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Abstract: Automation plays an important role in modern transportation and handling systems, e.g.,
to control the routes of aircraft and ground service equipment in airport aprons, automated guided
vehicles in port terminals or in public transportation, handling robots in automated factories, drones
in warehouse picking operations, etc. Information technology provides hardware and software
(e.g., collision detection sensors, routing and collision avoidance logic) that contribute to safe and
efficient operations, with relevant social benefits in terms of improved system performance and
reduced accident rates. In this context, we address the design of efficient collision-free routes in a
minimum-size routing network. We consider a grid and a set of vehicles, each moving from the
bottom of the origin column to the top of the destination column. Smooth nonstop paths are required,
without collisions nor deviations from shortest paths, and we investigate the minimum number of
horizontal lanes allowing for such routing. The problem is known as fleet quickest routing problem
on grids. We propose a mathematical formulation solved, for small instances, through standard
solvers. For larger instances, we devise heuristics that, based on known combinatorial properties,
define priorities, and design collision-free routes. Experiments on random instances show that our
algorithms are able to quickly provide good quality solutions.

Keywords: automated transportation network; collision-free routing; grid network; optimization
algorithm; integer linear programming; heuristics

1. Introduction

Modern transportation and handling systems greatly benefit from information tech-
nology (IT) and automation, as demonstrated by the consolidated use of sensor-equipped
transport networks, automated guided vehicles (AGVs), self-moving robots, as well as
the growing adoption of drones, in many industrial, logistic and public transportation
environments. Typical examples can be found in railway transportation systems, where
optic or acoustic sensors on trains and tracks, integrated by collision detection and avoid-
ance logic, support safe and efficient operations. IT also supports taxiways operations in
airports airside [1], where aircraft, passenger buses as well as many ground service vehicles
(like baggage dollies, passenger steps, tow-tractors, follow-me cars, etc.) run intersecting
routes between the boarding gates and the runways, and the risk of collisions or deadlocks
has to be constantly monitored. Another application in logistic networks involves the
use of AGVs in port terminals [2] to transport containers from the berths on the quay
along the shoreline to dockside stacks and land access points. In a similar way, automated
warehouses or factories adopt vehicles (like AGVs or drones) to transfer goods or materials
from the depot shelves to the delivery docks or between production lines [3], or to perform
other inventory, inspection or surveillance operations [4,5]. In all of these cases, the traffic
load may be relevant and appropriate vehicle routes must be designed and operated, in
order to mitigate the risk of collision while preserving the system efficiency in terms of
transportation time and cost. To this end, IT provides hardware and software devices to
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support safe and efficient transport network operations. A sensing network, including
sensors installed on the network infrastructure and/or the vehicles, collects information
(position, direction, velocity, etc.), that is processed by software logic that schedules vehicle
movements and detects possible conflicts or deadlocks. In this context, the availability
of optimization algorithms can be determinant in reducing transportation time, cost and
accident rates, with relevant economic as well as social benefits.

We focus on automated transportation systems where, for the sake of safety, potential
collisions should be avoided in advance as much as possible. In particular, we envision
a system where, given the initial and the goal positions of each vehicle, a set of collision-
free nominal routes are determined, and the sensing network and related logic manage,
at real-time, possible conflicts or deadlocks that may arise due to unpredicted events
causing any vehicle or network disruptions that prevent following the predefined schedule.
Moreover, in many cases, like, container port terminals (see, e.g., [6]), logistic and industrial
warehouses, etc., automated transportation systems rely on a grid network topology, where
the vehicle moves on intersecting horizontal and vertical lanes. This motivates us to
consider a simplified, although realistic, setting, where vehicles are initially positioned
on one side of the grid network (e.g., the berths along the shoreline in a port terminal, or
the gates of an airport apron) and have to reach a destination on the opposite side (e.g.,
the land or the runways access points), and the time needed to move between any two
consecutive lanes is the same for all vehicles. Under these settings, the most efficient way
for a single vehicle to reach its destination is to follow a smooth nonstop path that starts
from the origin and only contains moves on horizontal and vertical lanes in the same
direction, the one towards the destination. Such kinds of shortest paths on the grid do
not contain horizontal (or vertical) moves in opposite directions and are called Manhattan
paths. Clearly, there exists more than one Manhattan path for each vehicle. If a fleet of two
or more vehicles has to be routed, choosing Manhattan paths may cause collisions, since
two vehicles may require to cross the same intersection or the same road segment between
two lines at the same time. Collisions can be avoided by choosing different Manhattan
paths rather than stopping vehicles along the path, in order to preserve efficiency. To
this end, let us consider, without loss of generality, the case where vehicles have to move
from the bottom side of the grid to the top side and observe that it is always possible to
route vehicles, without stops, on a set of collision-free Manhattan paths where each vehicle
performs all the required horizontal moves on a different dedicated horizontal lane. The
drawback of such a solution is the possibly large number of required horizontal lanes,
which corresponds to long displacement times and large infrastructural and operational
costs, including, e.g., land consumption, sensing network installation and operation and
transportation costs. On the other hand, a small number of available horizontal lanes
may not be sufficient to guarantee the possibility of finding collision-free routes without
stopping or deviating from the Manhattan paths.

The question of determining the smallest number of required horizontal lanes is the
object of the fleet quickest routing problem on grids (FQRP-G), which can be stated as
follows. We are given a grid network made of intersecting horizontal and vertical lanes
and a set of vehicles. The time to move between consecutive lanes is constant and the same
for every vehicle. Each vehicle is initially positioned at its origin at one side of the grid
and has to reach its destination at the opposite side: without loss of generality, let origins
be located at the bottom and destinations at the top of the grid, that is, the route of each
vehicle starts at the bottom of a vertical lane and ends at the top of a (possibly different)
vertical lane. We want to determine the minimum number of horizontal lanes that allow
routing the vehicles on a set of collision-free nonstop Manhattan paths.

The scope of the paper is presenting an exact solution approach to FQRP-G, based on
mathematical programming, and alternative fast heuristics that exploit relevant theoretical
results presented in the literature, with the aim of assessing their computational perfor-
mance and their impact on the design of time-cost efficient and safe routing systems. After
reviewing the literature related to FQRP-G in Section 2, the general methodology adopted
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in this paper, based on modelling the problem on an undirected grid graph, is presented in
Section 3, together with previous theoretical results that are relevant for our work, and an
integer linear programming formulation of FQRP-G. Fast heuristic algorithms are reported
in Section 4, one corresponding to a more efficient implementation than that proposed
in [7], and further greedy procedures that prioritize vehicles based on measures computed
on a conflict graph, defined in Section 3.2. Section 5 reports on computational experiments
on a benchmark of more than 200 random and on-purpose designed instances of different
sizes up to 300 columns and vehicles. Results show that the proposed exact approach is
able to solve instances up to about 150 vehicles in a few seconds, whereas running times
become longer than one minute, and exponentially increase for larger instances. In any
case, we show that the optimal solution, on average, would enable large per cent savings in
terms of required horizontal levels. The tested heuristics always run in a blink. Moreover,
even if the gap from the optimal solution may be, in theory, very large, the worst-case
performance is just observed on on-purpose designed instances, whereas the performance
on random instances, in particular for the first heuristic, shows just a few additional re-
quired horizontal lanes with respect to the optimal solution. This means that, as discussed
in Section 6, the proposed heuristic can be used in realistic settings with relevant savings in
terms of transportation and sensing infrastructure while preserving vehicle route safety.
The concluding Section 7 summarizes the findings of the paper and draws some lines for
further research.

2. Literature Review

Several works in literature are related to FQRP-G and, more generally, to designing a
routing network and finding collision-free schedules for multiple vehicles.

In the collision-free route planning problem (also known as multi-agent path finding
in artificial intelligence literature), a set of vehicles with a given origin and destination
has to move in a given routing network, modelled as a directed graph. A first group of
papers presents static approaches, where, for each vehicle, nominal routes are computed
on the underlying routing network, taking load-balance factors into account, to prevent
collisions as far as possible [8,9], or, if the application context allows, by dividing the
routing area into non-intersecting zones, each occupied by one vehicle at a time, as in
regional control models [9–12]. In general, such approaches cannot guarantee collision-free
nominal routes, and additional methods are required during their execution to detect
and resolve collisions and, in case, deadlocks, based on, e.g., Petri Net approaches [13,14],
graph-theoretic models [15], queries on geospatial reference grid systems [16] and searching
the space of possible deviations from nominal routes [17]. A specialized static approach
for grid networks is presented in [18], where initial routes that minimize collisions are
chosen from equivalent Manhattan paths, and selected collision avoidance rules, based on
preliminary collisions classification, are applied during execution.

An improved static method is proposed in [19], where statically computed load-
balanced paths are post-processed by resource reservation and deadlock prevention tech-
niques inspired by [20], leading to collision-free routes.

Notice that, in general, collision and deadlock avoidance introduce deviations from
nominal shortest paths as well as delays in the vehicle schedule, since stops may be required
during routes operation. By considering deviations and delays already at the planning
stage, dynamic approaches are able to directly determine optimized collision-free paths and
schedules, by taking into account that the impact of vehicle routes on network resources
changes over time. For a general network topology, the authors of [21] developed a heuristic
based on a mathematical programming formulation and column generation, whereas exact
algorithms are devised in [22] for the special case where the routing network consists of
two horizontal lanes and vertical bridges between them, and in [23] for the special case of
two vehicles on a grid network. The dynamic approach proposed in [24] for the general
case, iteratively computes shortest paths on a time-expanded network, and it is suitable for
online settings, where transportation requests may appear during operations. In [25], a
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time-expanded network allows dynamically modelling the problem as a multi-commodity
network flow [26]: the corresponding integer linear programming formulation, solved by
state-of-the-art off-the-shelf solvers, provides either cost- or time-optimal schedules for up
to 50 vehicles to be routed on a grid network.

The literature also integrates collision avoidance methods and dynamic algorithms
with general heuristic searching techniques (A*-based search, evolutionary algorithms,
particle swarm optimization, neighbourhood search, etc. [27]) that efficiently explore
different vehicle priorities and conflict-resolution policies, as well as alternative routes
towards the destinations. For example, in [28], an improved A* algorithm searches the
paths between vehicles origin and destination in a grid network related to a warehouse
environment, also taking congestion measures into account, and grid specific priority
rules are used to solve residual conflicts. In [29], the D* Lite search algorithm is run on a
reachability graph obtained from a suitable coloured Petri net that models feasible multi-
AGV trajectories. A Time Enhanced A* search is proposed in [30] to find collision-free route
plans in a time-expanded network, and integrated with tabu search techniques to further
improve the efficiency by changing the assignment of transport tasks between robots. The
Conflict Based Search proposed in [31], and further enhanced in [32], explores a constraint
tree whose nodes are evaluated through nominal shortest routes and, in case of collisions,
branches are generated corresponding to alternative vehicle priorities. For the solution of a
real ship traffic optimization problem, the authors of [33] integrate the dynamic collision-
free routing algorithm proposed in [24] into a local search scheme that explores the space
of possible alternative scheduling decisions related to precedence conflicts between ships
that compete for traversing a waterway with limited capacity and equipped with sidings to
allow ships stopping and passing each other, according to the chosen precedence strategy.

We remark that the collision-free routing methodologies described above allow for
vehicle stops and deviations from the nominal shortest paths (Manhattan paths, in the
case of grids), whereas our research focuses on smooth nonstop routes. With this respect,
FQRP-G has relations to the design of at-grade traffic networks without conflicts, aiming
at configuring and operating a routing network where all roads run at the same level (at-
grade) and all vehicles can seamlessly move from their origin to their destination without
stopping. A grid-shaped network is proposed in [34], where conventional four-leg lane
intersections are replaced by a combination of suitable intersections with restrictions on
the permitted lane exchanges, giving rise to paths where vehicles can safely move without
stops between any two points of the grid, at the cost of an additional detour with respect
to the Manhattan path, which may represent a good trade-off, especially for automated
routing networks [35]. An alternative design is obtained in [36], by tiling together hexagon
blocks with one-way or bidirectional links, able to avoid intersection conflicts between any
nonstop paths.

In this context, a conflict-free routing system based on grid networks with alternating
one-way lanes and no detour from nominal shortest paths is presented in [37]: platoons,
each representing a virtual sequence of non-conflicting vehicles running on the same lane,
are scheduled on a regular basis (rhythm), in such a way that, in each moment in time,
just one virtual platoon crosses an intersection; each (real) vehicle is scheduled to join a
synchronized nonstop sequence of virtual platoons to cover a Manhattan path from its
origin to its destination. Notice that, due to the limited length of virtual platoons, a vehicle
may need to wait at the border of the grid before joining the first platoon and proceeding to
its destination, so that the problem is to optimize the vehicle entry times, which is modelled
and solved in [37] with an integer linear programming formulation.

Even if the literature presented above shares common features with FQRP-G, it
presents significant limitations in the scope of our research. In fact, as already observed,
the reviewed routing algorithms may entail delays during the execution of the routes, as
well as deviations from Manhattan paths. Even conflict-free routing systems involve either
detours from optimal paths (like, e.g., [34]) or delays at the beginning of the schedules
(like, e.g., [37]). As a consequence, the routes provided by previous methods are, in gen-
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eral, worse than the ones expected from the solution of FQRP-G, since we are looking for
algorithms able to avoid collisions and deadlocks while preserving shortest paths with
no initial nor intermediate delays. Moreover, under the hypothesis on the distribution of
vehicles origins and destinations given in Section 1, the goal of FQRP-G is to minimize the
grid size, which, instead, is given and fixed in previous literature, where different metrics
are optimized.

Concerning works involving grid networks and nonstop collision-free routing on
Manhattan paths and, hence, more strictly related to FQRP-G, a first heuristic approach is
proposed in [38], where collision avoidance is guaranteed by one-way horizontal lanes and
by prioritization of horizontal moves, based on the distance of a vehicle from its destination:
the number of required horizontal lanes is equal to the number of vehicles, in the worst case,
and smaller on average. Improved upper bounds and heuristic algorithms for FQRP-G
are discussed in [7,39,40], based on the analysis of the potential conflicts arising between
vehicles, and the related properties. In particular, thanks to theoretical results derived
under the one-way lanes hypothesis and, as far as [7] is concerned, by restricting Manhattan
paths to those containing only one horizontal leg, the number of required horizontal lanes
is limited by roughly the number of vehicles divided by four, using the heuristic proposed
in [7], whereas the bound claimed by the authors of [40] has to be amended, as observed
in [39]. The results presented in [7,38] that are relevant for the analysis proposed in our
work, will be reviewed in Section 3.

3. Methodology: A Mathematical Formulation

In this section, we describe a mathematical model for FQRP-G, based on a graph
representation. It will be used to introduce notation and to review some relevant properties
presented in the literature. By exploiting such properties, we then propose a mathematical
programming formulation of FQRP-G, which will be the base for the exact approach
proposed in this work.

3.1. Graph Model and Notation

The analysis and the development of solution methods for FQRP-G starts from mod-
elling the grid network as an undirected grid graph G = (N, E): the set N contains the
vertices, each corresponding to the intersection of one horizontal and one vertical lane, and
the set E contains the lane segments, each connecting two consecutive nodes on the same
horizontal or vertical lane (see Figure 1a).

α(p) α(q)

ω(q) ω(p)

c(p, q)

1

2

...

m

1 2 3 . . . n− 1 n

m+ 1

α(p) α(q)

ω(q) ω(p)

c(p, q)

1 2 3 . . . n− 1 n

1

2

...

m

m+ 1

(a) (b)

Figure 1. A sample grid graph with two conflicting vehicles routed on: (a) paths colliding in the red
node; (b) collision-free paths.

We denote with n the number of vertical lanes (or columns) and with m the number of
horizontal lanes (or rows or levels) in the grid. Columns are numbered from left to right
from 1 to n, rows from bottom to top from 1 to m, so that each node representing the
intersection between column i and row j is identified by the pair (i, j). Without loss of
generality, we consider vehicle origins located at the bottom of the grid, in row 1, and,
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thus, vehicle destinations at the top of it, in row m. Moreover, the dummy level m + 1 in
Figure 1 at the top of the grid, simply represents the vehicle exit points from the grid. Let
α(k) denote the starting column of vehicle k and ω(k) its destination column.

All vehicles start at the same time and, according to the FQRP-G definition, they never
stop until they reach their destination. We recall that the time to cross an edge is constant
and the same, for every edge and vehicle, and we can take it as the unit time. We can thus
assume that the time is discrete and that, at each moment in time, each vehicle has to make
a move, either vertically or horizontally.

We recall that, for the sake of efficiency, each vehicle has to reach its final destination
using a Manhattan path on the grid, that is a (shortest) path that does not contain moves in
opposite directions. Moreover, in order to avoid collisions, two different vehicles cannot
use the same edge, or be in the same node, at the same time. In particular, no two vehicles
can start from the same position, nor can share the same final position.

We also say that two vehicles i and j are in (or have) an edge (resp. a node) conflict
between each other, if there exists a Manhattan path πi of i and a Manhattan path πj of
j that use one same edge (resp. node) at the same time. If πi and πj are chosen, then a
collision between i and j occurs. For example, vehicles p and q in Figure 1 have a node
conflict, as shown, e.g., by the two Manhattan paths depicted in Figure 1a, that use the
same node at time 4. Clearly, since we search for a set of pairwise collision-free paths, a
solution to FQRP-G is feasible if and only if it does not contain any such a pair of paths.
With reference to the example of Figure 1, notice that the node conflict between p and q can
be avoided by, e.g., choosing the two Manhattan paths of Figure 1b.

We can divide the vehicles into three sets, S, R and L, in the following way:
S = {k : ω(k) = α(k)},
R = {k : ω(k) > α(k)},
L = {k : ω(k) < α(k)}.
Vehicles belonging to S have to proceed straight to their final destination, and they

have no conflict with other vehicles.
Vehicle k1 belonging to R will have to make ω(k1)− α(k1) horizontal moves to the

right and may have conflicts with vehicles belonging to L.
Vehicle k2 belonging to L will have to make α(k2)−ω(k2) horizontal moves to the left

and may have conflicts with vehicles belonging to R.
Since, for each vehicle belonging to S, there is only one Manhattan path, we have to

choose a path only for vehicles in R or L.
In the proposed modelling framework, the FQRP-G objective can be stated as follows:

we want to find the minimum number of levels necessary for all the vehicles to complete
all horizontal moves before reaching their final destination column without collisions. A
conflict between two vehicles can exist only if one of them belongs to R and the other to L.
Moreover, since we consider nonstop Manhattan paths, further necessary conditions can
be established. To this end, given vehicles k1 and k2, let c(k1, k2) = bα(k1) + α(k2)c/2.

An edge conflict between vehicles k1 and k2 exists if and only if the pair (k1, k2)
belongs to the set

Codd =
{
(k1, k2) ∈ R× L : α(k1) < α(k2), α(k1) + α(k2) is odd,

ω(k1) ≥ c(k1, k2) + 1, ω(k2) ≤ c(k1, k2)
}

. (1)

The conflict only occurs on a horizontal edge joining a node of column c(k1, k2) with a
node of column c(k1, k2) + 1. To avoid collisions related to edge conflicts between vehicles
k1 and k2 with (k1, k2) ∈ Codd, vehicles k1 and k2 have to cross the space between columns
c(k1, k2) and c(k1, k2) + 1 at different levels.
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A node conflict between vehicles k1 and k2 exists if and only if the pair (k1, k2) belongs
to the set

Ceven =
{
(k1, k2) ∈ R× L : α(k1) < α(k2), α(k1) + α(k2) is even,

ω(k1) ≥ c(k1, k2), ω(k2) ≤ c(k1, k2)
}

. (2)

The conflict only occurs on a node of column c(k1, k2).
Node conflicts can be further classified as (see [7]):

• B-conflict, if ω(k1) > c(k1, k2) and ω(k2) < c(k1, k2),
• C-conflict, if either ω(k1) = c(k1, k2) or ω(k2) = c(k1, k2).

To avoid collisions related to B-conflicts between vehicles k1 and k2 such that (k1, k2) ∈ Ceven,
the set of nodes in column c(k1, k2) visited by vehicle k1 has to be disjoint from the set of
nodes in the same column visited by vehicle k2.

Consider now vehicles k1 and k2 such that (k1, k2) ∈ Ceven, subject to a C-conflict,
and assume that ω(k2) = c(k1, k2). In this case, any Manhattan path of vehicle k2 reaches
column c(k1, k2) and then proceeds with vertical steps only, remaining in such column.
Therefore, vehicle k1 needs to visit and leave column c(k1, k2) before k2 reaches this column.
Hence, as observed by the authors of [7], to avoid collisions related to such C-conflict, it is
necessary and sufficient that vehicle k1 leaves column c(k1, k2) on a lower level than that
on which vehicle k2 reaches it.

Given two vehicles k1 and k2 subject to a C-conflict, we say that k2 has a C-conflict with
k1 if ω(k2) = c(k1, k2) and, vice versa, k1 has a C-conflict with k2 if ω(k1) = c(k1, k2). Such
relation is not symmetric: if k2 has a C-conflict with k1, then k1 does not have a C-conflict
with k2. Furthermore, if k2 has a C-conflict with k1, then it cannot have any other C-conflict
with any vehicle distinct from k1.

3.2. Review of Relevant Previous Results

Andreatta et al. in [38] consider FQRP-G and propose a heuristic dispatching algo-
rithm (DA) to solve it. The algorithm incrementally builds vehicle routes and its underlying
idea is to give priority to the horizontal movement of the vehicles with higher numbers
of remaining horizontal steps. DA provides collision-free Manhattan paths and its com-
putational complexity is O(n2). As observed in [38], the route generated by DA for any
vehicle is, by construction, a simple Manhattan path, i.e., a Manhattan path such that all its
horizontal moves are performed on one level only. Moreover, no level contains horizontal
moves in opposite directions, that is, grid rows corresponds to one-way horizontal lanes.
Concerning the objective function value, the number of necessary levels, i.e., the number
of levels at which at least one vehicle moves horizontally, is bounded by the number of
vehicles, hence by n, in the worst case, even if it can be significantly smaller for specific
FQRP-G instances.

The minimum number of levels that ensures the existence of collision-free routes in
any instance of FQRP-G for a given n, has been deeply investigated by Cenci et al. in [7].
They tackle FQRP-G defining C-conflict paths, i.e., sequences of vehicles such that each
vehicle in the sequence has a C-conflict with the following one (we recall that the definition
of C-conflict is not symmetric). They prove that the length of the longest C-conflict path
that can be observed in any instance of FQRP-G on a grid with n ≥ 3 columns is equal to

1 +
⌊n− 1

4

⌋
. (3)

Then they assume that only simple Manhattan paths are feasible and that each grid
level allows movements in one direction only (one-way horizontal lanes). These conditions
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exclude collisions related to edge and B-conflicts and restrict the attention to C-conflicts.
Under such hypotheses, Ref. [7] proves that, for n ≥ 3,

m∗ = 3 +
⌊n− 1

4

⌋
(4)

is the number of levels of the grid that guarantees the existence of a feasible solution to
every instance of FQRP-G. As a minor result, they provide an algorithm (called CaR) to
solve any instance of FQRP-G on a grid graph n×m∗ with time complexity O(n3), thus
showing that m∗ horizontal lanes are also sufficient.

An important byproduct of the research in [7], which will be relevant for the analysis
proposed in this paper, is the definition of the C-conflict directed graph F = (V, A), where V
is the set of vehicles and A is the set of arcs, defined as follows: given two vehicles k1 and
k2, (k1, k2) ∈ A if and only if k2 has a C-conflict with k1. In other words, arcs are associated
with C-conflicts: arc (k1, k2) means that the route of k1 must be strictly below the route of
k2 in column ω(k2) of graph G. Notice that the definition of C-conflict directed graph given
above slightly differs from the one in [7], as the arc orientation is opposite. This allows us
to restate one of the results in [7] as follows, and to provide a formal proof (recall that an
arborescence is a directed rooted tree such that the path from the root to any other node
is unique).

Proposition 1 ([7]). The C-conflict directed graph F is a forest of arborescences.

Proof. Suppose that the directed graph F contains a cycle k1, k2, . . . , kc, kc+1 = k1. For
any pair of consecutive vehicles in the cycle, ki and ki+1, vehicle ki+1 has a C-conflict with
vehicle ki by the definition of arc in F. It follows that the number of horizontal steps in the
route of ki (equal to |ω(ki)− α(ki)|) is strictly greater than the number of horizontal steps
in the route of ki+1, for any i = 1, . . . , c. However, this contradicts the fact that k1 = kc+1.
Therefore, the directed graph F does not contain cycles. Furthermore, as each vehicle can
have a C-conflict with at most one other vehicle, each node of F has at most one entering
arc, and thus the path from the root to any node is unique. It follows that F is a forest of
arborescences.

3.3. A Mathematical Programming Formulation

In this section, we propose a mathematical programming formulation of FQRP-G.
Mathematical programming is a well-known operations research tool to model and solve
optimization problems. A mathematical programming model defines numerical decision
variables and, based on these variables, an objective function, and a system of equations
and inequalities (constraints): the objective function is the quantity to be maximized
or minimized, whereas the constraints define the set of feasible solutions. Solving a
mathematical programming model means finding a solution that satisfies all the constraints
and optimizes the value of the objective function. Integer linear programming formulations
are mathematical programming models where the objective, as well as the constraints,
are linear functions of the decision variables, and (some of) the variables are restricted
to assume integer values only. There is no known polynomial-time algorithm to solve
general integer linear programming models (indeed, this is an NP-hard problem [41]),
but standard techniques are available, like, e.g., branch and bound or cutting planes
algorithms and further improvements (see, e.g., [42,43]), whose running time is expected to
grow exponentially with the size (number of variables and constraints) of the formulation.
However, these techniques are implemented by state-of-the-art solvers, which provide
effective off-the-shelf tools to solve optimization problems formulated as integer linear
programming models in a wide range of applications, including collision-free network
design and routing (e.g., [25,37]), at least for moderate-size instances.

The integer linear programming formulation we propose for FQRP-G is based on
network flow models (see, e.g., [26]). For each vehicle k ∈ R, let us introduce the follow-
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ing binary variables xv
ijk and xh

ijk, representing decisions about vertical and, respectively,
horizontal moves:

• variable xv
ijk is equal to 1 if the edge joining nodes (i, j) and (i, j + 1) belongs to the

chosen shortest path of vehicle k (and 0 otherwise); these variables are defined for
every triplet i, j, k such that α(k) ≤ i ≤ ω(k) and 1 ≤ j ≤ m;

• variable xh
ijk is equal to 1 if the edge joining nodes (i, j) and (i + 1, j) belongs to the

chosen shortest path of vehicle k (and 0 otherwise); these variables are defined for
every triplet i, j, k such that α(k) ≤ i ≤ ω(k)− 1 and 1 ≤ j ≤ m.

For each vehicle k ∈ L, let us introduce the following binary variables yv
ijk and yh

ijk,
which are the homologous of x variables above:

• variable yv
ijk is equal to 1 if the edge joining nodes (i, j) and (i, j + 1) belongs to the

chosen shortest path of vehicle k (and 0 otherwise); these variables are defined for
every triplet i, j, k such that ω(k) ≤ i ≤ α(k) and 1 ≤ j ≤ m;

• variable yh
ijk is equal to 1 if the edge joining nodes (i, j) and (i− 1, j) belongs to the

chosen shortest path of vehicle k (and 0 otherwise); these variables are defined for
every triplet i, j, k such that ω(k) + 1 ≤ i ≤ α(k) and 1 ≤ j ≤ m.

We remind that the dummy level m + 1 represents the vehicle exit points from the
grid. Therefore, variables xv

imk or yv
imk, just above defined, are equal to 1 if vehicle k from

the top of column i moves out of the grid.
Finally, let us introduce a variable z, whose meaning is the highest level where a

horizontal move takes place.
The proposed integer linear programming formulation of FQRP-G (ILP) is reported

in Figure 2. As from the objective function (5), we are interested in minimizing z, i.e., we
want to find the minimum number of levels necessary for all the vehicles to complete all
horizontal moves before reaching their final destinations.

Overall, constraints (6)–(11) guarantee that, for each vehicle, the edges associated with
variables that take value 1 provide a (shortest) Manhattan path: constraints (6)–(8) are
devoted to vehicles in R whereas constraints (9)–(11) to vehicles in L. Constraints (6) and
(9) require that the route of vehicle k starts at position (α(k), 1) with either a horizontal step
or a vertical one. Then, equalities (7) and (10) state flow conservation, that is: if vehicle k
reaches node (i, j) (either with a vertical or a horizontal move, see the left-hand side), then
k must perform either a vertical or a horizontal move starting from the same node (see
the right-hand side). For the sake of clarity, notice that constraints are stated regardless of
the fact that, for some boundary values of indexes i and j, some of the variables involved
in (7) and (10) are not defined and must be replaced by 0. In the definition of constraint
(7) for k ∈ R, this happens for the following variables: (i) xh

i−1,j,k, if i = α(k); (ii) xh
i,j,k, if

i = ω(k) and (iii) xv
i,j−1,k, if j = 1. With similar arguments, in the definition of constraint

(10) for k ∈ L, the following variables must be replaced by 0: (i) yh
i+1,j,k, if i = α(k); (ii) yh

i,j,k,
if i = ω(k) and (iii) yv

i,j−1,k, if j = 1. Equalities (8) and (11) require that the route of vehicle
k reaches the top of the destination column with a vertical step.

After the observation that defines sufficient conditions to avoid collisions related to
node conflicts (see Section 3.1), such collisions are avoided by constraints (12): they state
that at most one of the two vehicles involved in a given conflict can reach, with either
a vertical or a horizontal move, the potential collision position, i.e., the same row in the
conflict column. Even for these constraints, boundary index values are solved by replacing
xv

i,j−1,k1
= yv

i,j−1,k2
= 0 in case j = 1. Even according to the sufficient conditions stated in

Section 3.1, constraints (13) prevent collisions related to edge conflicts, since they exclude
routes where two vehicles in such a conflict move between the interested columns at the
same level.

Variable z is linked to variables x and y through (14) and (15), stating that at least j
levels are required if at least one horizontal move takes place at row j.
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(ILP) min z (5)
s.t.

xv
α(k),1,k + xh

α(k),1,k = 1 k ∈ R (6)

xv
i,j−1,k + xh

i−1,j,k = xv
i,j,k + xh

i,j,k

k ∈ R, α(k) ≤ i ≤ ω(k), 1 ≤ j ≤ m (7)
xv

ω(k),m,k = 1 k ∈ R (8)

yv
α(k),1,k + yh

α(k),1,k = 1 k ∈ L (9)

yv
i,j−1,k + yh

i+1,j,k = yv
i,j,k + yh

i,j,k

k ∈ L, ω(k) ≤ i ≤ α(k), 1 ≤ j ≤ m (10)
yv

ω(k),m,k = 1 k ∈ L (11)

xv
i,j−1,k1

+ xh
i−1,j,k1

+ yv
i,j−1,k2

+ yh
i+1,j,k2

≤ 1

(k1, k2) ∈ Ceven, i = c(k1, k2), 1 ≤ j ≤ m (12)

xh
i,j,k1

+ yh
i+1,j,k2

≤ 1 (k1, k2) ∈ Codd, i = c(k1, k2), 1 ≤ j ≤ m (13)

z ≥ j · xh
i,j,k k ∈ R, α(k) ≤ i ≤ ω(k)− 1, 1 ≤ j ≤ m (14)

z ≥ j · yh
i,j,k k ∈ L, ω(k) + 1 ≤ i ≤ α(k), 1 ≤ j ≤ m (15)

xv
ijk ∈ {0, 1} k ∈ R, α(k) ≤ i ≤ ω(k), 1 ≤ j ≤ m

xh
ijk ∈ {0, 1} k ∈ R, α(k) ≤ i ≤ ω(k)− 1, 1 ≤ j ≤ m

yv
ijk ∈ {0, 1} k ∈ L, ω(k) ≤ i ≤ α(k), 1 ≤ j ≤ m

yh
ijk ∈ {0, 1} k ∈ L, ω(k) + 1 ≤ i ≤ α(k), 1 ≤ j ≤ m

z ∈ R

(16)

Figure 2. The integer linear programming formulation of FQRP-G (ILP).

The objective is to find the minimum of z. Finally, constraints (16) set variables x and y
as binary and variable z real. Notice that z integrality follows, by (14), (15) and the objective
function (5), from integrality of xh and yh. Moreover, even xv and yv could be defined as
continuous, since their integrality follows from the one of xh and yh by (6), (7), (9) and (10).

We remark that the proposed ILP model describes, for each vehicle, a static flow
on the grid network, since no time component is required to define both the decision
variables and the constraints, in view of the conditions devised in Section 3.1 to bound
the set of possible collision points. This is different from the mathematical programming
formulations presented in, e.g., [25], where flows are defined on a time-expanded network,
or [37], where the impact of the flow on different rhythmic routing intervals has to be
considered. As a consequence, the size of ILP, in terms of the number of both variables
and constraints, is considerably smaller than the corresponding formulations presented in
previous literature, with benefits for the required solution time.

4. Heuristics

The mathematical model presented in Section 3 can be solved through off-the-shelf
solvers for mixed-integer linear programming to obtain an optimal solution for a given
FQRP-G instance, i.e., the minimum number of rows that allows collision-free nonstop
Manhattan paths to route vehicles on, together with the paths themselves. However, due to
the computational complexity of integer linear programming, we expect that the efficiency
of the model, in terms of time to obtain the optimal solution, degrades with the size of
the instance to handle, as in fact our computational experiments, presented in Section 5,
ascertain. We thus propose two heuristics to solve FQRP-G. The first one, called Heuristic
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A, is a reinterpretation of the CaR algorithm given by Cenci et al. in [7], but it is much
simpler and improves the computational complexity, as will be stated in Proposition 4. It
uses the C-conflict directed graph to generate vehicle routes that are simple Manhattan
paths and it is able to always provide a feasible solution to FQRP-G. The second one, called
Heuristic B, is more flexible in choosing Manhattan paths and attempts to determine the
vehicle routes by giving priority to the horizontal moves of vehicles ranked on the basis of
measures obtained from the C-conflict directed graph.

4.1. Heuristic A

Heuristic A is based on the C-conflict directed graph F. As from Proposition 1, each
connected component of F is an oriented arborescence. Any such arborescence has a root,
and its nodes can be partitioned according to their depth. The root has zero depth. The
depth of any node is equal to the length of the unique path in F from the root to that node.
For each node, we also define its height as the length of the longest path in F from that
node to any of the leaves. The height of a connected component is equal to the length of
the longest path from its root, i.e., the height of the root itself. Vehicles in S, as well as any
vehicle that is not involved in C-conflicts, are isolated nodes in F, and have both height
and depth equal to 0. The root of any non-trivial arborescence is either in L or in R.

We now state Heuristic A and, then, we discuss its correctness and properties. Given
an instance of FQRP-G, in terms of the number of columns n, set of vehicles and related
origins α and destinations ω, Heuristic A runs through the following steps:

1. Partition the set of vehicles into S, R and L and build the C-conflict directed graph F.
Assume, without loss of generality, that a connected component with maximal height
has the root in R (the case in L is similar).

2. Let p be any vehicle in a connected component rooted in R, and let lp be its depth in
F. The route of vehicle p is as follows: move vehicle p vertically on column α(p) to
reach level lp + 1, and then horizontally on level lp + 1 until column ω(p); then move
it vertically to its final destination.

3. Let q be any vehicle in a connected component rooted in L, and let lq be its depth in
F. The route of vehicle q is as follows: move vehicle q vertically on column α(q) to
reach level lq + 2, and then horizontally on level lq + 2 until column ω(q); then move
it vertically to its final destination.

4. The route of vehicles in S contains vertical steps only.

The following proposition shows that Heuristic A always provides a feasible solution.

Proposition 2. The vehicle routes given by Heuristic A are nonstop collision-free simple Manhat-
tan paths.

Proof. In the output of Heuristic A, all the horizontal moves performed at any level have
the same direction. Indeed, each path in F is a C-conflict path and, hence, it alternates
vehicles in R and in L. If follows that, under the assumption that the maximum height
is related to an arborescence rooted in R (the case in L is similar) all vehicles in R move
horizontally on an odd row, and all vehicles in L on an even row. This corresponds to
having one-way horizontal lanes, which prevents collisions related to edge conflicts from
occurring. We observe that, trivially, Heuristic A outputs simple Manhattan paths, as each
vehicle performs consecutively all its horizontal moves on the same level. This, together
with one-way lanes, avoids collisions related to B-conflicts.

For each pair of vehicles p and q such that q has a C-conflict with p, the directed graph
F contains the arc (p, q), and lq = lp + 1 holds. Therefore, vehicle p performs its horizontal
moves on a lower level than q does, and the route of p is below the one of q in column ω(q),
as required to avoid collisions related to C-conflicts.

Notice that, if Heuristic A is applied to a single connected component of F, then the
number of grid levels used by the output solution is equal to one plus the height of that
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component. Therefore, given any instance, the number of grid levels needed by Heuristic
A is equal the height of the highest connected component of F, added by 2. The term “+2”
comes from the case in which the forest F contains two (or more) highest components, of
which, one rooted in R and another in L. This proves the following

Proposition 3. Given an instance of FQRP-G and its C-conflict direct graph, let m̄R and m̄L
be the maximum height of an arborescence rooted in R and, respectively L. The number of levels
required by Heuristic A is max{m̄R, m̄L}+ a, where a = 1 if m̄R 6= m̄L, a = 2 otherwise.

The number of required levels is equal to the one stated for algorithm CaR proposed by
Cenci et al. in [7]: as shown in [7], CaR optimally solves FQRP-G if the set of vehicle routes
is restricted to simple Manhattan paths and under the hypothesis of one-way horizontal
lanes. We thus have the following

Corollary 1. Heuristic A finds the optimal solution of FQRP-G restricted to simple Manhattan
paths and one-way horizontal lanes.

In fact, as already stated above, Heuristic A is a reinterpretation of the CaR algorithm
that improves its computational complexity (we recall that CaR runs in O(n)3).

Proposition 4. Given an instance of FQRP-G on a grid network with n columns, the computational
complexity of Heuristic A is O(n).

Proof. In order to detect all C-conflicts, O(n) calculations are sufficient. Indeed, for any
vehicle k ∈ R (resp. in L), we only have to check if there is another vehicle moving from
position (2 ω(k) − α(k), 1) and having its destination on the left (resp. on the right) of
column ω(k); in such case, vehicle k has a C-conflict with the other vehicle. All the arcs of
F can be thus detected in at most n (a bound on the number of vehicles) operations, and F
built in O(n). All the data required by Heuristic A can be collected during a depth-first
visit of F, which allows computing the depth and the height of any node in O(n). This
shows that Step 1 takes O(n) operations. Concerning Steps 2 to 4, they simply assign the
horizontal level to each vehicle, which can still be done in O(n).

4.2. Heuristic B

Heuristic B aims at calling non-simple Manhattan paths conveniently into play. The
underlying idea is to find an appropriate order of the vehicles and, then, to sequentially
route each vehicle on the “lowest” Manhattan path possible, i.e., a Manhattan path obtained
by choosing a horizontal step whenever this is compatible with previously assigned paths.

Vehicles are sorted according to a measure of how critical it is to route them. For
example, an order of the vehicles could provide a feasible set of routes only if, for any pair
of vehicles k1, k2 such that k2 has a C-conflict with k1 on column ω(k2), vehicle k1 precedes
k2 in the order, since otherwise k2 would have precedence in the horizontal move to reach
the conflict column and stay below k1 on it, which means that the C-conflict cannot be
resolved (see Section 3.1). It follows that vehicles belonging to a C-conflict path should
be sorted in the increasing order of their depth in the C-conflict directed graph F, which
again plays an important role in prioritizing vehicles. We also observe that, in general, the
assigned Manhattan paths are not simple and each level can be run in opposite directions;
therefore, both edge conflicts and B-conflicts may actually generate collisions and have to
be taken into account.

For each vehicle k, the following measures are considered:

• lk: the depth of k in F;
• γk: length of the longest C-conflict path k belongs to. Notice that, if lk and hk are,

respectively, the depth and the height of k in F, γk = lk + hk, and, in particular, γk = 0
if k is not involved in any C-conflict;
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• δk: overall number of conflicts k is involved in;
• ρk: number of edge conflicts k is involved in.

Given an instance of FQRP-G, in terms of number of columns n, set of vehicles and
related origins α and destinations ω, Heuristic B runs through the following steps:

1. Compute an upper bound m on the number of required levels (it can be simply equal
to the number of vehicles, or it can be obtained by running Heuristic A).

2. Build the C-conflict directed graph F and, for each vehicle k, compute γk, lk, δk and ρk;
3. Sort vehicles according to any order such that they appear by non-decreasing lk;
4. For each vehicle k in the determined order, assign k to the “lowest” available Manhat-

tan path, as recursively defined by the following rule (given for the case k ∈ R, the
case k ∈ L ∪ S is similar):

(a) let (i, j) be the actual position of vehicle k in the grid (initially set to (α(k), 1));
(b) if i = ω(k) and j = m, then output “feasible path for k found” and consider

the next vehicle;
(c) if i = ω(k) and all vehicles up to k in a C-conflict path are not involved in

further conflicts, then k performs a vertical move;
(d) otherwise, if i 6= ω(k), then check if the horizontal move to node (i + 1, j)

involves any collision with previously assigned paths (this could be related to
a node-conflict if, after a unit of time, another vehicle will be in node (i + 1, j),
or an edge conflict if another vehicle is performing the opposite move from
(i+ 1, j) to (i, j) at the same time); if the answer is “no conflict”, then k performs
the horizontal move to node (i + 1, j);

(e) otherwise, check if the vertical move to (i, j + 1) involves any conflict with
previously assigned paths (this could be a node-conflict if, after a unit of time,
another vehicle will be in node (i, j + 1)); if the answer is “no conflict”, then k
vertically moves to node (i, j + 1);

(f) otherwise, output “no feasible path for k found” and stop.

With reference to Step 4c, we remark that, since vehicles are sorted by non-decreasing
lk, collisions related to C-conflicts are avoided, as for any arc (k1, k2) of F, the path of
vehicle k1 is set before the path of k2. These are the only collisions associated with vertical
moves on the destination columns, so that, in the case specified by Step 4c, checking their
occurrence is redundant.

While, in the above case, C-conflicts are solved by appropriately ordering the vehi-
cles in the first phase of the algorithm, remaining node-conflicts and edge conflicts are
tentatively solved during Steps 4d–4e. However, we have no guarantee to avoid related
collisions and, indeed, Heuristic B may get stuck if both horizontal and vertical moves
of a vehicle at a given node are forbidden. Nevertheless, if Heuristic B is successful, the
required number of levels is not bounded from below by the length of the longest C-conflict
path, as it is the case for Heuristic A: we thus aim to empirically evaluate the probability of
getting stuck and, if this is not the case, the ability of Heuristic B to provide better results
than Heuristic A.

The actual performance of Heuristic B depends on the specific sorting adopted by
Step 3. We propose two alternatives giving rise to:

• Heuristic B1: vehicles are sorted in lexicographic order by decreasing γk, increasing lk,
decreasing δk and decreasing ρk;

• Heuristic B2: vehicles are sorted in lexicographic order by increasing lk, decreasing γk,
decreasing δk and decreasing ρk.

We now discuss the computational complexity of Heuristic B.

Proposition 5. Given an instance of FQRP-G on a grid graph with n columns, the computational
complexity of Heuristic B is O(n2 m).
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Proof. Step 1 to determine m can be done in O(n). The measures required by the sorting
step can be computed by building and depth-first visiting the C-conflict directed graph
F, which can be done in O(n) (as discussed in proof of Proposition 4). The sorting Step 3
takes O(n log n). Since the number of moves in a Manhattan path is bounded by n + m,
and the number of vehicles by n, the complexity of Step 4, and of overall Heuristic B, is
O(n2 m).

5. Results

In the previous sections, we propose the integer linear programming (ILP) formulation
and three heuristics (A, B1, and B2) to solve FQRP-G. Computational experiments have
been conducted with the following purposes:

• determine to what extent, in terms of instance size and required running time, ILP is
able to solve FQRP-G;

• assess the quality of the solutions output by Heuristic A (which, we recall, is optimal
under one-way horizontal lanes and simple Manhattan paths hypothesis) in terms of
additional required levels with respect to the (unrestricted) optimal solution provided
by ILP;

• estimate the success rate of Heuristics B1 and B2 and their ability to find better
solutions than Heuristic A.

We recall that, as discussed in Section 2, previous literature approaches to collision-
free routing problems present limitations in their application to FQRP-G, since they do
not consider grid-size minimization and, moreover, they allow for space-time deviations
from nonstop Manhattan paths. The heuristic algorithm DA presented in [38] is able to
solve FQRP-G, however it is dominated by Heuristic A for both efficiency since DA is
O(n2) whereas Heuristic A is O(n), and effectiveness. Indeed, as observed in [38], DA
returns routing schedules made of simple Manhattan paths on one-way horizontal lanes
and, hence, compliant with the hypothesis of Corollary 1: as a consequence, DA cannot
provide better solutions than Heuristic A, which is optimal under such restrictions.

In our experiments, we consider two benchmarks. The first one is made of random
instances with 10 up to 300 columns and vehicles: in particular, 20 instances are generated
for each n ∈ {10, 25, 50, 75, 100, 150, 200, 300} by randomly choosing the origin and the
destination columns of each vehicle. The second benchmark includes 11 ad hoc instances
with 105 up to 233 columns and vehicles, created on purpose as to contain long C-conflict
paths, and more than one arborescences in the related C-conflict directed graph. ILP has
also been run on a third benchmark of large random instances with n ∈ {350, 400, 500}, to
determine the larger size instances ILP can solve in practice.

All the tests were run on a workstation equipped with an Intel Xeon E-2176G processor
with 6 cores at 3.7 GHz, and 16 GB RAM.

ILP has been solved using the Cplex 12.9.0 engine [44] with a time limit of 30 min. In
order to take the number of variables and constraints of ILP, hence running times, as small
as possible, we run Heuristic A (whose running time, as we will see, is negligible) and set
the parameter m in the ILP model equal to the number of levels output by Heuristic A.

Table 1 reports the computational results given by ILP and Heuristic A on the first
random benchmark. Statistics involving ILP refer to tests on 10 out of 20 instances available
per size. The first column specifies the instance size. The average, minimum and maximum
number of levels used by ILP are reported in Columns 2 and 3. ILP running times, whose
average (in seconds) appears in Column 4, are below the time limit in every instance and,
therefore, data in Columns 2 and 3 refer to proven optimal values. Columns 5–8 are related
to Heuristic A and give respectively: the average number of levels used by its solutions,
the relative percentage error with respect to the optimal ILP value, the minimum and
the maximum number of levels required by all the obtained solutions, and the maximum
absolute gap between the number of levels used by the solutions of Heuristic A and the
corresponding optimal values. Running times of Heuristic A are not specified as they are
negligible (always fairly less than 1 ms).
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Table 1. Experimental results of ILP and Heuristic A on random instances.

Instance ILP Heur A

n Avg Min–Max Time Avg Err% Min–Max ∆max

10 2.2 2–3 0.02 2.25 0.0 2–3 0
25 2.4 2–3 0.09 2.95 15.0 2–4 1
50 3.0 3–3 0.79 3.50 20.0 3–5 1
75 2.9 2–3 1.75 3.45 15.0 3–4 1

100 3.1 3–4 5.90 3.75 23.3 3–5 2
150 3.0 3–3 42.54 4.05 30.0 3–5 2
200 3.0 3–3 151.33 4.25 40.0 3–5 2
300 3.0 3–3 1099.91 4.30 43.3 4–5 2

The computational results given by Heuristics B1 and B2 on the first random bench-
mark appear in Table 2. The percentage of instances where Heuristic B1 has been able
to find a feasible solution (success rate) is reported in Column 2. Columns 3 to 6 refer to
these successful instances and report: the average, minimum and maximum number of
levels required by B1 (Columns 3 and 5 respectively); the average per cent error in the
number of levels used by B1 with respect to the optimal value output by ILP (Column 4);
the maximum absolute gap between the number of levels used by B1 and the optimal
values (Column 6). Always referring to successful instances for B1, Column 7 compares the
performances of Heuristic B1 versus Heuristic A, reporting the percentages of successful
instances in which B1 uses less (win) or more (lose) levels than A. Columns 8 to 13 report
the same information for Heuristic B2. Again, statistics involving ILP refer to tests on 10
out of 20 instances available per size.

Table 2. Experimental results of Heuristics B1 and B2 on random instances.

Heur B1 Heur B2
n Succ% Avg Err% Min–Max ∆max Win-Lose% Succ% Avg Err% Min–Max ∆max Win-Lose%

10 90 2.72 50.00 2–4 2 5–40 90 2.72 50.00 2–4 2 5–40
25 40 3.75 56.25 2–5 3 5–30 55 3.64 55.56 2–5 3 10–35
50 5 4.00 33.33 4–4 1 0–0 5 3.00 0.00 3–3 0 100–0
≥75 0 – – – – – 0 – – – – –

ILP was able to find the optimal solution of all the instances within the time limit,
and running times are consistently less than a few seconds up to 100 vehicles. For larger
sizes, running time grows almost exponentially, as expected. Indeed, we performed a
further test of ILP on the third benchmark, observing that only four out of ten cases with
n = 350 (and no other larger instances) are solved to optimality. In the remaining cases
with n = 350, ILP always finds feasible solutions whose difference with respect to the best
available lower bound (optimality absolute gap) is 2.5 levels on average (maximum 4). The
success rate on 400 columns instances is 90%, i.e., ILP finds feasible (even if not provably
optimal) solutions for 9 out of 10 instances, with an optimality absolute gap of 3 levels on
average (maximum 4). For n = 500, the success rate is 60%, with optimality absolute gap of
3.5 levels (maximum 4). We also observe that, as far as the third benchmark is concerned,
the number of required horizontal lanes never exceeds 6 in the proposed feasible solutions.

Heuristic A is extremely fast, and, as from Table 1, it finds solutions that, even for
larger random instances, take no more than 5 levels and at most 2 additional horizontal
lanes with respect to the optimal values.

Running times of Heuristics B1 and B2 are negligible as well (always less than 10−2 s),
however, their performance is poor. Both B1 and B2 get stuck in all the instances with 75 or
more vehicles. The success rate is acceptable only for very small instances and just, in a
few cases, B1 and B2 are able to improve over Heuristic A (with B2 showing slightly better
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results than B1). Summarizing the overall performance of Heuristic A on random instances
is by far better than B1 and B2.

As observed above, the number of levels required by Heuristic A is very small in
random instances. However, we recall that it is strictly connected to the length of the longest
C-conflict path in the instance, so that, according to Equations (3) and (4), instances exist
where the collision-free paths outputted by Heuristic A need more than a few horizontal
lanes to be seamlessly operated. Therefore, we consider the second benchmark of ad hoc
generated instances containing long C-conflict paths, more than one arborescence in the
C-conflict directed graph, and further edge conflicts and B-conflicts between vehicles in
the same or different arborescences. Table 3 reports the related computational results,
showing a row for each instance. The number of vehicles and the length of the longest
observed C-conflict path appears in Columns 1 and 2. Columns 3 and 4 give the number
of levels required by the solution of Heuristic A and by the optimal solution of the ILP
model, respectively. The ILP model running times, in seconds, are listed in the last column
(the table does not show Heuristic A running times, since they are always less than 10−3 s).
Results for Heuristics B1 and B2 are not reported, since they always fail in providing
feasible routes.

Table 3. Experimental results of ILP and Heuristic A on ad hoc instances.

Instance Heur A ILP

n Longest C-Path Used Levels Used Levels Time

105 27 28 4 2.88
117 30 31 4 2.63
129 33 34 4 4.11
141 36 37 3 4.44
153 39 40 4 10.50
161 41 42 4 7.49
173 44 45 4 10.63
189 48 49 4 16.92
201 51 52 4 13.61
221 56 57 4 22.11
233 59 60 4 38.05

ILP solves all the instances of the second benchmark to optimality, still providing
routes that can be operated on a few (at most four) horizontal lanes. It is thus self-evident
that Heuristic A is not appropriate to solve FQRP-G on these ad hoc instances, as it needs
many more levels with respect to the optimal solution. Indeed, performing horizontal steps
on more than one level is crucial, in presence of long chains of C-conflicts, to save levels.
However, the ad hoc instances in the third benchmark do not appear much harder to be
solved with ILP in terms of computational time.

6. Discussion

The methods presented in the previous sections allow us to find provably optimal or
heuristic solutions to FQRP-G. The problem is relevant for the design and the operation
of automated transportation systems where the routing network consists of intersecting
horizontal and vertical lanes, vehicles move between opposite sides (e.g., from bottom
to top) and a network of sensors supports safe and efficient operations: port container
terminals, automated warehouses, train terminals, etc., are some significant examples
that can be approximated by such routing networks. By solving FQRP-G, the number of
horizontal lanes and a set of routes is determined that can be seamlessly operated without
intermediate stops nor deviations from static shortest paths (efficient routes) and without
any collision (safe routes). In real-time, the sensing network and related logic monitor the
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operations and manage further conflicts just in case they arise due to unpredicted events
(vehicle breakdowns, network interruptions, etc.), making the overall routing system robust
against disruptions, and further reducing the risk of collisions.

While the number of vertical lanes is often determined by the facility layout, the
number of required horizontal lanes should be carefully dimensioned at the design phase,
in order to minimize the cost of the underlying transportation and sensing infrastructure.
In this work, we have devised and tested four possible approaches to solve FQRP-G and
determine the minimum number of levels, given vehicles’ initial positions and final destina-
tions: an exact method (ILP) based on solving an integer linear programming formulation
of the problem by standard solvers, and three heuristics (A, B1 and B2) that prioritize
vehicles based on the properties of a graph summarizing C-conflicts between vehicles.

Experiments on benchmarks of random and ad hoc instances show that, from a
computational point of view, ILP is able to find the proven minimum number of horizontal
lanes (with related vehicle routes) for instances of up to 300 vehicles, even if running times
seem to be suitable for real-time operations of up to about 100 vehicles. For larger random
instances, Heuristic A always provides, in negligible running time, feasible routes with at
most two additional horizontal lanes, if compared to the optimal solutions, while heuristics
B1 and B2 often fail in finding a set of non-conflicting vehicle paths.

From a network design perspective, it is interesting to notice that the optimal solution
for the tested instances (up to 300 vehicles) always requires no more than 3 levels (4 in 2
out of 80 cases), thus suggesting that the size of the transportation network can be set to
a relatively small number of horizontal lanes. Even more interestingly, our experimental
results show that, at the cost of a few additional horizontal lanes, Heuristic A can be
run to produce feasible seamless routes for the case where, due to limited computational
resources, solving ILP is unpractical. Moreover, Heuristic A has the advantage of providing
simple Manhattan paths that can be run on a network with one-way lanes and leads to a
simpler network to design, monitor and maintain, as well as to smoother, safer and simpler
routes to operate. The drawback is that the number of levels required by Heuristic A may
be very large with respect to the optimal one, as our experiments on ad hoc instances
show: however, such instances (with long chains of vehicles in C-conflict paths) seem
to be extreme cases and, in fact, they never occurred in random experiments. Moreover,
they get solved by ILP in less than 40 s, even for the larger 233 vehicles instance, with
optimal solutions requiring, as for random instances, no more than four horizontal lanes.
It follows that an automated grid transportation network can be conveniently designed
with a relatively small number of horizontal lanes and operated through ILP or Heuristic A
(depending on instance size and available computational resources), leaving to the sensor
network and to the run-time collision detection and avoidance system (based, e.g., on more
general methods for collision-free routing presented in literature) the rare cases where the
proposed methods do not find feasible solutions to FQRP-G.

Our experiments with ILP show that a grid routing network with four horizontal lanes
has always been able to accommodate routing paths according to the requirements of FQRP-
G. In case an exact solution method (like ILP) is not conveniently available, the proposed
heuristic would require at most five horizontal lanes in almost all of the FQRP-G instances.
For the residual cases, a grid network with five horizontal lanes may not guarantee nonstop
routing on Manhattan paths for all vehicles: in such events, the envisioned routing system
can be integrated with state-of-the-art algorithms for multi-agent pathfinding, like the ones
presented in the literature review, in order optimize any required space-time deviations
from nominal shortest routes.

7. Conclusions

In this work, we addressed FQRP-G, where a set of vehicles has to be routed on a
grid network according to a set of nonstop collision-free Manhattan paths that minimizes
the overall number of required horizontal lanes. Such paths can be seamlessly operated
with no further control logic for collision and deadlock detection and avoidance, leaving a
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sensor network as the only task to guarantee safe operations against an unexpected vehicle
or infrastructure disruptions during the real-time execution.

We have presented an integer linear programming formulation of FQRP-G, called ILP,
and three heuristics, showing that:

• a theoretical analysis provides properties of conflicting paths that have been exploited
to devise improved mathematical models and solution algorithms for FQRP-G. In
particular: ILP formulates the problem on a static graph model, whereas the formu-
lations proposed by literature for problems related to FQRP-G rely on a dynamic
(time-expanded) graph, thus requiring a larger number of variables and constraints;
Heuristic A fairly improves the computational complexity with respect to the imple-
mentation proposed by [7];

• ILP, by means of state-of-the-art off-the-shelf mathematical optimization software, can
solve instances of up to 100 vehicles in a few seconds at most, providing the minimum
number of horizontal lanes and related routes. ILP can even solve larger instances
of up to hundreds of vehicles, at the cost of longer running times, which may be not
compliant with real route-execution environments;

• one of the proposed heuristics, called Heuristic A, is very efficient and effective, even
for instances with hundreds of vehicles. It always runs in negligible time, and, with
only rare exceptions that never showed up in random benchmarks, it finds routing
paths requiring just a few horizontal lanes (one or two) more than the optimal solution;

• from a routing network design perspective, our empirical study shows that a grid
with four or five horizontal lanes normally allows for finding collision-free nonstop
Manhattan paths for all the vehicles of FQRP-G. With such sizing, the needing to
integrate the routing system with further state-of-the-art algorithms for multi-agent
pathfinding (as to optimize possible delays and deviations from shortest routes) is
rare and limited to some infrequent exceptions where the methods proposed in this
paper would require higher grids.

Further research is needed towards heuristic algorithms that, like B1 or B2, do not
rely on one-way lanes and on simple Manhattan paths, which, according to the theoretical
results reviewed in this work, is mandatory to enable a smaller number of required levels
for the instances that are critical for Heuristic A. Possible lines for future studies could
also involve exact solution methods for FQRP-G, based on either the model proposed in
this work or alternative mathematical programming formulations, and the extension of
FQRP-G and related solution approach to more and more realistic settings, e.g., considering
arbitrary vehicle origins and destinations or more general grids.
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