ; δ) := g(A, y, ψ; δ)P (A, y, ψ) . (123)

e let
X̃ := N + P̃

nd
Pε−,ξ = Aε− × Yξ × T , (124)

here A = [1 − 2ε+, 1 − 2ε−], Y = [L− + 2ξ, L+ − 2ξ] and ε− < ε+, ξ are sufficiently small, and u = (ε−, ξ).
y construction, X̃ and P̃ ∈ C3

u,∞. In particular, P̃ ∈ C3
u,ℓ∗ , for all ℓ∗ ∈ N. Below, we shall fix a suitably

arge ℓ∗.

tep 4. Bounds. The following uniform bounds follow rather directly from the definitions. Their proof is
eferred to Appendix B, in order not to interrupt the flow.1

v


u

≤ C
eL+

αL
1
2
−

,

∂Avv

u

≤ C
eL+

L−
√
ε−

,

∂yvv

u

≤ 1 + C
eL+−L−

L2
−ω

v


u

≤ C
eL+−L−

L
3/2
−

,

∂Aωv

u

≤ C
e2L+−L−

L
3/2
− ε

1
2
−

,

∂yωv

u

≤ C
e2L+−2L−

L
3/2
−

(125)

∥P̃1∥u ≤ Ce−2L− max
{

|C|L+
√
ε+, L+ε+, δ

√
ε+
√
αL+

}
∥P̃2∥u ≤ Ce−L− max

{
|C|L+

√
ε+

ε−
, L+

ε+√
ε−
,

√
ε+

ε−
δ
√
αL+ , (αL−)− 1

2 max{|C|2, ε2
+, β}

}
∥P̃3∥u ≤ Ce−2L− max

{
|C|

√
ε+

ε−
,
ε+

ε−
,

√
ε+

ε−

√
αL+

}
(126)

Here C is a number not depending on L−, L+, ξ, ε−, ε+, c, |C|, β, α and the norms are meant as in
Section 2.5, in the domain (124). Remark that the validity of (126) is subject to condition

L− ≥ Cα−1 max{|c|, |C|2, ε+, β} . (127)

which will be verified below.

Step 5. Application of gnft and conclusion. Fix s1, s2 > 0. Define

ρ := ε−

16 , τ := e−s2 ξ

16 , wK :=
(
ε−

16 ,
e−s2ξ

16 ,
1

c0K1+δ

)
so that (49) is satisfied. With these choices, as a consequence of the bounds in (125)–(126), one has

χ ≤ C(L+ − L−) max
{
eL+−L−

s1L
3/2
−

,
1
s2

(
1 + C

eL+−L−

L2
−

)}

θ1 ≤ Ces1(L+ − L−)ξK1+δ e
2L+−2L−

L
3/2
−

θ2 ≤ Ces1+s2(L+ − L−)
√
ε−

ξ

eL+

L−

θ3 ≤ Ces1(L+ − L−)K1+δ√ε−
e2L+−L−

3/2

L−
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η ≤ Ces1+s2(L+ − L−)e
L+−L−

αL
1
2
−

max
{
e−L−ε−1

− max
{

|C|L+
√
ε+, L+ε+, δ

√
ε+
√
αL+

}
,

es2ξ−1 max
{

|C|L+

√
ε+

ε−
, L+

ε+√
ε−
,

√
ε+

ε−
δ
√
αL+ , (αL−)− 1

2 max{|C|2, ε2
+, β}

}
,

e−L−K1+δ max
{

|C|
√
ε+

ε−
,
ε+

ε−
,

√
ε+

ε−

√
αL+

}}
(128)

We now discuss inequalities (49)–(52) and (127). We choose si, L±, ε± and K to be the following functions
f L and ξ, with 0 < ξ < 1 < L:

L− = L , ε± = c±L
2e−2L , L+ = L+ 10ξ , s1 = C1ξL

− 3
2 , s2 = C1ξ , K =

[(
c1

ξ
√
L

) 1
1+δ

]

with 0 < c1 < 1 < C1 and 0 < c− < c+ < 1 suitably fixed, so as to have K > 0. A more stringent relation
between ξ and L will be specified below. We take

|C| < c1L
2e−2L , β < c1L

4e−4L , δ < c1L
3/2e−L

n view of (128), it is immediate to check that there exist suitable numbers 0 < c1 < 1 < C1 depending only
n c, c+, c− and α such that inequalities (49)–(51) and (127) are satisfied and

η < C2L
− 3

2

An application of gnft conjugates X̃ = N+P̃ to a new vector-field X̃⋆ = N+P̃⋆, with the first component
f the vector P̃∗ being bounded as

∥P̃⋆,1∥u⋆ ≤ ε−�P̃⋆�wK
u⋆

≤ ε− max
{

2−c2L
3�P̃�wK

u , 2c0 K
−ℓ+δ�P̃�wK

u,ℓ

}
sing (122), (123), that P̃ vanishes outside V◦, the chain rule and the holomorphy of P (A, y, ·),

�P̃�wK
u,ℓ ≤ 2ℓ�PV◦�wK

u,ℓ ≤ 2ℓ ℓ!
sℓ

�P(V◦)s�wK
u ∀ 0 ≤ ℓ ≤ ℓ∗

here P(V◦)s(A, y, ψ) denotes the restriction of P (A, y, ·) on (V◦)s, while s is the analyticity radius of
(A, y, ·). We take s so small that

�P(V◦)s�wK
u ≤ 2�PV◦�wK

u

hen we have

∥P̃⋆,1∥u⋆ ≤ 2ε− max
{

2−c2L
3
, c0 2ℓ+1ℓ!s−ℓK−ℓ+δ

}
�PV◦�wK

u

≤ 2ε−2−c2L
3�P(V◦)s�wK

u ≤ 2ε−2−c2L
3
Q−1

here we have used the inequality
c0 2ℓ+1ℓ!s−ℓK−ℓ+δ ≤ 2−c2L

3
(129)

hich will be discussed below. On the other hand, analogous techniques as the ones used to obtain (126)
rovide

cϵ ≤ ∥P1V ∥u ≤ ϵ , cL
1
2 e−L ≤ Q−1 ≤ CL

1
2 e−L .

with ϵ := CL3e−4L and 0 < c < 1. So,
∥P̃ ∥ ≤ C 2−c3L

3
ϵ
⋆,1 u⋆ 3
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which is what we wanted to prove. It remains to discuss (129). By Stirling and provided that ℓ > 2δ, (129)
s implied by

K > 1 ,
(

4c0
√

2πℓ 3
2

es
√
K

)ℓ
≤ 2−c2L

3

hese inequalities are satisfied by choosing ℓ, ℓ∗ and ξ to be related to L such in a way that

ℓ = max
{

[c2L
3] + 1 , [2δ] + 1 ,

[(
1

2π
e2σ2

64c2
0

) 1
3
]

+ 1
}
, ℓ∗ > ℓ

K =
[(

c1

ξ
√
L

) 1
1+δ

]
> 2π 64c2

0
e2σ2 ℓ

3 > 1 . □
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Appendix A. The elliptic integrals T0(κ) and jβ(κ)

The functions T0(κ) in (94) and jβ(κ) in (113) are complete elliptic integrals. We use this appendix to
tore some useful material concerning such functions.

First of all, in the definition of T0(κ), we change the integration variable, letting ξ → 1
ξ , so as to rewrite

T0(κ) =
∫ 1

G0(κ)

1

dξ√
(ξ2 − 1)(1 − κξ2)

0 ̸= κ < 1 (130)

ith G0(κ) as in (94). Next, we look at the complex-valued function

g(κ) :=
∫ +∞

1

dξ√
(ξ2 − 1)(1 − κξ2)

κ ∈ R \ {0, 1} (131)

hich is easily related to T0(κ) and j0(κ):

emma A.1. Let 0 ̸= κ < 1. Then

T0(κ) =
{
g(κ) if κ < 0
j0(κ) = ℜg(κ) if 0 < κ < 1 (132)

Proof. We have only to prove that T0(κ) = j0(κ) when 0 < κ < 1, as the other relations are immediate,
from (130) and (131). We write

T0(κ) =

⎛⎝∫ +∞

0
−
∫ 1

0
−
∫ +∞

1√

⎞⎠ dξ√
(ξ2 − 1)(1 − κξ2)

. (133)

κ
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We deform the integration path of the first integral at right hand side stretching the real path ξ ∈ [0,+∞)
to the purely imaginary line z = iy, with y ∈ [0,+∞), so that∫ ∞

0

dξ√
(ξ2 − 1)(1 − κξ2)

=
∫ ∞

0

dy√
(y2 + 1)(1 + κy2)

= j0(κ) (134)

ombining this with the observation that, for 0 < κ < 1, T0(κ) and j0(κ) are real while the two latter
ntegrals in (133) are purely imaginary, we have T0(κ) = j0(κ), as claimed. □

emark A.1. It follows from the proof of Lemma A.1 (compare (133)–(134)) that, in the sense of complex
ntegrals, ⎛⎝∫ 1

0
+
∫ +∞

1√
κ

⎞⎠ dξ√
(ξ2 − 1)(1 − κξ2)

≡ 0 , ∀ 0 < κ < 1 . (135)

his identity can be also directly checked, using proper changes of coordinate combined with cuts of the
omplex plane, in order to make the square roots single-valued in a neighbourhood of the real axis.

The advantage of looking at g(κ) instead of T0(κ) is that the integration path in (131) is κ-independent,
nd this turns to be useful when taking κ-derivatives. The main result at this respect in this section is the
ollowing

roposition A.1.

• Let κ ∈ R \ {0, 1} and let g(κ) be as in (131). There exist two positive real numbers R∗, S∗ and two
complex numbers

R(κ), S(κ) ∈

⎧⎨⎩R+ if κ < 0
C if 0 < κ < 1
iR+ if κ > 1

with
ℜR(0) = ℜS(0) = 1 , 0 ≤ ℜR(κ) ≤ R∗

, 0 ≤ ℜS(κ) ≤ S∗ ∀ κ ∈ (−1, 1)

such that
g′(κ) = −R(κ)

2κ g′′(κ) = +S(κ)
4κ2 ∀ κ ∈ R \ {0, 1} .

• Let β ≥ 0; 0 < κ < 1, jβ(κ) as in (113). There exist two positive numbers R∗
β and S∗

β ∈ R and two real
functions Rβ(κ), Sβ(κ) satisfying

Rβ(0) = Sβ(0) =
{

1 if β = 0
0 if β > 0

0 ≤ Rβ(κ) ≤ R∗
0 , 0 ≤ Sβ(κ) ≤ S∗

0 ∀ β ≥ 0 ∀ κ ∈ (0, 1) (136)

such that
j′
β(κ) = −Rβ(κ)

2κ j′′
β(κ) = +Sβ(κ)

4κ2 ∀ 0 < κ < 1 .

roof. We prove the first statement. We distinguish two cases.

ase 1: κ < 0 or κ > 1. The integral takes real values when κ < 0; purely imaginary ones when κ > 1:

g(κ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ +∞

1

dξ√
(ξ2 − 1)(1 − κξ2)

κ < 0

−i
∫ +∞ dξ√

2 2
κ > 1
1 (ξ − 1)(κξ − 1)
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The function under the integral is bounded above by 1
min{1,

√
|κ|}

√
ξ4−1

when κ < 0; by 1
ξ2−1 when κ > 1.

Both such bounds are integrable. Then it is possible to derive under the integral, and we obtain

g′(κ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

∫ +∞

1

ξ2dξ√
(ξ2 − 1)(1 − κξ2)3

κ < 0

i
2

∫ +∞

1

ξ2dξ√
(ξ2 − 1)(κξ2 − 1)3

κ > 1

and

g′′(κ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
4

∫ +∞

1

ξ4dξ√
(ξ2 − 1)(1 − κξ2)5

κ < 0

−3
4 i
∫ +∞

1

ξ4dξ√
(ξ2 − 1)(κξ2 − 1)5

κ > 1

We change variable 1 − κξ2 = η when κ < 0, κξ2 − 1 = η when κ > 1 and rewrite

g′(κ)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

4|κ|

∫ +∞

1−κ

√
η − 1

(η − 1 + κ) η3 dη κ < 0

i
4|κ|

∫ +∞

κ−1

√
η + 1

(η + 1 − κ) η3 dη κ > 1

nd

g′′(κ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3

8|κ|2
∫ +∞

1−κ
(η − 1)

√
η − 1

(η − 1 + κ) η5 dη κ < 0

− 3
8|κ|2

i
∫ +∞

κ−1
(η + 1)

√
η + 1

(η + 1 − κ) η5 dη κ > 1

o we take

R(κ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

∫ +∞

1−κ

√
η − 1

(η − 1 + κ) η3 dη κ < 0

i
2

∫ +∞

κ−1

√
η + 1

(η + 1 − κ) η3 dη κ > 1

nd

S(κ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3
2

∫ +∞

1−κ
(η − 1)

√
η − 1

(η − 1 + κ) η5 dη κ < 0

−3
2 i
∫ +∞

κ−1
(η + 1)

√
η + 1

(η + 1 − κ) η5 dη κ > 1

bserve that, if −1 < κ < 0,
ℜR(0−) = 1 = ℜS(0−)

nd

0 ≤ ℜR(κ) = 1
2

∫ +∞

1−κ

√
η − 1

(η − 1 + κ) η3 dη ≤ 1
2

∫ +∞

1

√
η − 1

(η − 2)η3 dη

0 ≤ ℜS(κ) ≤ 3
2

∫ +∞

1
(η − 1)

√
η − 1

(η − 2)η5 dη .
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Case 2: 0 < κ < 1. We split g(κ) into its real and imaginary parts. Using (132) and (135), we obtain

g(κ) = +
∫ 1√

κ

1

dξ√
(ξ2 − 1)(1 − κξ2)

+
∫ +∞

1√
κ

dξ√
(ξ2 − 1)(1 − κξ2)

= +
∫ ∞

0

dy√
(y2 + 1)(1 + κy2)

+ i
∫ 1

0

dξ√
(1 − ξ2)(1 − κξ2)

Notice that also in this case, the functions under the integrals may be bounded by integrable functions:
1√

κ(y2+1) for the former; 1√
1−ξ2

1√
1−κ in the latter. Again, we can derive under the integral, and obtain

g′(κ) = −1
2

∫ ∞

0

y2dy√
(y2 + 1)(1 + κy2)3

+ i
2

∫ 1

0

ξ2dξ√
(1 − ξ2)(1 − κξ2)3

nd
g′′(κ) = +3

4

∫ ∞

0

y4dy√
(y2 + 1)(1 + κy2)5

+ 3
4i
∫ 1

0

ξ4dξ√
(1 − ξ2)(1 − κξ2)5

Then, letting 1 + κy2 = η in the first respective integrals, and 1 − κξ2 = η in the second ones,

g′(κ) = − 1
4κ

∫ +∞

1

√
η − 1

(η − 1 + κ)η3 + i
4κ

∫ 1

1−κ

√
1 − η

(η − 1 + κ) η3 dη

nd

g′′(κ) = + 3
8κ2

∫ +∞

1
(η − 1)

√
η − 1

(η − 1 + κ)η5 + 3
8κ2 i

∫ 1

1−κ
(1 − η)

√
1 − η

(η − 1 + κ) η5 dη

nd we can take

R(κ) := 1
2

∫ +∞

1

√
η − 1

(η − 1 + κ)η3 − i
2

∫ 1

1−κ

√
1 − η

(η − 1 + κ) η3 dη

nd

S(κ) = 3
2

∫ +∞

1
(η − 1)

√
η − 1

(η − 1 + κ)η5 + 3
2i
∫ 1

1−κ
(1 − η)

√
1 − η

(η − 1 + κ) η5 dη

otice now that
ℜR(0+) = 1 = ℜS(0+)

nd

0 ≤ ℜR(κ) = 1
2

∫ +∞

1

√
η − 1

(η − 1 + κ)η3 ≤ 1
2

∫ +∞

1
η− 3

2 = 1

nd

0 ≤ ℜS(κ) = 3
2

∫ +∞

1
(η − 1)

√
η − 1

(η − 1 + κ)η5 ≤ 3
2

∫ +∞

1
η− 5

2 = 1

or all 0 < κ < 1.
The proof for jβ(κ) is completely analogous to the case 2 above (with the difference that we do not have

the imaginary part in that case). One finds

Rβ(κ) = 1
2

∫ +∞

1

1
1 + β

κ (η − 1)

√
η − 1

(η − 1 + κ)η3

nd

Sβ(κ) = 3
2

∫ +∞

1

η − 1
1 + β

κ (η − 1)

√
η − 1

(η − 1 + κ)η5

hich verify (136). □
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Appendix B. Technicalities

In this section of the appendix we prove the bounds in (125), (126) and Lemma 6.1.

Proof of (125). We let

E∗(A∗, r∗) := E ◦ ϕaa(A∗, r∗) , E◦(A, y) := E∗ ◦ ϕrg(A, y) = E∗(A, r◦(A, y))
B∗(A∗, r∗) := B ◦ ϕaa(A∗, r∗) , B◦(A, y) := B∗ ◦ ϕrg(A, y) = B∗(A, r◦(A, y))
Tp,∗(A∗, r∗) := Tp ◦ ϕaa(A∗, r∗) , Tp,◦(A, y) := Tp,∗ ◦ ϕrg(A, y) = Tp,∗(A, r◦(A, y))
F◦(A, y) := F∗ ◦ ϕrg(A, y) = F∗(A, r◦(A, y)) = F(E◦(A, y), r◦(A, y))
F∗,1,◦(A, y) := F∗,1 ◦ ϕrg(A, y) = F∗,1(A, r◦(A, y)) (137)

with F, Tp, B as in (117), (93)–(94), (81)) so as to write, more rapidly,

v(A, y; c) = e−y
√

2(c− αF◦(A, y)) , ω(A, y; c) = αe−2yF∗,1,◦(A, y)

nd
1
v

= ey√
2(c− αF◦(A, y))

,
∂Av

v
= −α

2
∂AF◦(A, y)
c− αF◦(A, y) ,

∂yv

v
= −1 − α

2
∂yF◦(A, y)
c− αF◦(A, y) ,

ω

v
= α e−y F∗,1,◦(A, y)√

2(c− αF◦(A, y))
,

∂Aω

v
= α e−y ∂AF∗,1,◦(A, y)√

2(c− αF◦(A, y))
∂yω

v
= −2α e−y F∗,1,◦(A, y)√

2(c− αF◦(A, y))
+ α e−y ∂yF∗,1,◦(A, y)√

2(c− αF◦(A, y))
(138)

e evaluate the right hand sides of (138), by means of the chain rule:

F∗,1,◦ = FE(E◦, r◦)
T̂p,◦

, ∂AF∗,1,◦ = ∂2
EF(E◦, r◦)∂AE◦ + ∂2

ErFr′
s(A)

T̂p,◦
− ∂E T̂p∂AE◦ + ∂rT̂pr′

s(A)
T̂ 2

p,◦
FE

∂yF∗,1,◦ = ∂2
EF(E◦, r◦)∂yE◦ − e−y∂2

ErF
T̂p,◦

− ∂E T̂p∂yE◦ − e−y∂rT̂p

T̂ 2
p,◦

FE

∂AF◦ = FE(E◦, r◦)∂AE◦ + Fr(E◦, r◦)r′
s(A) , ∂yF◦ = FE(E◦, r◦)∂yE◦ − e−yFr(E◦, r◦)

here we have neglected to write the arguments (e.g., FE(E◦(A, y), r◦(A, y)), etc.) and where, again by the
hain12 rule,

∂AE◦ = 1
T̂p,◦(A, y)

− r′
s(A)B◦(A, y) , ∂yE◦ = e−yB◦(A, y)

s a result of the discussions in Sections 4, 5 and Appendix A, the functions F, Tp and B in (137) verify

C ′ log |κ|−1 ≤ |F|, |Tp|, |1/B| ≤ C log |κ|−1
, C ′|κ|−1 ≤ |∂E,rF|, |∂E,rTp|, |∂E,rB| ≤ C|κ|−1

C ′|κ|−2 ≤ |∂2
E,rF|, |∂2

E,rTp|, |∂2
E,rB| ≤ C|κ|−2

ith κ = O(E − r) = O(e−y) so that

C ′L− ≤ |F◦|, |Tp,◦|, |B◦| ≤ CL+

C ′eL− ≤ |∂E,rF(E◦, r◦)| , |∂E,rTp(E◦, r◦)| , |∂E,rB(E◦, r◦)| ≤ CeL+

C ′e2L− ≤ |∂2
E,rF(E◦, r◦)| , |∂2

E,rTp(E◦, r◦)| , |∂2
E,rB(E◦, r◦)| ≤ Ce2L+ (139)

12 Use ∂ E = 1 ◦ ϕ = 1 and ∂ E = − ∂Ar ◦ ϕ = −B (A , r ), implied by (84).
A∗ ∗ ∂AE aa T̂p,∗(A∗,r∗) r∗ ∗ ∂AE aa ∗ ∗ ∗
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Finally, using (86)–(87), one has

r′
s(A) = 1

A′
s(r)

⏐⏐⏐⏐
r=rs(A)

= π

√
rs(A)

2 − rs(A)

hence
|r′

s(A)| ≤ C
√
ε−

(140)

nd collecting the bounds above into (138), we find (125).

roof of (126). We use some results from Section 4. Taking in count (89), (90), (96) and (97) and letting

σ∗(A, r∗) := σ ◦ ϕaa(A, r∗) , κ∗(A, r∗) := κ ◦ ϕaa(A, r∗)

T̂p,∗(A, r∗) := σ∗(A, r∗)τ̂p,∗(A, r∗) := Tp(κ∗(A, r∗))
π

,

e have that

G∗(A, r∗, ψ) = σ∗(A, r∗)Ğ
(
κ∗(A, r∗), T̂p,∗(A, r∗)ψ

)
(141)

ρ∗(A, r∗, ψ) = σ∗(A, r∗)
r∗

ρ̆
(
κ∗(A, r∗), T̂p,∗(A, r∗)ψ

)
(142)

y the chain rule

G∗,3(A, r∗, ψ) = ∂ψG∗(A, r∗, ψ)
= σ∗(A, r∗)∂ψĞ(κ∗(A, r∗), T̂p,∗(A, r∗)ψ)
= σ∗(A, r∗)T̂p,∗(A, r∗)Ğ3(κ∗(A, r∗), T̂p,∗(A, r∗)ψ) (143)

imilarly,
ρ∗,3(A, r∗, ψ) = σ∗(A, r∗)

r∗
T̂p,∗(A, r∗)ρ̆3(κ∗(A, r∗), T̂p,∗(A, r∗)ψ) (144)

By the definitions in (121)–(123), if

P̃ε,ξ :=
⋃

(A,y)∈Aε− ×Yξ

{A} × {y} × V◦(A, y; δ)

hen
∥P̃i∥Pε,ξ

≤ ∥Pi(A, y, ψ)∥
P̃ε,ξ

o we proceed to uniformly upper bound the |Pi| in P̃ε,ξ.
By Proposition 4.1,

|Ğ(κ, θ)|, |Ğ3(κ, θ)| ≤ C

By (141), (143) and (139),

|G∗(A, r◦(A, y), ψ)| ≤ C
√
ε+ , |G∗,3(A, r◦(A, y), ψ)| ≤ CL+

√
ε+ (145)

Both the inequalities in (145) hold (with the same proof) if r◦(A, y) is replaced by a generic r ∈ ℑr∗(A, ·).
hen,

|G∗,1(A, r◦(A, y), ψ)| ≤ C

√
ε+

ε−

Similarly, by (142), |ρ∗(A, r∗, ψ)| ≤ √
ε+, hence

|ρ∗,1(A, r◦(A, y), ψ)| ≤ C

√
ε+
ε−
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• The function Y(A, y, ψ; c) defined in (118) verifies

|Y| ≤ C
√
αL+

aving used the simplifying assumption (127).
By Lemma 6.1,

|ρ∗,3(A, r◦(A, y), ψ)| ≤ C
√
ε+ δ

Recall (140).
Using the previous bounds into (119) and writing the last term in the definition of P2 as

e−y
(C−G∗(A,r◦(A,y),ψ))2

2r◦(A,y)2 − β
r◦(A,y)

Y(A, y, ψ; c) +
√

2
(
c− αF∗(A, r◦(A, y))

)
e obtain, for ∥Pi∥P̃ε,ξ

, the bounds at the right hand sides of (126).

roof of Lemma 6.1. Recall (144) and the expression of ρ̆θ(κ, θ) in Eq. (105). Equation

ρ̆θ(κ, θ) = Ğ(κ, θ)2 − A(κ) = 0 (146)

as a unique solution
0 < θ∗(κ) < T0(κ)

f and only if
G0(κ)2 < A(κ) < 1 .

n the other hand, it is immediate to check that such inequality holds for all 0 ̸= κ < 1. Indeed, if 0 < κ < 1,
hen G0(κ)2 = κ and we have

κ < A(κ) =

∫ 1√
κ

ξ2dξ√
(1−ξ2)(ξ2−κ)∫ 1√

κ
dξ√

(1−ξ2)(ξ2−κ)

< 1 .

If κ < 0, then G0(κ)2 = 0 and we have

0 < A(κ) =

∫ 1
0

ξ2dξ√
(1−ξ2)(ξ2−κ)∫ 1

0
dξ√

(1−ξ2)(ξ2−κ)

< 1

As a consequence of the formula (146), combined with the continuity of Ğ(κ, ·), we find V (κ; δ) ⊂ (0, T0(κ))
and V ′(κ; δ) ⊂ (0, T0(κ)) when κ < 0) such that

|ρ̆3(κ, θ)| ≤ Cδ

Tp(κ) ∀ θ ∈ V (κ; δ)
(

∀ θ ∈ V (κ; δ) ∪ V ′(κ; δ)
)

hich implies (120), after using (144). □

ppendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.na.2021.
12306.
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Discrete Contin. Dyn. Syst. 33 (3) (2013) 1009–1032.
[9] F. Cardin, M. Guzzo, Integrability of the spatial restricted three-body problem near collisions. arXiv:1809.01257.

[10] F. Cardin, M. Guzzo, Integrability of the spatial restricted three-body problem near collisions (an announcement), Lincei
Mat. Appl. 30 (2019) 195204.

[11] A. Celletti, L. Chierchia, Construction of stable periodic orbits for the spin–orbit problem of celestial mechanics, Regul.
Chaotic Dyn. 3 (3) (1998) 107–121, J. Moser at 70 (Russian).

[12] J. Chazy, Sur l’allure du mouvement dans le problème des trois corps quand le temps crôıt indéfiniment, Ann. Sci. École
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[26] J. Henrard, On Poincaré’s second species solutions, Celestial Mech. 21 (1) (1980) 83–97.
[27] J. Laskar, P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial

Mech. Dynam. Astronom. 62 (3) (1995) 193–217.
[28] T. Levi-Civita, Sur la régularisation qualitative du problème restreint des trois corps, Acta Math. 30 (1906) 305–327.
[29] U. Locatelli, A. Giorgilli, Invariant tori in the Sun-Jupiter-Saturn system, Discrete Contin. Dyn. Syst. Ser. B 7 (2)

(2007) 377–398, (electronic).
[30] J.P. Marco, L. Niederman, Sur la construction des solutions de seconde espèce dans le problème plan restreint des trois
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