Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/na)

Nonlinear Analysis

www.elsevier.com/locate/na

Exponential stability of fast driven systems, with an application to celestial mechanics

Qinbo Chen, Gabriella Pinzari [∗](#page-0-0)

Department of Mathematics, University of Padua, via Trieste 63, 35121 Padua, Italy

a r t i c l e i n f o

Article history: Received 11 October 2020 Accepted 4 February 2021 Communicated by Enrico Valdinoci

MSC: 34C20 70F10 37J10 37J15 37J40

Keywords: Normal form theory Three-body problem Renormalizable integrability

a b s t r a c t

We construct a normal form suited to *fast driven systems*. We call so systems including actions I, angles ψ , and one fast coordinate ψ , moving under the action of a vector-field *N* depending only on I and *y* and with vanishing I-components. In the absence of the coordinate y , such systems have been extensively investigated and it is known that, after a small perturbing term is switched on, the normalised actions I turn to have exponentially small variations compared to the size of the perturbation. We obtain the same result of the classical situation, with the additional benefit that no trapping argument is needed, as no small denominator arises. We use the result to prove that, in the three-body problem, the level sets of a certain function called *Euler integral* have exponentially small variations in a short time, closely to collisions.

©2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ([http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/).

1. Description of the results

We consider a $(n+1+m)$ -dimensional vector-field *N* which, expressed in local coordinates $(I, y, \psi) \in \mathbb{P}$ **I** × $\mathbb{Y} \times \mathbb{T}^m$ (where $\mathbb{I} \subset \mathbb{R}^n$, $\mathbb{Y} \subset \mathbb{R}$ are open and connected; $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ is the standard torus), has the form

$$
N(\mathbf{I}, y) = v(\mathbf{I}, y)\partial_y + \omega(\mathbf{I}, y)\partial_\psi.
$$
\n⁽¹⁾

The motion equations of *N*

can be integrated in cascade:

$\sqrt{ }$ \int $\overline{\mathcal{L}}$ $I(t) = I_0$ $y(t) = \eta(I_0, t)$ $\psi(t) = \psi_0 + \int^t$ *t*0 $\omega(I_0, \eta(I_0, t'))dt'$

Corresponding author (Gabriella Pinzari).

 Γ $\left\{ \frac{1}{2} \right\}$ $\sqrt{2}$

 $\dot{I} = 0$ $\dot{y} = v(I, y)$ $\psi = \omega(I, y)$

(2)

E-mail addresses: qinbochen1990@gmail.com (Q. Chen), gabriella.pinzari@math.unipd.it (G. Pinzari).

<https://doi.org/10.1016/j.na.2021.112306>

⁰³⁶²⁻⁵⁴⁶X/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/).

with $\eta(I_0, \cdot)$ being the general solution of the one-dimensional equation $\dot{y}(t) = v(I_0, y)$. This formula shows that along the solutions of *N* the coordinates I ("actions") remain constant, while the motion of the coordinates ψ ("angles") is coupled with the motion of the "driving" coordinate *y*. We assume that *v* is suitably far from vanishing (for the problem considered in the paper |*v*| has a positive lower bound). It is to be noted that, without further assumptions on the function *v* (like, for example, of being "small", or having a stationary point) nothing prevents to the *y* coordinate to move *fast*. For this reason – with slight abuse due to the fact that fastness may nowise occur – we refer to the solutions in ([2\)](#page-0-1) as *fast driven system*. The main risk of such kind of system is that the solution $q(t) = (\mathbf{I}(t), y(t), \psi(t))$ of *N* in [\(2](#page-0-1)) leaves the domain **P** at a finite time. It is then convenient to define the *exit time from* **P** *under N*, or, more in general, the *exit time from a given* $W \subseteq \mathbb{P}$ *under the vector-field* X, and denote it as $t_{ex}^{X,W}$, the (possibly infinite) first time that $q(t)$ leaves W.

Let us now replace the vector-field $N(I, y)$ with a new vector-field of the form

$$
X(\mathbf{I}, y, \psi) = N(\mathbf{I}, y) + P(\mathbf{I}, y, \psi) \tag{3}
$$

where the "perturbation"

$$
P = P_1(1, y, \psi)dI + P_2(1, y, \psi)dy + P_3(1, y, \psi)d\psi
$$

is, in some sense, "small" (see the next section for precise statements). Let $t_{\rm ex}^{X,W}$ be the exit time from *W* under *X*, and let ϵ be a uniform upper bound for the absolute value of P_1 on *W*. Then, one has a linear-in-time *a-priori* bound for the variations of I, as follows

$$
|\mathcal{I}(t) - \mathcal{I}(0)| \le \epsilon t \quad \forall \ t : \ |t| < t_{\text{ex}}^{X,W} \qquad W \subseteq \mathbb{P} \,. \tag{4}
$$

We are interested in improving the bound ([4](#page-1-0)). To the readers who are familiar with Kolmogorov–Arnold– Moser (kam) or Nekhorossev theories, this kind of problems is well known: see [\[3](#page-42-0),[24,](#page-42-1)[38,](#page-43-0)[44\]](#page-43-1), or [\[11](#page-42-2),[22,](#page-42-3)[25,](#page-42-4)[29,](#page-42-5)[47\]](#page-43-2) for applications to realistic models. Those are theories originally formulated for Hamiltonian vector-fields (next extended to more general ODEs), hence, in particular, with $n = m$ and the coordinate *y* absent. In those cases the unperturbed motions of the coordinates (I, ψ) are

$$
I(t) = I_0, \quad \psi(t) = \psi_0 + \omega(I_0)t
$$
\n(5)

and the properties of the motions after the perturbing term is switched on depend on the arithmetic properties of the frequency vector $\omega(I_0)$. Under suitable non-commensurability assumptions of $\omega(I_0)$ (referred to as "Diophantine conditions"), kam theory ensures the possibility of continuing the unperturbed motions ([5\)](#page-1-1) for all times. Conversely, if *ω*(I) satisfies, on an open set, an analytic property known as "steepness" (which is satisfied, e.g., if ω does not vanish and moreover if it is the gradient of a convex function), Nekhorossev theory allows to infer – for *all* orbits – a bound as in ([4\)](#page-1-0), with e^{-C/ϵ^a} replacing ϵ and $t_{\text{ex}}^{X,W} = e^{C/\epsilon^{b}}$, with suitable *a*, *b*, *C >* 0. It is to be remarked that in the Nekhorossev regime the α exponential scale of $t_{\text{ex}}^{X,W}$ is an intrinsic consequence of steepness, responsible of a process known as "capture" in resonance". In the case considered in the paper such phenomenon does not seem to exist and hence the exit time $t_{\text{ex}}^{X,W}$ has no reason to be long. Nevertheless, motivated by an application to celestial mechanics described below, we are interested with replacing ϵ in [\(4](#page-1-0)) with a smaller number. We shall prove the following result (note that steepness conditions are not needed here).

Theorem A. Let $X = N + P$ be real-analytic, where N is as in [\(1](#page-0-2)), with $v \neq 0$. Under suitable "smallness" assumptions involving ω , $\partial\omega$, ∂v and P, the bound in ([4\)](#page-1-0) holds with e^{-C/ϵ^a} replacing ϵ , with a suitable a, $C > 0$.

A quantitative statement of [Theorem](#page-1-2) [A](#page-1-2) is given in [Theorem](#page-6-0) [2.1](#page-6-0). In addition, in view of our application, we also discuss a version to the case when analyticity in ψ fails; this is [Theorem](#page-14-0) [2.2.](#page-14-0)

To describe how we shall use [Theorem](#page-1-2) [A](#page-1-2) (more precisely, [Theorem](#page-14-0) [2.2\)](#page-14-0), we make a digression on the three-body problem and the *renormalizable integrability* of the simply averaged Newtonian potential [[40\]](#page-43-3). The Hamiltonian governing the motions of a three-body problem in the plane where the masses are 1, *µ* and \kappaappa *,* is (see, e.g., [[18\]](#page-42-6))

$$
\mathbf{H}_{3\mathrm{b}} = \left(1 + \frac{1}{\kappa}\right) \frac{\|\mathbf{y}\|^2}{2} + \left(1 + \frac{1}{\mu}\right) \frac{\|\mathbf{y}'\|^2}{2} - \frac{\kappa}{\|\mathbf{x}\|} - \frac{\mu}{\|\mathbf{x}'\|} - \frac{\kappa\mu}{\|\mathbf{x} - \mathbf{x}'\|} + \mathbf{y} \cdot \mathbf{y}'
$$

where **y**, $y' \in \mathbb{R}^2$; $x, x' \in \mathbb{R}^2$, with $x \neq 0 \neq x'$ and $x \neq x'$, are impulse-position coordinates; $\|\cdot\|$ denotes the Euclidean norm and the gravity constant has been chosen equal to 1, by a proper choice of the units system. We rescale

$$
(\mathbf{y}', \mathbf{y}) \rightarrow \frac{\kappa^2}{1+\kappa}(\mathbf{y}', \mathbf{y}), \quad (\mathbf{x}', \mathbf{x}) \rightarrow \frac{1+\kappa}{\kappa^2}(\mathbf{x}', \mathbf{x})
$$

multiply the Hamiltonian by $\frac{1+\kappa}{\kappa^3}$ and obtain

$$
H_{3b}(\mathbf{y}', \mathbf{y}, \mathbf{x}', \mathbf{x}) = \frac{\|\mathbf{y}\|^2}{2} - \frac{1}{\|\mathbf{x}\|} + \delta \left(\frac{\|\mathbf{y}'\|^2}{2} - \frac{\alpha}{\|\mathbf{x} - \mathbf{x}'\|} - \frac{\beta}{\|\mathbf{x}'\|} \right) + \gamma \mathbf{y} \cdot \mathbf{y}' \tag{6}
$$

with

$$
\alpha:=\frac{\mu^2(1+\kappa)}{\kappa(1+\mu)}\,,\quad \beta:=\frac{\mu^2(1+\kappa)}{\kappa^2(1+\mu)}\,,\quad \gamma:=\frac{\kappa}{1+\kappa}\,,\quad \delta:=\frac{\kappa(1+\mu)}{\mu(1+\kappa)}\,.
$$

In order to simplify the analysis a little bit, we introduce a main assumption. The Hamiltonian H_{3b} in [\(6](#page-2-0)) includes the Keplerian term

$$
\frac{\|\mathbf{y}\|^2}{2} - \frac{1}{\|\mathbf{x}\|} = -\frac{1}{2A^2} \,. \tag{7}
$$

We assume that this term is "leading" in the Hamiltonian. By averaging theory, this assumption allows us to replace (at the cost of a small error) H3b by its *ℓ*-average

$$
\overline{H} = -\frac{1}{2A^2} + \delta H
$$
\n(8)

where ℓ is the mean anomaly associated to (7) (7) , and^{[1](#page-2-2)}

$$
\mathbf{H} := \frac{\|\mathbf{y}'\|^2}{2} - \alpha \mathbf{U} - \frac{\beta}{\|\mathbf{x}'\|}
$$
(9)

with

$$
U := \frac{1}{2\pi} \int_0^{2\pi} \frac{d\ell}{\|\mathbf{x}' - \mathbf{x}(\ell)\|}
$$

being the "simply[2](#page-2-3) averaged Newtonian potential". We recall that the mean anomaly *ℓ* is defined as the area spanned by **x** on the Keplerian ellipse generated by ([7\)](#page-2-1) relatively to the perihelion **P** of the ellipse, in 2π units. From now on we focus on the motions of the averaged Hamiltonian (9) (9) , bypassing any quantitative statement concerning the averaging procedure, as this would lead much beyond the purposes of the paper.^{[3](#page-2-5)}

Remark that $\mathbf{y}(\ell)$ has vanishing ℓ -average so that the last term in [\(6](#page-2-0)) does not survive.

² Here, "simply" is used as opposed to the more familiar "doubly" averaged Newtonian potential, most often encountered in the literature; e.g. [[14](#page-42-7)[,15](#page-42-8),[18](#page-42-6)[,27](#page-42-9),[39\]](#page-43-4).

³ As we consider a region in phase space close where **x** ′ is very close to the instantaneous Keplerian orbit of **x**, quantifying the values of the mass parameters and the distance which allow for the averaging procedure is a delicate (even though crucial) question, which, by its nature, demands careful use of regularisations. Due to the non-trivial underlying analysis, we choose to limit ourselves to point out that the renormalizable integrability of the Newtonian potential has a nontrivial dynamical impact on the simply averaged three-body problem, which explain the existence of the motions herewith discussed, which would not be justified otherwise.

Neglecting the first term in (8) (8) , which is an inessential additive constant for \overline{H} and reabsorbing the constant *δ* with a time change, we are led to look at the Hamiltonian H in [\(9](#page-2-4)). We denote as **E** the Keplerian ellipse generated by Hamiltonian (7) (7) , for negative values of the energy. Without loss of generality, assume $\mathbb E$ is not a circle and^{[4](#page-3-0)} $\Lambda = 1$. Remark that, as the mean anomaly ℓ is averaged out, we lose any information concerning the position of **x** on **E**, so we shall only need two couples of coordinates for determining the shape of **E** and the vectors \mathbf{y}' , \mathbf{x}' . These are:

- the "Delaunay couple" (G, g) , where G is the Euclidean length of $\mathbf{x} \times \mathbf{y}$ and g detects the perihelion. We remark that g is measured with respect to **x**['] (instead of with respect to a fixed direction), as the SO(2) reduction we use a rotating frame which moves with x' (compare the formulae in (66) (66) below);
- the "radial–polar couple" (R, r) , where $r := ||\mathbf{x}'||$ and $R := \frac{\mathbf{y}' \cdot \mathbf{x}'}{||\mathbf{x}'||}$ ∥**x**′∥ .

Using the coordinates above, the Hamiltonian in ([9\)](#page-2-4) becomes

$$
H(R, G, r, g) = \frac{R^2}{2} + \frac{(C - G)^2}{2r^2} - \alpha U(r, G, g) - \frac{\beta}{r}
$$
(10)

where $C = \|\mathbf{x} \times \mathbf{y} + \mathbf{x}' \times \mathbf{y}'\|$ is the total angular momentum of the system, and we have assumed $\mathbf{x} \times \mathbf{y} \parallel \mathbf{x}' \times \mathbf{y}'$, so that $\|\mathbf{x}' \times \mathbf{y}'\| = C - \|\mathbf{x} \times \mathbf{y}\| = C - G$.

The Hamiltonian ([10\)](#page-3-1) is now wearing 2 degrees-of-freedom. As the energy is conserved, its motions evolve on the 3-dimensional manifolds $\mathcal{M}_c = \{H = c\}$. On each of such manifolds the evolution is associated to a 3-dimensional vector-field X_c , given by the velocity field of some triple of coordinates on \mathcal{M}_c . As an example, one can take the triple (r, G, g) , even though a more convenient choice will be done below. To describe the motions we are looking for, we need to recall a remarkable property of the function U, pointed out in [[40\]](#page-43-3). First of all, one has to note that U is integrable, as it is a function of (r*,* G*,* g) only. But the main point is that there exists a function F of two arguments such that

$$
U(r, G, g) = F(E(r, G, g), r)
$$
\n
$$
(11)
$$

where

$$
E(r, G, g) = G2 + r\sqrt{1 - G2} \cos g.
$$
 (12)

The function E is referred to as *Euler integral*, and we express [\(11](#page-3-2)) by saying that U is *renormalizable integrability via the Euler integral*. Such circumstance implies that the level sets of E, namely the curves

$$
G^2 + r\sqrt{1 - G^2} \cos g = \mathcal{E}
$$
\n(13)

are also level sets of U. On the other hand, the phase portrait of [\(13](#page-3-3)) keeping r fixed is completely explicit and has been studied in [[41\]](#page-43-5). We recall it now. Let us fix (by periodicity of g) the strip $[-\pi, \pi] \times [-1, 1]$. For $0 < r < 1$ or $1 < r < 2$ it includes two minima $(\pm \pi, 0)$ on the g-axis; two symmetric maxima on the G-axis and one saddle point at $(0,0)$. When $r > 2$ the saddle point disappears and $(0,0)$ turns to be a maximum. The phase portrait includes two separatrices when $0 < r < 1$ or $1 < r < 2$; one separatrix if $r > 2$. These are the level sets

$$
\begin{cases} \mathcal{S}_0(r) = \{ \mathcal{E} = r \}, & 0 < r < 1, \ 1 < r < 2 \\ \mathcal{S}_1(r) = \{ \mathcal{E} = 1 \}, & 0 < r < 1, \ 1 < r < 2, \ r > 2 \end{cases}
$$

with $S_0(r)$ being the separatrix through the saddle; $S_1(r)$ the level set through circular orbits. Rotational motions in between $S_0(r)$ and $S_1(r)$, do exist only for $0 < r < 1$. The minima and the maxima are surrounded by librational motions and different motions (librations about different equilibria or rotations) are separated by $S_0(r)$ and $S_1(r)$. All of this is represented in [Fig.](#page-4-0) [1.](#page-4-0)

⁴ We can do this as the Hamiltonian H_{3b} rescale by a factor β^{-2} as $(\mathbf{y}', \mathbf{y}) \to \beta^{-1}(\mathbf{y}', \mathbf{y})$ and $(\mathbf{x}', \mathbf{x}) \to \beta^{2}(\mathbf{x}', \mathbf{x})$.

Fig. 1. Sections, at r fixed, of the level surfaces of E. (a) $0 < r < 1$; (b) $1 < r < 2$; (c) $r > 2$.

Fig. 2. Logs of the level surfaces of E in the space (g, G, r) . (a) $0 < r < 1$; (b) $1 < r < 2$; (c) $r > 2$.

In [Fig.](#page-4-1) [2](#page-4-1) the same level sets are drawn in the 3-dimensional space (r, G, g) . The spatial visualisation turns out to be useful for the purposes of the paper, as the coordinate r, which stays fixed under E, is instead moving under H, due to its dependence on R; see [\(10](#page-3-1)). We denote as S_0 the union of all the $S_0(r)$ with $0 \le r \le 2$. It is to be noted that, while E is perfectly defined along S_0 , U is not so. Indeed, as

$$
\mathcal{S}_0(r) = \left\{ (G, g) : G^2 + r\sqrt{1 - G^2} \cos g = r, -1 \le G \le 1, g \in \mathbb{T} \right\} \qquad 0 \le r < 2
$$
 (14)

we have^{[5](#page-4-2)} U(r, G, g) = ∞ for (G, g) $\in \mathcal{S}_0(r)$, for all $0 \le r \le 2$.

The natural question now raises whether any of the $\mathcal{E}\text{-levels}$ in [Fig.](#page-4-1) [2](#page-4-1) is an "approximate" invariant manifold for the Hamiltonian H in (10) (10) . In $[42]$ $[42]$ and $[16]$ $[16]$ a positive answer has been given for case $r > 2$, corresponding to panels (c). In this paper, we want to focus on motions close to S_0 with r in a left neighbourhood of 2 (panels (b)). Such portion of phase space is denoted as \mathcal{C} . By the discussion above, motions in $\mathcal C$ are to be understood as "quasi-collisional".

To state our result, we denote as $r_s(A)$ the value of r such that the area encircled by $\mathcal{S}_0(r_s(A))$ is A. Then the set $\{\exists A : \mathbf{r} = \mathbf{r}_{s}(A)\}$ corresponds to \mathcal{S}_0 . We prove:

Rewriting (14) (14) as

$$
\frac{G^2}{1-\sqrt{1-G^2}\cos g}
$$

 $r =$ tells us that $(G, g) \in S_0(r)$ if and only if **x'** occupies in the ellipse **E** the position with true anomaly $\nu = \pi - g$.

Theorem B. *Inside the region* C *there exists an open set W such that along any motion with initial datum* $\int_{\mathbb{R}} w f(x, t) \, dt$ *i* $\int_{-\infty}^{\infty} f(x, t) \, dt \leq \int_{-\infty}^{+\infty} f(x, t) \, dt$ *in to between the absolute variations of the Euler integral* E *from time* 0 *to time t, for all* $|t| \le t_{\rm ex}^{X,W}$, and the a-priori bound ϵt (where $\epsilon := |P_1|_\infty$, with P_1 being the action component *of the vector-field) does not exceed* $Ce^{-L^3/C}$, provided that the initial value of r is e^{-L} away from $r_s(A)$, with *L >* 0 *sufficiently large.*

The proof of [Theorem](#page-4-4) [B,](#page-4-4) fully given in the next section, relies on a careful choice of coordinates (A, y, ψ) on \mathcal{M}_c , where *y* is diffeomorphic to r, while (A, ψ) are the action–angle coordinates of $E(r, \cdot, \cdot)$, such that the associated vector-field has the form in [\(3](#page-1-3)) with $n = m = 1$. The diffeomorphism $r \rightarrow y$ allows X_c to keep its regularity upon S_0 .

Before switching to proofs, we recall how the theme of collisions in *N*-body problems (with $N \geq 3$) has been treated so far. As the literature in the field in countless, by no means we claim completeness. In the late 1890s H. Poincar´e [[43\]](#page-43-7) conjectured the existence of special solutions in a model of the three-body problem usually referred to as planar, circular, restricted three-body problem (PCRTBP). According to Poincaré's conjecture, when one of the primaries has a small mass μ , the orbit of an infinitesimal body approaching a close encounter with the small primary consists of two Keplerian arcs glueing so as to form a cusp. These solutions were named by him *second species solutions*, and their existence has been next proved in [[4–](#page-42-11)[8,](#page-42-12)[26,](#page-42-13)[30\]](#page-42-14). In the early 1900s, J. Chazy classified all the possible final motions of the three-body problem, including the possibility of collisions $[12]$ $[12]$. The study was reconsidered in $[1,2]$ $[1,2]$ $[1,2]$. After the advent of KAM theory, the existence of almost-collisional quasi-periodic orbits was proven [[13,](#page-42-18)[17,](#page-42-19)[48\]](#page-43-8). The papers [[19,](#page-42-20)[20,](#page-42-21)[31–](#page-42-22)[34,](#page-42-23)[45,](#page-43-9)[46\]](#page-43-10) deal with rare occurrence of collisions or the existence of chaos in the proximity of collisions. In [[23\]](#page-42-24) it is proved that for PCRTBP there exists an open set in phase space of fixed measure, where the set of initial points which lead to collision is $O(\mu^{\alpha})$ dense with some $0 < \alpha < 1$. In [[28\]](#page-42-25) it is proved that, after collision regularisation, PCRTBP is integrable in a neighbourhood of collisions. In $[9,10]$ $[9,10]$ $[9,10]$ $[9,10]$ the result has been recently extended to the spatial version, often denoted SCRTBP.

2. A Normal Form Theorem for fast driven systems

In Sections $2.1-2.4$ $2.1-2.4$ we state and prove a Normal Form Theorem (NFT) for real-analytic systems. For the purpose of the paper, in Section [2.5](#page-14-1) we generalise the result, allowing the dependence on the angular coordinate ψ to be just C^{ℓ_*} ($\ell_* \in \mathbb{N}$), rather than holomorphic. In all cases, we limit to the case $n = m = 1$. Generalisations to *n*, $m \geq 1$ are straightforward.

2.1. Weighted norms

Let us consider a 3-dimensional vector-field

$$
(\mathbf{I}, y, \psi) \in \mathbb{P}_{r, \sigma, s} := \mathbb{I}_r \times \mathbb{Y}_\sigma \times \mathbb{T}_s \to X = (X_1, X_2, X_3) \in \mathbb{C}^3
$$

where $\mathbb{I} \subset \mathbb{R}$, $\mathbb{Y} \subset \mathbb{R}$ are open and connected; $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$, which has the form [\(3](#page-1-3)). As usual, if $A \subset \mathbb{R}$ and $r, s > 0$, the symbols A_r , \mathbb{T}_s denote the complex *r*, *s*-neighbourhoods of A , \mathbb{T} :

$$
A_r := \bigcup_{x \in A} B_r(x), \qquad \mathbb{T}_s := \left\{ \psi = \psi_1 + i\psi_2 : \ \psi_1 \in \mathbb{T}, \ \psi_2 \in \mathbb{R}, \ |\psi_2| < s \right\},
$$

with $B_r(x)$ being the complex ball centred at x with radius r. We assume each X_i to be holomorphic in $\mathbb{P}_{r,\sigma,s}$, meaning the it has a finite weighted norm defined below. If this holds, we simply write $X \in \mathcal{O}_{r,\sigma,s}^3$.

For functions $f: (I, y, \psi) \in \mathbb{I}_r \times \mathbb{Y}_\sigma \times \mathbb{T}_s \to \mathbb{C}$, we write $f \in \mathcal{O}_{r,\sigma,s}$ if f is holomorphic in $\mathbb{P}_{r,\sigma,s}$. We let

$$
||f||_u := \sum_{k \in \mathbb{Z}} \sup_{\mathbb{I}_r \times \mathbb{Y}_\sigma} |f_\kappa(\mathbf{I}, y)| \, e^{|k|s} \qquad u = (r, \sigma, s) \tag{15}
$$

where

$$
f = \sum_{k \in \mathbb{Z}} f_k(\mathbf{I}, y) e^{\mathbf{i} k \psi}
$$

is the Fourier series associated to *f* relatively to the *ψ*-coordinate. For *ψ*-independent functions or vectorfields we simply write $\|\cdot\|_{r,\sigma}$.

For vector-fields $X: (I, y, \psi) \in \mathbb{I}_r \times \mathbb{Y}_{\sigma} \times \mathbb{T}_s \to X = (X_1, X_2, X_3) \in \mathbb{C}^3$, we write $X \in \mathcal{O}_{r, \sigma, s}^3$ if $X_i \in \mathcal{O}_{r, \sigma, s}$ for $i = 1, 2, 3$. We define the *weighted norms*

$$
|\!|\!| X |\!|\!|_u^w := \sum_i w_i^{-1}|\!| X_i|\!|_u
$$

where $w = (w_1, w_2, w_3) \in \mathbb{R}^3_+$ are the *weights*. The weighted norm affords the following properties.

- Monotonicity:
- $\|X\|_u^w \leq \|X\|_{u'}^w$, $\|X\|_u^{w'} \leq \|X\|_u^w$ $\forall u \leq u'$, $w \leq w'$ (16)

where $u \leq u'$ means $u_i \leq u'_i$ for $i = 1, 2, 3$.

• Homogeneity:

$$
\|X\|_u^{\alpha w} = \alpha^{-1} \|X\|_u^w \qquad \forall \ \alpha > 0. \tag{17}
$$

2.2. The Normal Form Theorem

We now state the main result of this section. Observe that the nature of the system does not give rise to any non-resonance condition or ultraviolet cut-off. We name Normal Form Theorem the following

Theorem 2.1 (NFT). Let $u = (r, \sigma, s)$; $X = N + P \in \mathcal{O}_u^3$ and let $w = (\rho, \tau, t) \in \mathbb{R}_+^3$. Put

$$
Q := 3 \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{r, \sigma}
$$

and^{[6](#page-6-1)} assume that for some $p \in \mathbb{N}$ *,* $s_2 \in \mathbb{R}_+$ *, the following inequalities are satisfied:*

$$
0 < \rho < \frac{r}{8}, \quad 0 < \tau < e^{-s_2} \frac{\sigma}{8}, \quad 0 < t < \frac{s}{10} \tag{18}
$$

and

$$
\chi := \frac{\text{diam}(\mathbb{Y}_{\sigma})}{s_2} \left\| \frac{\partial_y v}{v} \right\|_{r,\sigma} \le 1
$$
\n(19)

$$
\theta_1 := 2 e^{s_2} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_y \omega}{v} \right\|_{r, \sigma} \frac{\tau}{t} \le 1
$$
\n⁽²⁰⁾

$$
\theta_2 := 4 \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{1}^{\nu}}{\nu} \right\|_{r,\sigma} \frac{\rho}{\tau} \le 1
$$

$$
\theta_3 := 8 \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{1}^{\omega}}{\nu} \right\|_{r,\sigma} \frac{\rho}{t} \le 1
$$
 (21)

$$
\eta^2 := \max\left\{ \frac{\text{diam}(\mathbb{Y}_{\sigma})}{t} \left\| \frac{\omega}{v} \right\|_{r,\sigma}, \ 2^7 e^{2s_2} Q^2 (\mathbb{I}P \mathbb{I}_u^w)^2 \right\} < \frac{1}{p} \,. \tag{22}
$$

Then, with

$$
u_* = (r_\star, \sigma_\star, s_\star), \quad r_\star := r - 8\rho, \quad \sigma_\star = \sigma - 8e^{s_2}\tau, \quad s_\star = s - 10t
$$

there exists a real-analytic change of coordinates Φ_{\star} *such that* $X_{\star} := \Phi_{\star} X \in \mathcal{O}_{u_{\star}}^3$ *and* $X_{\star} = N + P_{\star}$ *, with*

$$
|\!|\!| P_{\star} |\!|\!|_{u_{\star}}^w < 2^{-(p+1)} |\!|\!| P |\!|\!|_{u}^w.
$$

 6 diam(A) denotes diameter of the set A.

Remark [2.1](#page-6-0) (*Proof of [Theorem](#page-1-2) [A](#page-1-2)*). Theorem 2.1 immediately implies Theorem A, with $C = \min\{2^{-7}Q^{-2}\}$ $e^{-2s_2} \varrho^2 \log 2$, $t/\text{diam}\mathbb{Y}_{\sigma}$, $a = 2$, provided that $\varrho := \frac{\epsilon^2}{\sqrt{\|\mathcal{P}\|}}$ $\frac{\epsilon^2}{(\mathbb{P} \mathbb{P} \mathbb{I}^w_1)^2}$ is of "order one" with respect to ϵ . The mentioned "smallness assumptions" correspond to conditions ([18\)](#page-6-2)-([21\)](#page-6-3) and $\left\|\frac{\omega}{v}\right\|_{r,\sigma} \ll (\|P\|_u^w)^2$.

2.3. The step lemma

We denote as

$$
e^{\mathcal{L}_Y} = \sum_{k \ge 0} \frac{\mathcal{L}_Y^k}{k!} \tag{23}
$$

the formal Lie series associated to *Y* , where

$$
[Y, X] = J_X Y - J_Y X , \quad (J_Z)_{ij} := \partial_j Z_i
$$

denotes Lie brackets of two vector-fields, with

$$
\mathcal{L}_Y := [Y, \cdot]
$$

being the Lie operator.

Lemma 2.1. *Let* $X = N + P \in \mathcal{O}_u^3$, with $u = (r, \sigma, s)$, N *as in* ([36](#page-9-0))*,* s_1 , $s_2 > 0$ *. Assume*

$$
\frac{\text{diam}(\mathbb{Y}_{\sigma})}{s_1} \left\| \frac{\omega}{v} \right\|_{r,\sigma} \le 1, \quad \frac{\text{diam}(\mathbb{Y}_{\sigma})}{s_2} \left\| \frac{\partial_y v}{v} \right\|_{r,\sigma} \le 1 \tag{24}
$$

and that P is so small that

$$
Q\|P\|_u^w < 1 \qquad Q := 3\text{diam}(\mathbb{Y}_\sigma) \left\| \frac{1}{v} \right\|_{r,\sigma}, \quad w = (\rho, \tau, t) \tag{25}
$$

Let ρ_* , τ_* , t_* *be defined via*

$$
\frac{1}{\rho_*} = \frac{1}{\rho} - \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{v}}{\partial v} \right\|_{r,\sigma} \left(\frac{1}{\tau} - e^{s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{v}}{\partial v} \right\|_{r,\sigma} \frac{1}{t} \right)
$$

$$
- \operatorname{diam}(\mathbb{Y}_{\sigma}) \left(\left\| \frac{\partial \mathbf{v}}{\partial v} \right\|_{r,\sigma} + e^{s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{v}}{\partial v} \right\|_{r,\sigma} \left\| \frac{\partial \mathbf{v}}{\partial v} \right\|_{r,\sigma} \right) \frac{1}{t}
$$

$$
\frac{1}{\tau_*} = \frac{e^{-s_2}}{\tau} - \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{v}}{\partial v} \right\|_{r,\sigma} \frac{1}{t}
$$

$$
t_* = t
$$
(26)

and assume

$$
w_* = (\rho_*, \tau_*, t_*) \in \mathbb{R}_+^3, \qquad u_* = (r - 2\rho_*, \sigma - 2\tau_*, s - 3s_1 - 2t_*) \in \mathbb{R}_+^3.
$$
 (27)

Then there exists $Y \in \mathcal{O}_{u_*+w_*}^3$ *such that* $X_+ := e^{\mathcal{L}_Y} X \in \mathcal{O}_{u_*}^3$ *and* $X_+ = N + P_+$ *, with*

$$
|\!|\!| P_+ |\!|\!|_{u_*}^{w_*} \leq \frac{2Q \left(|\!|\!| P |\!|\!|_{u}^{w}\right)^2}{1 - Q \, |\!|\!| P |\!|\!|_{u}^{w}}\tag{28}
$$

In the next section, we shall use [Lemma](#page-7-0) [2.1](#page-7-0) in the following "simplified" form.

Lemma 2.2 (*Step Lemma*)**.** *If* [\(24](#page-7-1))*,* [\(25](#page-7-2)) *and* [\(27](#page-7-3)) *are replaced with*

$$
2 e^{s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_y \omega}{v} \right\|_{r, \sigma} \frac{\tau}{t} \le 1
$$

4 \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_1 v}{v} \right\|_{r, \sigma} \frac{\rho}{\tau} \le 1
8 \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_1 \omega}{v} \right\|_{r, \sigma} \frac{\rho}{t} \le 1 (29)

$$
\frac{\text{diam}(\mathbb{Y}_{\sigma})}{t} \left\| \frac{\omega}{v} \right\|_{r,\sigma} \le 1, \quad \frac{\text{diam}(\mathbb{Y}_{\sigma})}{s_2} \left\| \frac{\partial_y v}{v} \right\|_{r,\sigma} \le 1 \tag{30}
$$

$$
0 < \rho < \frac{r}{4}, \quad 0 < \tau < \frac{\sigma}{4} e^{-s_2}, \quad 0 < t < \frac{s}{5} \tag{31}
$$

$$
2Q\|P\|_u^w < 1\tag{32}
$$

then $X_+ = N + P_+ \in \mathcal{O}_{u_+}^3$ and

$$
\|P_{+}\|_{u_{+}}^{w} \le 8e^{s_2}Q(\|P\|_{u}^{w})^2. \tag{33}
$$

with

whence, as $t_* = t$,

$$
u_{+} := (r - 4\rho, \sigma - 4\tau e^{s_2}, s - 5t).
$$

Proof. The inequality in ([30\)](#page-8-0) guarantees that one can take $s_1 = t$, while the inequalities in [\(29](#page-8-1)) and [\(31](#page-8-2)) imply

$$
\frac{1}{\rho_*} \ge \frac{1}{2\rho} \,, \quad \frac{1}{\tau_*} \ge \frac{e^{-s_2}}{2\tau}
$$

$$
w_* < 2e^{s_2}w \,, \qquad u_* \ge u_+ > 0 \,.
$$

Then ([33\)](#page-8-3) is implied by [\(28](#page-7-4)), monotonicity and homogeneity ([16\)](#page-6-4)–([17\)](#page-6-5), and the inequality in ([32\)](#page-8-4). \Box

To prove [Lemma](#page-7-0) [2.1,](#page-7-0) we look for a change of coordinates which conjugates the vector-field $X = N + P$ to a new vector-field $X_+ = N_+ + P_+$, where P_+ depends on the coordinates I at higher orders. The procedure we follow is reminiscent of classical techniques of normal form theory, where one chooses the transformation so that $X_+ = e^{\mathcal{L}_Y} X$, with the operator $e^{\mathcal{L}_Y}$ being defined as in ([23](#page-7-5)). As in the classical case, *Y* will be chosen as the solution of a certain "homological equation" which allows to eliminate the first order terms depending on ψ of P. However, as stated in [Lemma](#page-7-0) [2.1,](#page-7-0) differently from the classical situation, one can take $N = N_{+}$, which is another way of saying that it is possible to choose *Y* such in a way to solve

$$
\mathcal{L}_N[Y] = P \tag{34}
$$

regardless *P* has vanishing average or not — or, in other words, that *also the resonant terms* of the perturbing term will be killed. Note also that no "ultraviolet cut-off" is used. Eq. ([34\)](#page-8-5) is precisely what is discussed in [Lemma](#page-9-1) [2.3](#page-9-1) and [Proposition](#page-9-2) [2.1](#page-9-2).

Fix $y_0 \in \mathbb{Y}$; $v, \omega : \mathbb{I} \times \mathbb{Y} \to \mathbb{R}$, with $v \neq 0$. We define, formally, the operators $\mathcal{F}_{v,\omega}$ and $\mathcal{G}_{v,\omega}$ as acting on functions $g: \mathbb{I} \times \mathbb{Y} \times \mathbb{T} \to \mathbb{R}$ as

$$
\mathcal{F}_{v,\omega}[g](\mathbf{I},y,\psi) := \int_{y_0}^{y} \frac{g\left(\mathbf{I},\eta,\psi + \int_{y}^{\eta} \frac{\omega(\mathbf{I},\eta')}{v(\mathbf{I},\eta')} d\eta'\right)}{v(\mathbf{I},\eta)} d\eta
$$
\n
$$
\mathcal{G}_{v,\omega}[g](\mathbf{I},y,\psi) := \int_{y_0}^{y} \frac{g\left(\mathbf{I},\eta,\psi + \int_{y}^{\eta} \frac{\omega(\mathbf{I},\eta')}{v(\mathbf{I},\eta')} d\eta'\right) e^{-\int_{y}^{\eta} \frac{\partial_{y}v(\mathbf{I},\eta')}{v(\mathbf{I},\eta')} d\eta'}}{v(\mathbf{I},\eta)} d\eta
$$
\n(35)

Observe that, when existing, $\mathcal{F}_{v,\omega}$, $\mathcal{G}_{v,\omega}$ send zero-average functions to zero-average functions. The existence $\mathcal{F}_{v,\omega}$, $\mathcal{G}_{v,\omega}$ is established by the following

Lemma 2.3. *If inequalities* ([24\)](#page-7-1) *hold, then*

$$
\mathcal{F}_{v,\omega}\,,\ \mathcal{G}_{v,\omega}:\quad \mathcal{O}_{r,\sigma,s}\to \mathcal{O}_{r,\sigma,s-s_1}
$$

and

$$
\|\mathcal{F}_{v,\omega}[g]\|_{r,\sigma,s-s_1} \leq \text{diam}(\mathbb{Y}_{\sigma}) \left\|\frac{g}{v}\right\|_{r,\sigma,s}, \quad \|\mathcal{G}_{v,\omega}[g]\|_{r,\sigma,s-s_1} \leq e^{s_2} \text{diam}(\mathbb{Y}_{\sigma}) \left\|\frac{g}{v}\right\|_{r,\sigma,s}
$$

The proof of [Lemma](#page-9-1) [2.3](#page-9-1) is obvious from the definitions [\(35](#page-8-6)).

Proposition 2.1. *Let*

 $N = (0, v(1, y), \omega(1, y))$, $Z = (Z_1(1, y, \psi), Z_2(1, y, \psi), Z_3(1, y, \psi))$ (36)

belong to $\mathcal{O}_{r,\sigma,s}^3$ *and assume* [\(24](#page-7-1))*. Then the "homological equation"*

$$
\mathcal{L}_N[Y] = Z \tag{37}
$$

 $has a solution Y \in \mathcal{O}_{r, \sigma, s-3s_1}$ verifying

$$
\|Y\|_{r,\sigma,s-3s_1}^{\rho_*,\tau_*,t_*} \le \text{diam}(\mathbb{Y}_{\sigma}) \left\|\frac{1}{v}\right\|_{r,\sigma} \|Z\|_{r,\sigma,s}^{\rho,\tau,t}
$$
(38)

with ρ∗*, τ*∗*, t*[∗] *as in* ([26\)](#page-7-6)*.*

Proof. We expand Y_j and Z_j along the Fourier basis

$$
Y_j(\mathbf{I}, y, \psi) = \sum_{k \in \mathbb{Z}} Y_{j,k}(\mathbf{I}, y) e^{\mathrm{i}k\psi} , \quad Z_j(\mathbf{I}, y, \psi) = \sum_{k \in \mathbb{Z}} Z_{j,k}(\mathbf{I}, y) e^{\mathrm{i}k\psi} , \quad j = 1, 2, 3
$$

Using

$$
\mathcal{L}_N[Y] = [N, Y] = J_Y N - J_N Y
$$

where $(J_Z)_{ij} = \partial_j Z_i$ are the Jacobian matrices, we rewrite [\(37](#page-9-3)) as

$$
Z_{1,k}(I,y) = v(I,y)\partial_y Y_{1,k} + ik\omega(I,y)Y_{1,k}
$$

\n
$$
Z_{2,k}(I,y) = v(I,y)\partial_y Y_{2,k} + (ik\omega(I,y) - \partial_y v(I,y))Y_{2,k} - \partial_T v(I,y)Y_{1,k}
$$

\n
$$
Z_{3,k}(I,y) = v(I,y)\partial_y Y_{3,k} + ik\omega(I,y)Y_{3,k} - \partial_T \omega(I,y)Y_{1,k} - \partial_y \omega(I,y)Y_{2,k}.
$$
\n(39)

Regarding (39) (39) as equations for $Y_{j,k}$, we find the solutions

$$
Y_{1,k} = \int_{y_0}^{y} \frac{Z_{1,k}(I,\eta)}{v(I,\eta)} e^{ik \int_{y}^{\eta} \frac{\omega(I,\eta')}{v(I,\eta')} d\eta'} d\eta
$$

\n
$$
Y_{2,k} = \int_{y_0}^{y} \frac{Z_{2,k}(I,\eta) + \partial_1 v Y_{1,k}}{v(I,\eta)} e^{\int_{y}^{\eta} \frac{ik\omega(I,\eta') - \partial_y v(I,\eta')}{v(I,\eta')} d\eta'} d\eta
$$

\n
$$
Y_{3,k} = \int_{y_0}^{y} \frac{Z_{3,k}(I,\eta) + \partial_1 \omega(I,\eta) Y_{1,k} + \partial_y \omega(I,\eta) Y_{2,k}}{v(I,\eta)} e^{ik \int_{y}^{\eta} \frac{\omega(I,\eta')}{v(I,\eta')} d\eta'} d\eta
$$

multiplying by $e^{ik\psi}$ and summing over $k \in \mathbb{Z}$ we find

$$
Y_1 = \mathcal{F}_{v,\omega}[Z_1]
$$

$$
Y_2 = \mathcal{G}_{v,\omega}[Z_2] + \mathcal{G}_{v,\omega}[\partial_1 v Y_1],
$$

\n
$$
Y_3 = \mathcal{F}_{v,\omega}[Z_3] + \mathcal{F}_{v,\omega}[\partial_1 \omega Y_1] + \mathcal{F}_{v,\omega}[\partial_y \omega Y_2].
$$
\n(40)

Then, by [Lemma](#page-9-1) [2.3,](#page-9-1)

$$
||Y_1||_{r,\sigma,s-s_1} \leq \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{r,\sigma} ||Z_1||_{r,\sigma,s} \n||Y_2||_{r,\sigma,s-2s_1} \leq e^{s_2} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{r,\sigma} ||Z_2||_{r,\sigma,s-s_1} + e^{s_2} \text{diam}(\mathbb{Y}_{\sigma})^2 \left\| \frac{1}{v} \right\|_{r,\sigma} ||Z_1||_{r,\sigma,s} \n||Y_3||_{r,\sigma,s-3s_1} \leq \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{r,\sigma} ||Z_3||_{r,\sigma,s-2s_1} + e^{s_2} \text{diam}(\mathbb{Y}_{\sigma})^2 \left\| \frac{1}{v} \right\|_{r,\sigma} \left\| \frac{\partial \psi}{v} \right\|_{r,\sigma} ||Z_2||_{r,\sigma,s-s_1} \n+ \text{diam}(\mathbb{Y}_{\sigma})^2 \left\| \frac{1}{v} \right\|_{r,\sigma} \left(\left\| \frac{\partial \psi}{v} \right\|_{r,\sigma} + e^{s_2} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \psi}{v} \right\|_{r,\sigma} \left\| \frac{\partial \psi}{v} \right\|_{r,\sigma} \right) ||Z_1||_{r,\sigma,s}
$$

Multiplying the inequalities above by ρ_*^{-1} , τ_*^{-1} , t_*^{-1} respectively and taking the sum, we find ([38\)](#page-9-5), with

$$
\frac{1}{\rho} = \frac{1}{\rho_*} + e^{s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial v}{v} \right\|_{r,\sigma} \frac{1}{\tau_*} + \operatorname{diam}(\mathbb{Y}_{\sigma}) \left(\left\| \frac{\partial w}{v} \right\|_{r,\sigma} + e^{s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial v}{v} \right\|_{r,\sigma} \right) \frac{1}{t_*}
$$
\n
$$
\frac{1}{\tau} = \frac{e^{s_2}}{\tau_*} + e^{s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial v}{v} \right\|_{r,\sigma} \frac{1}{t_*}
$$
\n
$$
\frac{1}{t} = \frac{1}{t_*}.
$$

We recognise that, under conditions (27) (27) , ρ_*, τ_*, t_* in (26) (26) solve the equations above. \Box

Lemma 2.4. *Let* $w < u \leq u_0$; $Y \in \mathcal{O}_{u_0}^3$, $W \in \mathcal{O}_u^3$. *Then*

$$
\|\mathcal{L}_Y[W]\|_{u-w}^{u_0-u+w}\leq\|Y\|_{u-w}^w\|W\|_{u}^{u_0-u+w}+\|W\|_{u-w}^{u_0-u+w}\|Y\|_{u_0}^{u_0-u+w}\,.
$$

Proof. One has

$$
\mathcal{L}_Y[W] \mathbb{II}_{u-w}^{u_0-u+w} = \mathbb{II}_{W} Y - J_Y W \mathbb{II}_{u-w}^{u_0-u+w}
$$

$$
\leq \mathbb{II}_{W} Y \mathbb{II}_{u-w}^{u_0-u+w} + \mathbb{II}_{V} W \mathbb{II}_{u-w}^{u_0-u+w}
$$

Now, $(J_W Y)_i = \partial_1 W_i Y_1 + \partial_y W_i Y_2 + \partial_\psi W_i Y_3$, so, using Cauchy inequalities,

$$
||(J_WY)_i||_{u-w} \le ||\partial_1 W_i||_{u-w} ||Y_1||_{u-w} + ||\partial_y W_i||_{u-w} ||Y_2||_{u-w} + ||\partial_\psi W_i||_{u-w} ||Y_3||_{u-w}
$$

\n
$$
\le w_1^{-1} ||W_i||_u ||Y_1||_{u-w} + w_2^{-1} ||W_i||_u ||Y_2||_{u-w} + w_3^{-1} ||W_i||_u ||Y_3||_{u-w}
$$

\n
$$
= ||Y||_{u-w}^{w} ||W_i||_u
$$

Similarly,

$$
|| (J_Y W)_i ||_{u-w} \le ||W||_{u-w}^{u_0-u+w} ||Y_i ||_{u_0} .
$$

Taking the $u_0 - u + w$ -weighted norms, the thesis follows. \Box

Lemma 2.5. $Let\ 0 < w < u \in \mathbb{R}^3, Y \in \mathcal{O}_{u+w}^3, W \in \mathcal{O}_{u}^3$. Then $\| \mathcal{L}_Y^k[W] \|^w_{u-w} \leq 3^k k! \left(\|Y\|^w_{u+w} \right)^k \|W\|^w_{u-w}.$

Proof. We apply [Lemma](#page-10-0) [2.4](#page-10-0) with *W* replaced by $\mathcal{L}_Y^{i-1}[W]$, *u* replaced by $u - (i-1)w/k$, *w* replaced by w/k and, finally, $u_0 = u + w$. With $\|\cdot\|_{i}^{w} = \|\cdot\|_{u-i\frac{w}{k}}^{w}$, $0 \leq i \leq k$, so that $\|\cdot\|_{0}^{w} = \|\cdot\|_{u}^{w}$ and $\|\cdot\|_{k}^{w} = \|\cdot\|_{u-w}^{w}$,

$$
\mathcal{L}_Y^{i}[W]\mathcal{L}_i^{w+w/k} = \left\| \left[Y, \mathcal{L}_Y^{i-1}[W] \right] \right\|_i^{w+w/k}
$$

$$
\leq \|Y\|_i^{w/k} \| \mathcal{L}_Y^{i-1}[W] \mathcal{L}_1^{w+w/k} + \|Y\|_{u+w}^{w+w/k} \| \mathcal{L}_Y^{i-1}[W] \mathcal{L}_1^{w+w/k}.
$$

Hence, de-homogenizating,

$$
\frac{k}{k+1} \mathbb{E} \mathcal{L}_Y^i[W] \mathbb{I}_i^w \le k \frac{k}{k+1} \mathbb{I}^Y \mathbb{I}_i^w \mathbb{E} \mathcal{L}_Y^{i-1}[W] \mathbb{I}_{i-1}^w + \frac{k^2}{(k+1)^2} \mathbb{I}^Y \mathbb{I}_{u+w}^w \mathbb{I} \mathcal{L}_Y^{i-1}[W] \mathbb{I}_i^w
$$

$$
\le \frac{k^2}{k+1} \left(1 + \frac{1}{k+1}\right) \mathbb{I}^Y \mathbb{I}_{u+w}^w \mathbb{I} \mathcal{L}_Y^{i-1}[W] \mathbb{I}_{i-1}^w
$$

Eliminating the common factor $\frac{k}{k+1}$ and iterating *k* times from $i = k$, by Stirling, we get

$$
\begin{aligned} \|\mathcal{L}_Y^k[W] \|_{u-w}^w &\leq k^k \left(1+\frac{1}{k}\right)^k \left(\|Y\|_{u+w}^w\right)^k \|W\|_{u-w}^w \\ &\leq e^k k! \left(\|Y\|_{u+w}^w\right)^k \|W\|_{u-w}^w \\ &< 3^k k! \left(\|Y\|_{u+w}^w\right)^k \|W\|_{u-w}^w \end{aligned}
$$

as claimed. \square

 $\textbf{Proposition 2.2.} \quad Let \, 0 < w < u, \, Y \in \mathcal{O}^3_{u+w},$

$$
q:=3|\!|\!| Y|\!|\!|_{u+w}^w<1\,.
$$

Then the Lie series $e^{\mathcal{L}_Y}$ *defines an operator*

$$
e^{\mathcal{L}_Y}:\quad \mathcal{O}_u^3\to \mathcal{O}_{u-w}^3
$$

and its tails

$$
e_m^{\mathcal{L}_Y} = \sum_{k \ge m} \frac{\mathcal{L}_Y^k}{k!}
$$

verify

$$
\left\|e_m^{\mathcal{L}_Y}W\right\|_{u-w}^w\leq \frac{q^m}{1-q}\|W\|_u^w\qquad\forall\;W\in\mathcal{O}_u^3\,.
$$

Proof of [Lemma](#page-7-0) [2.1.](#page-7-0) We look for *Y* such that $X_+ := e^{\mathcal{L}_Y} X$ has the desired properties.

$$
e^{\mathcal{L}_Y} X = e^{\mathcal{L}_Y} (N + P) = N + P + \mathcal{L}_Y N + e_2^{\mathcal{L}_Y} N + e_1^{\mathcal{L}_Y} P
$$

= N + P - \mathcal{L}_N Y + P₊

with $P_+ = e_2^{\mathcal{L}_Y} N + e_1^{\mathcal{L}_Y} P$. We choose *Y* so that the homological equation

$$
\mathcal{L}_NY=P
$$

is satisfied. By [Proposition](#page-9-2) [2.1](#page-9-2), this equation has a solution $Y \in \mathcal{O}^3_{r,\sigma,s-3s_1}$ verifying

$$
q := 3 \|Y\|_{r,\sigma,s-3s_1}^{w*} \le 3 \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{r,\sigma} \|P\|_{u}^{w} = Q \|P\|_{u}^{w} < 1.
$$

By [Proposition](#page-11-0) [2.2](#page-11-0), the Lie series $e^{\mathcal{L}_Y}$ defines an operator

$$
e^{\mathcal{L}_Y}: W \in \mathcal{O}_{u_*+w_*} \to \mathcal{O}_{u_*}
$$

and its tails $e_m^{\mathcal{L}_Y}$ verify

$$
\begin{aligned} \left\|e_m^{\mathcal{L}_Y} W \right\|_{u_*}^{w_*} &\leq \frac{q^m}{1-q} \|W\|_{u_*+w_*}^{w_*} \\ &\leq \frac{(Q\|P\|_u^w)^m}{1-Q\|P\|_u^w}\|W\|_{u_*+w_*}^{w_*} \end{aligned}
$$

for all $W \in \mathcal{O}_{u_*+w_*}^3$. In particular, $e^{\mathcal{L}_Y}$ is well defined on $\mathcal{O}_u^3 \subset \mathcal{O}_{u_*+w_*}^3$, hence $P_+ \in \mathcal{O}_{u_*}^3$. The bounds on P_+ are obtained as follows. Using the homological equation, one finds

$$
\|e_2^{\mathcal{L}_Y} N\|_{u_*}^{w_*} = \left\| \sum_{k=1}^{\infty} \frac{\mathcal{L}_Y^{k+1} N}{(k+1)!} \right\|_{u_*}^{w_*}
$$

\n
$$
\leq \sum_{k=1}^{\infty} \frac{1}{(k+1)!} \left\| \mathcal{L}_Y^{k+1} N \right\|_{u_*}^{w_*}
$$

\n
$$
= \sum_{k=1}^{\infty} \frac{1}{(k+1)!} \left\| \mathcal{L}_Y^k P \right\|_{u_*}^{w_*}
$$

\n
$$
\leq \sum_{k=1}^{\infty} \frac{1}{k!} \left\| \mathcal{L}_Y^k P \right\|_{u_*}^{w_*}
$$

\n
$$
\leq \frac{Q \left(\|P\|_{u}^{w} \right)^2}{1 - Q \left\| P \right\|_{u}^{w}} \tag{41}
$$

The bound

$$
\|e_1^{\mathcal{L}_Y} P\|_{u_*}^{w_*} \le \frac{Q \left(\|P\|_{u}^w\right)^2}{1 - Q \|P\|_{u}^w}
$$
\n⁽⁴²⁾

is even more straightforward. \square

2.4. Proof of the Normal Form Theorem

The proof of NFT is obtained – following $[44]$ $[44]$ – via iterate applications of the Step Lemma. At the base step, we let^{[7](#page-12-1)}

$$
X = X_0 := N + P_0, \quad w = w_0 := (\rho, \tau, t), \quad u = u_0 := (r, \sigma, s)
$$

with $X_0 = N + P_0 \in \mathcal{O}_{u_0}^3$. We let

$$
Q_0 := 3 \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{r, \sigma}
$$

⁷ With slight abuse of notations, here and during the proof of [Theorem](#page-14-0) [2.2,](#page-14-0) the sub-fix *j* will denote the value of a given quantity at the *j*th step of the iteration.

Conditions ([29\)](#page-8-1)–[\(32](#page-8-4)) are implied by the assumptions [\(20](#page-6-6))–([22\)](#page-6-7). We then conjugate X_0 to $X_1 = N + P_1 \in$ $\mathcal{O}_{u_1}^3$, where

$$
u_1 = (r - 4\rho, \sigma - 4\tau e^{s_2}, s - 5t) =: (r_1, \sigma_1, s_1).
$$

Then we have

$$
\|P_1\|_{u_1}^{w_0} \le 8e^{s_2} Q_0 \left(\|P_0\|_{u_0}^{w_0}\right)^2 \le \frac{1}{2} \|P_0\|_{u_0}^{w_0} \,. \tag{43}
$$

We assume, inductively, that, for some $1 \leq j \leq p$, we have

$$
X_j = N + P_j \in \mathcal{O}_{u_j}^3, \qquad \|P_j\|_{u_j}^{w_0} < 2^{-(j-1)} \|P_1\|_{u_1}^{w_0} \tag{44}
$$

where

$$
u_j = (r_j, \sigma_j, s_j) \tag{45}
$$

with

$$
r_j := r_1 - 4(j-1)\frac{\rho}{p}, \quad \sigma_j := \sigma_1 - 4e^{s_2}(j-1)\frac{\tau}{p}, \quad s_j := s_1 - 5(j-1)\frac{t}{p}.
$$

The case $j = 1$ trivially reduces to the identity $||P_1||_{u_1}^{w_0} = ||P_1||_{u_1}^{w_0}$. We aim to apply [Lemma](#page-7-7) [2.2](#page-7-7) with $u = u_j$ as in (45) (45) and

$$
w = w_1 := \frac{w_0}{p}, \qquad \forall \ 1 \le j \le p.
$$

Conditions (29) (29) – (31) (31) are easily seen to be implied by (20) (20) , (19) (19) , (18) (18) and the first condition in (22) combined with the inequality $p\eta^2 < 1$, implied by the choice of *p*. We check condition [\(32](#page-8-4)). By homogeneity,

$$
|\!|\!| P_j|\!|\!|_{u_j}^{w_1}=p|\!|\!| P_j|\!|\!|_{u_j}^{w_0}\leq p|\!|\!| P_1|\!|\!|_{u_1}^{w_0}\leq 8pe^{s_2}Q_0\left(\|P_0\|_{u_0}^{w_0}\right)^2
$$

whence, using

$$
Q_j = 3 \operatorname{diam}(\mathbb{Y}_{\sigma_j}) \left\| \frac{1}{v} \right\|_{r_j, \sigma_j} \le Q_0
$$

we see that condition (32) (32) is met:

$$
2Q_j \Vert P_j \Vert_{u_j}^{w_1} \le 16p e^{s_2} Q_0^2 \left(\Vert P_0 \Vert_{u_0}^{w_0} \right)^2 < 1.
$$

Then the Iterative Lemma can be applied and we get $X_{j+1} = N + P_{j+1} \in \mathcal{O}_{u_{j+1}}^3$, with

$$
|\!|\!| P_{j+1}|\!|\!|_{u_{j+1}}^{w_1} \leq 8 e^{s_2} Q_j \left(|\!|\!| P_j |\!|\!|_{u_j}^{w_1} \right)^2 \leq 8 e^{s_2} Q_0 \left(|\!|\!| P_j |\!|\!|_{u_j}^{w_1} \right)^2.
$$

Using homogeneity again to the extreme sides of this inequality and combining it with (44) (44) , (43) (43) and (22) (22) , we get

$$
\|P_{j+1}\|_{u_{j+1}}^{w_0} \le 8pe^{s_2}Q_0 \left(\|P_j\|_{u_j}^{w_0}\right)^2 \le 8pe^{s_2}Q_0 \|P_1\|_{u_1}^{w_0} \|P_j\|_{u_j}^{w_0}
$$

$$
\le 64pe^{2s_2}Q_0^2 \left(\|P_0\|_{u_0}^{w_0}\right)^2 \|P_j\|_{u_j}^{w_0} \le \frac{1}{2} \|P_j\|_{u_j}^{w_0}
$$

$$
< 2^{-j} \|P_1\|_{u_1}^{w_0}.
$$

After *p* iterations,

$$
||P_{p+1}||_{u_{p+1}}^{w_0} < 2^{-p}||P_1||_{u_1}^{w_0} < 2^{-(p+1)}||P_0||_{u_0}^{w_0}
$$

so we can take $X_{\star} = X_{p+1}, P_{\star} = P_{p+1}, u_{\star} = u_{p+1}.$ \Box

2.5. A generalisation when the dependence on ψ is smooth

Definition 2.1. We denote \mathcal{C}^3_{u,ℓ_*} , with $u = (r, \sigma)$, the class of vector-fields

$$
(\mathbf{I}, y, \psi) : \ \mathbb{P}_u := \mathbb{I}_r \times \mathbb{Y}_\sigma \times \mathbb{T} \to X = (X_1, X_2, X_3) \in \mathbb{C}^3 \qquad u = (r, \sigma)
$$

where each $X_i \in \mathcal{C}_{u,\ell_*}$, meaning that X_i is C^{ℓ_*} in $\mathbb{P} := \mathbb{I} \times \mathbb{Y} \times \mathbb{T}$, $X_i(\cdot,\cdot,\psi)$ is holomorphic in $\mathbb{I}_r \times \mathbb{Y}_{\sigma}$ for each fixed ψ in \mathbb{T} .

In this section we generalise [Theorem](#page-6-0) [2.1](#page-6-0) to the case that $X \in C^3_{u,\ell_*}$. We use techniques going back to J. Nash and J. Moser [\[35](#page-42-28)[–37](#page-42-29)].

First of all, we need a different definition of norms^{[8](#page-14-2)} and, especially, *smoothing* operators.

1. Generalised weighted norms. We let

$$
\|X\|_{u,\ell}^w := \sum_i w_i^{-1} \|X_i\|_{u,\ell} \,, \qquad 0 \le \ell \le \ell_* \tag{46}
$$

where $w = (w_1, w_2, w_3) \in \mathbb{R}^3_+$ where, if $f : \mathbb{P}_{r,\sigma} := \mathbb{I}_r \times \mathbb{Y}_{\sigma} \times \mathbb{T} \to \mathbb{C}$, then

$$
||f||_{u} := \sup_{\mathbb{I}_r \times \mathbb{Y}_{\sigma} \times \mathbb{T}} |f| , \quad ||f||_{u,\ell} := \max_{0 \le j \le \ell} \{ ||\partial_{\varphi}^j f||_{u} \} \qquad u = (r, \sigma).
$$
 (47)

Clearly, the class $\mathcal{O}^3_{r,\sigma,s}$ defined in Section [2.1](#page-5-0) is a proper subset of \mathcal{C}^3_{u,ℓ_*}

Observe that the norms (46) (46) still verify monotonicity and homogeneity in (16) (16) (16) and (17) (17) .

2. Smoothing. We call *smoothing* a family of operators

$$
T_K: \t f \in \mathcal{C}_{u,\ell_*} \to T_K f \in \mathcal{C}_{u,\ell_*} , \quad K \in \mathbb{N}
$$

verifying the following. Let $R_K := I - T_K$. There exist $c_0 > 0$, $\delta \ge 0$ such that for all $f \in \mathcal{C}_{u,\ell_*}$, for all K, $0 \leq j \leq \ell \leq \ell_*$

- ∥*T^K f*∥*u,ℓ* ≤ *c*⁰ *K*(*ℓ*−*j*+*δ*)∥*f*∥*u,j* ∀ 0 ≤ *ℓ* ≤ *ℓ*[∗]
- ∥*R^K f*∥*u,j* ≤ *c*⁰ *K*[−](*ℓ*−*j*−*δ*)∥*f*∥*u,ℓ* ∀ 0 ≤ *ℓ* ≤ *ℓ*[∗]

As an example, as suggested in [[3\]](#page-42-0), one can take

$$
T_K f(\mathbf{I}, y, \psi) := \sum_{k \in \mathbb{Z}, |k|_1 \le K} f_k(\mathbf{I}, y) e^{\mathrm{i} k \psi}
$$

which, with the definitions [\(46](#page-14-3))–([47\)](#page-14-4), verifies the inequalities above with $\delta = 2$.

We name Generalised Normal Form Theorem (GNFT) the following

Theorem 2.2 (GNFT). Let $u = (r, \sigma)$; $X = N + P \in C^3_{u, \ell_*}$, $p, \ell, K \in \natural$ and let $w_K = \left(\rho, \tau, \frac{1}{c_0 K^{1+\delta}}\right)$ $\Big) \in \mathbb{R}^3_+$ and assume that for some $s_1, s_2 \in \mathbb{R}_+$, the following inequalities are satisfied. Put

$$
Q := 3 e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{r,\sigma} \tag{48}
$$

then assume:

$$
0 < \rho < \frac{r}{8}, \quad 0 < \tau < e^{-s_2} \frac{\sigma}{8} \tag{49}
$$

⁸ The series in [\(15\)](#page-5-1) is in general diverging when $f \in \mathcal{C}_{u,\ell_*}$.

and

$$
\chi := \max \left\{ \frac{\text{diam}(\mathbb{Y}_{\sigma})}{s_1} \left\| \frac{\omega}{v} \right\|_{r,\sigma}, \frac{\text{diam}(\mathbb{Y}_{\sigma})}{s_2} \left\| \frac{\partial_y v}{v} \right\|_{r,\sigma} \right\} \le 1 \tag{50}
$$

$$
\theta_1 := 2 e^{s_1 + s_2} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_y \omega}{v} \right\|_{r, \sigma} c_0 K^{1 + \delta} \tau \le 1
$$

\n
$$
\theta_2 := 4 e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial v}{v} \right\|_{r, \sigma} \frac{\rho}{\tau} \le 1
$$

\n
$$
\theta_3 := 8 e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial v}{v} \right\|_{r, \sigma} c_0 K^{1 + \delta} \rho \le 1
$$
\n(51)

$$
\eta := 2^4 e^{s_2} Q \mathbb{I} P \mathbb{I}^w_u K < \frac{1}{\sqrt{p}} \,. \tag{52}
$$

Then, with

$$
u_* = (r_\star, \sigma_\star), \quad r_\star := r - 8\rho, \quad \sigma_\star = \sigma - 8e^{s_2}\tau
$$

there exists a real-analytic change of coordinates Φ_{\star} such that $X_{\star} := \Phi_{\star} X \in C^3_{u_{\star}, \ell_{\star}}$ and $X_{\star} = N + P_{\star}$, with

$$
|\!|\!| P_\star |\!|\!|_{u_\star}^{w_K}\leq \max\left\{2^{-(p+1)}|\!|\!| P|\!|\!|_{u}^{w_K}\,,\,\,2c_0\,K^{-\ell+\delta}|\!|\!| P|\!|\!|_{u,\ell}^{w_K}\right\} \qquad \forall\;0\leq \ell\leq \ell_*\,.
$$

The result generalising [Lemma](#page-7-0) [2.1](#page-7-0) is

Lemma 2.6. Let $X = N + P \in C^3_{u, \ell_*},$ with $u = (r, \sigma)$, N as in [\(36](#page-9-0)), $\ell, K \in \mathbb{N}$. Assume ([24](#page-7-1)) and that P is *so small that*

$$
Q\|P\|_{u}^{w_K} < 1 \qquad Q := 3e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{r,\sigma}, \quad w_K = \left(\rho, \tau, \frac{1}{c_0 K^{1+\delta}}\right) \tag{53}
$$

Let ρ∗*, τ*[∗] *be defined via*

$$
\frac{1}{\rho_{*}} = \frac{1}{\rho} - \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_{\mathcal{I}} v}{v} \right\|_{r,\sigma} \left(\frac{e^{s_{1}}}{\tau} - e^{2s_{1}+s_{2}} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_{y} \omega}{v} \right\|_{r,\sigma} c_{0} K^{1+\delta} \right)
$$

$$
- \operatorname{diam}(\mathbb{Y}_{\sigma}) \left(e^{s_{1}} \left\| \frac{\partial_{\mathcal{I}} \omega}{v} \right\|_{r,\sigma} + e^{2s_{1}+s_{2}} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_{\mathcal{I}} v}{v} \right\|_{r,\sigma} \left\| \frac{\partial_{y} \omega}{v} \right\|_{r,\sigma} \right) c_{0} K^{1+\delta}
$$

$$
\frac{1}{\tau_{*}} = \frac{e^{-s_{2}}}{\tau} - e^{s_{1}} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_{y} \omega}{v} \right\|_{r,\sigma} c_{0} K^{1+\delta}
$$
(54)

assume

$$
\hat{w}_* = (\rho_*, \tau_*) \in \mathbb{R}_+^2
$$
, $u_* = (r - 2\rho_*, \sigma - 2\tau_*) \in \mathbb{R}_+^2$

and put

$$
w_{*,K} := \left(\hat{w}_*, \frac{1}{c_0 K^{1+\delta}}\right)
$$

Then there exists $Y \in T_K C^3_{u_* + \hat{w}_*, \ell_*}$ such that $X_+ := e^{\mathcal{L}_Y} X \in C^3_{u_*, \ell_*}$ and $X_+ = N + P_+$, with

$$
\|P_{+}\|_{u_{*}}^{w_{*,K}} \leq \frac{2Q\left(\|P\|_{u}^{w_{K}}\right)^{2}}{1 - Q\|P\|_{u}^{w_{K}}} + cK^{-\ell+\delta}\|P\|_{u,\ell}^{w_{K}} \qquad \forall \ 0 \leq \ell \leq \ell_{*} \tag{55}
$$

.

The simplified form of [Lemma](#page-15-0) [2.6,](#page-15-0) corresponding to [Lemma](#page-7-7) [2.2](#page-7-7), is

Lemma 2.7 (*Generalised Step Lemma*)**.** *Assume* ([24\)](#page-7-1) *and replace* ([53\)](#page-15-1) *and* [\(54](#page-15-2)) *with*

$$
2 e^{s_1+s_2} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_y \omega}{v} \right\|_{r,\sigma} c_0 K^{1+\delta} \tau \le 1
$$

$$
4 e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_1 v}{v} \right\|_{r,\sigma} \frac{\rho}{\tau} \le 1
$$

$$
8 e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_1 \omega}{v} \right\|_{r,\sigma} c_0 K^{1+\delta} \rho \le 1
$$
 (56)

$$
0 < \rho < \frac{r}{4}, \quad 0 < \tau < \frac{\sigma}{4} e^{-s_2} \tag{57}
$$

$$
2Q\|P\|_u^{w_K} < 1\tag{58}
$$

then $X_+ = N + P_+ \in C^3_{u_+,\ell_*}$ and

$$
||P_{+}||_{u_{+}}^{w_{K}} \le 8e^{s_{2}}Q(||P||_{u}^{w_{K}})^{2} + c K^{-\ell+\delta}||P||_{u,\ell}^{w_{K}}
$$
\n(59)

with

$$
u_+ := (r - 4\rho, \sigma - 4\tau e^{s_2}).
$$

Proof. The inequalities in (56) (56) guarantee

$$
\frac{1}{\rho_*}\geq \frac{1}{2\rho}\,,\quad \frac{1}{\tau_*}\geq \frac{e^{-s_2}}{2\tau}
$$

whence

$$
w_{*,K} < 2e^{s_2}w_K
$$
, $u_* \ge u_+ > 0$.

Then [\(59](#page-16-1)) is implied by ([55\)](#page-15-3), monotonicity and homogeneity and the inequality in ([58\)](#page-16-2). \Box

Let now $\mathcal{F}_{v,\omega}$ and $\mathcal{G}_{v,\omega}$ be as in ([35\)](#page-8-6). First of all, observe that $\mathcal{F}_{v,\omega}$, $\mathcal{G}_{v,\omega}$ take $T_K\mathcal{C}_{u,\ell_*}$ to itself. Moreover, generalising [Lemma](#page-9-1) [2.3,](#page-9-1)

Lemma 2.8. *If inequalities* ([24\)](#page-7-1) *hold, then*

$$
\mathcal{F}_{v,\omega}\,,\ \mathcal{G}_{v,\omega}:\quad \mathcal{C}_{u,\ell_*}\to \mathcal{C}_{u,\ell_*}
$$

and

$$
\|\mathcal{F}_{v,\omega}[g]\|_{r,\sigma} \le e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\|\frac{g}{v}\right\|_{r,\sigma}, \quad \|\mathcal{G}_{v,\omega}[g]\|_{r,\sigma} \le e^{s_1+s_2} \text{diam}(\mathbb{Y}_{\sigma}) \left\|\frac{g}{v}\right\|_{r,\sigma}.
$$

Proposition 2.3. *Let*

$$
N = (0, v(1, y), \omega(1, y)), \qquad Z = (Z_1(1, y, \psi), Z_2(1, y, \psi), Z_3(1, y, \psi))
$$

belong to C_{u,ℓ_*}^3 and assume [\(24\)](#page-7-1). Then the "homological equation"

 $\mathcal{L}_N[Y] = Z$

has a solution $Y \in \mathcal{C}_{u,\ell_*}$ verifying

$$
\|Y\|_{u}^{\rho_*,\tau_*,t_*} \le e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\|\frac{1}{v}\right\|_{u} \|Z\|_{u}^{\rho,\tau,t} \quad u = (r,\sigma)
$$
\n
$$
(60)
$$

with ρ∗*, τ*∗*, t*[∗] *defined via*

$$
\frac{1}{\rho_*} = \frac{1}{\rho} - \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{r}^v}{v} \right\|_u \left(\frac{e^{s_1}}{\tau} - e^{2s_1 + s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{y}^{\omega}}{v} \right\|_u \frac{1}{t} \right) \n- \operatorname{diam}(\mathbb{Y}_{\sigma}) \left(e^{s_1} \left\| \frac{\partial \mathbf{r}^{\omega}}{v} \right\|_u + e^{2s_1 + s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{r}^{\omega}}{v} \right\|_u \left\| \frac{\partial \mathbf{y}^{\omega}}{v} \right\|_u \right) \frac{1}{t} \n\frac{1}{\tau_*} = \frac{e^{-s_2}}{\tau} - e^{s_1} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial \mathbf{y}^{\omega}}{v} \right\|_u \frac{1}{t} \n t_* = t
$$
\n(61)

and provided that

$$
(\rho_*, \tau_*) \in \mathbb{R}_+^2. \tag{62}
$$

In particular, if $Z \in T_K\mathcal{C}^3_{u,\ell_*}$ *for some* $K \in \mathbb{N}$ *, then also* $Y \in T_K\mathcal{C}^3_{u,\ell_*}$ *.*

Proof. The solution ([40\)](#page-10-1) satisfies

$$
||Y_1||_u \leq e^{s_1} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_u ||Z_1||_u
$$

\n
$$
||Y_2||_u \leq e^{s_1+s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_u ||Z_2||_u + e^{2s_1+s_2} \operatorname{diam}(\mathbb{Y}_{\sigma})^2 \left\| \frac{1}{v} \right\|_u \left\| \frac{\partial_1 v}{v} \right\|_u ||Z_1||_u
$$

\n
$$
||Y_3||_u \leq e^{s_1} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_u ||Z_3||_u + e^{2s_1+s_2} \operatorname{diam}(\mathbb{Y}_{\sigma})^2 \left\| \frac{1}{v} \right\|_u \left\| \frac{\partial_2 \omega}{v} \right\|_u ||Z_2||_u
$$

\n
$$
+ \operatorname{diam}(\mathbb{Y}_{\sigma})^2 \left\| \frac{1}{v} \right\|_u \left(e^{2s_1} \left\| \frac{\partial_1 \omega}{v} \right\|_u + e^{3s_1+s_2} \operatorname{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_1 v}{v} \right\|_u \left\| \frac{\partial_2 \omega}{v} \right\|_u \right) ||Z_1||_u
$$

Multiplying the inequalities above by ρ_*^{-1} , τ_*^{-1} , t_*^{-1} respectively and taking the sum, we find ([60\)](#page-16-3), with

$$
\frac{1}{\rho} = \frac{1}{\rho_{*}} + e^{s_{1}+s_{2}} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_{l} v}{v} \right\|_{u} \frac{1}{\tau_{*}} \n+ \text{diam}(\mathbb{Y}_{\sigma}) \left(e^{s_{1}} \left\| \frac{\partial_{l} \omega}{v} \right\|_{u} + e^{2s_{1}+s_{2}} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_{l} v}{v} \right\|_{u} \left\| \frac{\partial_{y} \omega}{v} \right\|_{u} \right) \frac{1}{t_{*}} \n\frac{1}{\tau_{*}} = \frac{e^{s_{2}}}{\tau_{*}} + e^{s_{1}+s_{2}} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{\partial_{y} \omega}{v} \right\|_{u} \frac{1}{t_{*}} \n\frac{1}{t} = \frac{1}{t_{*}}.
$$

We recognise that, under conditions [\(62](#page-17-0)), ρ_* , τ_* , t_* in [\(61](#page-17-1)) solve the equations above. Observe that if $Z \in T_K C^3_{u,\ell_*}$, then also $Y \in T_K C^3_{u,\ell_*}$, as $\mathcal{F}_{v,\omega}$, $\mathcal{G}_{v,\omega}$ do so. \Box

Lemma 2.9. Let $u_0 \ge u > w \in \mathbb{R}^2_+ \times \{0\}$; $Y \in T_K C^3_{u_0, \ell_*}$, $W \in T_K C^3_{u, \ell_*}$. Put $w_K := \left(w_1, w_2, \frac{1}{c_0 K^{1+\delta_*}}\right)$) *. Then* $|\!|\!| \mathcal{L}_Y[W] |\!|\!|_{u-w}^{u_0-u+w_K} \leq |\!|\!| Y|\!|\!|_{u-w}^{w_K} |\!|\!| W |\!|\!|_{u}^{u_0-u+w_K} + |\!|\!| W|\!|\!|_{u-w}^{u_0-u+w_K} |\!|\!| Y|\!|\!|_{u_0}^{u_0-u+w_K} \,.$

Proof. By Cauchy inequalities, the definitions (46) (46) – (47) (47) and the smoothing properties,

$$
||(J_WY)_i||_{u-w} \le ||\partial_1 W_i||_{u-w} ||Y_1||_{u-w} + ||\partial_y W_i||_{u-w} ||Y_2||_{u-w} + ||\partial_\psi W_i||_{u-w} ||Y_3||_{u-w}
$$

\n
$$
\le w_1^{-1} ||W_i||_u ||Y_1||_{u-w} + w_2^{-1} ||W_i||_u ||Y_2||_{u-w} + ||W_i||_{u,1} ||Y_3||_{u-w}
$$

\n
$$
\le w_1^{-1} ||W_i||_u ||Y_1||_{u-w} + w_2^{-1} ||W_i||_u ||Y_2||_{u-w} + c_0 K^{1+\delta} ||W_i||_u ||Y_3||_{u-w}
$$

\n
$$
= ||Y||_{u-w}^{w} ||W_i||_u
$$

Similarly,

$$
||(J_YW)_i||_{u-w} \le ||W||_{u-w}^{u_0-u+w_K} ||Y_i||_{u_0}.
$$

Taking the $u_0 - u + w_K$ -weighted norms, the thesis follows. \Box

Lemma 2.10. Let
$$
0 < w < u \in \mathbb{R}_+^2 \times \{0\}
$$
, $w_K := \left(w_1, w_2, \frac{1}{c_0 K^{1+\delta}}\right)$; $Y \in T_K C_{u+w,\ell_*}^3$, $W \in T_K C_{u,\ell_*}^3$. Then

$$
\|\mathcal{L}_Y^n[W]\|_{u-w}^{w_K} \leq 3^n n! \left(\|Y\|_{u+w}^{w_K}\right)^n \|W\|_{u-w}^{w_K}.
$$

Proof. The proof copies the one of [Lemma](#page-10-0) [2.5,](#page-11-1) up to invoke Lemma [2.9](#page-17-2) at the place of Lemma [2.4](#page-10-0) and hence replace the *w*'s "up" with w_K . \square

Proposition 2.4. Let
$$
0 < w < u \in \mathbb{R}_+^2 \times \{0\}
$$
, $w_K := \left(w_1, w_2, \frac{1}{c_0 K^{1+\delta}}\right)$, $Y \in T_K C^3_{u+w, \ell_*}$,
 $q := 3 \parallel Y \parallel_{u+w}^{w_K} < 1$.

Then the Lie series $e^{\mathcal{L}_Y}$ *defines an operator*

$$
e^{\mathcal{L}_Y} : T_K \mathcal{C}^3_{u,\ell_*} \to T_K \mathcal{C}^3_{u-w,\ell_*}
$$

and its tails

$$
e_m^{\mathcal{L}_Y} = \sum_{k \ge m} \frac{\mathcal{L}_Y^n}{k!}
$$

verify

$$
\left\|e_m^{\mathcal{L}_Y}W\right\|_{u-w}^{w_K}\leq \frac{q^m}{1-q}\|W\|_u^{w_K}\qquad \forall\; W\in T_K\mathcal{C}^3_{u,\ell_*}\,.
$$

Proof of [Lemma](#page-15-0) [2.6.](#page-15-0) All the remarks before [Lemma](#page-9-1) [2.3](#page-9-1) continue holding also in this case, except for the fact that, differently from [Lemma](#page-7-0) [2.1](#page-7-0) here we need a "ultraviolet cut-off" of the perturbing term. Namely, we split

$$
e^{\mathcal{L}_Y} X = e^{\mathcal{L}_Y} (N + P) = N + P + \mathcal{L}_Y N + e_2^{\mathcal{L}_Y} N + e_1^{\mathcal{L}_Y} P
$$

= N + T_KP - \mathcal{L}_N Y + P₊

with $P_+ = e_2^{\mathcal{L}_Y} N + e_1^{\mathcal{L}_Y} P + R_K P$. We choose *Y* so that the homological equation

$$
\mathcal{L}_NY = T_KP
$$

is satisfied. By [Proposition](#page-16-4) [2.3](#page-16-4), this equation has a solution $Y \in T_K C^3_{u, \ell_*}$ verifying

$$
q := 3 {|\!|\!|} Y{|\!|\!|}^{w_*}_u \leq 3 e^{s_1} \textnormal{diam}(\mathbb{Y}_\sigma) \left\| \frac{1}{v} \right\|_u \|P\|^{w_K}_u = Q {|\!|\!|} P{|\!|\!|}^{w_K}_u < 1.
$$

with $w_* = (\rho_*, \tau_*, t_*)$ as in [\(61](#page-17-1)). As $t_* = t = \frac{1}{c_0 K^{1+\delta}}$, We let

$$
w_{*,K} := w_* , \quad \hat{w}_* := (\rho_*, \tau_*)
$$

with (ρ_*, τ_*) as in ([54\)](#page-15-2). By [Proposition](#page-18-0) [2.4,](#page-18-0) the Lie series $e^{\mathcal{L}_Y}$ defines an operator

$$
e^{\mathcal{L}_Y}: W \in T_K \mathcal{C}_{u_* + \hat{w}_*, \ell_*} \to T_K \mathcal{C}_{u_*, \ell_*}
$$

and its tails $e_m^{\mathcal{L}_Y}$ verify

$$
\left\| \t\t\t\te^{\mathcal{L}_Y}_m W \right\|_{u_*}^{w_{*,K}} \leq \frac{\left(Q\|P\|_{u}^{w_K}\right)^m}{1-Q\|P\|_{u}^{w_K}} \|\!W\|_{u_*+\hat{w}_*}^{w_{*,K}}
$$

for all $W \in T_K\mathcal{C}^3_{u_*+\hat{w}_*,\ell_*}$. In particular, $e^{\mathcal{L}_Y}$ is well defined on $T_K\mathcal{C}^3_{u_*,\ell_*} \subset T_K\mathcal{C}^3_{u_*+\hat{w}_*,\ell_*}$, hence $P_+ \in \mathcal{C}^3_{u_*,\ell_*}$. The bounds on P_+ are obtained as follows. The terms $||e_2^{\mathcal{L}_Y}N||_{u*}^{w_{*,K}}$ and $||e_1^{\mathcal{L}_Y}P||_{u*}^{w_{*,K}}$ are treated quite similarly as (41) (41) and (42) (42) :

$$
{|\!|\!|} e_2^{\mathcal{L}_Y} N {|\!|\!|}^{w_{*,K}}_{u_*} \leq \frac {Q\left({|\!|\!|} P {|\!|\!|}^{w_K}_u \right)^2}{1-Q\,{|\!|\!|} P {|\!|\!|}^{w_K}_u}, \quad {|\!|\!|} e_1^{\mathcal{L}_Y} P {|\!|\!|}^{w_{*,K}}_{u_*} \leq \frac {Q\left({|\!|\!|} P {|\!|\!|}^{w_K}_u \right)^2}{1-Q\,{|\!|\!|} P {|\!|\!|}^{w_K}_u}
$$

Moreover, here we have the term $R_K P$, which is obviously bounded as

$$
|\!|\!| R_KP|\!|\!|\!|_{u_*}^{w_*,K}\leq c\, K^{-\ell+\delta} |\!|\!| P|\!|\!|_{u_*,\ell}^{w_*,K}\leq c\, K^{-\ell+\delta} |\!|\!| P|\!|\!|_{u,\ell}^{w_K}\,. \ \ \, \Box
$$

We are finally ready for the

Proof of [Theorem](#page-14-0) [2.2.](#page-14-0) Analogously as in the proof of NFT, we proceed by iterate applications of the Generalised Step Lemma. At the base step, we let

$$
X = X_0 := N + P_0
$$
, $w_0 := w_{0,K} := \left(\rho, \tau, \frac{1}{c_0 K^{1+\delta}}\right)$, $u_0 := (r, \sigma)$

with $X_0 = N + P_0 \in C^3_{u_0, \ell_*}$. We let

$$
Q_0 := 3 e^{s_1} \text{diam}(\mathbb{Y}_{\sigma}) \left\| \frac{1}{v} \right\|_{u_0}
$$

Conditions ([56\)](#page-16-0)–[\(58](#page-16-2)) are implied by the assumptions [\(48](#page-14-5))–([52\)](#page-15-4). We then conjugate X_0 to $X_1 = N + P_1 \in$ $\mathcal{C}^3_{u_1,\ell_*}$, where

$$
u_1 = (r - 4\rho, \sigma - 4\tau e^{s_2}) =: (r_1, \sigma_1).
$$

Then we have

$$
||P_1||_{u_1}^{w_0} \le 8e^{s_2}Q_0 \left(||P_0||_{u_0}^{w_0}\right)^2 + c_0 K^{-\ell+\delta} ||P_0||_{u_0,\ell}^{w_0}.
$$

If $8e^{s_2}Q_0 \left(\|P_0\|_{u_0}^{w_0}\right)^2 \leq c_0 K^{-\ell+\delta} \|P_0\|_{u_0,\ell}^{w_0}$, the proof finishes here. So, we assume the opposite inequality, which gives

$$
\|P_1\|_{u_1}^{w_0} \le 16e^{s_2} Q_0 \left(\|P_0\|_{u_0}^{w_0}\right)^2 \le \frac{1}{2} \|P_0\|_{u_0}^{w_0} \,. \tag{63}
$$

We assume, inductively, that, for some $1 \leq j \leq p$, we have

$$
X_j = N + P_j \in C_{u_j, \ell_*}^3, \qquad \|P_j\|_{u_j}^{w_0} < 2^{-(j-1)} \|P_1\|_{u_1}^{w_0} \tag{64}
$$

where

$$
u_j = (r_j, \sigma_j) \tag{65}
$$

with

$$
r_j := r_1 - 4(j-1)\frac{\rho}{p}, \quad \sigma_j := \sigma_1 - 4e^{s_2}(j-1)\frac{\tau}{p}.
$$

The case $j = 1$ is trivially true because it is the identity $||P_1||_{u_1}^{w_0} = ||P_1||_{u_1}^{w_0}$. We aim to apply [Lemma](#page-15-5) [2.7](#page-15-5) with $u = u_j$ as in ([65\)](#page-19-0) and

$$
w = w_1 := \frac{w_0}{p}, \qquad \forall \ 1 \le j \le p.
$$

Conditions ([56\)](#page-16-0) and ([57\)](#page-16-5) correspond to [\(50\)](#page-15-6)–([51\)](#page-15-7), while [\(58](#page-16-2)) is implied by [\(52](#page-15-4)). We check condition ([58\)](#page-16-2). By homogeneity,

$$
|\!|\!| P_j |\!|\!|_{u_j}^{w_1} = p |\!|\!| P_j |\!|\!|_{u_j}^{w_0} \le p |\!|\!| P_1 |\!|\!|_{u_1}^{w_0} \le 16pe^{s_2} Q_0 \left(|\!|\!| P_0 |\!|\!|_{u_0}^{w_0} \right)^2
$$

whence, using

$$
Q_j = 3 \operatorname{diam}(\mathbb{Y}_{\sigma_j}) \left\| \frac{1}{v} \right\|_{r_j, \sigma_j} \le Q_0
$$

we see that condition ([32\)](#page-8-4) is met:

$$
2Q_j \Vert P_j \Vert_{u_j}^{w_1} \le 32 \, p e^{s_2} Q_0^2 \left(\Vert P_0 \Vert_{u_0}^{w_0} \right)^2 < 1 \, .
$$

Then the Iterative Lemma can be applied and we get $X_{j+1} = N + P_{j+1} \in C^3_{u_{j+1},\ell_*}$, with

$$
|\!|\!| P_{j+1}|\!|\!|_{u_{j+1}}^{w_1} \leq 8e^{s_2} Q_j \left(|\!|\!| P_j |\!|\!|_{u_j}^{w_1} \right)^2 \leq 8e^{s_2} Q_0 \left(|\!|\!| P_j |\!|\!|_{u_j}^{w_1} \right)^2
$$

Using homogeneity again to the extreme sides of this inequality and combining it with (64) (64) , (63) (63) and (52) (52) , we get

$$
\|P_{j+1}\|_{u_{j+1}}^{w_0} \le 8pe^{s_2}Q_0 \left(\|P_j\|_{u_j}^{w_0}\right)^2 \le 8pe^{s_2}Q_0 \|P_1\|_{u_1}^{w_0} \|P_j\|_{u_j}^{w_0}
$$

$$
\le 128 pe^{2s_2}Q_0^2 \left(\|P_0\|_{u_0}^{w_0}\right)^2 \|P_j\|_{u_j}^{w_0} \le \frac{1}{2} \|P_j\|_{u_j}^{w_0}
$$

$$
< 2^{-j} \|P_1\|_{u_1}^{w_0}.
$$

After *p* iterations,

 $\|P_{p+1}\|^{w_0}_{u_{p+1}} < 2^{-p} \|P_1\|^{w_0}_{u_1} < 2^{-(p+1)} \|P_0\|^{w_0}_{u_0}$

so we can take $X_{\star} = X_{p+1}, P_{\star} = P_{p+1}, u_{\star} = u_{p+1}.$ \Box

3. Symplectic tools

In this section we describe various sets of canonical coordinates that are needed to our application. We remark that during the proof of [Theorem](#page-4-4) [B](#page-4-4), we shall not use any of such sets completely, but rather a "mix" of action–angle and regularising coordinates, described below.

3.1. Starting coordinates

We begin with the coordinates

$$
\begin{cases}\nC = ||\mathbf{x} \times \mathbf{y} + \mathbf{x}' \times \mathbf{y}'|| \\
G = ||\mathbf{x} \times \mathbf{y}|| \\
R = \frac{\mathbf{y}' \cdot \mathbf{x}'}{||\mathbf{x}'||} \\
A = \sqrt{a}\n\end{cases}\n\qquad\n\begin{cases}\n\gamma = \alpha_{\mathbf{k}}(\mathbf{i}, \mathbf{x}') + \frac{\pi}{2} \\
g = \alpha_{\mathbf{k}}(\mathbf{x}', \mathbf{P}) + \pi \\
r = ||\mathbf{x}'|| \\
\ell = \text{mean anomaly of } \mathbf{x} \text{ in } \mathbb{E}\n\end{cases}\n\tag{66}
$$

where:

- \bullet **i** $=$ $\sqrt{2}$ \mathbf{I} 1 $\boldsymbol{0}$ $\boldsymbol{0}$ ⎞ $\Big\}$, $\mathbf{j} =$ $\sqrt{ }$ $\sqrt{2}$ 0 1 0 ⎞ is a orthonormal frame in $\mathbb{R}^2 \times \{0\}$ and $\mathbf{k} = \mathbf{i} \times \mathbf{j}$ (" \times " denoting, as usual, the "skew-product");
- after fixing a set of values of (y, x) where the Kepler Hamiltonian ([7\)](#page-2-1) takes negative values, E denotes the elliptic orbit with initial values $(\mathbf{y}_0, \mathbf{x}_0)$ in such set;
- *a* is the semi-major axis of **E**;
- **P**, with ∥**P**∥ = 1, the direction of the perihelion of **E**, assuming **E** is not a circle;
- ℓ is the mean anomaly of **x** on \mathbb{E} , defined, mod 2π , as the area of the elliptic sector spanned from **P** to **x**, normalised to 2π ;
- $\bullet \alpha_{\bf w}({\bf u},{\bf v})$ is the oriented angle from **u** to **v** relatively to the positive orientation established by **w**, if **u**, **v** and **w** ∈ $\mathbb{R}^3 \setminus \{0\}$, with **u**, **v** ⊥ **w**.

The canonical^{[9](#page-21-0)} character of the coordinates (66) (66) has been discussed, in a more general setting, in [[40\]](#page-43-3). The shifts $\frac{\pi}{2}$ and π in [\(66](#page-20-0)) serve only to be consistent with the spatial coordinates of [\[40](#page-43-3)].

3.2. Energy–time coordinates

We now describe the "energy-time" change of coordinates

$$
\phi_{\rm et}: \qquad (\mathcal{R}, \mathcal{E}, \mathbf{r}, \tau) \to (\mathbf{R}, \mathbf{G}, \mathbf{r}, \mathbf{g}) = (\mathcal{R} + \rho(\mathcal{E}, \mathbf{r}, \tau), \ \mathbf{G}(\mathcal{E}, \mathbf{r}, \tau), \ \mathbf{r}, \ \widetilde{\mathbf{g}}(\mathcal{E}, \mathbf{r}, \tau)) \tag{67}
$$

which integrates the function $E(r, G, g)$ in ([12](#page-3-4)), where $\mathcal E$ ("energy") denotes the generic level-set of E, while τ is its conjugated ("time") coordinate. The domain of the coordinates [\(67\)](#page-21-1) is

$$
\mathcal{R} \in \mathbb{R}, \quad 0 \le r < 2, \quad -r < \mathcal{E} < 1 + \frac{r^2}{4}, \quad \tau \in \mathbb{R}, \quad \mathcal{E} \notin \{r, 1\}.
$$
\n
$$
\tag{68}
$$

The extremal values of $\mathcal E$ are taken to be the minimum and the maximum of the function E for $0 \le r < 2$. The values r and 1 have been excluded because they correspond, in the (g, G) -plane, to the curves $\mathcal{S}_0(r)$ and $S_1(r)$ in [Fig.](#page-4-0) [1,](#page-4-0) where periodic motions do not exist.

The functions $\widetilde{G}(\mathcal{E}, r, \cdot)$, $\widetilde{g}(\mathcal{E}, r, \cdot)$ and $\rho(\mathcal{E}, r, \cdot)$ appearing in ([67\)](#page-21-1) are, respectively, $2\tau_p$ periodic, $2\tau_p$ periodic, $2\tau_{\rm p}$ quasi-periodic, meaning that they satisfy

$$
\mathcal{P}_{er}: \begin{cases} \widetilde{\mathcal{G}}(\mathcal{E}, \mathbf{r}, \tau + 2j\tau_{\mathbf{p}}) = \widetilde{\mathcal{G}}(\mathcal{E}, \mathbf{r}, \tau) \\ \widetilde{\mathbf{g}}(\mathcal{E}, \mathbf{r}, \tau + 2j\tau_{\mathbf{p}}) = \widetilde{\mathbf{g}}(\mathcal{E}, \mathbf{r}, \tau) \\ \rho(\mathcal{E}, \mathbf{r}, \tau + 2j\tau_{\mathbf{p}}) = \rho(\mathcal{E}, \mathbf{r}, \tau) + 2j\rho(\mathcal{E}, \mathbf{r}, \tau_{\mathbf{p}}) \end{cases} \forall \tau \in \mathbb{R}, \forall j \in \mathbb{Z}
$$
\n(69)

with $\tau_{\rm p} = \tau_{\rm p}(\mathcal{E}, r)$ the period, defined below. Note that one can find a unique splitting

$$
\rho(\mathcal{E}, \mathbf{r}, \tau) = \mathcal{B}(\mathcal{E}, \mathbf{r})\tau + \widetilde{\rho}(\mathcal{E}, \mathbf{r}, \tau)
$$
\n(70)

such that $\tilde{\rho}(\mathcal{E}, \mathbf{r}, \cdot)$ is $2\tau_{\mathbf{p}}$ -periodic. It is obtained taking

$$
\mathcal{B}(\mathcal{E}, \mathbf{r}) = \frac{\rho(\mathcal{E}, \mathbf{r}, \tau_{\mathbf{p}}(\mathcal{E}, \mathbf{r}))}{\tau_{\mathbf{p}}(\mathcal{E}, \mathbf{r})}, \quad \widetilde{\rho}(\mathcal{E}, \mathbf{r}, \tau) = \rho(\mathcal{E}, \mathbf{r}, \tau) - \frac{\rho(\mathcal{E}, \mathbf{r}, \tau_{\mathbf{p}}(\mathcal{E}, \mathbf{r}))}{\tau_{\mathbf{p}}(\mathcal{E}, \mathbf{r})} \tau.
$$
\n(71)

The transformation [\(67](#page-21-1)) turns to satisfy also the following "half-parity" symmetry:

$$
\mathcal{P}_{1/2}: \quad \begin{cases} \widetilde{\mathcal{G}}(\mathcal{E}, \mathbf{r}, \tau) = \widetilde{\mathcal{G}}(\mathcal{E}, \mathbf{r}, -\tau) \\ \widetilde{\mathcal{g}}(\mathcal{E}, \mathbf{r}, \tau) = 2\pi - \widetilde{\mathcal{g}}(\mathcal{E}, \mathbf{r}, -\tau) \\ \rho(\mathcal{E}, \mathbf{r}, \tau) = -\rho(\mathcal{E}, \mathbf{r}, -\tau) \end{cases} \quad \forall -\tau_{\mathbf{p}} < \tau < \tau_{\mathbf{p}}.
$$
 (72)

In addition, when $-r < \mathcal{E} < r$, one has the following "quarter-parity"

$$
\mathcal{P}_{1/4}: \quad \begin{cases} \widetilde{\mathcal{G}}(\mathcal{E}, \mathbf{r}, \tau) = -\mathcal{G}(\mathcal{E}, \mathbf{r}, \tau_{\mathbf{p}} - \tau) \\ \widetilde{\mathcal{g}}(\mathcal{E}, \mathbf{r}, \tau) = \widetilde{\mathcal{g}}(\mathcal{E}, \mathbf{r}, \tau_{\mathbf{p}} - \tau) \\ \rho(\mathcal{E}, \mathbf{r}, \tau) = \rho(\mathcal{E}, \mathbf{r}, \tau_{\mathbf{p}}) - \rho(\mathcal{E}, \mathbf{r}, \tau_{\mathbf{p}} - \tau) \end{cases} \quad \forall \ 0 \le \tau \le \tau_{\mathbf{p}}.
$$
\n(73)

The change [\(67](#page-21-1)) will be constructed using, as generating function, a solution of the Hamilton–Jacobi equation

$$
E(r, G, \partial_{G} S_{\rm et}) = G^{2} + r\sqrt{1 - G^{2}} \cos(\partial_{G} S_{\rm et}) = \mathcal{E}. \qquad (74)
$$

We choose the solution

$$
S_{\text{et}}^{+}(\mathcal{R}, \mathcal{E}, \mathbf{r}, \mathbf{G}) = \begin{cases} \pi \sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})} - \int_{\mathbf{G}}^{\sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})}} \cos^{-1} \frac{\mathcal{E} - \Gamma^{2}}{\mathbf{r} \sqrt{1 - \Gamma^{2}}} d\Gamma + \mathcal{R}\mathbf{r} & -\mathbf{r} \le \mathcal{E} < 1\\ \pi - \int_{\mathbf{G}}^{\sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})}} \cos^{-1} \frac{\mathcal{E} - \Gamma^{2}}{\mathbf{r} \sqrt{1 - \Gamma^{2}}} d\Gamma + \mathcal{R}\mathbf{r} & 1 \le \mathcal{E} \le 1 + \frac{\mathbf{r}^{2}}{4} \end{cases}
$$

⁹ Namely, the change of coordinate [\(66\)](#page-20-0) satisfies $\sum_{i=1}^{2} (d\mathbf{y}_i \wedge d\mathbf{x}_i + d\mathbf{y}'_i \wedge d\mathbf{x}'_i) = dC \wedge d\gamma + dG \wedge dg + dR \wedge dr + d\Lambda \wedge dl$

where we denote as

$$
\alpha_{\pm}(\mathcal{E}, \mathbf{r}) = \mathcal{E} - \frac{\mathbf{r}^2}{2} \pm \mathbf{r} \sqrt{1 + \frac{\mathbf{r}^2}{4} - \mathcal{E}}
$$
\n(75)

the real roots of

$$
x^{2} - 2\left(\mathcal{E} - \frac{r^{2}}{2}\right)x + \mathcal{E}^{2} - r^{2} = 0
$$
 (76)

Note that the equation in ([76\)](#page-22-0) has always a positive real root all r, \mathcal{E} as in ([68\)](#page-21-2), so $\alpha_+(\mathcal{E}, r)$ is positive. S^+_{et} generates the following equations

$$
\begin{cases}\ng = -\cos^{-1} \frac{\mathcal{E} - G^2}{r\sqrt{1 - G^2}} \\
\tau = + \int_{\widetilde{G}(\mathcal{E}, r, \tau)}^{\sqrt{\alpha + (\mathcal{E}, r)}} \frac{d\Gamma}{\sqrt{(\Gamma^2 - \alpha_-(\mathcal{E}, r)) (\alpha_+(\mathcal{E}, r) - \Gamma^2)}} \\
R = \mathcal{R} - \frac{1}{r} \int_{\widetilde{G}(\mathcal{E}, r, \tau)}^{\sqrt{\alpha_+(\mathcal{E}, r)}} \frac{(\mathcal{E} - \Gamma^2) d\Gamma}{\sqrt{(\Gamma^2 - \alpha_-(\mathcal{E}, r)) (\alpha_+(\mathcal{E}, r) - \Gamma^2)}} =: \mathcal{R} + \rho(\mathcal{E}, r, \tau) \\
r = r\n\end{cases}
$$
\n(77)

The equations for g and r are immediate. We check the equation for τ . Letting, for short, $\sigma(\mathcal{E}, r) := \sqrt{\alpha_+(\mathcal{E}, r)}$, we have $\sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})}$, we have

$$
\tau = \partial_{\mathcal{E}} S_{\text{et}}^{+}(\mathcal{R}, \mathcal{E}, \mathbf{r}, \mathbf{G})
$$
\n
$$
= \begin{cases}\n\pi \partial_{\mathcal{E}} \sigma(\mathcal{E}, \mathbf{r}) - \partial_{\mathcal{E}} \sigma(\mathcal{E}, \mathbf{r}) g_{+}(\mathcal{E}, \mathbf{r}) - \int_{\mathbf{G}}^{\sigma(\mathcal{E}, \mathbf{r})} \partial_{\mathcal{E}} \cos^{-1} \frac{\mathcal{E} - \Gamma^{2}}{\mathbf{r} \sqrt{1 - \Gamma^{2}}} d\Gamma & -\mathbf{r} \leq \mathcal{E} < 1 \\
-\partial_{\mathcal{E}} \sigma(\mathcal{E}, \mathbf{r}) g_{+}(\mathcal{E}, \mathbf{r}) - \int_{\mathbf{G}}^{\sigma(\mathcal{E}, \mathbf{r})} \partial_{\mathcal{E}} \cos^{-1} \frac{\mathcal{E} - \Gamma^{2}}{\mathbf{r} \sqrt{1 - \Gamma^{2}}} d\Gamma & 1 \leq \mathcal{E} \leq 1 + \frac{\mathbf{r}^{2}}{4} \\
= - \int_{\mathbf{G}}^{\sigma(\mathcal{E}, \mathbf{r})} \partial_{\mathcal{E}} \cos^{-1} \frac{\mathcal{E} - \Gamma^{2}}{\mathbf{r} \sqrt{1 - \Gamma^{2}}} d\Gamma & \mathbf{I} \leq \mathcal{E} \leq 1 + \frac{\mathbf{r}^{2}}{4} \\
= \int_{\widetilde{\mathbf{G}}(\mathcal{E}, \mathbf{r}, \tau)}^{\sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})}} \frac{d\Gamma}{\sqrt{(\Gamma^{2} - \alpha_{-}(\mathcal{E}, \mathbf{r})) (\alpha_{+}(\mathcal{E}, \mathbf{r}) - \Gamma^{2})}}\n\end{cases} \tag{78}
$$

where, by (75) (75) ,

$$
g_{+}(\mathcal{E}, r) := \cos^{-1}\frac{\mathcal{E} - \sigma(\mathcal{E}, r)^2}{r\sqrt{1 - \sigma(\mathcal{E}, r)^2}} = \cos^{-1}\text{ sign}\left(\frac{r}{2} - \sqrt{1 + \frac{r^2}{4} - \mathcal{E}}\right) = \begin{cases} \pi & -r \le \mathcal{E} < 1\\ 0 & 1 \le \mathcal{E} \le 1 + \frac{r^2}{4} \end{cases}
$$

Observe that (g_+, σ) are the coordinates of the point where E reaches its maximum on each level set ([Fig.](#page-4-0) [1\)](#page-4-0). The equation for R is analogous.

Eqs. ([77\)](#page-22-2) define the segment of the transformation ([67\)](#page-21-1) with $0 \leq \tau \leq \tau_{\textsc{p}},$ where

$$
\tau_{\mathbf{p}}(\mathcal{E}, \mathbf{r}) := \int_{\beta(\mathcal{E}, \mathbf{r})}^{\sqrt{\alpha + (\mathcal{E}, \mathbf{r})}} \frac{d\Gamma}{\sqrt{(\Gamma^2 - \alpha_{-}(\mathcal{E}, \mathbf{r})) (\alpha_{+}(\mathcal{E}, \mathbf{r}) - \Gamma^2)}}
$$
(79)

is the half-period, with

$$
\beta(\mathcal{E}, \mathbf{r}) = \begin{cases}\n-\sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})} & \text{if } \alpha_{-}(\mathcal{E}, \mathbf{r}) < 0 \\
\sqrt{\alpha_{-}(\mathcal{E}, \mathbf{r})} & \text{if } \alpha_{-}(\mathcal{E}, \mathbf{r}) > 0.\n\end{cases}
$$
\n(80)

The transformation is prolonged to $-\tau_{\rm p} < \tau < 0$ choosing the solution

$$
S_{\mathrm{et}}^{-} := -2\pi \mathbf{G} - S_{\mathrm{et}}^{+}
$$

of ([74\)](#page-21-3). It can be checked that this choice provides the symmetry relation described in ([72\)](#page-21-4). Considering next the functions $S_k^{\pm} = S_{\text{et}}^{\pm} + 2k \Sigma(\mathcal{E}, \mathbf{r})$, where Σ solves^{[10](#page-23-0)}

$$
\partial_{\mathcal{E}} \Sigma = \tau_{p}(\mathcal{E}, r), \quad \partial_{r} \Sigma = \rho(\mathcal{E}, r, \tau_{p}(\mathcal{E}, r))
$$

one obtains the extension of the transformation to $\tau \in \mathbb{R}$ verifying [\(69](#page-21-5)).

Observe that quarter period symmetry (67) (67) , holding in the case $-r < \mathcal{E} < r$, is an immediate consequence of the definitions ([77\)](#page-22-2).

The coordinates $(\mathcal{R}, \mathcal{E}, \mathbf{r}, \tau)$ are referred to as *energy–time coordinates*.

The regularity of the functions $\tilde{G}(\mathcal{E}, r, \tau)$, $\tilde{\rho}(\mathcal{E}, r, \tau)$, $\mathcal{B}(\mathcal{E}, r)$ and $\tau_{p}(\mathcal{E}, r)$, which are relevant for the paper, is studied in detail in Section [4.](#page-25-0) Their holomorphy is not discussed.

3.3. Action–angle coordinates

We look at the transformation

$$
\phi_{aa}:\qquad (\mathcal{R}_*, A_*, r_*, \varphi_*)\to (\mathcal{R}, \mathcal{E}, r, \tau)
$$

defined by equations

$$
\begin{cases}\nA_* = \mathcal{A}(\mathcal{E}, \mathbf{r}) \\
\varphi_* = \pi \frac{\tau}{\tau_{\mathbf{p}}(\mathcal{E}, \mathbf{r})} \\
\mathbf{r}_* = \mathbf{r} \\
\mathcal{R}_* = \mathcal{R} + \mathcal{B}(\mathcal{E}, \mathbf{r})\tau\n\end{cases} \tag{81}
$$

with $\mathcal{B}(\mathcal{E}, r)$ as in ([71\)](#page-21-6), $\tau_p(\mathcal{E}, r)$ as in [\(79](#page-22-3)) and $\mathcal{A}(\mathcal{E}, r)$ the "action function", defined as

$$
\mathcal{A}(\mathcal{E}, \mathbf{r}) := \begin{cases} \sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})} - \frac{1}{\pi} \int_{\beta(\mathcal{E}, \mathbf{r})}^{\sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})}} \cos^{-1} \frac{\mathcal{E} - \Gamma^{2}}{\mathbf{r}\sqrt{1 - \Gamma^{2}}} d\Gamma & -\mathbf{r} \le \mathcal{E} \le 1\\ 1 - \frac{1}{\pi} \int_{\beta(\mathcal{E}, \mathbf{r})}^{\sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})}} \cos^{-1} \frac{\mathcal{E} - \Gamma^{2}}{\mathbf{r}\sqrt{1 - \Gamma^{2}}} d\Gamma & 1 < \mathcal{E} \le 1 + \frac{\mathbf{r}^{2}}{4} \end{cases}
$$

with $\alpha_+(\mathcal{E}, r)$ and $\beta(\mathcal{E}, r)$ being defined in ([75\)](#page-22-1), ([80\)](#page-22-4).

Geometrically, $\mathcal{A}(\mathcal{E}, r)$ represents the area of the region encircled by the level curves of E in [Fig.](#page-4-0) [1](#page-4-0) in the former case, the area of its complement in the second case, divided by 2π .

The canonical character of the transformation ([81\)](#page-23-1) is recognised looking at the generating function

$$
S_{aa}(\mathcal{R}, \mathcal{E}, \mathbf{r}_{*}, \varphi_{*}) = \varphi_{*}\mathcal{A}(\mathcal{E}, \mathbf{r}_{*}) + \mathcal{R}\mathbf{r}_{*}
$$
\n(82)

and using the following relations (compare the formulae in ([77\)](#page-22-2) and ([79\)](#page-22-3))

$$
\mathcal{A}_{r}(\mathcal{E},r) = -\frac{1}{\pi r} \int_{\beta(\mathcal{E},r)}^{\sqrt{\alpha_{+}(\mathcal{E},r)}} \frac{(\mathcal{E} - \Gamma^{2})d\Gamma}{\sqrt{(\Gamma^{2} - \alpha_{-}(\mathcal{E},r))(\alpha_{+}(\mathcal{E},r) - \Gamma^{2})}} \n= \frac{1}{\pi} \rho(\mathcal{E},r,\tau_{p}) \n\mathcal{A}_{\mathcal{E}}(\mathcal{E},r) = \frac{1}{\pi} \int_{\beta(\mathcal{E},r)}^{\sqrt{\alpha_{+}(\mathcal{E},r)}} \frac{d\Gamma}{\sqrt{(\Gamma^{2} - \alpha_{-}(\mathcal{E},r))(\alpha_{+}(\mathcal{E},r) - \Gamma^{2})}} \n= \frac{1}{\pi} \tau_{p}(\mathcal{E},r)
$$
\n(83)

¹⁰ The existence of the function $\Sigma(\mathcal{E}, r)$ follows from the arguments of the next section: compare the formula in ([83\)](#page-23-2).

which allow us to rewrite (81) (81) as the transformation generated by (82) (82) :

$$
\begin{cases}\nA_* = \mathcal{A}(\mathcal{E}, \mathbf{r}) \\
\varphi_* = \frac{\tau}{\mathcal{A}_{\mathcal{E}}(\mathcal{E}, \mathbf{r})} \\
\mathbf{r}_* = \mathbf{r} \\
\mathcal{R}_* = \mathcal{R} + \frac{\mathcal{A}_{\mathbf{r}}(\mathcal{E}, \mathbf{r})}{\mathcal{A}_{\mathcal{E}}(\mathcal{E}, \mathbf{r})}\tau.\n\end{cases} \tag{84}
$$

The coordinates $(\mathcal{R}_*, A_*, r_*, \varphi_*)$ are referred to as *action–angle coordinates*.

Remark 3.1. We conclude this section observing a non-negligible advantage while using *action–angle coordinates* compared to *energy–time* — besides the obvious one of dealing with a constant period. It is the law that relates R to \mathcal{R}_* , which is (see ([67\)](#page-21-1), ([70\)](#page-21-7) and [\(81](#page-23-1)))

$$
R = \mathcal{R}_* + \rho_*(A_*, r_*, \varphi_*), \quad \text{with} \quad \rho_*(A_*, r_*, \varphi_*) := \widetilde{\rho} \circ \phi_{aa}(A_*, r_*, \varphi_*)
$$
\n
$$
(85)
$$

where $\tilde{\rho}$ is as in ([70\)](#page-21-7). Here $\rho_*(A_*,r_*,\varphi_*)$ is a *periodic function* because so is the function $\tilde{\rho}$. This benefit is evident comparing with the corresponding formula with *energy–time* coordinates:

$$
R = \mathcal{R} + \mathcal{B}(\mathcal{E}, r)\tau + \widetilde{\rho}(\mathcal{E}, r, \tau)
$$

which would include the uncomfortable linear term $\mathcal{B}(\mathcal{E}, r)\tau$. Incidentally, such term would unnecessarily complicate the computations we are going to present in Section [6](#page-30-0).

3.4. Regularising coordinates

In this section we define the *regularising coordinates*. First of all we rewrite $S_0(r)$ in ([14\)](#page-4-3) in terms of (*A*∗*, φ*∗):

$$
\mathcal{S}_0(\mathbf{r}_*) = \left\{ (A_*, \varphi_*) : \quad A_* = \mathcal{A}_s(\mathbf{r}_*), \ \varphi_* \in \mathbb{R} \right\} \qquad 0 < \mathbf{r}_* < 2
$$

with $\mathcal{A}_s(r_*)$ being the limiting value of $\mathcal{A}(\mathcal{E}, r_*)$ when $\mathcal{E} = r_*$:

$$
\mathcal{A}_{\mathrm{s}}(\mathrm{r}_{*}) = \begin{cases} \sqrt{\mathrm{r}_{*}(2-\mathrm{r}_{*})} - \frac{1}{\pi} \int_{0}^{\sqrt{\mathrm{r}_{*}(2-\mathrm{r}_{*})}} \cos^{-1} \frac{\mathrm{r}_{*} - \Gamma^{2}}{\mathrm{r}_{*} \sqrt{1-\Gamma^{2}}} d\varGamma & 0 < \mathrm{r}_{*} < 1\\ 1 - \frac{1}{\pi} \int_{0}^{\sqrt{\mathrm{r}_{*}(2-\mathrm{r}_{*})}} \cos^{-1} \frac{\mathrm{r}_{*} - \Gamma^{2}}{\mathrm{r}_{*} \sqrt{1-\Gamma^{2}}} d\varGamma & 1 < \mathrm{r}_{*} < 2 \end{cases}
$$

We observe that the function $\mathcal{A}_s(r_*)$ is continuous in [0, 2] (in particular, $\mathcal{A}_s(1^-) = \mathcal{A}_s(1^+)$), with

$$
\mathcal{A}_{s}(0)=0\,,\quad \mathcal{A}_{s}(2)=1
$$

and increases smoothly between those two values, as it results from the analysis of its derivative. Indeed, letting, for short, $\sigma_0(r_*) := \sqrt{r_*(2 - r_*)}$ and proceeding analogously as ([78\)](#page-22-5), we get

$$
\mathcal{A}'_{s}(r_{*}) = -\frac{1}{\pi} \int_{0}^{\sigma_{0}(r_{*})} \partial_{r_{*}} \cos^{-1} \frac{r_{*} - \Gamma^{2}}{r_{*} \sqrt{1 - \Gamma^{2}}} d\Gamma
$$
\n
$$
= \frac{1}{\pi r_{*}} \int_{0}^{\sigma_{0}(r_{*})} \frac{\Gamma d\Gamma}{\sqrt{\sigma_{0}(r_{*})^{2} - \Gamma^{2}}}
$$
\n
$$
= \frac{1}{\pi} \sqrt{\frac{2 - r_{*}}{r_{*}}} \qquad \forall \ 0 < r_{*} < 2 \tag{86}
$$

We denote as $A_* \to r_s(A_*)$ the inverse function

$$
\mathbf{r}_{\mathbf{s}} := \mathcal{A}_{\mathbf{s}}^{-1} \tag{87}
$$

and we define two different changes of coordinates

$$
\phi_{\mathrm{rg}}^k: (Y_k, A_k, y_k, \varphi_k) \to (\mathcal{R}_*, A_*, \mathrm{r}_*, \varphi_*) \qquad k = \pm 1
$$

via the formulae

$$
\begin{cases}\n\mathcal{R}_* = Y_k e^{ky_k} \\
A_* = A_k \\
\mathbf{r}_* = -ke^{-ky_k} + \mathbf{r}_s(A_k) \\
\varphi_* = \varphi_k + Y_k e^{ky} \mathbf{r}'_s(A_k)\n\end{cases} \tag{88}
$$

The transformations [\(88](#page-25-1)) are canonical, being generated by

$$
S_{\rm rg}^k(Y_k, A_k, \mathbf{r}_*, \varphi_*) := -\frac{Y_k}{k} \log \left| \frac{\mathbf{r}_s(A_k) - \mathbf{r}_*}{k} \right| + A_k \varphi_*.
$$

The coordinates $(Y_k, A_k, y_k, \varphi_k)$ with $k = \pm 1$ are called *regularising coordinates*.

4. A deeper insight into energy–time coordinates

In this section we study the functions $\widetilde{G}(\mathcal{E}, r, \tau)$, $\widetilde{\rho}(\mathcal{E}, r, \tau)$, $\mathcal{B}(\mathcal{E}, r)$ and $\tau_{p}(\mathcal{E}, r)$, described in Section [3.2](#page-21-8). We prove that $\widetilde{G}(\mathcal{E}, r, \tau)$, $\widetilde{\rho}(\mathcal{E}, r, \tau)$ are C^{∞} provided that (\mathcal{E}, r) vary in a compact subset set of [\(68](#page-21-2)) and we study the behaviour of $\mathcal{B}(\mathcal{E}, r)$ and $\tau_p(\mathcal{E}, r)$ closely to $\mathcal{S}_0(r)$.

It reveals to be useful to perform this study via suitable other functions $\check{G}(\kappa, \theta)$, $\check{\rho}(\kappa, \theta)$, $\mathcal{A}(\kappa)$ and $T_0(\kappa)$, which we now define. We rewrite

$$
\widetilde{G}(\mathcal{E}, r, \tau) = \sigma(\mathcal{E}, r) \breve{G}(\kappa(\mathcal{E}, r), \theta(\mathcal{E}, r, \tau)), \quad \tau_{p}(\mathcal{E}, r) = \frac{T_{p}(\kappa(\mathcal{E}, r))}{\sigma(\mathcal{E}, r)}
$$
(89)

and

$$
\rho(\mathcal{E}, \mathbf{r}, \tau) = -\frac{\mathcal{E}\tau}{\mathbf{r}} + \frac{\sigma(\mathcal{E}, \mathbf{r})}{\mathbf{r}} \widehat{\rho}(\kappa(\mathcal{E}, \mathbf{r}), \theta(\mathcal{E}, \mathbf{r}, \tau)) \qquad 0 \le \theta \le T_{\mathbf{p}}(\kappa)
$$
\n(90)

where (changing, in the integrals in ([77\)](#page-22-2), the integration variable $\Gamma = \sigma \xi$) $\check{G}(\kappa, \theta)$ is the unique solution of

$$
\int_{\breve{G}(\kappa,\theta)}^1 \frac{d\xi}{\sqrt{(1-\xi^2)(\xi^2-\kappa)}} = \theta \;, \qquad 0 \le \theta \le T_p(\kappa) \tag{91}
$$

$$
\widehat{\rho}(\kappa,\theta) = \int_{\breve{G}(\kappa,\theta)}^1 \frac{\xi^2 d\xi}{\sqrt{(1-\xi^2)(\xi^2-\kappa)}} \qquad 0 \le \theta \le T_p(\kappa)
$$
\n(92)

and

$$
T_{\mathbf{p}}(\kappa) = \begin{cases} T_0(\kappa) & 0 < \kappa < 1 \\ 2T_0(\kappa) & \kappa < 0 \end{cases} \tag{93}
$$

with

$$
T_0(\kappa) := \int_{\mathcal{G}_0(\kappa)}^1 \frac{d\xi}{\sqrt{(1-\xi^2)(\xi^2-\kappa)}} , \quad \text{where} \quad \mathcal{G}_0(\kappa) := \begin{cases} \sqrt{\kappa} & 0 < \kappa < 1 \\ 0 & \kappa < 0 \end{cases} \tag{94}
$$

The function $\hat{\rho}(\kappa,\theta)$ in [\(92](#page-25-2)) is further split as

$$
\widehat{\rho}(\kappa,\theta) = \mathcal{A}(\kappa)\theta + \breve{\rho}(\kappa,\theta) \tag{95}
$$

where

$$
\mathcal{A}(\kappa) = \frac{\widehat{\rho}(\kappa, T_{\rm p}(\kappa))}{T_{\rm p}(\kappa)}, \quad \breve{\rho}(\kappa, \theta) = \widehat{\rho}(\kappa, \theta) - \mathcal{A}(\kappa)\theta. \tag{96}
$$

Finally, $\sigma(\mathcal{E}, r)$, $\kappa(\mathcal{E}, r)$ and $\theta(\mathcal{E}, r, \tau)$ are given by

$$
\sigma(\mathcal{E}, \mathbf{r}) := \sqrt{\alpha_{+}(\mathcal{E}, \mathbf{r})} = \sqrt{\mathcal{E} - \frac{\mathbf{r}^{2}}{2} + \mathbf{r}\sqrt{1 + \frac{\mathbf{r}^{2}}{4} - \mathcal{E}}}
$$
\n
$$
\kappa(\mathcal{E}, \mathbf{r}) := \frac{\alpha_{-}(\mathcal{E}, \mathbf{r})}{\alpha_{+}(\mathcal{E}, \mathbf{r})} = \frac{\mathcal{E}^{2} - \mathbf{r}^{2}}{\left(\mathcal{E} - \frac{\mathbf{r}^{2}}{2} + \mathbf{r}\sqrt{1 + \frac{\mathbf{r}^{2}}{4} - \mathcal{E}}\right)^{2}}
$$
\n
$$
\theta(\mathcal{E}, \mathbf{r}, \tau) := \tau \sqrt{\mathcal{E} - \frac{\mathbf{r}^{2}}{2} + \mathbf{r}\sqrt{1 + \frac{\mathbf{r}^{2}}{4} - \mathcal{E}}}.
$$
\n(97)

The periodicity of $\breve{\rho}(\kappa, \cdot)$ (see Eq. ([100\)](#page-27-0)), the uniqueness of the splitting ([70\)](#page-21-7) and the formulae in ([90\)](#page-25-3) and ([95\)](#page-25-4) imply that $\mathcal{A}(\kappa)$ and $\breve{\rho}(\kappa, \theta)$ are related to $\mathcal{B}(\mathcal{E}, r)$ and $\widetilde{\rho}(\mathcal{E}, r, \tau)$ in [\(70](#page-21-7)) via

$$
\mathcal{B}(\mathcal{E}, \mathbf{r}) = -\frac{\mathcal{E}}{\mathbf{r}} + \frac{\sigma(\mathcal{E}, \mathbf{r})^2}{\mathbf{r}} \mathcal{A}(\kappa) , \quad \tilde{\rho}(\mathcal{E}, \mathbf{r}, \tau) = \frac{\sigma(\mathcal{E}, \mathbf{r})}{\mathbf{r}} \tilde{\rho}(\kappa(\mathcal{E}, \mathbf{r}), \theta(\mathcal{E}, \mathbf{r}, \tau)) . \tag{98}
$$

In view of relations ([89\)](#page-25-5), ([93\)](#page-25-6) and [\(98](#page-26-0)), we focus on the functions $\check{G}(\kappa, \theta)$, $\check{\rho}(\kappa, \theta)$, $\mathcal{A}(\kappa)$ and $T_0(\kappa)$. The proofs of the following statements are postponed at the end of the section.

Let us denote $\check{G}_{ij}(\kappa, \theta) := \partial_{\kappa^i \theta^j}^{i+j} \check{G}(\kappa, \theta), \ \check{\rho}_{ij}(\kappa, \theta) := \partial_{\kappa^i \theta^j}^{i+j} \check{\rho}(\kappa, \theta).$

Proposition 4.1. Let $0 \neq \kappa < 1$ fixed. The functions $\breve{G}_{ij}(\kappa, \cdot)$ and $\breve{\rho}_{ij}(\kappa, \cdot)$ are continuous for all $\theta \in \mathbb{R}$.

This immediately implies

Corollary 4.1. *Let* $K \subset \mathbb{R}$ *a compact set, with* 0, 1 $\notin K$ *. Then* \check{G} *,* $\check{\rho}$ *are* $C^{\infty}(K \times \mathbb{T})$ *.*

Concerning $T_0(\kappa)$, we have

Proposition 4.2. Let $0 \neq \kappa < 1$, and let $T_0(\kappa)$ be as in ([94\)](#page-25-7). Then one can find two real numbers C^* , \mathcal{R}^* , \mathcal{S}^* *and two functions* $\mathcal{R}(\kappa)$ *,* $\mathcal{S}(\kappa)$ *verifying*

$$
\mathcal{R}(0) = 1 = \mathcal{S}(0), \quad 0 \le \mathcal{R}(\kappa) \le \mathcal{R}^*, \quad 0 \le \mathcal{S}(\kappa) \le \mathcal{S}^* \qquad \forall \ \kappa \in (-1, 1)
$$

such that

.

$$
T'_0(\kappa) = -\frac{\mathcal{R}(\kappa)}{2\kappa}, \quad T''_0(\kappa) = \frac{\mathcal{S}(\kappa)}{4\kappa^2}, \qquad \forall \ 0 \neq \kappa < 1
$$

In particular,

$$
|T_0(\kappa)| \leq \frac{\mathcal{R}^*}{2} \Big| \log |\kappa| \Big| + C^* \,, \quad |T_0'(\kappa)| \leq \frac{\mathcal{R}^*}{2} \Big| \kappa \Big|^{-1} \,, \quad |T_0''(\kappa)| \leq \frac{\mathcal{S}^*}{4} \Big| \kappa \Big|^{-2} \,.
$$

Finally, as for $\mathcal{A}(\kappa)$, we have

Proposition 4.3. *Let* $0 \neq \kappa < 1$ *, and let* $\mathcal{A}(\kappa)$ *be as in* ([96\)](#page-25-8)*. Then one can find* $C^* > 0$ *such that*

$$
|\mathcal{A}(\kappa)| \leq C^* \Big|\log |\kappa|\Big|^{-1}, \quad |\mathcal{A}'(\kappa)| \leq C^* \Big|\kappa\Big|^{-1}, \quad |\mathcal{A}''(\kappa)| \leq C^* \Big|\kappa\Big|^{-2}
$$

Proof of [Propositions](#page-26-1) [4.1](#page-26-1)[–4.3.](#page-26-2) Relations [\(69](#page-21-5)), [\(72](#page-21-4)) and ([73\)](#page-21-9) provide

$$
\begin{cases}\n\breve{G}(\kappa, \theta + 2jT_{p}) = \breve{G}(\kappa, \theta) & \forall \theta \in \mathbb{R}, j \in \mathbb{Z} \quad \forall 0 \neq \kappa < 1 \\
\breve{G}(\kappa, -\theta) = \breve{G}(\kappa, \theta) & \forall 0 \leq \theta \leq T_{p}(\kappa) \quad \forall 0 \neq \kappa < 1 \\
\breve{G}(\kappa, T_{p} - \theta) = -\breve{G}(\kappa, \theta) & \forall 0 \leq \theta \leq T_{0}(\kappa) \quad \forall \kappa < 0. \\
\breve{\rho}(\kappa, \theta + 2jT_{p}) = \breve{\rho}(\kappa, \theta), & \forall \theta \in \mathbb{R}, j \in \mathbb{Z} \quad \forall 0 \neq \kappa < 1 \\
\breve{\rho}(\kappa, -\theta) = -\breve{\rho}(\kappa, \theta) & \forall 0 \leq \theta \leq T_{p}(\kappa) \quad \forall 0 \neq \kappa < 1 \\
\breve{\rho}(\kappa, T_{p} - \theta) = -\breve{\rho}(\kappa, \theta) & \forall 0 \leq \theta \leq T_{0}(\kappa) \quad \forall \kappa < 0.\n\end{cases} \tag{100}
$$

The following lemmata are obvious

Lemma 4.1. Let $g(\kappa, \cdot)$ *verify* [\(99](#page-27-1)) *with* $T_p(\kappa) = \pi$ *for all* κ *and* T_0 *as in* [\(93](#page-25-6))*. Then the functions* $g_{ij}(\kappa,\theta) \coloneqq \partial_{\kappa^i,\theta^j}^{i+j} g(\kappa,\theta)$ are continuous on $\mathbb R$ if and only if they are continuous in $[0,T_0]$ and verify

$$
\begin{cases}\n\text{no further condition} & \text{if } j \in 2\mathbb{N}, \quad 0 < \kappa < 1 \\
g_{ij}(\kappa, \frac{\pi}{2}) = 0 & \text{if } j \in 2\mathbb{N}, \quad \kappa < 0 \\
g_{ij}(\kappa, 0) = 0 = g_{ij}(\kappa, \pi) & \text{if } j \in 2\mathbb{N} + 1, \quad 0 < \kappa < 1 \\
g_{ij}(\kappa, 0) = 0 & \text{if } j \in 2\mathbb{N} + 1, \quad \kappa < 0\n\end{cases} \tag{101}
$$

Lemma 4.2. Let $g(\kappa, \cdot)$ verify ([100](#page-27-0)) with $T_p(\kappa) = \pi$ for all κ and T_0 as in [\(93](#page-25-6)). Then $g_{ij}(\kappa, \cdot)$, where $g_{ij}(\kappa,\theta) \coloneqq \partial_{\kappa^i,\theta^j}^{i+j} g(\kappa,\theta)$, are continuous on $\mathbb R$ if and only if they are continuous in $[0,T_0(\kappa)]$ and verify

$$
\begin{cases}\ng_{ij}(\kappa,0) = g_{ij}(\kappa,\pi) = 0 & \text{if } j \in 2\mathbb{N}, & 0 < \kappa < 1 \\
g_{ij}(\kappa,0) = g_{ij}(\kappa,\frac{\pi}{2}) = 0 & \text{if } j \in 2\mathbb{N} & \kappa < 0 \\
\text{no further condition} & \text{if } j \in 2\mathbb{N} + 1\n\end{cases}
$$
\n(102)

Proof of [Proposition](#page-26-1) [4.1](#page-26-1). (i) The function $\breve{G}(\kappa, \cdot)$ is $C^{\infty}(\mathbb{R})$ for all $0 \neq \kappa < 1$ [[21\]](#page-42-30). Then so is the function $g(\kappa, \cdot)$, where $g(\kappa, \theta) := \check{G}(\kappa, \frac{T_p(\kappa)}{\pi} \theta)$. Then [\(101\)](#page-27-2) hold true for $g(\kappa, \theta)$ with $i = 0$. Hence, the derivatives $g_{ij}(\kappa, \theta)$, which exist for all $0 \neq \kappa < 1$, also verify (101) . Then $g_{ij}(\kappa, \cdot)$ are continuous for all $0 \neq \kappa < 1$ and so are the $\check{G}_{ij}(\kappa, \cdot)$.

(ii) We check conditions [\(102\)](#page-27-3) for the function $g(\kappa, \theta) := \breve{\rho}(\kappa, \frac{T_{p}(\kappa)}{\pi} \theta)$, in the case $j = 0$. Using ([92](#page-25-2)), [\(91](#page-25-9)) and (96) (96) , we get, for $0 < \kappa < 1$,

$$
g(\kappa, 0) = \breve{\rho}(\kappa, 0) = 0 , \quad g(\kappa, \pi) = \breve{\rho}(\kappa, T_{\rm p}(\kappa)) = \widehat{\rho}(\kappa, T_{\rm p}) - \frac{\widehat{\rho}(\kappa, T_{\rm p})}{T_{\rm p}} T_{\rm p} = 0.
$$
 (103)

while, for $\kappa < 0$,

$$
g(\kappa,0) = \breve{\rho}(\kappa,0) = 0 \;, \quad g\left(\kappa,\frac{\pi}{2}\right) = \breve{\rho}(\kappa,T_0(\kappa)) = \widehat{\rho}(\kappa,T_0) - \frac{\widehat{\rho}(\kappa,T_0)}{T_0}T_0 = 0. \tag{104}
$$

The identities ([103\)](#page-27-4) and ([104\)](#page-27-5) still hold replacing *g* with any $g_{i0}(\kappa, \theta)$, with $i \in \mathbb{N}$, therefore, any $g_{i0}(\kappa, \theta)$ satisfies ([102\)](#page-27-3). Let us now consider the case $j \neq 0$. Again by ([92\)](#page-25-2), ([91\)](#page-25-9) and ([96\)](#page-25-8),

$$
\breve{\rho}_{\theta}(\kappa,\theta) = \breve{\mathcal{G}}(\kappa,\theta)^2 - \mathcal{A}(\kappa) \tag{105}
$$

so, for any $j \neq 0$,

$$
\breve{\rho}_{ij}(\kappa,\theta) = \partial_{\kappa^i\theta^j}^{i+j-1} \left(\breve{G}(\kappa,\theta)^2 \right)
$$

Then the $\breve{\rho}_{ij}(\kappa, \cdot)$ with $j \neq 0$ are continuous because so is $\breve{G}_{ij}(\kappa, \cdot)$. \Box

Proof of [Proposition](#page-26-3) [4.2](#page-26-3). The function $T_0(\kappa)$ in ([94\)](#page-25-7) is studied in detail in [Appendix](#page-35-0) [A.](#page-35-0) Combining [Lemma](#page-35-1) [A.1](#page-35-1) and [Proposition](#page-36-0) [A.1](#page-36-0) and taking the *κ*-primitive of such relations, one obtains [Proposition](#page-26-3) [4.2](#page-26-3).

Proof of [Proposition](#page-26-2) [4.3.](#page-26-2)

$$
\mathcal{A}(\kappa) = \frac{1}{T_0(\kappa)} \int_{G_0(\kappa)}^1 \frac{\sqrt{\xi^2 - \kappa}}{\sqrt{1 - \xi^2}} d\xi + \kappa
$$

$$
\mathcal{A}'(\kappa) = \frac{1}{2} + (\kappa - \mathcal{A}(\kappa)) \frac{T_0'(\kappa)}{T_0(\kappa)} = \frac{1}{2} - (\kappa - \mathcal{A}(\kappa)) \frac{\mathcal{R}(\kappa)}{2\kappa T_0(\kappa)}
$$

$$
= \frac{1}{2} - \frac{\mathcal{R}(\kappa)}{2T_0(\kappa)} + \frac{\mathcal{A}(\kappa)\mathcal{R}(\kappa)}{2\kappa T_0(\kappa)}
$$

and

$$
\mathcal{A}''(\kappa) = (1 - \mathcal{A}'(\kappa)) \frac{T'_0(\kappa)}{T_0(\kappa)} + (\kappa - \mathcal{A}(\kappa)) \left(\frac{T''_0(\kappa)}{T_0(\kappa)} - \frac{(T'_0(\kappa))^2}{(T_0(\kappa))^2} \right)
$$

=
$$
\frac{T'_0(\kappa)}{2T_0(\kappa)} - 2(\kappa - \mathcal{A}(\kappa)) \frac{(T'_0(\kappa))^2}{(T_0(\kappa))^2} + (\kappa - \mathcal{A}(\kappa)) \frac{T''_0(\kappa)}{T_0(\kappa)}
$$

=
$$
-\frac{\mathcal{R}(\kappa)}{4\kappa T_0(\kappa)} - 2(\kappa - \mathcal{A}(\kappa)) \frac{\mathcal{R}(\kappa)^2}{4\kappa^2 T_0(\kappa)^2} + (\kappa - \mathcal{A}(\kappa)) \frac{\mathcal{S}(\kappa)}{4\kappa^2 T_0(\kappa)}
$$

5. The function $F(\mathcal{E}, r)$

In this section we study the function $F(\mathcal{E}, r)$ in [\(11\)](#page-3-2). Specifically, we aim to prove the following

Proposition 5.1. F(\mathcal{E}, r) *is well defined and smooth for all* (\mathcal{E}, r) *with* $0 \le r < 2$ *and* $-r \le \mathcal{E} < 1 + \frac{r^2}{4}$ $\frac{r}{4}$, $\mathcal{E} \neq r$ *. Moreover, there exists a number* $C > 0$ *and a neighbourhood* \mathcal{O} *of* $0 \in \mathbb{R}$ *such that, for all* $0 \leq r < 2$ *and all* $-r \leq \mathcal{E} < 1 + \frac{r^2}{4}$ $\frac{r^2}{4}$ such that $\mathcal{E} - r \in \mathcal{O}$,

$$
|\mathcal{F}(\mathcal{E}, \mathbf{r})| \le C \log |\mathcal{E} - \mathbf{r}|^{-1}, \quad |\partial_{\mathcal{E}, \mathbf{r}} \mathcal{F}(\mathcal{E}, \mathbf{r})| \le C |\mathcal{E} - \mathbf{r}|^{-1}, \quad |\partial_{\mathcal{E}, \mathbf{r}}^2 \mathcal{F}(\mathcal{E}, \mathbf{r})| \le C |\mathcal{E} - \mathbf{r}|^{-2}.
$$
 (106)

To prove [Proposition](#page-28-0) [5.1](#page-28-0) we need an analytic representation of the function F, which we proceed to provide. In terms of the coordinates ([66\)](#page-20-0), the function U in ([10\)](#page-3-1) is given by (recall we have fixed $\Lambda = 1$)

$$
U(r, G, g) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\left(1 - \sqrt{1 - G^2} \cos \xi\right) d\xi}{\sqrt{\left(1 - \sqrt{1 - G^2} \cos \xi\right)^2 + 2r\left((\cos \xi - \sqrt{1 - G^2}) \cos g - G \sin \xi \sin g\right) + r^2}}\tag{107}
$$

where ξ is the eccentric anomaly. By [[40\]](#page-43-3), U remains constant along the level curves, at r fixed, of the function $E(r, \cdot, \cdot)$ in [\(12](#page-3-4)). Therefore, the function $F(\mathcal{E}, r)$ which realises [\(11\)](#page-3-2) is nothing else than the value that $U(r, \cdot, \cdot)$ takes at a chosen fixed point $(G_0(\mathcal{E}, r), g_0(\mathcal{E}, r))$ of the level set $\mathcal E$ in [Fig.](#page-4-0) [1.](#page-4-0) For the purposes^{[11](#page-28-1)} of the paper, we choose such point to be the point where the $\mathcal{E}\text{-level}$ curve attains its maximum. It follows from the discussion in Section [3.2](#page-21-8) that the coordinates of such point are

$$
\begin{cases} G_{+}(\mathcal{E}, r) = \sqrt{\alpha_{+}(\mathcal{E}, r)} \\ g_{+}(\mathcal{E}, r) = \begin{cases} \pi & -r \le \mathcal{E} < 1 \\ 0 & 1 \le \mathcal{E} \le 1 + \frac{r^2}{4} \end{cases} \end{cases} \tag{108}
$$

Compare ([109\)](#page-29-0) with the simpler formula proposed in [\[42](#page-43-6)], however valid only for values of $\mathcal E$ in the interval $[-r, r)$.

where $\alpha_+(\mathcal{E}, r)$ is as in [\(75](#page-22-1)). Replacing ([108\)](#page-28-2) into [\(107](#page-28-3)), we obtain

$$
F(\mathcal{E}, r) = \frac{1}{2\pi} \int_0^{2\pi} \frac{(1 - |e(\mathcal{E}, r)| \cos \xi) d\xi}{\sqrt{(1 - |e(\mathcal{E}, r)| \cos \xi)^2 + 2s(\mathcal{E}, r)r(\cos \xi - |e(\mathcal{E}, r)|) + r^2}}
$$
(109)

with

$$
e(\mathcal{E}, \mathbf{r}) = \frac{\mathbf{r}}{2} - \sqrt{1 + \frac{\mathbf{r}^2}{4} - \mathcal{E}}, \quad s(\mathcal{E}, \mathbf{r}) := \text{sign}\left(e(\mathcal{E}, \mathbf{r})\right) = \begin{cases} -1 & -\mathbf{r} \le \mathcal{E} < 1 \\ +1 & 1 < \mathcal{E} \le 1 + \frac{\mathbf{r}^2}{4} \end{cases}
$$

To study the regularity of F, it turns to be useful to rewrite the integral ([109\)](#page-29-0) as twice the integral on the half period $[0, \pi]$ and next to make two subsequent changes of variable. The first time, with $z = s(\mathcal{E}, r) \cos x$. It gives the following formula, which will be used below.

$$
F(\mathcal{E}, r) = \frac{1}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1 - z^2}} \frac{(1 - e(\mathcal{E}, r)z)dz}{\sqrt{(1 - e(\mathcal{E}, r)z)^2 + 2r(z - e(\mathcal{E}, r)) + r^2}}
$$
(110)

We denote as

$$
z_{\pm}(\mathcal{E}, \mathbf{r}) := \frac{e(\mathcal{E}, \mathbf{r}) - \mathbf{r}}{e(\mathcal{E}, \mathbf{r})^2} \pm \frac{\sqrt{\mathbf{r}(\mathbf{r} - 2e(\mathcal{E}, \mathbf{r}))(1 - e(\mathcal{E}, \mathbf{r})^2)}}{e(\mathcal{E}, \mathbf{r})^2}
$$
(111)

the roots of the polynomial under the square root, which, as we shall see below, are real under conditions ([68\)](#page-21-2). As a second change, we let $z = \frac{1-\beta^2t^2}{1+\beta^2t^2}$ $\frac{1-\beta-t}{1+\beta^2t^2}$. This leads to write $F(\mathcal{E}, r)$ as

$$
F(\mathcal{E},r) = \frac{2(1 - e(\mathcal{E},r))}{\pi |e(\mathcal{E},r)| \sqrt{(z_{-}(\mathcal{E},r) + 1)(z_{+}(\mathcal{E},r) - 1)}} \left(\frac{1 + e(\mathcal{E},r)}{1 - e(\mathcal{E},r)} j_0(\kappa(\mathcal{E},r))\right) - \frac{2e(\mathcal{E},r)}{1 - e(\mathcal{E},r)} j_{\beta(\mathcal{E},r)}(\kappa(\mathcal{E},r))
$$
\n(112)

where $j_{\beta}eta(\kappa)$ is the elliptic integral

$$
j_{\beta}(\kappa) := \int_0^{+\infty} \frac{1}{1 + \beta t^2} \frac{dt}{\sqrt{(1 + t^2)(1 + \kappa t^2)}}
$$
(113)

and *β*, *κ* are taken to be

$$
\beta(\mathcal{E},r):=\frac{z_-(\mathcal{E},r)-1}{1+z_-(\mathcal{E},r)}\,,\quad \kappa(\mathcal{E},r):=\frac{(1+z_+(\mathcal{E},r))(z_-(\mathcal{E},r)-1)}{(1+z_-(\mathcal{E},r))(z_+(\mathcal{E},r)-1)}\,.
$$

The elliptic integrals $j_\beta(\kappa)$ in [\(113](#page-29-1)) are studied in [Appendix](#page-35-0) [A:](#page-35-0) compare [Proposition](#page-36-0) [A.1.](#page-36-0)

In terms of (e, r) , the inequalities in (68) (68) become

$$
r \in [0, 2], \quad e \in \left[-1, \frac{r}{2}\right] \setminus \{0, r - 1\} \subset [-1, 1]
$$
\n(114)

where ${e = -1}$ corresponds to the minimum level ${E = -r}$; ${e = r - 1}$ corresponds to the separatrix level $\mathcal{S}_0(r)$; $\{e = 0\}$ corresponds to the separatrix level $\mathcal{S}_1(r)$ and, finally, $\{e = \frac{r}{2}\}$ corresponds to maximum level $\{\mathcal{E} = 1 + \frac{r^2}{4}\}$ $\frac{1}{4}$. It is so evident that the discriminant in ([111\)](#page-29-2) is not negative under conditions ([114\)](#page-29-3), so $z_{\pm}(\mathcal{E}, r)$ are real under ([68\)](#page-21-2), as claimed. In addition, one can easily verify that, for any (r, e) as ([114\)](#page-29-3), it is $e^2 + e - r \leq 0$. This implies

$$
z_+ + 1 = \frac{e(\mathcal{E}, r)^2 + e(\mathcal{E}, r) - r}{e(\mathcal{E}, r)^2} + \frac{\sqrt{r(r - 2e(\mathcal{E}, r))(1 - e(\mathcal{E}, r)^2)}}{e(\mathcal{E}, r)^2} < 0 \quad \forall e \neq r - 1.
$$

Moreover, since

$$
z_{-}(\mathcal{E}, \mathbf{r}) < z_{+}(\mathcal{E}, \mathbf{r}) \quad \forall \mathbf{r} \neq 0 \;, \; \mathcal{E} \neq 1 + \frac{\mathbf{r}^2}{2}, \; \mathcal{E} \neq -\mathbf{r}, \; (\mathcal{E}, \mathbf{r}) \neq (2, 2) \tag{115}
$$

we have

$$
\beta(\mathcal{E}, r) > 0 \quad \forall (\mathcal{E}, r)
$$
 as in (115)

and

$$
0 < \kappa(\mathcal{E}, r) < 1 \quad \forall \ (\mathcal{E}, r) \text{ as in (115)} \quad \text{and} \quad \mathcal{E} \neq r - 1 \, .
$$

Combining these informations with the formula in ([112\)](#page-29-5) and with [Proposition](#page-36-0) [A.1,](#page-36-0) we conclude that $F(\mathcal{E}, r)$ is smooth for all $r \neq 0$, $\mathcal{E} \neq 1$, $\mathcal{E} \neq 1 + \frac{r^2}{2}$ $\frac{r^2}{2}$, $\mathcal{E} \neq \pm r$, $(\mathcal{E}, r) \neq (2, 2)$ and that ([106\)](#page-28-4) holds. However, the representation in ([110\)](#page-29-6) allows to extend regularity for $F(\mathcal{E}, r)$ to the domain $0 \le r < 2$, $-r \le \mathcal{E} < 1 + \frac{r^2}{4}$ $\frac{r}{4}$, $\mathcal{E} \neq r$, as claimed. \square

6. Proof of theorem B

In this section we state and prove a more precise statement of [Theorem](#page-4-4) [B,](#page-4-4) which is [Theorem](#page-30-1) [6.1.](#page-30-1) The framework is as follows:

- fix an energy level *c*;
- change the time via

$$
\frac{dt}{dt'} = e^{-2ky} \qquad k = \pm 1 \tag{116}
$$

where t' is the new time and t the old one. The new time t' is soon renamed t ;

• look at the ODE

$$
\partial_t q_k = X^{(k)}(q_k; c)
$$

for the triple $q_k = (A_k, y_k, \psi)$ where A_k, y_k are as in [\(88](#page-25-1)), while $\psi = \varphi_*$, with φ_* as in [\(81](#page-23-1)) in \mathbb{P}_k , where

$$
\mathbb{P}_k(\varepsilon_-, \varepsilon_+, L_-, L_+, \xi) := \left\{ (A_k, y_k, \psi) : 1 - 2\varepsilon_+ < A_k \le 1 - 2\varepsilon_-, \ L_- + 2\xi \le ky_k \le L_+ - 2\xi, \psi \in \mathbb{T} \right\}
$$

with $\xi < (L_{+} - L_{-})/4$. Observe that

- the projection of \mathbb{P}_+ in the plane (g, G) in [Fig.](#page-4-0) [1](#page-4-0) is an inner region of $\mathcal{S}_0(r)$ and r varies in a ε -left neighbourhood of 2;
- the projection of **P**[−] in the plane (g*,* G) in [Fig.](#page-4-0) [1](#page-4-0) is an outer region of S0(r) and r varies in a *ε*-left neighbourhood of 2;
- • the boundary of \mathbb{P}_κ includes \mathcal{S}_0 if $L_+ = \infty$; it has a positive distance from it if $L_+ < +\infty$.

We shall prove

Theorem 6.1. *There exist a graph* $\mathcal{G}_k \subset \mathbb{P}_k(\varepsilon_-, \varepsilon_+, L_-, L_+, \varepsilon)$ *and a number* $L_* > 1$ *such that for any* $L_{-} > L_{\star}$ there exist ε_{-} , ε_{+} , L_{+} , ξ , an open neighbourhood $W_k \supset G_k$ such that along any orbit $q_k(t)$ such that *q*^{*k*}(0) ∈ W_k *,*

$$
|A(q_k(t)) - A(q_k(0))| \le C_0 \epsilon e^{-L^2} t \qquad \forall \ t : |t| < t_{\text{ex}}
$$

where t_{ex} is the first t such that $q(t) \notin W_k$ and ϵ is an upper bound for $||P_1||_{W_k}$ (with P_1 being the first *component of P).*

Proof. For definiteness, from now on we discuss the case $k = +1$ (outer orbits). The case $k = -1$ (inner orbits) is pretty similar. We neglect to write the sub-fix "+1" everywhere. As the proof is long and technical, we divide it in paragraphs. We shall take

$$
\mathcal{G} = \left\{ (A, y, \psi_{\circ}(A, y)), \ 1 - 2\varepsilon_{+} \le A \le 1 - 2\varepsilon_{-}, \ L_{-} + 2\xi \le y \le L_{+} - 2\xi \right\} \subset \mathbb{P}
$$

with $\varepsilon_-, \varepsilon_+, L_-, L_+, \psi_0$ to be chosen below.

Step 1. The vector-field X. As ψ is one of the *action–angle coordinates*, while *A*, *y* are two among the *regularising coordinates*, we need the expressions of the Hamiltonian ([10\)](#page-3-1) written in terms of those two sets. The Hamiltonian ([10\)](#page-3-1) written in *action–angle coordinates* is

$$
H_{aa}(\mathcal{R}_*, A_*, r_*, \varphi_*) = \frac{(\mathcal{R}_* + \rho_*(A_*, r_*, \varphi_*))^2}{2} + \alpha F_*(A_*, r_*) + \frac{(C - G_*(A_*, r_*, \varphi_*))^2}{2r_*^2} - \frac{\beta}{r_*}
$$

where

$$
\mathcal{G}_{*}(A_{*}, \mathbf{r}_{*}, \varphi_{*}) := \mathcal{G} \circ \phi_{aa}(A_{*}, \mathbf{r}_{*}, \varphi_{*}), \qquad \mathcal{F}_{*}(A_{*}, \mathbf{r}_{*}) := \mathcal{F} \circ \phi_{aa}(A_{*}, \mathbf{r}_{*}) \tag{117}
$$

with ϕ_{aa} as in ([81\)](#page-23-1), while $\tilde{G}(\mathcal{E}, r, \tau)$, $F(\mathcal{E}, r)$ as in ([67\)](#page-21-1), [\(11](#page-3-2)), respectively, ρ_* is as in ([85\)](#page-24-0). The Hamiltonian [\(10](#page-3-1)) written in *regularising coordinates* is

$$
H_{rg}(Y, A, y, \varphi) = \frac{(Ye^{y} + \rho_*(A, r_o(A, y), \varphi_o(Y, A, y, \varphi)))^2}{2} + \alpha F_*(A, r_o(A, y)) + \frac{(C - G_*(A, r_o(A, y), \varphi_o(Y, A, y, \varphi)))^2}{2r_o(A, y)^2} - \frac{\beta}{r_o(A, y)}
$$

where $r_{\circ}(A, y), \varphi_{\circ}(Y, A, y, \varphi)$ are the right hand sides of the equations for r_*, φ_* in ([88\)](#page-25-1), with $k = +1$.

Taking the φ_* -projection of Hamilton equation of H_{aa}, and the (A, y) -projection of Hamilton equation of H_{ref} , changing the time as prescribed in ([116\)](#page-30-2) and reducing the energy via

$$
\mathcal{R}_{*} + \rho_{*}(A, r_{\circ}(A, y), \psi) = Ye^{y} + \rho_{*}(A, r_{\circ}(A, y), \psi) = \mathcal{Y}(A, y, \psi; c)
$$

with

$$
\mathcal{Y}(A, y, \psi; c) := \pm \sqrt{2\left(c - \alpha \mathcal{F}_*(A, \mathcal{F}_0(A, y)) - \frac{(C - \mathcal{G}_*(A, \mathcal{F}_0(A, y), \psi))^2}{2\mathcal{F}_0(A, y)^2} + \frac{\beta}{\mathcal{F}_0(A, y)}\right)}
$$
(118)

we find that the evolution for the triple $q = (A, y, \psi)$ during the time t is governed by the vector-field

$$
\begin{cases}\nX_{1}(A, y, \psi; c) = e^{-2y} \frac{C - G_{*}(A, r_{\circ}(A, y), \psi)}{r_{\circ}(A, y)^{2}} G_{*,3}(A, r_{\circ}(A, y), \psi) - e^{-2y} \rho_{*,3}(A, r_{\circ}(A, y), \psi) \\
\times \mathcal{Y}(A, y, \psi; c) \\
X_{2}(A, y, \psi; c) = -e^{-y} \frac{C - G_{*}(A, r_{\circ}(A, y), \psi)}{r_{\circ}(A, y)^{2}} G_{*,3}(A, r_{\circ}(A, y), \psi) r'_{s}(A) \\
+ e^{-y} (1 + \rho_{*,3}(A, r_{\circ}(A, y), \psi) r'_{s}(A)) \mathcal{Y}(A, y, \psi; c) \\
X_{3}(A, y, \psi; c) = \alpha e^{-2y} F_{*,1}(A, r_{\circ}(A, y)) - e^{-2y} \frac{C - G_{*}(A, r_{\circ}(A, y), \psi)}{r_{\circ}(A, y)^{2}} G_{*,1}(A, r_{\circ}(A, y), \psi) \\
+ e^{-2y} \rho_{*,1}(A, r_{\circ}(A, y), \psi) \mathcal{Y}(A, y, \psi; c)\n\end{cases}
$$

where we have used the notation, for $f = \rho_*, G_*, F_*,$

$$
f_1(A,\mathbf{r}_*,\psi) := \partial_A f(A,\mathbf{r}_*,\psi) , \quad f_3(A,\mathbf{r}_*,\psi) := \partial_{\psi} f(A,\mathbf{r}_*,\psi) .
$$

Step 2. Splitting the vector-field. We write

$$
X(A, y, \psi; c) = N(A, y; c) + P(A, y, \psi; c)
$$

with

$$
\begin{cases} N_1(A, y; c) = 0 \\ N_2(A, y; c) = v(A, y; c) := e^{-y} \sqrt{2(c - \alpha F_*(A, r_0(A, y)))} \\ N_3(A, y; c) = \omega(A, y; c) := \alpha e^{-2y} F_{*,1}(A, r_0(A, y)) \end{cases}
$$

hence,

$$
\begin{cases}\nP_{1} = e^{-2y} \frac{C - G_{*}(A, r_{o}(A, y), \psi)}{r_{o}(A, y)^{2}} G_{*,3}(A, r_{o}(A, y), \psi) - e^{-2y} \rho_{*,3}(A, r_{o}(A, y), \psi) \mathcal{Y}(A, y, \psi; c) \\
P_{2} = -e^{-y} \frac{C - G_{*}(A, r_{o}(A, y), \psi)}{r_{o}(A, y)^{2}} G_{*,3}(A, r_{o}(A, y), \psi) r'_{s}(A) + e^{-y} \rho_{*,3}(A, r_{o}(A, y), \psi) r'_{s}(A) \\
\cdot \mathcal{Y}(A, y, \psi; c) + e^{-y} \left(\mathcal{Y}(A, y, \psi; c) - \sqrt{2(c - \alpha F_{*}(A, r_{o}(A, y)))} \right) \\
P_{3} = -e^{-2y} \frac{C - G_{*}(A, r_{o}(A, y), \psi)}{r_{o}(A, y)^{2}} G_{*,1}(A, r_{o}(A, y), \psi) + e^{-2y} \rho_{*,1}(A, r_{o}(A, y), \psi) \mathcal{Y}(A, y, \psi; c)\n\end{cases}
$$
\n(119)

The application of NFT relies on the smallness of the perturbing term P. In the case in point, the "greatest" term of *P* is the component P_2 , and precisely $\rho_{*,3}$. This function is not uniformly small. For this reason, we need to look at its zeros and localise around them. The localisation (described in detail below) carries the holomorphic perturbation P to a perturbation \tilde{P} , which is smaller, but *no longer holomorphic*. We shall apply GNFT to the new vector-field $\widetilde{X} = N + \widetilde{P}$.

Step 3. Localisation about non-trivial zeros of $\rho_{\ast,3}$ *. The following lemma gives an insight on the term* $\rho_{\ast,3}$ *,* appearing in ([119\)](#page-32-0). It will be proved in [Appendix](#page-39-0) [B.](#page-39-0)

Lemma 6.1. *For any* $A_s(r_*) < A < 1$ ($0 < A < A_s(r_*)$) *there exists* $0 < \psi_*(A, r_*) < \pi$ ($0 < \psi_*(A, r_*) <$ $\pi/2$) *such that* $\rho_{*,3}(A, r_*, \psi_*(A, r_*)) \equiv 0$ (and $\rho_{*,3}(A, r_*, \pi - \psi_*(A, r_*)) \equiv 0$). Moreover, there exists $C > 0$ such *that, for any* $\delta > 0$ *one can find a neighbourhood* $V_*(A, \mathbf{r}_*; \delta)$ *of* $\psi_*(A, \mathbf{r}_*)$ (*and a neighbourhood* $V'(A, \mathbf{r}_*; \delta)$ $of \pi - \psi_*(A, r_*)$) *such that*

$$
|\rho_{*,3}(A,\mathbf{r}_{*},\psi)| \leq C \frac{\sigma_{*}(A,\mathbf{r}_{*})}{\mathbf{r}_{*}} \delta \qquad \forall \ \psi \in V_{*}(A,\mathbf{r}_{*};\delta).
$$

$$
\left(|\rho_{*,3}(A,\mathbf{r}_{*},\psi)| \leq C \frac{\sigma_{*}(A,\mathbf{r}_{*})}{\mathbf{r}_{*}} \delta \qquad \forall \ \psi \in V_{*}(A,\mathbf{r}_{*};\delta) \cup V'(A,\mathbf{r}_{*};\delta). \right)
$$
(120)

We now let

$$
\psi_{\circ}(A, y) := \psi_{*}(A, r(A, y)), \quad V_{\circ}(A, y; \delta) := V_{*}(A, r(A, y); \delta).
$$

For definiteness, from now on, we focus on orbits with initial datum (A_0, y_0, ψ_0) such that ψ_0 is close to ψ ^o (A_0, y_0) . The symmetrical cases can be similarly treated.

Let $W_{\circ}(A, y; \delta) \subset V_{\circ}(A, y; \delta)$ an open set and let $g(A, y, \cdot)$ be a C^{∞} , 2π -periodic function such that, in each period $[\psi_{\circ}(A, y) - \pi, \psi_{\circ}(A, y) + \pi]$ satisfies

$$
g(A, y, \psi; \delta) \begin{cases} \equiv 1 & \forall \ \psi \in W_{\circ}(A, y; \delta) \\ \equiv 0 & \forall \ \psi \in [\psi_{\circ}(A, y) - \pi, \psi_{\circ}(A, y) + \pi) \setminus V_{\circ}(A, y; \delta) \\ \in (0, 1) & \forall \ \psi \in V_{\circ}(A, y; \delta) \setminus W_{\circ}(A, y; \delta) \end{cases}
$$
(121)

The function *g* is chosen so that

$$
\sup_{0\le\ell<\ell_*} \|g\|_{u,\ell}\le 1.
$$
\n⁽¹²²⁾

As an example, one can take $g(A, y, \psi; \delta) = \chi(\psi - \psi_0(A, y))$, with

$$
\chi(\theta) = \begin{cases}\n1 & |\theta| \le a \\
1 - \frac{\int_a^{\theta} e^{-\frac{\zeta}{(\theta - a)(b - \theta)}} d\zeta}{\int_a^b e^{-\frac{\zeta}{(\theta - a)(b - \theta)}} d\zeta} & a < \theta \le b \\
0 & \theta > b \\
\chi(-\theta) & \theta < -a\n\end{cases}
$$

with $0 < a < b$ so small that $B_a(\psi_\circ(A, y)) \subset W_\circ(A, y; \delta), B_b(\psi_\circ(A, y)) \subset V_\circ(A, y; \delta)$. If $\zeta \in (0, 1)$ is sufficiently small (depending on ℓ_*), then (122) (122) is met.

Let

$$
P(A, y, \psi; \delta) := g(A, y, \psi; \delta) P(A, y, \psi).
$$
\n(123)

We let

and

 $\widetilde{X} = N + \widetilde{P}$

$$
\mathbb{P}_{\varepsilon_{-},\xi} = \mathbb{A}_{\varepsilon_{-}} \times \mathbb{Y}_{\xi} \times \mathbb{T},\tag{124}
$$

where $\mathbb{A} = [1 - 2\varepsilon_+, 1 - 2\varepsilon_-,]$, $\mathbb{Y} = [L_+ + 2\xi, L_+ - 2\xi]$ and $\varepsilon_- < \varepsilon_+, \xi$ are sufficiently small, and $u = (\varepsilon_-, \xi)$. By construction, \tilde{X} and $\tilde{P} \in C^3_{u,\infty}$. In particular, $\tilde{P} \in C^3_{u,\ell_*}$, for all $\ell_* \in \mathbb{N}$. Below, we shall fix a suitably large *ℓ*∗.

Step 4. Bounds. The following uniform bounds follow rather directly from the definitions. Their proof is deferred to [Appendix](#page-39-0) [B,](#page-39-0) in order not to interrupt the flow.

$$
\left\|\frac{1}{v}\right\|_{u} \leq C \frac{e^{L_{+}}}{\alpha L_{-}^{\frac{1}{2}}}, \quad \left\|\frac{\partial_{A}v}{v}\right\|_{u} \leq C \frac{e^{L_{+}}}{L_{-}\sqrt{\varepsilon_{-}}}, \quad \left\|\frac{\partial_{y}v}{v}\right\|_{u} \leq 1 + C \frac{e^{L_{+}-L_{-}}}{L_{-}^2}
$$
\n
$$
\left\|\frac{\omega}{v}\right\|_{u} \leq C \frac{e^{L_{+}-L_{-}}}{L_{-}^{3/2}}, \quad \left\|\frac{\partial_{A}\omega}{v}\right\|_{u} \leq C \frac{e^{2L_{+}-L_{-}}}{L_{-}^{3/2}\varepsilon_{-}^{\frac{1}{2}}}, \quad \left\|\frac{\partial_{y}\omega}{v}\right\|_{u} \leq C \frac{e^{2L_{+}-2L_{-}}}{L_{-}^{3/2}} \right\}
$$
\n
$$
\|\tilde{P}_{1}\|_{u} \leq C e^{-2L_{-}} \max\left\{|C|L_{+}\sqrt{\varepsilon_{+}}, L_{+}\varepsilon_{+}, \delta\sqrt{\varepsilon_{+}}\sqrt{\alpha L_{+}}\right\}
$$
\n
$$
\|\tilde{P}_{2}\|_{u} \leq C e^{-L_{-}} \max\left\{|C|L_{+}\sqrt{\frac{\varepsilon_{+}}{\varepsilon_{-}}}, L_{+}\frac{\varepsilon_{+}}{\sqrt{\varepsilon_{-}}}, \sqrt{\frac{\varepsilon_{+}}{\varepsilon_{-}}}\delta\sqrt{\alpha L_{+}}, (\alpha L_{-})^{-\frac{1}{2}} \max\{|C|^{2}, \varepsilon_{+}^{2}, \beta\}\right\}
$$
\n
$$
\|\tilde{P}_{3}\|_{u} \leq C e^{-2L_{-}} \max\left\{|C|\frac{\sqrt{\varepsilon_{+}}}{\varepsilon_{-}}, \frac{\varepsilon_{+}}{\varepsilon_{-}}, \frac{\sqrt{\varepsilon_{+}}}{\varepsilon_{-}}\sqrt{\alpha L_{+}}\right\}
$$
\n
$$
(126)
$$

Here *C* is a number not depending on $L_-, L_+, \xi, \varepsilon_-, \varepsilon_+, c, |C|, \beta, \alpha$ and the norms are meant as in Section [2.5,](#page-14-1) in the domain ([124\)](#page-33-0). Remark that the validity of ([126\)](#page-33-1) is subject to condition

$$
L_{-} \geq C\alpha^{-1} \max\{|c|, |C|^2, \varepsilon_+, \beta\}.
$$
\n
$$
(127)
$$

which will be verified below.

Step 5. Application of GNFT *and conclusion*. Fix $s_1, s_2 > 0$. Define

$$
\rho := \frac{\varepsilon_-}{16} \ , \quad \tau := e^{-s_2} \frac{\xi}{16} \ , \quad w_K := \left(\frac{\varepsilon_-}{16} \, , \frac{e^{-s_2} \xi}{16} \, , \frac{1}{c_0 K^{1+\delta}} \right)
$$

so that (49) (49) is satisfied. With these choices, as a consequence of the bounds in $(125)–(126)$ $(125)–(126)$ $(125)–(126)$ $(125)–(126)$, one has

$$
\chi \le C(L_{+} - L_{-}) \max \left\{ \frac{e^{L_{+} - L_{-}}}{s_{1} L_{-}^{3/2}}, \frac{1}{s_{2}} \left(1 + C \frac{e^{L_{+} - L_{-}}}{L_{-}^{2}} \right) \right\}
$$

\n
$$
\theta_{1} \le C e^{s_{1}} (L_{+} - L_{-}) \xi K^{1 + \delta} \frac{e^{2L_{+} - 2L_{-}}}{L_{-}^{3/2}}
$$

\n
$$
\theta_{2} \le C e^{s_{1} + s_{2}} (L_{+} - L_{-}) \frac{\sqrt{\varepsilon_{-}}}{\xi} \frac{e^{L_{+}}}{L_{-}}
$$

\n
$$
\theta_{3} \le C e^{s_{1}} (L_{+} - L_{-}) K^{1 + \delta} \sqrt{\varepsilon_{-}} \frac{e^{2L_{+} - L_{-}}}{L_{-}^{3/2}}
$$

$$
\eta \le Ce^{s_1+s_2}(L_+-L_-)\frac{e^{L_+-L_-}}{\alpha L_-^{\frac{1}{2}}} \max\left\{e^{-L_-}\varepsilon_-^{-1}\max\left\{|C|L_+\sqrt{\varepsilon_+}, L_+\varepsilon_+,\ \delta\sqrt{\varepsilon_+}\sqrt{\alpha L_+}\right\}\right\},\
$$

$$
e^{s_2}\xi^{-1}\max\left\{|C|L_+\sqrt{\frac{\varepsilon_+}{\varepsilon_-}}, L_+\frac{\varepsilon_+}{\sqrt{\varepsilon_-}}, \sqrt{\frac{\varepsilon_+}{\varepsilon_-}}\delta\sqrt{\alpha L_+}, (\alpha L_-)^{-\frac{1}{2}}\max\{|C|^2, \ \varepsilon_+^2, \ \beta\}\right\},\
$$

$$
e^{-L_-}K^{1+\delta}\max\left\{|C|\frac{\sqrt{\varepsilon_+}}{\varepsilon_-}, \ \frac{\varepsilon_+}{\varepsilon_-}, \ \frac{\sqrt{\varepsilon_+}}{\varepsilon_-}\sqrt{\alpha L_+}\right\}\right\}
$$
(128)

We now discuss inequalities [\(49](#page-14-6))–([52\)](#page-15-4) and ([127\)](#page-33-3). We choose s_i , L_{\pm} , ε_{\pm} and K to be the following functions of *L* and ξ , with $0 < \xi < 1 < L$:

$$
L_{-} = L, \quad \varepsilon_{\pm} = c_{\pm} L^2 e^{-2L}, \qquad L_{+} = L + 10\xi, \quad s_1 = C_1 \xi L^{-\frac{3}{2}}, \quad s_2 = C_1 \xi, \quad K = \left[\left(\frac{c_1}{\xi \sqrt{L}} \right)^{\frac{1}{1+\delta}} \right]
$$

with $0 < c_1 < 1 < C_1$ and $0 < c_- < c_+ < 1$ suitably fixed, so as to have $K > 0$. A more stringent relation between ξ and L will be specified below. We take

$$
|C| < c_1 L^2 e^{-2L}, \quad \beta < c_1 L^4 e^{-4L}, \quad \delta < c_1 L^{3/2} e^{-L}
$$

In view of ([128\)](#page-34-0), it is immediate to check that there exist suitable numbers $0 < c_1 < 1 < C_1$ depending only on *c*, *c*₊, *c*_− and α such that inequalities ([49\)](#page-14-6)–([51\)](#page-15-7) and [\(127\)](#page-33-3) are satisfied and

$$
\eta < C_2 L^{-\frac{3}{2}}
$$

An application of GNFT conjugates $\widetilde{X} = N + \widetilde{P}$ to a new vector-field $\widetilde{X}_* = N + \widetilde{P}_*$, with the first component of the vector \widetilde{P}_* being bounded as

$$
\|\widetilde{P}_{\star,1}\|_{u_{\star}} \leq \varepsilon_{-} {\| \widetilde{P}_{\star} \|_{u_{\star}}^{w_{K}}} \leq \varepsilon_{-} \max\left\{2^{-c_{2}L^{3}} {\| \widetilde{P} \|_{u}^{w_{K}}}, \ 2c_{0}K^{-\ell+\delta} {\| \widetilde{P} \|_{u,\ell}^{w_{K}}} \right\}
$$

Using ([122\)](#page-32-1), ([123\)](#page-33-4), that \tilde{P} vanishes outside V_0 , the chain rule and the holomorphy of $P(A, y, \cdot)$,

$$
\|\widetilde{P}\|_{u,\ell}^{w_K} \le 2^{\ell} \|P_{V_{\circ}}\|_{u,\ell}^{w_K} \le 2^{\ell} \frac{\ell!}{s^{\ell}} \|P_{(V_{\circ})s}\|_{u}^{w_K} \qquad \forall \ 0 \le \ell \le \ell_*
$$

where $P_{(V_o)_s}(A, y, \psi)$ denotes the restriction of $P(A, y, \cdot)$ on $(V_o)_s$, while *s* is the analyticity radius of $P(A, y, \cdot)$. We take *s* so small that

$$
|\!|\!| P_{(V_0)_s}|\!|\!|_u^{w_K}\leq 2|\!|\!| P_{V_0}|\!|\!|_u^{w_K}
$$

Then we have

$$
\|\widetilde{P}_{\star,1}\|_{u_{\star}} \leq 2\varepsilon_{-} \max\left\{2^{-c_2 L^3}, c_0 2^{\ell+1} \ell! s^{-\ell} K^{-\ell+\delta}\right\} \|P_{V_0}\|_{u}^{w K}
$$

$$
\leq 2\varepsilon_{-} 2^{-c_2 L^3} \|P_{(V_0)_s}\|_{u}^{w K} \leq 2\varepsilon_{-} 2^{-c_2 L^3} Q^{-1}
$$

where we have used the inequality

$$
c_0 2^{\ell+1} \ell! s^{-\ell} K^{-\ell+\delta} \le 2^{-c_2 L^3} \tag{129}
$$

which will be discussed below. On the other hand, analogous techniques as the ones used to obtain ([126\)](#page-33-1) provide

 $c\epsilon \leq ||P_{1V}||_u \leq \epsilon$, $cL^{\frac{1}{2}}e^{-L} \leq Q^{-1} \leq CL^{\frac{1}{2}}e^{-L}$.

with $\epsilon := CL^3 e^{-4L}$ and $0 < c < 1$. So,

$$
\|\widetilde{P}_{\star,1}\|_{u_{\star}} \leq C_3 2^{-c_3 L^3} \epsilon
$$

which is what we wanted to prove. It remains to discuss ([129\)](#page-34-1). By Stirling and provided that $\ell > 2\delta$, [\(129](#page-34-1)) is implied by

$$
K > 1
$$
, $\left(\frac{4c_0\sqrt{2\pi}\ell^{\frac{3}{2}}}{es\sqrt{K}}\right)^{\ell} \le 2^{-c_2 L^3}$

These inequalities are satisfied by choosing ℓ , ℓ_* and ξ to be related to *L* such in a way that

$$
\ell = \max \left\{ [c_2 L^3] + 1, [2\delta] + 1, \left[\left(\frac{1}{2\pi} \frac{e^2 \sigma^2}{64c_0^2} \right)^{\frac{1}{3}} \right] + 1 \right\}, \quad \ell_* > \ell
$$

$$
K = \left[\left(\frac{c_1}{\xi \sqrt{L}} \right)^{\frac{1}{1+\delta}} \right] > 2\pi \frac{64c_0^2}{e^2 \sigma^2} \ell^3 > 1. \quad \square
$$

CRediT authorship contribution statement

Qinbo Chen: Formal analysis, Writing - review & editing. **Gabriella Pinzari:** Conceptualization, Methodology, Formal analysis, Writing - original draft, Writing - review & editing, Supervision, Project administration, Funding acquisition.

Acknowledgements

The authors are indebted to the anonymous Reviewers for their helpful suggestions. This research is supported by the ERC project 677793 Stable and Chaotic Motions in the Planetary Problem. [Figs.](#page-4-0) [1](#page-4-0) and [2](#page-4-1) have been produced with MATHEMATICA

Appendix A. The elliptic integrals $T_0(\kappa)$ and $j_\beta(\kappa)$

The functions $T_0(\kappa)$ in ([94\)](#page-25-7) and $j_\beta(\kappa)$ in ([113\)](#page-29-1) are complete elliptic integrals. We use this appendix to store some useful material concerning such functions.

First of all, in the definition of $T_0(\kappa)$, we change the integration variable, letting $\xi \to \frac{1}{\xi}$, so as to rewrite

$$
T_0(\kappa) = \int_1^{\frac{1}{G_0(\kappa)}} \frac{d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)}} \quad 0 \neq \kappa < 1 \tag{130}
$$

with $G_0(\kappa)$ as in ([94\)](#page-25-7). Next, we look at the complex-valued function

$$
g(\kappa) := \int_1^{+\infty} \frac{d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)}} \quad \kappa \in \mathbb{R} \setminus \{0, 1\}
$$
 (131)

which is easily related to $T_0(\kappa)$ and $j_0(\kappa)$:

Lemma A.1. *Let* $0 \neq \kappa < 1$ *. Then*

$$
T_0(\kappa) = \begin{cases} g(\kappa) & \text{if } \kappa < 0\\ j_0(\kappa) = \Re g(\kappa) & \text{if } 0 < \kappa < 1 \end{cases} \tag{132}
$$

Proof. We have only to prove that $T_0(\kappa) = j_0(\kappa)$ when $0 < \kappa < 1$, as the other relations are immediate, from (130) (130) (130) and (131) (131) . We write

$$
T_0(\kappa) = \left(\int_0^{+\infty} -\int_0^1 -\int_{\frac{1}{\sqrt{\kappa}}}^{+\infty}\right) \frac{d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)}}.
$$
(133)

We deform the integration path of the first integral at right hand side stretching the real path $\xi \in [0, +\infty)$ to the purely imaginary line $z = iy$, with $y \in [0, +\infty)$, so that

$$
\int_0^\infty \frac{d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)}} = \int_0^\infty \frac{dy}{\sqrt{(y^2 + 1)(1 + \kappa y^2)}} = j_0(\kappa) \tag{134}
$$

Combining this with the observation that, for $0 < \kappa < 1$, $T_0(\kappa)$ and $j_0(\kappa)$ are real while the two latter integrals in ([133\)](#page-35-4) are purely imaginary, we have $T_0(\kappa) = j_0(\kappa)$, as claimed. \Box

Remark [A.1](#page-35-1). It follows from the proof of [Lemma](#page-35-1) A.1 (compare (133) (133) – (134) (134)) that, in the sense of complex integrals, [⎛]

$$
\left(\int_0^1 + \int_{\frac{1}{\sqrt{\kappa}}}^{+\infty} \right) \frac{d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)}} = 0, \qquad \forall \ 0 < \kappa < 1. \tag{135}
$$

This identity can be also directly checked, using proper changes of coordinate combined with cuts of the complex plane, in order to make the square roots single-valued in a neighbourhood of the real axis.

The advantage of looking at $g(\kappa)$ instead of $T_0(\kappa)$ is that the integration path in [\(131](#page-35-3)) is κ -independent, and this turns to be useful when taking *κ*-derivatives. The main result at this respect in this section is the following

Proposition A.1.

• Let $\kappa \in \mathbb{R} \setminus \{0,1\}$ and let $g(\kappa)$ be as in ([131\)](#page-35-3). There exist two positive real numbers $\overline{\mathcal{R}}^*, \overline{\mathcal{S}}^*$ and two *complex numbers*

$$
\overline{\mathcal{R}}(\kappa), \ \overline{\mathcal{S}}(\kappa) \in \begin{cases} \mathbb{R}_+ & \text{if } \kappa < 0 \\ \mathbb{C} & \text{if } 0 < \kappa < 1 \\ \text{if } \kappa & \text{if } \kappa > 1 \end{cases}
$$

with

$$
\Re \overline{\mathcal{R}}(0) = \Re \overline{\mathcal{S}}(0) = 1, \quad 0 \leq \Re \overline{\mathcal{R}}(\kappa) \leq \overline{\mathcal{R}}^*, \quad 0 \leq \Re \overline{\mathcal{S}}(\kappa) \leq \overline{\mathcal{S}}^* \quad \forall \ \kappa \in (-1, 1)
$$

such that

$$
g'(\kappa) = -\frac{\overline{\mathcal{R}}(\kappa)}{2\kappa} \qquad g''(\kappa) = +\frac{\overline{\mathcal{S}}(\kappa)}{4\kappa^2} \qquad \forall \ \kappa \in \mathbb{R} \setminus \{0,1\}.
$$

• Let $\beta \geq 0$; $0 < \kappa < 1$, $j_{\beta}(\kappa)$ as in [\(113](#page-29-1)). There exist two positive numbers \mathcal{R}_{β}^{*} and $\mathcal{S}_{\beta}^{*} \in \mathbb{R}$ and two real *functions* $\mathcal{R}_{\beta}(\kappa)$ *,* $\mathcal{S}_{\beta}(\kappa)$ *satisfying*

$$
\mathcal{R}_{\beta}(0) = \mathcal{S}_{\beta}(0) = \begin{cases} 1 \text{ if } \beta = 0 \\ 0 \text{ if } \beta > 0 \end{cases}
$$

$$
0 \le \mathcal{R}_{\beta}(\kappa) \le \mathcal{R}_{0}^{*}, \quad 0 \le \mathcal{S}_{\beta}(\kappa) \le \mathcal{S}_{0}^{*} \quad \forall \beta \ge 0 \quad \forall \ \kappa \in (0, 1)
$$
 (136)

such that

$$
j'_{\beta}(\kappa) = -\frac{\mathcal{R}_{\beta}(\kappa)}{2\kappa} \qquad j''_{\beta}(\kappa) = +\frac{\mathcal{S}_{\beta}(\kappa)}{4\kappa^2} \qquad \forall \ 0 < \kappa < 1 \, .
$$

Proof. We prove the first statement. We distinguish two cases.

Case 1: κ < 0 or κ > 1. The integral takes real values when κ < 0; purely imaginary ones when κ > 1:

→ +∞∞

$$
g(\kappa) = \begin{cases} \int_1^{+\infty} \frac{d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)}} & \kappa < 0\\ -\mathrm{i} \int_1^{+\infty} \frac{d\xi}{\sqrt{(\xi^2 - 1)(\kappa \xi^2 - 1)}} & \kappa > 1 \end{cases}
$$

The function under the integral is bounded above by $\frac{1}{\min\{1, \sqrt{|\kappa|}\}\sqrt{\xi^4-1}}$ when $\kappa < 0$; by $\frac{1}{\xi^2-1}$ when $\kappa > 1$. Both such bounds are integrable. Then it is possible to derive under the integral, and we obtain

$$
g'(\kappa) = \begin{cases} \frac{1}{2} \int_{1}^{+\infty} \frac{\xi^2 d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)^3}} & \kappa < 0\\ \frac{1}{2} \int_{1}^{+\infty} \frac{\xi^2 d\xi}{\sqrt{(\xi^2 - 1)(\kappa \xi^2 - 1)^3}} & \kappa > 1 \end{cases}
$$

and

$$
g''(\kappa) = \begin{cases} \frac{3}{4} \int_1^{+\infty} \frac{\xi^4 d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)^5}} & \kappa < 0 \\ -\frac{3}{4} \int_1^{+\infty} \frac{\xi^4 d\xi}{\sqrt{(\xi^2 - 1)(\kappa \xi^2 - 1)^5}} & \kappa > 1 \end{cases}
$$

We change variable $1 - \kappa \xi^2 = \eta$ when $\kappa < 0$, $\kappa \xi^2 - 1 = \eta$ when $\kappa > 1$ and rewrite

$$
g'(\kappa) \begin{cases} \frac{1}{4|\kappa|} \int_{1-\kappa}^{+\infty} \sqrt{\frac{\eta-1}{(\eta-1+\kappa)\,\eta^3}} \, d\eta & \kappa < 0 \\ \frac{\mathrm{i}}{4|\kappa|} \int_{\kappa-1}^{+\infty} \sqrt{\frac{\eta+1}{(\eta+1-\kappa)\,\eta^3}} \, d\eta & \kappa > 1 \end{cases}
$$

and

$$
g''(\kappa) = \begin{cases} \frac{3}{8|\kappa|^2} \int_{1-\kappa}^{+\infty} (\eta - 1) \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^5}} d\eta & \kappa < 0\\ -\frac{3}{8|\kappa|^2} \int_{\kappa - 1}^{+\infty} (\eta + 1) \sqrt{\frac{\eta + 1}{(\eta + 1 - \kappa)\eta^5}} d\eta & \kappa > 1 \end{cases}
$$

so we take

$$
\overline{\mathcal{R}}(\kappa) = \begin{cases} \frac{1}{2} \int_{1-\kappa}^{+\infty} \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa) \eta^3}} d\eta & \kappa < 0 \\ \frac{1}{2} \int_{\kappa - 1}^{+\infty} \sqrt{\frac{\eta + 1}{(\eta + 1 - \kappa) \eta^3}} d\eta & \kappa > 1 \end{cases}
$$

and

$$
\overline{S}(\kappa) = \begin{cases} \frac{3}{2} \int_{1-\kappa}^{+\infty} (\eta - 1) \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa) \eta^5}} d\eta & \kappa < 0 \\ -\frac{3}{2} \mathbf{i} \int_{\kappa - 1}^{+\infty} (\eta + 1) \sqrt{\frac{\eta + 1}{(\eta + 1 - \kappa) \eta^5}} d\eta & \kappa > 1 \end{cases}
$$

Observe that, if $-1 < \kappa < 0$,

$$
\Re \overline{\mathcal{R}}(0^-) = 1 = \Re \overline{\mathcal{S}}(0^-)
$$

and

$$
0 \leq \Re \overline{\mathcal{R}}(\kappa) = \frac{1}{2} \int_{1-\kappa}^{+\infty} \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^3}} d\eta \leq \frac{1}{2} \int_{1}^{+\infty} \sqrt{\frac{\eta - 1}{(\eta - 2)\eta^3}} d\eta
$$

$$
0 \leq \Re \overline{\mathcal{S}}(\kappa) \leq \frac{3}{2} \int_{1}^{+\infty} (\eta - 1) \sqrt{\frac{\eta - 1}{(\eta - 2)\eta^5}} d\eta.
$$

Case 2: $0 < \kappa < 1$. We split $g(\kappa)$ into its real and imaginary parts. Using ([132](#page-35-5)) and ([135\)](#page-36-2), we obtain

$$
g(\kappa) = +\int_{1}^{\frac{1}{\sqrt{\kappa}}} \frac{d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)}} + \int_{\frac{1}{\sqrt{\kappa}}}^{+\infty} \frac{d\xi}{\sqrt{(\xi^2 - 1)(1 - \kappa \xi^2)}}
$$

= +\int_{0}^{\infty} \frac{dy}{\sqrt{(y^2 + 1)(1 + \kappa y^2)}} + i \int_{0}^{1} \frac{d\xi}{\sqrt{(1 - \xi^2)(1 - \kappa \xi^2)}}

Notice that also in this case, the functions under the integrals may be bounded by integrable functions: $\frac{1}{\sqrt{\kappa(y^2+1)}}$ for the former; $\frac{1}{\sqrt{1-\kappa(y^2+1)}}$ $\frac{1}{1-\xi^2} \frac{1}{\sqrt{1-\xi^2}}$ $\frac{1}{1-\kappa}$ in the latter. Again, we can derive under the integral, and obtain

$$
g'(\kappa) = -\frac{1}{2} \int_0^\infty \frac{y^2 dy}{\sqrt{(y^2 + 1)(1 + \kappa y^2)^3}} + \frac{1}{2} \int_0^1 \frac{\xi^2 d\xi}{\sqrt{(1 - \xi^2)(1 - \kappa \xi^2)^3}}
$$

and

$$
g''(\kappa) = +\frac{3}{4} \int_0^\infty \frac{y^4 dy}{\sqrt{(y^2 + 1)(1 + \kappa y^2)^5}} + \frac{3}{4} \mathbf{i} \int_0^1 \frac{\xi^4 d\xi}{\sqrt{(1 - \xi^2)(1 - \kappa \xi^2)^5}}
$$

Then, letting $1 + \kappa y^2 = \eta$ in the first respective integrals, and $1 - \kappa \xi^2 = \eta$ in the second ones,

$$
g'(\kappa) = -\frac{1}{4\kappa} \int_1^{+\infty} \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^3}} + \frac{1}{4\kappa} \int_{1-\kappa}^1 \sqrt{\frac{1 - \eta}{(\eta - 1 + \kappa)\eta^3}} d\eta
$$

and

$$
g''(\kappa) = +\frac{3}{8\kappa^2} \int_1^{+\infty} (\eta - 1) \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^5}} + \frac{3}{8\kappa^2} \int_{1-\kappa}^1 (1 - \eta) \sqrt{\frac{1 - \eta}{(\eta - 1 + \kappa)\eta^5}} d\eta
$$

and we can take

$$
\overline{\mathcal{R}}(\kappa) := \frac{1}{2} \int_1^{+\infty} \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^3}} - \frac{1}{2} \int_{1-\kappa}^1 \sqrt{\frac{1 - \eta}{(\eta - 1 + \kappa)\eta^3}} d\eta
$$

and

$$
\overline{S}(\kappa) = \frac{3}{2} \int_1^{+\infty} (\eta - 1) \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^5}} + \frac{3}{2} i \int_{1-\kappa}^1 (1 - \eta) \sqrt{\frac{1 - \eta}{(\eta - 1 + \kappa)\eta^5}} d\eta
$$

Notice now that

$$
\Re \overline{\mathcal{R}}(0^+)=1=\Re \overline{\mathcal{S}}(0^+)
$$

and

$$
0 \leq \Re \overline{\mathcal{R}}(\kappa) = \frac{1}{2} \int_1^{+\infty} \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^3}} \leq \frac{1}{2} \int_1^{+\infty} \eta^{-\frac{3}{2}} = 1
$$

and

$$
0 \leq \Re \overline{S}(\kappa) = \frac{3}{2} \int_{1}^{+\infty} (\eta - 1) \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^{5}}} \leq \frac{3}{2} \int_{1}^{+\infty} \eta^{-\frac{5}{2}} = 1
$$

for all $0 < \kappa < 1$.

The proof for $j_\beta(\kappa)$ is completely analogous to the case 2 above (with the difference that we do not have the imaginary part in that case). One finds

$$
\mathcal{R}_{\beta}(\kappa) = \frac{1}{2} \int_{1}^{+\infty} \frac{1}{1 + \frac{\beta}{\kappa}(\eta - 1)} \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^3}}
$$

and

$$
\mathcal{S}_{\beta}(\kappa) = \frac{3}{2} \int_{1}^{+\infty} \frac{\eta - 1}{1 + \frac{\beta}{\kappa}(\eta - 1)} \sqrt{\frac{\eta - 1}{(\eta - 1 + \kappa)\eta^5}}
$$

which verify (136) (136) . \square

Appendix B. Technicalities

In this section of the appendix we prove the bounds in (125) (125) , (126) (126) (126) and [Lemma](#page-32-2) [6.1.](#page-32-2)

Proof of [\(125](#page-33-2)). We let

$$
\mathcal{E}_{*}(A_{*}, \mathbf{r}_{*}) := \mathcal{E} \circ \phi_{aa}(A_{*}, \mathbf{r}_{*}), \quad \mathcal{E}_{\circ}(A, y) := \mathcal{E}_{*} \circ \phi_{\text{rg}}(A, y) = \mathcal{E}_{*}(A, \mathbf{r}_{\circ}(A, y)) \n\mathcal{B}_{*}(A_{*}, \mathbf{r}_{*}) := \mathcal{B} \circ \phi_{aa}(A_{*}, \mathbf{r}_{*}), \quad \mathcal{B}_{\circ}(A, y) := \mathcal{B}_{*} \circ \phi_{\text{rg}}(A, y) = \mathcal{B}_{*}(A, \mathbf{r}_{\circ}(A, y)) \nT_{\mathbf{p},*}(A_{*}, \mathbf{r}_{*}) := T_{\mathbf{p}} \circ \phi_{aa}(A_{*}, \mathbf{r}_{*}), \quad T_{\mathbf{p},\circ}(A, y) := T_{\mathbf{p},*} \circ \phi_{\text{rg}}(A, y) = T_{\mathbf{p},*}(A, \mathbf{r}_{\circ}(A, y)) \nF_{\circ}(A, y) := F_{*} \circ \phi_{\text{rg}}(A, y) = F_{*}(A, \mathbf{r}_{\circ}(A, y)) = F(\mathcal{E}_{\circ}(A, y), \mathbf{r}_{\circ}(A, y)) \nF_{*,1,\circ}(A, y) := F_{*,1} \circ \phi_{\text{rg}}(A, y) = F_{*,1}(A, \mathbf{r}_{\circ}(A, y))
$$
\n(137)

(with F, T_p , β as in ([117\)](#page-31-0), ([93\)](#page-25-6)–[\(94](#page-25-7)), [\(81](#page-23-1))) so as to write, more rapidly,

$$
v(A, y; c) = e^{-y} \sqrt{2(c - \alpha F_o(A, y))}
$$
, $\omega(A, y; c) = \alpha e^{-2y} F_{*,1,0}(A, y)$

and

$$
\frac{1}{v} = \frac{e^y}{\sqrt{2(c - \alpha F_\circ(A, y))}}, \quad \frac{\partial_A v}{v} = -\frac{\alpha}{2} \frac{\partial_A F_\circ(A, y)}{c - \alpha F_\circ(A, y)}, \quad \frac{\partial_y v}{v} = -1 - \frac{\alpha}{2} \frac{\partial_y F_\circ(A, y)}{c - \alpha F_\circ(A, y)},
$$
\n
$$
\frac{\omega}{v} = \alpha e^{-y} \frac{F_{*,1,\circ}(A, y)}{\sqrt{2(c - \alpha F_\circ(A, y))}}, \quad \frac{\partial_A \omega}{v} = \alpha e^{-y} \frac{\partial_A F_{*,1,\circ}(A, y)}{\sqrt{2(c - \alpha F_\circ(A, y))}}
$$
\n
$$
\frac{\partial_y \omega}{v} = -2\alpha e^{-y} \frac{F_{*,1,\circ}(A, y)}{\sqrt{2(c - \alpha F_\circ(A, y))}} + \alpha e^{-y} \frac{\partial_y F_{*,1,\circ}(A, y)}{\sqrt{2(c - \alpha F_\circ(A, y))}}
$$
\n(138)

We evaluate the right hand sides of (138) (138) , by means of the chain rule:

$$
F_{*,1,\circ} = \frac{F_{\mathcal{E}}(\mathcal{E}_{\circ}, r_{\circ})}{\hat{T}_{p,\circ}}, \quad \partial_{A} F_{*,1,\circ} = \frac{\partial_{\mathcal{E}}^{2} F(\mathcal{E}_{\circ}, r_{\circ}) \partial_{A} \mathcal{E}_{\circ} + \partial_{\mathcal{E}r}^{2} F_{s}'(A)}{\hat{T}_{p,\circ}} - \frac{\partial_{\mathcal{E}} \hat{T}_{p} \partial_{A} \mathcal{E}_{\circ} + \partial_{r} \hat{T}_{p} r'_{s}(A)}{\hat{T}_{p,\circ}}
$$

$$
\partial_{y} F_{*,1,\circ} = \frac{\partial_{\mathcal{E}}^{2} F(\mathcal{E}_{\circ}, r_{\circ}) \partial_{y} \mathcal{E}_{\circ} - e^{-y} \partial_{\mathcal{E}r}^{2} F}{\hat{T}_{p,\circ}} - \frac{\partial_{\mathcal{E}} \hat{T}_{p} \partial_{y} \mathcal{E}_{\circ} - e^{-y} \partial_{r} \hat{T}_{p}}{\hat{T}_{p,\circ}^{2}} F_{\mathcal{E}}
$$

$$
\partial_{A} F_{\circ} = F_{\mathcal{E}}(\mathcal{E}_{\circ}, r_{\circ}) \partial_{A} \mathcal{E}_{\circ} + F_{r}(\mathcal{E}_{\circ}, r_{\circ}) r'_{s}(A) , \quad \partial_{y} F_{\circ} = F_{\mathcal{E}}(\mathcal{E}_{\circ}, r_{\circ}) \partial_{y} \mathcal{E}_{\circ} - e^{-y} F_{r}(\mathcal{E}_{\circ}, r_{\circ})
$$

where we have neglected to write the arguments (e.g., $F_{\mathcal{E}}(\mathcal{E}_{o}(A, y), r_{o}(A, y))$, etc.) and where, again by the $chain¹² rule,$ $chain¹² rule,$ $chain¹² rule,$

$$
\partial_A \mathcal{E}_\circ = \frac{1}{\hat{T}_{\mathbf{p},\circ}(A,y)} - \mathbf{r}'_\mathbf{s}(A) \mathcal{B}_\circ(A,y) , \quad \partial_y \mathcal{E}_\circ = e^{-y} \mathcal{B}_\circ(A,y)
$$

As a result of the discussions in Sections [4](#page-25-0), [5](#page-28-5) and [Appendix](#page-35-0) [A](#page-35-0), the functions F, T_p and β in [\(137](#page-39-3)) verify

$$
C' \log |\kappa|^{-1} \leq |\mathbf{F}|, |T_{\mathbf{p}}|, |1/\mathcal{B}| \leq C \log |\kappa|^{-1}, C' |\kappa|^{-1} \leq |\partial_{\mathcal{E},\mathbf{r}} \mathbf{F}|, |\partial_{\mathcal{E},\mathbf{r}} \mathbf{F}|, |\partial_{\mathcal{E},\mathbf{r}} \mathbf{B}| \leq C |\kappa|^{-1}
$$

$$
C' |\kappa|^{-2} \leq |\partial_{\mathcal{E},\mathbf{r}}^2 \mathbf{F}|, |\partial_{\mathcal{E},\mathbf{r}}^2 \mathbf{F}|, |\partial_{\mathcal{E},\mathbf{r}} \mathbf{B}| \leq C |\kappa|^{-2}
$$

with $\kappa = O(\mathcal{E} - r) = O(e^{-y})$ so that

$$
C'L_{-} \leq |F_{\circ}|, |T_{p,\circ}|, |\mathcal{B}_{\circ}| \leq CL_{+}
$$

\n
$$
C'e^{L_{-}} \leq |\partial_{\mathcal{E},r}F(\mathcal{E}_{\circ},r_{\circ})|, |\partial_{\mathcal{E},r}T_{p}(\mathcal{E}_{\circ},r_{\circ})|, |\partial_{\mathcal{E},r}\mathcal{B}(\mathcal{E}_{\circ},r_{\circ})| \leq Ce^{L_{+}}
$$

\n
$$
C'e^{2L_{-}} \leq |\partial_{\mathcal{E},r}^{2}F(\mathcal{E}_{\circ},r_{\circ})|, |\partial_{\mathcal{E},r}^{2}T_{p}(\mathcal{E}_{\circ},r_{\circ})|, |\partial_{\mathcal{E},r}^{2}\mathcal{B}(\mathcal{E}_{\circ},r_{\circ})| \leq Ce^{2L_{+}}
$$
\n(139)

¹² Use $\partial_{A_*} \mathcal{E}_* = \frac{1}{\partial A_{\varepsilon}} \circ \phi_{aa} = \frac{1}{\hat{T}_{p,*}(A_*,r_*)}$ and $\partial_{r_*} \mathcal{E}_* = -\frac{\partial A_r}{\partial A_{\varepsilon}} \circ \phi_{aa} = -\mathcal{B}_*(A_*,r_*),$ implied by ([84\)](#page-24-1).

Finally, using (86) (86) – (87) (87) , one has

$$
\mathbf{r}'_{\mathbf{s}}(A) = \left. \frac{1}{\mathcal{A}'_{\mathbf{s}}(\mathbf{r})} \right|_{\mathbf{r} = \mathbf{r}_{\mathbf{s}}(A)} = \pi \sqrt{\frac{\mathbf{r}_{\mathbf{s}}(A)}{2 - \mathbf{r}_{\mathbf{s}}(A)}}
$$
\n
$$
|\mathbf{r}'_{\mathbf{s}}(A)| \le \frac{C}{\sqrt{\varepsilon_{-}}} \tag{140}
$$

whence

and collecting the bounds above into ([138\)](#page-39-1), we find [\(125\)](#page-33-2).

Proof of ([126](#page-33-1)). We use some results from Section [4.](#page-25-0) Taking in count [\(89](#page-25-5)), ([90\)](#page-25-3), ([96\)](#page-25-8) and ([97\)](#page-26-4) and letting

$$
\sigma_*(A, \mathbf{r}_*) := \sigma \circ \phi_{aa}(A, \mathbf{r}_*), \quad \kappa_*(A, \mathbf{r}_*) := \kappa \circ \phi_{aa}(A, \mathbf{r}_*)
$$

$$
\hat{T}_{p,*}(A, \mathbf{r}_*) := \sigma_*(A, \mathbf{r}_*)\hat{\tau}_{p,*}(A, \mathbf{r}_*) := \frac{T_p(\kappa_*(A, \mathbf{r}_*))}{\pi},
$$

we have that

$$
G_*(A, r_*, \psi) = \sigma_*(A, r_*) \check{G}(\kappa_*(A, r_*), \hat{T}_{p,*}(A, r_*)\psi)
$$
\n(141)

$$
\rho_*(A, \mathbf{r}_*, \psi) = \frac{\sigma_*(A, \mathbf{r}_*)}{\mathbf{r}_*} \breve{\rho}(\kappa_*(A, \mathbf{r}_*), \hat{T}_{\mathbf{p},*}(A, \mathbf{r}_*)\psi)
$$
(142)

By the chain rule

$$
G_{*,3}(A, r_*, \psi) = \partial_{\psi} G_*(A, r_*, \psi)
$$

= $\sigma_*(A, r_*) \partial_{\psi} \breve{G}(\kappa_*(A, r_*), \hat{T}_{p,*}(A, r_*)\psi)$
= $\sigma_*(A, r_*) \hat{T}_{p,*}(A, r_*) \breve{G}_3(\kappa_*(A, r_*), \hat{T}_{p,*}(A, r_*)\psi)$ (143)

Similarly,

$$
\rho_{*,3}(A, \mathbf{r}_*, \psi) = \frac{\sigma_*(A, \mathbf{r}_*)}{\mathbf{r}_*} \hat{T}_{\mathbf{p},*}(A, \mathbf{r}_*) \check{\rho}_3(\kappa_*(A, \mathbf{r}_*), \hat{T}_{\mathbf{p},*}(A, \mathbf{r}_*)\psi)
$$
(144)

By the definitions in (121) (121) – (123) (123) , if

$$
\widetilde{\mathbb{P}}_{\varepsilon,\xi} := \bigcup_{(A,y)\in\mathbb{A}_{\varepsilon_{-}}\times\mathbb{Y}_{\xi}} \{A\} \times \{y\} \times V_{\circ}(A,y;\delta)
$$

then

$$
\|\tilde{P}_i\|_{\mathbb{P}_{\varepsilon,\xi}} \le \|P_i(A,y,\psi)\|_{\widetilde{\mathbb{P}}_{\varepsilon,\xi}}
$$

so we proceed to uniformly upper bound the $|P_i|$ in $\mathbb{P}_{\varepsilon,\xi}$.

• By [Proposition](#page-26-1) [4.1](#page-26-1),

$$
|\breve{\mathcal{G}}(\kappa,\theta)|, |\breve{\mathcal{G}}_3(\kappa,\theta)| \leq C
$$

• By ([141\)](#page-40-0), ([143\)](#page-40-1) and [\(139\)](#page-39-4),

$$
|\mathcal{G}_{*}(A,\mathbf{r}_{\circ}(A,y),\psi)| \le C\sqrt{\varepsilon_{+}} \ , \quad |\mathcal{G}_{*,3}(A,\mathbf{r}_{\circ}(A,y),\psi)| \le CL_{+}\sqrt{\varepsilon_{+}} \tag{145}
$$

• Both the inequalities in [\(145](#page-40-2)) hold (with the same proof) if $r \circ (A, y)$ is replaced by a generic $r \in \Im r_*(A, \cdot)$. Then,

$$
|\mathcal{G}_{*,1}(A,r_{\circ}(A,y),\psi)| \leq C \frac{\sqrt{\varepsilon_+}}{\varepsilon_-}
$$

• Similarly, by [\(142](#page-40-3)), $|\rho_*(A, r_*, \psi)| \leq \sqrt{\varepsilon_+}$, hence

$$
|\rho_{*,1}(A,r_{\circ}(A,y),\psi)| \leq C \frac{\sqrt{\varepsilon_+}}{\varepsilon_-}
$$

• The function $\mathcal{Y}(A, y, \psi; c)$ defined in [\(118](#page-31-1)) verifies

$$
|\mathcal{Y}|\leq C\sqrt{\alpha\,L_{+}}
$$

having used the simplifying assumption ([127\)](#page-33-3).

 \bullet By [Lemma](#page-32-2) [6.1](#page-32-2),

$$
|\rho_{*,3}(A, \mathbf{r}_{\circ}(A, y), \psi)| \le C \sqrt{\varepsilon_+} \, \delta
$$

- Recall (140) (140) .
- Using the previous bounds into (119) (119) and writing the last term in the definition of P_2 as

$$
e^{-y} \frac{\frac{(C - G_*(A, r_0(A, y), \psi))^2}{2r_0(A, y)^2} - \frac{\beta}{r_0(A, y)}}{\mathcal{Y}(A, y, \psi; c) + \sqrt{2(c - \alpha F_*(A, r_0(A, y)))}}
$$

we obtain, for $||P_i||_{\widetilde{\mathbb{P}}_{\varepsilon,\xi}}$, the bounds at the right hand sides of ([126\)](#page-33-1).

Proof of [Lemma](#page-32-2) [6.1.](#page-32-2) Recall [\(144](#page-40-5)) and the expression of $\breve{\rho}_{\theta}(\kappa, \theta)$ in Eq. ([105\)](#page-27-6). Equation

$$
\breve{\rho}_{\theta}(\kappa,\theta) = \breve{G}(\kappa,\theta)^2 - \mathcal{A}(\kappa) = 0 \tag{146}
$$

has a unique solution

$$
0 < \theta_*(\kappa) < T_0(\kappa)
$$

if and only if

$$
G_0(\kappa)^2 < \mathcal{A}(\kappa) < 1\,.
$$

On the other hand, it is immediate to check that such inequality holds for all $0 \neq \kappa < 1$. Indeed, if $0 < \kappa < 1$, then $G_0(\kappa)^2 = \kappa$ and we have

$$
\kappa < \mathcal{A}(\kappa) = \frac{\int_{\sqrt{\kappa}}^1 \frac{\xi^2 d\xi}{\sqrt{(1-\xi^2)(\xi^2-\kappa)}}}{\int_{\sqrt{\kappa}}^1 \frac{d\xi}{\sqrt{(1-\xi^2)(\xi^2-\kappa)}}} < 1.
$$

If $\kappa < 0$, then $G_0(\kappa)^2 = 0$ and we have

$$
0 < \mathcal{A}(\kappa) = \frac{\int_0^1 \frac{\xi^2 d\xi}{\sqrt{(1-\xi^2)(\xi^2 - \kappa)}}}{\int_0^1 \frac{d\xi}{\sqrt{(1-\xi^2)(\xi^2 - \kappa)}}} < 1
$$

As a consequence of the formula ([146\)](#page-41-0), combined with the continuity of $\check{G}(\kappa, \cdot)$, we find $V(\kappa, \delta) \subset (0, T_0(\kappa))$ $(\text{and } V'(\kappa; \delta) \subset (0, T_0(\kappa)) \text{ when } \kappa < 0) \text{ such that}$

$$
|\breve{\rho}_3(\kappa,\theta)| \leq \frac{C\delta}{T_{\rm p}(\kappa)} \qquad \forall \ \theta \in V(\kappa;\delta) \quad \left(\forall \ \theta \in V(\kappa;\delta) \cup V'(\kappa;\delta)\right)
$$

which implies [\(120](#page-32-4)), after using ([144\)](#page-40-5). \square

Appendix C. Supplementary data

Supplementary material related to this article can be found online at [https://doi.org/10.1016/j.na.2021.](https://doi.org/10.1016/j.na.2021.112306) [112306.](https://doi.org/10.1016/j.na.2021.112306)

References

- [1] [V.M. Alekseev, Final motions in the three-body problem and symbolic dynamics, Uspekhi Mat. Nauk. 36 \(4\(220\)\) \(1981\)](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb1) [161–176, 248.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb1)
- V.M. Alexeyev, Sur l'allure finale du mouvement dans le problème des trois corps, in: Actes Du Congrès International Des Mathématiciens (Nice, 1970), Tome, Vol. 2, 1971, pp. 893–907.
- [3] [V.I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Math.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb3) [Surv. 18 \(6\) \(1963\) 85–191.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb3)
- [4] [S. Bolotin, Second species periodic orbits of the elliptic 3 body problem, Celestial Mech. Dynam. Astronom. 93 \(1–4\)](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb4) [\(2005\) 343–371.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb4)
- [5] [S. Bolotin, Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst. 14 \(2\) \(2006\) 235–260.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb5)
- [6] [S. Bolotin, Symbolic dynamics of almost collision orbits and skew products of symplectic maps, Nonlinearity 19 \(9\)](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb6) [\(2006\) 2041–2063.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb6)
- [7] [S. Bolotin, R.S. MacKay, Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb7) [problem, Celestial Mech. Dynam. Astronom. 94 \(4\) \(2006\) 433–449.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb7)
- [8] S. Bolotin, P. Negrini, Variational approach to second species periodic solutions of Poincaré of the 3 body problem, [Discrete Contin. Dyn. Syst. 33 \(3\) \(2013\) 1009–1032.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb8)
- [9] F. Cardin, M. Guzzo, Integrability of the spatial restricted three-body problem near collisions. [arXiv:1809.01257](http://arxiv.org/abs/1809.01257).
- [10] [F. Cardin, M. Guzzo, Integrability of the spatial restricted three-body problem near collisions \(an announcement\), Lincei](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb10) [Mat. Appl. 30 \(2019\) 195204.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb10)
- [11] [A. Celletti, L. Chierchia, Construction of stable periodic orbits for the spin–orbit problem of celestial mechanics, Regul.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb11) [Chaotic Dyn. 3 \(3\) \(1998\) 107–121, J. Moser at 70 \(Russian\).](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb11)
- [12] J. Chazy, Sur l'allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment, Ann. Sci. École [Norm. Sup. \(3\) 39 \(1922\) 29–130.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb12)
- [13] [A. Chenciner, J. Llibre, A note on the existence of invariant punctured tori in the planar circular restricted three-body](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb13) [problem, Ergodic Theory Dynam. Syst. 8 \(*\(Charles Conley Memorial Issue\)\) \(1988\) 63–72.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb13)
- [14] [L. Chierchia, G. Pinzari, Planetary Birkhoff normal forms, J. Mod. Dyn. 5 \(4\) \(2011\) 623–664.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb14)
- [15] L. Chierchia, G. Pinzari, The planetary *N*[-body problem: symplectic foliation, reductions and invariant tori, Invent.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb15) [Math. 186 \(1\) \(2011\) 1–77.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb15)
- [16] [S. Di Ruzza, J. Daquin, G. Pinzari, Symbolic dynamics in a binary asteroid system, Commun. Nonlinear Sci. Numer.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb16) [Simul. 91 \(16\) \(2020\) 105414.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb16)
- [17] J. Féjoz, Quasiperiodic motions in the planar three-body problem, J. Differential Equations 183 (2) (2002) 303–341.
- [18] J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory [Dynam. Syst. 24 \(5\) \(2004\) 1521–1582.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb18)
- [19] S. Fleischer, A. Knauf, Improbability of collisions in *n*[-body systems, Arch. Ration. Mech. Anal. 234 \(3\) \(2019\)](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb19) [1007–1039.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb19)
- [20] S. Fleischer, A. Knauf, Improbability of wandering orbits passing through a sequence of Poincaré surfaces of decreasing [size, Arch. Ration. Mech. Anal. 231 \(3\) \(2019\) 1781–1800.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb20)
- [21] [E. Freitag, R. Busam, Complex Analysis, Universitext. Springer-Verlag, Berlin, 2005, Translated from the 2005 German](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb21) [edition by Dan Fulea.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb21)
- [22] [A. Giorgilli, U. Locatelli, M. Sansottera, Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celestial](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb22) [Mech. Dynam. Astronom. 104 \(1–2\) \(2009\) 159–173.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb22)
- [23] [M. Guardia, V. Kaloshin, J. Zhang, Asymptotic density of collision orbits in the restricted circular planar 3 body](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb23) [problem, Arch. Ration. Mech. Anal. 233 \(2\) \(2019\) 799–836.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb23)
- [24] [M. Guzzo, L. Chierchia, G. Benettin, The steep Nekhoroshev's theorem, Comm. Math. Phys. 342 \(2\) \(2016\) 569–601.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb24)
- [25] [M. Guzzo, C. Efthymiopoulos, R.I. Paez, Semi-analytic computations of the speed of arnold diffusion along single](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb25) [resonances in a priori stable hamiltonian systems, J. Nonlinear Sci. 30 \(3\) \(2020\) 851–901.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb25)
- [26] J. Henrard, On Poincaré's second species solutions, Celestial Mech. 21 (1) (1980) 83–97.
- [27] [J. Laskar, P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb27) [Mech. Dynam. Astronom. 62 \(3\) \(1995\) 193–217.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb27)
- [28] T. Levi-Civita, Sur la régularisation qualitative du problème restreint des trois corps, Acta Math. 30 (1906) 305–327.
- [29] [U. Locatelli, A. Giorgilli, Invariant tori in the Sun-Jupiter-Saturn system, Discrete Contin. Dyn. Syst. Ser. B 7 \(2\)](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb29) [\(2007\) 377–398, \(electronic\).](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb29)
- [30] J.P. Marco, L. Niederman, Sur la construction des solutions de seconde espèce dans le problème plan restreint des trois corps, Ann. Inst. H. Poincaré Phys. Théor. 62 (3) (1995) 211–249.
- [31] [R.B. Moeckel, Orbits near triple collision in the three-body problem, in: ProQuest LLC, Ann Arbor, MI \(Thesis \(Ph.D.\),](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb31) [The University of Wisconsin - Madison, 1980.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb31)
- [32] [R. Moeckel, Orbits of the three-body problem which pass infinitely close to triple collision, Amer. J. Math. 103 \(6\)](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb32) [\(1981\) 1323–1341.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb32)
- [33] [R. Moeckel, Chaotic dynamics near triple collision, Arch. Ration. Mech. Anal. 107 \(1\) \(1989\) 37–69.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb33)
- [34] [R. Moeckel, Symbolic dynamics in the planar three-body problem, Regul. Chaotic Dyn. 12 \(5\) \(2007\) 449–475.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb34)
- [35] [J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Natl. Acad. Sci.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb35) [USA 47 \(1961\) 1824–1831.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb35)
- [36] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. [Kl. II 1962 \(1962\) 1–20.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb36)
- [37] [J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. \(2\) 63 \(1956\) 20–63.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb37)
- [38] N.N. Nehorošev, An exponential estimate of the time of stability of nearly integrable hamiltonian systems, Uspehi Mat. [Nauk. 32 \(6\(198\)\) \(1977\) 5–66, 287.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb38)
- [39] G. Pinzari, On the Kolmogorov Set for Many–Body Problems (Ph.D. thesis), Università Roma Tre, 2009.
- [40] [G. Pinzari, A first integral to the partially averaged newtonian potential of the three-body problem, Celestial Mech.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb40) [Dynam. Astronom. 131 \(5\) \(2019\) 22.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb40)
- [41] [G. Pinzari, Euler Integral and perihelion librations, Discrete Contin. Dyn. Syst. 40 \(12\) \(2020\) 6919–6943.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb41)
- [42] [G. Pinzari, Perihelion librations in the secular three-body problem, J. Nonlinear Sci. 30 \(4\) \(2020\) 1771–1808.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb42)
- [43] H. Poincaré, Les Méthodes Nouvelles de la MéCanique Céleste, Gauthier-Villars, Paris, 1892.
- [44] J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z. 213 (2) (1993) 187–216.
- [45] D.G. Saari, Improbability of collisions in Newtonian gravitational systems. Trans. Amer. Math. Soc. 162:267–271; erratum, ibid. 168 (1972), 521, 1971.
- [46] [D.G. Saari, Improbability of collisions in Newtonian gravitational systems, II. Trans. Amer. Math. Soc. 181 \(1973\)](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb46) [351–368.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb46)
- [47] [M. Volpi, U. Locatelli, M. Sansottera, A reverse KAM method to estimate unknown mutual inclinations in exoplanetary](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb47) [systems, Celestial Mech. Dynam. Astronom. 130 \(5\) \(2018\) 36.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb47)
- [48] [L. Zhao, Quasi-periodic almost-collision orbits in the spatial three-body problem, Comm. Pure Appl. Math. 68 \(12\)](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb48) [\(2015\) 2144–2176.](http://refhub.elsevier.com/S0362-546X(21)00041-9/sb48)