
Università degli Studi di Padova

Department of Information Engineering

Ph.D. Course in Information Engineering

Science and Information Technology Curriculum

XXXIV Series

Visual Understanding across
Multiple Semantic Groups,

Domains and Devices

Coordinator
Prof. Andrea Neviani
Supervisor
Prof. Pietro Zanuttigh

Ph.D. Candidate
Umberto Michieli

Academic Year 2021/2022 (800th)

ii

Abstract

Automatic pixel-level semantic scene understanding is a relevant problem in computer vision and
a requirement for many practical applications such as autonomous vehicles, robotic navigation
systems, video surveillance and medical tasks. Usually, semantic segmentation is performed with
deep learning architectures. Unfortunately, deep neural networks on practical benchmarks often
lack generalization capabilities to accommodate changes in the input domain distribution and,
therefore, are inherently limited by the restricted visual and semantic information contained in
the original training set. In this thesis, we argue the importance of versatility of deep neural
architectures and we explore it from various perspectives. In the first part, we address the
ability of deep models to recognize novel semantic concepts without forgetting previously learned
ones. First, we define the continual learning problem in semantic segmentation and we propose
to retain previous capabilities by distilling knowledge from the previous model at either the
feature or output levels of the architecture. Second, we explore how deep model training can be
regularized at the latent level - via contrastive learning, matching prototypical representations
and sparsity - in order to alleviate catastrophic forgetting of previous concepts while promoting
learning of the new ones. Then, we show how we can replace samples of previous categories
by using generative networks or web-crawled images. In the second part, we propose novel
coarse-to-fine learning tasks where a generic model trained to recognize a coarse set of concepts
is progressively updated to recognize finer-grained concepts. In the third part, we investigate
deep model generalization to unseen visual domains with no ground truth annotations available.
We start with a rigorous definition of the unsupervised domain adaptation task in semantic
segmentation and we carefully organize the current literature on the topic. Then, we propose
multiple solutions to enable model generalization on a combination of input, feature and output
levels. We investigate input-level adaptation via cyclic consistency. Output-level adaptation is
enforced by means of adversarial learning schemes relying on a confidence score estimated by
the discriminator network. Then, we explore feature-level adaptation via latent regularization
enforcing clustering, orthogonality, sparsity and norm alignment among the features. In the last
part, we discuss the recent federated learning paradigm in order to train deep architectures in a
distributed setting exploiting only data available at decentralized clients and not shared with a
central server. We start by defining the general federated learning setup and we analyze its poor
robustness to high non-i.i.d. distribution of samples among clients. To mitigate this problem, we
propose a naïve federated optimizer which is fair from the users perspective. Then, we introduce
a new prototype-guided federated optimizer which has also been evaluated on federated semantic
segmentation benchmarks.

v

vi

Sommario

Il riconoscimento automatico e semantico della scena a livello di pixel è un problema impor-
tante in visione computazionale ed un requisito per molte applicazioni pratiche come i veicoli
autonomi, i sistemi di navigazione robotica, la videosorveglianza e le applicazioni mediche. Seg-
mentazione semantica è generalmente affrontata con architetture di deep learning. Tuttavia, deep
neural networks su dataset di riferimento pratici spesso mancano di capacità di generalizzazione
nell’accomodare cambiamenti nel dominio in ingresso e, pertanto, sono inerentemente limitate
dalle ristrette informazioni visive e semantiche contenute nel dataset di allenamento originale.
In questa tesi, si sostiene l’importanza della versatilità delle reti neurali e la si esplora da diverse
prospettive. Nella prima parte, si affronta l’abilità di deep models nel riconoscere nuovi concetti
semantici senza dimenticare quelli appresi in precedenza. Dapprima, si definisce il problema
di apprendimento continuo in segmentazione semantica e si propone di mantenere le capacità
precedenti tramite trasferimento di conoscenza dal modello precedente agendo sul livello latente
o su quello dell’output dell’architettura. In secondo luogo, si esplora come l’apprendimento di
modelli profondi può essere regolarizzato al livello latente (tramite apprendimento contrastivo,
corrispondenza di rappresentazioni prototipiche e sparsità) al fine di alleviare la dimenticanza
catastrofica dei concetti precedenti mentre si incentiva l’apprendimento di quelli nuovi. Poi,
si mostra come è possibile rimpiazzare i campioni delle categorie precedenti usando reti gen-
erative o immagini acquisite dal Web. Nella seconda parte, si propone nuove applicazioni di
apprendimento coarse-to-fine, dove un generico modello allenato a riconoscere un insieme di
concetti grossolani è progressivamente aggiornato per riconoscere concetti più raffinati. Nella
terza parte, si indaga la generalizzazione di deep models verso domini visivi mai visti senza
disponibilità di annotazioni veritiere. Si inizia con una definizione rigorosa dell’adattamento
di dominio non supervisionato in segmentazione semantica e si organizza scrupolosamente la
corrente letteratura sull’argomento. Poi, si propongono molteplici soluzioni per abilitare la gen-
eralizzazione del modello su una combinazione di livelli: ingresso, intermedio e uscita. Si studia
l’adattamento al livello di ingresso tramite consistenza ciclica. L’adattamento al livello di uscita
è ottenuto tramite schemi di apprendimento avversario basati sul livello di confidenza stimato
dalla rete discriminativa. Infine, si esplora l’adattamento sullo spazio latente intermedio tramite
regolarizzazione forzando il raggruppamento, l’ortogonalità, la sparsità e l’ allineamento delle
norme delle features. Nell’ultima parte, si discute il recente paradigma dell’apprendimento fed-
erato in modo da allenare deep models in modo distribuito sfruttando solamente dati disponibili
presso gli utenti decentralizzati e non condivisi con un server centrale. Si inizia definendo lo sce-
nario generale di apprendimento federato e si analizza la sua scarsa robustezza alle distribuzioni
di campioni tra i clients fortemente non-i.i.d. Per mitigare questo problema, si propone un
semplice ottimizzatore federato che è imparziale dal punto di vista degli utenti. Poi si introduce
un nuovo ottimizzatore federato guidato dai prototipi, il quale è stato anche valutato su alcuni
dataset di riferimento per segmentazione semantica federata.

vii

viii

Contents

Abstract v

List of figures xiv

List of tables xxiii

1 Automatic Semantic Scene Understanding: an Overview 1
1.1 Introduction . 1
1.2 Transfer Learning . 2
1.3 Contributions . 3
1.4 Outline of the Thesis . 5

I Semantic Recognition of New Categories in the Wild 7

2 Continual Learning of New Semantic Concepts 9
2.1 A Gentle Introduction to Continual Learning . 9
2.2 Problem Statement . 10
2.3 Continual Learning in Sparse Learning Tasks . 11
2.4 Experimental Setups in Continual Semantic Segmentation 13
2.5 Techniques for Continual Semantic Segmentation 14

2.5.1 Knowledge Distillation . 15
2.5.2 Parameter Freezing . 16
2.5.3 Geometrical Feature-Level Constraining 16
2.5.4 Replay-based Learning . 17

2.6 Employed Datasets . 17

3 Knowledge Distillation from a Teacher Model 19
3.1 Introduction . 19

3.1.1 Contributions . 19
3.2 Knowledge Distillation for Semantic Segmentation 20

3.2.1 Class-Incremental Continual Learning Framework 20
3.2.2 Network Architecture . 21
3.2.3 Proposed Method . 21
3.2.4 Distillation on the Output Layer (Lcls-T

D) 23
3.2.5 Distillation on the Intermediate Feature Space (Lenc

D) 23
3.2.6 Distillation on Dilation Layers (Ldec

D) . 24
3.2.7 Similarity-Preserving Distillation on the Intermediate Feature Space (LSPKD

D) 24
3.3 Training Procedure . 25
3.4 Experimental Results on Pascal VOC2012 . 26

3.4.1 Addition of One Class . 26
3.4.2 Addition of Multiple Classes . 29
3.4.3 Sequential Addition of Multiple Classes 30

3.5 Experimental Results on MSRC-v2 . 34

ix

3.6 Ablation Studies . 36
3.6.1 Backbone Pre-Training . 37
3.6.2 Experimental Analyses on Disjoint Setup on VOC2012 38
3.6.3 Ablation on Multi-Layer Knowledge Distillation 39

3.7 Summary . 40

4 Latent-Space Regularization of the Learned Embeddings 43
4.1 Introduction . 43

4.1.1 Background . 43
4.1.2 Contributions . 44

4.2 Problem Definition and Setups . 45
4.3 Method . 45

4.3.1 Prototypes Matching . 47
4.3.2 Contrastive Learning . 47
4.3.3 Features Sparsity . 48
4.3.4 Output-Level Knowledge Distillation . 48

4.4 Training Procedure . 49
4.5 Experimental Results . 49

4.5.1 Pascal VOC2012 . 50
4.5.2 ADE20K . 51
4.5.3 Qualitative Results Across Incremental Steps 56
4.5.4 Quantitative Results: per-Class Accuracy 59

4.6 Ablation Study . 61
4.7 Design Choices . 62
4.8 Summary . 64

5 Replay-based Continual Learning in Semantic Segmentation 67
5.1 Introduction . 67

5.1.1 Preliminaries . 67
5.1.2 Contributions . 68

5.2 Problem Formulation and Setup . 69
5.3 General Architecture . 69
5.4 Replay Strategies . 72
5.5 Implementation Details . 74
5.6 Experimental Results . 74

5.6.1 Analyses on Pascal VOC2012 . 74
5.6.2 Qualitative Results . 77
5.6.3 Ablation Studies . 77
5.6.4 Analyses on Pre-Training . 81
5.6.5 Class Mapping Module . 82
5.6.6 Per-Class Quantitative Results . 84
5.6.7 Combining RECALL with Other Techniques 86
5.6.8 Preliminary Analyses on ADE20K . 86

5.7 Conclusions . 87
5.8 Final Remarks . 87

II Coarse-to-Fine Learning of Semantic Categories 89

6 Coarse-to-Fine Learning of Semantic Concepts 91

x

6.1 Introduction . 91
6.1.1 Contributions . 92

6.2 Coarse-to-Fine Learning at Semantic Level . 92
6.2.1 Preliminaries . 94
6.2.2 Proposed Methods . 94
6.2.3 Training on the NYUDv2 Dataset . 99
6.2.4 Experimental Results . 101

6.3 Coarse-to-Fine Learning at the Spatial Level . 106
6.3.1 Preliminaries . 107
6.3.2 Proposed Method . 108
6.3.3 Graph-Matching for Semantic Parts Localization 110
6.3.4 Training of the Deep Learning Architecture 111
6.3.5 Experimental Results . 112
6.3.6 Ablation Studies . 118

6.4 Conclusions and Future Work . 120

III Semantic Recognition across New Visual Domains 123

7 Unsupervised Domain Adaptation (UDA) 125
7.1 Introduction . 125

7.1.1 Domain Adaptation (DA) . 125
7.1.2 Unsupervised Domain Adaptation (UDA) 126
7.1.3 Application Motivations . 128
7.1.4 Outline . 129

7.2 Unsupervised Domain Adaptation for Semantic Segmentation 130
7.2.1 Problem Formulation . 130
7.2.2 UDA in Semantic Segmentation: Adaptation Focuses 131

7.3 Review of Unsupervised Domain Adaptation Strategies 134
7.3.1 Weakly- and Semi-Supervised Learning 135
7.3.2 Domain Discriminative . 137
7.3.3 Generative-based Approaches . 142
7.3.4 Classifier Discrepancy . 146
7.3.5 Self-Training . 147
7.3.6 Entropy Minimization . 149
7.3.7 Curriculum Learning . 150
7.3.8 Multi-Tasking . 151
7.3.9 Latent-Level Regularization . 152
7.3.10 New Research Directions . 153

7.4 A Case Study: Synthetic to Real Adaptation for Semantic Understanding of
Road Scenes . 154
7.4.1 Source Domain: Synthetic Datasets of Urban Scenes 155
7.4.2 Target Domain: Real-World Datasets of Urban Scenes 156
7.4.3 Methods Comparison . 156

7.5 Summary . 159

8 Output-Level Domain Adaptation 161
8.1 Introduction . 161

8.1.1 Contributions . 161

xi

8.2 UDA with Adversarial Learning and Self-Teaching 162
8.2.1 Preliminaries . 162
8.2.2 Architecture of the Proposed Approach 163
8.2.3 Experimental Results . 166

8.3 UDA with Adversarial Learning with Multiple Discriminators 172
8.3.1 Proposed Domain Adaptation Strategy 172
8.3.2 Experimental Results . 175

8.4 Summary . 180

9 Input- and Feature- Level Domain Adaptation 181
9.1 Introduction . 181

9.1.1 Contributions . 181
9.2 Input-Level Cyclic Consistency and Feature-Level Adversarial Learning 181

9.2.1 Proposed Approach . 182
9.2.2 Implementation and Training Details . 185
9.2.3 Experimental Results . 186

9.3 Feature-Level Regularization . 192
9.3.1 Proposed Approach . 193
9.3.2 Experimental Setup . 196
9.3.3 Results . 197

9.4 Feature-Level Regularization with Improved Prototypes Extraction 205
9.4.1 Problem Setup . 205
9.4.2 Proposed Latent-Level Constraints . 208
9.4.3 Implementation Details . 210
9.4.4 Mean Adapted-to-Supervised Ratio Metric 211
9.4.5 Results . 212
9.4.6 Analyses of the Latent Space Regularization 216

9.5 Conclusions . 220
9.6 Final Remarks . 221

IV Federated Learning of Visual Models 223

10 Federated Learning on Non-IID Data 225
10.1 An Introduction to Federated Learning . 225
10.2 Problem Statement: FedAvg and FairAvg . 226
10.3 Federated Learning Datasets . 228

10.3.1 Synthetic Data Classification Dataset . 228
10.3.2 Real-World Image Classification Datasets 229
10.3.3 Real-World Semantic Segmentation Datasets 229
10.3.4 NLP Datasets . 231

10.4 Experimental Evaluation of Data Non-IID-ness 231
10.5 Summary . 234

11 Federated Learning of Visual Feature Representations 235
11.1 Introduction . 235
11.2 Prototype Guided Federated Learning . 237

11.2.1 Computation of Prototypes . 238
11.2.2 Local and Aggregate Prototype Margins 238
11.2.3 Federated Attention using Prototype Margins 239

xii

11.3 Theoretical Motivation of FedProto . 240
11.3.1 Hypothesis Margins . 240
11.3.2 Optimizing Hypothesis Margins in FL . 242
11.3.3 Prototype Margins . 242
11.3.4 Federated Learning with Prototype Margins 246

11.4 Experimental Setup . 246
11.5 Experimental Analyses for Federated Vision . 247

11.5.1 Federated Image Classification . 247
11.5.2 Federated Attention Values in Image Classification 251
11.5.3 Federated Semantic Segmentation . 251

11.6 Conclusions and Future Work . 254

12 Conclusions and Future Directions 257
12.1 Conclusions . 257
12.2 Open Problems and Future Directions . 258

References 260

Acknowledgments 283

xiii

xiv

Listing of figures

1.1 Overview of possible visual tasks on a few sample images from classification (sparse
learning task) to semantic segmentation (dense learning task). 2

2.1 Graphical representation of the class-incremental continual learning framework.
The model is updated to recognize new classes over time without forgetting pre-
viously learned ones. 11

2.2 Overview of the different setups for class-incremental continual learning in seman-
tic segmentation. The black class represents the background class and the white
one represents the void/unlabeled. 14

2.3 Sample scenes from the three employed datasets in the first part of the thesis. . . 18

3.1 Overview of the k-th incremental step of our learning framework for semantic
segmentation of RGB images. The scenario in which the current model Mk is
completely trainable, i.e. not frozen, is reported. The model Mk−1, instead, is
frozen and is not being updated during the current step. 22

3.2 Comparison of the different freezing schemes of the encoder at the k-th incremental
step. The whole model at previous step, i.e. Mk−1, is always completely frozen
and it is employed only for knowledge distillation purposes. 24

3.3 Qualitative results on sample scenes for the addition of one class. In the first two
rows the tv/monitor class is added, in the last row the bottle class is added. . . . 28

3.4 Qualitative results on sample scenes for the addition of 5 classes at once. The set
of new classes is plant, sheep, sofa, train and tv 30

3.5 Sample qualitative results for the addition of 5 classes sequentially. The added
classes are boat, plant, sheep, cow and bottle. 32

3.6 Qualitative comparison on sample scenes of the best model of Table 3.9 before
and after the addition of a highly correlated class. The first three columns show
the performance results after the addition of the sheep class while the last three
deals with the addition of the train class. 33

3.7 Qualitative results on sample scenes on MSRC-v2. The first row regards the
addition of the last class (i.e., boat), the second row regards the addition of the
last 5 classes at once, the third row regards the addition of the last 5 classes
sequentially. The classes added are respectively chair, aeroplane, dog, bird, boat. . 36

4.1 Our continual learning scheme is driven by three main components: latent con-
trastive learning, prototypes matching and features sparsity. Latent representa-
tions of old classes are preserved via prototypes matching and clustering, whilst
also making room for accommodating new classes via sparsity and repulsive force
of contrastive learning. The decoder preserves previous knowledge via output-
level distillation. In the figure, bike and cars represent old classes and leave more
space to new classes (the dog) thanks to the novel constraints (green dotted ovals
versus gray-filled ovals). 44

xv

4.2 Overview of the proposed approach, with an old class (cat) and a new class (car).
Latent representations of old classes are preserved over time via prototypes match-
ing and clustering, whilst also making room for accommodating new classes via
sparsity and repulsive force in contrastive learning. The decoder is constrained to
act as in previous steps on previous classes via output-level distillation. 46

4.3 Qualitative results on sample scenes in different scenarios (19-1, 15-5 and 15-1)
on Pascal VOC2012 of the proposed method and of competing approaches in the
sequential setup. 52

4.4 Qualitative results on sample scenes in different scenarios (19-1, 15-5 and 15-1)
on Pascal VOC2012 of the proposed method and of competing approaches in the
disjoint setup. 53

4.5 Qualitative results on sample scenes in different scenarios (19-1, 15-5 and 15-1)
on Pascal VOC2012 of the proposed method and of competing approaches in the
overlapped setup. 54

4.6 Qualitative results on sample scenes in different scenarios (100-50, 100-10 and
50-50) on ADE20K of the proposed method and of competing approaches. 55

4.7 Qualitative results on sample scenes in the disjoint experimental protocol 15-1 on
Pascal VOC2012 during the various incremental steps. 57

4.8 Qualitative results on sample scenes in experimental protocol 100-10 on ADE20K
during the various incremental steps. 57

4.9 Qualitative results on sample scenes in experimental protocol 50-50 on ADE20K
during the various incremental steps. 58

5.1 Replay images of previously seen classes are retrieved by a web crawler or a gen-
erative network and further labeled. Then, the network is incrementally trained
with a mixture of new and replay data. 68

5.2 Overview of the proposed RECALL: class labels from past incremental steps are
provided to a Source Block, either a web crawler or a pre-trained conditional GAN,
which retrieves a set of unlabeled replay images for the past semantic classes.
Then, a Label Evaluation Block produces the missing annotations. Finally, the
segmentation network is incrementally trained with a replay-augmented dataset,
composed of both new classes data and replay data. 70

5.3 Background self-inpainting process. 71
5.4 Evolution of mIoU on the 10 tasks of 10-1 disjoint. 76
5.5 Qualitative results on disjoint incremental setups: from top to bottom 15-1, 15-5

and 10-1. 76
5.6 Qualitative results on disjoint incremental setups. 78
5.7 Per-step prediction maps on the 15-1 disjoint incremental setup for different train-

ing strategies. 79
5.8 Memory occupation in the disjoint scenario. 80
5.9 Comparison of different interleaving policies in 15-1 disjoint. 81
5.10 Original images from the incremental Pascal VOC dataset, together with replay

data generated by GAN or retrieved by Flickr’s web crawler. From top to bottom:
airplane, train, bicycle, person, bird, cow, horse, and sheep. 83

6.1 Different levels of semantic image understanding: from coarse to fine. 92
6.2 Early fusion of the different representations (color, depth, and surface normals). . 95
6.3 Diagram of the incremental approach where the softmax of the predictions at the

first stage is concatenated as additional input for the second phase. 96

xvi

6.4 Diagram of the incremental approach where the argmax of the predictions at the
first stage is concatenated as additional input for the second phase. 97

6.5 Diagram of the incremental approach where the edges of the predictions at the
first stage are concatenated as additional input for the second phase. 97

6.6 Modified DeepLab-v3+ architecture for joint learning of multiple representations. 98
6.7 Diagram showing the hierarchical mapping between the three different set of

classes (blue for the split of 5, green for the split of 15, red for the split of 41).
The numbers above the arrows are the fraction of the parent class that is assigned
to each of its derived ones. 99

6.8 Sample scenes from the NYUDv2 dataset highlighting the different levels of se-
mantic description in the segmentation maps. From left to right: RGB image,
semantic map with 5 classes, semantic map with 15 classes, and semantic map
with 41 classes. 100

6.9 Qualitative results for the set of 5 classes of the proposed approaches. From left
to right, the chosen images are the ones numbered as: 0, 124, 145, 168, and 368. 104

6.10 Qualitative results for the set of 15 classes of the proposed approaches. From left
to right, the chosen images are the ones numbered as: 0, 124, 145, 168, 368. . . . 105

6.11 Architecture of the proposed Graph Matching Network (GMNet) approach. A
semantic embedding network takes as input the object-level segmentation map
and acts as high level conditioning when learning the semantic segmentation of
parts. On the right, a reconstruction loss function rearranges parts into objects
and the graph matching module aligns the relative spatial relationships between
ground truth and predicted parts. 109

6.12 Overview of the graph matching module. In this case, cat’s head and body would
be considered as detached without the proper morphological dilation over the parts.110

6.13 Qualitative results on some sample scenes on the Pascal-Part-58 dataset. 114
6.14 Qualitative results on sample scenes on the Pascal-Part-108 dataset. 117

7.1 Graphical representation of the unsupervised domain adaptation process. A task-
loss L (e.g., a cross-entropy loss) is used for a supervised training stage on the
source domain using the semantic annotations. Unsupervised adaptation to target
data without labels can be performed at different levels (e.g., input, features or
output) with different strategies. 128

7.2 Applications . 129
7.3 Different settings for domain adaptation, according to how source and target class

sets are related. 131
7.4 General scheme of an auto-encoder network for semantic segmentation highlight-

ing the different network stages on which domain adaptation strategies can be
applied, from the input image space up to intermediate or output network acti-
vations. 132

7.5 Venn diagram of the most popular UDA strategies for semantic segmentation.
Each method falls in the set representing the adaptation techniques used. 134

7.6 Training of a generative adversarial network. Update step of the discriminator
(top) and of the generator (bottom). 138

7.7 Graphical representation of the standard adversarial adaptation strategy. A do-
main discrimination captures the statistical discrepancy between source and target
representations (e.g., segmentation network’s output or features maps computed
from one or the other domain). Its supervisory signal is then exploited to perform
domain alignment. 139

xvii

7.8 Graphical representation of an output adversarial adaptation strategy, where do-
main alignment is performed indirectly by bridging the distribution gap between
source annotation maps and network predictions from either source or target do-
mains. 139

7.9 Overview of the generative-based adaptation approach built upon cycle-consistent
image-to-image translation. In particular, source translated input images are
exploited as a form of target-like artificial supervision during the learning process. 143

7.10 Mean IoU (mIoU) of different methods grouped by backbone in the scenario adapt-
ing source knowledge from GTA5 to Cityscapes (see Table 7.1). Backbones are
sorted by decreasing the number of entries. Orange crosses represent the per-
backbone mean mIoU. Only the backbones with 3 or more entries are displayed. 158

7.11 Mean IoU on 16 classes (mIoU16) of different methods grouped by backbone in the
scenario adapting source knowledge from SYNTHIA to Cityscapes (see Table 7.2).
Backbones are sorted by decreasing number of entries. Orange crosses represent
the per-backbone mean mIoU. Only the backbones with 3 or more entries are
displayed. 158

8.1 Architecture of the proposed framework. The optimization is guided by a dis-
criminator loss and 3 losses for the generator: a standard cross-entropy loss on
synthetic data (LG,1), an adversarial loss (Ls,t

G,2) and a self-teaching loss for unla-
beled real data (LG,3). 163

8.2 Semantic segmentation of some sample scenes extracted from the Cityscapes (a)
and Mapillary (b) validation sets. The first group of six rows is related to the
Cityscapes dataset, the last six to the Mapillary dataset. For each group, the first
three rows are related to the experiments in which the GTA5 dataset is used as
source. The last three rows are related to the case in which the SYNTHIA dataset
is used as source. 169

8.3 Architecture of the proposed approach. The semantic segmentation network G
is trained with the combination of 4 losses: a supervised cross entropy on source
data LG,0, a double adversarial framework Ls,t

G,1 and Lt
G,2, and a self-training

module LG,3 with class-wise and time-varying adaptive thresholding mask Tf . . . 173
8.4 Semantic maps of sample scenes extracted from Cityscapes (first four rows, a))

and Mapillary (last four rows b)) validation sets. For each group, the first two
rows are related to the experiments in which the GTA5 dataset is used as source.
The last two rows are related to the case in which the SYNTHIA dataset is used
as source. 177

8.5 Time average over the initial to current step interval of per-class confidence thresh-
olds for different classes and at different training steps on the Mapillary dataset
when adapting from GTA5. 179

9.1 Architecture of the proposed framework. Yellow blocks correspond to the Cycle-
GAN framework for image-to-image translation. Original and translated scenes
from both source and target sets are projected by the encoder to a latent space on
which we apply an extra couple of domain discriminators (green blocks). Struc-
tural consistency on generated samples is enforced by the cycle-consistency con-
straint, whereas semantic uniformity throughout image mapping is promoted by
the semantic loss. The segmentation network is reported in blue. 182

xviii

9.2 Examples of image translations (adaptation and reconstruction of the original
image) in the four different cases considered. In the first quadrant (up-left of 3×3
images) we move from the GTA5 dataset to the adapted images in the domain
of the Cityscapes dataset to the reconstructed images in the GTA5 domain. The
second quadrant (up-right) shows respectively: the starting Cityscapes images,
their translation to the GTA dataset and the reconstructed images in the domain
of the Cityscapes images. The third (down-left) and the fourth (down-right)
quadrant are analogous to the first and the second ones using the SYNTHIA
dataset in place of GTA5. 188

9.3 Semantic segmentation of some sample scenes extracted from the Cityscapes val-
idation set when adapting source knowledge learned on the GTA5 (rows 1 − 4)
and SYNTHIA (rows 5− 8) datasets. 191

9.4 The proposed domain adaptation scheme is driven by 3 main components, i.e.,
feature clustering, orthogonality and sparsity. These push features in the previous
step (in light gray) to new locations (colored) where features of the same class are
clustered, while features of distinct classes are pushed away. To further improve
performance, features of distinct classes are forced to be orthogonal and sparse. 193

9.5 Overview of the proposed approach. Features after supervised training on the
source domain are represented in light gray, while features of the current step are
colored. A set of techniques is employed to better shape the latent feature space
spanned by the encoder. Features are clustered and the clusters are forced to
be disjoint. At the same time, features belonging to different classes are forced
to be orthogonal with respect to each other. Additionally, features are forced to
be sparse and an entropy minimization loss could also be added to guide target
samples far from the decision boundaries. 194

9.6 Semantic segmentation of some sample scenes from the Cityscapes validation
dataset when adaptation is performed from the GTA5 source dataset and the
DeepLab-V2 with ResNet-101 backbone is employed. 198

9.7 T-SNE computed over features of single images from the Cityscapes validation
set when adapting from GTA5. 200

9.8 Similarity scores computed over all the images on the Cityscapes validation set
when adapting from GTA5 to analyze the effect of the orthogonality constraint. . 202

9.9 Class-wise similarity scores computed over images on the Cityscapes validation
set when adapting from GTA5. 203

9.10 Analysis of the distribution of feature activations computed over all the images
on the Cityscapes validation set when adapting from GTA5. 204

9.11 Visual representation of our two-pass feature vector classification strategy. The
initial source-based classification (in blue) can lead to erroneously classified target
samples (purple shaded areas). This problem is tackled by computing target
prototypes as the centroids of the partitioned vectors (notice the shift compared
to the original source prototype), these prototypes are used as new classification
centers (green boundary), producing a correct segmentation. 207

9.12 Visual summary of our strategy. Features are associated to semantic classes and
prototypes are computed from them (9.4.1). The three proposed space shaping
constraint are: Class Clustering, Prototypes Perpendicularity, Norm Alignment
and Enhancement. Furthermore we apply also entropy minimization [325]. 208

9.13 mASR score as a function of the injected noise intensity. 212
9.14 Qualitative results on sample scenes taken from the Cityscapes validation split. . 213
9.15 Qualitative results on the Cross-City benchmark. 215

xix

9.16 t-SNE embedding of the target feature vectors: trajectories of prototypes sam-
pled over 200 training steps (on the left), features produced by the final model
embedded according to the shared t-SNE projection (right). 217

9.17 t-SNE embeddings of the normalized feature vectors. 217
9.18 Prototypes trajectories and target feature vectors projected via PCA. Projection

is 3-dimensional; here we report the three xy, xz and yz planes. 218
9.19 Sample image downsampled nearest (left), frequency-aware [32] (middle) or weighted

frequency-aware (LSR+). 219
9.20 Class frequency of the downsampled feature-level segmentation maps. 219
9.21 Average inter-prototype angle. 219
9.22 Average channel entropy. 220

10.1 Dataset statistics of different data splitting schemes used by clients for the Pascal
VOC2012 segmentation task. The first column reports the distribution of the
number of classes among clients (note that the background is present in all the
images). The second column shows the distribution of number of clients according
to number of classes per client. The third column reports the per-client distribu-
tion of classes depicted with different colors, where the client IDs are restricted
to 30 randomly sampled clients for visualization purposes (the background is not
included in the visualization and the colors refer to the Pascal VOC2012 colormap).230

10.2 Classification accuracy (%), training loss and their respective smoothed versions
over a window of 10% rounds (which are smoothed for visualization). Last row
reports the correlogram of the accuracy (reported as first row), i.e. a plot of the
autocorrelation function (ACF) for sequential values of lag. Different datasets are
considered over the columns and K ′ = 10 reporting users. 232

10.3 Distribution of federated aggregation values at[k], ∀k, ∀t (left) and distribution of
number of classes into clients (right), over different datasets for K ′ = 10 reporting
users. 233

11.1 Visual data observed at distributed clients k ∈ K are non-i.i.d. and imbalanced.
This represents a challenge for federated learning of vision models with parameters
Wk, ∀k. 236

11.2 Experimental results for the classification task. Evaluation is performed across
δ ∈ {0%, 50%, 80%} and a moving average window of 10% rounds is applied for
visualization. Solid lines and shaded regions represent the mean and standard
deviation, respectively. 247

11.3 Per-round AMM (µ̄[t]) values on classification datasets. 249
11.4 Per-round MMD from Eq. (11.58) on classification datasets. Higher MMD indi-

cates features of the FL algorithm to be more similar to the features learned in
centralized training. 250

11.5 Comparison of distributions of the federated attention vector at[k], ∀k, ∀t, on clas-
sification datasets for FedAvg and our FedProto. FedProto produces attention
values having a much lower variance from the average value (|K| = 10 is used)
compared to FedAvg. FedAvg weights, instead, follow the distribution of the num-
ber of samples, which could lead the framework to ignore clients with less samples
during aggregation, regardless of the statistical distribution of local samples. . . . 251

xx

11.6 Change of mIoU on segmentation data distributed using different α values. Eval-
uation is performed across δ ∈ {0%, 50%, 80%} and a moving average window
of 10% rounds is applied. Solid and shaded lines represent mean and standard
deviation. 252

11.7 Qualitative results for models trained using FedAvg and FedProto using three
non-i.i.d. to i.i.d. configurations of Pascal VOC2012 dataset. For each of the
three sample images, we depict; the output segmentation map (rows 1, 4 and 7),
the softmax-level entropy map (rows 2, 5 and 8), and the feature-level entropy
map (rows 3, 6 and 9). As a reference, output maps of models obtained using
centralized training are shown on the second last column. 253

11.8 Comparison of t-SNE embedding plots of feature representations learned by Fe-
dAvg and by our FedProto, using the Pascal VOC 2012 segmentation benchmark
with 20 object level classes. Analyses are performed over different values of α.
The background class is not included in the visualization, and the colors refer to
the Pascal VOC2012 colormap. 254

xxi

xxii

Listing of tables

3.1 Per-class IoU of the proposed approaches on VOC2012 when the last class, i.e.,
the tv/monitor class, is added. 26

3.2 Per-class IoU of the proposed approaches on VOC2012 when the last class accord-
ing to the occurrence in the dataset, i.e. the bottle class, is added. 28

3.3 Per-class IoU of the proposed approaches on VOC2012 when 5 classes are added
at once. 29

3.4 Per-class IoU of the proposed approaches on VOC2012 when 10 classes are added
at once. 30

3.5 Per-class IoU of the proposed approaches on VOC2012 when 5 classes are added
two times. 31

3.6 Per-class IoU of the proposed approaches on VOC2012 when 5 classes are added
two times with classes ordered based on the occurrence in the dataset. 31

3.7 Per-class IoU of the proposed approaches on VOC2012 when 5 classes are added
sequentially. 32

3.8 mIoU, mPA and mCA of the proposed approaches on VOC2012 when 5 classes
are added sequentially. 32

3.9 Per-class IoU on VOC2012 when 5 classes are added sequentially. Only the best
method of Table 3.7 (“EF and Lcls-T

D ”) is reported. 33
3.10 Per-class IoU of the proposed approaches on VOC2012 when 5 classes are added

sequentially with classes ordered based on their occurrence. 34
3.11 Per-class IoU of the proposed approaches on VOC2012 when 10 classes are added

sequentially. 34
3.12 Per-class IoU of the proposed approaches on MSRC-v2 when the last class, i.e.,

boat , is added . 35
3.13 Per-class IoU of the proposed approaches on MSRC-v2 when 5 classes are added

at once. 35
3.14 Per-class IoU of the proposed approaches on MSRC-v2 when 5 classes are added

sequentially. 36
3.15 Ablation study comparing ImageNet (mIoUI) and MSCOCO (mIoUM) pre-training

on VOC2012. 37
3.16 Difference of pre-training strategies in incremental learning on VOC2012 in terms

of mIoU when the last class, i.e., the tv/monitor class, is added. 37
3.17 Difference of pre-training strategies in incremental learning of the proposed ap-

proaches on VOC2012 in terms of mIoU when 10 classes are added at once. . . . 38
3.18 Difference of pre-training strategies in incremental learning of the proposed ap-

proaches on VOC2012 in terms of mIoU when 10 classes are added sequentially. . 38
3.19 Ablation of the different pre-training strategies on ImageNet (I) and on MSCOCO

(M). ∆M−I : difference of mIoU between the two pre-training. ∆FT,I : difference
of mIoU between each proposed method and fine-tuning in case ImageNet is used
as pre-training. 39

3.20 Results of the proposed approaches on the disjoint setup of VOC2012 in terms of
mIoU when the last class, i.e., the tv/monitor, is added. 39

xxiii

3.21 Results of the proposed approaches on the disjoint setup of VOC2012 in terms of
mIoU when 10 classes are added at once. 39

3.22 Results of the proposed approaches on the disjoint setup of VOC2012 in terms of
mIoU when 10 classes are added sequentially. 39

3.23 Ablation study on multi-layer knowledge distillation in incremental learning on
VOC2012 in terms of mIoU when 10 classes are added sequentially. 40

4.1 mIoU on multiple incremental scenarios and protocols on VOC2012. Best in bold,
runner-up underlined. †: results from [23]. 50

4.2 mIoU over multiple incremental scenarios on disjoint setup of ADE20K. Best in
bold, runner-up underlined. 56

4.3 Per-class IoU of compared methods in disjoint experimental protocol on scenario
19-1 of Pascal VOC2012. 59

4.4 Per-class pixel accuracy of compared methods in disjoint experimental protocol
on scenario 19-1 of Pascal VOC2012. 59

4.5 Per-class IoU of compared methods in disjoint experimental protocol on scenario
15-5 of Pascal VOC2012. 60

4.6 Per-class pixel accuracy of compared methods in disjoint experimental protocol
on scenario 15-5 of Pascal VOC2012. 60

4.7 Per-class IoU of compared methods in disjoint experimental protocol on scenario
15-1 of Pascal VOC2012. 60

4.8 Per-class pixel accuracy of compared methods in disjoint experimental protocol
on scenario 15-1 of Pascal VOC2012. 61

4.9 Ablation on disjoint VOC2012 15-1 in terms of mIoU. 61
4.10 Results on standard supervised (non-incremental) semantic segmentation. 61
4.11 Comparison of different Lsp in terms of mIoU in the disjoint scenarios 19-1 and

15-1 on Pascal VOC2012 dataset. 64

5.1 mIoU on Pascal VOC2012 for different incremental setups. Results of competitors
in the upper part come from [21, 23], while we run their implementations for the
new scenarios in the bottom part. 75

5.2 mIoU results showing the contribution of each module, D: Disjoint, O: Overlapped. 80
5.3 Mean IoU achieved by the proposed approach on the Pascal VOC2012 dataset for

different incremental setups and pre-training strategies. 81
5.4 Class mapping between Pascal VOC and ImageNet datasets. The table shows the

3 best matching ImageNet classes for each Pascal VOC2012 class. (∗): matching
classes for tv/monitor are not computed since replay data is not needed. 84

5.5 Per-class IoU of compared methods in disjoint experimental protocol on multiple
scenarios of Pascal VOC2012. 85

5.6 Per-round accuracy measures in the 10-1 disjoint scenario. In the top part we
report the PA (left) and IoU (right) of the last class currently introduced. The
bottom part, instead, shows the mean IoU over the old classes up to the ongoing
step (left), as well as the overall mean IoU including the new classes (right).
The classes added at each incremental step are: 1:dining table, 2:dog, 3:horse,
4:motorbike, 5:person, 6:potted plant, 7:sheep, 8:sofa, 9:train and 10:tv/monitor.
Best in bold. 86

5.7 mIoU on VOC2012 disjoint 15-1 with replay data. G: GAN, F: Flickr. Naïve:
only decoder of last step is used for pseudo-labeling, ours: our complete approach
(RECALL) is used. 86

xxiv

6.1 Semantic segmentation performances on the NYUDv2 dataset with four classes
of the proposed method and of some competing approaches (the table shows
percentage values). We underlined the best result among all the methods for
each metric, while the best result among the proposed techniques is reported in
bold. 102

6.2 Semantic segmentation performances on the NYUDv2 dataset with 13 classes
of the proposed methods and of some competing approaches (the table shows
percentage values). We underline the best result among all the methods for each
metric, while the best result among the proposed techniques is reported in bold. 102

6.3 Semantic segmentation performance on the NYUDv2 dataset with 40 classes of the
proposed methods and of some competing approaches (the table shows percentage
values). We underline the best result among all the methods for each metric, while
the best result among the proposed techniques is reported in bold. 103

6.4 Experimental results on NYUDv2 with simultaneous output of the three segmen-
tation maps, percentage values. The best results are highlighted in bold. 103

6.5 IoU results on the Pascal-Part-58 benchmark. mIoU: mean per-part-class IoU.
Avg: average per-object-class mIoU. 112

6.6 Per-part IoU and PA on the Pascal-Part-58 dataset. 115
6.7 Comparison in terms of mIoU, mCA and mPA on Pascal-Part-58. 115
6.8 IoU results on the Pascal-Part-108 benchmark. mIoU: mean per-part-class IoU.

Avg: average per-object-class mIoU. †: re-trained on the Pascal-Part-108 dataset. 116
6.9 Per-part IoU and PA on the Pascal-Part-108 dataset. 119
6.10 Comparison in terms of mIoU, mCA and mPA on Pascal-Part-108. 120
6.11 mIoU ablation results on Pascal-Part-58. Lu

GM : graph matching with unweighted
graph. 120

6.12 mIoU on Pascal-Part-58 with different configurations for the object-level semantic
embedding. 120

7.1 Mean IoU (mIoU) for different methods grouped by backbone in the scenario
adapting source knowledge from GTA5 to Cityscapes. 157

7.2 Mean IoU (mIoU) for different methods grouped by backbone in the scenario
adapting source knowledge from SYNTHIA to Cityscapes. The table reports
the mIoU computed over 13 or 16 semantic classes depending on the label set
employed. 159

8.1 mIoU on the different classes of the Cityscapes validation set. The approaches
have been trained in a supervised way on the GTA5 dataset and the unsupervised
domain adaptation has been performed using the Cityscapes training set. The
highest value in each column is highlighted in bold. 167

8.2 mIoU on the different classes of the Cityscapes validation set. The approaches
have been trained in a supervised way on the SYNTHIA dataset and the unsuper-
vised domain adaptation has been performed using the Cityscapes training set.
The highest value in each column is highlighted in bold. 167

8.3 mIoU on the different classes of the Mapillary validation set. The approaches
have been trained in a supervised way on the GTA5 dataset and the unsupervised
domain adaptation has been performed using the Mapillary training set. The
highest value in each column is highlighted in bold. 170

xxv

8.4 mIoU on the different classes of the Mapillary validation set. The approaches have
been trained in a supervised way on the SYNTHIA dataset and the unsupervised
domain adaptation has been performed using the Mapillary training set. The
highest value in each column is highlighted in bold. 170

8.5 Ablation study on Cityscapes validation set. We analyze the influence of the losses
LG,1, LG,2, LG,3, and of the strategies of region growing, discriminator weighting
and class weighting W t

c . 171
8.6 Ablation study on the Cityscapes validation set when adapting from GTA5. Dif-

ferent values of the balancing hyper-parameters of Eq. (8.8) are reported applying
various scaling factors to each parameter. The default parameters are ws = 10−2,
wt = 10−4, w′ = 10−3 when adapting from GTA5 and ws = 10−2, wt = 10−3,
w′ = 10−1 when adapting from SYNTHIA. 172

8.7 Per-class and mean IoU on the four considered UDA scenarios. The approaches
have been trained in a supervised way on the synthetic dataset and the unsu-
pervised domain adaptation has been performed using the respective real-world
training set. The results are reported on the real-world validation sets. 176

8.8 Ablation results on the Mapillary validation set adapting from GTA5. 178

9.1 mIoU on the different classes of the Cityscapes validation set. The approaches
have been trained in a supervised way on the GTA5 dataset and the unsupervised
domain adaptation has been performed using the Cityscapes training set. The
mean and per class highest results have been highlighted in bold. 187

9.2 mIoU on the different classes of the Cityscapes validation set. The approaches
have been trained in a supervised way on the SYNTHIA dataset and the unsuper-
vised domain adaptation has been performed using the Cityscapes training set.
The mean and per class highest results have been highlighted in bold. 190

9.3 Ablation study on the Cityscapes validation set. The approaches have been
trained in a supervised way on the GTA5 dataset and the unsupervised domain
adaptation has been performed using the Cityscapes training set. The mean and
per class highest results have been highlighted in bold. 192

9.4 Numerical evaluation of the GTA5 and SYNTHIA to Cityscapes adaptation sce-
narios in terms of per-class and mean IoU. Evaluations are performed on the
validation set of the Cityscapes dataset. In all the experiments the DeepLab-V2
segmentation network is employed, with VGG-16 (top) or ResNet-101 (bottom)
backbones. The mIoU* results in the last column refer to the 13-classes con-
figuration, i.e., classes marked with ∗ are ignored. MaxSquares IW (r) denotes
our re-implementation, as original results are provided only for the ResNet-101
backbone. 197

9.5 Ablation results on the contribution of each adaptation module in the GTA5 to
Cityscapes scenario and with ResNet-101 as backbone. 199

9.6 Comparison of adaptation strategies in terms of IoU, mIoU and mASR (Sec-
tion 9.4.5). Best in bold, runner-up underlined. mIoU1 and mASR1 restricted to
13 classes, ignoring the classes with same superscript. 213

9.7 Quantitative results on the Cross-City real-to-real benchmark. (r) indicates that
the strategy was re-trained, starting from the official code. Best in bold, runner-
up underlined. 214

9.8 Additional quantitative results with multiple backbones, GTAV→Cityscapes setup.
(r) indicates that the strategy was re-trained, starting from the official code. . . 216

xxvi

9.9 Ablation Studies, mIoU and mASR scores comparison when removing any of the
losses. 216

10.1 Statistics of the employed datasets (left) and hyper-parameters (right). In seg-
mentation datasets, image background is excluded, and the accuracy refers to the
mIoU. DeepLab-V3+ [4] uses MobileNet-v2 [360,361] as the backbone pre-trained
on ImageNet [330]. 228

10.2 Accuracy (%) of the aggregate model on the final round for different number of
reporting clients K ′. 233

11.1 Final mean and std of accuracy (%) and loss from Figure 11.2. Centralized ac-
curacy are 78.5, 99.0, 99.4, 92.6, and losses are 0.33, 0.00, 0.00, 0.15 for Synth.,
MNIST, FEMNIST and CelebA. 248

11.2 MNIST classification accuracy (%) of different strategies. 249
11.3 Margin µ̄[T] of the final aggregate model and FFD (%). 250

xxvii

xxviii

1
Automatic Semantic Scene Understanding: an

Overview

1.1 Introduction

Over the last decade, deep learning techniques have evolved rapidly to address a wide variety
of tasks considered extremely challenging beforehand, in particular in the computer vision field,
where deep learning has achieved human-like performance in many tasks. When considering
scenes, we might be interested in different levels of understanding, depending on the situation
and on the usage of the scene inspection. Various visual scene understanding tasks have been
depicted in Figure 1.1. In image classification, a single label is assigned to the whole image
and denotes the pre-dominant object in the scene. In object detection, the objects are identi-
fied by means of a bounding box and a label is assigned to each box. In image segmentation,
the scene is clustered into regions corresponding to the various objects and structures but the
regions are not labeled. Semantic segmentation, instead, is the task of assigning to each pixel
in the image a label corresponding to its semantic content. For this reason, it is often referred
to as a dense labeling task as opposed to other simpler problems where fewer labels are given
as output. Semantic segmentation is a wide research field and a large number of approaches
have been proposed to tackle it. In particular, deep learning architectures have recently allowed
for attaining considerable improvements. Current state-of-the-art approaches are mostly based
on the auto-encoder structure which aim to extract global semantic clues, while retaining input
spatial dimensionality, starting from the Fully Convolutional Network (FCN) model [1]. Exam-
ples of the most popular and successful approaches are DRN [2], PSPNet [3] and DeepLab [4–6].
Recent reviews on this topic can be found in [7–9].

In the following chapters, we mainly focus on semantic segmentation, as it represents one of
the most challenging tasks in automatic visual analysis and allows for a deeper understanding
of the image content when compared to simpler problems like image classification or object
detection, and it will be a strong prerequisite of many applications (e.g., ranging from robot
sensing, to autonomous driving, video surveillance, virtual reality, and many others).

However, when approaching real-world applications different problems arise.

• In some cases, the final target task may not be completely defined at the start of model
training with new classes or new tasks being added at run-time. Continual learning strate-
gies deal with this setting aiming at progressively learning the new tasks or classes without

1

Color
Image Classification Object

Detection Segmentation Semantic
Segmentation

Figure 1.1: Overview of possible visual tasks on a few sample images from classification (sparse learning task) to semantic seg-

mentation (dense learning task).

re-training the machine learning model from scratch [10,11]. Coarse-to-fine learning, sim-
ilarly, exploits the previously trained model on a coarse set of classes, to aid the training
of the model on a finer set of visual concepts [12].

• In other cases, a large amount of training data for the considered setting and problem
is not available. While very large generic datasets are publicly available, the acquisition
and labeling of a large amount of data for a specific setting is typically too expensive and
time consuming for most companies developing machine learning systems. This gave rise
to domain adaptation techniques which allow for transferring the learned knowledge from
a generic source dataset to the target data of the problem at hand. These can be either
partially supervised, i.e., a small amount of labeled data for the target set is available,
or unsupervised, when no labeling information or even no data at all, is available for the
target domain [13,14].

• In some other cases, training data is available only at decentralized clients and it contains
sensitive information that cannot be shared with a central server authority for standard
supervised model training. In such cases, the domain distribution can be highly different
among the different clients and the clients own too few data to train complex model archi-
tectures up to convergence. Federated learning handles this need by iteratively computing
local solutions and sending them to a central server, which aggregates them and produces
a global model ideally able to deal with the different data distributions [15].

This general discussion applies to many learning models and target problems, but becomes
extremely relevant when a huge amount of data and a large computational effort for training
are needed. In particular, this is the case for dense-predictive image and video understanding
problems where each input point is associated to a semantic category.

1.2 Transfer Learning

The problem of knowledge transfer in machine learning was first introduced by Bucilua et al. [16].
At that time, the focus was on compressing an entire ensemble of models (a collection of models

2

whose final predictions are averaged) into a single and simpler model that is easier and faster
to train. This concept was further developed in [17] to enable addition of new classes without
losing the model’s performance on the older set of classes.

In the following, we provide a formal definition of the transfer learning problem. Let us define
a domain D = {X , P (X)}, where X is the space of input data and P (X) is the probability
distribution function over that input data. A task T over the domain D is a combination of a
label space Y with the predictive function f(·) modeling the conditional probability distribution
P (Y |X). Thus, any supervised machine learning problem can be generally attributed to the
search for a function h : X → Y which better approximates the unknown underlying f(·), by
examining a set of labeled training samples drawn from the joint distribution P (X,Y) over
X × Y .

In the classical Unsupervised Domain Adaptation (UDA) scenario, the input data domain D is
not unique, e.g., there exist separate sourceDS and targetDT domains. In the classical Continual
Learning (CL) scenario, the input domain D is split into multiple pieces D(t), t = 1, ..., Tmax

available for training at separate times. Furthermore, over these domains different tasks may
need to be solved, e.g., two different tasks TS and TT could have been respectively chosen for the
source and target domains or there can be a sequence of tasks T (t), t = 1, ..., Tmax to be solved
at different stages t of the learning process. Then, transfer learning is defined as seeking for
an improved predictive function fT (·) over the target domain (or over multiple target domains),
relying on useful information extracted from source task TS on DS , in case DS 6= DT or TS 6= TT .

Throughout the thesis, we will appreciate how domain adaptation, continual learning and
coarse-to-fine learning can be viewed as special cases of transfer learning: in the first case, the
source and target domain are different while the task is the same; in the second case the macro-
domain is the same (but it is made available in separate portions) and the task changes; in the
third case the domain remains unaltered while the label space changes. Finally, in Federated
Learning (FL) each client only experiences its own local distribution and samples are not shared,
while the task is to learn a global model to solve all the local tasks: knowledge in this case is
transferred through the model parameters periodically sent from the clients to a central server.

1.3 Contributions

This dissertation describes a journey towards pixel-accurate visual understanding in the wild.
Namely, we present contributions in four main research areas highly interconnected, which nat-
urally cluster the chapters of this thesis into parts.

1. Continual Learning (CL). The first part contains techniques to mitigate the so-called
catastrophic forgetting phenomenon of deep neural networks when learning new tasks. In
this context, we will introduce:

• the first investigations [18,19] of continual learning applied to semantic segmentation,
without retaining previous images and evaluating on standard semantic segmentation
benchmarks;

• experiments with state-of-the-art and novel knowledge distillation techniques and
parameter freezing in [18,20];

• in [21] we investigate the latent space organization, proposing new strategies to pre-
serve feature extraction knowledge related to previously seen categories, such as pro-
totype matching, contrastive learning and feature sparsity;

3

• in [22] we present the first method to use replay data (either from a GAN or from
the Web) in continual semantic segmentation, coupling it with a novel background
inpainting strategy to generate pseudo-labels to overcome the so-called background
shift [23].

2. Coarse-to-Fine Learning. The second part explores coarse-to-fine refinements of the
label space and finds methods to improve semantic recognition of fine-grained categories
with the aid of coarse-level predictions. In this regard, our contributions are:

• we define and tackle the semantic-level coarse-to-fine learning task aiding the fine-
grained network with the output of the coarse-level network [24];

• we address spatial-level coarse-to-fine learning, where the coarse object-level output is
processed by a semantic embedding network and acts as a conditioning while learning
part-level categories, in conjunction with a novel adjacency graph-based module that
matches the relative spatial relationship between ground truth and predicted parts
[25].

3. Unsupervised Domain Adaptation (UDA). The third part addresses the well-known
domain shift problem, where deep learning architectures are adapted to unseen visual
domains without supervision. Our work in this field brings the following contributions:

• we carefully analyze the existing literature on the topic of UDA in semantic segmen-
tation [13, 19] outlining that adaptation can occur at the input-, feature- or output-
levels, and we grouped each strategy by the employed methodology;

• we investigate output-level adaptation by means of an adversarial learning module
that exploits both labeled synthetic data and unlabeled real data, a self-teaching
strategy applied to unlabeled data and a region growing framework guided by the
segmentation confidence [26,27];

• we propose an adaptive confidence mechanism over both: different classes and differ-
ent training steps [28];

• we examine the combination of state-of-the-art input-level adaptation based on Cy-
cleGAN [29] and a first investigation of feature-level adaptation by means of a couple
of discriminator networks in [30];

• we explore novel feature-level strategies based on feature clustering, orthogonality and
sparsity [31];

• we extend previous latent-level regularization approaches and we couple them with
norm alignment [32,33].

4. Federated Learning (FL). The fourth and last part discusses how deep learning archi-
tectures for vision tasks can be trained in a decentralized fashion with private data not
shared with a central server entity [15]. In particular, we will present:

• an analysis of the baseline federated learning optimizer (FedAvg) when data is dis-
tributed highly non-i.i.d. across clients and a novel federated optimizer, FairAvg,
which is unbiased and fair from the user perspective; [34]

• a new method, FedProto, which computes client deviations using margins of prototyp-
ical representations learned on distributed data, and applies them to drive federated
optimization via an attention mechanism [35] and we propose three methods to ana-
lyze the statistical properties of feature representations learned in FL.

4

1.4 Outline of the Thesis

The outline of the thesis follows the order of the aforementioned contributions.
Part I presents the continual learning task applied to semantic segmentation. Chapter 2 first

introduces the problem and then discusses recent state-of-the-art methods for continual semantic
segmentation. In Chapter 3 we explore the effect of parameter freezing and knowledge distillation
approaches at various layers of the segmentation network. Chapter 4 presents innovative latent-
level regularization methods to reduce forgetting of past knowledge. Chapter 5 investigates the
usage of replay data (either coming from a pre-trained GAN, or from the Web) and background
inpainting while learning subsequent tasks.

The second part of this thesis (Part II) focuses on the coarse-to-fine refinement of a deep
learning architecture initially trained on a coarse set of classes and further refined to solve a
finer-grained task. Chapter 6 addresses this problem from two closely-related configurations:
Section 6.2 tackles coarse-to-fine learning at the semantic level, where macro (coarse) classes are
progressively refined into micro (fine) classes via stacking of multiple architectures. Section 6.3,
instead, addresses coarse-to-fine learning at the spatial level, where object-level (coarse) classes
are refined into sub-parts (fine) classes via a novel graph matching procedure to match spatial
relationship among parts..

Part III presents the unsupervised domain adaptation task in semantic segmentation. Chap-
ter 7 first introduces the problem and then carefully reviews and categorizes the wide literature
on the topic. In particular, there are three levels where network adaptation may occur: at the
output, feature or input level. Chapter 8 presents our two contributions on output-level UDA.
Chapter 9 presents our three contributions on input- and feature-level UDA. First, we explore
a combination of a standard input-level adaptation method based on CycleGAN and a simple
feature-level method based on a couple of discriminator networks. Second, we explore latent-
level adaptation more precisely, aiming at disentangling the latent representations by means
of feature clustering, orthogonality and sparsity. Third, we further extend and refine previous
considerations on latent-level adaptation methods and we introduce a novel metric to quantify
UDA approaches.

The last part of this dissertation (Part IV) is devoted to federated learning and it opens
up new horizons towards private and distributed model training. First, Chapter 10 defines
the problem in general terms and shows the effect of extreme non-i.i.d. data distribution among
clients, introducing a naïve federated optimizer fair from the user perspective. Then, Chapter 11
proposes a novel prototype-guided federated learning optimizer which can also handle federated
training of semantic segmentation models.

Finally, Chapter 12 concludes the dissertation summarizing the findings and the open future
directions.

5

6

Part I

Semantic Recognition of New
Categories in the Wild

7

2
Continual Learning of New Semantic Concepts

This chapter formally introduces and defines the continual learning problem applied to semantic
image segmentation [19]. This will serve as a starting point and a reference for the upcoming
chapters, where the proposed methodologies are presented and evaluated.

2.1 AGentle Introduction to Continual Learning

Recent deep learning techniques have rapidly advanced to solve a wide variety of computer vision
tasks. Deep learning architectures have matured along the way, however, practical applications
soon raised the need for techniques able to improve the learned knowledge over time in order
to accomplish new tasks without forgetting previous knowledge. This represents the building
paradigm of continual learning in its essence. In other words, when deep learning models are
deployed into the real-world, we would like to have the possibility of improving the capability of
the models with new experiences or concepts, without retraining them from scratch [19].

In general, the main issue of these computational models is that they are prone to catastrophic
forgetting [36–39], i.e., training a model with new information interferes with previously learned
knowledge and typically greatly degrades the performance. Catastrophic forgetting has been
faced even before the rise of neural networks popularity [40–42] and more recently has been
rediscovered and tackled in different ways. Deep learning models, in particular, assume that all
the data samples are available during the training phase and, therefore, they require that the
training is performed on the entire dataset in order to adapt to changes in the data distribution.
When trained on sequential tasks with samples progressively available over time, the performance
significantly decreases on previously learned tasks as the network parameters are optimized for
the new task without accounting for the old ones, if no ad-hoc provisions are employed [10,43].

Continual learning (also called incremental learning, lifelong learning or never ending learn-
ing), then, is the set of techniques designed to face this challenging scenario in which a sequence
of tasks comes in succession [44]. Despite being a long-standing problem in computational mod-
els [38], in deep learning it has been tackled with some successes only recently.

To further prove its relevance, it is worthwhile to consider an analogy between machine learn-
ing and human learning. Indeed, humans encounter a continual stream of learning tasks and
are able to generalize to similar unseen tasks [45]. To understand the brain mechanisms and
to translate them into computational models, many connectionist and biologically-inspired at-
tempts have been made throughout the years [46, 47]. Recently, the problem has been actively

9

investigated in some image-level visual tasks (i.e., with one or few labels per each image) such as
image classification [48–50] and object detection [51,52]. In dense labeling tasks such as semantic
segmentation, the problem has been faced only recently [18, 20, 23, 53–56] due to the inher-
ent increased complexity. Recently, continual learning has been also explored in reinforcement
learning [57,58].

Before digging into the definition of continual learning and exploring its application to dense
labeling tasks, we point out some general reviews on the topic, not directly dealing with semantic
segmentation. We refer to [59] for catastrophic forgetting in connectionist models, while [10] is
the first review to critically compare recent works about the phenomenon in deep learning models.
In [60] many approaches are compared into a common framework and in [11] the challenges of
continual learning are described with a special focus on robotics.

We start by formally introducing this problem in Section 2.2 and we review the state of the
art in sparse learning tasks in Section 2.3. Then, we present the wide range of experimental
scenarios that can be considered in Section 2.4, while Section 2.5 presents how these can be
tackled by means of knowledge preservation and regularization strategies.

2.2 Problem Statement

Continual Learning (CL) could be regarded as a particular case of transfer learning, where the
data domain distribution changes at every incremental step and the model should perform well
on all the distributions. It is also strongly connected to the domain adaptation problem that
will be the focus of the next part of this thesis, however, in this case, the focus is devoted toward
both the input data and the annotations, whose distributions change over time and their number
may be increased as well (i.e., more classes to be distinguished).

Due to the intrinsic variety of challenges in continual learning and their respective difficulties,
most of the approaches relax the general setup of continual learning to an easier one of incre-
mental task learning. In the latter scenario, tasks are received one at the time and training is
performed on the available training data. Hence, this represents a mitigation of the true con-
tinual learning system, which is more likely to be encountered in practice [60]. For instance, in
class-incremental learning, the learned model is updated to recognize new classes whilst preserv-
ing knowledge about previous ones. An overview of this setup is reported in Figure 2.1. In more
formal terms, we consider the t-th incremental step (with t = 1, 2, ..., Tmax) and we are given
the previous modelMt−1 and two sets of data

{
X (t),Y(t)

}
randomly drawn from the distribu-

tion D(t), which is an observation (or subset) of the complete domain D. Here, X (t) denotes
a set of data samples for step t and Y(t) denotes the corresponding ground truth annotations
(i.e., a single label for the image classification problem or a dense labeling map for the semantic
segmentation problem). In the considered class-incremental setup, we assume that each step
corresponds to a different learning task.

To mimic what happens in many real-world scenarios and to reduce the need for storage or
privacy limitations, most of the frameworks do not store any sample of data

{
X (s),Y(s)

}
for any

step s preceding the current step t. Hence, the problem becomes even more challenging as the
goal is to control an objective function targeting all seen tasks without having access to previous
samples. More formally, the empirical risk minimization framework translates into the research
of the optimal parameters θ∗ by optimizing:

argminθ

T∑
t=0

E(X (t),Y(t))

[
L
(
Mt

(
X (t); θ

)
,Y(t)

)]
(2.1)

10

Figure 2.1: Graphical representation of the class-incremental continual learning framework. Themodel is updated to recognize

new classes over timewithout forgetting previously learned ones.

with model’s parameters θ, loss function L, T incremental tasks seen so far, andMt the model
function at step t. We remark, however, that this objective function cannot be optimized directly
as old samples may not be present at all or may be very limited (depending on the continual
learning scenario, see Section 2.4). We refer to the case in which all samples are available from
the beginning as joint (or offline) training, representing an upper bound of the performance of
a continual learning system (i.e., a single stage of training with all samples).

Furthermore, it is useful to gain insight of the problem in terms of marginal output and
input distributions, i.e., P (Y(t)) and P (X (t)) respectively, of a generic step t. In general, task-
incremental learning considers that P (Y(t+1)) 6= P (Y(t)) due to P (X (t+1)) 6= P (X (t)) and that
the task output spaces differ over time, i.e.,

{
Y(t)

}
6=
{
Y(t+1)

}
. In the Unsupervised Do-

main Adaptation (UDA) scenario, instead, we generally observe P (Y(t+1)) 6= P (Y(t)) due to
P (X (t+1)) 6= P (X (t)), but

{
Y(t)

}
=
{
Y(t+1)

}
, with the number of incremental steps Tmax = 1

and a typically sudden change in the data domain distribution, while changes are in general
more gradual in continual learning [60,61]. We will analyze this more deeply in Chapter 7.

Finally, we remark that ideal continual learning setups consider infinite and continuous stream
of training data and at each step the system receives some new samples drawn non-i.i.d. from
the current distribution D(t) that could itself experience sudden or gradual changes with no
notification. This is what future approaches should aim to tackle.

2.3 Continual Learning in Sparse Learning Tasks

First Continual Learning (CL) approaches arose in sparse learning tasks, such as image classi-
fication or object detection, for the sake of simplicity. We briefly review some of them in this
section before introducing continual semantic segmentation techniques in Section 2.5.

11

Most of the current techniques falls into the following categories [10,60]: dynamic architectures
[62–65], regularization approaches [66,67], parameter isolation [68–70] and replay-based methods
[71–75].

Early approaches [62,64,65] exploit dynamic architectures which grow over time as a tree
structure in a hierarchical manner as new classes are observed. Istrate et al. [76] propose a
method that partitions the original network into sub-networks which are then gradually incor-
porated in the main one during training. Sarwar et al. [77] grow the network incrementally
over time while sharing portions of the base module. Dai et al. [78] propose a grow-and-prune
approach. First, the network grows new connections to accommodate new data; then, the con-
nections are pruned on the basis of the magnitude of weights.

Regularization-based approaches are by far the most widely employed and mainly come
in two flavours, i.e., penalty computing and knowledge distillation [17]. Penalty computing ap-
proaches [66,79,79] protect important weights inside the models to prevent forgetting. Knowledge
distillation [49, 71, 80, 81] is another way of retaining high performance on old tasks which has
recently gained wide success. This technique was originally proposed in [17] and [16] to preserve
the output of a complex ensemble of networks when adopting a simpler network for more effi-
cient deployment. The idea was adapted to maintain unchanged the responses of the (teacher)
network on the old tasks whilst updating a new (student) model with new training samples
in different ways. Various approaches have been presented in recent studies [48–51, 71, 82, 83].
Shmelkov et al. [51] propose an end-to-end learning framework where the representation and the
classifier are learned jointly without storing any of the original training samples. Li et al. [49]
distill previous knowledge directly from the last trained model. Dhar et al. [81] introduce an
attention distillation loss as an information preserving penalty for the classifiers’ attention maps.
In [82] the current model distills knowledge from all previous model snapshots, of which a pruned
version is saved. Deep Model Consolidation [84] proposes the idea to train a separate model for
the new classes, and then combine the two models (for old and new data, respectively) via double
distillation objective. The two models are consolidated via publicly available unlabeled auxiliary
data. The Similarity-Preserving Knowledge Distillation (SPKD) [85] strategy aims at preserving
the similarities between features of samples of the same class. Recently, novel schemes have been
proposed, e.g., to model the information flow through the various layers of the teacher model
in order to train a student model to mimic this information flow [86]. Another strategy is to
use network distillation to efficiently compute image embeddings with small networks for metric
learning [87].

Parameter isolation approaches [70, 88] reserve a subset of weights for a specific task to
avoid degradation. Similar strategies consist in freezing or slowing down the learning process
in some parts of the network. Kirkpatrick et al. [79] developed Elastic Weight Consolidation
(EWC) to remember old tasks by slowing down the learning process on the important weights
for those tasks. Oquab et al. [89] preserve the learned knowledge by freezing the earlier and
the mid-level layers of the models. Similar ideas are used in recent studies [49, 76]. Aljundi et
al. [90] introduce the idea that when learning a new task, changes to important parameters can
be penalized, effectively preventing meaningful knowledge related to previous tasks from being
overwritten. Shmelkov et al. [51] experiment on freezing either all the layers (except for the last)
or part of them. Mandziuk et al. [91] try to identify and freeze a compact subset of features
(nodes) in the hidden layers, that are crucial for the current task, thus preventing forgetting in
the future. Similarly, Kirkpatrick et al. [79] remember old tasks by slowing down the learning
process on the relevant weights for those tasks. Jung et al. [92] try to maintain the performance
on old tasks by freezing the final layer and discouraging the change of shared weights in feature
extraction layers.

Replay-based models exploit either stored [48,50,74] or generated [71–73] examples during

12

the learning process of new tasks. Keeping a small portion of data belonging to previous tasks
is another strategy used by some works to preserve the accuracy on old tasks when dealing with
new problems [48,50,54,66,93–95]. In those works the exemplar set to store is chosen according
to different criteria. In [48,93] the authors use an episodic memory which stores a subset of the
observed examples from previous tasks, while incrementally learning new classes. Chaudhry et
al. [94] keep a fraction of samples from previous classes to alleviate intransigence of a model,
i.e., the inability of a model to update its knowledge. Hou et al. [95] try to balance between
preservation and adaptation of the model via distillation and retrospection by caching a small
subset of randomly picked data for old tasks. In [50], the classifier and the features used to
select the samples for the representative memory are learned jointly in an end-to-end fashion
and herding selection [96] is used to pick them. A controlled sampling of memories for replay is
proposed by [97], where samples which are most interfered, i.e., whose prediction will be most
negatively impacted by the foreseen parameters update, are chosen. Generative Adversarial
Networks (GANs) have also been used by some recent methods [71, 73] to generate images
containing previous classes instead of storing old classes data, thus retaining high accuracy on
old tasks.

2.4 Experimental Setups in Continual Semantic Segmentation

Despite being a quite recent field, continual learning in semantic segmentation already comes in
different flavors. In particular, existing works differ in the consideration of the domain distri-
butions D(t) and of the data sampling

{
X (t),Y(t)

}
. The different choices emerge from different

target applications. Let us denote with S(t−1) the previous label set, which is expanded with
a set of new classes C(t) at step t, yielding a new label set S(t) = S(t−1) ∪ C(t). As typically
assumed in task-incremental settings, the sets of new labels discovered at each step are disjoint,
except for a special background or void class whose behavior and meaning depends on the se-
lected scenario. There are many possible scenarios and one of the key differences lies in the way
the background class is considered, which is typical of many semantic segmentation benchmarks.
Previous approaches proposed four main different scenarios:

1. Sequential masked. This setup reflects the simplest idea on continual semantic segmen-
tation; i.e., each learning step contains a unique set of images, whose pixels belong either
to novel classes or to a void class, which is not predicted by the model and it is masked
out from both the results and the training procedure. This setup has been used in [54,55].

2. Sequential. This setup has been proposed in [18,20]. Each learning step contains a unique
set of images, whose pixels belong to classes seen either in the current or in the previous
learning steps. At each step, labels for pixels of both novel classes and old ones are present;
however, the specific occurrence of a particular old class is highly correlated to the set of
classes being added. For example, if the set of all old classes is S(t−1) = {chair , airplane}
and the set of classes being added is C(t) = {dining table}, then it is reasonable to expect
that

{
X (t),Y(t)

}
contains some images with the chair class, that typically appears together

with the dining table, while the class airplane is extremely unlikely to occur.

3. Disjoint. This setup has been proposed in [20, 23]. At each learning step, the unique set
of images is identical to the sequential setup. The difference with respect to the sequential
setup lies in the set of labels. At each step, only labels for pixels of novel classes are present,
while the old ones are labeled as background in the segmentation maps (this causes the
background class to change distribution at each step).

13

Figure 2.2: Overviewof the different setups for class-incremental continual learning in semantic segmentation. The black class

represents the background class and the white one represents the void/unlabeled.

4. Overlapped. This setup moves from the work of [51] for object detection and has been
addressed in [21,23,56] for semantic segmentation. In this setup, each training step contains
all the images that have at least one pixel of a novel set of classes, with only the classes of
the set annotated and the rest set to background . Differently from the other settings, in
this scenario images may contain pixels of classes that will be learned in the future, but
labeled as background in the current step; for this reason, as in the previous setting, the
background class changes distribution at every incremental step.

A few examples of the different semantic map annotations are given in Figure 2.2. Although
being subcategories of the same problem they lead to substantially different setups requiring
flexible strategies to tackle them.

This complex scenario is getting even more articulated as there exist many different ways of
sampling the sets C(t) of unseen classes and of selecting its cardinality |C(t)|, leading to completely
different experiments. Previous work [51,84,98] sort the classes using a pre-defined order in the
exploited dataset (e.g., alphabetical order). Another possibility is to sort the classes based on
their occurrence throughout the dataset [20], to reflect the idea that, in real-world application,
it is more likely to start from common classes and introduce rarer ones later. In our works, we
experimented both the possibilities. With respect to the second aspect, there are many ways of
selecting the cardinality of the sets Ct, leading to different incremental scenarios: one may add a
single class, a batch of classes or multiple classes sequentially one after the other [18,20,21,23,56].
All these possibilities open up a very variegate picture, which is being explored only recently,
hence many research directions remain still unexplored.

14

2.5 Techniques for Continual Semantic Segmentation

In this section we are going to review the main methods to tackle task-incremental semantic
segmentation grouped by employed technique. We also refer the interested reader to some
relevant works in task-incremental image classification, this related field being more explored
and mature with respect to continual semantic segmentation.

2.5.1 Knowledge Distillation

The first family of approaches we present is the most commonly employed one thanks to its
simplicity and efficacy; i.e., knowledge distillation. This technique was originally proposed
by [16] and [17] to preserve the output of a complex ensemble of networks when adopting a
simpler network for more efficient deployment. The idea was adapted to maintain unchanged
the responses of the network on the old tasks whilst updating it with new training samples
typically associated to new tasks. This is typically performed applying a constraint (e.g., a
loss function) in order to mimic the responses of the previous model in the current one. Its
main effect is to act as a powerful regularization term during the learning process of the current
classes, often leading to better performance on both previous and current classes (by preserving
the capability of recognizing the former set and avoiding the overestimation of the latter set).

Knowledge distillation has been explored in different setups and it is somehow a prerequisite
for successful task incremental learning algorithms. In sparse learning tasks, many algorithms
use knowledge distillation in different flavors, as we observed in Section 2.3.

These techniques have been found to be extremely effective and reliable also in dense learning
tasks. Ozdemir et al. [53] extend the image classification model of [49] to image segmentation
simply constructing a knowledge distillation loss as the cross entropy between previous and
current model’s output probabilities. The authors also devise a strategy to select relevant samples
of old data for rehearsal, that improves performance, but violates the assumption used in many
scenarios of avoiding previous data storage. Tasar et al. [54] apply knowledge distillation via
cross entropy between previous and current model’s output probabilities for each class, as the
model predicts binary segmentation maps for each class separately. This work, however, focuses
on a very specific setting related to satellite images and has several limitations when applied
to generic semantic segmentation problems. Indeed, it considers the segmentation task as a
multi-task learning problem, where a binary classification for each class replaces the multi-
class labeling. Additionally, [54] stores some patches chosen according to an importance value
determined by a weight assigned to each class and some other patches chosen at random. The
capabilities on old classes are preserved by storing a subset of old images. However, for large
amount of classes and different applications, the methodology does not scale properly. Moreover,
storing previously seen data could represent a serious limitation for applications where privacy
issues or limited storage budgets are present.

In [18] we are the first to evaluate on a standard semantic segmentation benchmark and to ap-
ply knowledge distillation not only at the output level but also at the intermediate feature space
to preserve the geometrical relationships of the extracted features. The work is extended in [20],
that introduces and compares many knowledge distillation techniques. In particular, distillation
on the output layer is enriched by temperature scaling (i.e., rescaling softmax probabilities by
a so-called temperature factor) to consider also the uncertainty of the estimations of previous
models. Distillation on intermediate feature level is extended to multiple decoding stages and
a scheme inspired by Similarity-Preserving Knowledge Distillation [85] is also proposed. Cer-
melli et al. [23] propose a revisited distillation loss on the output level which accounts for the fact
that a previous model could have already seen previous classes labeled as background (i.e., in the

15

overlapped setup). This is coupled with an unbiased weights initialization rule to deal with the
atypical behavior of the background class in the disjoint and overlapped scenarios. The authors
initialize the classifier’s parameters for the novel classes in such a way that the probability of
the background is uniformly spread among the novel classes, preventing the model to be biased
toward the background class when dealing with unseen classes. Klingner et al. [55] propose a
masked and weighted distillation loss on the output level to improve the accuracy on small or
under-represented classes within the dataset. Finally, [56, 99] apply a matching distillation to
retain both long-range and short-range statistics at different feature levels and at different scales
between the old and current model.

Chapter 3 will present our works [18, 20] proposing novel knowledge distillation schemes for
continual semantic segmentation.

2.5.2 Parameter Freezing

One of the major achievements of the early connectionist works is that they identified one main
strategy to address catastrophic forgetting: i.e., by freezing part of the network weights [48]. This
technique has been applied by a large number of contemporary approaches as a regularization
attempt to prevent knowledge degradation caused by upcoming tasks.

Following the successes in sparse learning tasks [51, 79, 91, 92] (see Section 2.3), parameter
freezing has been proposed as a way to prevent forgetting also in dense labeling tasks. In [18]
we propose to freeze all the layers of the encoder in order to preserve unaltered the feature
extraction capabilities and only train the decoding parameters. In [20] we propose to freeze only
the first couple of layers of the encoder, to preserve the most task-agnostic part of the feature
extractor. Cha et al. [100] freeze the backbone network and past classifiers to help stability.
However, the choice of which layers to freeze remains an open question and an intrinsic trade-
off emerges between the capability of efficiently learning new tasks and the preservation of the
acquired knowledge. A first attempt of automatic selection of which layers to freeze has been
recently introduced by [101] checking the most plastic layers of the network.

2.5.3 Geometrical Feature-Level Constraining

The analysis of the latent space organization is becoming crucial towards understanding and
improvement of deep neural networks [102–105]. Recently, some attention has been devoted
to latent regularization in continual image classification [106, 107] and in unsupervised domain
adaptation [31, 32]. The key idea of these approaches is to disentangle the intermediate feature
space in different ways, spacing apart feature representations belonging to different classes. In
continual learning, indeed, this can reduce the overlap of the class-wise latent representations
when future classes are introduced in the model.

The first paper exploiting this idea in dense tasks is our work [21], where the latent space is
constrained to reduce forgetting whilst improving the recognition of novel classes. The framework
is driven by three main components: first, prototype matching enforces latent space consistency
on old classes, constraining the encoder to produce similar latent representation for previously
seen classes in the subsequent steps; second, feature sparsification allows to make room in the
latent space to accommodate novel classes; third, contrastive learning is employed to cluster
features according to their semantics while tearing apart those of different classes. This work [21]
will be the main focus of Chapter 4.

Recently, [56, 99] propose a multi-scale pooling distillation scheme that preserves long- and
short-range spatial relationships at the feature level. Furthermore, they design an entropy-

16

based pseudo-labelling of the background with classes predicted by the old model to deal with
background shift and avoid catastrophic forgetting of the old classes.

2.5.4 Replay-based Learning

Rehearsal Learning approaches store some of the past examples and replaying them while
learning new information. This problem is exacerbated in continual segmentation where the
storage cost is high and images are partially labeled. In [99] a memory-efficient object rehearsal
learning procedure is proposed: objects are stored and carefully pasted through selective erasing
of foreground objects. In [100] a tiny exemplar set of class-balanced categories is stored into
memory to improve both plasticity and stability.
Generative Replay methods train generative models on the current data distribution. Hence,
afterwards, it is possible to sample data from past experience when learning on new data. By
learning on actual data mixed with artificially generated past data, they try to preserve past
knowledge while learning the new task. The generative model is generally a GAN [108] as in
[71,73] or an auto-encoder as in [109,110]. Up to date, there are only two approaches for semantic
segmentation belonging to this category [22, 111]. In the first one [22], we employ a pre-trained
conditioned GAN to generate realistic samples of previous classes which are interleaved during
the learning of the new classes. The mapping between old classes of the current dataset and the
classes of the pre-trained GAN is performed automatically via a class mapping module translating
between the two domains. This large amount of weakly labeled data are assigned to a pseudo-
label for semantic segmentation using a side labeling module, requiring only minimal extra
storage. Notice that only the weak classification labeling is available for generated data and some
pseudo-labels need to be estimated for segmentation. In the second work [111], instead, replay
images are synthesized using the image-level labels. Along with real images of new classes, the
synthesized images are fed into the distillation-based framework to train the new segmentation
model which retains the information about previously learned classes, whilst updating the current
model to learn the new ones.
Webly-based Learning models [112,113], i.e., models that learn from samples acquired via web
searches, could be an extremely powerful tool to retrieve faithful past examples using as queries
the label names of the old classes to preserve. This approach is proposed in [22], where novel
samples are interleaved with web-crawled ones (querying the class names to drive the search).
This simple method outperforms by a large margin competing approaches with the (minimal)
requirement of searching for pictures on the Web. Also in this case, only weak classification
labels are available and some pseudo-labeling scheme needs to be introduced.

Chapter 5 will focus on replay-based learning strategies (both generative and web-based) in
continual semantic segmentation [22].

2.6 EmployedDatasets

In the following chapters we will evaluate the effectiveness and the robustness of the proposed
methodologies on a few publicly available datasets that are briefly introduced. Sample scenes
taken from the datasets are reported in Figure 2.3.

The Pascal VOC2012 dataset [114] contains 10, 582 variable-sized images in the training
split and 1, 449 in the validation split. The semantic labeling assigns the pixels to 21 different
classes (20 plus the background). Since the test set has not been made available, the results are
typically reported on the images belonging to the Pascal VOC2012 validation split (i.e., using
the validation split as a test set) [51, 84]. A couple of sample scenes are reported as first two

17

Pascal VOC2012 MSRC-v2 ADE20K

RG
B

A
nn

ot
at
io
n

Figure 2.3: Sample scenes from the three employed datasets in the first part of the thesis.

columns of Figure 2.3, where we can appreciate that object-level (foreground) classes are labeled,
while other ones are labeled as background.

The MSRC-v2 dataset [115] consists of 335 images in the trainval split and 256 in the test
split with variable resolution. It is annotated using 23 semantic classes, however the horse and
mountain classes have been excluded as suggested by the dataset creators [115, 116], because
they are underrepresented inside the dataset. The results are computed and reported on the
original test set. A couple of sample scenes are reported in columns 3 and 4 of Figure 2.3, where
we can see that both foreground and background classes are labeled. However, the annotation
quality is coarser and the regions related to the edges of the objects are not labeled.

The ADE20K [117] is a large-scale dataset of 22, 210 images, 2, 000 of which form the val-
idation split. The typical benchmark defined in [117] includes 150 classes, representing both
stuff (e.g., sky, building) and object classes (e.g., bottle, chair), differently from VOC2012. A
couple of sample scenes are reported as last two columns of Figure 2.3. Both objects and stuff
categories are labeled and the ground truth segmentation maps are carefully annotated.

Finally, the accuracy of a CL system is often measured as its ability to mitigate catastrophic
forgetting (via accuracy measures). Beyond accuracy, other metrics related to memory, storage
and computational efficiency have been proposed [118].

18

3
Knowledge Distillation from a Teacher Model

3.1 Introduction

Deep learning architectures have shown remarkable results in scene understanding problems,
however they exhibit a critical drop of performance when they are required to learn incrementally
new tasks without forgetting old ones. This catastrophic forgetting phenomenon impacts on the
deployment of artificial intelligence in real-world scenarios where systems need to learn new and
different representations over time.

In this chapter, we tackle the catastrophic forgetting problem thoroughly investigating knowl-
edge distillation techniques and we adapt them to the semantic segmentation task [18, 20]. In
this way, we retain the information about learned classes, whilst updating the current model to
learn the new ones. We develop four main methodologies of knowledge distillation working on
both output layers and internal feature representations. Differently from many existing method-
ologies, we consider the most challenging setting where images from old tasks are not stored and
cannot be used to drive the incremental learning process. This is particularly important for
the vast majority of real-world applications where old images are not available due to storage
requirements or privacy concerns. Hence, only the last model is used to preserve high accuracy
on previously learned classes. Specifically, we re-frame the distillation loss concept and we pro-
pose four novel approaches where knowledge is distilled from the output layer, from layers of the
decoding phase, from intermediate and custom feature layers.

To the best of our knowledge, in [18, 20] we are the first to study incremental learning for
semantic segmentation which not retaining previously seen images and evaluating on standard
real-world benchmarks.

Extensive experimental results on the Pascal VOC2012 and MSRC-v2 datasets demonstrate
that the proposed framework is robust in many different settings and across different datasets,
without any previous sample available and even without labeling previous classes in new samples.
The proposed schemes allow not only to retain the learned information but also to achieve higher
accuracy on new tasks, thanks to the regularizing effect brought by our methodologies, leading
to substantial improvements in all the scenarios with respect to the standard approach with no
knowledge distillation.

3.1.1 Contributions

The main contributions of our work are the following:

19

1. we are the first to investigate continual semantic segmentation not retaining previous im-
ages and evaluating on standard segmentation benchmarks;

2. we design distillation schemes acting on different levels of the network architecture;

3. we propose to freeze (some layers of) the encoder to preserve unaltered the most task-
agnostic part of the feature extraction network;

4. extensive experiments are conducted on many different scenarios. The results are reported
on the Pascal VOC2012 and on the MSRC-v2 dataset to validate the generalization prop-
erties of the proposed methods.

3.2 Knowledge Distillation for Semantic Segmentation

In this section, we first introduce the class-incremental learning framework, then we present the
network architecture employed in our work, finally, we present a set of methodologies based on
different types of knowledge distillation strategies [18,21].

3.2.1 Class-Incremental Continual Learning Framework

As anticipated in Section 2.2, the incremental learning task when referring to semantic seg-
mentation is defined as the ability of a learning system (e.g., a neural network) to learn the
segmentation and the labeling of new classes without forgetting (i.e., deteriorating) the perfor-
mance on previously learned classes. Typically, in semantic segmentation old and new classes
coexist in the same image, and the algorithm needs to account for the accuracy on new classes
as well as the accuracy on old ones. The first should be as large as possible in order to learn
new classes, while the second should be as close as possible to the accuracy experienced before
the addition of the new classes, thus avoiding catastrophic forgetting. The critical issue lies
in finding the optimal trade-off between preservation of previous knowledge and capability of
learning new tasks.
The considered problem is even harder when no data from previous tasks can be preserved, which
is the scenario of interest in the majority of the applications where privacy concerns or limited
storage requirements subsist. Here the most challenging incremental framework is addressed,
in which: previously seen images are not stored nor used; new images may contain examples
of unseen classes combined together with pixels belonging to old ones; the approach must scale
well with respect to the number of classes.

Let us assume that we are provided with a training dataset Dtr. Each pixel of images in Dtr

are associated to a unique element of the set T = {c0, c1, c2, ..., cC−1} of C possible classes. In
case a background class is present we associate it to the first class c0 because it has a special and
non-conventional behavior being present in almost all the images and having by far the largest
occurrence among all the classes.

Moving to the incremental learning steps, we assume that we have trained our network to
recognize a subset S0 ⊂ T of seen classes using a labeled subset Dtr

0 ⊂ Dtr, whose images contain
only pixels belonging to the classes in S0. We then perform some incremental steps k = 1, 2, ...
in which we want to recognize a new subset Uk ⊂ T of unseen classes in a new set of training
steps. During the k-th incremental step the set of all previously learned classes is denoted as
Sk−1 and after the current step, the new set Sk will contain also the last added classes. Formally,
Sk = Sk−1 ∪ Uk and Sk−1 ∩ Uk = ∅. Each step of training involves a new set of samples, i.e.,
Dtr

k ⊂ Dtr, whose images contain only elements belonging to Sk−1 ∪ Uk. Notice that this set is

20

disjoint from previously used samples, i.e.,
(⋃

j=0,...,k−1Dtr
j

)
∩Dtr

k = ∅. It is important to notice
that images in Dtr

k could also contain classes belonging to Sk−1, however their occurrence will
be limited since Dtr

k is restricted to consider only images which contain pixels from at least one
class belonging to Uk. The specific occurrence of a particular class belonging to Sk−1 is highly
correlated to the set of classes being added (i.e., Uk). For example, if we assume that the set of
old classes is Sk−1 = {car , sofa} and the set of new classes is Uk = {bus}, then it is reasonable
to expect that Dtr

k contains examples of the class car , that appears in road scenes together with
the bus , while the sofa is extremely unlikely to occur. If not stated otherwise, we evaluate our
techniques on the sequential case defined in Section 2.4.

In this work we experimented using both an alphabetical ordering of classes and an order
based on the occurrence of the classes in the dataset. Additionally, following [51, 84] we deeply
analyze the behavior of our algorithms when adding a single class, a batch of classes and when
making multiple incremental steps each with one or more classes.

3.2.2 Network Architecture

The methods proposed in this section can be fitted into any deep network architecture; however,
since most recent architectures for semantic segmentation are based on the auto-encoder scheme,
we focus on this representation. In particular, for the experimental evaluation of the results we
use the DeepLab-v2 network [5], with ResNet-101 as the backbone, whose weights were pre-
trained [119] on MSCOCO [120] or ImageNet [121]. The pre-training of the feature extractor,
as done also in other incremental learning works as [49], is needed since VOC2012 and MSRC-
v2 datasets are too small to be used for training a complex network like the DeepLab-v2 from
scratch. However, MSCOCO data are used only for the initialization of the feature extractor
since the labeling information of this dataset could contain information in some way related to
the classes to be learned during the incremental steps. To further evaluate the impact of the
pre-training, we also tried a different initialization of the backbone using the ImageNet [121]
dataset for image classification (see Section 3.6.1). As previously introduced, the DeepLab-v2
model is based on an auto-encoder structure (i.e., it consists of an encoder part followed by
a decoder phase) where the decoder is composed by Atrous Spatial Pyramid Pooling (ASPP)
layers in which multiple atrous convolutions with different rates are applied in parallel on the
input feature map and then merged together to enhance the accuracy at multiple scales. The
original work exploits also a post-processing step based on Conditional Random Fields, but we
removed this module to train the network end-to-end and to measure the performance of the
incremental approaches without considering the contribution of post-processing steps not related
to the training.

3.2.3 ProposedMethod

The proposed incremental learning schemes for semantic segmentation are now introduced: a
general overview of the proposed approach is shown in Figure 3.1. We start by training the
chosen network architecture to recognize the classes in S0 with the corresponding training data
Dtr

0 . As detailed in Section 3.2.1, Dtr
0 contains only images with pixels belonging to classes in S0.

The network is trained in a supervised way with a standard cross-entropy loss. After training,
we save the obtained model as M0.

Then, we perform a set of incremental steps indexed by k = 1, 2, ... to make the model learn
every time a new set of classes Uk. At the k-th incremental step, the current training set Dtr

k

is built with images that contain at least one of the new classes (but they can possibly contain
also pixels belonging to previously seen classes). During step k, the model Mk−1 is loaded and

21

Figure 3.1: Overview of the k-th incremental step of our learning framework for semantic segmentation of RGB images. The

scenario inwhich the currentmodelMk is completely trainable, i.e. not frozen, is reported. ThemodelMk−1 , instead, is frozen

and is not being updated during the current step.

trained exploiting a linear combination of two losses: a cross-entropy loss LCE , which learns how
to identify and label the classes, and a distillation loss LD, which retains knowledge of previously
seen classes and will be detailed in the following. After the k-th incremental step, we save the
current model as Mk and we repeat the described procedure every time there is a new set of
classes to learn.

The loss L used to train the model is defined as:

L = LCE + λDLD (3.1)

where LD ∈ {L′D,L′′D,L′′′D ,L′′′′D } is one of the various distillation loss models which will be
detailed in the following, while λD is an experimentally tuned parameter balancing the two
terms. Setting λD = 0 corresponds to the fine-tuning scenario in which no distillation is applied
and the cross-entropy loss is applied to both unseen and seen classes. We expect this case to
exhibit some sort of catastrophic forgetting, as already pointed out in the literature.

During the k-th incremental step, the cross-entropy loss LCE is applied to all the classes. It
is defined as:

LCE = − 1

|Dtr
k |

∑
Xn∈Dtr

k

∑
c∈Sk

Yn[c] · log (Mk (Xn) [c]) (3.2)

where Yn[c] and Mk (Xn) [c] are respectively the one-hot encoded ground truth and the output
of the segmentation network corresponding to the estimated score for class c. Note that, since
Sk = Sk−1 ∪ Uk, the sum is computed on both old and newly added classes, but since new ones
are much more likely in Dtr

k , there is a clear unbalance toward them leading to catastrophic
forgetting [122].

As regards the distillation loss LD, we focus on losses that only depend on the previous model
Mk−1 to avoid the need for large storage requirements.

22

3.2.4 Distillation on theOutput Layer (Lcls-T
D)

The first considered distillation term L′D for semantic segmentation is the cross-entropy loss
computed on already seen classes between the probabilities produced by the output of the soft-
max layer of the previous model Mk−1 and the output of the softmax layer of the current model
Mk (if we assume to be at the k-th incremental step). Notice that the cross-entropy is computed
only on already seen classes, i.e., on classes in Sk−1, since we want to guide the learning process
to preserve the behavior on such classes. The distillation loss is then defined as in [18]:

Lcls
D =− 1

|Dtr
k |

∑
Xn∈Dtr

k

∑
c∈Sk−1

Mk−1 (Xn) [c]·log (Mk (Xn) [c]) (3.3)

Furthermore, we improve the model by rescaling the logits using a softmax function with tem-
perature T , i.e.:

σ(zc) =
exp(zc/T)∑
j exp(zj/T)

(3.4)

where zc is the logit value corresponding to class c. Hence, denoting with MT
k the output of

the segmentation network for the estimated score of class c after the procedure of Eq. (3.4), we
can rewrite Eq. (3.3) as:

Lcls-T
D =− 1

|Dtr
k |

∑
Xn∈Dtr

k

∑
c∈Sk−1

MT
k−1 (Xn) [c]·log

(
MT

k (Xn) [c]
)

(3.5)

Intuitively, when T > 1 the model produces a softer probability distribution over classes thus
helping to retain information about the uncertainty of the classification scores [17, 123]. In the
experiments we empirically set T ranging from 1 to 103 depending on the scenario. Temperature
scaling was not present in the conference version of the work [18] and it reveals to be useful
especially when one class is added at a time.

When the new task is quite similar with respect to previous ones, the encoder E, which aims
at extracting some intermediate feature representation from the input information, could be
frozen to the status it reached after the initial training phase (we call it EF in short). In this
way, the network is constrained to learn new classes only through the decoder, while preserving
the features extraction capabilities unchanged from the training performed on S0. We evaluated
this approach both with and without the application of the distillation loss in Eq. (3.3) and
Eq. (3.5). Since the procedure of freezing the whole encoder could appear too restrictive (and in
fact it does not scale well to the addition of a large number of classes), we tried also to freeze only
the first couple of convolutional layers of the encoder (i.e., the first two layers of the ResNet-101
network): we call this version E2LF . Freezing only the first layers allows to preserve the lower
level descriptions while updating the weights of the task-specific layers of the encoder and of the
decoder. A comparison of the different encoder freezing schemes is shown in Figure 3.2.

3.2.5 Distillation on the Intermediate Feature Space (Lenc
D)

Another approach to preserve the feature extraction capabilities of the encoder is to apply a
distillation loss on the intermediate level corresponding to the output of the encoder Ek, i.e., on
the feature space before the decoding phase. The distillation function working on the feature
space in this case can no longer be the cross-entropy but rather a geometrical penalty. At that
level, indeed, the considered layer is not anymore a classification layer but instead just an internal
stage where the output should be kept close to the previous one in, e.g., Frobenius norm. We

23

Figure 3.2: Comparison of the different freezing schemes of the encoder at the k-th incremental step. The whole model at

previous step, i.e.Mk−1 , is always completely frozen and it is employed only for knowledge distillation purposes.

also considered using L1 loss, but we verified empirically that both L1 and cross-entropy lead
to worse results. Considering that the network corresponding to model Mk can be decomposed
into an encoder Ek and a decoder, the distillation term becomes:

Lenc
D =

1

|Dtr
k |

∑
Xn∈Dtr

k

‖Ek−1(Xn)− Ek(Xn)‖2F (3.6)

where Ek(Xn) denotes the features computed by Ek when a generic image Xn ∈ Dtr
k is fed as

input.

3.2.6 Distillation onDilation Layers (Ldec
D)

We also tried to apply geometrical penalties at different points inside the network. In particular,
we found that a reliable strategy is to apply the distillation on the four dilation layers contained
in the ASPP block of the decoder [5]. Hence, the distillation term becomes:

Ldec
D =

1

|Dtr
k |

∑
Xn∈Dtr

k

4∑
i=1

‖dik−1(Xn)− dik(Xn)‖2F
4

(3.7)

where dik(Xn) is the output of the dilation layer dik with i = 1, 2, 3, 4 when Xn ∈ Dtr
k is fed

as input. This strategy was not considered in [18] and proved to be effective in preserving the
learned knowledge.

An ablation study on multi-layer knowledge distillation is presented in Section 3.6.3. We can
appreciate how distilling early layers of the decoding stage pushes the results toward distillation
of the intermediate features (i.e., close to Lenc

D), while distilling later layers of the decoding stage
pushes the results toward distillation on the output layer (i.e., close to Lcls-T

D).

3.2.7 Similarity-Preserving Distillation on the Intermediate Feature Space (LSPKD
D)

Finally, we introduce a modified version of the Similarity-Preserving Knowledge Distillation
(SPKD) [85] aiming at preserving the similarities between features of samples of the same class.
Let us denote with B a training batch containing B images, with W and H the (reduced)
spatial dimension in the features’ space and with F the number of features channels. In the
original version of the SPKD approach, the content of the feature layers Ek(B) ∈ RB×H×W×F is
reshaped as E′k(B) ∈ RB×HWF and then the matrix A′˜ k = E′k(B) ·E′k(B)T ∈ RB×B is computed

24

and row-wise normalized to A′k. The SPKD loss [85] is then computed as:

LSPKD
D =

1

|Dtr
k |

∑
B∈Dtr

k

1

B
||A′k −A′k−1||2F (3.8)

The approach was originally introduced for image classification and is based on the idea that each
image contains mostly one object in foreground and is associated to a single label. In practice,
it does not capture that, in semantic segmentation, multiple classes co-exist in the same image
and that an object belonging to a certain class can be a small part of the image.

For this reason, we introduce a variation of this approach. We accumulate the activations
over all spatial locations in the feature space, i.e., we compute the matrix E′′k (B) ∈ RB×F where
E′′k [b, f] =

∑H
h=1

∑W
w=1Ek[b, h, w, f]. The loss is then computed as in the previous case but

using matrix E′′k in place of E′k, i.e., Ã′′k = E′′k (B) ·E′′k (B)T and row-wise normalized to A′′k . The
loss is then computed as:

LSPKD-avg
D =

1

|Dtr
k |

∑
B∈Dtr

k

1

B
||A′′k −A′′k−1||2F (3.9)

This allows to avoid the dependency on the spatial locations of the objects and reduces the
computation time due to the smaller matrices size. We verify the validity of this modification
with respect to Eq. (3.8) in Section 3.4.

A summary of the proposed strategies for the incremental learning steps is shown in Figure 3.1,
which points out the four losses. As a final remark, we also tried a combination of the described
distillation losses without achieving significant enhancements.

3.3 Training Procedure

Datasets: to evaluate the effectiveness and the robustness of the proposed methodologies we
choose to employ two publicly available datasets for semantic segmentation: namely, the Pascal
VOC2012 [114] and the MSRC-v2 [115] datasets (see Section 2.6). These benchmarks have been
widely used to evaluate semantic segmentation schemes [7, 124].

For both datasets, we randomly flipped and scaled the images of a random factor between 0.5
and 1.5 with bilinear interpolation. For training, random crops of 321 × 321 pixels have been
used for memory limitations. The testing phase has been conducted at the original resolution of
the images.

Implementation Details: the proposed incremental learning strategies are independent
of the backbone architecture and generalize well to different scenarios where new tasks should
be learned over time. For the experimental evaluation we select the architecture presented in
Section 3.2.2. We optimize the network weights with Stochastic Gradient Descent (SGD) as done
in [5]. The initial stage of network training on the set S0 is performed by setting the starting
learning rate to 10−4 and training for |S0| · 1000 steps decreasing the learning rate to 10−6 with
a polynomial decay rule with power 0.9 [5]. Notice that the number of training steps is linearly
proportional to the number of classes in S0. We employ weight decay regularization of 10−4 and
a batch size of 4 images.

The incremental training steps k = 1, 2, ... are performed employing a lower learning rate to
better preserve previous weights. In this case the learning rate starts from 5 ·10−5 and decreases
to 10−6 after |Uk| ·1000 steps of polynomial decay. As before, we train the network for a number
of steps which is proportional to the number of classes contained in the considered incremental

25

Table 3.1: Per-class IoU of the proposed approaches on VOC2012when the last class, i.e., the tv/monitor class, is added.

M1(20) ba
ck
gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt
le

bu
s

ca
r

ca
t

ch
ai
r

co
w

di
n.

ta
bl
e

do
g

ho
rs
e

m
bi
ke

pe
rs
on

pl
an

t

sh
ee
p

so
fa

tr
ai
n

m
Io

U
ol

d

tv m
Io

U

m
P

A

m
C

A

Fine-tuning 90.2 80.8 33.3 83.1 53.7 68.2 84.6 78.0 83.2 32.1 73.4 52.6 76.6 72.7 68.8 79.8 43.8 76.5 46.5 68.4 67.3 20.1 65.1 90.7 76.5

EF 92.7 86.2 32.6 82.9 61.7 74.6 92.9 83.1 87.7 27.4 79.4 59.0 79.4 76.9 77.2 81.2 49.6 80.8 49.3 83.4 71.9 43.3 70.5 93.2 81.4

E2LF 92.5 85.7 32.6 81.5 60.4 74.3 93.0 83.3 87.5 26.9 79.5 59.2 78.8 76.2 77.5 81.0 49.4 80.4 49.8 83.2 71.6 45.3 70.4 93.2 81.1

Lcls
D [18] 92.0 83.9 37.0 84.0 58.8 70.9 90.9 82.5 86.1 32.1 72.5 51.0 79.9 72.3 77.3 80.9 45.1 78.1 45.7 79.9 70.0 35.3 68.4 92.5 79.5

Lcls-T
D 92.6 85.7 33.4 85.3 63.1 74.0 92.6 83.0 86.4 30.4 78.1 55.0 79.1 77.8 76.4 81.7 49.7 80.2 48.5 80.4 71.7 44.4 70.4 93.2 80.1

EF , Lcls-T
D 93.1 85.9 37.3 85.5 63.1 77.5 93.2 82.2 88.8 29.4 80.1 57.1 80.6 79.4 76.9 82.5 50.0 81.8 51.1 85.0 73.0 51.9 72.0 93.6 82.3

E2LF , Lcls-T
D 92.7 84.7 35.3 86.0 60.7 73.3 92.8 82.6 87.6 29.9 78.6 54.4 80.3 78.0 76.3 81.5 50.0 80.9 49.5 82.8 71.9 47.4 70.7 93.2 80.7

Lenc
D 92.9 84.8 36.4 82.6 63.5 75.0 92.2 83.6 88.3 29.5 80.3 59.6 79.7 80.2 78.9 81.2 49.7 78.9 51.0 84.1 72.6 50.6 71.6 93.4 83.4

Ldec
D 92.2 85.4 34.3 82.4 61.6 73.4 91.7 82.7 86.4 32.4 77.2 57.4 76.3 72.6 76.1 81.1 53.7 79.2 46.1 81.5 71.2 35.6 69.5 92.6 81.5

EF , Ldec
D 92.5 84.7 33.8 80.4 60.8 76.1 91.5 82.9 87.1 29.5 78.4 58.7 76.1 73.7 78.8 81.0 51.1 78.3 48.3 84.9 71.4 42.7 70.1 93.0 82.6

LSPKD
D [85] 92.5 83.5 35.8 84.3 60.1 71.7 88.9 83.2 87.0 32.0 79.9 57.5 78.7 78.1 77.8 81.0 50.4 80.1 49.5 78.4 71.5 43.0 70.2 92.9 82.0

LSPKD-avg
D

92.6 84.8 34.8 84.8 61.4 71.9 90.5 83.8 87.4 32.0 80.0 58.1 78.6 77.9 77.6 81.3 50.4 80.6 49.6 80.5 71.9 44.5 70.6 93.1 82.3

M0(0 − 19) 93.4 85.5 37.1 86.2 62.2 77.9 93.4 83.5 89.3 32.6 80.7 57.3 81.5 81.2 77.7 83.0 51.5 81.6 48.2 85.0 73.4 - 73.4 93.9 84.3

M0(0 − 20) 93.4 85.4 36.7 85.7 63.3 78.7 92.7 82.4 89.7 35.4 80.9 52.9 82.4 82.0 76.8 83.6 52.3 82.4 51.1 86.4 73.7 70.5 73.6 93.9 84.2

step thus allowing to automatically adapt the training length to the number of new classes being
learned. The considered metrics are the most widely used for semantic segmentation problems:
namely, per-class Pixel Accuracy (PA), per-class Intersection over Union (IoU), mean PA (mPA),
mean Class Accuracy (mCA) and mean IoU (mIoU) [124].

We use TensorFlow [125] to develop and train the network: the overall training of the consid-
ered architecture takes around 5 hours on a NVIDIA 2080 Ti GPU. The code is available online
at https://lttm.dei.unipd.it/paper_data/KDSemantic.

3.4 Experimental Results on Pascal VOC2012

Following the experimental scenarios presented in [51] and [18], we start by analyzing the in-
cremental learning task with the addition of a single class, in alphabetical or frequency-based
order, and then move to the addition of 5 and 10 classes, either all together or sequentially.
We firstly present the results on the Pascal VOC2012 dataset and then move to the MSRC-v2.
Then, we evaluate the proposed approach in the disjoint setting. Finally, we summarize the
main achievements of each proposed strategy.

3.4.1 Addition of One Class

We start from the addition of the last class, in alphabetical order, to our classifier. Specifically, we
consider S0 = {c0, c1, ..., c19} and U1 = {c20} = {tv\monitor}. The evaluation on the VOC2012
validation split is reported in Table 3.1. The table reports the IoU for each single class and the
average values of the pixel and class accuracy. The network is firstly optimized on the train split
containing samples belonging to any of the classes in S0, i.e., Dtr

0 : we indicate with M0(0− 19)
the initial training of the network on Dtr

0 . The network is then updated exploiting the dataset
Dtr

1 and the resulting model is referred to as M1(20). In this way, we always specify both the
index of the training step and the indexes of the classes added in the considered step.
From the first row of Table 3.1 we can appreciate that adapting the network in the standard
way, i.e., without additional provisions, leads to an evident degradation of the performance with
a final mIoU of 65.1% compared to 73.6% of the reference model M0(0 − 20), where all the 21
classes are learned at once. This is a confirmation of the catastrophic forgetting phenomenon

26

https://lttm.dei.unipd.it/paper_data/KDSemantic

in semantic segmentation, even with the addition of just one single class. Furthermore, simple
strategies like adding a bias or a scaling factor to the logits of the old classes do not allow to
solve this issue. The main issue of the naïve approach (we call it fine-tuning in the tables) is
that it tends to predict too frequently the last class, even when it is not present, as proved by the
fact that the model has a very high pixel accuracy for the tv/monitor class of 84.3% but a very
poor IoU of 20.1% on the same class. This is due to the high number of false positive detections
of the considered class which are not taken into account by the pixel accuracy measure. For this
reason semantic segmentation frameworks are commonly ranked using the mIoU score. On the
same class, the proposed methods are all able to outperform the naïve approach in terms of IoU
by a large margin: the best method achieves a mIoU of 51.9% on the tv/monitor class.

Knowledge distillation strategies and the procedure of freezing (part of) the encoder provide
better results because they act as regularization constraints. Interestingly, those procedures
allow to achieve higher accuracy not only on previously learned classes but also on newly added
ones, which might be unexpected if we do not consider the regularization behavior of those
terms. Hence, all the proposed strategies allow to alleviate forgetting and all of them overcome
the standard approach (without knowledge distillation) in any of the considered metrics, as it
can be verified in Table 3.1. We can appreciate that L′cls-TD alone is able to improve the average
mIoU by 5.3% with respect to the standard case. Notice how the improved version of Lcls-T

D with
temperature scaling introduced in this work achieves a significant improvement of 2% of mIoU
with respect to the conference version of the work [18], that corresponds to Lcls

D . Furthermore, it
leads to a much better IoU on the new class, greatly reducing the aforementioned false positives
issue. If we completely freeze the encoder E without applying knowledge distillation the model
improves the mIoU by 5.4%. If we combine the two mentioned approaches, i.e., we freeze E
and we apply Lcls-T

D , the mIoU reaches 72.0%, with an overall improvement of 6.9%, higher
than each of the two methods alone (also the performance on the new class is higher). If
we just freeze the first two layers of the encoder and we apply knowledge distillation, i.e.,
M1(20)[E2LF ,Lcls-T

D] (we use the square brackets to collect the list of employed strategies), a
slightly lower mIoU of 70.7% is achieved. Instead, if we apply an L2 loss at the intermediate
features space (Lenc

D) the model achieves 71.6% of mIoU, which is 6.5% higher than the standard
approach. It is noticeable that two completely different approaches to preserve knowledge,
namely M1(20)[EF ,Lcls-T

D] (which applies a cross-entropy between the outputs with encoder
frozen) and M1(20)[Lenc

D] (which applies an L2-loss between features spaces), achieve similar
and high results both on new and old classes.

If we apply an L2 loss on the dilation filters of the decoder, i.e., the Ldec
D loss, we obtain a

mIoU of 69.5% which is higher than the standard approach but lower than the other strategies.
Freezing the encoder yields in this setting to a small improvement from 69.5% to 70.1%. Finally,
the original SPKD loss achieves 70.2% of mIoU, while the improved version presented in this
work (M1(20)[LSPKD-avg

D]) achieves a mIoU of 70.6%.
From the class-wise results we can appreciate that changes in performance on previously

seen classes are correlated with the class being added. Some classes have even higher results in
terms of mIoU because their prediction has been reinforced through the new training set. For
example, objects of the classes sofa or dining table are typically present in scenes containing a
tv/monitor , hence in the considered scenario they achieve almost always higher accuracy. Other
classes, instead, get more easily lost because they represent uncorrelated objects not present
inside the new set of samples. For example, instances of bird or horse are not present in indoor
scenes typically associated with the tv/monitor class being added.

Some visual examples are shown in the first two rows of Figure 3.3. We can visually appreciate
that knowledge distillation and encoder freezing help in preserving previous classes (e.g., the
hand of the person in the first row and the table in the second are better preserved). At the

27

RGB GT Fine− tuning M1(20)[EF ,Lcls-T
D] M1(20)[Lenc

D] M1(20)[Ldec
D] M1(20)[LSPKD-avg

D] M0(0− 20)

background bottle cat chair dining table person plant tv unlabeled

Figure 3.3: Qualitative results on sample scenes for the addition of one class. In the first two rows the tv/monitor class is added,
in the last row the bottle class is added.

Table3.2: Per-class IoUof theproposedapproachesonVOC2012when the last class according to theoccurrence in thedataset,

i.e. the bottle class, is added.

M1(20) ba
ck
gr
.

pe
rs
on

ca
t

do
g

ca
r

tr
ai
n

ch
ai
r

bu
s

so
fa

m
bi
ke

di
n.

ta
bl
e

ae
ro

ho
rs
e

bi
rd

bi
ke

tv bo
at

pl
an

t

sh
ee
p

co
w

m
Io

U
ol

d

bo
tt
le

m
Io

U

m
P

A

m
C

A

Fine-tuning 91.9 80.7 82.2 72.3 81.7 77.9 27.2 90.2 46.9 74.5 56.1 82.4 71.8 77.9 34.9 55.8 58.7 31.0 71.9 66.9 66.6 63.8 66.5 92.4 75.8

EF 92.6 81.8 87.8 81.5 83.5 84.1 26.4 92.3 50.6 68.5 54.6 86.1 79.3 85.9 36.6 66.6 62.3 49.6 79.2 80.0 71.5 61.9 71.0 93.3 81.4

E2LF 92.1 82.0 85.2 77.8 82.9 80.5 23.4 90.8 48.7 75.6 54.0 81.6 75.0 77.2 34.7 60.3 57.6 32.6 75.6 70.1 67.9 64.7 67.7 92.7 76.9

Lcls-T
D 92.9 82.7 87.9 80.0 82.3 82.5 31.7 90.5 49.3 75.7 57.0 85.2 77.9 85.5 37.3 65.2 63.7 48.3 79.3 77.4 71.6 68.2 71.5 93.4 81.2

EF , Lcls-T
D 92.9 82.1 89.3 82.2 83.5 85.0 28.6 92.5 50.2 74.2 55.4 86.1 79.2 85.4 36.9 66.7 62.6 52.1 80.1 79.6 72.2 64.2 71.8 93.6 81.0

E2LF , Lcls-T
D 92.9 82.6 88.2 81.3 82.4 85.3 31.4 91.5 50.1 76.0 57.0 84.8 78.0 85.7 36.9 64.9 61.8 49.3 79.9 76.8 71.8 69.0 71.7 93.5 81.8

Lenc
D 92.9 81.7 88.5 81.8 83.8 85.0 27.2 92.4 51.8 73.0 56.0 85.9 79.9 85.7 37.0 65.7 61.7 48.7 80.1 80.0 71.9 62.3 71.5 93.5 81.8

Ldec
D 92.5 82.7 86.5 79.7 83.4 83.1 28.4 91.9 46.6 68.7 54.7 83.3 75.4 83.8 32.8 65.8 62.8 48.2 78.6 73.8 70.1 67.5 70.0 93.1 78.9

LSPKD-avg
D

92.7 82.0 86.8 79.3 83.1 82.5 30.4 91.7 48.3 74.6 55.7 84.8 77.3 84.8 36.0 66.8 62.2 49.0 78.5 76.4 71.1 67.6 71.0 93.3 81.0

M0(0 − 19) 93.5 80.9 89.7 82.8 84.4 85.5 33.1 92.5 47.6 79.3 57.0 85.9 79.9 85.9 37.2 67.8 62.5 53.4 80.5 79.7 73.0 - 73.0 94.0 83.3

M0(0 − 20) 93.4 83.6 89.7 82.4 82.4 86.4 35.4 92.7 51.1 76.8 52.9 85.4 82.0 85.7 36.7 70.5 63.3 52.3 82.4 80.9 73.3 78.7 73.6 93.9 84.2

same time it does not compromise the learning of the new class (e.g., the tv/monitor in the first
row is quite well-localized). In the second row, however, a challenging example is reported where
none of the proposed methodologies, and neither the baseline approach, are able to accurately
detect the new class.

In Table 3.2 the IoU results in the same scenario are shown, but this time ordering the classes
according to the pixels’ occurrence of each class, thus the bottle class is added last. Similarly
to the previous case the baseline approach exhibits a large drop in performance while knowledge
distillation always helps in every scenario. As before, the best performing strategy isM1(20)[EF ,
Lcls-T
D]. A visual example is shown in the last row of Figure 3.3: we can verify that knowledge

distillation and encoder freezing help not only to retain previously seen classes (e.g., the cat in
the example), but also to better detect and localize the new class, i.e. the bottle, thus acting as
a regularization term.

28

Table 3.3: Per-class IoU of the proposed approaches on VOC2012when 5 classes are added at once.

M1(16 − 20) ba
ck
gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt
le

bu
s

ca
r

ca
t

ch
ai
r

co
w

di
n.

ta
bl
e

do
g

ho
rs
e

m
bi
ke

pe
rs
on

m
Io

U
ol

d

pl
an

t

sh
ee
p

so
fa

tr
ai
n

tv m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 89.7 59.5 34.6 68.2 58.1 58.8 59.2 79.2 80.2 30.0 12.7 51.0 72.5 61.7 74.4 79.4 60.6 36.4 32.4 27.2 55.2 42.4 38.7 55.4 88.4 70.6

EF 90.2 72.4 32.4 57.3 50.5 68.0 10.5 81.5 84.7 25.4 10.6 57.4 76.2 68.6 77.7 79.8 58.9 36.2 30.7 30.3 43.4 54.5 39.0 54.2 88.5 68.2

E2LF 89.6 59.2 35.2 67.8 56.2 58.0 59.3 80.9 81.6 31.3 13.4 54.9 73.3 63.3 73.0 80.0 61.1 37.5 31.9 25.8 56.2 41.4 38.5 55.7 88.4 70.4

Lcls-T
D 91.4 85.0 35.6 84.8 61.8 70.5 85.6 77.9 83.7 30.7 72.3 45.3 76.2 76.9 77.0 81.3 71.0 33.8 55.2 30.9 73.9 51.6 49.1 65.8 91.6 78.1

EF , Lcls-T
D 91.7 83.4 35.6 78.7 60.9 73.0 65.8 82.2 87.0 30.2 58.0 55.3 80.0 78.3 78.5 81.4 70.0 36.0 45.9 32.2 62.5 53.0 45.9 64.3 91.5 76.1

E2LF , Lcls-T
D 91.0 80.3 35.8 82.9 60.9 66.4 80.9 80.1 84.3 32.8 59.4 47.7 75.9 76.0 76.4 81.6 69.5 37.7 47.2 29.9 69.8 48.0 46.5 64.0 91.0 77.1

Lenc
D 90.9 81.4 33.9 80.3 61.9 67.4 73.1 81.8 84.8 31.3 0.4 55.8 76.1 72.2 77.7 81.2 65.6 39.4 31.8 31.3 64.1 52.9 43.9 60.5 90.0 74.9

Ldec
D 91.1 85.1 31.7 80.3 62.6 72.1 82.6 79.5 84.4 31.1 34.9 56.6 77.2 75.7 77.5 81.7 69.0 40.6 43.4 30.3 70.7 52.2 47.4 63.9 91.0 77.4

LSPKD-avg
D

90.6 81.7 33.0 80.4 61.9 65.4 68.4 80.9 85.6 31.1 4.8 55.1 76.3 63.8 77.3 80.0 64.8 38.5 31.4 29.9 63.2 50.8 42.7 59.5 89.7 74.0

M0(0 − 15) 94.0 83.5 36.1 85.5 61.0 77.7 94.1 82.8 90.0 40.0 82.8 54.9 83.4 81.2 78.3 83.2 75.5 - - - - - - 75.5 94.6 86.4

M0(0 − 20) 93.4 85.4 36.7 85.7 63.3 78.7 92.7 82.4 89.7 35.4 80.9 52.9 82.4 82.0 76.8 83.6 75.1 52.3 82.4 51.1 86.4 70.5 68.5 73.6 93.9 84.2

3.4.2 Addition ofMultiple Classes

In this section we consider a more challenging scenario where the initial training is followed by
one incremental step to learn multiple classes.

First, the addition of the last 5 classes at once (referred to as 15 − 20) is discussed and the
results are shown in Table 3.3. Results are much lower than in the previous cases since there
is a larger amount of information to be learned. The baseline exhibits an even larger drop
in accuracy because it tends to overestimate the presence of the new classes as shown by the
IoU scores of the newly added classes which are often lower by a large margin (see Table 3.3),
while, on the other side, the pixel accuracy of the new classes is much higher. In this case,
EF and E2LF fail to accommodate the substantial changes in the input distribution. In this
case the distillation on the output layer, i.e., M1(16− 20)[Lcls-T

D], achieves the highest accuracy.
Here, the approaches based on Lcls-T

D outperform the other ones (even on new classes). Also in
this scenario, all the proposals outperform the standard approach on both old and new classes.
Interestingly, some previously seen classes exhibit a clear catastrophic forgetting phenomenon
because the updated models mislead them with visually similar classes belonging to the set of
new classes. For example, the cow and chair classes are often misled (low IoU and low PA for
these classes) with the newly added classes sheep and sofa that have similar shapes (low IoU
but high PA for them).
Qualitative results are shown in Figure 3.4: we can appreciate that the naïve approach tends
to overestimate the presence of the new classes in spite of previously learned ones or in spite
of the background. This can be seen from the figure, where instances of train, bus and sofa
classes (which are added during the incremental step) are erroneously predicted in place of the
new class or in the background region. These classes are correctly removed or strongly reduced
applying the proposed strategies even if there is not a clear winner. On the aeroplane in the first
row all the proposed approaches work well. Applying Lcls-T

D and freezing the encoder removes
the false detection of the sofa in row 2 that is challenging for the other approaches. The car in
the last row is better detected using the LSPKD-avg

D loss.
The next experiment regards the addition of 10 classes at once and the results are shown

in Table 3.4. Here knowledge distillation is less effective. Indeed, even though it enhances the
results, the improvement is smaller with respect to that in other scenarios. In particular, the
idea of freezing only the first two layers of the encoder, introduced in this version of the work,
together with knowldege distillation leads to the best results in this setting. The gap is reduced
because the fine-tuning approach already achieves quite high results preventing other methods

29

RGB GT Fine− tuning M1(16−20)[EF ,Lcls-T
D] M1(16−20)[Lcls-T

D] M1(16−20)[Ldec
D] M1(16−20)[LSPKD-avg

D] M0(0− 20)

background aeroplane bus car cat chair dog person plant sofa train unlabeled

Figure 3.4: Qualitative results on sample scenes for the addition of 5 classes at once. The set of new classes is plant, sheep, sofa,
train and tv

Table 3.4: Per-class IoU of the proposed approaches on VOC2012when 10 classes are added at once.

M1(11 − 20) ba
ck
gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt
le

bu
s

ca
r

ca
t

ch
ai
r

co
w

m
Io

U
ol

d

di
n.

ta
bl
e

do
g

ho
rs
e

m
bi
ke

pe
rs
on

pl
an

t

sh
ee
p

so
fa

tr
ai
n

tv m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 91.9 82.4 32.0 70.8 61.7 67.7 91.1 79.8 72.7 30.5 61.6 67.5 49.1 70.6 63.4 72.9 79.4 43.5 72.0 44.8 79.1 60.7 63.5 65.6 91.9 78.2

EF 91.3 85.0 33.1 82.0 63.2 75.2 89.5 76.5 74.9 25.4 67.7 69.4 42.2 64.4 66.2 68.2 67.7 38.6 69.8 32.9 72.1 59.5 58.2 64.1 91.1 75.0

E2LF 91.8 82.7 32.6 72.9 60.2 67.2 91.3 80.7 75.7 30.7 61.6 68.0 46.9 70.2 65.2 72.2 78.8 43.4 70.1 44.4 81.4 58.6 63.1 65.6 91.8 78.6

Lcls-T
D 91.7 83.2 33.4 80.9 62.3 72.6 89.2 76.8 77.6 28.0 64.1 69.1 48.6 73.5 65.7 72.9 76.6 41.3 74.2 39.5 79.0 62.1 63.3 66.3 91.9 77.3

EF , Lcls-T
D 91.4 85.2 33.3 82.5 62.7 75.1 89.7 76.4 75.3 25.9 67.9 69.6 42.2 64.7 66.4 68.0 67.9 39.4 70.4 32.9 72.5 60.5 58.5 64.3 91.2 75.2

E2LF , Lcls-T
D 91.8 84.0 33.6 83.2 62.7 72.4 90.9 77.0 79.9 28.2 65.4 69.9 46.8 72.7 66.8 71.5 75.3 41.1 74.2 38.2 80.0 59.7 62.6 66.5 91.9 77.7

Lenc
D 92.1 83.5 34.0 79.5 61.7 69.1 90.9 78.5 72.5 29.3 61.2 68.4 46.2 66.1 65.3 74.3 79.1 43.0 70.0 47.1 78.3 63.5 63.3 66.0 91.8 79.4

Ldec
D 92.0 84.5 33.5 74.7 61.2 71.5 89.7 77.9 73.5 28.6 61.8 68.1 51.9 67.1 64.9 70.8 77.3 42.8 70.5 45.3 78.9 61.6 63.1 65.7 91.9 77.3

LSPKD-avg
D

91.9 82.1 32.3 76.4 61.4 66.1 91.3 78.5 72.9 30.0 60.7 67.6 47.1 68.6 65.2 74.8 79.7 42.1 68.9 47.4 78.4 62.2 63.4 65.6 91.8 79.0

M0(0 − 10) 95.3 86.4 34.4 85.6 69.7 79.3 94.6 87.6 93.1 44.2 91.9 78.4 - - - - - - - - - - - 78.4 96.1 90.4

M0(0 − 20) 93.4 85.4 36.7 85.7 63.3 78.7 92.7 82.4 89.7 35.4 80.9 74.9 52.9 82.4 82.0 76.8 83.6 52.3 82.4 51.1 86.4 70.5 72.1 73.6 93.9 84.2

to largely overcome it. We argue that the critical aspect is that the cardinality of the set of
classes being added is comparable to that of the set of previously learned classes.

3.4.3 Sequential Addition ofMultiple Classes

The last set of experiments on VOC2012 regards the addition of one or more classes more than
once (i.e., new classes are progressively added instead of all in one shot).

Let us start from the case in which two sets of 5 classes are added in two incremental steps
after an initial training stage with 10 classes, leading to the final model M2(11−15, 16−20).
The mIoU results are reported in Table 3.5 where we can appreciate a more severe drop in
performance if compared to the introduction of all the 10 classes in a single shot. In particular,
the standard approach without distillation leads to a very poor mIoU of 50.2%. Catastrophic
forgetting is largely mitigated by knowledge distillation, that in this case proved to be very
effective. In the best settings, that in this case are the distillation Lcls-T

D with EF and the newly
introduced distillation applied to the dilation layers (Ldec

D), the mIoU improves of 9.2% with

30

Table 3.5: Per-class IoU of the proposed approaches on VOC2012when 5 classes are added two times.

M2(11-15, 16-20) ba
ck
gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt
le

bu
s

ca
r

ca
t

ch
ai
r

co
w

m
Io

U
ol

d

di
n.

ta
bl
e

do
g

ho
rs
e

m
bi
ke

pe
rs
on

pl
an

t

sh
ee
p

so
fa

tr
ai
n

tv m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 89.3 56.8 32.0 60.6 56.0 55.8 36.8 75.7 76.4 28.2 4.1 52.0 47.3 67.8 50.8 69.2 78.3 34.8 27.6 25.7 44.8 37.0 48.3 50.2 86.9 66.2

EF 88.5 71.5 29.7 49.9 41.2 68.4 4.4 79.0 80.3 24.8 6.2 49.5 44.7 66.2 38.5 68.1 73.7 36.4 25.3 27.1 46.3 52.7 47.9 48.7 86.5 62.7

Lcls-T
D 90.3 80.7 33.5 74.9 62.6 62.3 74.2 77.2 78.5 27.4 23.6 62.3 44.3 70.6 61.2 72.5 78.9 38.1 37.5 29.7 62.4 46.9 54.2 58.4 89.5 73.0

EF , Lcls-T
D 90.3 85.0 32.6 73.2 61.3 72.5 79.2 79.7 81.0 27.1 31.3 64.8 42.5 68.5 58.5 68.5 73.1 36.5 33.9 30.5 68.0 54.8 53.5 59.4 89.8 71.4

Lenc
D 89.8 64.7 33.3 73.7 58.3 63.8 48.7 77.9 79.8 28.4 11.4 57.2 50.1 68.2 53.0 70.8 79.2 39.0 28.9 26.8 49.4 44.2 51.0 54.3 88.0 69.7

Ldec
D 90.6 81.8 32.9 77.7 62.5 66.7 78.8 78.7 79.2 27.7 25.1 63.8 49.7 69.1 56.6 72.1 79.5 40.1 34.2 28.5 65.5 50.7 54.6 59.4 89.6 73.9

LSPKD-avg
D

89.8 78.1 30.3 58.6 52.6 65.6 53.8 78.0 74.3 29.9 4.7 56.0 46.9 62.6 49.3 68.6 78.4 32.7 23.0 30.0 61.7 49.0 50.2 53.2 88.0 67.7

M0(0 − 10) 95.3 86.4 34.4 85.6 69.7 79.3 94.6 87.6 93.1 44.2 91.9 78.4 - - - - - - - - - - - 78.4 96.1 90.4

M0(0 − 20) 93.4 85.4 36.7 85.7 63.3 78.7 92.7 82.4 89.7 35.4 80.9 74.9 52.9 82.4 82.0 76.8 83.6 52.3 82.4 51.1 86.4 70.5 72.1 73.6 93.9 84.2

Table 3.6: Per-class IoU of the proposed approaches on VOC2012 when 5 classes are added two times with classes ordered

based on the occurrence in the dataset.

M2(11-15, 16-20) ba
ck
gr
.

pe
rs
on

ca
t

do
g

ca
r

tr
ai
n

ch
ai
r

bu
s

so
fa

m
bi
ke

di
n.

ta
bl
e

m
Io

U
ol

d

ae
ro

ho
rs
e

bi
rd

bi
ke

tv bo
at

pl
an

t

sh
ee
p

co
w

bo
tt
le

m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 91.3 80.5 75.7 67.8 80.2 73.4 29.7 84.4 42.1 70.4 55.6 68.3 19.7 41.1 5.7 29.8 63.9 41.2 38.4 45.7 55.1 63.3 40.4 55.0 90.3 69.1

EF 92.4 82 81.5 75.5 82.8 82.9 29.1 92.9 46 71.4 54.9 71.9 70.2 24.5 58 31.7 59.9 46.5 39 49.3 53.1 60.5 49.3 61.1 91.7 72.3

Lcls-T
D 92.5 81.0 78.6 69.9 80.5 80.3 31.0 88.8 45.1 73.3 50.2 70.1 79.7 53.4 71.5 32.7 61.6 53.1 40.1 58.8 59.9 71.0 58.2 64.4 92.2 76.0

EF , Lcls-T
D 92.5 81.7 82.1 76.1 83.5 83.1 29.0 92.7 46.7 71.2 55.4 72.2 70.9 29.5 59.2 32.0 59.6 46.3 38.5 49.0 52.4 61.6 49.9 61.6 91.9 72.6

Lenc
D 92.5 82.2 82.7 74.2 81.8 78.7 31.8 88.0 46.2 73.8 58.3 71.8 66.0 39.8 56.9 31.0 63.5 42.6 45.3 54.5 60.2 69.3 52.9 62.8 92.0 74.7

Ldec
D 92.0 81.2 82.6 68.2 78.3 81.4 29.1 91.3 45.1 71.6 56.9 70.7 0.3 23.4 0.1 23.6 61.6 46.8 44.1 49.6 59.4 70.0 37.9 55.1 91.0 66.8

LSPKD-avg
D

92.1 81.2 82.9 74.5 82.0 79.5 30.3 88.5 42.3 74.7 55.5 71.2 62.7 25.1 42.9 31.2 61.3 45.4 43.3 47.0 55.9 70.9 48.6 60.4 91.4 73.5

M0(0 − 10) 92.5 80.6 89.2 85.5 86.3 86.8 30.7 93.3 46.2 80.7 59.6 75.6 - - - - - - - - - - - 75.6 93.5 82.8

M0(0 − 20) 93.4 83.6 89.7 82.4 82.4 86.4 35.4 92.7 51.1 76.8 52.9 75.2 85.4 82.0 85.7 36.7 70.5 63.3 52.3 82.4 80.9 78.7 71.8 73.6 93.9 84.2

respect to the standard approach. The method using Ldec
D is also the one obtaining the best

mIoU on the new classes.
In Table 3.6 the same scenario is evaluated when classes are sorted on the basis of their

occurrence inside the dataset. Also in this case a large gain can be obtained with knowledge
distillation which leads to 9.4% of improvement in the best case with respect to fine tuning. We
can notice that the old classes are better preserved in this case being also the most frequent
inside the dataset. Additionally, some methods struggle in learning new classes needing more
samples to detect them.

Then, we move to consider the sequential addition of the last 5 classes one by one, i.e., model
M5(16 → 20). The results are reported in Table 3.7 where we can appreciate a huge gain
of 20.4% of mIoU between the best proposed method (i.e. M5(16 → 20)[EF ,Lcls-T

D]) and the
baseline approach. In this case, freezing the encoder and distilling the knowledge is found to be
very reliable because the addition of one single class should not alter too much the responses of
the whole network. Distilling the knowledge from the previous model when the encoder is fixed
guides the decoder to modify only the responses for the new class: in this way the best result is
obtained. The evolution of the models’ mean performance during the various steps is reported
in Table 3.8 where we can appreciate how the drop of performance is distributed during the
different steps. In particular, we can notice how the accuracy drop is affected by the specific
class being added. As expected, the larger drop is experienced when the classes sheep or train
are added because such classes typically appear alone or with the person class, i.e., they are only
sparsely correlated with a few other classes. The opposite is true when the classes being added

31

Table 3.7: Per-class IoU of the proposed approaches on VOC2012when 5 classes are added sequentially.

M5(16→20) ba
ck
gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt
le

bu
s

ca
r

ca
t

ch
ai
r

co
w

di
n.

ta
bl
e

do
g

ho
rs
e

m
bi
ke

pe
rs
on

m
Io

U
ol

d

pl
an

t

sh
ee
p

so
fa

tr
ai
n

tv m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 87.9 25.6 29.0 51.2 1.7 57.8 10.5 64.8 80.5 30.8 22.9 52.7 66.8 52.1 51.9 78.1 47.8 36.5 44.7 31.8 35.1 17.1 33.0 44.2 86.1 55.7

EF 90.4 62.6 30.9 81.7 53.9 70.8 57.8 80.7 86.2 27.0 71.5 56.8 75.5 77.2 73.2 78.2 67.1 36.3 65.1 30.1 52.9 34.6 43.8 61.6 90.4 72.2

Lcls-T
D 89.8 51.2 29.9 77.2 15.6 62.0 29.2 78.5 75.7 24.4 55.6 44.8 76.2 62.5 65.6 80.1 57.4 27.0 35.2 30.6 42.3 39.7 35.0 52.3 88.6 63.2

EF , Lcls-T
D 91.1 73.9 31.9 81.4 59.5 71.9 73.1 82.1 87.1 27.2 77.4 56.4 79.1 79.9 76.1 80.7 70.5 31.8 55.8 30.1 62.3 41.4 44.3 64.6 91.3 75.2

Lenc
D 90.3 54.2 28.2 78.4 52.5 69.8 59.5 78.5 86.3 28.8 72.3 57.4 76.3 77.1 65.8 79.3 65.9 36.3 65.5 31.6 54.7 38.9 45.4 61.0 90.4 71.0

Ldec
D 90.2 69.1 31.0 78.4 32.1 61.8 41.9 73.7 83.7 30.0 54.8 52.5 69.5 62.8 61.2 81.0 60.8 30.0 46.5 32.5 43.5 30.0 36.5 55.1 89.2 66.5

LSPKD-avg
D

89.9 70.9 31.3 73.5 43.1 68.3 67.9 77.0 82.2 31.3 22.7 55.2 74.9 57.4 62.3 79.2 61.7 34.2 36.5 31.5 62.0 33.0 39.5 56.4 89.3 69.3

M0(0 − 15) 94.0 83.5 36.1 85.5 61.0 77.7 94.1 82.8 90.0 40.0 82.8 54.9 83.4 81.2 78.3 83.2 75.5 - - - - - - 75.5 94.6 86.4

M0(0 − 20) 93.4 85.4 36.7 85.7 63.3 78.7 92.7 82.4 89.7 35.4 80.9 52.9 82.4 82.0 76.8 83.6 75.1 52.3 82.4 51.1 86.4 70.5 68.5 73.6 93.9 84.2

Table 3.8: mIoU, mPA andmCA of the proposed approaches on VOC2012when 5 classes are added sequentially.

Fine-tuning EF Lcls-T
D EF , Lcls-T

D Ldec
D Lenc

D LSPKD-avg
D

mIoU mPA mCA mIoU mPA mCA mIoU mPA mCA mIoU mPA mCA mIoU mPA mCA mIoU mPA mCA mIoU mPA mCA

M1(16) 71.2 93.7 82.5 71.8 93.7 84.4 72.4 94.2 83.0 72.5 94.1 83.5 72.9 94.2 84.5 72.2 93.9 84.3 71.3 93.7 82.6

M2(17) 53.8 90.0 61.8 59.1 91.2 69.0 68.1 93.4 78.5 68.4 93.3 79.5 68.0 93.4 78.6 60.0 91.6 69.4 56.5 90.7 65.6

M3(18) 57.7 87.7 68.7 65.7 90.4 78.0 63.3 90.8 74.5 66.5 91.5 79.4 64.6 90.2 76.9 65.5 90.7 76.8 58.3 88.3 70.1

M4(19) 39.3 85.9 47.4 52.6 89.0 61.4 54.1 89.2 64.3 61.3 90.6 72.5 57.9 89.7 69.0 52.1 89.0 60.6 54.3 89.5 64.9

M5(20) 44.2 86.1 55.7 61.6 90.4 72.2 52.3 88.6 63.2 64.6 91.3 75.2 55.1 89.2 66.5 61.0 90.4 71.0 56.4 89.3 69.3

RGB GT Fine− tuning M1(16−20)[EF ,Lcls-T
D] M1(16−20)[Lenc

D] M1(16−20)[Ldec
D] M1(16−20)[LSPKD-avg

D] M0(0− 20)

background bus cat chair dog person sheep sofa train tv unlabeled

Figure 3.5: Sample qualitative results for the addition of 5 classes sequentially. The added classes are boat, plant, sheep, cow and

bottle.

show high assortativity coefficient with other classes, for example the presence of the classes
potted plant and tv/monitor is highly correlated with the presence of classes like dining table,
person or chair . Some visual results for this scenario are reported in Figure 3.5 where a large
gap in performance between the naïve approach and some of the best performing proposals can
be appreciated. In particular, the standard approach without knowledge distillation tends to
overestimate the presence of the last seen class, i.e., tv/monitor , in spite of the background or
of other previously learned classes.

Finally, in Table 3.9 we can appreciate the per-class IoU of the best method of Table 3.7 (i.e.,

32

RG
B

G
T

be
fo
re

af
te
r

background bus cow horse person sheep train unlabeled

Figure 3.6: Qualitative comparison on sample scenes of the best model of Table 3.9 before and after the addition of a highly

correlated class. The first three columns show the performance results after the addition of the sheep classwhile the last three

deals with the addition of the train class.

Table 3.9: Per-class IoU on VOC2012 when 5 classes are added sequentially. Only the best method of Table 3.7 (“EF and

Lcls-T
D ”) is reported.

ba
ck
gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt
le

bu
s

ca
r

ca
t

ch
ai
r

co
w

di
n.

ta
bl
e

do
g

ho
rs
e

m
bi
ke

pe
rs
on

pl
an

t

sh
ee
p

so
fa

tr
ai
n

tv m
Io

U

m
P

A

m
C

A

M0(0 − 15) 94.0 83.5 36.1 85.5 61.0 77.7 94.1 82.8 90.0 40.0 82.8 54.9 83.4 81.2 78.3 83.2 - - - - - 75.5 94.6 86.4

M1(16) 93.5 84.0 36.1 84.8 60.5 72.5 93.4 84.2 89.7 40.0 83.0 55.7 81.9 81.6 79.4 83.2 29.0 - - - - 72.5 94.1 83.5

M2(17) 93.5 84.9 35.6 72.5 61.2 73.7 93.7 83.7 79.6 39.9 73.2 57.1 78.4 74.7 79.1 83.2 29.4 37.3 - - - 68.4 93.3 79.5

M3(18) 91.3 83.5 34.4 76.2 61.7 72.6 93.8 83.9 85.6 26.2 77.3 57.4 78.0 77.8 78.8 81.8 30.0 46.7 26.7 - - 66.5 91.5 79.4

M4(19) 91.2 67.8 31.7 63.9 60.5 73.1 43.2 83.5 86.4 25.1 77.7 56.7 79.1 77.9 74.3 81.7 27.0 49.2 28.0 48.7 - 61.3 90.6 72.5

M5(20) 91.1 73.9 31.9 81.4 59.5 71.9 73.1 82.1 87.1 27.2 77.4 56.4 79.1 79.9 76.1 80.7 31.8 55.8 30.1 62.3 41.4 64.6 91.3 75.2

M0(0 − 20) 93.4 85.4 36.7 85.7 63.3 78.7 92.7 82.4 89.7 35.4 80.9 52.9 82.4 82.0 76.8 83.6 52.3 82.4 51.1 86.4 70.5 73.6 93.9 84.2

the method combining Lcls-T
D and EF) at each step. An interesting aspect regards the addition

of the sofa class which causes a tremendous drop of about one third in terms of IoU for the chair
class given their large visual similarity (from 39.9% to 26.2%). An analogue drop for the same
reason is experienced also by the bus and aeroplane classes when the train class is added. Again,
when the sheep class is added visually similar classes of other animals lose accuracy. These
scenarios are depicted in Figure 3.6 where the first three columns show the results of the best
model reported in Table 3.9 before and after the addition of the class sheep and the last three
columns show the results before and after the addition of the train class. We can appreciate
that regions of the cow class which were correctly identified before the addition of sheep are then
confused with the new class and the same happens with the bus and train classes.

The same scenario is then analyzed for classes ordered on the basis of their occurrence inside
the dataset in Table 3.10. Similar considerations as before hold, however the accuracy on new

33

Table 3.10: Per-class IoUof the proposed approaches onVOC2012when5 classes are added sequentiallywith classes ordered
based on their occurrence.

M5(16→20) ba
ck
gr
.

pe
rs
on

ca
t

do
g

ca
r

tr
ai
n

ch
ai
r

bu
s

so
fa

m
bi
ke

di
n.

ta
bl
e

ae
ro

ho
rs
e

bi
rd

bi
ke

tv m
Io

U
ol

d

bo
at

pl
an

t

sh
ee
p

co
w

bo
tt
le

m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 91.2 78.8 81.6 69.5 80.6 69.6 28.6 85.6 41.4 74.9 57.2 77.4 38.5 60.0 34.6 64.3 64.6 27.4 18.3 1.6 46.9 49.7 28.8 56.1 90.7 66.0

EF 90.2 76.5 84.4 72.9 79.3 70.4 27.4 87.3 44.2 71.5 45.2 75.8 51.6 65.5 32.0 62.4 64.8 51.0 23.9 2.5 56.3 62.1 39.1 58.7 90.6 67.9

Lcls-T
D 92.1 81.4 69.6 66.6 81.5 81.8 26.9 87.5 37.0 71.9 47.0 79.1 46.2 69.0 34.8 65.6 64.9 40.1 35.3 11.0 37.0 66.1 37.9 58.5 90.9 56.8

EF , Lcls-T
D 91.1 77.1 84.2 72.9 79.2 75.9 28.0 88.2 43.1 73.4 46.7 78.9 56.6 67.4 32.2 62.9 66.1 49.8 29.6 24.4 51.3 63.1 43.6 60.8 91.1 70.3

Lenc
D 91.6 82.0 88.8 80.2 83.8 76.8 28.8 91.9 50.0 74.0 54.9 80.6 66.0 72.6 36.1 69.9 70.5 34.1 18.4 4.8 53.0 56.9 33.4 61.7 92.0 70.2

Ldec
D 92.0 81.7 84.2 72.5 82.0 70.1 32.9 87.6 45.9 72.7 54.0 74.4 61.2 76.2 34.1 69.8 68.2 34.0 24.5 6.5 45.6 60.7 34.2 60.1 91.6 69.3

LSPKD-avg
D

91.7 81.9 84.5 76.0 81.5 70.5 31.0 89.1 44.6 76.6 56.3 78.2 50.5 69.0 35.9 69.4 67.9 40.1 30.7 11.4 48.8 61.2 38.4 60.9 91.6 70.3

M0(0 − 15) 93.5 81.1 89.3 84.3 84.6 85.4 30.0 92.9 47.5 79.0 57.8 86.0 85.5 84.7 36.4 71.3 74.3 - - - - - - 74.3 94.1 84.2

M0(0 − 20) 93.4 83.6 89.7 82.4 82.4 86.4 35.4 92.7 51.1 76.8 52.9 85.4 82.0 85.7 36.7 70.5 75.1 63.3 52.3 82.4 80.9 78.7 68.5 73.6 93.9 84.2

Table 3.11: Per-class IoU of the proposed approaches on VOC2012when 10 classes are added sequentially.

M10(11→20) ba
ck
gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt
le

bu
s

ca
r

ca
t

ch
ai
r

co
w

m
Io

U
ol

d

di
n.

ta
bl
e

do
g

ho
rs
e

m
bi
ke

pe
rs
on

pl
an

t

sh
ee
p

so
fa

tr
ai
n

tv m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 86.7 29.0 28.0 49.7 2.2 54.4 1.5 54.7 75.3 29.4 7.8 38.0 46.5 60.7 17.0 23.3 75.1 29.1 38.0 31.5 27.6 11.6 36.0 37.1 83.6 49.0

EF 87.9 65.2 28.6 73.1 56.8 70.0 73.4 77.5 80.1 26.9 54.5 63.1 46.8 56.4 44.1 40.2 74.5 36.8 35.6 27.4 58.7 28.4 44.9 54.4 85.8 59.4

Lcls-T
D 87.0 28.1 27.4 47.4 0.2 48.6 1.6 59.3 73.1 22.9 27.9 38.5 42.2 56.9 21.8 30.9 77.1 28.4 27.7 24.5 33.1 21.6 36.4 37.5 83.8 51.1

EF , Lcls-T
D 89.5 66.1 28.3 72.7 58.3 70.7 74.0 78.2 80.3 27.7 55.1 63.7 45.7 56.2 45.6 41.5 74.8 37.2 36.9 26.7 59.2 28.6 45.2 54.9 88.5 67.1

Lenc
D 89.1 54.7 28.7 75.3 44.5 69.4 73.2 79.4 83.4 30.2 54.9 62.1 48.5 62.4 38.7 48.5 75.0 40.8 52.9 28.5 59.8 24.1 47.9 55.3 88.5 66.7

Ldec
D 89.1 64.7 28.5 62.4 29.7 54.3 30.9 67.7 79.7 27.8 35.9 51.9 46.2 52.6 40.0 47.0 77.3 29.9 35.6 33.3 40.0 23.0 42.5 47.4 87.1 59.3

LSPKD-avg
D

88.9 64.6 29.6 68.6 35.8 64.9 76.8 76.8 74.5 31.0 16.8 57.1 46.2 55.1 26.1 34.0 77.0 34.5 33.9 33.1 56.4 25.2 42.1 50.0 87.8 61.8

M0(0 − 10) 95.3 86.4 34.4 85.6 69.7 79.3 94.6 87.6 93.1 44.2 91.9 78.4 - - - - - - - - - - - 78.4 96.1 90.4

M0(0 − 20) 93.4 85.4 36.7 85.7 63.3 78.7 92.7 82.4 89.7 35.4 80.9 74.9 52.9 82.4 82.0 76.8 83.6 52.3 82.4 51.1 86.4 70.5 72.1 73.6 93.9 84.2

classes is slightly lower since less training samples are available for such classes. In this case the
gain of mIoU is smaller: no single method is able to get a large improvement, however Lenc

D and
LSPKD-avg
D are the best performing approaches. A critical example is the behavior of the sheep

class, whose accuracy is highly reduced after the addition of the correlated cow class.
As a final experiment, we investigate the sequential addition of the last 10 classes, i.e.,

M10(11 → 20): the results of per-class IoU are shown in Table 3.11. In this case the best
strategy is to apply distillation on the intermediate feature space (Lenc

D), that allows to improve
the mIoU of 18.2% with respect to the standard scheme achieving quite good performance in
this extreme case. The result is even more effective because the proposed method outperforms
the standard approach by 11.9% of mIoU on new classes and by 24.1% on old ones.
Again, we can confirm that correlated classes highly influence each other results: for example
the addition of the sheep class (low IoU and high pixel accuracy) leads to a large degradation
of the performance on the cow class (low IoU and low pixel accuracy). The same happens to
the bus class when train is added. This phenomenon is mitigated by the proposed modifications
which improve the IoU of the cow class from 7.8% of the baseline to 55.1% of the best proposed
method and the IoU of the bus class from 1.5% to 74.0%.

3.5 Experimental Results onMSRC-v2

Finally, we briefly show the per-class IoU results obtained on the MSRC-v2 dataset. We sort
the classes according to their occurrence inside the dataset and we perform three experiments:

34

Table 3.12: Per-class IoU of the proposed approaches onMSRC-v2when the last class, i.e., boat , is added

M1(20) gr
as
s

bu
ild

in
g

sk
y

ro
ad

tr
ee

w
at
er

bo
ok

ca
r

co
w

bi
cy
cl
e

flo
w
er

bo
dy

sh
ee
p

si
gn

fa
ce

ca
t

ch
ai
r

ae
ro
pl
an

e

do
g

bi
rd

m
Io

U
ol

d

bo
at

m
Io

U

m
P

A

m
C

A

Fine-tuning 93.4 79.9 92.9 70.8 86.7 79.3 94.5 93.2 86.8 91.9 95.4 83.0 84.0 91.3 87.9 79.5 89.1 78.3 74.0 74.3 85.3 51.2 83.7 92.4 89.6

EF 94.3 82.2 92.7 58.8 86.2 72.7 98.5 91.3 89.0 89.2 97.7 84.1 89.7 93.3 88.0 93.6 94.7 85.3 89.5 78.3 87.5 56.0 86.0 92.5 91.7

Lcls-T
D 94.7 82.8 93.5 83.4 87.5 87.4 98.1 94.4 89.3 91.5 97.8 83.2 88.2 93.9 86.0 84.2 96.2 85.2 80.0 82.6 89.0 59.3 87.6 94.5 92.9

EF , Lcls-T
D 94.8 83.4 93.4 81.7 87.3 86.6 98.6 92.7 89.4 89.8 97.9 83.9 89.5 93.8 87.3 94.2 96.4 86.3 91.0 83.5 90.1 58.2 88.6 94.6 93.7

Lenc
D 94.9 82.3 92.7 77.9 87.5 84.4 98.5 92.3 88.6 90.4 97.7 84.5 87.5 92.8 88.6 93.6 97.3 84.5 88.3 81.2 89.3 54.6 87.6 94.1 92.8

Ldec
D 94.8 83.7 94.1 80.8 88.1 84.6 97.5 90.8 86.6 88.2 97.9 84.9 82.8 95.4 88.6 76.1 94.6 83.3 71.2 81.3 87.2 40.8 85.0 93.9 91.1

LSPKD-avg
D

94.3 81.9 93.2 63.5 87.2 74.5 98.7 91.2 88.9 89.6 97.9 85.9 87.8 91.0 91.4 74.0 92.7 82.2 68.0 79.9 85.7 66.9 84.8 92.4 91.1

M0(0 − 19) 94.9 84.7 93.3 88.7 88.9 90.9 98.6 94.4 89.0 89.6 98.0 83.7 89.6 94.1 86.7 95.0 95.4 86.2 92.4 82.1 90.8 - 90.8 95.5 96.0

M0(0 − 20) 94.8 82.3 94.6 87.3 88.8 92.5 98.6 94.1 90.9 89.7 98.0 87.4 92.0 91.2 89.9 93.9 95.9 84.8 90.3 87.3 86.7 75.1 90.5 95.4 95.5

Table 3.13: Per-class IoU of the proposed approaches onMSRC-v2when 5 classes are added at once.

M1(16 − 20) gr
as
s

bu
ild

in
g

sk
y

ro
ad

tr
ee

w
at
er

bo
ok

ca
r

co
w

bi
cy
cl
e

flo
w
er

bo
dy

sh
ee
p

si
gn

fa
ce

ca
t

m
Io

U
ol

d

ch
ai
r

ae
ro
pl
an

e

do
g

bi
rd

bo
at

m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 91.9 79.5 93.9 83.9 84.1 88.5 96.0 94.0 49.0 91.6 93.8 82.9 59.3 87.3 90.4 37.5 81.5 86.3 74.9 43.6 66.4 63.5 67.0 78.0 91.1 85.2

EF 93.8 80.3 92.0 83.1 86.0 84.1 97.9 92.3 81.0 87.7 97.1 64.8 78.2 96.5 89.1 59.0 85.2 89.4 70.1 52.2 66.8 53.8 66.5 80.7 92.1 86.2

Lcls-T
D 93.5 81.0 91.5 81.9 86.6 84.8 98.4 94.2 86.3 90.5 96.5 77.3 81.8 95.8 89.6 69.8 87.5 91.0 78.1 69.0 69.9 67.6 75.1 84.5 93.3 90.8

EF , Lcls-T
D 94.4 80.7 91.6 83.2 86.7 83.5 98.8 92.6 80.7 88.5 97.0 66.3 78.8 96.1 89.2 58.8 85.4 89.7 67.4 52.8 67.4 54.5 66.4 80.9 92.4 87.6

Lenc
D 93.3 80.4 92.8 85.6 87.5 88.9 98.7 94.0 72.1 89.1 95.7 80.8 81.4 91.2 86.4 57.2 85.9 87.7 72.5 62.4 71.1 66.5 72.0 82.6 93.1 88.5

Ldec
D 94.8 81.6 93.4 85.4 87.8 88.0 95.8 94.0 87.4 87.8 96.0 84.9 83.1 91.5 89.0 68.2 88.0 88.3 81.4 70.1 78.5 59.8 75.6 85.1 93.9 90.8

LSPKD-avg
D

92.3 79.5 93.5 83.5 85.7 88.9 95.7 94.0 73.8 91.7 93.9 84.4 72.8 87.9 90.0 45.6 84.6 84.2 67.8 55.1 71.4 59.1 67.5 80.5 92.2 86.7

M0(0 − 15) 94.2 83.5 89.7 85.7 88.9 88.3 98.9 94.5 88.8 89.0 98.0 85.0 91.6 95.1 89.8 96.4 91.1 - - - - - - 91.1 95.2 96.0

M0(0 − 20) 94.8 82.3 94.6 87.3 88.8 92.5 98.6 94.1 90.9 89.7 98.0 87.4 92.0 91.2 89.9 93.9 91.6 95.9 84.8 90.3 87.3 75.1 86.7 90.5 95.4 95.5

we add the last class, the last 5 in a single shot or the last 5 sequentially. The results are shown
in Tables 3.12, 3.13 and 3.14.

Table 3.12 shows the results for the addition of the last class, i.e., boat. The average accuracy
is higher on this dataset, however also in this case the fine-tuning approach is surpassed by all the
proposed methods, proving the effectiveness of the distillation strategies. As already noticed in
Table 3.1, the best method when adding only one class is M1(20)[Lcls-T

D , EF]. The best strategy
to learn the new class, instead, is M1(20)[LSPKD-avg

D] which significantly outperforms all the
other methods. A qualitative example is shown in the first row of Figure 3.7, where we can
notice how the fine-tuning tends to find boat samples close to the water, while no boat is present
in this image. This artifact is reduced by Lcls-T

D and Lenc
D and completely removed by Ldec

D and
LSPKD-avg
D .
The second scenario regards the addition of the last five classes at once (Table 3.13). Here the

best strategy is M1(16 − 20)[Ldec
D] with an overall gap of 7.1% of mIoU. The most challenging

aspect on this dataset is the recognition of new classes in place of visually similar old ones;
especially the cat and cow classes are frequently exchanged for the newly introduced dog class.
For example, the pixel accuracy of the cat raises from 37.5% of fine-tuning to 71% for the best
proposed approach. On this dataset the classes appear mainly alone or with few other classes in
the images, thus it is less likely to observe the effects of the correlation between classes belonging
to similar contexts. In the visual example in second row of Figure 3.7 the fine-tuning approach
misleads the cat as a dog (which is among the classes being added). The issue is mitigated by
the proposed strategies that are able to detect at least part of the object as a cat.

As third experiment, we consider the sequential addition of five classes in Table 3.14. Here

35

Table 3.14: Per-class IoU of the proposed approaches onMSRC-v2when 5 classes are added sequentially.

M5(16→20) gr
as
s

bu
ild

in
g

sk
y

ro
ad

tr
ee

w
at
er

bo
ok

ca
r

co
w

bi
cy
cl
e

flo
w
er

bo
dy

sh
ee
p

si
gn

fa
ce

ca
t

m
Io

U
ol

d

ch
ai
r

ae
ro
pl
an

e

do
g

bi
rd

bo
at

m
io

u
in

c.

m
Io

U

m
P

A

m
C

A

Fine-tuning 86.3 71.8 93.4 69.4 77.1 67.0 90.7 71.8 53.0 88.7 79.6 69.1 49.6 74.8 90.3 34.5 72.9 34.2 51.6 35.6 17.7 35.5 34.9 63.9 83.8 73.2

EF 88.6 74.4 93.2 72.1 80.7 74.3 94.9 90.0 70.4 88.9 90.3 68.5 64.1 85.3 87.1 59.4 80.1 57.2 51.1 30.1 23.5 36.3 39.6 70.5 87.2 76.3

Lcls-T
D 92.7 78.9 90.7 74.5 86.2 71.6 97.8 93.7 88.7 90.8 95.5 67.7 77.4 93.4 88.2 64.9 84.5 83.4 69.8 47.2 41.3 54.7 59.3 78.5 90.7 86.9

EF , Lcls-T
D 92.9 79.5 90.4 81.2 85.3 81.2 99.0 93.3 82.2 88.7 96.0 67.6 67.5 92.8 87.6 79.5 85.3 82.0 50.3 29.7 35.1 40.2 47.5 76.3 90.6 84.8

Lenc
D 91.5 78.7 91.5 75.8 86.6 77.9 98.6 94.1 84.6 89.8 97.0 80.1 74.6 87.1 86.3 78.0 85.8 75.3 46.8 30.7 43.2 31.7 45.5 76.2 90.5 83.3

Ldec
D 93.2 81.9 93.5 79.3 87.4 77.4 98.2 90.4 86.4 85.0 95.1 78.1 70.7 93.2 84.2 85.1 86.2 41.6 61.7 40.9 68.3 16.2 45.7 76.6 91.1 84.5

LSPKD-avg
D

91.2 78.4 94.7 62.0 81.1 64.8 96.4 91.1 22.6 88.6 94.2 82.5 47.2 85.0 91.0 30.0 75.0 55.3 51.4 36.2 16.9 42.0 40.3 66.8 85.4 75.6

M0(0 − 15) 94.2 83.5 89.7 85.7 88.9 88.3 98.9 94.5 88.8 89.0 98.0 85.0 91.6 95.1 89.8 96.4 91.1 - - - - - - 91.1 95.2 96.0

M0(0 − 20) 94.8 82.3 94.6 87.3 88.8 92.5 98.6 94.1 90.9 89.7 98.0 87.4 92.0 91.2 89.9 93.9 91.6 95.9 84.8 90.3 87.3 75.1 86.7 90.5 95.4 95.5

RGB GT Fine− tuning M1(20)[EF ,Lcls-T
D] M1(20)[Lenc

D] M1(20)[Ldec
D] M1(20)[LSPKD-avg

D] M0(0− 20)

RGB GT Fine− tuning M1(16−20)[EF ,Lcls-T
D] M1(16− 20)[Lenc

D] M1(16− 20)[Ldec
D] M1(16−20)[LSPKD-avg

D] M0(0− 20)

RGB GT Fine− tuning M5(16→20)[EF ,Lcls-T
D] M5(16→ 20)[Lenc

D] M5(16→ 20)[Ldec
D] M5(16→20)[LSPKD-avg

D] M0(0− 20)

aeroplane bird boat body building car cat dog grass road sky tree water unlabeled

Figure 3.7: Qualitative results on sample scenes onMSRC-v2. The first row regards the addition of the last class (i.e., boat), the
second row regards the addition of the last 5 classes at once, the third row regards the addition of the last 5 classes sequentially.

The classes added are respectively chair, aeroplane, dog, bird, boat.

the drop in accuracy is larger and the performance on some newly introduced classes are poor
due to the limited number of samples in this smaller dataset. We can appreciate how the best
proposed strategies, Lcls-T

D and Ldec
D , are able to largely outperform the fine-tuning approach by

a huge margin. In the visual example in row 3 of Figure 3.7, the cars are misled with boats and
aeroplanes when fine-tuning, while the proposed strategies almost completely solve the problem.

3.6 Ablation Studies

In this section we discuss some ablation studies of the proposed framework. First, we run some
preliminary experiments on the disjoint experimental setting; then, we analyze the influence of
backbone pre-training; finally, we report an ablation study on multi-layer knowledge distillation.

36

Table 3.15: Ablation study comparing ImageNet (mIoUI) andMSCOCO (mIoUM) pre-training on VOC2012.

M1(20) M1(11− 20) M10(11 → 20)
mIoUI mIoUM mIoUI mIoUM mIoUI mIoUM

Fine-tuning 62.8 66.5 64.3 65.6 35.9 37.1
EF 68.8 71 62.2 64.1 50.9 54.5
Lcls-T
D 68.9 71.5 65.5 66.3 36.5 37.5

EF , Lcls-T
D 70.9 71.8 63.7 64.3 54.0 54.9

Lenc
D 70.6 71.5 65.2 66 54.5 55.3

Ldec
D 68.1 70.0 64.8 65.7 46.3 47.4

LSPKD-avg
D 68.8 71.0 64.5 65.6 48.8 50

Table 3.16: Difference of pre-training strategies in incremental learning on VOC2012 in terms of mIoUwhen the last class, i.e.,
the tv/monitor class, is added.

M1(20)
ImageNet pre-training MSCOCO pre-training

mIoU old miou inc. mIoU mIoU old miou inc. mIoU
Fine-tuning 65.0 19.6 62.8 66.6 63.8 66.5

EF 70.2 40.5 68.8 71.5 61.9 71.0
Lcls-T
D 70.2 43.7 68.9 71.6 68.2 71.5

EF , Lcls-T
D 71.9 51.5 70.9 72.2 64.2 71.8

Lenc
D 71.6 50.1 70.6 71.9 62.3 71.5

Ldec
D 69.7 35.2 68.1 70.1 67.5 70.0

LSPKD-avg
D 70.0 44.6 68.8 71.1 67.6 71.0

M0(0− 19) 71.3 - 71.3 73.0 - 73.0
M0(0− 20) 71.6 68.4 71.4 73.3 78.7 73.6

3.6.1 Backbone Pre-Training

As we observed, semantic segmentation architectures are typically composed of an encoding and
a decoding stage. The encoder is trained to learn useful but compact representations of the
scene which are then processed by the decoder to produce the output segmentation map with a
classification score for each pixel. Such architectures are highly complex and the weights of the
encoder are always pre-trained on very large datasets: e.g., on ImageNet [121] or MSCOCO [120].
For incremental learning strategies it is important to ensure that the pre-training does not affect
the incremental steps since it could contain information concerning novel classes to be learned
in the incremental steps.

The ideal strategy would be to avoid the pre-training at all, but this is necessary since the
Pascal VOC2012 dataset is too small to train the network from scratch in a reliable way.

To better investigate this issue, i.e., to ensure that the information learned during the pre-
training is not affecting the incremental learning results, we performed a set of experiments using
a different pre-training done on the ImageNet dataset (that has only classification annotations
without any segmentation information).

The comparison in terms of mIoU is shown in Table 3.15 for the addition of the last class,
of the last 10 classes at once and of the last 10 classes sequentially. Pre-training on ImageNet
leads to a slightly lower starting mIoU for all the scnarios, however the improvements obtained
by the proposed strategies are similar to those with MSCOCO pre-training and so are their final
rankings (i.e., the best approaches in the various scenarios are the same). Additionally, also the
gap with respect to the fine-tuning approach is coherent between the two pre-training strategies.

More detailed results are shown in Tables 3.16, 3.17 and 3.18 respectively for the addition
of the last class, of the last 10 classes at once and of the last 10 classes sequentially. The new
pre-training leads to a slightly lower starting mIoU, however the improvements obtained by the
proposed strategies are similar and so are the final rankings of the methods. For example, in the

37

Table 3.17: Difference of pre-training strategies in incremental learning of the proposed approaches on VOC2012 in terms of

mIoUwhen 10 classes are added at once.

M1(11− 20)
ImageNet pre-training MSCOCO pre-training

mIoU old miou inc. mIoU mIoU old miou inc. mIoU
Fine-tuning 65.8 62.7 64.3 67.5 63.5 65.6

EF 67.5 56.4 62.2 69.4 58.2 64.1
Lcls-T
D 67.8 62.9 65.5 69.1 63.3 66.3

EF , Lcls-T
D 69.0 57.8 63.7 69.6 58.5 64.3

Lenc
D 67.7 62.4 65.2 68.4 63.3 66.0

Ldec
D 67.3 62.0 64.8 68.1 63.1 65.7

LSPKD-avg
D 66.0 62.9 64.5 67.6 63.4 65.6

M0(0− 10) 77.2 - 77.2 78.4 - 78.4
M0(0− 20) 71.6 71.2 71.4 74.9 72.1 73.6

Table 3.18: Difference of pre-training strategies in incremental learning of the proposed approaches on VOC2012 in terms of

mIoUwhen 10 classes are added sequentially.

M10(11 → 20)
ImageNet pre-training MSCOCO pre-training

mIoU old miou inc. mIoU mIoU old miou inc. mIoU
Fine-tuning 36.5 35.2 35.9 38.0 36.0 37.1

EF 60.1 40.8 50.9 63.1 44.9 54.4
Lcls-T
D 37.4 35.6 36.5 38.5 36.4 37.5

EF , Lcls-T
D 62.5 44.6 54.0 63.7 45.2 54.9

Lenc
D 61.4 46.9 54.5 62.1 47.9 55.3

Ldec
D 50.9 41.3 46.3 51.9 42.5 47.4

LSPKD-avg
D 55.8 41.2 48.8 57.1 42.1 50.0

M0(0− 10) 77.2 - 77.2 78.4 - 78.4
M0(0− 20) 71.6 71.2 71.4 74.9 72.1 73.6

sequential addition of 10 classes (Table 3.18) the best approach is in both cases Lenc
D and the

difference in terms of mIoU between the old and the new pre-training is only 0.8%. The same
gap is also present between the most performing method in Table 3.17 (Lcls-T

D) when applied to
the different pre-trained networks.

To further highlight the effect of the pre-training strategy we show some relative results in
Table 3.19. In particular, we show the difference of mIoU for each method between the two
pre-training strategies (∆M−I). Then, we report the difference of mIoU between each proposed
method and fine-tuning when using the two pre-training schemes (∆FT,I when using ImageNet
and ∆FT,M when using MSCOCO). From these results it is clear that the ranking of the methods
remains always the same and that the gaps are coherent. Although MSCOCO data consist in a
better pre-training for the segmentation task, the same relative analysis holds for both scenarios.

In conclusion, using a different pre-training does not change the effectiveness of the proposed
strategies and the general message of the work remains unaltered, even if the starting point can
be a little different.

3.6.2 Experimental Analyses on Disjoint Setup on VOC2012

As we observed in Section 2.4, in some applications we may be interested in performing incre-
mental steps with images where only the new classes are annotated, and previously seen classes
are set as background (i.e., the so-called disjoint setup). This scenario could be extremely helpful
to save time and resources on the annotation of previous classes.

Interestingly, the problem could be tackled with the same set of proposed techniques, which
prove to be of quite general application. Nevertheless, the difference with respect to the se-

38

Table3.19: Ablation of the different pre-training strategies on ImageNet (I) andonMSCOCO (M).∆M−I : difference ofmIoU

between the two pre-training.∆FT,I : difference ofmIoUbetween each proposedmethod and fine-tuning in case ImageNet is

used as pre-training.

M1(20) M1(11− 20) M10(11 → 20)
∆M−I ∆FT,I ∆FT,M ∆M−I ∆FT,I ∆FT,M ∆M−I ∆FT,I ∆FT,M

Fine-tuning 3.7 0.0 0.0 1.3 0.0 0.0 1.2 0.0 0.0
EF 2.2 6.0 4.5 1.9 -2.1 -1.5 3.6 15.0 17.4
Lcls-T
D 2.6 6.1 5.0 0.8 1.2 0.7 1.0 0.6 0.4

EF , Lcls-T
D 0.9 8.1 5.3 0.6 -0.6 -1.3 0.9 18.1 17.8

Lenc
D 0.9 7.8 5.0 0.8 0.9 0.4 0.8 18.6 18.2

Ldec
D 1.9 5.3 3.5 0.9 0.5 0.1 1.1 10.4 10.3

LSPKD-avg
D 2.2 6.0 4.5 1.1 0.2 0.0 1.2 12.9 12.9

Table 3.20: Results of the proposed

approaches on the disjoint setup of

VOC2012 in terms of mIoU when the

last class, i.e., the tv/monitor, is added.

M1(20) mIoU old miou inc. mIoU
Fine-tuning 65.8 18.2 63.5

EF 71.1 36.5 69.4
Lcls-T
D 69.4 29.5 67.5

EF , Lcls-T
D 72.0 44.9 70.7

Lenc
D 71.6 48.3 70.7

Ldec
D 70.5 32.8 68.7

LSPKD-avg
D 70.7 43.0 69.4

M0(0− 19) 73.4 - 73.4
M0(0− 20) 73.7 70.5 73.6

Table 3.21: Results of the proposed

approaches on the disjoint setup of

VOC2012 in terms of mIoU when 10
classes are added at once.

M1(11− 20) mIoU old miou inc. mIoU
Fine-tuning 65.8 63.0 64.4

EF 67.9 58.5 63.4
Lcls-T
D 68.5 63.0 65.9

EF , Lcls-T
D 68.8 58.8 64.0

Lenc
D 67.1 62.7 65.0

Ldec
D 67.5 62.2 64.9

LSPKD-avg
D 65.9 62.7 64.4

M0(0− 10) 78.4 - 78.4
M0(0− 20) 74.9 72.1 73.6

Table 3.22: Results of the proposed

approaches on the disjoint setup of

VOC2012 in terms of mIoU when 10
classes are added sequentially.

M10(11 → 20) mIoU old miou inc. mIoU
Fine-tuning 47.9 44.0 46.0

EF 56.8 45.5 51.4
Lcls-T
D 50.6 45.0 47.9

EF , Lcls-T
D 62.8 46.6 55.1

Lenc
D 62.2 50.7 56.7

Ldec
D 51.3 42.7 47.2

LSPKD-avg
D 56.4 42.5 49.8

M0(0− 10) 78.4 - 78.4
M0(0− 20) 74.9 72.1 73.6

quential incremental learning protocol evaluated up to this point is at least twofold: first, the
background class changes distribution at every incremental step; second, less information is
present in the new images.

We analyze this experimental protocol in three cases: namely, the addition of the last class
(in Table 3.20), the addition of the last 10 classes at once (in Table 3.21), and the addition of
the last 10 classes sequentially one at a time (in Table 3.22).

In general, we can observe that, as expected, the final mIoU results are typically lower than
in the previous experimental setting. However, it is important to notice that the ranking of
the proposed methods remains substantially the same as in the sequential scenario: i.e., EF ,
Lcls-T
D achieves a mIoU of 70.7% and outperforms the other methods when adding the last class

(compare Table 3.20 with Table 3.1); Lcls-T
D outperforms the other proposals with a mIoU of

65.9% when adding 10 classes at once (compare Table 3.21 with Table 3.4); finally Lenc
D performs

best in the sequential addition of 10 classes with a mIoU of 56.7% (compare Table 3.22 with
Table 3.11).

3.6.3 Ablation onMulti-Layer Knowledge Distillation

In this section we report an ablation study on multi-layer knowledge distillation, i.e., on the
impact of applying distillation at different stages in the network.

The results are reported in Table 3.23: first of all applying feature-level distillation at the end
of each block of the ResNet-101 encoder (called “Lenc

D on 5 blocks of ResNet-101” in the table),
leads to results in between Lenc

D and EF , as we may expect, since the approach is constraining
the features at different resolutions of the encoder but does not completely freeze them.

Moving to multi-layer distillation at the decoder, we can appreciate how distilling early layers

39

Table 3.23: Ablation study on multi-layer knowledge distillation in incremental learning on VOC2012 in terms of mIoU when

10 classes are added sequentially.

M10(11 → 20) mIoU old miou inc. mIoU
EF 63.1 44.9 54.4
Lenc
D 62.1 47.9 55.3

Ldec
D 51.9 42.5 47.4

Lenc
D on 5 blocks of ResNet-101 63.0 45.8 54.8

Ldec
D on layer 1 only 58.8 48.7 54.0

Ldec
D on layer 4 only 45.6 36.8 41.4

Ldec
D on layers 1 and 2 only 54.4 47.5 51.1

Ldec
D on layers 3 and 4 only 47.2 39.2 43.4

M0(0− 10) 78.4 - 78.4
M0(0− 20) 74.9 72.1 73.6

of the decoding stage (e.g.,“Ldec
D on layer 1 only” and “Ldec

D on layers 1 and 2 only”) pushes the
results toward distillation on the intermediate features (i.e., Lenc

D). On the other hand, distilling
the last layers of the decoding stage (e.g., “Ldec

D on layer 4 only” and “Ldec
D on layers 3 and 4

only”), as expected, pushes the results toward distillation on the output layer (i.e., Lcls-T
D).

3.7 Summary

In this chapter we have explored many knowledge distillation techniques applied to continual
semantic segmentation, combined with a standard cross-entropy loss to optimize the performance
on new classes while preserving at the same time high accuracy on old ones. The proposed
method does not need any stored image regarding the previous sets of classes making it suitable
for applications with strict privacy and storage requirements. Additionally, only the previous
model is used to update the current one, thus reducing the memory consumption.

In the following, we briefly summarize the main achievements of each proposed strategy
highlighting the best solutions and the challenges related to the various scenarios. First, we
have shown that fine-tuning always leads to catastrophic forgetting of old classes and prevents
learning new ones. Freezing the whole encoder (EF) or its first couple of layers (E2LF) lead
to similar results and such methods are especially effective (even more if used in combination
with other strategies) when a few classes are added to the model, as the frozen encoder fails to
accommodate large changes in the input distribution. The first loss we propose (i.e., Lcls-T

D) is
quite general and it achieves the highest results when a few incremental steps are made, but
it suffers over multiple iterations. The second loss we propose (i.e., Lenc

D) is often among the
best performing approaches and it is especially useful when dealing with multiple incremental
stages thanks to the preservation of the feature space. To further improve the organization of
the decoding features, we designed Ldec

D , which has proven to be useful when many classes are
added at a time. Finally, in an attempt to improve the distillation from the intermediate layers
we considered the loss LSPKD-avg

D working on the activation functions. This method robustly
achieves higher results with respect to fine-tuning in all scenarios performing similarly to the
other distillation methods.

Extensive experiments on Pascal VOC2012 and MSRC-v2 datasets showed that the proposed
methodologies are able to largely outperform the fine-tuning approach, where no additional
provisions are exploited. However, continual semantic segmentation is a novel task with still
a lot of space for improvement, as proved by the gap from the results achieved by the same
network architecture with a single-step training, i.e., when all training examples are available
and employed at the same time. We argue that the main reason of such performance gap has

40

to be identified with the entanglement of the latent space, as we observed in the examples in
Figure 3.6: features of previously seen classes are associated in the subsequent training steps
to features of novel visually-similar classes. Feature-level regularization and disentanglement,
indeed, will be the main focus of the next chapter.

41

42

4
Latent-Space Regularization of the Learned

Embeddings

4.1 Introduction

This chapter investigates and analyzes regularization methods for the latent representations
learned by the deep neural network models.

Differently from the majority of previous approaches both in image classification [48–50] and
semantic segmentation [18,23,54,55], we do not mainly or solely rely on output-level knowledge
distillation. In this chapter, we explore the latent space organization which has been only
marginally investigated in the current literature, and we empirically prove it to be compatible
to other existing techniques. The methodologies described in the following, indeed, can serve
as complementary techniques of those already proposed at the output space. The main idea
is depicted in Figure 4.1, where some of the latent space constraints are introduced. First, a
prototype matching is devised to enforce features extraction consistency on old classes between
the cumulative prototype computed using all previous samples and the current prototype (i.e.,
the prototype computed on the current batch only). In other words, we force the encoder to
produce similar latent representations for previously seen classes in the new steps. Second, a
features sparsification constraint makes room in the latent space to accommodate novel classes.
To further regularize the latent space, we introduce an attraction-repulsion rule similar in spirit
to the recent advancements in contrastive learning. Finally, to enforce the decoder to preserve
discriminability on previous categories during classification, we employ a targeted output-level
distillation.

4.1.1 Background

Latent Space Organization. The analysis of the latent space organization is becoming crucial
towards understanding and improvement of classification models [104, 105]. Recently, some at-
tention has been devoted to latent regularization in continual image classification [106,107,126].
Besides this, one of the emerging paradigms is constrastive learning applied to visual represen-
tations. Dating back to [127], these approaches learn representations by contrasting positive
against negative pairs and have been recently re-discovered for deep learning. Many works use
a memory bank to store the instance class representation vector [128–133], while some others

43

Figure4.1:Ourcontinual learningscheme isdrivenbythreemaincomponents: latentcontrastive learning, prototypesmatching

and features sparsity. Latent representations of old classes are preserved via prototypes matching and clustering, whilst also

making room for accommodating new classes via sparsity and repulsive force of contrastive learning. The decoder preserves

previous knowledge via output-level distillation. In the figure, bike and cars represent old classes and leavemore space to new

classes (the dog) thanks to the novel constraints (green dotted ovals versus gray-filled ovals).

explore the usage of in-batch negative samples instead [134–137]. The contrastive learning objec-
tive proposed in this work moves from opposition of positive and negative pairs and also recalls
features clustering (if features belong to the same class) and separation (if features belong to
different classes), which has been recently applied to adapt semantic segmentation models across
domains [31,138,139].
Prototype-based regularizing terms gained a great interest and, in particular, have been largely
used in the literature of few-shot learning [140–142], to learn prototypical representations of
each category, and domain adaptation, to enforce orthogonality [143, 144] or centroid match-
ing [145,146].
Finally, to minimize the interference among features we drive them to be channel-wise sparse.
Only limited attention has been given on sparsity for deep learning architectures [126]; however,
some prior techniques exist for domain adaptation on linear models exploiting sparse codes on
a shared dictionary between the domains [147,148].

As we have already mentioned in Section 2.4, although continual semantic segmentation has
only been faced recently, it already comes with different experimental protocols depending on how
the incremental data are considered: namely, sequential (new images are labeled with both new
and old classes), disjoint (new images are labeled with only new classes, old classes are assigned
to the background) and overlapped (new images are labeled with only new classes, images are
repeated across training steps with different semantic maps associated to them). In this section,
we devise a common framework which allows to tackle all these scenarios and can be applied
in combination with previous techniques, which has never been attempted before. We evaluate
on standard semantic segmentation datasets, like Pascal VOC2012 [114] and ADE20K [117], in
many experimental scenarios.

4.1.2 Contributions

The proposed continual learning scheme shapes the latent space to reduce forgetting whilst im-
proving the recognition of novel classes. Our framework is driven by three novel components
which we also combine on top of existing techniques effortlessly. First, prototypes matching en-

44

forces latent space consistency on old classes, constraining the encoder to produce similar latent
representation for previously seen classes in the subsequent steps. Second, features sparsifica-
tion allows to make room in the latent space to accommodate novel classes. Finally, contrastive
learning is employed to cluster features according to their semantics while tearing apart those of
different classes. Extensive evaluation on the Pascal VOC2012 and ADE20K datasets demon-
strates the effectiveness of our approach, significantly outperforming state-of-the-art methods.

Our work is the first combining together contrastive learning, sparsity and prototypes match-
ing to regularize latent space for segmenting new categories over time.

Summing up, the main contributions of this work are:

1. we investigate class-incremental learning in semantic segmentation, providing a common
framework for different experimental protocols;

2. we explore the latent space organization and we propose complementary techniques with
respect to the existing ones;

3. we propose novel knowledge preservation techniques based on prototypes matching, con-
trastive learning and features sparsity;

4. we benchmark our approach on standard semantic segmentation datasets outperforming
state-of-the-art continual learning methods.

4.2 ProblemDefinition and Setups

In the following, we denote the input image space with X ∈ RH×W×3 with spatial dimensions
H and W , the set of classes (or categories) with C = {ci}C−1i=0 and the output space with
Y ∈ CH×W (i.e., the segmentation map). Given a training set T = {(xn,yn)}Nn=1, where
(xn,yn) ∈ X × Y , we aim at finding a map M that solves the semantic segmentation problem,
from the input space to a pixel-wise class probability vector M : X 7→ RH×W×C . Then, the
output segmentation mask is computed as ŷn = argmaxc∈CM(xn)[h,w, c], where h = 1, .., H ,
w = 1, ...,W and M(xn)[h,w, c] is the probability for class c in pixel (h,w). Nowadays, M is
typically some auto-encoder model made by an encoder E and a decoderD (i.e.,M = E◦D). We
call Fn = E(xn) the feature map of xn, and y∗n the downsampled segmentation map matching
the spatial dimensions of Fn.

In the standard supervised setting it is assumed that the training set T is available at once
and the model is learned in one shot. In the continual learning scenario, instead, training is
achieved over multiple iterations each carrying a novel category to learn and a subset of the
training data. More formally, at each learning step k the previous label set Ck−1 is expanded
with a set of novel classes Sk forming a new label set Ck = Ck−1 ∪ Sk. Additionally, a new
training subset Tk ⊂ X ×Ck is made available and used to update the previous model into a new
model Mk. Step k = 0 consists of a standard supervised training performed with only a subset
of training data and classes. As in the standard incremental class learning scenario, we assume
the different sets of new classes to be disjoint with the exception of the peculiar background
class c0, i.e., Si ∩ Sj = {c0}.

4.3 Method

In this section, we provide a detailed description of the core modules of the proposed method.
Our approach leverages a contrastive learning objective applied over the feature representations,

45

Figure4.2:Overviewof theproposedapproach,withanold class (cat) andanewclass (car). Latent representationsofold classes
are preserved over time via prototypes matching and clustering, whilst also making room for accommodating new classes via

sparsity and repulsive force in contrastive learning. The decoder is constrained to act as in previous steps on previous classes

via output-level distillation.

with novel prototypes matching and sparsity constraints. Specifically, features repulsion and
attraction based on the semantic classes are enforced by grouping together features of the same
class, while simultaneously pushing away those of different categories. We further regularize the
distribution of latent representations by the joint application of prototypes matching and spar-
sity. While prototypes matching seeks for an invariant representation of the features extracted
for the old classes, the sparsity objective encourages a lower volume of active feature channels
from latent representations (i.e., it concentrates the energy of features on few dimensions) to
free up space for new classes.

An overall scheme of our approach is shown in Figure 4.2: the training objective is given by
the combination of a cross-entropy loss (Lce) with the proposed modules. Lce is the usual cross-
entropy loss for all the classes except for the background. The ground truth of the background,
indeed, is not directly compared with its probabilities, but with the probability of having either
an old class or the background in the current model [23]. Formally, at step k the background
probabilities M(xn)[h,w, c0] are replaced by

∑
c∈Ck−1

M(xn)[h,w, c]. The rationale behind this
is that the background class could incorporate statistics of previous classes in both the disjoint
and overlapped protocols.

The other components are a prototypes matching target (Lpm), a contrastive learning objec-
tive (Lcl) and a sparsity constraint (Lsp), which will be detailed in the following sections. The
training objective is then computed as:

L′tot = Lce + λpm · Lpm + λcl · Lcl + λsp · Lsp (4.1)

where the λ parameters balance the multiple losses and have been tuned using a validation
set (see Section 4.4). Our aim is to seek for disentangled latent representations characterized
by semantic-driven regularization and to show that this approach can achieve comparable or
superior results with respect to standard regularization methods (e.g., output-level knowledge
distillation). We further integrate the proposed framework with an output-level knowledge
distillation objective [20] and we show that its effect is highly not overlapping, achieving increased
accuracy. The training objective comprising an unbiased output-level distillation module is

46

defined as:
Ltot = L′tot + λkd · Lkd (4.2)

4.3.1 PrototypesMatching

Prototypes (i.e., class-centroids) are vectors that are representative of each category that appears
in the dataset. During training, the features extracted by the encoder contribute in forming the
latent prototypical representation of each class. To preserve the geometrical structure of the
features of old classes we apply prototypes matching. Current prototypes p̂c (i.e., computed on
the current batch of images) are forced to be placed close to their representation learned from
the previous steps pc. We use the Frobenius norm || · ||F as metric distance [141,149,150]. More
formally:

Lpm =
1

|Ck−1|
||pc − p̂c||F c ∈ Ck−1 (4.3)

The prototypes are computed in-place with a running average updated at each training step
with supervision. At training step t with batch B of B images, the prototypes are updated for
a generic class c as:

pc[t]=
1

Bt

(
B(t−1)pc[t−1]+

∑
xn∈B

∑
fi∈Fn

fi1[y
∗
i =c]

|1 [y∗n = c] |

)
(4.4)

initialized to pc[0] = 0 ∀c. fi ∈Fn is a generic feature vector and y∗i the corresponding pixel in
y∗n, 1 [y∗n = c] indicates the pixels in y∗n associated to c and | · | denotes cardinality.

We update the prototypes only when we have ground truth labels for that class to avoid
incorporating the mutable statistics of the background class: we exclude the background from the
incremental steps in the disjoint protocol (as it could contain old classes) and in the overlapped
scenario (as it could contain old and future classes).

For the current batch B of an incremental training stage, the current (or in-batch) prototypes
p̂c[t] are computed as:

p̂c[t] =
1

B

∑
xn∈B

∑

fi∈Fn
fi1[y

∗
i =c]

|1[y∗
n=c]| if sequential∑

fi∈Fn
fi1[ẑ

∗
i =c]

|1[ẑ∗
n=c]| otherwise

(4.5)

where ẑ∗n (with pixels ẑ∗i) is a pseudo-labeled segmentation map computed from the ground truth
data by replacing the background region with the prediction from the previous model, since in
the disjoint and overlapped protocols old classes are labeled as background. The difference
between (4.4) and (4.5) lies in the usage of pseudo-labels: we use them in (4.5) to compute
prototypes for old classes in the current batch since we may not have any label for them, but
we avoid to use them in (4.4), since there is no need to update prototypes computed using the
ground truth at previous steps with data from less reliable pseudo-labels.

4.3.2 Contrastive Learning

The second component is similar to recent contrastive learning [130,133] and clustering [138,139]
approaches to constraint the latent space organization. The underlying idea is to structure the
latent space in order to have features of the same category clustered near their prototype and at
the same time to force prototypes to be far one from the other. We argue that this organization
helps also in continual learning to mitigate forgetting and to facilitate the addition of novel

47

classes, as features are clustered and there is more separation between the clusters. In formal
terms, the constraint is defined by a loss Lcl made of an attractive term La

cl and a repulsive term
Lr
cl, as follows:

La
cl =

1

|cj ∈y∗n|
∑

cj∈y∗
n

∑
fi∈Fn

||
(
fi−pcj

)
1[y∗i =cj]||F (4.6)

Lr
cl=

1

|cj ∈y∗n|
∑

cj∈y∗
n

∑
ck∈y∗

n
ck ̸=cj

1

||p̂cj−p̂ck
||F

(4.7)

The objective is composed of two terms: La
cl measures how close features are from their

respective centroids and Lr
cl how spaced out prototypes corresponding to different semantic

classes are. Hence, the effect provided by the loss minimization is twofold: firstly, feature
vectors from the same class are tightened around class feature centroids; secondly, features from
separate classes are subject to a repulsive force applied to feature centroids, moving them apart.

4.3.3 Features Sparsity

To enforce the regularizing effect brought by contrastive learning, we introduce a further feature-
wise objective on the latent space. We propose a sparsity loss to decrease the number of active
feature channels of latent vectors. First, to give the same importance to all classes, we normalize
each feature vector with respect to the maximum value any of the feature channels for that
particular class assumes, i.e.:

f̄ i =
fi

maxgj,l∈gj

y∗
j=y∗

i

gj,l
fi,gj ∈ Fn (4.8)

We design the sparsity constraint as the ratio between a stretching function (we used the sum
of exponentials) and a linear function (i.e., the sum) applied over each feature vector, which
is minimized when the energy is concentrated in a few channels (since the normalized features
assume values ≤ 1). The sparsity constraint is thus defined as:

Lsp =
1

|fi ∈ Fn|
∑

fi∈Fn

∑
j exp

(
f̄ i,j
)∑

j f̄ i,j
(4.9)

While the contrastive learning objective forces features to lie within tight semantically-
consistent well-distanced clusters, the sparsity constraint aims at narrowing the set of active
channels with the aim of letting room for the representation of upcoming classes. In other words,
by constraining features of the same classes to be tightly clustered and to be spaced apart from
features of other classes and sparse, we can preserve geometrical space (few active channels) and
expressiveness (division in well-separated clusters) for the latent representation of future classes.
Empirically, we found entropy-based minimization methods in the latent space [151] to be less
reliable for our task. In Section 4.7 we show how to handle degenerate cases of (4.9) and an
ablation on other sparsifying strategies.

48

4.3.4 Output-Level Knowledge Distillation

The last component of this method is an output-level knowledge distillation which we show to be
complementary to the previously introduced strategies. Indeed, we add knowledge distillation on
top of all the other components to transfer knowledge from the old model’s classifier to the current
one. While previous constraints regularize the latent space achieving simultaneously an invariant
features extraction with respect to previous steps and an easier addition of novel categories,
output-level knowledge distillation directly acts on the classifier, to preserve its discriminative
ability regarding old classes. In particular, we start from the preliminary considerations of [18,20]
and we employ the unbiased distillation proposed in [23] as natural extension to the case in
which the background may contain other categories. In this case we avoid to re-normalize the
probabilities from the previous step and, instead, we compare the background probability from
the previous step with the probability of having either a new class or the background (this
accounts for the fact that the background in the previous steps may include samples of the new
classes, see [23]).

4.4 Training Procedure

To train and benchmark our approach we resort to two publicly available datasets (the Pascal
VOC2012 and the ADE20K) following [18,20,23,51].

The proposed strategy is agnostic to the backbone architecture. For the experimental evalua-
tion of all the compared methods we use a standard DeepLab-v3+ [4] architecture with ResNet-
101 [152] as backbone (differently from [23] for wider reproducibility) with output stride of 16.
The backbone has been initialized using a pre-trained model on ImageNet [121] (see Section 4.6
for a detailed discussion of the impact of different pre-training strategies). We optimize the net-
work weights following [6] with SGD and with same learning rate policy, momentum and weight
decay. The first learning step involves an initial learning rate of 10−2, which is decreased to
10−3 for the following steps as done in [23,51]. The learning rate is decreased with a polynomial
decay rule with power 0.9. In each learning step we train the models with a batch size of 8 for
30 epochs for Pascal VOC2012 and a batch size of 4 for 60 epochs for ADE20K. Following [6],
we crop the images to 512 × 512 during both training and validation and we apply the same
data augmentation (i.e., random scaling the input images of a factor from 0.5 to 2.0 and ran-
dom left-right flipping during training). In order to set the hyper-parameters of each method,
we follow the same continual learning protocol of [23, 60], i.e, we used 20% of the training set
as validation and we report the results on the original validation set of the datasets. We use
Pytorch to develop and train all the models on a NVIDIA 2080 Ti GPU. The code is available
at: https://lttm.dei.unipd.it/paper_data/SDR/.

4.5 Experimental Results

We evaluate the performance of our method (denoted in the tables with SDR, i.e., Sparse and
Disentangled Representations) against some state-of-the-art continual learning frameworks. We
report as a lower limit the performance of the naïve fine-tuning approach (FT), which consists in
training the model on the newly available training data with no additional provisions, while the
upper limit is given by the offline single-shot training (offline) on the whole dataset T and on all
the classes at once. Then, we compare with 3 recent continual semantic segmentation schemes:
ILT [18], which combines latent and output level knowledge distillation, CIL [55], which adds
class importance weighting to output-level knowledge distillation, and MiB [23], which deals

49

https://lttm.dei.unipd.it/paper_data/SDR/

Table 4.1: mIoU on multiple incremental scenarios and protocols on VOC2012. Best in bold, runner-up underlined. †: results

from [23].

19-1 15-5 15-1
sequential disjoint overlapped sequential disjoint overlapped sequential disjoint overlapped

Method old new all old new all old new all old new all old new all old new all old new all old new all old new all
FT 63.4 21.2 61.4 35.2 13.2 34.2 34.7 14.9 33.8 62.0 38.1 56.3 8.4 33.5 14.4 12.5 36.9 18.3 49.0 17.8 41.6 5.8 4.9 5.6 4.9 3.2 4.5
LwF [49] 67.2 26.4 65.3 65.8 28.3 64.0 62.6 23.4 60.8 68.0 43.0 62.1 39.7 33.3 38.2 67.0 41.8 61.0 33.7 13.7 29.0 26.2 15.1 23.6 24.0 15.0 21.9
LwF-MC [48] 49.2 0.9 46.9 38.5 1.0 36.7 37.1 2.3 35.4 70.6 19.5 58.4 41.5 25.4 37.6 59.8 22.6 51.0 12.1 1.9 9.7 6.9 2.1 5.7 6.9 2.3 5.8
ILT [18] 64.3 22.7 62.3 66.9 23.4 64.8 50.2 29.2 49.2 71.3 47.8 65.7 31.5 25.1 30.0 69.0 46.4 63.6 49.2 30.3 48.3 6.7 1.2 5.4 5.7 1.0 4.6
CIL [55] 64.1 22.8 62.1 62.6 18.1 60.5 35.1 13.8 34.0 63.8 39.8 58.1 42.6 35.0 40.8 14.9 37.3 20.2 52.4 22.3 45.2 33,3 15.9 29.1 6.3 4.5 5.9
MiB† [23] - - - 69.6 25.6 67.4 70.2 22.1 67.8 - - - 71.8 43.3 64.7 75.5 49.4 69.0 - - - 46.2 12.9 37.9 35.1 13.5 29.7
MiB [23] 68.2 31.9 66.5 67.0 26.0 65.1 69.6 23.8 67.4 73.0 44.4 66.1 47.5 34.1 44.3 73.1 44.5 66.3 35.7 11.0 29.8 39.0 15.0 33.3 44.5 11.7 36.7
SDR (ours) 68.4 35.3 66.8 69.9 37.3 68.4 69.1 32.6 67.4 73.6 46.7 67.2 73.5 47.3 67.2 75.4 52.6 69.9 58.5 10.1 47.0 59.2 12.9 48.1 44.7 21.8 39.2
SDR + MiB 70.6 24.8 68.5 70.8 31.4 68.9 71.3 23.4 69.0 74.6 43.8 67.3 74.6 44.1 67.3 76.3 50.2 70.1 58.1 11.8 47.1 59.4 14.3 48.7 47.3 14.7 39.5
offline 75.5 73.5 75.4 75.5 73.5 75.4 75.5 73.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4

with the background distribution shift and proposes an unbiased weight initialization rule. We
also report the results on LwF [49] (together with its single-headed version LwF-MC [48]), that
according to [23] is the best performing continual image classification algorithm when adapted
to semantic segmentation. For a fair comparison, all the methods have been re-trained with a
standard DeepLab-v3+ [4] architecture with ResNet-101 [152] as backbone.

4.5.1 Pascal VOC2012

Following previous works [18,20,23,51], we design three main experiments adding one class (19-
1), five classes at once (15-5) and five classes sequentially (15-1) added in alphabetical order.
In Table 4.1 we report comprehensive results on the three experimental protocols defined in
Section 2.4. Results are averaged for mIoU of classes in the base step (old), for classes in the
incremental steps (new) and for all classes, and are reported at the end of all the incremental
steps. For [23] we also report the original results in their paper (denoted with MiB†), that uses
a different backbone (thus different pre-trained model) and batch size.

We can appreciate forgetting of previous classes and intransigence in learning new ones even
when adding as little as one class (the tv/monitor class is added) in the scenario 19-1. FT always
leads to the worst mIoU in terms of old, new and all classes. Incremental methods designed for
semantic segmentation allow for a stable improvement across the experimental protocols, in
particular MiB, that is specifically targeted to solve the disjoint and the overlapped scenarios,
while CIL and ILT encounter difficulties in the overlapped scenario. Also LwF allows for a good
improvement while its single-headed version has lower performance in this scenario. Our method
(SDR) significantly outperforms all the competitors in the disjoint and overlapped scenarios (with
a gap of more than 3% against the best competing approach in the disjoint setup), while in the
sequential setup the gap is smaller. Further adding on top of our method the MiB framework
(i.e., unbiased cross entropy, knowledge distillation and classifier initialization), which we regard
as the current state-of-the-art approach for class incremental semantic segmentation, the results
increase on all the scenarios, showing that proposed techniques are complementary with respect
to previous schemes.

When moving to the addition of 5 classes at once (i.e., potted plant, sheep, sofa, train,
tv/monitor) we immediately notice an overall increased drop of performance of all compared
methods, especially in disjoint and overlapped protocols, due to the increased domain shift oc-
curring when adding more classes at once with very variable content. In this and in the following
scenario, indeed, we are adding to the model classes belonging to different macroscopic groups,
according to [114], which are responsible for a variegate distribution: three indoor classes (potted
plant, sofa and tv/monitor), one animal class (sheep) and one vehicle class (train). All compared
methods obtain a relevant improvement with respect to FT but are always surpassed by SDR,

50

which in particular outrun the best competing method (MiB) by more than 20% in the disjoint
scenario.

In the final scenario we add the last 5 classes sequentially in 5 consecutive learning steps. This
approach leads to the largest accuracy drop being the model exposed to a reiterated addition of
single classes, which are also coming from different semantic contexts. In the sequential scenario
LwF and MiB (which is designed for background shift) show poor final accuracy. ILT and CIL,
instead, show results comparable to our approach. In the disjoint and in the overlapped scenarios
all the methods heavily suffer from the semantic shift undergone by the background class: LwF
(both versions) and ILT have poor performance in these scenarios, while CIL is able to achieve
some improvement only in the disjoint scenario. The best competitor is again MiB that is
able to obtain a mIoU of 33% and 36.7% in the disjoint and overlapped scenarios respectively.
Our approach (SDR) is able to significantly increase the final mIoU in both scenarios to 48.1%
and 39.2%; it achieves a remarkable result especially in the disjoint scenario thanks to the novel
features-level constraints which help the model to maintain accuracy on old classes while learning
new ones.

Visual results for each scenario are shown in Figures 4.3, 4.4 and 4.5, respectively for sequen-
tial, disjoint and overlapped protocols. In each figure, 3 images for each scenario (i.e., 19-1, 15-5
and 15-1) are depicted. We compare our method with naïve fine tuning and the competitors,
i.e., LwF [49], ILT [18], CIL [55] and MiB [23]. The images show how our approach is able to
alleviate forgetting and at the same time accommodate for new classes to learn. On the other
side, the fine-tuning and the compared approaches often deviate (i.e., are biased) in predicting
novel classes being added or the special background class.

In Figure 4.3 our method segments better the shape of the horse in row 1, it does not overfit
to predict the sofa class (one of the classes being added) in row 5, and properly individuates the
correct objects in rows 8 and 9.

In Figure 4.4 our method does not mislead the bus windows with tv/monitor instances (row 1)
differently from several competitors (which are more biased toward predicting the novel class),
and it is the only one able to distinguish the sheep in row 6 and the tv/monitor in row 8.

In Figure 4.5 our method outperforms competitors in detecting the shape of the objects in
rows 1 and 3, it is not biased towards novel added classes in rows 4 and 5 (bus and cow are
correctly detected, while competitors place newly seen visually-similar classes train and sheep),
and can better segment the shapes of the horse, dog and airplane in rows 7, 8 and 9.

4.5.2 ADE20K

Following [23], we split the dataset into disjoint image sets with the only constraint that a
minimum number of images (i.e., 50) have labeled pixels on Ck. Classes are ordered according
to [117]. In this comparison we report the same competing methods of Section 4.5.1. The sce-
narios we consider are the addition of the last 50 classes at once (100-50), of the last 50 classes
10 at a time (100-10) and of the last 100 classes in 2 steps of 50 classes each (50-50). The results
are summarized in Table 4.2, where we can appreciate that the proposed approach outperforms
competitors in every scenario, in particular with a larger gain when multiple incremental steps
are performed. When adding 50 classes at a time LwF-MC and CIL achieve low results and are
outperformed by the other competitors (i.e., LwF, ILT and MiB), which in turn are always con-
sistently surpassed by our framework. In the scenario 100-10, instead, all competing approaches
(except for MiB) are unable to provide useful outputs leading to extremely low results, while
our method stands out from competitors outperforming also MiB by a good margin.

Visual results are shown in Figure 4.6, which confirm our considerations showing how SDR
produces less noisy predictions and does not overestimate the background as some competitors.

51

background aero bicycle bird boat bottle bus car cat chair cow
din. table dog horse mbike person pplant sheep sofa train tv unlabeled

19
-1

19
-1

19
-1

15
-5

15
-5

15
-5

15
-1

15
-1

15
-1

RGB label FT LwF [79] ILT [18] CIL [55] MiB [23] SDR (ours) offline

Figure4.3:Qualitativeresultsonsamplescenes indifferent scenarios (19-1, 15-5and15-1)onPascalVOC2012of theproposed

method and of competing approaches in the sequential setup.

52

background aero bicycle bird boat bottle bus car cat chair cow
din. table dog horse mbike person pplant sheep sofa train tv unlabeled

19
-1

19
-1

19
-1

15
-5

15
-5

15
-5

15
-1

15
-1

15
-1

RGB label FT LwF [79] ILT [18] CIL [55] MiB [23] SDR (ours) offline

Figure4.4:Qualitativeresultsonsamplescenes indifferent scenarios (19-1, 15-5and15-1)onPascalVOC2012of theproposed

method and of competing approaches in the disjoint setup.

53

background aero bicycle bird boat bottle bus car cat chair cow
din. table dog horse mbike person pplant sheep sofa train tv unlabeled

19
-1

19
-1

19
-1

15
-5

15
-5

15
-5

15
-1

15
-1

15
-1

RGB label FT LwF [79] ILT [18] CIL [55] MiB [23] SDR (ours) offline

Figure4.5:Qualitativeresultsonsamplescenes indifferent scenarios (19-1, 15-5and15-1)onPascalVOC2012of theproposed

method and of competing approaches in the overlapped setup.

54

10
0-
50

10
0-
50

10
0-
50

10
0-
10

10
0-
10

10
0-
10

50
-5
0

50
-5
0

50
-5
0

RGB label FT LwF [79] ILT [18] CIL [55] MiB [23] SDR (ours) offline

Figure 4.6: Qualitative results on sample scenes in different scenarios (100-50, 100-10 and50-50) onADE20Kof the proposed

method and of competing approaches.

55

Table 4.2: mIoU overmultiple incremental scenarios on disjoint setup of ADE20K. Best in bold, runner-up underlined.

100-50 100-10 50-50
Method old new all old new all old new all
FT 0.0 22.5 7.5 0.0 2.5 0.8 13.9 12.0 12.6
LwF [49] 25.0 23.9 24.6 5.4 5.6 5.5 32.2 22.9 26.0
LwF-MC [48] 8.6 0.0 5.8 0.0 0.9 0.3 2.8 0.5 1.2
ILT [18] 27.2 21.7 25.4 0.0 0.2 0.8 41.9 21.1 28.0
CIL [55] 0.0 22.5 7.5 0.0 2.0 0.6 14.0 11.9 12.6
MiB [23] 37.6 24.7 33.3 21.0 5.3 15.8 39.1 22.6 28.1
SDR (ours) 37.4 24.8 33.2 28.9 7.4 21.7 40.9 23.8 29.5
SDR+MiB 37.5 25.5 33.5 28.9 11.7 23.2 42.9 25.4 31.3
offline 43.9 27.2 38.3 43.9 27.2 38.3 50.9 32.1 38.3

In particular, we show 3 images for each scenario (i.e., 100-50, 100-10, 50-50). Again, we can
appreciate how our method largely outperforms compared approaches in all scenarios better
capturing the details of the shapes of the objects (e.g, in rows 1-4) and not degenerating into
an overestimation of the background (e.g., in the 100-10 scenario). In particular, we notice how
compared approaches have big difficulties in handling multiple additions of multiple classes (they
struggle in tackling catastrophic forgetting in the 100-10 scenario), while our method can achieve
reasonably good output segmentation maps also in the most challenging scenarios.

4.5.3 Qualitative Results Across Incremental Steps

In this section we analyze the performance across the various incremental steps, comparing our
method with the top performing competitor (i.e., MiB [23]).

Pascal VOC2012. The results on two sample scenes from this dataset are reported in
Figure 4.7 for the disjoint 15-1 experimental protocol, where an initial training stage over 15
classes is followed by 5 incremental learning steps each carrying one class to be learned. In the
first row our method shows quite robust results across the different learning steps, being able
to preserve content semantics. MiB, instead, is able to avoid catastrophic forgetting for one
incremental step but it degenerates after introducing the sheep class (step 2), which is predicted
in spite of person probably due to the confusion of the arms and legs (caused also by their
similar color). The latent representations got even more damaged across subsequent steps, while
our approach (SDR) is able to reduce the interference on latent representations of old classes.
Similar considerations also holds for the second set of images, although in this scenario forgetting
is less evident: our approach is able to achieve superior performance thanks to correct spatial
localization and latent disentanglement.

ADE20K. For this dataset we consider two distinct scenarios: i.e., 5 incremental steps each
adding 10 categories to the model (100-10) in Figure 4.8, and 2 incremental steps each adding
50 classes to the model (50-50) in Figure 4.9.

The first scenario is definitely the most challenging one as the model need to adapt 5 times to
discover new (and possibly unrelated) classes. Nevertheless, we can appreciate that our model
obtain quite robust results across the various steps in the 2 sample scenes shown in Figure 4.8,
while MiB suffers more from catastrophic forgetting previous knowledge. In the first sample
scene our approach shows a small gradual degradation across the multiple steps, while MiB
firstly completely looses the wall on the background in step 2, then the curtain in step 3 and
finally also the hand basin in step 4. Similarly, in the second scene our approach maintains very
good results across all the steps, while MiB at the third step misleads the sky on the background.

56

background aero bicycle bird boat bottle bus car cat chair cow
din. table dog horse mbike person pplant sheep sofa train tv unlabeled

SD
R

(o
ur
s)

M
iB

[2
3]

SD
R

(o
ur
s)

M
iB

[2
3]

RGB label step 1 (plant) step 2 (sheep) step 3 (sofa) step 4 (train) step 5 (tv)

Figure 4.7: Qualitative results on sample scenes in the disjoint experimental protocol 15-1 on Pascal VOC2012 during the var-

ious incremental steps.

SD
R

(o
ur
s)

M
iB

[2
3]

SD
R

(o
ur
s)

M
iB

[2
3]

RGB label step 1 step 2 step 3 step 4 step 5
Figure 4.8: Qualitative results on sample scenes in experimental protocol 100-10 on ADE20K during the various incremental

steps.

57

In Figure 4.9 we consider the case in which only two incremental steps with 50 classes each are
performed. It can be appreciated how in the first step the predicted segmentation maps are quite
precise according to both our approach and MiB, but, in both examples, MiB produces a less
precise map after the second incremental step. More in detail, we remark some differences: our
model can identify the tree (green) in the first image, that MiB only partially captures in the
first step and completely misses it in the second. Similarly, SDR preserves the walls (gray) in
the second image that MiB misleads in the second step. Again, the latent space regularization
helps in preserving previous classes representations and in accommodating new classes.

SD
R

(o
ur
s)

M
iB

[2
3]

SD
R

(o
ur
s)

M
iB

[2
3]

RGB label step 1 step 2

Figure 4.9: Qualitative results on sample scenes in experimental protocol 50-50 on ADE20K during the various incremental

steps.

58

4.5.4 Quantitative Results: per-Class Accuracy

We also analyze the per-class accuracy for all the compared methods in some scenarios. We report
the results of per-class IoU and per-class pixel accuracy (PA) on the disjoint 19-1 (Tables 4.3 and
4.4), 15-5 (Tables 4.5 and 4.6) and 15-1 (Tables 4.7 and 4.8) scenarios on the Pascal VOC2012
dataset.

Even when adding as little as 1 class (scenario 19-1 in Tables 4.3 and 4.4) we can appreci-
ate how FT and LwF-MC are generally able to learn the new class to some extent but they
catastrophically forget previous classes resulting in a poor final mIoU. This performance drop
is typically due to a biased prediction toward the new class (high per-class PA for that class
but low IoU). The other competing approaches and our proposal, instead, are more balanced
across the various classes and are able to greatly alleviate forgetting (with performance gains
distributed across the classes) when learning the new class, thus resulting in higher mIoUs.

Table 4.3: Per-class IoU of comparedmethods in disjoint experimental protocol on scenario 19-1 of Pascal VOC2012.

Method ba
ck

gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt

le

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
n.

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv old new all
FT 72.4 62.4 6.7 45.0 47.1 39.5 33.7 40.9 25.7 4.3 54.0 8.0 25.0 50.4 50.6 0.0 35.3 43.0 0.8 59.5 13.2 35.2 13.2 34.2
LwF [49] 87.6 75.4 31.1 71.7 50.8 66.0 81.6 79.0 87.9 32.1 66.9 49.9 84.1 66.2 77.3 79.4 51.8 68.5 42.1 65.8 28.3 65.8 28.3 64.0
LwF-MC [48] 78.6 63.6 0.4 61.2 10.6 35.2 52.8 35.1 75.5 0.4 63.9 1.5 75.5 67.8 32.6 13.1 13.0 63.4 0.7 25.9 1.0 38.5 1.0 36.7
ILT [18] 87.7 79.5 31.6 77.4 54.5 66.5 70.9 79.0 90.4 31.4 66.5 52.9 85.1 67.7 78.1 82.0 56.0 67.3 41.4 72.3 23.4 66.9 23.4 64.8
CIL [55] 85.3 71.4 33.6 75.2 56.5 59.3 45.8 67.2 85.9 27.6 62.7 46.9 85.2 67.9 75.2 83.7 47.4 67.0 42.3 66.0 18.1 62.6 18.1 60.5
MiB [23] 86.9 73.5 35.7 64.0 50.5 71.0 89.5 87.0 84.8 33.7 62.9 56.9 82.1 61.8 79.5 82.4 56.2 62.0 46.0 75.9 26.0 67.0 26.0 65.1
SDR (ours) 89.6 85.3 35.9 78.6 55.2 73.6 86.2 81.9 89.1 34.2 71.4 56.6 86.5 72.7 78.0 83.0 54.1 71.0 45.5 70.4 37.3 69.9 37.3 68.4
SDR+MiB 89.5 84.4 39.0 76.5 53.6 75.1 89.1 87.6 89.0 33.7 67.8 55.4 85.2 72.8 80.8 83.4 57.8 71.3 46.3 78.4 31.4 70.8 31.4 68.9
offline 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 75.5 73.5 75.4

Table4.4: Per-class pixel accuracyof comparedmethods indisjoint experimental protocol on scenario19-1ofPascalVOC2012.

Method ba
ck

gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt

le

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
n.

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv old new all
FT 91.5 79.9 7.2 74.9 71.1 44.0 34.3 46.4 26.1 4.5 72.6 8.1 25.4 78.0 53.9 0.0 40.6 58.5 0.8 64.3 82.0 35.2 13.2 34.2
LwF [49] 94.1 85.6 58.7 91.2 59.1 76.3 84.4 80.3 94.1 39.3 93.5 52.3 91.7 95.3 84.0 82.3 76.5 84.1 48.2 68.4 69.6 65.8 28.3 64.0
LwF-MC [48] 99.8 65.5 0.4 63.1 10.7 39.6 53.1 35.3 78.4 0.5 66.5 1.5 77.8 72.0 34.0 13.1 14.4 65.9 0.7 25.9 1.0 38.5 1.0 36.7
ILT [18] 93.5 88.2 59.5 94.3 77.1 83.2 72.0 81.5 96.2 38.7 93.5 55.9 93.8 94.2 84.9 85.7 79.0 91.3 47.1 77.0 63.4 66.9 23.4 64.8
CIL [55] 91.9 77.6 68.6 90.8 66.0 67.6 46.0 67.9 97.3 31.3 95.8 48.6 95.4 94.6 78.9 87.7 82.1 86.4 48.2 68.2 82.1 62.6 18.1 60.5
MiB [23] 89.8 95.0 91.6 97.7 83.9 93.0 93.7 91.2 96.9 52.3 94.2 60.8 96.8 96.2 95.5 88.0 81.9 88.5 56.7 83.6 73.8 67.1 26.1 65.1
SDR (ours) 95.0 90.1 66.5 95.1 67.9 87.7 88.0 83.0 96.4 44.9 93.0 61.3 95.9 95.3 82.7 86.8 81.8 92.9 53.3 72.9 57.9 69.9 37.3 68.4
SDR+MiB 93.1 96.0 86.9 97.3 85.5 91.5 92.1 90.5 96.7 48.8 92.4 58.6 95.7 94.8 91.3 88.9 78.9 90.3 56.1 84.4 69.5 70.8 31.4 68.9
offline 96.1 96.6 85.4 94.4 87.2 92.2 94.7 93.5 96.9 50.2 95.4 56.5 95.8 91.8 94.7 90.8 80.8 92.1 54.8 89.5 83.5 75.5 73.5 75.4

Analyzing the per-class IoUs on the 15-5 case in Tables 4.5 and 4.6 we can appreciate how FT
is completely unable to preserve knowledge about previous classes which are heavily forgotten.
The competitors can better preserve knowledge related to previous classes while learning new
classes but our approach shows superior results in both retaining old classes knowledge and in
learning new ones.

The last 15-1 scenario is shown in Tables 4.7 and 4.8. Here we can confirm most of the
previous considerations; our method outperforms all the competitors proving its scalability when
multiple incremental steps are made. From the per-class pixel accuracy we can observe that most
of competing approaches are biased toward the prediction of the very few last classes added to
the model, thus reducing the IoU for the other classes.

59

Table 4.5: Per-class IoU of comparedmethods in disjoint experimental protocol on scenario 15-5 of Pascal VOC2012.

Method ba
ck

gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt

le

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
n.

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv old new all
FT 74.2 27.2 0.0 1.6 15.1 11.3 0.0 4.1 0.5 0.0 0.0 0.0 0.0 0.2 0.2 0.0 27.0 25.6 28.9 33.5 52.2 8.4 33.5 14.4
LwF [49] 83.4 59.1 21.7 16.7 36.8 47.0 18.7 62.5 52.3 6.6 4.8 37.7 35.9 44.9 55.5 51.6 22.6 27.8 25.3 39.6 51.1 39.7 33.3 38.2
LwF-MC [48] 85.4 54.2 16.9 59.7 29.7 46.0 34.4 65.9 38.1 5.2 35.9 7.5 62.4 44.3 48.7 29.1 11.4 37.3 8.9 42.1 27.1 41.5 25.4 37.6
ILT [18] 81.7 47.6 18.4 1.6 29.7 19.4 3.8 52.5 56.7 0.5 4.6 20.7 43.1 35.4 33.6 54.8 22.7 22.4 15.9 30.1 34.3 31.5 25.1 30.0
CIL [55] 81.0 45.4 28.8 30.4 31.1 54.5 9.4 67.8 52.1 10.5 9.2 47.9 53.0 35.3 66.3 58.4 23.9 33.3 25.2 39.1 53.9 42.6 35.1 40.8
MiB [23] 78.4 58.3 30.8 52.5 35.5 60.5 60.2 74.8 38.2 14.0 21.6 41.8 42.9 34.8 67.4 48.8 23.2 31.0 24.4 46.3 45.8 47.5 34.1 44.3
SDR (ours) 88.7 82.9 40.5 82.4 62.8 69.2 83.8 88.2 91.6 28.9 71.1 54.2 86.8 80.3 79.7 84.4 39.4 51.4 23.7 63.3 58.7 73.5 47.3 67.2
SDR + MiB 89.4 87.1 39.9 84.8 67.3 75.2 85.1 88.2 91.3 29.9 67.8 54.4 86.1 81.8 80.5 85.0 33.8 43.6 24.7 61.7 56.6 74.6 44.1 67.3
offline 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 77.5 68.5 75.4

Table4.6: Per-class pixel accuracyof comparedmethods indisjoint experimental protocol on scenario15-5ofPascalVOC2012.

Method ba
ck

gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt

le

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
n.

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv old new all
FT 95.3 27.5 0.0 1.6 15.4 11.5 0.0 4.1 0.5 0.0 0.0 0.0 0.0 0.2 0.2 0.0 72.0 90.0 77.2 89.7 80.7 8.4 33.5 14.4
LwF [49] 91.9 79.4 35.4 16.9 50.9 49.0 19.4 71.0 78.8 8.0 5.2 39.7 36.3 78.5 59.2 53.3 67.1 91.2 74.2 81.6 76.5 39.7 33.3 38.2
LwF-MC [48] 96.6 80.7 30.3 68.5 62.0 60.4 37.7 79.7 62.5 10.8 46.2 9.2 73.2 84.4 64.8 31.7 11.4 39.7 9.1 60.1 27.1 41.5 25.4 37.6
ILT [18] 94.6 61.4 26.4 1.6 30.8 19.5 4.0 57.7 71.7 0.5 5.1 20.9 45.9 43.7 34.6 56.7 42.5 86.0 38.8 71.0 44.9 31.5 25.1 30.0
CIL [55] 85.0 80.5 56.3 31.6 57.2 59.5 10.0 81.9 87.6 16.6 12.3 53.9 58.1 86.1 74.1 61.5 84.4 95.7 88.8 93.5 87.1 42.6 35.1 40.8
MiB [23] 80.7 92.6 64.8 64.5 74.0 68.3 65.0 84.3 93.7 23.6 36.2 50.9 49.8 91.2 85.7 52.0 73.9 86.6 87.6 89.9 83.7 47.5 34.1 44.3
SDR (ours) 91.2 95.1 82.1 96.5 80.1 86.3 93.3 92.2 97.0 51.8 93.0 64.3 96.0 91.0 92.0 91.1 68.9 64.1 69.6 74.0 82.9 73.5 47.3 67.2
SDR + MiB 91.7 94.7 80.1 93.4 79.1 88.7 90.6 91.4 96.3 51.0 82.4 64.6 94.9 90.2 91.7 91.8 68.6 67.8 70.3 79.7 81.3 74.6 44.1 67.3
offline 96.1 96.6 85.4 94.4 87.2 92.2 94.7 93.5 96.9 50.2 95.4 56.5 95.8 91.8 94.7 90.8 80.8 92.1 54.8 89.5 83.5 77.5 68.5 75.4

Table 4.7: Per-class IoU of comparedmethods in disjoint experimental protocol on scenario 15-1 of Pascal VOC2012.

Method ba
ck

gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt

le

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
n.

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv old new all
FT 70.4 5.5 0.0 5.9 5.2 0.5 0.2 1.6 0.4 0.0 3.3 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 9.4 14.8 5.8 4.9 5.6
LwF [49] 77.1 12.0 6.9 52.6 14.3 23.1 18.4 27.3 56.3 20.5 48.9 8.3 17.8 12.6 15.6 8.3 0.0 17.0 21.0 18.6 19.1 26.2 15.1 23.6
LwF-MC [48] 69.5 0.1 0.0 8.0 0.1 7.2 0.0 0.1 8.1 0.0 6.6 0.0 8.0 1.7 0.3 0.1 0.0 0.0 0.0 2.4 8.1 6.9 2.1 5.7
ILT [18] 69.4 0.0 2.1 0.0 0.0 0.1 0.0 4.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 19.2 0.0 0.0 0.0 1.4 4.6 6.7 1.2 5.4
CIL [55] 78.4 2.4 23.6 47.9 4.6 32.9 0.3 29.9 45.4 15.4 30.3 2.4 54.5 13.0 8.7 59.7 15.2 17.5 12.1 20.9 19.2 33.3 15.9 29.1
MiB [23] 70.6 56.2 24.8 41.7 45.8 34.9 44.9 52.8 64.1 17.8 40.4 28.2 16.1 30.3 55.3 0.1 5.9 8.2 16.5 27.2 17.3 39.0 15.0 33.3
SDR (ours) 86.2 47.1 34.2 69.1 37.9 61.3 67.2 72.5 81.1 17.9 51.3 40.8 72.9 67.6 68.5 70.8 8.3 4.8 2.7 24.5 24.2 59.2 12.9 48.1
SDR+MiB 86.9 32.0 29.8 76.0 42.8 60.7 67.4 64.7 85.8 19.2 50.3 39.4 75.1 73.0 69.3 78.2 3.4 2.7 11.5 34.0 20.1 59.4 14.3 48.7
offline 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 77.5 68.5 75.4

Table4.8: Per-class pixel accuracyof comparedmethods indisjoint experimental protocol on scenario15-1ofPascalVOC2012.

Method ba
ck

gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt

le

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
n.

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv old new all
FT 98.5 5.6 0.0 5.9 5.4 0.5 0.2 1.6 0.4 0.0 3.4 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 9.8 80.1 5.8 4.9 5.6
LwF [49] 95.1 12.0 47.8 54.0 15.0 23.2 18.4 27.4 57.3 35.1 62.8 8.3 18.0 12.7 15.7 8.3 0.0 22.0 35.8 47.9 70.7 26.2 15.1 23.6
LwF-MC [48] 99.9 0.1 0.0 8.0 0.1 7.4 0.0 0.1 8.1 0.0 6.6 0.0 8.0 1.7 0.3 0.1 0.0 0.0 0.0 2.9 8.2 6.9 2.1 5.7
ILT [18] 20.9 0.0 73.2 0.0 0.0 0.0 2.3 89.3 19.0 16.3 14.8 1.4 48.3 0.0 23.2 0.4 4.6 0.0 0.0 1.8 4.9 6.7 1.2 5.4
CIL [55] 90.1 16.8 40.0 48.4 15.3 32.7 9.0 28.2 60.1 17.1 75.0 20.4 53.8 28.7 13.5 60.0 31.0 11.8 49.7 50.1 87.0 33.3 15.9 29.1
MiB [23] 72.7 61.7 58.6 60.7 52.3 69.4 45.8 59.2 88.3 30.2 62.3 53.9 68.6 60.7 70.9 0.1 7.0 84.3 28.8 84.9 65.6 39.0 15.0 33.3
SDR (ours) 92.7 47.6 72.3 91.9 44.5 69.2 76.5 74.7 89.3 60.9 92.8 53.1 94.9 75.5 88.3 73.8 11.5 5.1 3.0 35.7 76.6 59.2 12.9 48.1
SDR+MiB 92.7 33.2 45.0 84.7 47.0 67.6 72.1 65.2 96.6 59.1 95.7 45.1 85.3 80.5 83.5 84.2 4.4 2.8 17.2 57.1 76.6 59.4 14.3 48.7
offline 96.1 96.6 85.4 94.4 87.2 92.2 94.7 93.5 96.9 50.2 95.4 56.5 95.8 91.8 94.7 90.8 80.8 92.1 54.8 89.5 83.5 77.5 68.5 75.4

60

Table 4.9: Ablation on disjoint VOC2012 15-1 in terms of mIoU.

Lce Lpm Lsp Lcl L′kd Lkd old new all
X 5.8 4.9 5.6
X X 30.0 11.0 25.4
X X 18.7 9.0 16.4
X X X 40.4 12.9 33.9
X X X X 41.0 13.2 34.4
X X X X X 50.0 15.9 41.9
X X X X X 59.2 12.9 48.1

Table 4.10: Results on standard supervised (non-incremental) semantic segmentation.

Lce Lsp Lcl mIoUVOC2012 mIoUADE20K

X 75.4 38.3
X X 75.8 38.7
X X 75.8 38.8
X X X 76.3 39.3

4.6 Ablation Study

To evaluate the effect of each component, we report an ablation analysis in Table 4.9 on the Pascal
dataset in the challenging 15-1 scenario. As already noticed, FT leads to a great degradation of
mIoU. Early continual semantic segmentation approaches use a classical output-level knowledge
distillation [18, 20, 55] which show discrete benefits boosting the mIoU by almost 20%. Each
component of the approach significantly contributes to the final mIoU providing non-overlapping
and mutual benefits. Matching prototypes, sparsifying features vectors and constraining them
via the contrastive objective regularize the latent space bringing large improvements on both
old and new classes. We observe that also the contrastive loss brings a significant contribution
if applied alone improving the mIoU of 13.5%. Introducing standard output-level knowledge
distillation on top increases the accuracy on old classes mainly, and its unbiased version prevents
forgetting even more accounting for the background shift across the incremental learning steps.

Finally, we show that two of the proposed approaches (namely, sparsity and contrastive
learning) may be beneficial also for the more general case of standard (i.e., non incremental)
semantic segmentation. Hence, we conduct some additional experiments on Pascal VOC2012
and ADE20K, reported in Table 4.10, showing the clear benefit of the two components in this
setup. On both datasets the outcome is consistent, gaining 0.9% and 1% respectively, even
starting from an architecture (i.e., DeepLab-v3+) which is already state of the art.

Random Split. Looking at Table 4.1, we see that in some cases, especially on the 15-1
setup, the proposed method is still far from the offline reference. An interesting question is
whether this is due to the difficulty of handling new classes or if, more fundamentally, it is due
to an inherent difficulty to train a network using only a small subset of the data at each step.
To answer this, we split the dataset equally in 5 parts (each part containing all classes, thus
removing the complexity of learning new classes) and then we trained the network sequentially
on each of this parts. We obtained 69.9% of mIoU against 75.4% of the joint training, 5.6%
of the FT (disjoint) and 48.1% of SDR (disjoint). The difference with respect to joint training
is relatively small, and it could be due to sub-optimal network weights estimation (samples are
taken from the 5 parts accessed subsequently, instead of the full dataset); on the other side, the

61

difference with respect to FT is very large proving that handling unseen classes is the key issue
and the proposed latent constraints aim at addressing it.

Considerations on Pre-Training. The results reported up to this point have been obtained
initializing the weights of the backbone ResNet-101 approach on the ImageNet dataset. This
has become the standard setup in continual semantic segmentation approaches [18, 20, 23, 55].
Additional considerations have been already addressed in [20], where it has been shown that
pre-training on a segmentation benchmark could boost the accuracy; nonetheless, the ranking
of the proposed strategies is mainly maintained.

On the other hand, even ImageNet contains visual samples for many of the elements present
in the Pascal dataset (for classification task instead of segmentation), potentially limiting the
magnitude of decay on old tasks, and likely raising accuracies for new concepts that are not
necessarily completely new to the encoder. Here, we show how the network performs without
such a strong prior on the latent representations. The results are strongly affected by the fact
that datasets for in-the-wild segmentation are often too small to reliably train complex deep
networks from scratch. We trained on VOC2012 without pre-training and we achieved a low
mIoU of 24.4% when training for 30 epochs, and 40.9%, when training for 120 epochs (about 30
hours of computation). In continual learning, the final mIoU are also lower (as the starting point
is much lower), but the improvements achieved by our approach and the ranking of the various
methods are preserved, for instance in VOC2012 15-1 disjoint the accuracy of SDR (13.5%) is
still significantly above FT (4.1%) and MiB (10.9%).

4.7 Design Choices

In this section we present some additional discussion and results motivating the design choices
behind the various modules exploited in our work.
Prototypes Matching enforces latent space consistency on old classes, forcing the encoder to
produce similar latent representation for previously seen classes in the subsequent steps. The
target is achieved by considering the Euclidean distance in the latent space (see Section 4.3.1).
Although different distance metrics could have been used in principle (e.g., cosine distance
[141, 149, 150]) we found that a simple Euclidean distance was easier to understand and very
computationally efficient results similar to more complex schemes.
Contrastive Learning aims at clustering features according to their semantics while tearing
apart those of different classes (see Section 4.3.2): we implement it as an attractive force between
latent representations with their prototypical representation, against a repulsive one between
prototypes of different semantic categories. This attraction-repulsion rule is enforced again
using an Euclidean distance metric.
Knowledge Distillation is employed to constraint the decoder to preserve previous knowledge
at the output-level and it is implemented as a standard cross-entropy on the output softmax
probabilities between old model and current model predictions [18,20,23,55] (see Section 4.3.4).
Sparsity: we think that the most peculiar constraint is represented by the sparsity objective.
However, the underlying concept is simple: applying some latent-level sparsification we allow
the model to retain enough discriminative power to accommodate the upcoming representations
of novel classes without cross-talk with previous ones (see Section 4.3.3). Here, a wide range of
possibilities could be considered to address the aforementioned task and one may wonder why the
sparsity constraint was designed as it is. First, common sparsity losses are the L0 or L1 norms of
feature vectors; however, we show that they achieve lower accuracy. In this work, we define the
sparsity objective as the ratio between a stretching function (i.e., the sum of exponentials) and
a linear function (i.e., the sum) applied to the feature vectors which were previously normalized

62

with respect to the maximum value that is assumed by any of the feature channels for that
particular class. The idea is that by keeping fixed the sum of features, then the proposed loss
in Eq. (4.9) is directly proportional to the degree of distribution across the channels: the value
is low when the energy is concentrated in a single or in a few channels, while it increases when
distributed (with a gradual change). In some extreme cases, the model of Eq. (4.9) could lead to
degenerate solutions, however we argue that these do not happen in practice on a model learning
compact representations. We checked to avoid the zero division in the practical implementation,
while the all-ones case is degenerate in the sense that energy cannot be re-distributed in any way
since all channels are already onset to the maximum value and, furthermore, this configuration
would not be informative for the decoder.

Although we believe that normalizing the features with a class-conditioned guidance is rea-
sonable (sometimes, features of few particular classes may just be on average more active than
features of other classes), we can think of getting rid of it and normalizing with other strategies,
e.g., with respect to:

• the maximum value for each feature (norm max);

• the overall maximum value (norm max overall);

• the L2 norm of each feature (norm L2).
In such cases, Eq. (4.8) would become respectively:

f̄ i =
fi

maxfi,j∈fi fi,j
fi ∈ Fn (4.10)

f̄ i =
fi

maxgj,l∈gj gj,l
fi,gj ∈ Fn (4.11)

f̄ i =
fi
||fi||2

fi ∈ Fn (4.12)

Furthermore, in principle any stretching function could be applied in spite of the sum of
exponentials over the linear sum. For instance, the sum of squares (power 2) or sum of the cubic
powers (power 3) could be used as stretching functions: i.e., formulating Eq. (4.9) respectively
as:

Lsp =
1

|fi ∈ Fn|
∑

fi∈Fn

∑
j f̄

2
i,j∑

j f̄ i,j
(4.13)

Lsp =
1

|fi ∈ Fn|
∑

fi∈Fn

∑
j f̄

3
i,j∑

j f̄ i,j
. (4.14)

Finally, following the success of recent works exploiting entropy minimization [151] techniques,
an alternative strategy could be to minimize the entropy of the latent representations opportunely
preceded by L1 or softmax normalization of each feature vector in order to obtain a probability
distribution over the channels. More formally:

f̄ i =
fi
||fi||1

fi ∈ Fn (4.15)

f̄ i =
exp (fi)∑
j exp (fi,j)

fi ∈ Fn (4.16)

63

Lsp =
1

|fi ∈ Fn|
∑

fi∈Fn

∑
j

−f̄ i,j · log
(
f̄ i,j
)

(4.17)

Table 4.11 shows the performance of the aforementioned approaches in the 19-1 and 15-
1 disjoint scenarios on Pascal VOC2012. Different normalization rules bring to consistently
lower results, proving the efficacy of using class guidance during normalization. Also, different
stretching functions are found to be less adequate for our purpose reducing the final mIoU of
about 2% to 4%. Finally, entropy minimization techniques obtain competitive and comparable
results in the 15− 1 scenario, while they experience a drop of about 2− 3% of mIoU when only
one class is added.

Table 4.11: Comparison of differentLsp in terms of mIoU in the disjoint scenarios 19-1 and 15-1 on Pascal VOC2012 dataset.

Method mIoU19−1 mIoU15−1
L0 66.7 46.3
L1 65.9 45.4
norm max 67.4 47.8
norm max overall 67.5 45.6
norm L2 64.8 44.3
power 2 66.3 44.2
power 3 66.6 45.3
entropy (L1) 65.3 48.0
entropy (softmax) 66.0 48.0
ours 68.4 48.1

4.8 Summary

In this section, we presented some latent representation shaping techniques to prevent forget-
ting in continual semantic segmentation. In particular, the proposed constraints on the latent
space regularize the learning process reducing forgetting whilst simultaneously improving the
recognition of novel classes. A prototypes matching constraint enforces latent space consistency
on old classes, a features sparsification objective reduces the number of active channels limiting
cross-talk between features of different classes, and contrastive learning clusters features accord-
ing to their semantic while tearing apart those of different classes. Our evaluation shows the
effectiveness of the proposed techniques, which can also be seamlessly applied in combination of
previous methods (e.g., knowledge distillation).

To further boost accuracy and reduce forgetting of previous categories, in the next chapter we
describe how we can incorporate GANs or web-crawled data inside our framework to reproduce
images containing previous classes.

64

5
Replay-based Continual Learning in Semantic

Segmentation

5.1 Introduction

This chapter investigates the usage of additional replay data containing previously learned classes
in order to reduce forgetting of such categories.

As we have already observed, current approaches for class-incremental semantic segmentation
re-frame knowledge distillation strategies inspired by previous works on image classification [18,
20,23,55]. Although they partially alleviate forgetting, they often fail when multiple incremental
steps are performed or when background shift [23] (i.e., change of statistics of the background
across learning steps, as it incorporates old or future classes) occurs.

In this chapter, we present a completely different strategy and, instead of distilling knowledge
from a teacher model (i.e., the old one) to avoid forgetting, we propose to re-create samples of
old classes by using replay strategies. We propose RECALL (REplay in ContinuAL Learning), a
method that re-generates representations of old classes and mixes them with the available train-
ing data, i.e., containing novel classes being learned (see Figure 5.1). To reduce background shift
we introduce a self-inpainting strategy that re-assigns the background region according to predic-
tions of the previous model. To generate representations of past classes we pursue two possible
directions. The first is based on a pre-trained generative model, i.e., a Generative Adversarial
Network (GAN) [108] conditioned to produce samples of the required input classes. The GAN
has been trained beforehand on a dataset different than the target one (we chose ImageNet as it
comprehends a wide variety of classes and domains), thus requiring a Class Mapping Module to
perform the translation between the two label spaces. The second strategy, instead, is based on
crawling images from the web, querying the class names to drive the search. Both approaches
allow to retrieve a large amount of weakly labeled data. Finally, we generate pseudo-labels for
semantic segmentation using a side labeling module, which requires only minimal extra storage.

The methodologies presented in this chapter can be seamlessly applied on top of other existing
techniques already proposed at the output space and at the feature level.

5.1.1 Preliminaries

As we have observed in Sections 2.3 and 2.5.4, generative replay approaches [71, 73, 110] rely
on generative models typically trained on the same data distribution, which are later used to

65

Figure5.1: Replay images of previously seen classes are retrievedby aweb crawler or a generative network and further labeled.

Then, the network is incrementally trainedwith amixture of new and replay data.

generate artificial samples to preserve previous knowledge.
Generative models are usually GANs [71, 73, 153] or auto-encoders [110]. In this chapter

we employ two kinds of generative replays: either resorting to a standard pre-trained GAN or to
web-crawled images to avoid forgetting, without storing any of the samples related to previous
tasks. When using the generative model, differently from previous works on continual image
classification, we do not select real exemplars as anchor to support the learned distribution [153]
nor we train or fine-tune the GAN architecture on the current data distribution [71, 73, 153],
thus reducing memory and computation time.

Webly-supervised learning is an emerging paradigm in which large amounts of web data is
exploited for learning CNNs [154–156]. Recently, it was employed also in semantic segmentation
to provide a plentiful source of both images [157,158] and videos [159] with weak image-level class
labels during training. The most active research directions are devoted toward understanding
how to query images, how to filter and exploit them (e.g., assigning pseudo-labels). To the best
of our knowledge, however, webly-supervised learning has not yet been explored in continual
learning as a replay strategy.

5.1.2 Contributions

Our main contributions are:

1. we propose RECALL, which is the first approach to use replay data in continual semantic
segmentation;

2. to the best of our knowledge, we are the first to introduce the webly-supervised paradigm
in continual learning, showing how we can extract useful clues from extremely weakly
supervised and noisy samples;

3. we devise a background inpainting strategy to generate pseudo-labels and overcome the
background shift;

4. we achieve state-of-the-art results on a wide range of scenarios, especially when performing
multiple incremental steps.

66

5.2 Problem Formulation and Setup

In semantic segmentation, given an image X ∈ X ⊂ RH×W×3, we aim at producing a map
Ŷ ∈ Y ⊂ CH×W that is a prediction of the ground truth map Y. This is nowadays usually
achieved by using a suitable deep learning model M : X 7→ RH×W×|C|, commonly made by a
feature extractor E followed by a decoding module D, i.e., M = D ◦ E.

In standard supervised learning, the model is learned in a single shot over a training set
T ⊂ X × Y , available in its complete form to the training algorithm. In class-incremental
learning, instead, we assume that the training is performed in multiple steps and only a subset
of training data is made available to the algorithm at each step k = 0, ...,K. More in detail, we
start from an initial step k = 0 where only training data concerning a subset of all the classes
C0 ⊂ C is available (we assume that the special background class b ∈ C0). We denote with
M0 : X 7→ RH×W×|C0|, M0 = D0 ◦ E0 the model trained after this initial step. Moving to a
generic step k, a new set of classes Ck is added to the class collection C0→(k−1) learned up to
that point, resulting in an expanded set of learnable classes C0→k = C0→(k−1) ∪ Ck (we assume
C0→(k−1) ∩ Ck = ∅). The model after the k-th step of training isMk : X 7→ RH×W×|C0→k|, where
Mk = Dk ◦E0, since in our approach the encoder E0 is not trained during the incremental steps
and only the decoder is updated [18].

Two main continual scenarios have been proposed (i.e., disjoint and overlapped, see Section 2.4
and related works [18, 21, 23] for a more detailed description) and we tackle both in a unified
framework.
Disjoint setup: in the initial step all the images in the training set with at least one pixel
belonging to a class of C0 (except for b) are assumed to be available. We denote with YC0∪{b} ⊂
CH×W0 the corresponding output space where labels can only belong to C0, while all the pixels
not pertaining to these classes are assigned to b. The incremental partitions are built as disjoint
subsets of the whole training set. The training data associated to k-th step, Tk ⊂ X × YCk∪{b},
contains only images corresponding to classes in Ck with just classes of step k annotated (old
classes are labeled as b), and is disjoint with respect to previous and past partitions.
Overlapped setup: in the first phase we select the subset of training images having only C0-
labeled pixels. Then, the training set at each incremental step contains all the images with
labeled pixels from Ck i.e. Tk ⊂ X × YCk∪{b}. Similarly to the initial step, labels are limited to
semantic classes in Ck, while remaining pixels are assigned to b.

In both setups, b undergoes a semantic shift at each step, as pixels of ever changing class sets
are assigned to it.

5.3 General Architecture

In the standard setup, the segmentation model M is trained with annotated samples from a
training set T . Data should be representative of the task we would like to solve, meaning that
multiple instances of all the considered semantic classes C should be available in the provided
dataset for the segmentation network to properly learn them. Once T has been assembled, the
cross-entropy objective is commonly employed to optimize the weights of M :

Lce(M ; C, T)=− 1

|T |
∑

X,Y∈T

∑
c∈C

Y[c] · log
(
M(X)[c]

)
(5.1)

In the incremental learning setting, when performing an incremental training step k only samples
related to new classes Ck are assumed to be at our disposal. Following the simplest approach,

67

Figure 5.2: Overview of the proposed RECALL: class labels from past incremental steps are provided to a Source Block, either

a web crawler or a pre-trained conditional GAN, which retrieves a set of unlabeled replay images for the past semantic classes.

Then, a Label Evaluation Block produces the missing annotations. Finally, the segmentation network is incrementally trained

with a replay-augmented dataset, composed of both new classes data and replay data.

we could initialize our model’s weights from the previous step (Mk−1, k ≥ 1) and learn the
segmentation task over classes C0→k by optimizing the standard objective Lce(Mk; C0→k, Tk) with
data from the current training partition Tk. However, simple fine-tuning leads to catastrophic
forgetting, being unable to preserve previous knowledge. Our framework is depicted in Figure 5.2.
Architecture of Replay Block. To cope with this issue, we opt for a replay strategy. Our goal
is to retrieve task-related knowledge of past classes to be blended into the ongoing incremental
step, all without accessing training data of previous iterations. To this end, we introduce a
Replay Block, whose target is twofold. First, it has to provide images resembling instances of
classes from previous steps, whether generating them from scratch or retrieving them from an
available alternative source (e.g., a web database). Second, it has to obtain reliable semantic
labels of those images, by resorting to learned knowledge from past steps.

The Replay Block’s image retrieval task is executed by what we call Source Block:

S : Ck 7→ X rp
Ck (5.2)

This module takes in input a set of classes Ck (background excluded) and provides images
whose semantic content can be ascribed to those categories (e.g., Xrp ∈ X rp

Ck). We adopt two
different solutions for the Source Block, namely GAN and web-based techniques, both detailed
in Section 5.4.

The Source Block provides unlabeled image data (if we exclude the weak image-level classifi-
cation labels), and for this reason we introduce an additional Label Evaluation Block {LCk}Ck⊂C ,
which aims at annotating examples provided by the replay module. This block is made of sepa-
rate instances LCk = DH

Ck ◦ E0, each denoting a segmentation model to classify a specific set of
semantic categories Ck ∪ {b} (i.e., the classes in Ck plus the background) :

LCk : XCk 7→ RH×W×(|Ck∪{b}|) (5.3)

All LCk modules share the encoder section E0 from the initial training step, so that only a
minimal portion of the segmentation network (i.e., DH

Ck , which accounts for only few parameters,
see Section 5.6.3) is stored for each block’s instance. Notice that a single instance recognizing
all classes could be used, leading to an even more compact representation, but it experimentally
led to worse performance.

Provided that S and LCk are available, replay training data can be collected for classes in
Ck. A query to S outputs a generic image example Xrp

Ck = S(Ck), which is then associated to

68

Figure 5.3: Background self-inpainting process.

its prediction Yrp
Ck = argmax

c∈Ck∪{b}
LCk(X

rp
Ck)[c]. By retrieving multiple replay examples, we build a

replay dataset RCk = {(Xrp
Ck ,Y

rp
Ck)n}

Nr
n=1, where Nr is a fixed hyperparameter empirically set

(see Section 5.5).
Background Self-Inpainting. To deal with the background shift phenomenon, we propose a
simple yet effective inpainting mechanism to transfer knowledge from the previous model into
the current one. While the replay block re-creates samples of previously seen classes, background
inpainting acts on background regions of current samples reducing the background shift and at
the same time bringing a regularization effect similar to knowledge distillation [18,23], although
its implementation is quite different. At every step k with training set Tk, we take the background
region of each ground truth map and we label it with the associated prediction from the previous
model Mk−1 (see Figure 5.3). We call it background inpainting since the background regions in
label maps are changed according to a self-teaching scheme based on the prediction of the old
model. More formally, we replace each original label map Y available at step k > 0 with its
inpainted version Ybi:

Ybi[h,w]=

Y[h,w] ifY[h,w]∈Ck
argmax
c∈C0→k−1

Mk−1(X)[h,w][c] otherwise (5.4)

where (X,Y) ∈ Tk, while [h,w] denotes the pixel coordinates. Labels at step k = 0 are not
inpainted, as at that stage we lack any prior knowledge of past classes. When background
inpainting is performed, each set T bi

k ⊂ X ×YC0→k
(k > 0) contains all samples of Tk after being

inpainted.
Incremental Training with Replay Block. The training procedure of RECALL is detailed
and summarized in Algorithm 5.1 and the process is described in Figure 5.2. Suppose we are at
the incremental step k, with only training data of classes in Ck from partition Tk available. In
a first stage, the Replay Block is fixed and it is used to retrieve annotated data for steps from
0 to k − 1 uniformly distributed among all the past classes. Following the described pipeline,
the generative and labeling models are applied independently over each incremental class set

69

Algorithm 5.1 RECALL: incremental training procedure.

Input: {Tk}Kk=0 and {Ck}Kk=0

Output: MK

train M0 = E0 ◦D0 with Lce(M0; C0, T0)
train S on (C0, T0)
train DH

C0 with Lce(LC0 ; C0, T0)
for k ← 1 to K do

background inpainting on Tk to obtain T bi
k

train S on (Ck, Tk)
train DH

Ck with Lce(LCk ; Ck ∪ {b}, Tk)
generate T rp

k = T bi
k ∪RC0→(k−1)

train Dk with Lce(Mk; C0→k, T rp
k)

end for

Ci, i = 0, ..., k − 1. The replay training dataset for step k is the union of the single replay sets

for each previous step: RC0→(k−1)
=

k−1⋃
i=0

RCi . Once we have assembled RC0→(k−1)
, by merging

it with T bi
k we get an augmented step-k training partition T rp

k = T bi
k ∪RC0→(k−1)

. This new
set, in principle, is complete of annotated samples containing both old and new classes, thanks
to replay data. Therefore, we effectively learn the segmentation model Mk through the cross-
entropy objective Lce(Mk; C0→k, T rp

k) on replay-augmented training data. This mitigates the
bias toward new classes, thus preventing forgetting.

In a second stage, we exploit Tk to train the Class Mapping Module if needed (see Sec-
tion 5.4). In particular, we teach the Source Block S to produce samples of Ck, and we optimize
the decoder DH

Ck to correctly segment, in conjunction with E0, images from Tk by minimizing
Lce(LCk ; Ck ∪ {b}, Tk). This stage is not exploited in the current step, but will be necessary in
future ones.

During a standard incremental training stage, we follow a mini-batch gradient descent scheme,
where batches of annotated training data are sampled from T rp

k . However, to guarantee a proper
stream of information, we opt for an interleaving sampling policy, rather than a random one.
In particular, at a generic iteration of training, a batch of data Brp supplied to the network
is made of rnew samples from the current training partition T bi

k and rold replay samples from
RC0→(k−1)

. The ratio between rnew and rold controls the proportion of replay and new data (see
also Section 5.6.3). We need, in fact, to carefully balance how new data is dosed with respect
to replay one, so that enough information about new classes is provided within the learning
process, while concurrently we assist the network in recalling knowledge acquired in past steps
to prevent catastrophic forgetting.

5.4 Replay Strategies

In this section we describe more in detail the replay strategies employed for the image generation
task of the Source Block S. As mentioned previously, we opt for a generative approach based
on a GAN framework and for an online retrieval solution, where images are collected by a web
crawler.
Replay by GAN. The GAN-based strategy exploits a deep generative adversarial framework
to re-create the no longer available samples for previously seen classes. We use a conditional
GAN, G, pre-trained on a generic large-scale visual dataset with data from a wide set of semantic

70

classes CG and different domains. For the experiments, we choose an ImageNet [121] based pre-
training. On this regard, we remark that classes and domains are not required to be completely
coherent: for instance person does not exist in ImageNet, but related classes (e.g., hat) still
allow to preserve its knowledge (further considerations on this are reported in Section 5.6.5).
When performing the k-th incremental step, we retrieve images containing previously seen classes
by sampling the GAN’s generator output, i.e., Xrp = G(n, cG) conditioned on GAN’s classes
cG ∈ CG corresponding to the target ones from the original training data (n is a generic noise
input).

Since the GAN is pre-trained on a separate dataset, typically it inherits a different label
set. For this reason, the Source Block with GAN is composed of two main modules, namely
the actual GAN for image generation and a Class Mapping Module to translate each class of
the semantic segmentation incremental dataset to the most similar class of the GAN’s training
dataset. Provided that we have trained both the GAN and class mapping modules, first we use
the latter to translate the class set Ck to the matching set CGk . Then, a set of queries to the
conditioned GAN’s generator:

Xrp
Ck = G(n, cG), cG ∈ CGk (5.5)

provides samples resembling the ones in Ck, as long as the mapping is able to properly associate
each original class to a statistically similar counterpart in the GAN’s label space.

At each incremental step k, the Source Block with GAN goes through two separate training
and inference stages. In a first training phase, samples from Tk are fed to an Image Classifier I,
which is pre-trained to solve an image classification task on the GAN’s dataset. In particular, for
each class c ∈ Ck we select the corresponding training subset T c

k ⊂ Tk, i.e., all the samples of set
Tk associated to class c, and we sum the resulting class probability vectors from the classification
output. Then, the GAN’s class cG with the highest probability score is identified by:

cG = argmax
j∈CG

∑
X←T c

k

I(X) [j] (5.6)

where X is extracted from T c
k (labels are not used) and I(X) denotes the vector output of the

last softmax layer of I, whose j-th entry corresponds to the j-th GAN’s class. By repeating this
procedure for every class in Ck, we build the mapped set CGk . Class correspondence is stored, so
that at each step we have access to class mappings of past iterations.

In a second evaluation phase, classes in C0→(k−1) are given as input to the Source Block.
Thanks to the class correspondences saved in previous steps, C0→(k−1) are mapped to CG0→(k−1).
Next, image generation conditioned on each class of CGAN

0→(k−1) is performed, and the resulting
replay images are fed to the Label Evaluation Block to be associated to their corresponding
semantic labels. By following this procedure, we end up with self-annotated data of past classes
suitable to support the supervised training at the current step, which otherwise would be limited
to new classes.
Replay by Web Crawler. As an alternative we propose to retrieve training examples from
an online source. For the evaluation, we searched images from the Flickr website, but any other
online database or search engine can be used.

Assuming we are at the incremental step k and we have access to the names of every class in
the past iterations (e.g., ∀c ∈ C0→(k−1)), we download images whose tag and description happen
to both contain the class name through the Flickr’s web crawler. Then, the web-crawled images
are fed to the Label Evaluation Block for their annotation.

Compared to the GAN-based approach, the online retrieval solution is simpler as no learnable

71

modules are introduced. In addition, we completely avoid to assume that a larger dataset is
available, whose class range should be sufficiently ample and diverse to cope with the continuous
stream of novel classes incrementally introduced. On the other side, this approach requires the
availability of an internet connection and in some way exploits additional training data even if
almost unsupervised. Plus, we lack control over the weak labeling performed by the web source.

5.5 Implementation Details

We use the DeepLab-V2 [5] as segmentation architecture with ResNet-101 [152] as backbone.
Nonetheless, RECALL is independent of the specific network architecture. Encoder’s weights
are pre-trained on ImageNet [121] and all network’s weights are trained in the initial step 0.
In the following steps, only the main decoder is trained, together with the additional {DH

Ck}k
helper decoders, which are needed to annotate replay samples (as discussed in Section 5.3).
For a fair comparison, all competing approaches are trained with the same backbone. SGD
with momentum is used for weights optimization, with initial learning rate set to 5 × 10−4

and decreased to 5 × 10−6 according to polynomial decay of power 0.9. Following previous
works [18, 20], we train the model for |Ck| × 1000 learning steps in the disjoint setup and for
|Ck|×1500 steps in the overlapped setup. Each helper decoderDH

Ck
is trained with a polynomially

decaying learning rate starting from 2× 10−4 and ending at 2× 10−6 for |Ck| × 1000 steps. As
Source Block, we use BigGAN-deep [160] pre-trained [161] on ImageNet. At each incremental
step k, we generate 500 replay samples per old class, i.e. Nr = 500. To map classes from the
segmentation dataset to the GAN’s one, we use the EfficientNet-B2 [162] classifier implemented
at [163] and pre-trained on ImageNet. The interleaving ratio rold/rnew is set to 1.

As input pre-processing, random scaling and mirroring are followed by random padding and
cropping to 321 × 321 px. The entire framework is developed in TensorFlow [125] and trained
on a single NVIDIA RTX 2070 Super. Training time varies depending on the setup, with the
longest run taking about 5 hours. Code and replay data are available at https://github.com/
LTTM/RECALL.

5.6 Experimental Results

5.6.1 Analyses on Pascal VOC2012

In this section we present the experimental evaluation on the Pascal VOC2012 dataset [114].
Following previous works on this topic [18,20,23,51], we start by analyzing the performance on
three widely used incremental scenarios: i.e., addition of the last class (19-1), addition of the last
5 classes at once (15-5) and addition of the last 5 classes sequentially (15-1). Moreover, we report
the performance on three more challenging scenarios in which 10 classes are added sequentially
one by one (10-1), in 2 batches of 5 elements each (10-5) and all at once (10-10). Classes for
the incremental steps are selected according to the alphabetical order. We compare with the
naïve fine-tuning approach (FT), which defines the lower limit to the accuracy of an incremental
model, and with the joint training on the complete dataset in one step, which serves as upper
bound. We also report the results of a simple Store and Replay (S&R) method, where at each
incremental step we store a certain number of true samples for newly added classes, such that
the respective size in average matches the size of the helper decoders needed by RECALL (see
Figure 5.8). As comparison, we include 2 methods extended from classification (i.e., LwF [49]
and its single-headed version LwF-MC [48]) and the most relevant methods designed for continual
segmentation (i.e., ILT [18], CIL [55], MiB [23] and SDR [21]). Exhaustive quantitative results

72

https://github.com/LTTM/RECALL
https://github.com/LTTM/RECALL

Table 5.1: mIoU on Pascal VOC2012 for different incremental setups. Results of competitors in the upper part come from

[21,23], while we run their implementations for the new scenarios in the bottom part.

19-1 15-5 15-1
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method 1-19 20 all 1-19 20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all
FT 35.2 13.2 34.2 34.7 14.9 33.8 8.4 33.5 14.4 12.5 36.9 18.3 5.8 4.9 5.6 4.9 3.2 4.5
S&R 55.3 43.2 56.2 54.0 48.0 55.1 38.5 43.1 41.6 36.3 44.2 40.3 41.0 31.8 40.7 38.6 31.2 38.9
LwF [49] 65.8 28.3 64.0 62.6 23.4 60.8 39.7 33.3 38.2 67.0 41.8 61.0 26.2 15.1 23.6 24.0 15.0 21.9
LwF-MC [48] 38.5 1.0 36.7 37.1 2.3 35.4 41.5 25.4 37.6 59.8 22.6 51.0 6.9 2.1 5.7 6.9 2.3 5.8
ILT [18] 66.9 23.4 64.8 50.2 29.2 49.2 31.5 25.1 30.0 69.0 46.4 63.6 6.7 1.2 5.4 5.7 1.0 4.6
CIL [55] 62.6 18.1 60.5 35.1 13.8 34.0 42.6 35.0 40.8 14.9 37.3 20.2 33,3 15.9 29.1 6.3 4.5 5.9
MiB [23] 69.6 25.6 67.4 70.2 22.1 67.8 71.8 43.3 64.7 75.5 49.4 69.0 46.2 12.9 37.9 35.1 13.5 29.7
SDR [21] 69.9 37.3 68.4 69.1 32.6 67.4 73.5 47.3 67.2 75.4 52.6 69.9 59.2 12.9 48.1 44.7 21.8 39.2
RECALL (GAN) 65.2 50.1 65.8 67.9 53.5 68.4 66.3 49.8 63.5 66.6 50.9 64.0 66.0 44.9 62.1 65.7 47.8 62.7
RECALL (Web) 65.0 47.1 65.4 68.1 55.3 68.6 69.2 52.9 66.3 67.7 54.3 65.6 67.6 49.2 64.3 67.8 50.9 64.8
Joint 75.5 73.5 75.4 75.5 73.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4 77.5 68.5 75.4

10-10 10-5 10-1
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all
FT 7.7 60.8 33.0 7.8 58.9 32.1 7.2 41.9 23.7 7.4 37.5 21.7 6.3 2.0 4.3 6.3 2.8 4.7
S&R 25.1 53.9 41.7 18.4 53.3 38.2 26.0 28.5 29.7 22.2 28.5 27.9 30.2 19.3 27.3 28.3 20.8 27.1
LwF [49] 63.1 61.1 62.2 70.7 63.4 67.2 52.7 47.9 50.4 55.5 47.6 51.7 6.7 6.5 6.6 16.6 14.9 15.8
LwF-MC [48] 52.4 42.5 47.7 53.9 43.0 48.7 44.6 43.0 43.8 44.3 42.0 43.2 6.9 1.7 4.4 11.2 2.5 7.1
ILT [18] 67.7 61.3 64.7 70.3 61.9 66.3 53.4 48.1 50.9 55.0 44.8 51.7 14.1 0.6 7.5 16.5 1.0 9.1
CIL [55] 37.4 60.6 48.4 38.4 60.0 48.7 27.5 41.4 34.1 28.8 41.7 34.9 7.1 2.4 4.9 6.3 0.8 3.6
MiB [23] 66.9 57.5 62.4 70.4 63.7 67.2 54.3 47.6 51.1 55.2 49.9 52.7 14.9 9.5 12.3 15.1 14.8 15.0
SDR [21] 67.5 57.9 62.9 70.5 63.9 67.4 55.5 48.2 52.0 56.9 51.3 54.2 25.5 15.7 20.8 26.3 19.7 23.2
RECALL (GAN) 62.6 56.1 60.8 65.0 58.4 63.1 60.0 52.5 57.8 60.8 52.9 58.4 58.3 46.0 53.9 59.5 46.7 54.8
RECALL (Web) 64.1 56.9 61.9 66.0 58.8 63.7 63.2 55.1 60.6 64.8 57.0 62.3 62.3 50.0 57.8 65.0 53.7 60.7
Joint 76.6 74.0 75.4 76.6 74.0 75.4 76.6 74.0 75.4 76.6 74.0 75.4 76.6 74.0 75.4 76.6 74.0 75.4

in terms of mIoU are shown in Table 5.1. For each setup we report the mean accuracy for the
initial set of classes, for the classes in the incremental steps and for all classes, computed after
the overall training.
Addition of the last class. First, we train over the first 19 classes during step 0. Then, we
perform a single incremental step to learn tv/monitor. Looking at Table 5.1 (upper-left part),
we notice that FT results in a drastic performance degradation with respect to joint training,
due to catastrophic forgetting. RECALL, instead, shows higher overall mIoU than competitors
and it is especially effective on the last class, whilst still retaining high accuracy on the past ones
thanks to the regularization brought in by background inpainting and replay strategies. S&R,
instead, heavily forgets previous classes, thus confirming the usefulness of replay data.
Addition of last 5 classes. In this setup, 15 classes are learned in the initial step, while the
remaining 5 are added in one shot (15-5) or sequentially one at a time (15-1). Compared to
the 19-1 setup, the addition of multiple classes in the incremental iterations makes catastrophic
forgetting even more severe. The accuracy gap between FT and joint training, in fact, raises
from about 41% of the 19-1 case to more than 70% of mIoU in the 15-1 scenario. Taking a closer
look at the results in Table 5.1 (upper mid and right parts), our replay approaches strongly limit
the degradation caused by catastrophic forgetting. This trend can be observed in the 15-5 setup
and more evidently in the 15-1 one, both in the disjoint and overlapped settings: exploiting
generated or web-derived replay samples proves to effectively restore knowledge of past classes,
leading to a final mIoU approaching that of the joint training. Storing and replaying original
samples, instead, improves the performance with respect to FT, but ultimately leads to a mIoU
lower of more than 20% if compared to our approaches. This is due to the limited number of
samples to be stored in order to match the helper decoder size: their sole addition is, in fact,
insufficient to adequately preserve learned knowledge. Finally, we observe that RECALL can
scale much better than competitors when multiple incremental steps are performed (scenario
15-1), as typically encountered in real-world applications.
Addition of last 10 classes. To analyze the previous claim, we introduce some new challenging
experiments, not evaluated in previous works. In these tests only 10 classes are observed in the
initial step, while the remaining ones are added in a single batch (10-10), in 2 steps of 5 classes
each (10-5), or individually (10-1). Again, FT is heavily affected by the information loss that oc-

73

Figure 5.4: Evolution of mIoU on the 10 tasks of 10-1 disjoint.

15
-1

15
-5

10
-1

RGB GT FT S&R Inpainting RECALL (G) RECALL (W) Joint

Figure 5.5: Qualitative results on disjoint incremental setups: from top to bottom 15-1, 15-5 and 10-1.

curs when performing incremental training without regularization, leading to performance drops
up to about 71% of mIoU with respect to the joint training in the most challenging 10-1 setting.
Thanks to the introduction of replay data, RECALL brings a remarkable performance boost to
the segmentation accuracy and becomes more and more valuable as the difficulty of the settings
increases. In the 10-10 case, our method achieves slightly lower mIoU results than competitors
(although comparable). As we increase complexity, our approach is able to outperform competi-
tors by about 8% of mIoU in 10-5 and by 37% of mIoU in 10-1. We remark how RECALL shows
a convincing capability of providing a rather steady accuracy in different setups, regardless of
the number of incremental steps used to introduce new classes. For example, in the disjoint
scenario, when moving from simpler to more challenging setups (i.e., from 10-10 to 10-1, passing
through 10-5), the mIoU of FT drops as 33.0%→ 23.7%→ 4.3% and the one of SDR (i.e., the
best compared approach) as 62.9%→ 52.0%→ 20.8%, while our approach maintains a stable
mIoU trend of 61.9%→ 60.6%→ 57.8%. Finally, we report the mIoU after each incremental
step on the 10-1 disjoint scenario in Figure 5.4, where our approaches show much higher mIoU
at every learning step, indicating improved resilience to forgetting and background shift, than
competitors.

In the qualitative results in Figure 5.5 we observe that RECALL effectively alleviates forget-
ting and reduces the bias towards novel classes. In the first row, the bus is correctly preserved
while FT, S&R and inpainting wrongly classify it as train (i.e., one of the novel classes); in the

74

second row, FT places sheep and tv (newly added classes) in place of cow; in the third row, some
horse’s features are either mixed with those of person and cat or completely destroyed, while
they are preserved by our methods (the web scheme shows higher accuracy than the GAN here).

5.6.2 Qualitative Results

We report some qualitative results: Figure 5.6 displays the segmentation output in the disjoint
scenario for all the experimental incremental training protocols (i.e., FT, background inpainting,
RECALL with GAN or Web and joint). In particular, we show the results for a couple of samples
in each of the 6 considered setups (i.e., 19-1, 15-5, 15-1, 10-10, 10-5 and 10-1). Finally, Figure 5.7
shows the evolution of the output maps across the incremental steps in the 15-1 scenario for a
couple of sample images.

In Figure 5.6 it is possible to see that the background inpainting strategy constitutes a clear
improvement with respect to the simple fine-tuning approach, allowing to reduce catastrophic
forgetting, which is very critical in FT. However, forgetting is still fairly noticeable with the sole
inpainting strategy, where the output maps are quite noisy and relevant parts of the objects get
lost in many scenes, typically overestimating the background class. The addition of replay data
in both the GAN and the Web-based solutions proves to be very effective in further reducing
the forgetting phenomenon, thus providing a final segmentation performance very close to the
joint-training reference except for some details, which are typically close to the boundaries of
the objects. Furthermore, our approaches do not mislead previous classes with similar ones
introduced in the incremental steps (e.g., FT and inpainting mislead the cow with sheep in row
3 and the bus with train in row 4).

The accuracy boost introduced by the proposed replay strategies can be further appreciated
in Figure 5.7, where we report the segmentation output computed after each incremental step of
the 15-1 disjoint setup for a couple of image samples. The improvement can be noted by looking,
for example, at the images on the second and fourth incremental steps, where the new classes
sheep and train are introduced respectively. When FT or background inpainting are adopted,
the segmentation network tends to experience a severe forgetting of the old classes cow and bus
(which are mistaken for visually similar novel ones). This behavior is corrected by providing
replay training data to the network: both GAN and Web-based strategies are able to preserve
an accurate recognition of old classes, even when semantically similar ones are incrementally
added.

5.6.3 Ablation Studies

To further validate the robustness of our approach, we perform some ablation studies. First of
all, we analyze the memory requirements. The plot in Figure 5.8 shows in semi-log scale the
memory occupation (expressed in MB) of the data to be stored at the end of each incremental
step, as a function of the number of classes learned up to that point. We denote with standard
an incremental approach which do not store any sample (e.g., FT, LwF, ILT, MiB, SDR).
The saved model generally corresponds to a fixed size encoder and a decoder, whose dimension
slightly increases at each step to account for additional output channels for the new learnable
classes. Saving images, instead, refers to the extreme scenario where training images of past
steps are stored, thus being available throughout the entire incremental process. As concerns
our approach, to annotate originally weakly-labeled replay images, we devise a specific module
(Section 5.3), which requires to save a set of helper decoders {DH

Ci}
k
i=0, one for each past step.

Finally, for the GAN-based approach we add the storage required for the generative model.
Figure 5.8 shows that our web-based solution is very close to the standard ones in terms of

75

RGB GT FT Inpainting Ours (GAN) Ours (Web) Joint

19
-1

15
-5

15
-1

10
-1
0

10
-5

10
-1

Figure 5.6: Qualitative results on disjoint incremental setups.

76

RGB Ground Truth Joint Training Step 0

FT
In
pa

in
t.

O
ur
s
(G

A
N
)

O
ur
s
(W

eb
)

Step 1 Step 2 Step 3 Step 4 Step 5
(added: potted-plant) (added: sheep) (added:sofa) (added: train) (added: tv/monitor)

RGB Ground Truth Joint Training Step 0

FT
In
pa

in
t.

O
ur
s
(G

A
N
)

O
ur
s
(W

eb
)

Step 1 Step 2 Step 3 Step 4 Step 5
(added: potted-plant) (added: sheep) (added:sofa) (added: train) (added: tv/monitor)

Figure 5.7: Per-step predictionmaps on the 15-1 disjoint incremental setup for different training strategies.

77

Figure 5.8: Memory occupation in the disjoint scenario.

Table 5.2: mIoU results showing the contribution of eachmodule, D: Disjoint, O: Overlapped.

19-1 15-5 15-1 10-10 10-5 10-1
Method D O D O D O D O D O D O
Bgr inp. 65.6 66.7 52.2 52.5 49.7 49.9 58.8 60.7 47.5 47.1 34.0 39.0
GAN 54.5 56.2 49.8 49.1 47.9 48.2 45.8 48.8 38.1 43.7 36.6 40.8
Web 57.3 57.4 55.2 54.7 55.0 53.7 55.2 58.2 47.9 52.1 45.4 50.1

GAN+inp. 65.8 68.4 63.5 64.0 62.1 62.7 60.8 63.1 57.8 58.4 53.9 54.8
Web+inp. 65.4 68.6 66.3 65.6 64.3 64.8 61.9 63.7 60.6 62.3 57.8 60.7

memory occupation. The space required to store the GAN is comparable to that needed to save
images in the very initial steps, but then remains constant while the space for saving all training
data quickly grows.

We further analyze the contribution of the background inpainting and replay techniques in
Table 5.2. While inpainting alone provides a solid contribution in terms of knowledge preser-
vation acting similarly to knowledge distillation, we observe that its effect tends to attenuate
with multiple incremental steps. For example, moving from 10-10 to 10-1 overlapped setups,
the mIoU drops more than 20%. On the other hand, the proposed replay techniques prove to
be beneficial when multiple training stages are involved. On the same setting, replay techniques
alone limit the degradation to only 8%. Yet, jointly employing replay and inpainting further
boosts the final results in all setups (up to 15%), proving that they can be effectively combined.

Finally, we analyze how results vary with respect to the proportion of new (rnew) and replay
(rold) samples seen during training (Figure 5.9): the mIoU is quite stable with respect to this
ratio, however the maximum value is reached when the same number of old and replay samples

78

Figure 5.9: Comparison of different interleaving policies in 15-1 disjoint.

Table 5.3: Mean IoU achieved by the proposed approach on the Pascal VOC2012 dataset for different incremental setups and

pre-training strategies.

19-1 15-5 15-1
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method Init 1-19 20 all 1-19 20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all

GAN ImageNet 65.2 50.1 65.8 67.9 53.5 68.4 66.3 49.8 63.5 66.6 50.9 64.0 66.0 44.9 62.1 65.7 47.8 62.7
MSCOCO 68.7 58.4 69.3 68.6 59.6 69.3 70.3 58.4 68.5 70.3 59.5 68.7 70.4 55.5 67.8 70.8 57.5 68.6

Web ImageNet 65.0 47.1 65.4 68.1 55.3 68.6 69.2 52.9 66.3 67.7 54.3 65.6 67.6 49.2 64.3 67.8 50.9 64.9
MSCOCO 69.7 55.3 70.1 68.8 60.7 69.5 70.7 59.2 69.0 70.7 59.9 69.1 70.9 57.4 68.7 71.2 55.7 68.5

10-10 10-5 10-1
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method Init 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all 1-10 11-20 all

GAN ImageNet 62.6 56.1 60.8 65.0 58.4 63.1 60.0 52.5 57.8 60.8 52.9 58.4 58.3 46.0 53.9 59.5 46.7 54.8
MSCOCO 68.2 64.5 67.6 68.3 66.1 68.4 68.2 62.1 66.4 67.3 61.9 65.8 68.2 58.3 64.6 67.8 60.5 65.4

Web ImageNet 64.1 56.9 61.9 66.0 58.8 63.7 63.2 55.1 60.6 64.8 57.0 62.3 62.3 50.0 57.8 65.0 53.7 60.7
MSCOCO 68.0 64.9 67.7 68.2 66.4 68.4 68.6 63.9 67.4 67.6 64.6 67.3 68.0 58.0 64.3 68.5 62.5 66.7

is used, i.e., rnew/rold = 1.

5.6.4 Analyses on Pre-Training

The weights of semantic segmentation deep learning architectures are typically initialized with
pre-trained values computed on a large dataset for a related (but usually different) task. The
most common pre-training strategy consists in using weights computed on image classification
large-scale datasets, such as ImageNet [121]. On the other hand, it has been shown [5, 20]
that pre-training weights on a related segmentation dataset, such as MS COCO [120], could
further boost results on semantic segmentation benchmarks. However, using another semantic
segmentation dataset raises some concerns about the fact that the pre-training data could contain
information about the tasks to be learned in the incremental steps, thus following previous
works [18,21,23] we decided for a more conservative approach using ImageNet pre-training.

To further investigate this aspect we show extensive results in Table 5.3 comparing ImageNet
and MS COCO pre-training strategies for all the considered incremental setups. Here we can see
that, as expected, pre-training on MS COCO always helps incremental semantic segmentation.
We argue that the motivation is at least two-fold: first, a better initialized model on the same
target task could converge to a better solution, and second, a model pre-trained on MS COCO

79

could have already learned some spatial and semantic information of classes added to the model
in incremental steps (this second point is the reason why we decided to avoid using this strategy
even if it leads to better results). More in detail, we can observe that incremental approaches
show significant improvements of up to 15%. This quite large gap could be due also to the encoder
freezing procedure we employ in our our work (similarly to [18, 20]) that reduces catastrophic
forgetting, but at the same time does not allow the network to update the feature extraction
module according to the information in the samples of the new classes at each incremental step,
which can be used only to update the decoder. Indeed, a model initialized with pre-trained
weights on MS COCO (which has enough variability and semantic content information) needs
less training steps to adapt to a new (related) semantic segmentation dataset (i.e., different
domain but same task). On the other side, pre-training on a different task and different domain
(e.g., on ImageNet) requires more training steps to adapt to the new scenario. We can verify this
claim looking at Table 5.3, where we can observe how the mIoU gap between the two pre-training
strategies is larger when the initial step has fewer classes (e.g., 10).

5.6.5 ClassMappingModule

Here we provide some further analysis and insights on the Class Mapping Module (introduced
in Section 5.3), which is used to translate each class of the semantic segmentation incremental
dataset (e.g., Pascal VOC2012 [114]) to the most similar class of the GAN’s training dataset
(e.g., ImageNet [121]). Notice that properly mapping the labels between the different domains
is an important step, since incorrect pairings may easily harm the accuracy of the final model.

To solve the task, we took an Image Classifier I pre-trained to address an image classification
task on the GAN’s dataset. Then, for each class c in the current label set we select the corre-
sponding training subset (i.e., all the samples of the current training set associated to class c),
and we sum the resulting class probability vectors from the classification output (according to
I). An argmax operation is then performed, to identify the GAN’s class cG with the highest
probability score. To show the effectiveness of the proposed classification, we report in Table 5.4
the 3 classes from the GAN’s dataset with the highest score for each class of the Pascal VOC2012
dataset. We can see that for all the classes the top selected pairings appear reasonable at first
(notice that only the best matching class is selected in the proposed approach). At a closer
look, we find that the classifier selects an unexpected label only in a single case, that is the
person class being translated into cowboy hat; however, we remark that the ImageNet dataset
does not contain the person class, thus inherently lacking a close match for that category. In
light of this, we believe that the chosen class (i.e., cowboy hat) is a reasonable choice and may
still help in retaining high accuracy on the person class, being the cowboy hat always shown on
top of people’s heads. This situation is interesting as it shows the robustness of our approach
not only to different domains with different statistical distributions (ImageNet domain versus
Pascal VOC2012 one), but also to different labeling domains (the label set of VOC2012 is not a
subset of the ImageNet one).

The sample generated images in Figure 5.10 allow to verify the effectiveness of the conditioned
image generation strategy. Notice how in most cases the images are very similar to the Pascal
VOC ones, even for the person class that does not have a direct mapping. For the sake of
comparison, the figure also reports two randomly sampled images for each class taken either
from the Pascal VOC2012 dataset (first two columns of Figure 5.10) or from Flickr for the Web
approach (last two columns of Figure 5.10).

80

Pascal GAN Flickr

Figure5.10:Original images fromthe incrementalPascalVOCdataset, togetherwithreplaydatageneratedbyGANorretrieved

by Flickr’s web crawler. From top to bottom: airplane, train, bicycle, person, bird, cow, horse, and sheep.

81

Table 5.4: Class mapping between Pascal VOC and ImageNet datasets. The table shows the 3 best matching ImageNet classes

for each Pascal VOC2012 class. (∗): matching classes for tv/monitor are not computed since replay data is not needed.

Pascal ImageNet
index class 1st class 2nd class 3rd class
1 airplane airliner warplane wing
2 bicycle mountain bike tandem tricycle
3 bird kite (bird) dipper quail
4 boat catamaran lakeside fireboat
5 bottle beer bottle soda bottle water bottle
6 bus trolleybus carriage minibus
7 car racing car station wagon minivan
8 cat tabby cat Egyptian cat tiger cat
9 chair rocking chair dining table folding chair
10 cow ox oxcart water ox
11 dining table dining table china closet restaurant
12 dog Labrador retriever pit bull terrier beagle
13 horse sorrel ox fox squirrel
14 motorbike moped scooter disc brake
15 person cowboy hat crash helmet crutch
16 potted plant pot pencil case greenhouse
17 sheep ram llama bighorn sheep
18 sofa studio couch quilt rocking chair
19 train carriage electric locomotive freight car
20 tv/monitor* - - -

5.6.6 Per-Class Quantitative Results

For a more detailed evaluation, we present the per-class IoU values for some of the proposed
approaches and scenarios. We considered the following methods in the disjoint scenario on all the
experimental protocols: fine-tuning (FT), background inpainting, RECALL (GAN), RECALL
(Web) and joint training. The results are summarized in Table 5.5. From here, we can appreciate
how fine-tuning always catastrophically forgets previous classes when learning new ones. The
simple background inpainting strategy allows to largely alleviate such phenomenon bringing a
similar effect to recent knowledge distillation approaches [20, 23]. On top of this, we apply
GAN or Web-based replay strategies to regularize training and background content inpainting
scheme to reduce bias toward the background. While these strategies are specifically designed
to preserve old knowledge, they also allow to achieve large mIoU gains on new classes reducing
the false positive rate (i.e., the detection of new classes in locations containing the old ones).

In order to better understand the effect of our proposed modules, we report in Table 5.6 the
Pixel Accuracy (PA) and the IoU for the class being added at each step of the disjoint 10-1 sce-
nario. The results demonstrate that, on the newly introduced class, FT generally achieves a very
high PA (top-left) and a per-class IoU (top-right) comparable to the other approaches. Yet, FT
concurrently shows very low mIoU over all classes learned up to the current step (bottom-right),
as well as over only previously seen categories (bottom-left). All combined, this is indicative of

82

Table 5.5: Per-class IoU of comparedmethods in disjoint experimental protocol onmultiple scenarios of Pascal VOC2012.

Method ba
ck

gr
.

ae
ro

bi
ke

bi
rd

bo
at

bo
tt

le

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
n.

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv old new all

19
-1

FT 72.4 62.4 6.7 45.0 47.1 39.5 33.7 40.9 25.7 4.3 54.0 8.0 25.0 50.4 50.6 0.0 35.3 43.0 0.8 59.5 13.2 35.2 13.2 34.2
Inpainting 91.0 83.9 35.1 77.3 62.3 70.7 77.9 73.4 85.7 31.5 73.1 48.0 81.3 74.4 64.6 81.0 44.1 75.7 41.3 74.5 30.4 66.1 30.4 65.6
GAN 91.7 82.8 32.3 82.6 62.8 74.1 86.2 79.6 86.0 30.0 58.9 45.9 80.5 67.9 73.4 80.6 35.3 62.9 39.6 77.9 50.1 65.2 50.1 65.8
Web 91.4 82.8 35.9 83.4 59.9 73.5 85.3 73.7 85.7 31.3 59.4 40.9 81.1 67.1 73.4 80.5 43.1 61.5 42.6 74.4 47.1 65.0 47.1 65.4
Joint 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 75.5 73.5 75.4

15
-5

FT 72.4 62.4 6.7 45.0 47.1 39.5 33.7 40.9 25.7 4.3 54.0 8.0 25.0 50.4 50.6 0.0 35.3 43.0 0.8 59.5 13.2 35.2 13.2 34.2
Inpainting 89.0 68.7 36.0 68.2 48.4 71.4 12.8 77.3 85.6 26.7 8.1 48.8 80.3 61.6 68.8 78.7 20.1 29.0 26.3 38.4 51.8 56.1 33.1 52.2
GAN 90.4 78.8 35.0 79.5 60.3 75.7 79.3 78.7 85.9 22.8 55.0 46.6 80.0 67.4 72.1 77.8 37.3 60.2 32.2 64.4 55.1 66.3 49.8 63.5
Web 90.8 82.2 35.5 81.7 63.9 75.3 85.0 77.8 86.3 28.0 67.5 48.7 81.0 72.7 73.8 78.0 40.4 65.7 31.9 69.1 57.6 69.2 52.9 66.3
Joint 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 77.5 68.5 75.4

15
-1

FT 74.2 27.2 0.0 1.6 15.1 11.3 0.0 4.1 0.5 0.0 0.0 0.0 0.0 0.2 0.2 0.0 27.0 25.6 28.9 33.5 52.2 8.4 33.5 14.4
Inpainting 85.9 38.9 31.4 79.4 41.5 71.3 28.9 62.6 85.6 32.2 29.6 50.2 76.6 69.2 55.3 80.2 18.5 37.4 36.3 19.8 17.9 55.5 26.0 49.9
GAN 90.5 80.7 34.5 79.5 59.1 75.5 72.7 78.2 85.3 25.3 59.0 39.9 79.9 68.8 72.5 78.6 23.2 58.0 39.2 60.1 43.8 66.0 44.9 62.1
Web 90.5 82.1 34.4 81.5 62.6 76.0 82.3 77.0 85.1 27.4 63.6 39.4 80.3 71.9 72.2 78.4 35.4 64.4 35.7 61.9 48.7 67.6 49.2 64.3
Joint 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 77.5 68.5 75.4

10
-1

0

FT 82.1 0.2 0.0 1.2 0.0 1.4 0.0 0.0 0.0 0.0 0.0 52.3 73.2 49.8 73.1 81.8 41.4 49.7 49.1 76.1 62.2 7.7 60.9 33.0
Inpainting 90.9 81.8 34.1 73.1 58.6 73.3 85.6 78.8 78.2 29.0 29.1 43.7 66.6 47.7 73.0 74.2 29.6 57.3 38.8 70.9 61.4 62.2 56.3 60.7
GAN 90.8 83.3 30.4 75.8 61.4 73.5 80.8 77.2 72.8 23.6 46.8 48.0 65.4 55.3 66.1 72.5 36.8 58.3 36.1 67.1 55.6 62.6 56.1 60.8
Web 90.9 82.3 32.7 75.4 63.2 72.8 81.7 73.5 76.2 24.2 58.5 46.5 68.8 60.2 64.7 73.3 38.3 58.3 34.2 68.5 56.2 64.1 56.9 61.9
Joint 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 76.6 74.0 75.4

10
-5

FT 78.2 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 16.4 13.7 23.4 55.7 46.7 37.4 39.8 47.9 75.6 62.3 7.2 41.9 23.7
Inpainting 88.5 58.8 31.9 55.4 58.2 69.2 0.2 78.3 83.2 28.2 5.0 36.4 71.6 34.7 61.4 74.1 20.4 26.2 25.5 34.0 47.9 46.8 43.2 47.1
GAN 89.3 77.9 28.9 72.1 59.3 73.6 75.1 75.8 79.5 20.5 37.2 44.2 67.8 50.9 59.5 71.3 31.4 51.9 32.3 63.1 53.0 60.0 52.5 57.8
Web 89.5 80.8 31.2 74.6 61.6 72.0 81.6 74.3 80.6 19.8 55.1 44.3 69.2 56.9 56.5 71.7 39.8 59.0 30.2 69.7 54.2 63.2 55.1 60.6
Joint 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 76.6 74.0 75.4

10
-1

FT 69.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.9 6.3 2.0 4.3
Inpainting 85.0 35.3 28.6 72.6 37.2 67.9 16.9 65.3 83.0 32.1 13.3 35.1 41.4 5.0 22.5 71.7 21.5 16.9 34.5 19.2 13.0 45.2 28.1 39.0
GAN 88.8 77.9 26.6 71.8 58.6 73.2 63.5 74.0 75.7 20.5 41.3 34.2 60.5 43.6 58.6 66.2 15.8 51.7 37.4 53.0 38.8 58.3 46.0 53.9
Web 89.1 79.1 31.0 74.4 62.2 66.5 81.7 74.1 78.7 19.4 56.2 41.8 62.7 58.5 62.1 66.6 8.5 59.3 36.8 59.2 45.0 62.3 50.0 57.8
Joint 92.5 89.9 39.2 87.6 65.2 77.3 91.1 88.5 92.9 34.8 84.0 53.7 88.9 85.0 85.1 84.9 60.0 79.7 47.0 82.2 73.5 76.6 74.0 75.4

83

Table 5.6: Per-round accuracy measures in the 10-1 disjoint scenario. In the top part we report the PA (left) and IoU (right) of

the last class currently introduced. The bottom part, instead, shows the mean IoU over the old classes up to the ongoing step

(left), as well as the overall mean IoU including the new classes (right). The classes added at each incremental step are: 1:dining
table, 2:dog, 3:horse, 4:motorbike, 5:person, 6:potted plant, 7:sheep, 8:sofa, 9:train and 10:tv/monitor. Best in bold.

PA (new) st
ep

1
st
ep

2
st
ep

3
st
ep

4
st
ep

5
st
ep

6
st
ep

7
st
ep

8
st
ep

9
st
ep

10

FT 69.2 90.987.179.2 88.3 3.8 26.9 49.9 55.0 57.5
ILT [18] 70.2 88.3 44.3 52.8 86.9 58.7 22.5 43.6 48.8 56.3
MiB [23] 75.5 87.2 38.5 51.2 89.661.0 6.1 38.2 47.4 60.2
SDR [21] 68.7 73.2 34.0 31.0 84.5 55.6 15.7 39.0 45.1 55.8
ours (GAN) 24.0 56.7 38.1 58.5 76.2 27.1 36.8 25.4 53.0 45.0
ours (Web) 23.8 57.3 46.1 62.3 79.3 36.9 42.8 26.964.2 57.4

IoU (new) st
ep

1
st
ep

2
st
ep

3
st
ep

4
st
ep

5
st
ep

6
st
ep

7
st
ep

8
st
ep

9
st
ep

10

FT 16.2 37.0 15.8 12.6 78.4 3.2 9.2 16.3 9.7 19.9
ILT [18] 14.6 37.2 14.5 11.5 68.6 5.5 4.9 10.3 11.1 13.8
MiB [23] 14.6 38.0 12.2 9.5 66.0 9.6 1.7 5.5 10.9 7.0
SDR [21] 25.0 54.0 13.3 10.9 69.2 10.9 5.4 8.9 15.4 17.8
ours (GAN) 22.4 53.9 36.1 54.6 64.4 23.6 34.4 23.6 49.3 38.8
ours (Web) 22.1 54.543.758.4 67.9 30.539.624.758.345.0

mIoU (old) st
ep

1
st
ep

2
st
ep

3
st
ep

4
st
ep

5
st
ep

6
st
ep

7
st
ep

8
st
ep

9
st
ep

10

FT 50.4 23.9 26.1 20.5 4.6 4.7 4.2 3.7 3.8 3.5
ILT [18] 59.4 33.5 35.2 20.9 11.7 11.2 10.9 10.2 7.1 7.2
MiB [23] 64.3 53.6 61.1 26.0 25.3 27.6 19.0 16.8 9.7 12.6
SDR [21] 64.9 57.5 61.6 35.2 30.2 32.4 28.7 27.5 19.2 21.0
ours (GAN)74.764.7 63.4 63.2 60.7 62.9 57.9 56.5 53.5 54.6
ours (Web) 74.3 63.9 64.665.063.565.560.660.158.358.4

mIoU (all) st
ep

1
st
ep

2
st
ep

3
st
ep

4
st
ep

5
st
ep

6
st
ep

7
st
ep

8
st
ep

9
st
ep

10

FT 47.3 25.0 25.3 19.9 9.5 4.6 4.5 4.4 4.1 4.3
ILT [18] 55.3 33.8 33.6 20.2 15.5 10.8 10.5 10.2 7.3 7.5
MiB [23] 59.8 52.3 57.3 24.8 28.0 26.5 18.0 16.2 9.8 12.3
SDR [21] 61.3 57.2 57.9 33.5 32.8 31.1 27.3 26.5 19.0 20.8
ours (GAN)70.463.9 61.5 62.7 60.9 60.6 56.6 54.8 53.3 53.9
ours (Web) 69.9 63.2 63.164.663.763.559.458.358.357.8

Table 5.7: mIoU on VOC2012 disjoint 15-1 with replay data. G: GAN, F: Flickr. Naïve: only decoder of last step is used for

pseudo-labeling, ours: our complete approach (RECALL) is used.

none + naïve (G) + naïve (F) + ours (G) + ours (F)
ILT 5.4 37.8 (+32.4) 39.9 (+34.5) 49.6 (+44.2) 51.5 (+46.1)
MiB 37.9 49.3 (+11.4) 50.5 (+12.6) 63.5 (+25.6) 65.7 (+27.8)
SDR 48.1 53.1 (+05.0) 55.8 (+07.7) 65.5 (+17.4) 66.5 (+18.4)

an overestimation of the new class. In other words, FT progressively forgets foregoing semantic
information, while predicting more often the newly seen class (which experiences high PA but
low IoU, due to many false positive predictions). Our approach, instead, can effectively improve
knowledge preservation thanks to replay data and background inpainting, providing steady mIoU
results throughout the incremental steps.

5.6.7 Combining RECALLwith Other Techniques

To the best of our knowledge, no works on continual semantic segmentation using GAN-generated
or web-crawled data exist. The aim of our work is to provide a general framework to retrieve
and employ unlabeled replay data. In this section, we demonstrate that our framework can
be applied on top of competing approaches to improve their performance: some experimental
results are shown in Table 5.7. Adding replay data with naïve pseudo-labeling (i.e., using the
decoder of the previous step) already leads to a performance improvement, but combining our
method with previous approaches leads to much higher results with improvements ranging from
17% to 46%, proving the effectiveness and general applicability of the modules introduced in
RECALL.

5.6.8 Preliminary Analyses on ADE20K

Up to this point, we reported only experiments on Pascal VOC2012, which contains object-
level classes. However, when addressing real-world tasks, the complete understanding of the

84

surroundings is usually required: for instance, to distinguish a mixture of stuff and object-
level classes, as in the ADE20K dataset [117]. Indeed, the ADE20k dataset poses a great
challenge due to the vast class set, comprising stuff categories not present in Pascal VOC2012.
We remark that exact correspondence between GAN’s conditioning class space and semantic
segmentation category set is not required by our replay strategy. For example, as we have
already observed, the person class is missing in the ImageNet dataset (used for pre-training
the generative model), but images of people can still be retrieved from generated images of
semantically related categories, such as hat (see Table 5.4). Thus, even when the generative
model cannot be explicitly conditioned to reproduce some specific segmentation classes (e.g.,
stuff categories), it is possible to retrieve instances of them just relying on semantically correlated
categories. This retrieval (i.e., mapping) operation is performed automatically by our approach.
This is even more true for the web-replay strategy, where we have complete control over the
keywords used for the search.

Hence, we argue that our approach is suitable for continual semantic segmentation even
when non-object categories are present. To make our point, we run preliminary experiments on
ADE20k. We consider the 100-10 setting, where 100 classes are learned in the first step and
the others are added in batches of 10 at each incremental step. The FT baseline reaches a very
low mIoU of 0.8%, while our RECALL with GAN-based replay samples improves the score up
to 11.4%, showing that our methods mitigate catastrophic forgetting even in this challenging
setup. To achieve these results, we did not perform any parameter tuning (i.e., we kept the
same pre-processing, learning parameters, batch and image sizes used for VOC2012). However,
further experiments and tuning are needed to provide a proper comparison with other works on
this benchmark.

5.7 Conclusions

In this chapter we introduced RECALL, which targets continual semantic segmentation by means
of replay strategies to alleviate catastrophic forgetting and background inpainting to mitigate
background shift. Two replay schemes are proposed to retrieve data related to former training
stages, either reproducing it via a conditional GAN or crawling it from the web. The experi-
mental analyses proved the efficacy of our framework in improving accuracy and robustness to
multiple incremental steps compared to competitors. Future research will improve the genera-
tive model, coupling it more strictly with the incremental setup, and explore how to control and
refine weak supervision during web-crawling. Extensive evaluation on different datasets, such as
ADE20K, will also be performed.

5.8 Final Remarks

This part of the dissertation on continual semantic segmentation started from its definition and
problem setup in Chapter 2, then we successfully explored knowledge distillation to preserve the
output on previously seen classes in Chapter 3 and latent space regularization approaches to
prevent overfitting on the novel classes in Chapter 4. In this chapter, instead, we showed how
we can embed (additional) replay data into any continual learning framework.

Future work will be devoted towards a more precise integration of all the techniques we have
explored in these chapters. Indeed, being able to effectively combine knowledge distillation at
the output and feature level with latent space regularization and replay-based techniques is still
an open research direction with great potential, where the combined positive effects of each of
the strategies could outperform current state-of-the-art approaches.

85

86

Part II

Coarse-to-Fine Learning of
Semantic Categories

87

6
Coarse-to-Fine Learning of Semantic Concepts

In this chapter we slightly change the focus with respect to the previous ones. In the previ-
ous chapters we have defined and unveiled techniques to solve class-incremental (i.e., continual)
learning in semantic segmentation, where a deep learning model trained on an initial data
distribution with a starting set of classes is updated to incrementally recognize new semantic
categories given new samples associated to them. In this chapter, instead, we define and tackle
the coarse-to-fine learning of new semantic concepts. A deep learning model is trained on an
initial set of classes with a given training set of samples; in a latter stage, the model is updated
to recognize either more refined categories than those originally introduced, e.g., from a generic
object class to table (we call it semantic level coarse-to-fine learning [24], see Section 6.2), or
sub-parts belonging to the object-level class (we call it spatial level coarse-to-fine learning [25],
see Section 6.3)

6.1 Introduction

We have already observed in Chapter 1 how different computer vision applications demand for
different levels of semantic understanding of the surroundings (i.e., from image classification, to
object detection and location to semantic segmentation). Even within the semantic segmentation
task, different levels of granularity can be defined (e.g., dog leg, dog or animal). However, it is
common practice to train a generic base model on a generic set of classes which can solve
some initial tasks. Again, sometimes the focus of the application changes in a later stage, after
deployment has already been accomplished.

In the previous chapters we have observed how we can handle and adapt to changes in the
set of semantic categories recognized by the deep learning architecture (i.e., continual learning
of new semantic concepts over time). In this chapter, we take a different perspective and we aim
at updating a pre-trained model on a generic set of classes in order to recognize more specific
semantic categories and at making use of the coarse-level model to leverage the accuracy on the
finer split of classes. The task presented in this chapter is considerably different from that of
previous chapters in that all the training images are available from the beginning and the sets
of labels are progressively split into more fine-grained hierarchical categories and then fed to the
learner, as can be appreciated in Figure 6.1.

89

Figure 6.1: Different levels of semantic image understanding: from coarse to fine.

6.1.1 Contributions

Our main intuition is that we could exploit the learned model on the coarse set of classes to aid
the learning process of the more specific model, achieving higher results. This is, in some sense,
similar to curriculum learning [164] applied to coarse-to-fine semantic sets.

In this chapter, we distinguish between two different coarse-to-fine learning setups: namely,
at the semantic level [24] (Section 6.2) and at the spatial level [25] (Section 6.3).

Nonetheless, the two scenarios are conceptually similar:

• semantic coarse-to-fine-learning: in this case, macro-level classes (e.g., furniture) are
split to generic object-level classes (e.g., table) and finally to specific classes (e.g., dining
table). This problem is defined in Section 6.2: we address the multi-level semantic segmen-
tation task where a deep neural network is first trained to recognize an initial, coarse, set
of a few classes. Then, in an incremental-like approach, it is adapted to segment and label
new objects’ categories hierarchically derived from subdividing the classes of the initial set.
We propose a set of strategies where the output of coarse classifiers is fed to the archi-
tectures performing the finer classification. Furthermore, we investigate the possibility to
predict the different levels of semantic understanding together, which also helps achieve
higher accuracy. Experimental results on the New York University Depth v2 (NYUDv2)
dataset show effective results on the multi-level scene understanding.

• spatial coarse-to-fine learning: in this case, part-level categories (e.g., arm) originate
from the respective object level class (e.g., person). This problem is defined in Section 6.3.
The semantic segmentation of parts of objects in the wild is a challenging task in which
multiple instances of objects and multiple parts within those objects must be detected in
the scene. This problem remains nowadays very marginally explored, despite its funda-
mental importance towards detailed object understanding. We propose a novel framework
combining higher object-level context conditioning and part-level spatial relationships to
address the task. To tackle object-level ambiguity, a class-conditioning module is intro-
duced to retain class-level semantics when learning part-level semantics. In this way, mid-
level features carry also this information prior to the decoding stage. To tackle part-level
ambiguity and localization we propose a novel adjacency graph-based module that aims at
matching the relative spatial relationships between ground truth and predicted parts. The
experimental evaluation on the Pascal-Part dataset shows that we achieve state-of-the-art
results on this task.

6.2 Coarse-to-Fine Learning at Semantic Level

As we observed, we could interpret the scene at different levels of precision: in some scenarios,
for example, it may be enough to identify just a few classes while in others a more fine-grained

90

prediction could be required. Moreover, in other settings, a coarse set of classes could be pre-
dicted first and then the set of classes could hierarchically grow into more refined categories to
better understand the semantic context. To visualize this scenario, imagine an indoor navigation
system first trained on a very coarse set of labels to segment, e.g., movable objects, permanent
structures, and furniture, in order to, e.g., avoid obstacles. After a while, the dataset used for the
initial training could be refined with a more fine-grained set of semantic classes (e.g., the mov-
able objects class could be split into books, monitor, etc.) and the task of the robotic system is
to interact with these new types of objects. One solution could be to retrain from scratch the
underlying neural network with the new set of classes; however, some other solutions may seem
more reasonable. For instance, the initial prediction could be helpful for the learning process
of the more refined set of classes in the form of an incremental learning approach where new
tasks are accomplished at subsequent steps. Furthermore, solving multiple tasks at the same
time could be beneficial in terms of both accuracy and the possibility to choose the appropriate
set of labels for the particular task at hand (e.g., object avoidance, object interaction, etc.).

Starting from these considerations, our main goal is to transfer previously gained knowl-
edge, acquired on a simple semantic segmentation task with coarse classes (e.g., structures,
furniture, objects, etc.), to a new model where more fine-grained and detailed semantic classes
(e.g., walls, beds, cups, etc.) are introduced.

Notice that this task is similar to incremental (or continual) learning; however, there are a few
key differences. With respect to incremental learning for semantic segmentation [18], here we do
not add the ability to segment and label new classes; instead, we refine the initial prediction on
a coarse set of classes with a more fine-grained set of classes originated from the previous one.
In this sense, indeed, we expand the ability of the deep neural network to accomplish the new
fine-grained task.

This type of learning paradigm moved its inspirations from the human way of learning con-
cepts, and specifically from the way in which training examples are presented to the learner.
Unlike most machine learning systems, humans do not learn new difficult tasks (e.g., recog-
nizing a rare variety of birds) entirely from scratch. Instead, new skills are often learned pro-
gressively, starting with easier tasks and gradually becoming able to tackle harder ones. For
example, humans first learn to recognize birds before differentiating among the different species
of birds [12,165]. Thus, we can think of human learning as being driven by a curriculum that is
either explicitly provided by a teacher, or implicitly learned. Hence, we can think of our works as
a coarse-to-fine curriculum paradigm with only one intermediate stage of easier concepts towards
the actual complex task.

The last focus of this work is the development of a new approach based on the simultaneous
output of multi-level semantic maps. By exploiting domain sharing at the feature extraction
level, the model will be fine-tuned to learn different levels of semantic labeling at the same time.
This is somehow related to multitask learning [40, 166, 167], where multiple tasks are solved at
the same time, while exploiting commonalities and differences across tasks. This can result in
improved learning efficiency and prediction accuracy for the task-specific models, when com-
pared to training the models separately. Training on multiple tasks could even bring additional
information and, by sharing the representations between related tasks, we allow the model to
generalize better on one or more tasks. Additionally, there is a reduction in the computational
time with respect to training one independent architecture for each task. Our approach, how-
ever, is not strictly speaking multitask learning because we do not predict multiple different
tasks at the same time (e.g., semantic maps along with depth scene completion, surface normals
prediction, etc.) but actually we learn multiple sets of classes at the same time allowing to have
different levels of representations of the semantic map simultaneously, greatly reducing the time
required for the training (a single training replaces multiple steps of training). Furthermore, we

91

share the same data across the tasks, which actually represent a different hierarchical clustering
of the labels.

We based our approach on an end-to-end deep learning pipeline for semantic segmentation on
color and depth data (i.e., color representation with an associated depth information) based on
the DeepLab-v3+ model [4]. To train the network and to evaluate the results, we employed the
NYUDv2 dataset [168], which consists of a set of scenes of the indoor environment, with three
sets of labels (5, 15 and 41 classes, respectively) at different levels of semantic precision and we
compared our results with other recent methodologies, although not related to incremental or
multitask approaches.

The remainder of this section is organized as follows: Section 6.2.1 presents an overview of
related work; Section 6.2.2 introduces the proposed methodologies; the employed dataset and
training procedures are described in Section 6.2.3; while the experimental results are discussed
in Section 6.2.4.

6.2.1 Preliminaries

In this work, we also exploit depth data and we adapt approaches for color images to this
scenario with some modifications at the earlier layers. Although this work focuses more on the
incremental refinement than at achieving high performance on the stand-alone segmentation task,
a brief overview of recent research papers exploiting both color and depth images is presented
here. In [169, 170], a scheme involving CNN at multiple scales has been adopted. Two different
CNNs for color and depth and a feature transformation network are exploited in [171]. In [172],
a region splitting and merging algorithm for RGB-D data has been proposed. In [173], a MRF
superpixel segmentation is combined with a tree-structured segmentation for scene labeling.
Multiscale approaches have also been exploited (e.g., [174]). Hierarchical segmentation based on
the output of contour extraction has been used in [175], which also deals with object detection
from the segmented data. Another combined approach for segmentation and object recognition
has been presented in [168], which exploits an initial over-segmentation followed by a hierarchical
scheme.

The last idea we want to investigate is the multiple learning of more representations at the
same time, which is somehow related to multitask learning [40,166,167]. Multitask learning has
been widely applied to semantic segmentation. For instance, in [170], a single multiscale CNN is
employed to solve the three tasks of depth prediction, surface normals estimation, and semantic
labeling. In [176], the semantic segmentation task is solved using three networks with shared
features: differentiating instances, estimating masks, and categorizing objects. In [177], multi-
task learning is employed to align the features computed from synthetic data while performing
the predictions of the depth, the edges, and the surface normals with the ones computed from
real-world images. In [178], the semantic segmentation map is predicted together with instance
segmentation and depth prediction; additionally, an approach to select the weights for each loss
is proposed.

6.2.2 ProposedMethods

In this section, we show in detail the approaches proposed in this work. Although the pro-
posed procedures are agnostic to the underlying architecture, for the evaluation, we chose the
DeepLab-v3+ [4,5] network, which has state-of-the-art performance on segmentation tasks. The
network consists of a Xception feature extractor, whose weights were pre-trained [179] on the
Pascal VOC 2012 dataset [114], and a decoder made by Atrous Spatial Pyramid Pooling (ASPP)

92

Figure 6.2: Early fusion of the different representations (color, depth, and surface normals).

layers. We evaluated our results on the NYUDv2 dataset after a pre-processing stage detailed
in Section 6.2.3.

As with most deep learning approaches, the model takes as input a multi-channel tensor (in
our case, nine channels corresponding to the color image, the depth information and the surface
normals) and outputs the predicted softmax tensor with a number of channels equal to the
number of predicted classes. This operation returns a probability distribution containing for
each pixel the probability of belonging to each specific class. The class corresponding to the
highest probability value is chosen for each pixel by an argmax operation. As a final result, we
end up with the predicted segmentation map where each pixel value is the index of the class it
belongs to.

To exploit the multiple types of information, we performed an early fusion of the different
representations, i.e., color, depth, and surface normals, as depicted in Figure 6.2, and then we
feed them to the network. More in detail, each input tensor has nine channels. The first three
channels correspond to the RGB color representation in the range [−1, 1], i.e., we divided by
127.5 the color values and then subtracted 1. The following three channels correspond to the
geometry components where each channel represents the position of each pixel with respect to
the three axes (X,Y,Z) of the 3D space. We normalized these values by subtracting the mean
and dividing by the standard deviation along each axis. The last three channels represent the
surface normal vectors. We used the standard representation with the three components of the
unit vector perpendicular to the surface at each location (i.e., the components assume values in
the range [−1, 1] and the vector norm is equal to 1).

For the training procedures, we employed the Jaccard loss (also known as Intersection over
the Union (IoU) loss). We chose this loss since it has proven to be useful when training on
a dataset with unbalanced numbers of pixels in the different classes within an image because
it gives equal weight to all classes. Additionally, it has shown better perceptual quality than
the usual cross-entropy loss with our setup in which there are some small objects and many
under-represented labels in the dataset. The Jaccard loss is defined as:

LJaccard = 1− IoU = 1− |ŷ ∩ y|
|ŷ ∪ y|

(6.1)

where | · | represents the cardinality of the considered set, ŷ is the predicted segmentation map,
and y is the ground-truth map.

93

Figure 6.3: Diagram of the incremental approach where the softmax of the predictions at the first stage is concatenated as

additional input for the second phase.

6.2.2.1 Hierarchical Learning

Here we present and discuss the various methods we designed for knowledge transfer in semantic
segmentation.

In the first approach, we used a different DeepLab-v3+ model for each step (i.e., on the
considered dataset, we have a first modelM1 for the 5-class setting, a secondM2 for the 15-class
setting, and a third M3 for the 41-class setting). As every incremental learning approach, we
start by training the M1 DeepLab-v3+ model on the coarser set of classes (e.g., five classes in
our scenario). After that, we freeze the first model M1 and we employ its output of the softmax
operation as an additional input component when we train the model M2 on the set of more
fine-grained classes (e.g., 15 classes). We repeat the same approach also when moving from M2

toM3 (i.e., from 15 to 41 classes). This methodology was partially derived by the idea presented
in [172] where the softmax information is used for binary classification task. Furthermore, notice
that, when training for the finer tasks, the networks corresponding to the coarser ones are frozen,
i.e., we do not train in a single step a large size network containing the two (or three) networks
for the two (or three) tasks but we perform a set of independent trainings each working on a
single stage of the network.

More in detail, the number of predicted classes were 4, 13 and 40, respectively, because
the unknown and the unlabeled classes were discarded as done by all competing approaches (see
Section 6.2.3 for further details). Note that the number of trainable parameters remains constant
during the two stages because in the incremental step the previous network is completely frozen
and not trained anymore. The proposed framework is shown in Figure 6.3 and it is evident that
the previous stage of training acts as a conditioning element for the following one. Indeed, the
softmax tensor output from the first training stage (i.e., from M1) serves as additional input
(concatenating it with the RGB images) for the second stage (model M2) and the same idea
is exploited when moving from M2 to M3. This way the network is constrained to learn the
mapping from the coarser to the finer-grained sets of classes.

In the second approach, we fed as an additional input to the incremental stages the argmax
of the predicted semantic map instead of the softmax. This approach is shown in Figure 6.4.
The main difference from previous approach is that we only feed the index of the maximum of
the predicted map and we drop the information about the probabilities of all the various classes
which was before represented by the softmax vector for each pixel. In this way, we lose the
information about the uncertainty of the prediction but, on the other side, the representation is

94

Figure 6.4: Diagram of the incremental approach where the argmax of the predictions at the first stage is concatenated as ad-

ditional input for the second phase.

Figure 6.5: Diagram of the incremental approach where the edges of the predictions at the first stage are concatenated as ad-

ditional input for the second phase.

much more compact having only a single value representing the predicted class for each pixel.
Notice that the first approach (softmax) is more complex but leads to slightly better results (see
the experimental evaluation in Section 6.2.4). On the other side, the second approach (argmax)
is faster and simpler even if it has slightly worse performance.

In the third approach, we fed as additional input to the incremental stages the edges of the
predicted semantic map. This approach is shown in Figure 6.5. Differently from before, the
additional information channel does no longer contains the semantic labels of the classes but
instead is represented by the boundary information. In this way, the second stage of training
is more focused on the contours of the shapes, which are generally difficult to discriminate in
semantic segmentation tasks.

We argue that combining multiple cues could lead to further improvements; however, this
possibility is limited in practice by memory constraints of the employed GPUs.

95

Figure 6.6: ModifiedDeepLab-v3+ architecture for joint learning of multiple representations.

6.2.2.2 Joint Learning ofMultiple Representations

Finally, we started to investigate the prediction of different labelings at the same time and
whether this could be helpful to improve performance on the coarser set of labels since we are
learning more detailed information about their content and vice versa if the coarse labeling can
help the fine one. We then designed a different decoder to accomplish the multiple representations
and we trained the architecture end-to-end with three different losses (one for each set of labels).
In this case, the complete loss function is defined as:

Ltotal =
∑

i=1,2,3

λiLJaccard,Xi
(6.2)

where Xi is the ith set of labels, i.e., X1, X2, and X3 contain, respectively, 5, 15, and 41 classes,
while the hyper-parameters λi balance the three losses. These were empirically set to 1 so that
all the terms contribute equally during the back-propagation phase. The loss associated with the
set Xi is then written as LJaccard,Xi

. The approach is illustrated in Figure 6.6: we used a single
standard DeepLab-v3+ encoder while the decoder has been modified to be able to deal with the
multiple tasks together. From this figure, we can appreciate that the first part of the decoder is
shared across all the tasks while the last 1× 1 convolution layer is unique for each segmentation

96

Figure 6.7: Diagram showing the hierarchical mapping between the three different set of classes (blue for the split of 5, green

for the split of 15, red for the split of 41). The numbers above the arrows are the fraction of the parent class that is assigned to

each of its derived ones.

task (i.e., 4, 13, and 40 classes segmentation in our case, after excluding the unknown and the
unlabeled classes as detailed in Section 6.2.3). The final 1 × 1 layers are followed by a bilinear
upsampling procedure to restore the original input dimensions and a softmax classification layer
is then applied to each output to get the final predictions.

6.2.3 Training on the NYUDv2Dataset

The NYUDv2 dataset [168] was used to train the proposed architectures and to evaluate the
performance of the proposed approach. This dataset contains 1449 depth maps and color images
of indoor scenes acquired with a first generation Kinect sensor divided into a training set with
795 scenes and a test set with the remaining 654 scenes. The original resolution of the images
is 640× 480; however, for the training procedures, we employed a lower resolution of 560× 425
for memory constraints. The evaluation of the results, instead, was carried out on the original
resolution images for a fair comparison with competing approaches. For results evaluation, we
used the ground truth labels from [180], and we considered the three clusters of 5, 15, and 41
labels, respectively, as mapped in [168,181].

In particular, the three considered set of labels are hierarchically represented in Figure 6.7
where we can appreciate how the derived classes emerge from parent ones. Two classes, i.e.,
unlabeled and floor, are peculiar because they are never split when moving to finer semantic
representations. Similarly, various classes in the set of 15 labels are not split when moving to
the finer set of 41. From the diagram, we can notice how there are clear unbalanced splitting
situations. For instance, some classes of the split of 15 are underrepresented in the dataset, as

97

Figure 6.8: Sample scenes from the NYUDv2 dataset highlighting the different levels of semantic description in the segmenta-

tion maps. From left to right: RGB image, semantic map with 5 classes, semantic map with 15 classes, and semantic map with

41 classes.

can be appreciated from the very low fraction of pixels in these classes from parent ones: e.g.,
ceiling and window are present in only 2.4% and 6.1%, respectively, of instances of permanent
structure; and monitor and books are derived only in the 3.7% and 4.3% of the movable props
parent class. Additionally, the splitting is not uniformly distributed among the parent classes,
thus from 3 out of 5 classes of the split of 5 derive 13 out of 15 classes of the split of 15. If we
move to the analysis of the split of 41, the considerations become even more severe. There are
few classes deriving from ≤ 2% of instances of parent class, e.g., bath tub, toilet, night stand,
and many others (10 classes) deriving from 2–5%. Moreover, it should be noticed that, in this
case, 29 classes out of 41 derive from just three parent classes, thus confirming the extreme
inhomogeneity of this splitting.

As done by all the competing approaches (e.g., [170, 172, 181, 182]), we removed both from
the prediction and from the evaluation of the results the unlabeled and unknown classes when
present. Indeed, they are fictitious classes artificially created during the labeling procedures
of the images. This choice allowed directly comparing the results with competing approaches,
although not related to incremental or multi-tasking learning.

Moreover, in Figure 6.8, we can appreciate the various level of semantic understanding which
have been considered for the evaluation. For instance, in the first row, we can visualize how the
generic furniture class in the set of five classes (in yellow) is split into bed and furniture in the
set of 15 classes (light blue and blue, respectively) and that bed is further refined into bed and
pillows in the set of 41 classes (in orange and light green, respectively). Again, in the second
row, for example, we can appreciate how the generic class movable props of the set of five classes
(in purple) is then refined to books and object in the set of 15 classes (in dark green and light
purple, respectively), and then further refined in the last set of classes. Finally, in the third row,
we can visualize how the permanent structure class in the set of five classes (in orange) is then

98

split into the classes ceiling and wall in the set of 15 classes (in yellow and pink, respectively).
The various approaches were trained on the NYUDv2 training set using the three different

sets of labels. We employed Stochastic Gradient Descent (SGD) and ran the procedure for 100
epochs. The initial learning rate lr0 was set to lr0 = 10−2, the weight decay wd to wd = 0.9,
and the batch size equal to 2. The learning rate scheduler decreased the learning rate lr every
s = 2 epochs using the following formula:

lr(ep) = lr0 · wd · exp b
ep

s
c (6.3)

where ep denotes the index of the current epoch.
We used TensorFlow [125] to develop and train our framework. For each stage, the number of

trainable parameters and FLOPs was roughly the same as the original DeepLab-v3+ architecture,
i.e., 41M and 82B, respectively (the added components require a very small number of parameters
with respect to the DeepLab model). The training of the neural network took about 22 hours on
a NVIDIA Tesla K40 GPU with Intel(R) Core(TM) i7 CPU 970 @ 3.2 Ghz. The implementation
of the proposed model is available at https://github.com/LTTM/IL-Coarse2Fine.

6.2.4 Experimental Results

In this section, we discuss the performance of the various proposed approaches in the two different
settings of incremental and multi-task learning.

First, we start by comparing our modified DeepLab-v3+ architecture with early fusion of
the three information representations, i.e., color, depth, and surface normals, with some recent
works. To evaluate the results, we employed the most widely used metrics for semantic seg-
mentation problems: the Pixel Accuracy (PA), the mean Class Accuracy (mCA), and the mean
Intersection over Union (mIoU) [124].

The modified network is able to obtain state-of-the-art results on all the three set of labels.
In Table 6.1, we can confirm that our baseline network could outperform competing approaches
in terms of both PA and mCA on the split of four classes; additionally, we also show the obtained
mIoU. Similar results were achieved by our baseline model for the set of 13 classes, as shown in
Table 6.2, while on the set of 40 labels some very recent approaches have better performance
(see Table 6.3). However, notice that the aim of this work is to propose an efficient hierarchical
learning strategy, not to improve the performance on the segmentation task by itself.

Then, we evaluated our hierarchical learning approaches. Firstly, we started from the coarser
set of four classes and we moved to the prediction of 13 classes: the results are shown as the last
three lines of Table 6.2 for the three different approaches. In this case, we can appreciate that
the addition of the softmax information from the four-class model or of the edges information
are useful cues to reach higher accuracy on the new set of classes if compared with the baseline
counterpart. In particular, in the case of softmax or edges information, there are improvements in
all three considered metrics with respect to the baseline DeepLab-v3+. In particular, the softmax
information leads to the best class accuracy (almost 70%) while the use of edge information is
the best strategy with respect to the pixel accuracy (76.3%) and to the mIoU (53.9%). Notice
that the mIoU gap with respect to the direct training on the 13 classes is about 2.5% (by the way,
this metric and the mCA are more interesting for our task since the pixel accuracy is strongly
dependent on large structures such as the floor that are not split in the hierarchical labeling).
The argmax information, instead, brings a limited contribution to the final accuracy values.

One may wonder what would happen if we train both the first and the second stage with the
same set of classes (i.e., by just using a deeper network without really exploiting the hierarchical
structure of the classes). We expect this scenario to achieve almost the same results of our

99

https://github.com/LTTM/IL-Coarse2Fine

Table 6.1: Semantic segmentation performances on theNYUDv2datasetwith four classes of the proposedmethod andof some

competing approaches (the table shows percentage values). We underlined the best result among all the methods for each

metric, while the best result among the proposed techniques is reported in bold.

Method PA mCA mIoU
Silberman et al. [168] 59.6 58.6 -
Ren et al. [173] 73.0 58.0 -
Măller et al. [183] 71.9 72.3 -
Gupta et al. [184] 78.0 64.0 -
Cadena et al. [185] 66.9 65.2 -
Stuckler et al. [186] 70.9 65.0 -
Couprie et al. [181] 64.5 63.5 -
Eigen et al. [170] 83.2 82.0 -
DeepLab-v3+ 82.5 82.2 70.3

Table 6.2: Semantic segmentation performances on theNYUDv2 datasetwith 13 classes of the proposedmethods and of some

competing approaches (the table shows percentage values). We underline the best result among all the methods for each

metric, while the best result among the proposed techniques is reported in bold.

Method PA mCA mIoU
Wang et al. [187] - 42.2 -
Hermans et al. [188] 54.2 48.0 -
Khan et al. [189] 58.3 45.1 -
Couprie et al. [181] 52.4 36.2 -
Pagnutti et al. [182] 67.2 54.4 -
Michieli et al. [172] 67.2 54.5 -
Eigen et al. [170] 75.4 66.9 -
Baseline (DeepLab-v3+) 75.5 68.2 51.4
Stacking (2 concatenated DeepLab-v3+) 75.7 68.9 51.9
Incremental (softmax) 76.1 69.9 52.9
Incremental (argmax) 74.8 68.3 51.3
Incremental (edges) 76.3 69.8 53.9

baseline approach, or slightly higher, since we are retraining the same architecture with an
additional input, which is the output of the previously trained network. At the same time,
we expect that the incremental framework is the dominant factor for the performance increase.
Indeed, the results for this stacking are perfectly in line with our intuition, as reported in
Table 6.2 with the name “Stacking”.

Furthermore, we performed an additional incremental step to predict the set of 40 classes
starting from the prediction of the set of 13 labels. The results are reported in Table 6.3. In
this case, our method was outperformed by some methods in the literature, due to some inner
limitations of the employed DeepLab-v3+ architecture. However, the most interesting thing for
this work is the comparison with our baseline method, i.e., DeepLab-v3+ directly trained on the
40 classes, in order to appreciate the gain of the hierarchical approaches.

We can appreciate how the three additional cues employed produce some improvements in
the various metrics even if the gain is more limited. The result is still noticeable if we remember

100

Table 6.3: Semantic segmentation performance on the NYUDv2 dataset with 40 classes of the proposedmethods and of some

competingapproaches (the table showspercentagevalues). Weunderline thebest result amongall themethods foreachmetric,

while the best result among the proposed techniques is reported in bold.

Method PA mCA mIoU
Silberman et al. [168] 54.6 19.0 -
Ren et al. [173] 49.3 21.1 21.4
lin2017cascaded et al. [190] - - 47.7
Wang et al. [187] - 47.3 -
Gupta et al. [184] 60.3 35.1 31.3
Long et al. [1] 66.9 65.2 -
Liu et al. [191] 70.3 51.7 41.2
Qi et al. [192] - 55.7 43.1
Eigen et al. [170] 65.6 45.1 34.1
Baseline (DeepLab-v3+) 60.0 33.3 22.0
Incremental (softmax) 59.1 33.5 22.1
Incremental (argmax) 61.3 30.7 20.7
Incremental (edges) 59.2 34.0 22.1

Table 6.4: Experimental results onNYUDv2with simultaneous output of the three segmentationmaps, percentage values. The

best results are highlighted in bold.

Method 4 Classes 13 Classes 40 Classes
PA mCA mIoU PA mCA mIoU PA mCA mIoU

DeepLab-v3+ 82.5 82.2 70.3 75.5 68.2 51.4 60.0 33.3 22.0
Multi-tasking 83.2 82.3 72.0 75.6 68.2 51.7 61.0 33.3 22.1

that the splitting is highly unbalanced and inhomogeneous as we have seen in Section 6.2.3.
Finally, in Table 6.4, we evaluate our joint learning approach on the three sets of classes

simultaneously. We can appreciate that the joint model allows not only to predict the three sets
of labels at the same time, without the need for multiple training stages, but also to improve
the accuracy with respect to the baseline in all the scenarios and for all the metrics. The
improvement, although consistent across all experiments and metrics, is sometimes modest and
smaller than some of the previously proposed methods. The highest gains are achieved in the
PA and mIoU for the set of four classes and in the PA for the set of 40 classes. It should be
noticed that the chosen architecture is already highly performing, especially on the sets of 4 and
13 classes.

Figure 6.9 shows some qualitative results for the set of five classes. Here, we can compare
the performance of our baseline DeepLab-v3+ with respect to the multi-tasking approach (the
other methods do not apply to this setting since there is no coarser representation). As already
noticed, both the approaches have very high accuracy on this task. The image in the first column
is very similar between the two approaches; however, we can verify how the multi-task learning
outperforms the baseline in the remaining four images. In particular, look at the purple object
on the top left of the figure in second column, the orange top of the furniture on the left, or
again to the purple objects on the center-right of the image. In column 3, we can clearly see an
improvement in the definition of the shapes of the sofa and of the pillows. Similarly, the wall
and the furniture are better recognized in the last two images.

101

unlabeled floor perm structure furniture movable props

Figure 6.9: Qualitative results for the set of 5 classes of the proposed approaches. From left to right, the chosen images are the

ones numbered as: 0, 124, 145, 168, and 368.

Finally, we report in Figure 6.10 the qualitative results for the split of 15 classes for all the
proposed approaches. From the figure, we can appreciate that the incremental approach with
the softmax or the edges generally lead to a much cleaner prediction with few artifacts. This
can be seen particularly well in column 1, where the chair in the center of the image is fully
recovered by the proposed incremental methods, and in column 3, where the wall is cleaned from
prediction errors (in this scene, the sofa has also been properly segmented but a wrong label of
bed has been associated to it). In the same scenes, the baseline, the incremental approach with
the argmax, and the multi-tasking suffer from some artifacts. In column 4, we can notice that
the edges information revealed to be more significant than the softmax information to properly
recognize the leg of the pool table.

In general, we argue that the incremental approaches with edges or softmax information
are much more reliable than the conditioning based on the argmax: in the softmax case, a
larger amount of information is fed as additional input giving the network the possibility to
discriminate between certain or uncertain predictions while in the edges case the network is
forced to focus more on the edges of the objects, which typically represent one of the most
challenging characteristics to be learned.

For what concern computational requirements, the inference time of the modified DeepLab-
v3+ network is 23 ms on the workstation used for the training (with an Intel 970 CPU and a
Nvidia K40 GPU), which is roughly the same as the standard DeepLab-v3+ architecture. Notice
that incremental schemes require multiple inferences, e.g., the 13 classes experiment requires
executing the model two times in cascade (one for the four-class network and one for the 13-
class network taking in input also the outcome of the four-class model). If real-time performance
were needed, the best option would be the joint learning scheme proposed in Section 6.2.2.2 that
is able to perform all three tasks with a single pass through the encoder module that is the most
computationally demanding stage being the decoder very lightweight.

102

unlabeled/unknown bed chair ceiling floor picture sofa
table wall window books monitor furniture object

Figure 6.10: Qualitative results for the set of 15 classes of the proposed approaches. From left to right, the chosen images are

the ones numbered as: 0, 124, 145, 168, 368.

103

6.3 Coarse-to-Fine Learning at the Spatial Level

The segmentation and labeling of parts of objects can be regarded as a special case of seman-
tic segmentation that focuses on parts decomposition. The information about parts provides a
richer representation useful for many fine-grained tasks, such as pose estimation [193, 194], cat-
egory detection [195–197], fine-grained action detection [198] and image classification [199,200].
However, current approaches for semantic segmentation are not optimized to distinguish be-
tween different semantic parts since corresponding parts in different semantic classes often share
similar appearance. Additionally, they only capture limited local context while the precise local-
ization of semantic part layouts and their interactions requires a wider perspective of the image.
Thus, it is not sufficient to take standard semantic segmentation methods and treat each part as
an independent class. In the literature, object-level semantic segmentation has been extensively
studied. Part parsing, instead, has only been marginally explored in the context of a few specific
single-class objects, such as humans [201–204], cars [205,206] and animals [207–209]. Multi-class
part-based semantic segmentation has only been considered in a recent work [210], due to the
challenging scenario of part-level as well as object-level ambiguities. Here, we introduce an ap-
proach dealing with the semantic segmentation of an even larger set of parts and we demonstrate
that the proposed methodology is able to deal with a large amount of parts contained in the
scenes.

Nowadays, one of the most active research directions is the transfer of previous knowledge,
acquired on a different but related task, to a new situation. Different interpretations may exist to
this regard. In the class-incremental task (see previous chapters), the learned model is updated
to perform a new task whilst preserving previous capabilities: many methods have been proposed
for image classification [48,49,81], object detection [51] and semantic segmentation [18,20–23,56].
Another aspect regards the coarse-to-fine refinement at the semantic level, in which previous
knowledge acquired on a coarser task is exploited to perform a finer task [24, 211, 212] (see
previous section). In this section, instead, we investigate the coarse-to-fine refinement at the
spatial level, in which object-level classes are split into their respective parts [208,210,213].

More precisely, we investigate the multi-object and multi-part parsing in the wild, which
simultaneously handles all semantic objects and parts within each object in the scene. Even
strong recent baselines for semantic segmentation, such as FCN [1], SegNet [214], PSPNet [3]
or DeepLab [5, 6], face additional challenges when dealing with this task, as shown in [210]. In
particular, the simultaneous appearance of multiple objects and the inter-class ambiguity may
cause inaccurate boundary localization and severe classification errors. For instance, animals
often have homogeneous appearance due to furs on the whole body. Additionally, the appearance
of some parts over multiple object classes may be very similar, such as cow legs and sheep legs.
Current algorithms heavily suffer from these aspects. To address object-level ambiguity, we
propose an object-level conditioning to serve as guidance for part parsing within the object.
An auxiliary reconstruction module from parts to objects further penalize predictions of parts
in regions occupied by an object which does not contain the predicted parts within it. At the
same time, to tackle part-level ambiguity, we introduce a graph-matching module to preserve
the relative spatial relationships between ground truth and predicted parts.

When people look at scenes, they tend to locate first the objects and then to refine them
via semantic part parsing [213]. This is the same rationale for our class-conditioning approach,
which consists of an approach to refine parts localization exploiting previous knowledge. In
particular, the object-level predictions of the model serve as a conditioning term for the decoding
stage on the part-level. The predictions are processed via an object-level semantic embedding
Convolutional Neural Network (CNN) and its features are concatenated with the ones produced
by the encoder of the part-level segmentation network. The extracted features are enriched with

104

this type of information prior, guiding the output of the part-level decoding stage. We further
propose to address part-level ambiguity via a novel graph-matching technique applied to the
segmentation maps. A couple of adjacency graphs are built from neighboring parts both from
the ground-truth and from the predicted segmentation maps. Such graphs are weighted with
the normalized number of adjacent pixels to represent the strength of connection between the
parts. Then, a novel loss function is designed to enforce their similarity. These provisions allow
the architecture to discover the differences in appearance between different parts within a single
object, and at the same time to avoid the ambiguity across similar object categories.

The main contributions of this work can be summarized as follows:

1. We tackle the challenging multi-class part parsing via an object-level semantic embedding
network conditioning the part-level decoding stage.

2. We introduce a novel graph-matching module to guide the learning process toward accurate
relative localization of semantic parts.

3. Our approach (GMNet) achieves new state-of-the-art performance on multi-object part
parsing on the Pascal-Part dataset [195]. Moreover, it scales well to large sets of parts.

6.3.1 Preliminaries

Single-Object Part Parsing has been actively investigated in the recent literature. However,
most previous work assumes images containing only the considered object, well-localized before-
hand and with no occlusions. Single-object parts parsing has been applied to animals [207],
cars [204–206] and humans parsing [201–204]. Traditional deep neural network architectures
may also be applied to part parsing regarding each semantic part as a separate class label. How-
ever, such strategies suffer from the high similar appearance between parts and from large scale
variations of objects and parts. Some coarse-to-fine strategies have been proposed to tackle this
issue. Hariharan et al. [211] propose to sequentially perform object detection, object segmenta-
tion and part segmentation with different architectures. However, there are some limitations,
in particular the complexity of the training and the error propagation throughout the pipeline.
An upgraded version of the framework has been presented in [213], where the same structure is
employed for the three networks and an automatic adaptation to the size of the object is intro-
duced. In [208] a two-channels FCN is employed to jointly infer object and part segmentation
for animals. However, it uses only a single-scale network not capturing small parts and a fully
connected CRF is used as post-processing technique to explore the relationship between parts
and body to perform the final prediction. In [215] an attention mechanism that learns to softly
weight the multi-scale features at each pixel location is proposed.

Some approaches resort to structure-based methodologies, e.g., compositional, to model part
relations [207, 208, 216–219]. Wang et al. [207] propose a model to learn a mixture of com-
positional models under various poses and viewpoints for certain animal classes. In [216] a
self-supervised structure-sensitive learning approach is proposed to constrain human pose struc-
tures into parsing results. In [217, 218] graph LSTMs are employed to refine the parsing re-
sults of initial over-segmented superpixel maps. Pose estimation is also useful for part parsing
task [212, 216, 219–221]. In [212], the authors refine the segmentation maps by supervised pose
estimation. In [220] a mutual learning model is built for pose estimation and part segmentation.
In [219], the authors exploit anatomical similarity among humans to transfer the parsing results
of a person to another person with similar pose. In [221] multi-scale features aggregation at
each pixel is combined with a self-supervised joint loss to further improve the feature discrim-
inative capacity. Other approaches utilize tree-based approach to hierarchically partition the

105

parts [206, 222]. Lu et al. [206] propose a method based on tree-structured graphical models
from different viewpoints combined with segment appearance consistency for part parsing. Xia
et al. [222] firstly generate part segment proposals and then infer the best ensemble of parts-
segment through and-or graphs. Knowledge graphs have been used for compositional object
classification based on object parts in [223,224].

Even though single-object part parsing has been extensively studied so far, Multi-Object
and Multi-Part Parsing has been considered only recently [210]. In this setup, most previous
techniques fail struggling with objects that were not previously well-localized, isolated and with
no occlusions. Zhao et al. in [210] tackle this task via a joint parsing framework with boundary
and semantic awareness for enhanced part localization and object-level guidance. Part bound-
aries are detected at early stages of feature extraction and then used in an attention mechanism
to emphasize the features along the boundaries at the decoding stage. An additional attention
module is employed to perform channel selection and is supervised by a supplementary branch
predicting the semantic object classes.

6.3.2 ProposedMethod

When we look at images, we often firstly locate the objects and then the more detailed task of
semantic part parsing is addressed using mainly two priors: (1) object-level information and (2)
relative spatial relationships among parts. Following this rationale, the semantic parts parsing
is supported by the information coming from an initial prediction of the coarse object-level set
of classes and by a graph-matching strategy working at the part-level.

An overview of our framework is shown in Figure 6.11. We employ two semantic segmenta-
tion networks Ao and Ap trained for the objects-level and part-level task respectively, together
with a semantic embedding network S transferring and processing the information of the first
network to the second to address the object-level prior. This novel coarse-to-fine strategy to
gain insights into parts detection will be the subject of this section. Furthermore, we account
for the second prior exploiting an adjacency graph structure to mimic the spatial relationship
between neighboring parts to allow for a general overview of the semantic parts as described in
Section 6.3.3.

The semantic segmentation networks have an autoencoder structure and can be written as
the composition of an encoder and a decoder as Ao = {Eo,Do} and Ap = {Ep,Dp} for the
object-level and part-level networks, respectively. We employ the DeepLab-v3 [6] segmentation
network with Resnet-101 [152] as encoder. The network Ao is trained using the object-level
ground truth labels and then kept fixed. It extracts object-level segmentation maps which serve
as a guidance for the decoder of the part-level network Dp, in order to avoid the ambiguity
across similar object categories. We achieve this behavior by feeding the output maps of Ao to
an object-level semantic embedding network. In this work, we used a CNN (denoted with S)
formed by a cascade of 4 convolutional layers with stride of 2, square kernel sizes of 7, 5, 3, 3,
and channel sizes of 128, 256, 512, 1024.

The part-level semantic segmentation network Ap has the same encoder architecture of Ao.
Its decoder Dp, instead, merges the features computed on the RGB image and the ones computed
on the object-level predicted map via multiple channel-wise concatenations. More in detail, each
layer of the decoder considers a different resolution and its feature maps are concatenated with
the layer at corresponding resolution of S. In this way, the combination is performed at multiple
resolutions in the feature space to achieve higher scale invariance as shown in Figure 6.11.

Formally, given an input RGB image X ∈ RW×H , the concatenation between part and object-

106

Figure 6.11: Architecture of the proposedGraphMatchingNetwork (GMNet) approach. A semantic embedding network takes

as input the object-level segmentation map and acts as high level conditioning when learning the semantic segmentation of

parts. On the right, a reconstruction loss function rearranges parts into objects and the graphmatchingmodule aligns the rela-

tive spatial relationships between ground truth and predicted parts.

level aware features is formulated as:

Fi(X) = Dp,i(X)⊕ Sk+1−i(Ao(X)) i = 1, ..., k (6.4)

where Dp,i is the i-th decoding layer of the part segmentation network, Si denotes the i-th layer
of S, k is the number of layers and matches the number of upsampling stages of the decoder (e.g.,
k = 4 in the DeepLab-v3), Fi is the input of Dp,i+1. Since the object-level segmentation is not
perfect, in principle, errors from the predicted class in the object segmentation may propagate to
the parts. To account for this, similarly to [213], here we do not make premature decisions but
the channel-wise concatenation still leaves the final decision of the labeling task to the decoder.

The training of the proposed framework (i.e., of Ap and S, while Ao is kept fixed after the
initial training) is driven by multiple loss components. The first is a standard cross-entropy loss
LCE to learn the semantic segmentation of parts:

LCE =

Np∑
cp=1

Yp[cp] · log
(
Ŷp[cp]

)
(6.5)

where Yp is the one-hot encoded ground truth map, Ŷp is the predicted map, cp is the part-class
index and Np is the number of parts.

The object-level semantic embedding network is further guided by a reconstruction module
that rearranges parts into objects. This is done applying a cross-entropy loss between object-
level one-hot encoded ground truth maps Yo and the summed probability Ŷp→o derived from
the part-level prediction. More formally, defining l as the parts-to-objects mapping such that
object j contains parts from index l[j − 1] + 1 to l[j], we can write the summed probability as:

Ŷp→o[j] =
∑

i=l[j−1]+1,...,l[j]

Ŷp[i] j = 1, ..., No (6.6)

where No is the number of object-level classes and l[0] = 0. Then, we define the reconstruction

107

Figure6.12:Overviewof thegraphmatchingmodule. In this case, cat’s headandbodywouldbeconsideredasdetachedwithout

the proper morphological dilation over the parts.

loss as:

Lrec =

No∑
co=1

Yo[co] · log
(
Ŷp→o[co]

)
(6.7)

The auxiliary reconstruction function Lrec acts differently from the usual cross-entropy loss on
the parts LCE . While LCE penalizes wrong predictions of parts in all the portions of the image,
Lrec only penalizes for part-level predictions located outside the respective object-level class. In
other words, the event of predicting parts outside the respective object-level class is penalized
by both the losses. Instead, parts predicted within the object class are penalized only by LCE ,
i.e., they are considered as a less severe type of error since, in this case, parts only need to be
properly localized inside the object-level class.

6.3.3 Graph-Matching for Semantic Parts Localization

Providing global context information and disentangling relationships is useful to distinguish
fine-grained parts. For instance, upper and lower arms share highly similar appearance. To
differentiate between them, global and reciprocal information, like the relationship with neigh-
boring parts, provides an effective context prior. Hence, to further enhance the accuracy of part
parsing, we tackle part-level ambiguity and localization by proposing a novel module based on an
adjacency graph that matches the parts spatial relationships between ground truth and predicted
parts. More in detail, the graphs capture the adjacency relationships between each couple of
parts and then we enforce the matching between the ground truth and predicted graph through
an additional loss term. Although graph matching is a very well studied problem [225, 226], it
has never been applied to this context before, i.e. as a loss function to drive deep learning ar-
chitectures for semantic segmentation. The only other attempt to design a graph matching loss
is [227], which however deals with a completely different task, i.e., domain adaptation in clas-
sification, and has a different interpretation of the graph, that measures the matching between
the source and target domains.

An overview of this module is presented in Figure 6.12. Formally, we represent the graphs
using two (square) weighted adjacency matrices of size Np:

M̃
GT

=
{
m̃GT

i,j

}
i=1,...,Np

j=1,...,Np

M̃
pred

=
{
m̃pred

i,j

}
i=1,...,Np

j=1,...,Np

(6.8)

108

The first matrix (M̃GT) contains the adjacency information computed on ground truth data,
while the second (M̃pred) has the same information computed on the predicted segmentation
maps. Each element of the matrices provide a measure of how close the two parts pi and pj are in
the ground truth and in the predicted segmentation maps, respectively. We do not consider self-
connections, hence m̃GT

i,i = m̃pred
i,i = 0 for i = 1, ..., Np. To measure the closeness between couples

of parts, that is a hint of the strength of connection between them, we consider weighted matrices
where each entry m̃i,j depends on the length of the contour in common between them. Actually,
to cope for some inaccuracies inside the dataset where some adjacent parts are separated by
thin background regions, the entries of the matrices are the counts of pixels belonging to one
part with a distance less or equal than T from a sample belonging to the other part. In other
words, m̃GT

i,j represents the number of pixels in pi whose distance from a pixel in pj is less than
T . We empirically set T = 4 pixels. Since the matrix M̃

pred needs to be recomputed at each
training step, we approximate this operation by dilating the two masks of dT/2e and computing
the intersecting region. Formally, defining with pGT

i = Yp[i] the mask of the i-th part in the
ground truth map Yp, we have:

m̃GT
i,j =

∣∣{s ∈ Φ
(
pGT
i

)
∩ Φ

(
pGT
j

)}∣∣ (6.9)

Where s is a generic pixel, Φ(·) is the morphological 2D dilation operation and | · | is the
cardinality of the given set. We apply a row-wise L2 normalization and we obtain a matrix of
proximity ratios MGT

[i,:] = M̃
GT

[i,:]/‖M̃
GT

[i,:]‖2 that measures the flow from the considered part to all
the others.

With this definition, non-adjacent parts have 0 as entry. The same approach is used for the
adjacency matrix computed on the predicted segmentation map Mpred by substituting pGT

i with
ppredi = Ŷp[i].

Then, we simply define the Graph-Matching loss as the Frobenius norm between the two
adjacency matrices:

LGM = ||MGT −Mpred||F (6.10)

The aim of this loss function is to faithfully maintain the reciprocal relationships between parts.
On one hand, disjoint parts are enforced to be predicted as disjoint; on the other hand, neigh-
boring parts are enforced to be predicted as neighboring and to match the proximity ratios.

Summarizing, the overall training objective of our framework is:

L = LCE + λ1Lrec + λ2LGM (6.11)

where the hyper-parameters λ1 and λ2 are used to control the relative contribution of the
three losses to the overall objective function.

6.3.4 Training of the Deep Learning Architecture

6.3.4.1 Multi-Part Dataset

For the experimental evaluation of the proposed multi-class part parsing framework we employed
the Pascal-Part [195] dataset, which is currently the largest dataset for this purpose. It contains a
total of 10103 variable-sized images with pixel-level parts annotation on the 20 Pascal VOC2010
[114] semantic object classes (plus the background class). We employ the original split from [195]
with 4998 images in the trainset for training and 5105 images in the valset for testing. We
consider two different sets of labels for this dataset. Firstly, following [210], which is the only
work dealing with the multi-class part parsing problem, we grouped the original semantic classes

109

into 58 part classes in total. Additionally, to further test our method on a even more challenging
scenario, we consider the grouping rules proposed by [228] for part detection that, instead, leads
to a larger set of 108 parts.

6.3.4.2 Training Details

The modules introduced in this work are agnostic to the underlying network architecture and
can be extended to other scenarios. For a fair comparison with [210] we employ a DeepLab-
v3 [6] architecture with ResNet101 [152] as the backbone. We follow the same training schemes
of [5,6,210] and we started from the official TensorFlow [125] implementation of the DeepLab-v3
[6,229]. The ResNet101 was pre-trained on ImageNet [121] and its weights are available at [229].
During training, images are randomly left-right flipped and scaled of a factor from 0.5 to 2 times
the original resolution with bilinear interpolation. The results in the testing stage are reported at
the original image resolution. The model is trained for 50K steps with the base learning rate set
to 5 · 10−3 and decreased with a polynomial decay rule with power 0.9. We employ weight decay
regularization of 10−4. The atrous rate in the Atrous Spatial Pyramid Poooling (ASPP) is set
to (6, 12, 18) as in [5,210]. We use a batch size of 10 images and we set λ1 = 10−3 and λ2 = 10−1

to balance part segmentation. For the evaluation metric, we employ the mean Intersection over
Union (mIoU) since pixel accuracy is dominated by large regions and little sensitive to the
segmentation on many small parts, that are instead the main target of this work. The code and
the part labels are publicly available at https://lttm.dei.unipd.it/paper_data/GMNet.

6.3.5 Experimental Results

In this section we show the experimental results on the multi-class part parsing task in two
different scenarios with 58 and 108 parts respectively. We also present some ablation studies to
verify the effectiveness of the proposed methodologies.

Table 6.5: IoU results on the Pascal-Part-58 benchmark. mIoU: mean per-part-class IoU. Avg: average per-object-class mIoU.

Method b
gr

ae
ro

b
ik
e

b
ir
d

b
oa
t

b
ot
tl
e

b
u
s

ca
r

ca
t

ch
ai
r

co
w

d
.
ta
b
le

d
og

h
or
se

m
b
ik
e

p
er
so
n

p
la
n
t

sh
ee
p

so
fa

tr
ai
n

tv m
Io

U

A
v

g
.

SegNet [214] 85.4 13.7 40.7 11.3 21.7 10.7 36.7 26.3 28.5 16.6 8.9 16.6 24.2 18.8 44.7 35.4 16.1 17.3 15.7 41.3 26.1 24.4 26.5

FCN [1] 87.0 33.9 51.5 37.7 47.0 45.3 50.8 39.1 45.2 29.4 31.2 32.5 42.4 42.2 58.2 40.3 38.3 43.4 35.7 66.7 44.2 42.3 44.9

DeepLab [5] 89.8 40.7 58.1 43.8 53.9 44.5 62.1 45.1 52.3 36.6 41.9 38.7 49.5 53.9 66.1 49.0 45.3 45.3 40.5 76.8 56.5 49.9 51.9

BSANet [210] 91.6 50.0 65.7 54.8 60.2 49.2 70.1 53.5 63.8 36.5 52.8 43.7 58.3* 66.0 71.6* 58.4 55.0 49.6 43.1 82.2 61.4 58.2 58.9*

Baseline [6] 91.1 45.7 63.2 49.0 54.4 49.8 67.6 49.2 59.8 35.4 47.6 43.0 54.4 62.0 68.0 55.0 48.9 45.9 43.2 79.6 57.7 54.4 55.7

GMNet 92.7 46.7 66.4 52.0 70.0 55.7 71.1 52.2 63.2 51.4 54.8 51.3 59.6 64.4 73.9 56.2 56.2 53.6 56.1 85.0 65.6 59.0 61.8

*: values different from [210] since they were wrongly reported in the paper.

6.3.5.1 Pascal-Part-58

To evaluate our framework we start from the scenario with 58 parts, i.e., the same experimental
setting used in [210]. In Table 6.5 we compare the proposed model with existing semantic
segmentation schemes. As evaluation criteria we employ the mean IoU of all the parts (i.e.,
mIoU), the average IoU for all the parts belonging to each single object, and the mean of these
values (denoted as Avg., i.e., in this case each object has the same weight independently of
the number of parts). As expected, traditional semantic segmentation architectures such as
FCN [1], SegNet [214] and DeepLab [5] are not able to perform a fully satisfactory part-parsing.

110

https://lttm.dei.unipd.it/paper_data/GMNet

We adopt as our baseline network the DeepLab-v3 architecture [6], that is the best performing
among the compared standard approaches achieving 54.4% of mIoU. The proposed GMNet
approach combining both the object-level semantic embedding and the graph matching module
achieves a higher accuracy of 59.0% of mIoU, significantly outperforming all the other methods
and in particular the baseline on every class with a gap of 4.6% of mIoU. The only other method
specifically addressing part-based semantic segmentation is BSANet [210], which achieves a lower
mIoU of 58.2%. Our method achieves higher results over most of the objects, both with many
parts (like cow, dog and sheep) and with no or few parts (like boat, bottle, chair, dining table and
sofa).

Qualitative results are shown in Figure 6.13. The effects of the two main components of our
work, namely the object-level semantic embedding network S and the graph matching module,
are clearly visible in the images.

From one side, the object-level semantic embedding network brings useful additional infor-
mation prior to the part-level decoding stage, thus enriching the extracted features to be object
discriminative. We can appreciate this aspect from the first and the third row. In the first row,
the baseline completely misleads a dog with a cat (light green corresponds to cat_head and green
to cat_torso). BSANet is able to partially recover the dog_head (amaranth corresponds to the
proper labeling). Our method, instead, is able to accurately detect and segment the dog parts
(dog_head in amaranth and dog_torso in blue) thanks to object-level priors coming from the
semantic embedding module. A similar discussion can be done also on the third image, where
the baseline confuses car parts (green corresponds to window, aquamarine to body and light green
to wheel) with bus parts (pink is the window, brown the body and dark green the wheel) and
BSANet is not able to correct this error. GMNet, instead, can identify the correct object-level
class and the respective parts, excluding the very small and challenging car_wheels, and at the
same time can better segment the bus_window. In row 6, BSANet confuses cow’s parts with
sheep’s parts. In row 7, the baseline confuses sheep’s parts with cat’s ones and BSANet with
dog’s parts. GMNet is able to correctly deal with these situations thanks to the object-level
guidance. Again, in the last row both the baseline and BSANet mislead the dog’s parts with
cat’s parts, while GMNet is able to avoid this error.

From the other side, the graph matching module helps in the mutual localization of parts
within the same object-level class and it is more appreciable on small parts. The effect of the
graph matching module is more evident in the second and fourth row. In the second image, we
can verify how both the baseline and BSANet are not able to correctly place the dog_tail (in
yellow) misleading it with the dog_head (in red). Thanks to the graph matching module, GMNet
can disambiguate between such parts and correctly exploit their spatial relationship with respect
to the dog_body. In the fourth image, both the baseline and BSANet tend to overestimate the
presence of the cat_legs (in dark green) and they miss one cat_tail. The constraints on the
relative position among the various parts enforced by the graph matching module allow GMNet
to properly segment and label the cat_tail and to partially correct the estimate of the cat_legs.

Moreover, in a very challenging image in row 5, where both the baseline and BSANet partially
or completely miss some classes, our method generate superior quality segmentation maps. A
vehicle behind a metal grid is being correctly identified and quite well localized in all its parts
thanks to the semantic embedding module and to graph matching.

Per-part-class IoU and PA on the Pascal-Part-58 dataset are shown in Table 6.6, where
it is possible to see that the proposed method (GMNet) outperforms the baseline [6] approach
on almost every part both considering the per-part-IoU and the per-part-PA. With respect to
BSANet [210], GMNet can produce clearly higher results on 15 objects out of 21 (such as bottle,
bus, dog, sheep,...) and can produce comparable results on 2 objects (i.e., on car ad cat).

We can further verify the ranking of the compared methods analyzing the average metrics

111

RGB Annotation Baseline [6] BSANet [210] GMNet (ours)

Figure 6.13: Qualitative results on some sample scenes on the Pascal-Part-58 dataset.

112

reported in Table 6.7. Here, we can appreciate how GMNet is able to outperform both the
baseline and BSANet robustly on all the most widely used metrics for semantic segmentation.

Table 6.6: Per-part IoU and PA on the Pascal-Part-58 dataset.

Parts Name
Baseline BSANet GMNet

Parts Name
Baseline BSANet GMNet

IoU PA IoU PA IoU PA IoU PA IoU PA IoU PA

background 91.1 96.3 91.6 96.7 92.7 96.9 cow tail 0.0 0.0 7.9 8.1 8.1 8.4

aeroplane body 66.6 79.8 70.0 81.4 69.6 81.2 cow leg 46.1 62.3 53.4 67.5 53.5 67.2

aeroplane engine 25.7 31.4 29.1 33.8 25.7 31.2 cow torso 69.9 83.5 73.5 85.9 77.1 87.8

aeroplane wing 33.5 48.2 38.3 49.1 34.2 46.4 dining table 43.0 55.4 43.7 54.8 51.3 62.6

aeroplane stern 57.1 68.2 59.2 72.5 57.2 70.8 dog head 78.7 88.3 82.5 91.4 85.0 92.7

aeroplane wheel 45.4 53.3 53.2 62.5 46.8 53.3 dog leg 48.1 59.9 53.8 63.0 53.8 64.8

bike wheel 78.0 88.1 78.0 88.6 81.3 88.5 dog tail 27.1 39.4 31.3 38.0 31.4 41.5

bike body 48.4 61.2 53.4 68.4 51.5 64.2 dog torso 63.7 76.8 65.7 79.7 68.0 81.2

bird head 64.6 72.7 74.0 80.2 71.1 79.3 horse head 74.7 81.7 76.6 83.3 73.9 80.5

bird wing 35.1 45.5 39.7 53.2 38.6 52.9 horse tail 47.0 60.4 51.0 59.9 50.4 62.2

bird leg 29.3 37.6 34.8 42.6 28.7 35.4 horse leg 55.9 70.9 61.6 75.8 59.3 72.9

bird torso 66.9 83.1 70.9 84.4 69.5 83.1 horse torso 70.3 84.2 74.9 86.6 73.9 87.4

boat 54.4 64.8 60.2 69.6 70.0 78.5 mbike wheel 70.9 82.5 71.6 82.1 73.5 84.0

bottle cap 30.7 35.4 29.8 35.0 33.9 42.5 mbike body 65.1 80.9 71.5 87.7 74.3 87.8

bottle body 68.8 78.5 68.6 74.8 77.6 86.1 person head 83.5 91.6 85.0 92.3 84.7 91.8

bus window 72.7 83.7 74.8 85.9 75.4 86.1 person torso 65.9 80.6 68.2 82.7 67.0 82.3

bus wheel 55.3 66.3 57.1 70.1 58.1 72.1 person larm 46.9 60.0 52.0 65.6 48.6 62.8

bus body 74.8 88.2 78.3 88.7 79.9 89.8 person uarm 51.5 65.8 54.4 68.2 52.4 66.9

car window 62.6 73.9 68.1 78.2 64.8 77.5 person lleg 38.6 51.5 43.5 54.6 40.2 51.5

car wheel 64.8 78.1 68.5 79.7 70.3 79.8 person uleg 43.8 60.0 47.4 63.5 44.5 59.9

car light 46.2 54.3 53.7 61.7 48.4 56.0 pplant pot 45.3 61.0 53.5 64.8 56.0 69.1

car plate 0.0 0.0 0.0 0.0 0.0 0.0 pplant plant 52.4 62.1 56.6 65.8 56.4 66.4

car body 72.1 86.4 77.0 88.4 77.6 88.2 sheep head 60.9 69.3 65.4 71.3 70.8 79.0

cat head 80.2 90.4 83.7 92.3 83.8 91.6 sheep leg 8.6 11.1 11.7 16.5 14.3 20.2

cat leg 48.6 61.2 50.1 58.6 49.4 59.1 sheep torso 68.3 84.4 71.6 86.1 75.6 88.7

cat tail 40.2 51.3 48.8 55.6 46.0 56.7 sofa 43.2 58.8 43.1 57.4 56.1 65.0

cat torso 70.3 85.7 72.6 88.0 73.8 87.6 train 79.6 86.1 82.2 90.2 85.0 92.0

chair 35.4 43.3 36.5 42.7 51.4 63.9 tv screen 69.5 76.0 73.1 78.6 77.0 84.3

cow head 74.3 85.6 76.4 86.0 80.7 87.8 tv frame 45.9 56.9 49.8 60.9 54.1 67.4

6.3.5.2 Pascal-Part-108

To further verify the robustness and the scalability of the proposed methodology we perform
a second set of experiments using an even larger number of parts. The results on the Pascal-
Part-108 benchmark are reported in Table 6.8. Even though we can immediately verify a drop
in the overall performance, that is predictable being the task more complex with respect to the
previous scenario with an almost double number of parts, we can appreciate that our framework
is able to largely surpass both the baseline and [210]. It achieves a mIoU of 45.8%, outperforming
the baseline by 4.5% and the other compared standard segmentation networks by an even larger
margin. The gain with respect to the main competitor [210] is remarkable with a gap of 2.9%

113

Table 6.7: Comparison in terms of mIoU, mCA andmPA on Pascal-Part-58.

Method mIoU mPA mCA
Baseline [6] 54.45 89.86 65.42
BSANet [210] 58.15 90.76 68.12
GMNet 59.04 91.55 69.22

of mIoU. In this scenario, indeed, most of the previous considerations holds and are even more
evident from the results. The gain in accuracy is stable across the various classes and parts: the
proposed framework significantly wins by large margins on almost every per-object-class mIoU.

Thanks to the object-level semantic embedding network our model is able to obtain accurate
segmentation of all the objects with few or no parts inside, such as boat, bottle, chair, plant and
sofa. On these classes, the gain with respect to [210] ranges from 5.4% for the plant class to an
impressive 15% on the chair class. On the other hand, thanks to the graph matching module,
our framework is also able to correctly understand the spatial relationships between small parts,
as for example the ones contained in cat, cow, horse and sheep. Although objects are composed
by tiny and difficult parts, the gain with respect to [210] is still significant and ranges between
1.5% on horse parts to 11.2% on cow ones.

The qualitative results for some sample scenes presented in Figure 6.14 confirm the nu-
merical evaluation. We can appreciate that the proposed method is able to compute accurate
segmentation maps both when a few elements or many parts coexist in the scene. More in detail,
in the first row we can verify the effectiveness of the object-level semantic embedding in condi-
tioning part parsing. The baseline is not able to localize and segment the body and the neck of
the sheep. The BSANet approach [210] achieves even worse segmentation and labeling perfor-
mance. Such methods mislead the sheep with a dog (in the figure light blue denotes dog_head,
light purple dog_neck, brown dog_muzzle and yellow dog_torso) or with a cat (purple denotes
cat_torso). Thanks to the object-level priors, GMNet is able to associate the correct label to
each of the parts correctly identifying the sheep as the macro class. In the second row, the effect
of the graph matching procedure is more evident, which is much more significant on this dataset
because it contains many small-sized parts. The baseline approach tends to overestimate and
badly localize the cow_horns (in brown) and BSANet confuses the cow_horns with the cow_ears
(in pink). GMNet, instead, achieves superior results thanks to the graph module which accounts
for proper localization and contour shaping of the various parts. In the third row, a scenario
with two object-level classes having no sub-parts is reported. Again, we can check how GMNet
is able to discriminate between chair (in pink) and sofa (in light brown). In the fourth row we
can appreciate how the two parts of the potted plant are correctly segmented by GMNet thanks
to the semantic embedding module for what concerns object identification and to the graph

Table 6.8: IoU results on the Pascal-Part-108 benchmark. mIoU: mean per-part-class IoU. Avg: average per-object-class mIoU.

†: re-trained on the Pascal-Part-108 dataset.

Method b
gr

ae
ro

b
ik
e

b
ir
d

b
oa
t

b
ot
tl
e

b
u
s

ca
r

ca
t

ch
ai
r

co
w

d
.
ta
b
le

d
og

h
or
se

m
b
ik
e

p
er
so
n

p
la
n
t

sh
ee
p

so
fa

tr
ai
n

tv m
Io

U

A
v

g
.

SegNet [214] 85.3 11.2 32.4 6.3 21.4 10.3 27.9 22.6 22.8 17.0 6.3 12.5 21.1 14.9 12.2 32.2 13.8 12.6 15.2 11.3 27.5 18.6 20.8

FCN [1] 86.8 30.3 35.6 23.6 47.5 44.5 21.3 34.5 35.8 26.6 20.3 24.4 37.7 29.8 14.2 35.6 34.4 28.9 34.0 18.1 45.6 31.6 33.8

DeepLab [5] 90.2 38.3 35.4 29.4 57.0 41.5 27.0 40.1 45.5 36.6 33.3 35.2 41.1 48.8 19.5 40.6 46.0 23.7 40.8 17.5 70.0 35.7 40.8

BSANet† [210] 91.6 45.3 40.9 41.0 61.4 48.9 32.2 43.3 50.7 34.1 39.4 45.9 52.1 50.0 23.1 52.4 50.6 37.8 44.5 20.7 66.3 42.9 46.3

Baseline [6] 90.9 41.9 44.5 35.3 53.7 47.0 34.1 42.3 49.2 35.4 39.8 33.0 48.2 48.8 23.2 50.4 43.6 35.4 39.2 20.7 60.8 41.3 43.7

GMNet 92.7 48.0 46.2 39.3 69.2 56.0 37.0 45.3 52.6 49.1 50.6 50.6 52.0 51.5 24.8 52.6 56.0 40.1 53.9 21.6 70.7 45.8 50.5

114

RGB Annotation Baseline [6] BSANet [210] GMNet (ours)

Figure 6.14: Qualitative results on sample scenes on the Pascal-Part-108 dataset.

115

matching strategy for what concerns small parts localization. In rows 5 and 6, GMNet generates
cleaner segmentation maps exploiting object-level priors which help to disambiguate between
cars and buses. In row 7, the cow_horns and cow_body are badly localized and labelled both
by the baseline and by BSANet. However, the graph matching component on the reciprocal
spatial relationship between these parts and the others guides the network to properly localize
and label such parts. In row 8 our framework is able to well localize horse’s parts and especially
the challenging horse_tail part.

Per-part-IoU and per-part-PA on the Pascal-Part-108 dataset are reported in Table 6.9,
where we can notice that the gap between the proposed framework and the compared methods
is significantly larger than for the Pascal-Part-58 dataset. GMNet achieves higher accuracy than
the competitors on almost all the parts. In particular, our framework is able to outperform
BSANet [210] in 19 out of 21 object-level classes both with many parts within them (such as
aeroplane, bus, cat, dog, person, sheep,...) and with no or few parts within them (such as boat,
bottle, chair, sofa, tv,..).

The mean accuracy results are shown in Table 6.10 where we can verify that our method
clearly outperforms both the baseline [6] and BSANet [210] on all the most popular metrics
used to evaluate semantic segmentation architectures. Hence, we prove the robustness of our
framework to different evaluation criteria and to different datasets. Additionally, we argue that
the proposed framework is able to scale well to even larger sets of parts.

6.3.6 Ablation Studies

In this section we conduct an accurate investigation of the effectiveness of the various modules
of the proposed work on the Pascal-Part-58 dataset.

We start by evaluating the individual impact of the modules and the performance analysis is
shown in Table 6.11. Let us recall that the baseline architecture (i.e., the DeepLab-v3 network
trained directly on the 58 parts with only the standard cross-entropy loss enabled) achieves a
mIoU of 54.4%. The reconstruction loss on the object-level segmentation maps helps in preserv-
ing the object-level shapes rearranging parts into object-level classes and allows to improve the
mIoU to 55.2%. The semantic embedding network S acts as a powerful class-conditioning mod-
ule to retain object-level semantics when learning parts and allows to obtain a large performance
gain: its combination with the reconstruction loss leads to a mIoU of 58.4%. The addition of
the graph matching procedure further boost the final accuracy to 59.0% of mIoU. To better un-
derstand the contribution of this module we also tried a simpler unweighted graph model whose
entries are just binary values representing whether two parts are adjacent or not (column Lu

GM

in the table). This simplified graph leads to a mIoU of 58.7%, lacking some information about
the closeness of adjacent parts.

Then, we present a more accurate analysis of the impact of the semantic embedding module
and the results are summarized in Table 6.12. First of all, the exploitation of the multiple
concatenation between features computed by S and features of Dp at different resolutions allows
object-level embedding at different scales and enhances the scale invariance. Concatenating only
the output of S with the output of Ep (we refer to this approach with “single concatenation”),
the final mIoU slightly decreases to 58.7%. In order to evaluate the usefulness of exploiting
features extracted from a CNN, we compared the proposed framework with a variation directly
concatenating the output of Ep with the object-level predicted segmentation maps Ŷo after a
proper rescaling (“without S”). This approach leads to a quite low mIoU of 55.7%, thus outlining
that the embedding network S is very effective and that a simple stacking of architectures is
not the best option for our task. Additionally, we considered also the option of directly feeding
object-level features to the part parsing decoder, i.e., we tried to concatenate the output of Eo

116

Table 6.9: Per-part IoU and PA on the Pascal-Part-108 dataset.

Parts Name Baseline BSANet GMNet Parts Name Baseline BSANet GMNet
IoU PA IoU PA IoU PA IoU PA IoU PA IoU PA

background 90.9 97.2 91.6 97.1 92.7 97.0 dining table 33.0 40.2 45.9 59.7 50.6 62.3
aero body 61.9 72.3 68.2 77.6 61.9 82.6 dog head 60.5 75.5 63.8 78.2 64.0 78.9
aero stern 53.2 68.4 54.2 65.3 57.4 71.0 dog reye 50.1 61.4 54.1 61.4 54.7 64.7
aero rwing 28.9 39.8 33.1 46.5 34.3 46.0 dog rear 54.0 69.4 57.2 73.4 56.8 73.9
aero engine 24.7 29.0 26.5 32.0 27.2 32.6 dog nose 63.5 75.0 66.3 74.3 66.0 76.8
aero wheel 40.9 46.8 44.5 49.6 51.5 61.3 dog torso 58.4 74.6 62.3 78.4 63.2 79.1
bike fwheel 78.4 85.7 75.3 86.7 80.2 87.8 dog neck 27.1 35.4 26.2 30.8 28.1 35.5
bike saddle 34.1 39.8 31.0 31.9 38.0 43.2 dog rfleg 39.2 50.6 42.4 53.5 43.7 55.8
bike handlebar 23.3 26.1 20.6 22.8 22.4 25.9 dog rfpaw 39.4 47.9 44.2 51.7 43.7 52.9
bike chainwheel 42.3 50.4 36.5 41.6 44.1 57.0 dog tail 24.7 37.8 34.9 42.3 30.8 41.4
birds head 51.5 61.3 66.4 78.0 65.3 77.7 dog muzzle 65.1 76.1 69.4 82.3 68.9 80.4
birds beak 40.4 49.5 47.1 54.6 44.3 54.0 horse head 54.4 67.0 57.1 68.9 55.9 68.3
birds torso 61.7 77.9 65.2 79.4 64.8 82.6 horse rear 49.7 58.1 51.1 56.5 52.2 65.6
birds neck 27.5 32.2 39.1 50.1 28.4 35.7 horse muzzle 61.3 68.7 65.2 74.0 62.9 69.5
birds rwing 35.9 50.4 39.3 53.7 37.2 50.1 horse torso 56.7 75.9 59.5 75.9 60.7 84.3
birds rleg 23.5 28.6 26.5 32.2 23.8 32.8 horse neck 42.1 51.3 49.6 64.8 47.2 55.8
birds rfoot 13.9 16.3 11.6 12.7 17.7 22.5 horse rfuleg 54.1 68.5 57.0 71.8 56.4 70.9
birds tail 28.1 39.2 33.0 44.1 32.5 46.1 horse tail 48.1 63.5 47.6 54.5 51.4 64.4
boat 53.7 60.3 61.4 71.5 69.2 77.8 horse rfho 24.1 31.4 12.9 13.7 25.3 32.7
bottle cap 30.4 35.0 26.2 30.0 33.4 40.0 mbike fwheel 69.6 78.9 69.3 80.4 73.6 83.3
bottle body 63.7 69.5 71.5 78.3 78.7 88.3 mbike hbar 0.0 0.0 0.0 0.0 0.0 0.0
bus rightside 70.8 85.3 73.0 83.7 75.7 88.4 mbike saddle 0.0 0.0 0.0 0.0 0.8 0.8
bus roofside 7.5 7.7 0.3 0.3 13.5 14.4 mbike hlight 25.8 32.8 10.6 11.2 28.5 32.4
bus mirror 2.1 2.2 0.3 0.3 6.6 7.6 person head 68.2 81.9 69.7 82.2 69.3 82.7
bus fliplate 0.0 0.0 0.0 0.0 0.0 0.0 person reye 35.1 39.3 41.3 46.3 38.7 43.9
bus door 40.1 51.2 37.2 53.2 38.1 47.3 person rear 37.4 46.0 41.9 49.4 41.4 51.5
bus wheel 54.8 65.5 53.1 63.9 56.7 69.4 person nose 53.0 62.1 54.3 63.1 56.7 67.5
bus headlight 25.6 28.3 19.9 20.8 30.4 34.2 person mouth 48.9 56.9 49.5 54.9 51.3 60.8
bus window 71.8 85.2 73.5 86.4 74.6 87.4 person hair 70.8 83.3 72.3 85.9 71.8 83.9
car rightside 64.0 78.0 67.9 81.2 70.5 84.5 person torso 63.4 79.1 64.3 78.3 65.2 80.9
car roofside 21.0 25.4 16.1 17.6 22.3 26.6 person neck 49.7 63.8 50.9 65.1 51.2 65.3
car fliplate 0.0 0.0 0.0 0.0 0.0 0.0 person ruarm 54.7 68.6 55.7 70.2 57.4 71.3
car door 41.4 52.5 39.6 49.0 42.3 53.5 person rhand 43.0 55.4 47.4 57.6 44.1 56.8
car wheel 65.8 74.5 64.0 76.6 70.2 80.0 person ruleg 50.8 66.0 52.3 67.1 53.0 67.9
car headlight 42.9 48.4 49.4 59.7 46.4 54.4 person rfoot 29.8 38.9 28.9 32.4 31.3 39.8
car window 61.0 75.5 66.5 82.4 65.0 79.0 pplant pot 43.6 54.5 50.6 58.9 56.0 69.0
cat head 73.9 87.3 75.6 88.5 77.5 88.5 pplant plant 42.9 48.8 55.5 68.7 56.6 66.6
cat reye 58.8 69.0 62.0 71.1 62.8 71.8 sheep head 45.6 56.9 47.0 58.0 54.0 66.9
cat rear 65.5 77.7 66.8 77.1 67.1 78.8 sheep rear 43.2 53.0 47.7 56.6 45.3 58.2
cat nose 40.3 49.1 41.2 45.8 46.3 56.2 sheep muzzle 58.2 67.0 61.1 72.4 64.9 74.7
cat torso 64.2 81.4 66.8 84.2 68.7 86.0 sheep rhorn 3.0 3.6 0.0 0.0 5.4 6.6
cat neck 22.8 33.8 19.8 25.0 24.4 34.1 sheep torso 62.6 78.0 66.4 83.6 68.8 86.3
cat rfleg 36.5 48.5 38.5 49.2 39.1 50.0 sheep neck 26.9 38.1 25.3 41.2 30.3 41.0
cat rfpaw 40.6 50.2 43.4 51.5 41.7 50.7 sheep rfuleg 8.6 10.6 17.4 24.5 11.7 14.7
cat tail 40.2 52.2 42.6 49.5 45.8 57.0 sheep tail 6.7 7.4 1.1 1.1 9.1 11.5
chair 35.4 42.3 34.1 38.4 49.1 60.4 sofa 39.2 50.7 44.5 56.9 53.9 66.1
cow head 51.2 65.5 58.2 74.2 63.8 74.9 train head 5.3 6.4 5.6 6.4 4.5 5.3
cow rear 51.2 68.5 53.0 72.9 60.0 75.1 train hrightside 61.9 77.3 63.5 84.0 60.8 83.1
cow muzzle 61.2 77.6 67.2 81.9 74.9 86.7 train hroofside 23.0 28.0 13.7 17.0 21.1 26.3
cow rhorn 28.8 35.0 10.1 10.2 44.0 50.6 train headlight 0.0 0.0 0.0 0.0 0.0 0.0
cow torso 63.4 78.6 69.9 85.8 73.2 87.2 train coach 28.6 33.6 42.0 47.8 31.4 37.9
cow neck 9.5 12.7 7.3 7.9 20.3 25.9 train crightside 15.6 24.5 19.0 30.6 14.9 33.8
cow rfuleg 46.5 60.0 49.7 61.4 54.8 70.7 train croofside 10.8 11.9 1.0 1.0 18.1 22.6
cow tail 6.5 7.3 0.1 0.1 13.6 14.9 tv screen 60.8 71.3 66.3 79.5 70.7 82.9

117

Table 6.10: Comparison in terms of mIoU, mCA andmPA on Pascal-Part-108.

Method mIoU mPA mCA
Baseline [6] 41.36 88.57 50.51
BSANet [210] 42.95 89.52 51.71
GMNet 45.80 90.32 55.68

Table 6.11: mIoU ablation results on Pascal-Part-58. Lu
GM :

graphmatching with unweighted graph.

LCE Lrec S Lu
GM LGM mIoU

X 54.4
X X 55.2
X X X 58.4
X X X X 58.7
X X X X 59.0

Table 6.12: mIoU on Pascal-Part-58 with different configura-

tions for the object-level semantic embedding.

Method mIoU
Single concatenation 58.7
Without S 55.7
Eo conditioning 55.7
GMNet 59.0
With objects GT 65.6

with the output of Ep and feed these features to Dp (“Eo conditioning”). Conditioning the part
parsing with this approach does not bring in sufficient object-level indication and it leads to
a mIoU of 55.7%, which is significantly lower than the complete proposed framework (59.0%).
Finally, to estimate an upper limit of the performance gain coming from the semantic embedding
module we fed the object-level semantic embedding network S with object-level ground truth
annotations Yo (“with objects GT”), instead of the predictions Ŷo (notice that the network Ao

has good performance but introduces some errors, as it has 71.5% of mIoU at object-level). In
this case, a mIoU of 65.6% is achieved, showing that there is still room for improvement.

We conclude remarking that GMNet achieves almost always higher accuracy than the starting
baseline, even if small and unstructured parts remain the most challenging to be detected.
Furthermore, the gain depends also on the amount of spatial relationships that can be exploited.

6.4 Conclusions and FutureWork

In this chapter, we introduced and addressed two related problems of coarse-to-fine learning of
semantic concepts.

In the first problem of hierarchical (semantic-level) coarse-to-fine learning, a deep neural net-
work is trained on a small set of macro-classes and is then adapted and refined to recognize
a larger set of classes with a finer semantic content. We proposed three different hierarchical
strategies exploiting the softmax and argmax of the coarse network output and the edges infor-
mation from the segmentation maps of the coarse network. Furthermore, a scheme for the joint
training on the three tasks is also proposed. Experimental results show that all the proposed
schemes allow improving the performance with respect to the direct training on the larger set of
classes.

In the second problem, we tackled the emerging task of multi-class semantic part segmentation.
We propose a novel coarse-to-fine strategy (at the spatial level) where the features extracted from
a semantic segmentation network are enriched with object-level semantics when learning part-
level segmentation. Additionally, we designed a novel adjacency graph-based module that aims at
matching the relative spatial relationships between ground truth and predicted parts which has
shown large improvements particularly on small parts. Combining the proposed methodologies
we were able to achieve state-of-the-art results in the challenging task of multi-object part parsing

118

both at a moderate scale and at a larger one.
Future research will investigate the extension of the proposed modules to other scenarios and

datasets. More advanced curriculum learning techniques will be embedded in our frameworks to
boost the final accuracy values. Edge-related information coming from part-level and object-level
segmentation maps could further aid the identification of the finer-grained semantic categories.
Finally, novel graph representations better capturing part relationships and different matching
functions will be investigated.

119

120

Part III

Semantic Recognition across
New Visual Domains

121

7
Unsupervised Domain Adaptation (UDA)

7.1 Introduction

Over the past few years, deep learning techniques have shown impressive results and have
achieved great success in many visual applications.

The standard supervised learning setting assumes the availability of a large training set con-
taining data with the same statistical properties as the target data labeled according to the
problem at hand. This learning setup has been used to design a huge number of machine learn-
ing strategies, from simple linear classifiers to advanced deep learning methods and has allowed
to obtain a robust theoretical framework. However, deep learning methods typically require a
huge amount of labeled data matching the considered scenario to obtain reliable performance.
The collection and annotation of large datasets for every new task and domain is extremely
expensive, time-consuming and error-prone. Furthermore, in many scenarios sufficient training
data may not be available for various reasons, but it often happens that a large amount of data
is available for other domains and tasks that are in some way related to the considered one.
Hence, the ability to use a model trained on samples from a different, but correlated, task would
highly benefit real-world applications for which there is scarce data [230]. These considerations
are especially true for semantic segmentation, where the learning architectures require a huge
amount of manually labeled data, which is extremely expensive to obtain since a per-pixel la-
beling is needed. This problem is more demanding but also particularly interesting since the
labeling operation is highly time-consuming (much more than in image classification), thus mak-
ing the construction of large training sets more difficult. Even if a huge number of strategies
can be exploited for this task, nowadays most methods exploit deep learning strategies and, in
particular, Convolutional Neural Networks (CNNs) with an auto-encoder structure.

In this chapter, we introduce the Unsupervised Domain Adaptation (UDA) task applied
to semantic segmentation, and we cluster the most relevant frameworks from the literature
according to the methodologies employed.

7.1.1 Domain Adaptation (DA)

Most machine learning models, including Neural Networks (NNs), typically assume that training
and test samples are drawn according to the same distribution. However, there are many cases
in practical settings where the training and the test data distributions differ. In the following
we focus on the case where a model is trained in one or more domains (called source domains)

123

and then applied in another different, but related, domain (called target domain) [231]. Such
learning task is known as Domain Adaptation (DA) and is a fundamental problem in machine
learning. Nowadays, it has gained wide attention from the scientific community and represents
a long-standing problem in many real-world applications, such as computer vision [232], natural
language processing [233], sentiment analysis [234], email filtering, and several others.

Domain Adaptation can be regarded as a particular case of Transfer Learning (TL) that
utilizes labeled data in one or more relevant source domains to execute new tasks in a target
domain. The aim of DA methodologies is to address the distribution change or the domain shift,
which typically greatly degrades the performance of the models [235]. Over the past decades,
various DA methods have been proposed to address the shifts between the source and target
domains for both traditional machine learning strategies and recent deep learning architectures.
The intrinsic nature of source and target domains highly influence the final performance of the
DA algorithms. Indeed, they are assumed to be somehow related to each other, but not identical.
The more correlated they are, the easier the DA task becomes, allowing to achieve high results
on the test data. Hence, a key ingredient for a well-performing strategy is the ability to discover
suitable source data to extract useful clues from.

Good reviews of the domain adaptation field can be found in [230–232,235,236], which provide
a comprehensive sight of the domain adaptation problem in its theoretical form [231,235] or its
generic application to visual tasks [230,232,236]. Our work differs from those in that it specifically
addresses unsupervised domain adaptation for semantic segmentation. Indeed, we are motivated
by the fact that this research area has recently attracted huge interest and a remarkable effort
has been undertaken for its solution.

7.1.2 Unsupervised Domain Adaptation (UDA)

Before the deep learning revolution, semantic segmentation was a very challenging task and even
sophisticated algorithms were achieving only limited performance; nowadays, with the advent
of deep neural networks we can obtain remarkable results, provided that enough computational
resources are available. Nonetheless, the potential stored in deep learning models can be fully
unleashed only when sufficiently plentiful and carefully labeled training data is available. The
complexity enclosed in the millions of learnable parameters of state-of-the-art deep learning
models easily leads to overfitting of the training data, rather than to an enhanced model perfor-
mance, and this has to be counteracted by using huge datasets for training. A major example
of the central role played by the availability of large amounts of training data is the ImageNet
large-scale dataset [121], whose contribution in the early development and expansion of deep
neural networks for image classification is certainly very relevant.

Unfortunately, the collection and annotation of data samples is often extremely expensive,
time consuming and error-prone, since it requires a large amount of human supervision in the
process. The excessive cost may prevent from gathering enough data to address a new task or
to move in a new environment, thus posing a serious threat to the remarkable advance brought
by deep learning approaches. Therefore, it may be extremely beneficial to rely on previously
built datasets, whenever they share similar properties to the target data. In this way, already
available samples can be efficiently exploited to address the current task, since they belong to a
domain correlated to the target one.

Even though the transferring of information from related domains appears quite appealing and
fairly straightforward, in practice the process requires careful handling. Deep neural networks
typically lack generalization skills; in other words, even a small change in data distribution
between training and test statistical distributions might cause a severe drop of performance.
For this reason, the simple application of a pre-trained model in a new environment is likely

124

to fail, as domain-specific attributes are usually captured alongside domain-invariant ones, thus
preventing an effective knowledge transfer. In this scenario, Domain Adaptation comes in handy,
as it allows to handle the statistical gap between source and target representations. The ultimate
goal of the adaptation effort is to learn a prediction model on a selected task working optimally
on both source and target domains, while supervision largely (or solely) comes from the label-
abundant source domain. To this end, an efficient transfer of knowledge learned in the source
domain to the target one is crucial to eventually reach an overall good performance. Particularly
interesting is the Unsupervised Domain Adaptation (UDA) setting, in which target annotations
are totally missing. This is an extremely favorable, yet challenging, scenario, as data from the
target domain no longer requires expensive labeling.

Recently, the domain adaptation task has been very actively studied in the context of deep
learning applied to visual tasks. While deep convolutional frameworks have proven to be capable
of learning visual features useful to solve multiple related problems (e.g. image classification,
object detection, semantic segmentation), the transferability of those representations typically
shows to decrease when moving to deeper network layers [237].

Early works on domain adaptation for deep networks mainly focused on the image classifica-
tion task. In many approaches a layer-wise measure of statistical domain discrepancy is jointly
estimated and minimized, thus promoting the extraction of domain-invariant feature representa-
tions, while discrimination ability is guaranteed by a task-specific loss. Later, adversarial domain
adaptation strategies have proven to be extremely successful, in which schemes the domain dis-
crepancy is expressed in the form of a learnable discriminator and its minimization is performed
in an adversarial manner. This has effectively opened the door to domain adaptation solutions
apt to solve the semantic segmentation task, where the inherent higher complexity in terms of
network representations needed for pixel-wise classification calls for more advanced solutions.

The domain adaptation task can be performed using only data from the source domain or using
also some samples from the target domain. The simplest solution that could be adopted is to
train only on labeled samples from the source domain without using data from the target domain,
hoping that no adaptation is needed (source only). In practice, this leads to poor performance,
even when only a small visual domain shift exists. To cope with this, UDA approaches exploit
labeled samples from the source domain and unlabeled samples from the target one (source to
target UDA).

In this scenario, the typical assumption is that the source and target domains are different but
in some way related (e.g., the source could be synthetically generated data resembling the real-
world representations in the target one). Typically, an initial supervised training on the source
domain is adapted to the target one by means of various unsupervised learning strategies aiming
at achieving good performance also on the target domain (for which no labels are available).
In the standard setting, the set of target classes are the same, but advanced settings where also
the target labels change can be considered (see Section 7.2.1). Figure 7.1 shows the typical flow
of source and target data in the unsupervised domain adaptation process.

As we observed, in domain adaptation the focus lies on the input domain distributions where,
typically, a single domain shift is performed all at a sudden. In continual learning, instead, the
joint domain distribution changes multiple times over time, thus representing different tasks (see
Chapter 2). Such changes are typically represented by an expansion of the label set, by adding
new labels or by splitting the existing ones into more refined sub-classes. One of the main targets
is the capability to adapt the network to the new setting using only data concerning the new
tasks and without re-training the model from scratch. However, this is highly nontrivial due to
the so-called catastrophic forgetting phenomenon, i.e., a machine learning model tends to forget
knowledge about previous tasks when it learns new ones.

Hybrid approaches combining Unsupervised Domain Adaptation (UDA) and Continual Learn-

125

Figure 7.1: Graphical representation of the unsupervised domain adaptation process. A task-lossL (e.g., a cross-entropy loss)
is used for a supervised training stage on the source domain using the semantic annotations. Unsupervised adaptation to target

data without labels can be performed at different levels (e.g., input, features or output) with different strategies.

ing (CL) are emerging to overcome the need for multiple changes in domains and tasks [238–240].

7.1.3 ApplicationMotivations

There exists a large number of applications that may significantly benefit from UDA. In general,
each application focuses on a very peculiar setting with images taken with a specific camera
and a particular environment to solve a prefixed task. The first and easiest solution is to get
as much labeled data as possible for the specific problem, but, as already mentioned, this is
unfortunately very time consuming and expensive, thus making it unfeasible in many real-world
contexts. On the other hand, large and publicly available labeled datasets typically contain
generic data and their direct use in specific applications does not grant good performance in the
relevant application-specific domain. A second solution would be to transfer source knowledge
acquired on a broader scenario and adapt it to the specific setup being targeted. Such context,
for example, is fairly common in industrial applications.

An example application is face recognition, which represents a challenging problem that has
been actively researched for many years. Current models for face recognition perform very
well when training and testing images are acquired under controlled conditions. However, their
accuracy quickly degrades when the test images contain variations that are not present in the
training images [236]. For instance, these variations could be changed in pose, illumination or
viewpoint, and depending on the composition of training and test sets, this can be regarded as
a domain adaptation problem [236,241].

Another straightforward application lies in object recognition, where one may be interested
in adapting object detection capabilities from a typically larger set to a specific small-size
dataset [242].

Furthermore, the recent improvements in the computer graphics field allowed the production
of a large amount of synthetic data for many vision-related tasks. This allows to easily obtain

126

Figure7.2: Autonomous cars, industry robots andhomeassistant robots are just someof thepossible real-world applications of

UnsupervisedDomainAdaptation (UDA) in semantic segmentation. (The images aremodified version of pictures obtainedwith

kindpermission fromShutterstock, Inc. Theoriginal versionshavebeencreated (from left to right) byScharfsinn,Monopoly919

and PaO_Studio).

large training sets but on the other side the domain shift between synthetic and real-world data
needs to be addressed. In this field, one of the most interesting applications is found in au-
tonomous vehicles scenarios, where accurate understanding of the surrounding environment is
crucial for a safe navigation in an urban context. At the same time, synthetic urban scenes
provided with automatically-generated annotations can be easily accessed from highly realistic
computer graphic tools [243]. This allows to bypass the time-consuming and highly expensive
manual labeling required for real-world training data, but in turn demands for domain adapta-
tion techniques to safely bridge the statistical discrepancy between synthetic and real images.
The synthetic to real adaptation for semantic segmentation of urban scenes will be further
discussed in Section 7.4.

In Figure 7.2 we show three typical scenarios in which UDA for semantic segmentation could
be highly valuable: namely, autonomous vehicles, industrial automation and domestic robots.

7.1.4 Outline

In this part of the thesis, we mainly focus on analyzing and discussing deep UDA methods in
semantic segmentation. Recently, there has been a large number of studies related to this task.
However, the motivating ideas behind these methods are different. To connect the existing work
and hence to better understand the problem, we organize the current literature into some cate-
gories. We hope to provide a useful resource for the research of UDA in semantic segmentation.

The rest of this chapter is organized as follows: in Section 7.2 a concise and precise formulation
of UDA for semantic segmentation is given outlining the various stages at which the adaptation
process may occur. Then, in Section 7.3 we give an overview of the state-of-the-art literature
on the topic. We start from precursor techniques with weak supervision and then we propose a
categorization based on the techniques employed to align the source and target distributions. In
addition, we overview some new research directions considering more relaxed assumptions over
target dataset properties, for example, dealing with the detection and classification of unseen
semantic categories in target samples. In Section 7.4 we introduce a case study of synthetic to
real unsupervised adaptation for semantic understanding of road scenes and we give an overview
of the results of existing methods grouped by network architecture and evaluation scenario.
In Section 7.5 we conclude our review with some final considerations on the different adaptation
techniques.

127

7.2 Unsupervised Domain Adaptation for Semantic Segmentation

7.2.1 Problem Formulation

Domain Adaptation (DA) is a special case of transfer learning, called Transductive Transfer
Learning, in which the source and target tasks coincide (TS = TT), whereas the discrepancy lies
in the domain difference (DS 6= DT). In addition, domain adaptation is commonly intended
in a homogeneous fashion, when the domain shift happens at a statistical level (P (XS , YS) 6=
P (XT , YT)) rather than being due to distinct input spaces (XS and XT belong to the same
semantic domain, e.g., urban scene images) [230].

Image classification and image segmentation can both be attributed to the problem of finding
a function h : X → Y from the domain space X of input images to the label space Y, that
contains, respectively, the classification tags or the semantic maps. From a mathematical point
of view, it is possible to suppose that all real-world labeled images (x, y) ∈ X × Y are drawn
from an underlying, fixed and unknown probability distribution D over X ×Y . The search of the
function h should be limited to a predefined function space H, called hypothesis class, chosen
based on the prior knowledge on the problem. In a supervised setting, a dataset of i.i.d. samples
from D is used by the learner to find the best mapping h ∈ H (i.e., the solution that minimizes
a cost function over the training set). On the other hand, in DA, two different and related
distributions over X × Y , namely a source distribution DS and a target distribution DT , are
considered. A source domain training set S is sampled from DS and a target domain training
set T is sampled from DT or from its marginal distribution over X . The main purpose of DA
is to use labeled i.i.d. samples from source domain S and labeled, or unlabeled, or a mixture of
both, i.i.d. samples of the target domain T to find a hypothesis h ∈ H that performs well on the
target domain T . The DA task is supervised if labels in the target domain are available for all
samples; it is semi-supervised if labels are available for just some samples; or it is unsupervised if
the target samples are completely unlabeled (i.e., they are drawn from the marginal distribution
of DT over X). Domain adaptation can be subdivided even further based on the categories (i.e.,
classes or labels) of the source (CS) and target (CT) domains, and on the categories considered
in the learning process (CL):

• Closed Set DA: it corresponds to the homogeneous case, where semantic classes are com-
pletely shared between source and target domains (CS = CT).

• Partial DA: in this setup there exist some source classes that do not appear in the target
domain (CS ⊃ CT).

• Open Set DA: conversely to partial DA, here the presence of some target private classes is
admitted, for which no training examples in the source domain are available (CS ⊂ CT).

• Open-Partial Set DA: the source and target domains include separate sets of semantic
classes [244], with a subset of those in common (CS 6= CT , CS∩CT 6= ∅). However, elements
belonging to the class subset exclusive to the target domain have only to be acknowledged
as not part of the shared classes.

• Boundless DA: this setup is very similar to the open set one, but objects of target private
classes must be explicitly classified rather than only be associated to a general unknown
target class. This setting has been recently introduced [245] and it represents the most
ambitious one, since it admits complete unawareness beforehand about semantic content
of target data.

128

Figure 7.3: Different settings for domain adaptation, according to how source and target class sets are related.

It is important to remark that in Open Set DA, usually, the categories of the target set that do
not belong also to the source domain are learned by the model as an unknown additional class,
while in Boundless DA [245] they are learned individually. An overview of the aforementioned
classification is given in Figure 7.3.

In the following sections, the focus will be placed on the standard most-diffused closed set
adaptation, as, up to now, this is by far the most explored setup.

According to the degree of annotations availability in the target domain, the adaptation
problem is subject to a further categorization, ranging from the full or partially annotated
supervised or semi-supervised settings to the completely label deprived unsupervised scenario.
In particular, Unsupervised Domain Adaptation (UDA) will be discussed, as it has recently
witnessed an increase in popularity, especially in relation to the semantic segmentation task,
and it involves many practical applications. More specifically, it is assumed that a set of labeled
source data {xsi , ysi } drawn accordingly to the source joint distribution over XS×YS is provided,
paired with a set of unlabeled samples {xti}, retrieved from a distinct target marginal distribution
over XT . The objective is to discover a predictive function correctly modeling the task input-
label relation in the target domain, while knowledge on the chosen task can be extracted only
from source labeled samples.

Furthermore, for standard domain adaptation techniques to work, source and target domains
should be somehow related, meaning that they should share task-relevant content, while low-
level attributes may differ. This scenario is commonly referred to as one-step DA, as knowledge
transferring happens directly across source and target data without intermediate stages.

7.2.2 UDA in Semantic Segmentation: Adaptation Focuses

As previously discussed, behind the performance degradation suffered by deep prediction models
applied on new target environments lies the covariate shift phenomenon affecting source and
target input data samples. For this reason, most of domain adaptation research builds upon
bridging the statistical gap between domain distributions, in order for the prediction model to
yield satisfactory results whenever those distributions are matched.

129

Figure 7.4: General scheme of an auto-encoder network for semantic segmentation highlighting the different network stages

on which domain adaptation strategies can be applied, from the input image space up to intermediate or output network acti-

vations.

Various strategies have been explored to achieve the statistical matching, which will be thor-
oughly discussed in Section 7.3. A more general categorization of domain adaptation techniques,
however, can be inferred, according to where in the employed semantic segmentation model the
statistical discrepancy happens to be addressed. In particular, different data representations
could be subject to adaptation, from the bare images prior to classification up to intermedi-
ate and output network activations (Figure 7.4). In the following, a description of the main
ideas behind adaptation approaches will be provided, grouped by where the adaptation effort is
focused.

7.2.2.1 Input Level Adaptation

A first strategy is to perform adaptation at the input level, directly on images before they are
fed to the segmentation network (as shown in the leftmost part of Figure 7.4). The idea is to
force data samples from either domain to reach an uniform visual appearance, meaning that they
not only have to carry high-level semantic similarity, but their low-level statistical discrepancy
should be matched as well. This because low-level domain dependent attributes, even though
they do not define the semantic content of the input image, can still be captured by the prediction
model, thus leading to incorrect predictions when a domain change alters them. A clear example
of this is the synthetic to real adaptation; although it may be quite realistic, synthetic data can
mimic real-word properties up to a certain extent. Thus, it is usually possible to find synthetic
peculiar traits, however small, which can undermine the efficacy of a model trained on synthetic
data in a real-world environment.

The common approach to address domain adaptation at the input level is to map the data to
a new image space, where the projected source (or target) samples carry an enhanced perceptual
resemblance to target (or source) ones. This is normally achieved with the help of style-transfer
techniques, whose objective is turned into matching source and target marginal distributions
in the image space. By feeding in input supervised data from the new domain-invariant space
to the segmentation network, the predictor should now able to retain consistent results across
domains.

An upside of this approach is its complete independence with respect to the segmentation

130

network currently in use that does not require any modification. This, however, comes with
a cost, which is that, in its vanilla scheme without any extra regularizing factors, marginal
alignment may be performed without the class-conditional distributions being simultaneously
matched. In other words, it may be possible to end up with domain invariant representations,
which yet lack the semantic coherence with the original data crucial to solve the segmentation
task. To get past this problem, multiple solutions have been proposed to achieve semantically
consistent image translations, for example through image reconstruction constraints or additional
loss components enforcing the uniformity of segmentation predictions.

We will apply an input-level adaptation approach [30] in Chapter 9.

7.2.2.2 Feature Level Adaptation

An alternative approach is to focus the adaptation on feature representations, pursuing a distri-
bution alignment of network latent embeddings, which are normally retrieved from the encoder
output in the commonly employed auto-encoder architecture (even if adaptation at other net-
work stages has also been employed). The primary objective is to build a domain invariant latent
space, in which features extracted either from source or target input images observe the same
distribution. In the end, learning solely from supervision on source representations should result
in a good performance also on the target domain, as shared classification in the adapted latent
space should be jointly effective on both source and target representations when distributed
alike.

In the context of semantic segmentation, the feature space retains significant complexity due
to its high-dimensionality, which is necessary for the prediction model to simultaneously capture
global semantic clues, while attaining pixel-level accuracy. In addition, as for the input level
adaptation, a semantically unaware alignment of marginal distributions (e.g., standard adver-
sarial adaptation) does not guarantee that the joint input-label distributions are matching, since
no information can be derived from unlabeled target samples about the target joint distribution.
For these reasons, many feature level adaptation techniques that have been successfully devised
for image classification do not easily extend to the dense segmentation task, and in general
require careful tuning and further regularization.

We will introduce some novel feature-level adaptation approaches [30–33] in Chapter 9.

7.2.2.3 Output Level Adaptation

Finally, the last class of domain adaptation techniques exploits a cross-domain distribution
alignment over the network output, i.e., typically the output per-class probability space. Not
only prediction probability maps have proven to retain sufficient complexity and richness of
semantic information, but they also span a low-dimensional space over which statistical alignment
happens to be achieved much more effectively, for example by the domain adversarial strategy.
In addition, source knowledge can be indirectly translated over the unlabeled target domain by
resorting to some form of self-taught supervision extracted from target prediction maps, whose
careful introduction in the learning process to support the standard source supervision may
result in an effective cross-domain adaptation of the network performance. Source priors derived
from label distribution have proven to provide an useful regularization to the learning process
as well, since they usually identify high-level semantic properties shared across domains.

We will focus on output-level adaptation in Chapter 8, where our contributions are proposed
[26–28].

131

Figure 7.5: Venn diagram of the most popular UDA strategies for semantic segmentation. Each method falls in the set repre-

senting the adaptation techniques used.

7.2.2.4 Ad-Hoc Level Adaptation

In addition to the aforementioned techniques, other works resort to a distribution alignment
over ad-hoc spaces upon network activations. Such methods aim at better capturing high-level
patterns essential to solve the segmentation task, and ultimately achieve an improved match
of source and target embeddings, thanks to gradients flowing back through the segmentation
network at different levels. Hence, the adaptation is not only restricted to a particular network
level, i.e., at the end of the feature extraction network, but it is achieved at intermediate levels
as well.

7.3 Review of Unsupervised Domain Adaptation Strategies

This section reviews the most relevant approaches for Unsupervised Domain Adaptation in se-
mantic segmentation. We start this section by presenting some weakly- and semi- supervised
learning methods for semantic segmentation. Those are not purely UDA approaches since they
require some minimal supervision with annotations on typically simpler tasks, but have repre-
sented the starting point in dealing with the domain adaptation problem. Then, we grouped UDA
approaches into seven main categories, as shown by the visual overview in Figure 7.5. Domain
adversarial discriminative approaches (Section 7.3.2) learn to produce data with a statistical dis-
tribution similar to that of training samples via adversarial learning schemes. Generative-based
approaches (Section 7.3.3) typically use generative networks to translate data between domains
in order to produce a target-like training set from source data, or alternatively to translate the

132

source data into a representation closer to target domain characteristics that can then be fed
to the network. Classifier discrepancy approaches in Section 7.3.4 resort to multiple dense clas-
sifiers on top of a single encoder to capture less adapted target representations and, in turn,
encourage an improved alignment of cross-domain features far from decision boundaries via an
adversarial-like strategy. Self-training approaches in Section 7.3.5 propose to produce some form
of pseudo-label (typically using some confidence estimation schemes to select the most reliable
predictions) based on the current estimate to automatically guide the learning process (self-
supervising it). Entropy minimization methods in Section 7.3.6 aim at minimizing the entropy
of target output probability maps to mimic the over-confident behavior of source predictions,
thus promoting well-clustered target feature representations. Curriculum learning approaches in
Section 7.3.7 tackle one or more easy tasks first, in order to infer some necessary properties about
the target domain (e.g., global label distributions) and then train the segmentation network such
that the predictions in the target domain follow those inferred properties. Multi-tasking meth-
ods in Section 7.3.8 solve multiple tasks simultaneously to improve the extraction of invariant
features representation. Latent-level regularization in Section 7.3.9 approaches align feature rep-
resentations across the datasets promoting domain invariance and reducing overlapping active
channels. Finally, in Section 7.3.10 we conclude our digression with some considerations about
recent interesting research directions to be further expanded in the future.

For each set of techniques, some works whose proposed adaptation solutions can be associated
to that class will be presented. However, it should be stressed that most of the domain adapta-
tion frameworks recently introduced resort to a combination of multiple techniques to improve
performance.

7.3.1 Weakly- and Semi-Supervised Learning

As earlier semantic segmentation works started from image classification techniques, also the
domain adaptation task was originally tackled in the classification field, in that the first DA
approaches for semantic segmentation have been developed by adapting DA methods for clas-
sification. However, approaches directly targeting the semantic segmentation task started to
appear soon, taking into account the specific properties of the spatial components (completely
missing in the classification methods) and of the dense (pixel-wise) task. At the same time,
unsupervised domain adaptation was historically preceded by techniques with weak or partial
supervision, which are the focus of this section.

As we already mentioned, the training of a deep learning model for semantic segmentation
requires a large amount of data with pixel-level semantic labels that are very expensive, difficult,
frustrating and time-consuming to acquire. Such problem is not so relevant for other computer
vision tasks like image classification and object detection because image-level tags or bounding
boxes (that in this context are called weak labels) are much simpler to obtain and large annotated
collections are available. This is the motivation behind many works that propose to use just
weakly labeled samples to train a model in the segmentation task (weakly-supervised learning)
[246–248] or to use a mixture of many weakly labeled samples and few samples with the more
expensive pixel-level semantic map (semi-supervised learning) [249,250].

A first approach to solve the problem is to cast the weakly supervised semantic segmentation
as a Multiple Instance Learning problem, as shown in [251, 252]. The Semantic Texton Forest
(STF) traditional feature-based approach has been used as base framework and an algorithm to
estimate unobserved pixel label probabilities from image label probabilities has been introduced.
Then, the structure of the STF has been improved through a new algorithm that uses a geometric
context estimation task as regularizer in a multi-task learning framework.

Another strategy, proposed in [253], is to implement an Expectation-Maximization (EM)

133

method to train a deep network for the semantic segmentation task in a weakly- and semi-
supervised setup. The algorithm alternates between estimating the pixel-level annotations (con-
strained on the weak annotations) and the optimization of the segmentation network itself.
In [254], Constrained CNNs (CCNNs) have been introduced as a framework to incorporate weak
supervision into the training. Linear constraints are added in the output space to describe the
existence and expected distribution of labels from image level tags and a new loss function is
introduced to optimize the set of constraints.

In [255], a simple to complex framework has been introduced for weakly-supervised semantic
segmentation. In the paper, a distinction is made between simple and complex images: the
former include a single object of just one category in the foreground and a clean background,
the latter can have multiple objects of multiple categories with a cluttered background. First,
salient object detection techniques are used to compute semantic maps from weak-annotated
simple images and, then, starting from these, three different networks are trained, sequentially,
in order to gradually enable the segmentation of complex images.

In [256], a semi-supervised approach is presented, in which the architecture is composed of
three main structures: a classification network, a segmentation network and some bridging layers
that interconnect the two networks. The proposed training is decoupled: first, the classification
network is trained with weakly-annotated samples, then, the bridging layers and the segmenta-
tion network are jointly trained with the strong-annotated samples. The input image is first fed
to the classification network, then the bridging layers extract from an intermediate layer of the
classification network a class-specific activation map that is used as input for the segmentation
network. In this way, it has been possible to reduce the number of parameters of the segmenta-
tion network and to make a training with just few semantic-annotated samples possible. In fact,
relevant labels and spatial information are captured from the classification network and refined
by the bridging layers and the task of the segmentation network is widely simplified.

In [257], an iterative procedure has been proposed to train a segmentation network just
with bounding-boxes annotated samples. First, region proposal methods are used to generate
many candidate segmentation masks (that are fixed throughout the training) for each image.
An overlapping objective function is defined to pick the candidate mask that overlaps the ground
truth bounding box as much as possible with the correct label. At every iterative step, one
candidate mask is selected for each bounding box and then the resulting semantic labels are
used to train the segmentation network. The outputs of the segmentation network are then
used to improve the choice of the candidate labels for the next step through a feedback channel.
After every iteration, the selected candidate labels and the segmentation network outputs both
improve together.

Generative adversarial networks have proven to be effective in this field starting from [258],
where the discriminator network is modified to accomplish the task of semantic segmentation.
The discriminator assigns to every pixel of the input image either a label of one of the semantic
classes or a fake label. The discriminator is trained with fake (generated) data, unlabeled data for
regularization purposes, and with labeled data with pixel-level semantic maps. Another proposed
solution is to employ conditional Generative Adversarial Networks (GANs) and incorporate
weak image-level annotation both at the generator and at the discriminator inputs in a weakly-
supervised setup.

Many approaches of self-supervised learning have been proposed starting from [259]. The com-
mon rationale is the exploitation of inferred pixel-level activations as pseudo ground-truth in
order to obtain more accurate pixel-level segmentation maps. In [260], an image classification
network with classification activation maps has been used. The authors highlight how the dis-
criminative regions, using that method, are small and sparse and they propose to use them as
seed cues. Then, the regions are expanded to neighboring pixels with similar features (for ex-

134

ample color, texture or deep features) with a classical Seeded Region Growing (SRG) algorithm
to obtain accurate pixel-level labels that are used to train a segmentation network. The output
of the segmentation network is used by the SRG algorithm to compute the similarity between
the seed and the adjacent pixels. So, at every iteration, the segmentation network and the dy-
namic labels computed with SRG improve together. A similar approach that introduces a new
adversarial erasing method for localizing and expanding object regions progressively is presented
in [261]. Other self-learning based techniques are presented in [262–264].

A more general framework to transfer knowledge across tasks and domains is presented
in [265]. Assuming to have two tasks and two domains, the proposed method works in four
steps: (1) a single task network is trained on samples of both domains to solve the first task,
in order to find a common feature representation for the domains; (2) a second network is trained
to solve the second task just on the first domain; (3) a third network is trained on the first do-
main to map deep features suitable for the first task into features to be used for the second
task; (4) finally, the third network is used to solve the second task on the second domain. This
framework enables to adapt from a synthetic domain to a real one for the image segmentation
task using depth maps of both domains. The depth maps can be considered weak annotations
with respect to semantic maps because their acquisition is easier thanks to depth cameras and
3D scanners.

7.3.2 Domain Discriminative

Domain dissimilarity between source and target distributions has been initially tackled with
traditional methods. Some works refer to the Maximum Mean Discrepancy (MMD), such
as [237, 266, 267]. Tzeng et al. [266] introduce an adaptation layer and a domain confusion
loss in the standard CNN architecture to learn domain invariant representations. In [237, 267]
the degradation in transferability of application-specific hidden representations is tackled by
matching mean domain embeddings in a new space. A different approach relies on correlation
alignment, taking into account second order statistic properties of the dataset [268,269]. A key
factor for the majority of these works is that the deep network adaptation is performed end-
to-end by assisting the task loss with a supplementary adaptation objective. Furthermore, no
restriction to a specific network architecture is assumed.

Adversarial Learning: Adversarial learning has been introduced in the form of Generative
Adversarial Networks (GANs) [108] to address a generative objective (i.e., generating fake images
similar to real-world ones). Solving the generative task can be thought as seeking the evaluation
of the unknown probability distribution from which the training data has been generated. In the
generative context, the introduction of adversarial learning has been ground-breaking, as explicit
modeling of the underlying target distribution is not required and, more importantly, no specific
objective is needed to train the model. The learning process builds upon a min-max game, where
a generator network is progressively guided by a discriminator network to produce realistic
samples. In the adversarial scheme, a generator has to learn to produce data with the same
statistical distribution of training samples. To do so, it is paired with a discriminator, which
has the goal of understanding whether input data comes from the original set or, instead, it
has been generated. At the same time, the generator is optimized to fool the discriminator by
producing samples that resemble the original ones. In the end, the statistics of generated data
should match that of the training set. The GAN model is capable of learning a structured loss
in the form of a learnable discriminator, which guides the generative network in its optimization
procedure. For this reason, the objective function can be thought as automatically adapting
to the specific context, removing, in fact, the necessity to manually design complex losses.
Therefore, the adversarial learning scheme introduced in [108] can be extended under careful

135

Figure 7.6: Training of a generative adversarial network. Update step of the discriminator (top) and of the generator (bottom).

adjustments to address multiple tasks that would normally require different types of application-
specific objectives.

In [108], the discriminator is a binary classifier whose goal is to discern between the original
training data and the data produced by the generator. The generator is instead a generative
model that takes in input random noise (or some conditioning data in more recent variations of
the approach) and produces data (i.e., images in the setting of interest) resembling the ones in
the training set. It aims at constantly improving the realism of its output samples to fool the
discriminative action of its opponent, and this is achieved by using a loss function whose mini-
mization in turn maximizes the errors of the discriminator. The model is trained by alternating
a discriminator training step, aiming at maximizing its accuracy, and a generator optimization
phase with the opposite target (see Figure 7.6). If correctly carried out, the adversarial compe-
tition should result in a statistical distribution of generated data that fully matches the training
set one, meaning that original and generated data should be statistically indistinguishable. In
addition, the discriminator should be able to both capture and express a measure of statistical
discrepancy in the form of a structured learnable loss. Therefore, the objective function can be
thought as being jointly learned and optimized in the adversarial process, allowing it to adapt

136

Figure 7.7: Graphical representation of the standard adversarial adaptation strategy. A domain discrimination captures the

statistical discrepancy between source and target representations (e.g., segmentation network’s output or featuresmaps com-

puted from one or the other domain). Its supervisory signal is then exploited to perform domain alignment.

Figure 7.8: Graphical representation of an output adversarial adaptation strategy, where domain alignment is performed indi-

rectly by bridging the distribution gap between source annotation maps and network predictions from either source or target

domains.

to the specific context.
Adversarial learning has been successfully extended to the domain adaptation task. The real-

fake discriminator is now turned into a domain classifier that is used to drive the adaptation
process. Its discriminative action is, in fact, focused on capturing the statistical discrepancy
between representations from separate domains, which is responsible for the performance degra-
dation and thus has to be reduced in order to achieve an effective adaptation.

There are two possible targets for the domain classifier. The first is to discriminate between
internal or output representations extracted from data in either source or target domains (Fig-
ure 7.7). This allows to introduce additional loss terms enforcing the construction of feature or
output spaces that are more domain invariant. Alternatively, it is possible to use the discrim-
inator to distinguish between the output of the network (that can correspond both to inputs
from the source and from the target domain) and the ground truth segmentation maps (that
in the unsupervised setting are only present in the source domain). Since in the adversarial
model there is no need to have ground truth data matching the provided samples, this allows
to use also the target domain images for which no ground truth is available and to enforce that
their predicted segmentation maps have statistical properties similar to the ground truth ones
(Figure 7.8). Using these strategies, the standard supervision from the annotated source data
is joined by a supervisory signal from the domain discriminator, which pushes the prediction
network towards domain invariance, in turn mitigating the intrinsic bias towards the supervised
source domain.

Feature Adversarial Adaptation: Aiming at exploiting the statistical matching that can
be achieved by the GAN model, adversarial learning has been successfully extended to the

137

domain adaptation task [270–272]. In particular, the real-fake discriminative network in the
original adversarial framework is revisited, turning into a source-target domain classifier. Thus,
while the segmentation network is trained with source supervision to achieve discriminability over
the semantic segmentation task, the supervisory signal provided by the domain discriminator
should guide the predictor to reach domain invariance and reduce the otherwise intrinsic bias
towards the source domain. In other words, a measure of domain discrepancy is simultaneously
learned and minimized within the adversarial competition.

Although the adversarial adaptation strategy has been originally introduced for the image
classification task [270, 271], it has been later extended to image semantic segmentation. Hoff-
man et al. [273] have been the first to address domain adaptation in semantic segmentation,
and they resort to an adversarial approach. In particular, they devise a global domain adversar-
ial alignment, based on a domain discriminator taking as input the feature representations from
intermediate activations of the fully convolutional segmentation network. In addition, they pro-
pose a category specific distribution alignment, which is accomplished by enforcing image-level
label distribution constraints on target predictions inferred from source annotations, under the
assumption that high-level scene layout is in general shared among source and target images.

Yet, as previously discussed, the global domain alignment of marginal distributions provided
by the vanilla domain adversarial scheme may end up in incorrect semantic knowledge transfer
across domains, with class-conditional distributions neglected in the learning process. For this
reason, to reach an effective adversarial adaptation when dealing with the semantic segmentation
task, additional modules should be embedded in the adaptation pipeline.

A possible solution is to integrate adversarial feature alignment in a generative approach
(see Section 7.3.3), as done in several works [30, 274–276]. Here the goal is to strengthen the
image space adaptation, so that the attribute transferring to match visual appearances of im-
ages from different domains is extended inside the feature space. An alternative is to perform
category-wise adaptation [277, 278]. The idea is to resort to class-wise adversarial learning, by
introducing multiple per-class distinct feature discriminators, that, in principle, should provide
a semantically consistent knowledge transfer, which is absent in the standard global adaptation.
Finally, with a different perspective it is possible to rely on a reconstruction constraint to enforce
domain invariance over latent feature embeddings [279–281]. Adversarial learning in this case is
applied over the reconstruction image-level space, to guarantee that feature representations can
be projected back to either source or target image spaces without distinction.

As observed, the semantic segmentation task entails a quite complex feature space, due to
the high dimensionality of its representations. Thus, to bypass the complexity encompassed in
feature space adaptation, a research direction has been to focus the adaptation effort to the
segmentation output space [26–28, 282–286]. The low-dimensional output representations, in
fact, have been shown to retain enough semantic information for a successful adaptation. In this
new output level adversarial scheme, a domain discriminator learns to discover the domain from
which segmentation maps are originated. Simultaneously, the segmentation network plays the
generative role by providing cross-domain statistically close predictions to fool the discerning
action of the domain classifier. While the common solution has been to align source and target
output representations [282–286], some works have revisited the standard approach by seeking for
an indirect domain alignment [26–28], by forcing predictions from either domain to be distributed
as ground-truth source labels (as depicted in Figure 7.8).

Following a similar approach to [273], many works have further resorted to adversarial align-
ment of network latent embeddings [30,274–278,287–290]. As previously discussed, the domain
discriminator is able to infer a structured loss to capture global distribution mismatch of cross-
domain image representations. However, global alignment of marginal distributions does not
necessarily result in class-wise correct semantic knowledge transfer from source to target rep-

138

resentations. Thus, adversarial learning is commonly employed in more complex frameworks
working also on the internal feature representations of the network, comprising multiple com-
plementary modules to achieve a more effective adaptation. For example, Chen et al. [287] use
an additional target guided distillation loss by matching network activations from target inputs
during the training phase with those from a pre-trained version on the ImageNet dataset [121].
In this way, they argue that overfitting to source data is decreased. Moreover, the feature adver-
sarial adaptation is enforced independently over different spatial regions of the input image, thus
exploiting the underlying spatial structure of input scenes. Zhang et al. [288], instead, boost
the feature-level adaptation performance by providing the domain discriminator with an Atrous
Spatial Pyramid Pooling (ASPP) module [5] to capture multi-scale representations. More re-
cently, Luo et al. [290] propose a significance-aware information bottleneck (SIB) to filter out
task-independent information encoded inside feature representations, so that, when enforcing
adversarial adaptation, only domain invariant discriminative cues are preserved. They also in-
troduce a significance-aware module to help the prediction of less frequent classes, which may
be penalized by the information bottleneck in its original form.

Another group of research [30,274–276] combines a generative approach (which will be exten-
sively discussed in the following Section 7.3.3), with the adversarial feature alignment. In par-
ticular, source and target marginal distributions are matched in the input image space by a
source-to-target image-to-image translation function, and then cross-domain latent representa-
tions are further brought closer by matching source original and target-like source embeddings
in a domain adversarial fashion.

To accomplish category-wise adaptation, some works [277, 278] revisit the original approach
of Hoffman et al. [273] by assisting the global distribution alignment with class-wise adversarial
learning. Chen et al. [277] propose to exploit multiple feature discriminators (one for each
class), so that negative transfer among different classes in the domain bridging process should
be effectively avoided. In addition, due to lack of ground-truth maps, they use grid-level soft
pseudo labels from network predictions to compute the target adversarial loss. Recently, Du et
al. [278] proposed a similar class-wise adversarial technique, which is improved by imposing
independence during the optimization of the multiple discriminators. They argue that soft
labels lead to incorrect adaptation on class boundaries, where different class discriminators may
provide their guidance simultaneously. Finally, they devise an additional module to adaptively
re-weight the contribution of each class component in the adversarial loss, in order to avoid the
inherent dominance of classes with higher prediction probability, which turns out to be more
easily well-adapted across the domains.

Different from the aforementioned techniques, other works [279–281] seek for domain align-
ment inside the feature space by applying a reconstruction constraint to ensure that latent
embeddings possess enough information to recover the input images from which they have been
extracted. To this end, adversarial learning is applied on the reconstruction image-level space.
To achieve cross-domain feature distribution alignment, the feature extractor is trained to yield
latent representations that can be projected back to both source and target image spaces indis-
tinctly. In these frameworks the backbone encoder of the segmentation network plays a min-max
game against the domain discriminator. The encoder, indeed, tries to fool the discriminator on
the actual originating feature’s domain, by looking at the corresponding reconstructed images
projected back into the image space. In other words, the objective is to learn source (target)
features that can successfully generate target-like (source-like) images to promote domain in-
variance of those representations.

Output Adversarial Adaptation: To avoid the complexity of high-dimensional feature
space adaptation, a different line of works [26–28, 282–286] resort to adversarial adaptation on
the low-dimensional output space spanned by the segmentation network, which is still expected

139

to encode enough semantic information to allow effective adaptation. A domain discriminator is
provided with prediction maps from source and target inputs and it is optimized to discern the
domain they originate from. Conversely, the segmentation network has to fool it by aligning the
distribution of predicted dense labels across domains. Tsai et al. [282] are the first to propose
this type of adaptation: in order to improve the signal flow from the adversarial competition
through the segmentation network, they deploy multiple dense classification modules at different
depths upon which as many output-level discriminators are applied.
Following the technique proposed in [282], other works adopt the output space adversarial adap-
tation in combination with additional modules. For example, Chen et al. [283] combine semantic
segmentation and depth estimation to boost the adaptation performance. In particular, they
provide the domain discriminator with segmentation and depth prediction maps jointly, in order
to fully exploit the strong correlation between the two visual tasks. Moreover, Luo et al. [285]
enhances the adversarial scheme by a co-training strategy that highlights regions of the input
image with high prediction confidence. In this way, the adversarial loss can be effectively tuned
by balancing the contribution of each spatial unit, so that more focus is directed towards less
adapted areas.

Other works [26–28] revisit the adversarial output-level approach. In particular, they utilize
a discriminator network that has to distinguish between source ground-truth maps and gener-
ated semantic predictions from either source and target data. In doing so, the cross-domain
statistical alignment is not directly performed, but forcing the segmentation network output to
be distributed as ground-truth labels for both source and target inputs leads to an indirect yet
effective alignment between the two domains.

Recently, new approaches [151,291,292] have been proposed based on the extraction of mean-
ingful patterns from the segmentation output space to be exploited in the adaptation process.
This is done to explicitly guide the domain discriminator towards a more functional and sig-
nificant insight of source and target representations, and thus to ultimately achieve a better
alignment.

On this regard, Vu et al. [151, 291] devise an entropy-minimization strategy (which will be
described more in detail in Section 7.3.6) to promote more confident target predictions. They pro-
pose an indirect approach relying on the adversarial alignment of the statistics of self-information
maps computed on top of source and target predictions. In particular, a domain discriminator
has to detect whether a weighted self-information map comes from a source or a target pre-
diction, whereas the segmentation network, trying to deceive the discriminator, is forced to
produce low-entropy target maps as to mimic source confident ones. This process effectively
pushes decision boundaries away from high-density regions in the representation space.

With a different approach, Tsai et al. [292] construct a clustered space over the output predic-
tion space by adding a patch clustering module that discovers patch-wise modes on segmentation
maps. First, the module is trained, while supervised, on source data by leveraging the available
annotations, then it is exploited to achieve a patch-wise distribution alignment by enforcing
adversarial cross-domain adaptation between its clustered source and target representations.
The idea behind this approach is to capture high-level structured patterns, which are essential
to solving the semantic segmentation task, to be provided to the domain discriminator for an
improved domain statistical alignment. Thus, the achieved domain uniformity on a patch-level
should ensure, in principle, that the segmentation task can be effectively solved also in the
target domain.

140

Figure 7.9: Overview of the generative-based adaptation approach built upon cycle-consistent image-to-image translation. In

particular, source translated input images are exploited as a formof target-like artificial supervisionduring the learningprocess.

7.3.3 Generative-based Approaches

Unsupervised image-to-image translation is a class of generative techniques where the objective
is to learn a function that maps images across domains, relying solely on the supervision pro-
vided by unpaired training data sampled from the considered domains. The idea is to extract
characteristics peculiar to a specific set of images and transfer those properties to a different
data collection. In a more formal definition, the image-to-image translation task aims at discov-
ering a joint distribution of images from different domains. Notice that, since the problem is,
in fact, ill-posed, as an infinite set of joint distributions can be inferred from the marginal ones,
appropriate constraints must be applied to obtain acceptable solutions.

Image-to-image translation can be effectively exploited in domain adaptation: discovering the
conditional distribution of the target set with respect to the source one, should allow, in principle,
to bridge the statistical gap between source and target pixel-level statistics, thus removing the
original covariate shift responsible for the classifier performance drop. The goal, in fact, is to
transfer visual attributes from the target domain to the source one, while preserving source
semantic information. Following this idea, many works have proposed an input-level adaptation
strategy based on a generative module that translates images between source and target domains.
Despite the wide range of different approaches, all these works share the same idea of achieving
a form of domain invariance in terms of visual appearance, by mitigating the cross-domain
discrepancy in image layout and structure. This allows to learn a segmentation network on
translated source domain data (that should have a target-like statistical distribution) allowing
to make use of source annotations.

Data augmentation techniques can be used to improve the generalization capabilities: some
works propose to pre-process the synthetic images, i.e., the existing labeled data, to reduce the
inherent discrepancy between real and synthetic domain distributions mainly using generative
models based on Generative Adversarial Networks (GANs) [293–297]. Thus, these augmented
labeled data are used to train the segmentation network to work in a more reliable way on the
real domain.

A considerable amount of research [30,274–276,280,298–303] has been resorting to the success-
ful CycleGAN [29] unsupervised image-to-image translation framework to accomplish input-level
domain adaptation (Figure 7.9).

The framework proposed by Zhu et al. [29] is built on top of a pair of generative adversarial
models, concurrently performing conditional image translation between a couple of domain sets,
in both the source-to-target and target-to-source directions. The two adversarial modules are
further tied by a cycle-consistency constraint, which encourages the cross-domain projections to

141

be one the inverse of the other. This reconstruction requirement is essential to preserve struc-
tural geometrical properties of the input scene, but provides no guarantees about the semantic
consistency of translations. In fact, while retaining geometrical coherence, the mapping functions
could completely disrupt the semantic classification of input data.

Taking this into account, a number of works [30, 274–276, 298] address semantic consistency
by taking advantage of the semantic discriminative capability of the segmentation network.
In particular, cross-domain image translations are forced to preserve semantic content as per-
ceived by the semantic predictor, which represents a measure of semantic discrepancy between
an original image and its translated counterpart, which is minimized in the optimization of the
translation network. Still, with the prediction maps being intrinsically flawed, especially in the
target domain where annotations are missing, the inaccurate semantic information provided
to the generative module could hurt the learning of the image projections. Thus, some works
propose to simultaneously optimize the generative and discriminative framework components
in a single stage [30], or even split the segmentation network into separate source and target
predictors [276]. Li et al. [274] further extend the CycleGAN-based adaptation strategy for-
mulating a bidirectional learning framework. The image-to-image translation and segmentation
modules are alternately trained, in an optimization scheme by which each module is provided
with positive feedback from the other. The segmentation network benefits from the target-like
translated source images with original supervision, while the generative network is aided by the
predictor in retaining semantic consistency. This closed-loop structure effectively allows for a
progressive adaptation, with both image-to-image translations quality and semantic prediction
accuracy gradually enhanced.

Other works [300, 301] resort to different approaches to provide semantic-awareness to the
CycleGAN-based adaptation. Li et al. [300] propose to assist the cycle-consistent image-to-
image translation framework by a soft gradient-sensitive loss to preserve semantic content in
the cross-domain projection focusing on semantic boundaries. The idea behind this approach
is that, no matter how low-level visual attributes change between domains, the edges defining
semantic uniform regions should be easily detectable, regardless of the distribution the image
is drawn from. Thus, a gradient-based edge detector should discover consistent edge maps
between original images and their transformed versions. In addition, following the intuition
that semantically different regions of an image should face a different adaptation, they devise
a semantic-aware discriminator structure. In doing so, the discriminator can semantically-wise
evaluate resemblance between original and translated samples.

Very recently, Yang et al. [301] introduced a phase consistency constraint to the CycleGAN
pixel-level adaptation module, observing that the semantic content of an image is mostly encoded
in the phase of its Fourier transform, whereas alterations of the amplitude to the representation
in frequency does not change its composition.

With a different adaptation perspective, Gong et al. [302] adapted the CycleGAN model to
generate a continuous flow of domains ranging from source to target ones, by conditioning the
generative networks with a continuous variable representing the domain. The reason behind the
retrieval of intermediate domains spanning between the two original ones is to ease the adaptation
task, by progressively characterizing the domain shift affecting the input data distributions.
Moreover, they suggest that resorting to target-like training data from diverse target-like domain
distributions improves the generalization capability of the segmentation network.

To reduce the computational burden of the bi-directional structure of CycleGAN (which
entails a total of at least four neural networks to be added to the semantic predictor) other
works [283,304–306] discard the backward source-to-target projection branch, seeking for a more
light-weight input-level adaptation module, still based on generative adversarial framework. The
translation consistency is granted, for example, by the correlation to a related task (e.g., depth es-

142

timation) [283,304], which is jointly addressed with the semantic segmentation. Choi et al. [305],
instead, improve the generator of the original GAN framework with feature normalization mod-
ules at multiple depths to provide style information to source representations, whereas source
content is preserved. Furthermore, a semantic consistency loss from a pre-trained segmentation
network promotes coherence of image translations, providing, in fact, a regularizing effect in
absence of the cycle-consistency one. Hong et al. [306] use a conditional generative function to
model the residual representation between source and target feature maps, which is optimized
in an adversarial framework. In doing so, they avoid any reliance on a shared domain-invariant
latent space assumption, which may not be satisfied due to the highly structured nature of se-
mantic segmentation. The generator takes as input low-level source feature maps, together with
a noise sample, and is encouraged to produce high-level feature maps with target-like distribution
by a discriminator, which expresses a measure of statistical distance between original and repro-
duced target representations. Both source original and domain-transformed representations are
provided to a dense classifier to compute the cross-entropy loss.

In order to lessen the bias towards the source domain, Yang et al. [286] resort to the target-to-
source image-to-image translation, in place of the more common source-to-target one, generally
employed to generate a form or target supervision from source translated data. The source-like
target images are then employed in the supervised training of the predictor thanks to pseudo-
labeling. In addition, training the segmentation network directly in the source domain allows to
fully exploit the original source annotations, avoiding the risk of semantic alterations, which may
happen in the source-to-target pixel-level adaptation scenario. Moreover, to align feature rep-
resentations between domains, they introduce a label-driven reconstruction network. However,
differently from the feature-based reconstruction techniques [279–281] (Section 7.3.2), the gener-
ative recreation of input images is performed starting from semantic maps from the segmentation
output. In doing so, they seek to guide a category-wise alignment of the segmentation network
embeddings, since reconstructions that deviate from their target are penalized, thus providing
semantic consistency to network predictions.

A different category of adaptation strategies explores style-transfer techniques to achieve
image-level appearance invariance between source and target domains. These approaches are
based on the principle that every image can be disentangled into two separate representations,
namely content and style. As the style encodes low-level domain-specific texture information,
the content expresses domain-invariant high-level structural properties. Thus, being able to
combine style properties from target data with semantically preserving source content should
effectively allow for the construction of target-distributed training data, still retaining original
source annotations. Some techniques [284, 307] involve content and style decomposition in the
latent space. Translating a source image, then, means extracting its feature content represen-
tation and recombining it with a random target style representation. In a recent work [307],
the authors perform multi-modal source-to-target image translation based on the MUNIT archi-
tecture [308]. The original datasets are augmented with additional web-crawled data, in order
to reduce the gap in terms of task-unrelated data properties between sets, while at the same
time highlighting the relevant task-related visual features to be matched. Furthermore, the style
transfer method allows for multi-modal translation, i.e., multiple target styles can be trans-
ferred to a single source image, thus increasing training data diversity and, in turn, enforcing
the adaptation robustness.

Other works [288,309–312] completely avoid the computational complexity of generating high
resolution images with GANs by exploiting different types of style transfer techniques. Zhang et
al. [288] adopt traditional techniques of neural style transfer [313,314] to separate style (low-level
feature) from image content (high-level features). In particular, multi-level response maps of a
pre-trained CNN are exploited for image synthesis, where image style is expressed by the cor-

143

relation between feature maps in the form of Gram matrices. Alternative approaches [305, 310]
opt for the re-normalization of source feature maps, so that their first and second order statistics
match those of the target ones, by means of the AdaIN module [315]. Differently, Dundar et
al. [311] make use of a photo-realistic style transfer algorithm for an iterative optimization by
which both the segmentation network and the translation algorithm performance is constantly
improved. Yang et al. [312] remove domain-dependent visual attributes from source images by
replacing the low-level frequency spectrum with that of target images, without affecting high-
level semantic interpretability. They argue that this simple approach, despite not requiring
any additional learnable module, results in a remarkably robust adaptation performance when
embedded in a multi-band framework that averages predictions with different degrees of spec-
tral alteration. Finally, some approaches [316,317] employ cyclic consisten GANs to also enforce
the physics of parts of the scenes.

7.3.4 Classifier Discrepancy

As discussed in Section 7.3.2, feature-level adversarial domain adaptation in its original form
entails the competition between the task feature extractor and a domain critic (the discrimi-
nator), whose supervisory action in principle should guide towards the cross-domain alignment
of feature representations. Task-discrimination instead is granted by a source supervised task
objective (i.e., the standard cross-entropy loss for semantic segmentation).

As highlighted by [318,319], the major drawback of this primary form of adversarial adaptation
lies in the lack of semantic awareness from the domain discriminator network. Even when the
critic manages to grasp a clear expression of marginal distributions, thus effectively leading to
a global statistical alignment, category-level joint-distributions necessarily remain unknown to
the domain discriminator, as it is not provided with semantic labels when discriminating feature
representations. A side effect of this semantic-unaware adaptation is that features can be placed
close to class boundaries, increasing the chances of incorrect classification. Furthermore, target
representations may be incorrectly transferred to a semantic category different from the actual
one in the domain invariant adapted space (negative transfer), as decision boundaries are ignored
in the adaptation process.

To overcome these issues, Saito et al. [318] propose an Adversarial Dropout Regularization
(ADR) approach for UDA to provide cross-domain feature alignment away from decision bound-
aries. To do so, they completely revisit the original domain adversarial scheme, by providing
the task-specific dense classifier (i.e., the encoder) with a discriminative role. In particular,
by means of dropout, the classifier is perturbed in order to get two distinct predictions over the
same encoder output. Since the prediction variability is subject to an inverse relationship with
the proximity to decision boundaries, the feature extractor is forced to produce representations
far from those boundaries by minimizing the discrepancy of the two output probability maps.
At the same time, the classifier has to maximize its output variation, in order to boost its capa-
bility to detect less-adapted features. In this redesigned adversarial scheme, the dense classifier
is trained to be sensitive to semantic variations of target features, as to capture all the informa-
tion stored in its neurons, which in turn are encouraged to be as diverse as possible from each
other by the adversarial dropout maximization. On the other hand, the encoder is focused on
providing categorical certainty to extracted target features, since removing task-unrelated cues
weakens the possibility to achieve dissimilar predictions from the same latent representations.

Following the same principle of Adversarial Dropout Regularization, other approaches resort
to adaptation techniques based on classifier discrepancy to achieve a semantically consistent
alignment [285,299,319–321]. Saito et al. [319] improve the framework in [318] by modifying the
way of accessing multiple predictions over the same latent space. In place of dropout on classifier’s

144

weights, they introduce a couple of separate decoders, which are simultaneously trained with
source supervision, while being forced to produce dissimilar predictions by the maximization of
a discrepancy loss. The objective is to avoid the noise sensitivity acquired by the single classifier
in ADR, which is essential for the individual decoder to capture the proximity to the support
of target samples, but requires an additional training stage to correctly learn the segmentation
model as a whole.

The co-training strategy of exploiting a couple of distinct classifiers to infer the degree of
target adaptation is further merged to the more traditional generator-discriminator adversarial
framework by Luo et al. [285]. They use the discrepancy map from the two classifiers’ output
to weight the adversarial objective. Thereby semantic inconsistent regions highlighted by strong
prediction variability get a major focus in the objective, as they should suffer from a more
prominent domain shift. Additionally, Lee et al. [321] re-propose a form of adversarial dropout
to get divergent predictions from a single classifier. However, they drop the adversarial scheme for
a non-stochastic virtual dropout mechanism, to discover minimum distance adversarial dropout
masks that maximize prediction discrepancy. In the end, they resort to a single unified objective,
for a combined optimization of the encoder and decoder to align features between domains, while
progressively pushing dense regions and decision boundaries far away from each other.

7.3.5 Self-Training

The self-training strategy entails using highly confident network predictions inferred on unla-
beled data to generate pseudo-labels, to be used, in turn, to reinforce the training of the predictor
with the self-taught supervision. This approach has been commonly employed in semi-supervised
learning (SSL) [322] to exploit additional unlabeled data in order to improve the prediction ac-
curacy. Recently, self-training techniques have been extended to address unsupervised domain
adaptation, since UDA can be considered as a variant of the SSL task, even though the addi-
tional complexity of UDA from the statistical shift of the unlabeled target data must be further
taken into account. Indeed, concurrently learning from source annotations and target pseudo-
labels implicitly promotes feature-level cross-domain alignment, while still retaining the task
specificity. On the contrary, lacking a unified loss, other adaptation approaches, as the most
successful adversarial ones, have to take care of the task-relatedness with additional training
objectives. The critical point is that this strategy is self-referential, so careful arrangements
must be adopted to avoid catastrophic error propagation. Self-training, in fact, naturally pro-
motes more confident predictions, as the network probability output is encouraged to reach a
peaked distribution (at the limit a Dirac distribution) close to the one-hot pseudo-labels. Since
no form of external supervision is available on unlabeled target data, the network could yield
over-confident predictions by wrongly classifying uncertain pixels. In turn, the iterative self-
teaching strategy enforces prediction mistakes, through a propagation mechanism that makes
the output progressively deviating from the correct solution. For this reason, the majority of
self-training based adaptation approaches rely on various forms of pseudo-label filtering, to allow
self-learning only from top confident target predictions, which are implicitly assumed to have a
higher chance of being correct.

A first class of adaptation solutions based on self-training [274,323,324] employs offline tech-
niques for pseudo-label computation: at every update step a confidence threshold is computed
by looking at the entire training set. Target segmentation maps are then directly filtered accord-
ing to some confidence-based thresholding policy and used in combination with original source
annotated data for the supervised learning of the segmentation network.

In this regard, Zou et al. [323] propose one of the first UDA techniques based on self-training.
They devise an iterative self-training optimization scheme, which alternates steps of segmentation

145

network training on both source original and target artificial supervision and target pseudo-label
estimation. In particular, the target pseudo-labels are treated as discrete latent variables to be
computed through the minimization of a unified training objective. In addition, motivated by
the fact that class-unaware pseudo-labels confidence filtering is intrinsically biased towards the
easy (i.e., more confident) classes, they devise a class-balancing strategy by setting category-
wise confidence thresholds. This should promote inter-class balance, as the same amount of top
confident pixels are considered for each class, thus resulting in class-wise uniform contributions
to the learning process. Finally, since source and target domains are supposed to share high-
level scene layout, they also utilize spatial priors from source label statistics, which are inferred
for each semantic category and incorporated in the training objective. More recently, Zou et
al. [324] revisited their previous work in [323] by extending the pseudo-label space from one-hot
maps to a continuous space defined by a probability simplex. In this way, by avoiding clear-
cut overconfident self-supervision in the whole input image, the effect of the inherent misleading
incorrect pixel predictions should be effectively reduced. A continuous pseudo-label space further
allows them to introduce a confidence regularizing term in the training objective targeting both
pseudo-label (treated as latent variables) and network weights, with the purpose of achieving
output smoothness in place of sparse segmentation maps.

In order to avoid slow offline dataset-wise processing, Pizzati et al. [307] introduce self-training
with weighted pseudo-labels. A learnable confidence threshold is employed for both pseudo-label
refinement and weighting, thus making pseudo-labels belong to a continuous space, while con-
currently balancing the impact of uncertain pixels. Target weighted self-generated labels are
computed over a single batch, but still retain a global view, since the confidence threshold is
learned throughout the entire training phase.

A different group of research [26–28] construct a self-training strategy on top of an adversarial
discriminative adaptation module applied over the segmentation network output. In particular,
on the belief that the fully convolutional discriminator can be regarded as performing a measure
of reliability of network estimations, they exploit the discriminator output to identify reliable
target predictions, which are then preserved in the pseudo-label filtering operation. In [27] the
pseudo-label selection mechanisms is further improve by a region growing strategy. Moreover,
Spadotto et al. [28] propose to adopt a class-wise adaptive thresholding approach. They select
the same fraction of highly confident target pixels for each semantic class, by looking at the
batch-wise distribution of the discriminator probability output. In doing so, they provide the
adaptation framework with both inter-class confidence flexibility and time adaptability over the
training phase.

Another line of works [298, 305, 312, 325] utilize various forms of prediction ensembling to
yield more reliable predictions over target data, on top of which pseudo-labeling is performed.
Chen et al. [325] enhance the adaptation of low-level features by introducing an additional ASPP
dense classification module. Hence, self-produced guidance in the form of pseudo-labels from
the combined knowledge of low and high level target predictions is exploited as an additional
training objective. Yang et al. [312] train multiple instances of the segmentation network with
multi-band spectrum adaptation to obtain distinct semantic predictors. Then, target pseudo-
labels are generated from the mean prediction of the different segmenter instances, resulting in
a more robust adaptation when dealing with multiple rounds of self-training.

Rather than operating directly on the predictor output, other self-training approaches [298,
305] resort to an additional network to produce self-guidance over the unlabeled samples. Choi et
al. [305] propose a self-ensembling adaptation technique, by which a teacher network derived from
student network’s weights average yields predictions the student network is compelled to follow.
In other words, an auxiliary predictor (the teacher network) is providing a sort of pseudo-labels,
which are then used to transfer reliable knowledge to the actual predictor (the student network)

146

by supervised training on target data. With regularization purposes, Gaussian noise is addition-
ally injected on input target images and dropout weight perturbation is applied to the segmen-
tation network to improve adaptation robustness, as student-teacher prediction consistency is
enforced even under different random disturbance. Recently, the student-teacher self-ensembling
adaptation approach is extended by Zhou et al. [298], with the introduction of an uncertainty
module that filters out unreliable teacher predictions by looking at self-information maps.

7.3.6 EntropyMinimization

As already pointed out, semi-supervised learning and unsupervised domain adaptation are closely
related tasks: indeed, once source and target distributions are matched, the UDA task merely
scales down to learning from an unlabeled subset of the training data. Therefore, it is natural
that SSL approaches may inspire domain adaptation strategies, as discussed for self-training
(Section 7.3.5). Among the successful techniques used to address semi-supervised learning, en-
tropy minimization has been recently introduced to UDA [151]. The principle behind minimizing
target entropy to perform domain adaptation follows the observation that source predictions are
likely to show more confidence, which in turn translates into high entropy probability outputs.
On the contrary, the segmentation network is likely to display a more uncertain behavior on
target-distributed samples, as target prediction entropy maps happen to be overall quite unsta-
ble, typically being the noise pattern not confined just to the semantic boundaries. Thus, forcing
the segmentation network to mimic the over-confident source behavior when applied to the tar-
get domain too, should effectively reduce the accuracy gap between domains. In other words,
entropy minimization aims at penalizing classification boundaries in the latent space crossing
high density regions, while jointly encouraging well-clustered target representations properly
sorted out by decision boundaries.

In its simplest fashion [151] entropy minimization is performed at a pixel-level, so that each
spatial unit of the prediction map brings an independent contribution to the final objective.
However, the basic approach suffers from some intrinsic limitations, demanding further arrange-
ments to boost the adaptation performance [151,312,325]. To leverage structural information of
semantic maps, Vu et al. [151] propose a global adversarial optimization to enforce distribution
alignment over source and target entropy maps. In doing so, they rely on a domain discrimi-
nator to capture global patterns differentiating samples from separate domains, thus achieving
a more semantically meaningful cross-domain match of entropy behavior. Class-wise priors on
label distributions inferred from source annotations are further enforced on target predictions to
avoid class imbalance towards easy classes.

In a following publication, Chen et al. [325] observe that the entropy minimization objective
can be seriously hindered by the gradient predominance of more confident predictions. Indeed,
moving from high to low uncertainty areas, the gradient rapidly increases, and its value tends
to infinity as the output probability distribution tends to the delta function. This probability
imbalance in general prevents the segmentation network from learning over areas with little
accuracy, in which the gradients result much lower than those of easy-to-transfer image regions.
To address this issue, they devise a maximum squares loss, which produces a gradient signal
that grows linearly with the input probability. They also face class unbalance by introducing
a category-wise weighting factor based on target distribution from prediction maps in place
of source annotations, as they argue that source class statistics may significantly deviate from
target ones.

Very recently, Yang et al. [312] added an entropy minimization technique as an additional
module to their adaptation scheme. The intent is to seek a regularization effect over the training
on unlabeled target data, accomplished by pushing the decision boundaries away from high-

147

density regions in the target latent space, with basically no overhead to the actual framework.
The strength of the approach is enhanced by the combined application of other adaptation
modules to achieve domain alignment. This, in fact, shifts the UDA task towards SSL, thus
making entropy minimization more effective. Moreover, to avoid excessive emphasis on low
entropy predictions, they adopt a penalty function that increases the focus on less-adapted high
entropy regions of target images.

Entropy minimization has been used together with feature space shaping techniques in a few
recent works [31–33]. In [31], besides using entropy minimization, internal feature representations
are forced to be clustered, sparse and orthogonal (if belonging to different classes) in both source
and target domains to improve feature-level adaptation. In other recent works [32, 33] a norm
alignment constraint is further introduced to aid a class-wise feature orthogonality objective in
promoting disjoint sets of active feature channels between distinct semantic categories, while
driving target embeddings towards the highly confident (i.e., associated with high values of
feature norm) source distribution.

7.3.7 Curriculum Learning

Another research area regards curriculum learning approaches, where some easy tasks are solved
first, inferring some important and useful properties related to the target domain. Then, this
information is used to support the training of a network dealing with a more challenging task,
like image segmentation. This family of approaches shares many similarities in spirit with self-
training. The main difference between the two approaches lies in the content of the pseudo-labels.
While in the self-training approaches the pseudo-label is an estimate of the desired annotation
on the target set and it is used as such during training, in curriculum approaches the pseudo-
label is represented by some inferred statistical properties of the target domain (different from
the labels for the task) and the network is trained to reproduce such inferred properties in the
target predictions.

The first work of this family is [326] and its extension [327], where a couple of easy tasks
that are less sensitive to domain discrepancy are solved: namely, the label distribution over
global images and the label distribution over local landmark superpixels. The former property is
evaluated in the source domain, as the number of pixels in the labels associated to each category,
normalized by the total number of pixels. On the other hand, target labels are not available in
unsupervised domain adaptation and consequently a machine learning model should be trained
on the source domain to estimate them. In the papers, it is argued that this task can be solved
more easily than image segmentation and that the results can be used to guide the adaptation of
the segmentation task. To estimate the first property on the target domain, a logistic regression
model is employed. While the first property is useful to guarantee that the ratio among different
categories matches the ones of the target domain, samples with semantic maps not following
the estimated label distribution on the target domain are still penalized. To solve this problem,
a second clue is introduced. Images are divided into superpixels and an SVM classifier is used
to select the most representative anchor superpixels and the label distribution is estimated over
them. The final objective is a mixture of the pixel-wise cross-entropy of the source samples and
the cross-entropy on the two properties on the target domain discussed before. In [328, 329], a
technique to adapt the domain of a segmentation model from clear weather to dense fog images
is introduced. A novel method, called Curriculum Model Adaptation (CMAda), is proposed to
gradually adapt the model to segment images with an incrementally growing amount of fog.
A new method to add synthetic fog to images and a new fog density estimator are introduced. It
is important to remark that the fog generator has a tunable parameter β that controls the density
of the fog to add to the images. This made it possible to generate samples from the dataset

148

Cityscapes with different synthetic fog density and to use them to train an AlexNet model [330]
to perform a regression problem to discover β from images. The trained fog density estimator,
then, can also be used to estimate the fog density of real foggy images. The algorithm presented
starts from a source domain of clear weather images and progresses through intermediate target
domains of incrementally denser fog, and, finally, reaches the target domain of dense fog images.
During training, the labels of source domain and of synthetic fog images are available, while
the real foggy images are unlabeled. The segmentation model, initially, is pre-trained with
supervision on the source domain and then, with as many adaptation training steps as the
number of denser fog steps, it is gradually shifted towards the target domain. Starting from the
assumption that images with lighter fog are easier to segment, the model of the current step is
used to evaluate the labels for real foggy images with intensity less than the beta of the current
step. Then these samples are used together with images with synthetic fog of density beta of the
next step to train the model with supervision. Iterating this process for all the steps towards
the target dataset, the model adapts, in an unsupervised way (labels of the real foggy images
are not used), to segment real dense fog images. In [331], the connection between curriculum
learning and self-training is highlighted and a method (called self-motivated pyramid curriculum
domain adaptation, PyCDA) that uses and merges both techniques is presented. The authors
remind that in self-training there are two main training steps that alternate: (1) the evaluation of
pseudo-labels for the target domain and (2) the supervised training of the segmentation network
with the labeled source domain images and with the target domain images with pseudo-labels.
In curriculum learning there are also two steps that alternate: (1) the inferring of properties
of the target domain (e.g., frequency label distributions over global images or image regions,
like superpixels) and (2) the update of the network parameters using the labeled source domain
and the target domain inferred properties. In PyCDA the two approaches are merged: the
pseudo-labels used in self-training are considered as a property of the curriculum approach.
The papers also substitute the superpixels used in [326] with small squared regions to improve
the algorithm efficiency and also all the curriculum properties are inferred with the segmentation
networks themselves and additional models (for example, SVMs or logistic regression models)
are not needed.

7.3.8 Multi-Tasking

Some works exploit additional types of information available in the source domain dataset,
for example, depth maps, to improve the performance in the target domain. In other words,
the models are trained to solve additional tasks (for example depth regression) simultaneously to
image segmentation in order to build an invariant and generic embedding of the images. In [304],
the authors highlight that when the source domain is made of synthetic data we could include
other information about the dataset samples beyond the semantic maps, for example, depth
maps. This is called Privileged Information (PI) and it includes all properties that may be
useful for the training. The method proposed in [304] is called Simulator Privileged Information
and Generative Adversarial Networks (SPIGAN), which uses an adversarial learning scheme
performing source-to-target image translation together with a network trained on source images
and on adapted images that tries to predict their privileged information (e.g., the depth map).
In particular, the PI is used as regularization for the domain adaptation. A different use of the
extra depth information in the source domain to enhance the appearance features and improve
the alignment of the source-target domains is presented in [291]. The method introduced is
called Depth-Aware Domain Adaptation (DADA) and includes a specific architecture and a
learning strategy. The architecture starts from an existing segmentation network and includes
some extra modules to predict the monocular depth and to feed the information of this task back

149

in the main stream. Residual auxiliary blocks are used for this purpose. To perform domain
adaptation, images from source and target domains are fed to the network to compute the
class-probability and depth maps. Then, the former is processed into self-information maps and
merged to the latter to produce depth aware maps. Finally, these maps are used in an adversarial
training to adapt the source domain. It is important to remark that the depth information is
not used as regularization, but it is directly considered while deriving prediction for the main
task. In the paper, it is argued that this is a more explicit and more useful way to exploit the
depth information than the method presented in [304].

A third different use of the depth maps is introduced in [283] where a method called Geomet-
rically Guided Input-Output Adaptation (GIO-Ada) is presented. The geometric information is
exploited to improve the adaptation both at the input-level and at the output-level. The former
adaptation tries to reduce the visual differences of the images of the source and target domains.
A transform network accepts as input source images together with their semantic maps and
depth maps to compute adapted images, visually similar to images of the target domain. A dis-
criminator is used in an adversarial learning with the transform network to distinguish real
target domain images from adapted ones. The main contribution of the paper in this adaptation
is the use of semantic maps and depth maps as additional inputs for the transform network.
The output-level adaptation is built with a task network that computes, for each input, the se-
mantic map and the depth map. Such outputs are fed to an additional discriminator which
tries to distinguish whether they were computed from a real or adapted image. In [320], a net-
work composed of a feature generator followed by two classifiers (that computes semantic maps)
has been adopted and a maximum classifier discrepancy approach is used for the unsupervised
adaptation from a synthetic source domain to a real target domain. Two techniques are pre-
sented to improve the performance of the network: a data-fusion approach and a multi-task one.
The former merges the RGB image information and the depth information and use the result
as an input of the network. In the latter, only RGB images are used as inputs, however three
tasks are solved simultaneously by different networks after the feature generator to boost the
overall performance of the network in the target domain: namely, semantic segmentation, depth
regression and boundary detection.

7.3.9 Latent-Level Regularization

Latent space regularization has been shown to ease the semantic segmentation tasks in different
settings, such as UDA [138, 332], continual learning [21] and few-shot learning [140, 141]. The
idea is to embed additional constraints on feature representations during the training process,
enforcing a regular semantic structure on latent spaces of the deep neural classifier. In UDA,
where target semantic supervision is missing, regularization can be applied in class-conditional
manner by relying on the exclusive supervision of source samples, while indirectly propagating
its effect to target representations as well.
Clustering in UDA. A few approaches have been proposed recently to address UDA in im-
age classification by resorting to a discriminative clustering algorithm, whose goal is to disclose
target class-conditional modes in the feature space. A group of works [138, 139, 332, 333] em-
bed variations of the K-means algorithm in the overall adaptation framework, where clusters
of geometrically close latent representations are identified, revealing the semantic modes from
the unlabeled target domain. Being developed to address image classification, these clustering
strategies may lose efficacy when dealing with semantic segmentation. Moreover, they deeply
rely on a geometric measure of feature similarity to assign target pseudo-labels, which may not
be feasible in a very high-dimensional space. For this reason, this type of clustering technique is
often combined with a learnable projection to discover a more easily tractable lower dimensional

150

latent space [139,332,333].
To overcome the lack of target semantic supervision, other approaches [145,146] resort to pseudo-
labels directly from network predictions to discover target class-conditional structures in the
feature space. Those structures are then exploited to perform a within-domain feature clus-
terization [146] and cross-domain feature alignment by centroid matching [145, 146]. Starting
from analogous premises, [32, 33] extend a similar form of inter and intra class adaptation to
the semantic segmentation scenario, by introducing additional modules that help to address the
inherent increased complexity.

Avoiding the need for target pseudo-labels, [244, 250] propose a self-supervised clustering
technique to discover target modes without any form of supervision. However, their approach is
not easily scalable to semantic segmentation, as it requires to store feature embeddings of past
samples, which is rather impractical when each data instance is associated with thousands of
latent representations.
Quite recently, Tang et al. [334] argue that a direct class-wise alignment over source and target
features could harm the discriminative structure of target data. Thus, they perform intrinsic
feature alignment by a joint, yet distinct, model training with both source and target data.
Nonetheless, in a more complex semantic segmentation scenario, an implicit adaptation could
be not enough to bridge the domain gap that affects the effectiveness of target predictions.
Orthogonality and Sparsity. Deep neural networks are trained to learn a compact repre-
sentation of the scene. However, no constraint is posed on the orthogonality among feature
vectors belonging to different classes or on the sparsity of their activations [335, 336]. The
orthogonality between feature vectors has been recently proposed for UDA in [143, 144]. In
these works, a penalty term is introduced to force the prototypes (i.e., the class centers) to be
orthogonal. Feature-level orthogonality has been also explored in [337] to limit the redundancy
of the information encoded in feature representations. Recent works [31–33] promote disjoint
sets of active feature channels between distinct semantic categories in order to reduce cross-talk
and overlapping channels among features of different classes.

In [31] the idea of reducing interference among features is also translated into a constraint
to make features channel-wise sparse. There are not many prior works employing channel-
wise sparsification in deep learning models. However, some prior techniques exist for domain
adaptation on linear models exploiting sparse codes on a shared dictionary between the domains
[147,148]. Additionally, in [338] an expectation maximization approach is proposed to compute
sparse code vectors which minimize the energy of the model. Although the approach is applied
to linear encoders and decoders for simplicity, it could be extended to non-linear models.

7.3.10 NewResearch Directions

Unsupervised Domain Adaptation in its original interpretation aims at addressing the domain
shift by transferring representations concerning a specific and well-defined set of semantic cate-
gories shared across source and target data. This follows the assumption that the target domain
contains only instances of the classes which can be found in source samples. Nevertheless,
while being a reasonable hypothesis that does not hinder the generality of the adaptation task,
in practice it is common that images from a novel domain may contain objects from unseen
categories.

Moving in the direction of a more general definition of the adaptation objective, some works
have tackled the open-set domain adaptation [238] applied to the image classification task, which
entails unknown categories peculiar to the target domain not present in the source one, but they
still retain a somewhat strict prior definition of the adaptation settings class-wise. Recently,
a few novel approaches [239, 244] have proposed to relax the common premises on the domain

151

adaptation settings, to effectively move towards a more realistic scenario where little can be
inferred a priori about target data properties, thus widening the applicability to real-world
solutions.

Saito et al. [244], for instance, introduce the Universal Domain Adaptation problem, allowing
for basically no beforehand characterization of target classes. In particular, they resort to a
neighborhood clustering technique to assign each target sample to either a source class or to the
unknown category without any supervision. Then, the matching of cross-domain representations
is enforced by entropy minimization to achieve domain alignment.

A step further is attained by solving the recognition of unseen target categories, which have to
be individually learned rather than simply acknowledged as unknown. Zhuo et al. [239] address
what they call the Unsupervised Open Domain Recognition task, where the objective is to learn
to correctly classify target samples of unknown classes. To do so, they reduce the domain shift
between source and target sets by an instance matching discrepancy minimization, weighted
according to feature similarity. Once the semantic predictor has achieved domain invariance,
classification knowledge can be safely transferred from known to unknown categories by a graph
CNN module.

Despite that the aforementioned adaptation approaches have proven to be quite effective for
the image classification task, further adjustments need to be done to deal with the additional
complexity of feature representations of a semantic segmentation network. In this regard, a novel
Boundless Unsupervised Domain Adaptation (BUDA) task is proposed by Bucher et al. [245]
specifically for semantic segmentation. Similarly to UODR [239], the standard domain adap-
tation problem is unbounded to explicitly handle instances of new unseen target classes, while
relying solely on a minimal semantic prior in the form of class names, which are supposed to
be known in advance. Thus, the overall task is decoupled in the domain adaptation and zero-
shot learning problems. First, the domain adaptation of categories in common between source
and target domains is performed, via an entropy minimization technique carefully designed to
avoid incorrect alignment over unseen target classes. Then, a zero-shot learning strategy [339]
is exploited to transfer knowledge from seen to unseen classes, by a generative model able to
synthesize visual features conditioned by class descriptors.

Another closely related research direction, which is currently gaining wider and wider interest
among the research community, is the continual learning task. As we have seen in previous
chapters, continual learning could be regarded as a particular case of transfer learning, where
the data domain distribution changes at every incremental step and the models should perform
well on all the domain distributions. For instance, in class-incremental learning, the learned
model is updated to perform a new task whilst preserving previous capability. Initially proposed
for image classification [49, 79] and object detection [51], it has been recently explored also for
semantic segmentation [18, 20, 23]. Another formulation of this problem regards the coarse-to-
fine refinement of semantic labels, in which previous knowledge acquired on a coarser task is
exploited to perform a finer task, hence modifying the labels distribution [24,25].

7.4 A Case Study: Synthetic to Real Adaptation for Semantic Understanding

of Road Scenes

The main aspect for UDA techniques is the ability to transfer knowledge acquired on one dataset
to a different context. Hence, the considered data play a fundamental role in the design and
evaluation of UDA algorithms. In this section, we focus on one of the most interesting appli-
cation scenarios: i.e., the ability to transfer knowledge acquired on synthetic datasets (source
domain), where labels are relatively inexpensive and can be easily produced with computer

152

graphics engines, to real-world ones (target domain), where annotations are highly expensive,
time-consuming and error-prone. Many of the works dealing with this task focus on urban scenes
mainly for four reasons:

1. autonomous driving is nowadays one of the biggest research areas and massive fundings
support this research [340];

2. many synthetic and real-world datasets are publicly available for this scenario [243, 341–
344];

3. autonomous vehicles should fully understand the surrounding environment to plan deci-
sions [345] and such navigation task in the environment could be encountered in many
other applications, for example, in the robotics field;

4. the first works on the topic addressed this setting and it has become the de-facto standard
for performance comparison with the state-of-the-art in the UDA for semantic segmentation
field.

In the autonomous driving scenario, the pixel-level annotation must be manually provided for
a huge amount of frames acquired by cameras mounted on cars driving around. This annotation
is expensive and requires a huge amount of work. Some recent papers [243, 341] introduced a
workaround for this issue using computer generated data for training the networks. The realistic
rendering models developed by the video game industry can be used to produce a large amount
of high quality rendered road scenes [243].

Before presenting the more commonly used synthetic and real-world datasets, we stress that in
the unsupervised domain adaptation scenario the expensive labels of real samples in the target
domain are not needed for training. However, a limited number of real target samples must
be manually labeled for testing (and sometimes validating) the performance of the algorithms.
On the other hand, large synthetic datasets corresponding to the source domain are equipped
with annotations that are exploited for supervised training.

7.4.1 Source Domain: Synthetic Datasets of Urban Scenes

One of the first large scale synthetic datasets for urban driving is the GTA5 dataset [243]. It
contains 24, 966 synthetic 1914×1052 px images with pixel-level semantic annotation. The images
have been rendered using the open-world video game Grand Theft Auto V and are all from the
car perspective in the streets of American-style virtual cities (resembling the ones in California).
Typically, 23, 966 images are used for the supervised training, while 1000 are taken out for
validation purposes, as we do in our works. The images have an impressive visual quality and
are very realistic since the rendering engine comes from a high budget commercial production.
The data is labeled into 19 semantic classes, which are compatible with the ones of real-world
datasets as Cityscapes or Mapillary (after a proper re-mapping of labels).

The SYNTHIA-RAND-CITYSCAPES dataset has been sampled using the same simulator as
the SYNTHIA dataset [341] and contains 9, 400 synthetic 1280×760 px images with pixel level
semantic annotation. The images have been rendered with an ad-hoc graphic engine, allowing
to obtain a large variability of photo-realistic street scenes (in this case they come from virtual
European-style towns in different environments under various light and weather conditions). On
the other hand, the visual quality is lower than the commercial video game GTA5. The semantic
labels are compatible with 16 classes of real-world datasets like Cityscapes and Mapillary. For the
evaluation, either 13 or 16 classes are taken into consideration. Typically, 9, 300 images are used

153

for the supervised training while 100 are taken out for validation purposes, as we do in our
works.

CARLA (CAR Learning to Act) [346] is an open-source simulator for autonomous driving
research built over the Unreal Engine 4 rendering software. It has been designed to grant large
flexibility and both the physics and the rendering simulations are quite realistic. Two virtual
towns have been designed: Town 1 with 2.9 km of drivable roads and Town 2 with 1.4 km of
drivable roads. Three-dimensional artists first laid roads and sidewalks, then they placed houses,
terrain, vegetation, and traffic infrastructure to resemble a realistic environment. Then, dynamic
objects, like cars and pedestrians, spawn from specific coordinates. The APIs of CARLA give
access to a semantic segmentation camera that can distinguish 13 different classes. This feature
makes it possible to sample urban datasets very quickly, easily and with a large control on the
variability of samples. Another relevant aspect is that anyone can create their own dataset based
on the specific needs customizing the open-source simulator.

7.4.2 Target Domain: Real-World Datasets of Urban Scenes

The Cityscapes dataset [342] contains 2, 975 color images of resolution 2048×1024 px captured
on the streets of 50 European cities. The images have pixel-level semantic annotation with a total
of 34 semantic classes. For the evaluation of UDA approaches, typically the original training set
(without the labels) is used for unsupervised adaptation, while the 500 images in the original
validation set are used as a test set (since the test set labels have not been made available).

The Mapillary dataset [343] contains 25, 000 variable (typically very high) resolution color
images taken from different devices in many different locations around the world. The variability
in classes, appearance, acquisition settings and geo-localization makes the dataset the most
complete and the one of the highest quality in the field. The 152 object-level semantic annotations
are often re-conducted to the classes present in the Cityscapes dataset, for example, following the
mapping in [347]. The training images (without the labels) are used for unsupervised adaptation
and the images in the original validation set are exploited as a test set.

The Oxford RobotCar Dataset [348] contains about 1000 km of images recorded driving in
the central part of Oxford (UK). The same route (approximately 10 km long) has been repeatedly
traversed for almost a year and 20 million images under different weather and light conditions
have been collected by the six cameras the car was equipped with. All data are associated also
to LiDAR, GPS and INS ground truth.

The Cross-City benchmark [277] is sometimes used in a real-to-real setup, where the Cityscapes
dataset takes the role of source domain, while the Cross-City dataset [277] takes the role of tar-
get. Google Street View is used to collect a large number of not annotated street images from
Rome, Rio, Tokyo and Taipei. These cities have been chosen to ensure enough visual variations
and the locations in the cities have been randomly selected. Using the time-machine feature of
Google Street View it has been possible to capture images of the same street scene at different
times in order to extract static objects priors. Such dataset is comprised of 12, 800 (4× 3, 200)
high resolution (2048× 1024 px) images.

7.4.3 Methods Comparison

In this section, the main results of the approaches described in the previous chapters are sum-
marized and briefly discussed. For the sake of brevity, only the most widely used datasets are
considered in this section: namely, GTA5 and SYNTHIA as source datasets, and Cityscapes
as target datasets. Before digging into the description of the results of existing methods, we
warn the reader to be aware that different evaluation protocols and experimental setups exist

154

making the direct comparison of the final accuracy results not always faithful. For instance, dif-
ferences in input image resolution, batch size, backbone network architecture and other training
parameters may alter the comparison.

Table 7.1: Mean IoU (mIoU) for differentmethods grouped by backbone in the scenario adapting source knowledge fromGTA5

to Cityscapes.

Method Backbone mIoU Method Backbone mIoU
Biasetton et al. [26] ResNet-101 30.4 Chen et al. [287] VGG-16 35.9
Chang et al. [284] ResNet-101 45.4 Chen et al. [276] VGG-16 38.1
Chen et al. [287] ResNet-101 39.4 Choi et al. [305] VGG-16 42.5
Chen et al. [325] ResNet-101 46.4 Du et al. [278] VGG-16 37.7
Du et al. [278] ResNet-101 45.4 Hoffman et al. [273] VGG-16 27.1
Gong et al. [302] ResNet-101 42.3 Hoffman et al. [275] VGG-16 35.4
Hoffman et al. [275] ResNet-101 42.7 * Huang et al. [289] VGG-16 32.6
Li et al. [274] ResNet-101 48.5 Li et al. [274] VGG-16 41.3
Lian et al. [331] ResNet-101 47.4 Lian et al. [331] VGG-16 37.2
Luo et al. [290] ResNet-101 42.6 Luo et al. [290] VGG-16 34.2
Luo et al. [285] ResNet-101 43.2 Luo et al. [285] VGG-16 36.6
Michieli et al. [27] ResNet-101 33.3 Saito et al. [319] VGG-16 28.8
Toldo et al. [31] ResNet-101 45.9 Toldo et al. [31] VGG-16 34.2
Barbato et al. [32] ResNet-101 41.1 Barbato et al. [32] VGG-16 36.2
Spadotto et al. [28] ResNet-101 35.1 Sankaranarayanan et al. [279] VGG-16 37.1
Tsai et al. [282] ResNet-101 42.4 Tsai et al. [282] VGG-16 35.0
Tsai et al. [292] ResNet-101 46.5 Tsai et al. [292] VGG-16 37.5
Vu et al. [151] ResNet-101 45.5 Vu et al. [151] VGG-16 36.1
Wu et al. [309] ResNet-101 38.5 Wu et al. [309] VGG-16 36.2
Yang et al. [312] ResNet-101 50.5 Yang et al. [312] VGG-16 42.2
Zhang et al. [288] ResNet-101 47.8 Zhang et al. [326] VGG-16 28.9
Zou et al. [324] ResNet-101 47.1 Zhang et al. [327] VGG-16 31.4
Murez et al. [280] ResNet-34 31.8 Zhou et al. [298] VGG-16 47.8
Lian et al. [331] ResNet-38 48.0 Zhu et al. [281] VGG-16 38.1 *
Zou et al. [323] ResNet-38 47.0 Zou et al. [323] VGG-16 36.1
Zou et al. [324] ResNet-38 49.8 Hong et al. [306] VGG-19 44.5
Lee et al. [321] ResNet-50 35.8 Chen et al. [276] DRN-26 45.1
Saito et al. [318] ResNet-50 33.3 Dundar et al. [311] DRN-26 38.3
Wu et al. [309] ResNet-50 41.7 Hoffman et al. [275] DRN-26 39.5
Hoffman et al. [275] MobileNet-v2 37.3 * Huang et al. [289] DRN-26 40.2
Toldo et al. [30] MobileNet-v2 41.1 Liu et al. [349] DRN-26 39.1 *
Zhu et al. [29] MobileNet-v2 29.3 * Yang et al. [301] DRN-26 42.6
Murez et al. [280] DenseNet 35.7 Zhu et al. [29] DRN-26 39.6 *
Huang et al. [289] ERFNet 31.3 Saito et al. [319] DRN-105 39.7

*: values from results of competing works.

Table 7.1 shows the mIoU results for different methods grouped by the employed backbone
network when adapting source knowledge from GTA5 to Cityscapes. In some cases, results of
methods of papers that did not directly evaluate on the considered scenario have been extrap-
olated from comparisons reported in other papers and are marked with an asterisk. We can

155

appreciate that the results could greatly vary depending on the method and on the evaluation
protocol used.

Figure7.10:Mean IoU (mIoU)ofdifferentmethodsgroupedbybackbone in thescenarioadapting sourceknowledge fromGTA5

to Cityscapes (see Table 7.1). Backbones are sorted by decreasing the number of entries. Orange crosses represent the per-

backbonemeanmIoU. Only the backbones with 3 ormore entries are displayed.

Figure7.11:MeanIoUon16classes (mIoU16) ofdifferentmethodsgroupedbybackbone in thescenarioadaptingsourceknowl-

edge from SYNTHIA to Cityscapes (see Table 7.2). Backbones are sorted by decreasing number of entries. Orange crosses rep-

resent the per-backbonemeanmIoU. Only the backbones with 3 ormore entries are displayed.

The entries of this table are scattered in Figure 7.10 grouped by backbone architecture to show
the mIoU values and the corresponding mean (only the backbones with at least three entries
are considered in the plot). In general, we can see that ResNet-based approaches outperform
the competitors. Moreover, the most widely diffused architectures are ResNet-101 and VGG-16.

156

Table 7.2: Mean IoU (mIoU) for different methods grouped by backbone in the scenario adapting source knowledge from SYN-

THIA toCityscapes. The table reports themIoU computed over13or16 semantic classes depending on the label set employed.

Method Backbone mIoU13 mIoU16 Method Backbone mIoU13 mIoU16

Biasetton et al. [26] ResNet-101 - 30.2 Chen et al. [277] VGG-16 35.7 -
Bucher et al. [245] ResNet-101 - 36.2 Chen et al. [287] VGG-16 - 36.2
Chang et al. [284] ResNet-101 - 41.5 Chen et al. [287] VGG-16 41.8 * 36.2 *
Chen et al. [325] ResNet-101 48.2 41.4 Chen et al. [276] VGG-16 - 38.2
Du et al. [278] ResNet-101 50.0 - Chen et al. [283] VGG-16 43.0 37.3
Li et al. [274] ResNet-101 51.4 - Choi et al. [305] VGG-16 46.6 38.5
Lian et al. [331] ResNet-101 53.3 46.7 Du et al. [278] VGG-16 43.4 -
Luo et al. [290] ResNet-101 46.3 - Hoffman et al. [273] VGG-16 17.0 20.2 *
Luo et al. [285] ResNet-101 47.8 - Huang et al. [289] VGG-16 - 30.7 *
Michieli et al. [27] ResNet-101 - 31.3 Lee et al. [304] VGG-16 42.4 * 36.8
Toldo et al. [31] ResNet-101 48.2 41.1 Toldo et al. [31] VGG-16 43.7 37.1
Barbato et al. [32] ResNet-101 48.1 41.7 Barbato et al. [32] VGG-16 43.5 39.4
Spadotto et al. [28] ResNet-101 - 34.6 Li et al. [274] VGG-16 - 39.0
Tsai et al [292] ResNet-101 46.5 40.0 Lian et al. [331] VGG-16 42.6 35.9
Tsai et al. [282] ResNet-101 46.7 - Luo et al. [285] VGG-16 39.3 -
Vu et al. [151] ResNet-101 48.0 41.2 Luo et al. [290] VGG-16 37.2 -
Vu et al. [291] ResNet-101 49.8 42.6 Sankaran. et al. [279] VGG-16 42.1 * 36.1
Wu et al. [309] ResNet-101 - 36.5 Tsai et al [292] VGG-16 39.6 33.7
Yang et al. [312] ResNet-101 52.5 - Tsai et al. [282] VGG-16 37.6 -
Zou et al. [324] ResNet-101 50.1 43.8 Vu et al. [151] VGG-16 36.6 31.4
Zou et al. [323] ResNet-38 - 38.4 Wu et al. [309] VGG-16 - 35.4
Wu et al. [309] ResNet-50 48.4 42.5 Yang et al. [312] VGG-16 - 40.5
Hoffman et al [275] MobileNet-v2 - 27.5 * Yang et al. [301] VGG-16 48.7 41.1
Toldo et al. [30] MobileNet-v2 - 32.6 Zhang et al. [326] VGG-16 34.8 * 29.0
Zhu et al. [29] MobileNet-v2 - 24.2 * Zhang et al. [327] VGG-16 - 29.7
Chen et al. [276] DRN-26 - 33.4 Zhou et al. [298] VGG-16 48.6 41.5
Dundar et al. [311] DRN-26 - 29.5 Zhu et al. [281] VGG-16 40.3 * 34.2 *
Liu et al. [349] DRN-26 - 28.0* Zou et al. [323] VGG-16 36.1 35.4
Zhu et al. [29] DRN-26 - 27.1 * Hong et al. [306] VGG-19 - 41.2
Saito et al. [319] DRN-105 43.5 * 37.3 *

*: values from results of competing works.

Employing the ResNet-101 architecture looks to be the best option for full comparison with the
existing literature.

Similarly, Table 7.2 reports the results grouped by backbone when adapting source knowledge
from SYNTHIA to Cityscapes. The table reports two setups, i.e., considering either 13 or 16
classes, since both are often considered in this case. The respective entries of mIoU16 are
scattered in Figure 7.11 to give an overview of the most widely used techniques and of the
results achieved. Also in this scenario, VGG-16 is the most popular architecture followed by
ResNet-101, which generally shows higher results.

Some recent works also consider the Mapillary dataset adapting from either GTA5 or SYN-
THIA as source datasets, as before. In this case, the comparison is quite limited [26–28] and,
to the best of our knowledge, the highest performing approach is [28], which achieves a mIoU of
41.9 when adapting from GTA5.

157

7.5 Summary

In this chapter, we presented a comprehensive overview of the recent advancements in Unsu-
pervised Domain Adaptation for semantic segmentation. This is a very relevant task since deep
learning architectures for semantic segmentation require a huge amount of labeled training sam-
ples, which in many practical settings are not available due to the complex labeling procedure.
For this reason, a wide range of different UDA approaches for this task have been proposed in
the recent years.

In order to organize the wide range of existing approaches we started from grouping them
at a high-level, based on where the domain adaptation is performed: namely, at input-level
(i.e., on the images provided to the network), at feature-level, at output-level or at some ad-
hoc network levels. After this macroscopic subdivision, we moved to the actual review of the
literature in the field, dividing the existing works into seven (non mutually exclusive) categories:
i.e., based on adversarial learning, on generative approaches, on the analysis of the classifier
discrepancies, on self-training, on entropy minimization, on curriculum learning and, finally, on
multi-task learning. For each category, we presented the most successful approaches and we
summarized the main ideas of each contribution.

Then, we considered a case study: the synthetic to real adaptation for semantic understanding
of road scenes. Besides being a very relevant task since it is one of the key enabling technologies
for autonomous driving, it has also been used for the evaluation of many papers in the field
and we concluded comparing the accuracy of many different works grouped by the backbone
architecture on this task.

In the next chapters we will present our contributions to the advancement of this field, ranging
from output-level methods in Chapter 8 to input- and feature- level adaptation in Chapter 9.

158

8
Output-Level Domain Adaptation

8.1 Introduction

This chapter explores novel output-level Unsupervised Domain Adaptation (UDA) strategies.
In Section 8.2 we present the first line of research, where we investigate adversarial learning
and self-teaching [26, 27]. In Section 8.3 we refine previous strategies by means of an adaptive
confidence estimation mechanism over the predicted segmentation map [28].

We test our models on the task of domain adaptation for semantic segmentation of urban
scenes from synthetic to real-world domains. In particular, we employ the SYNTHIA and
GTA5 synthetic datasets to train the supervised component, whereas we resort to real data
from Cityscapes and Mapillary datasets for the unsupervised adaptation modules.

8.1.1 Contributions

We proposed two main approaches derived from the same common framework:

1. In the first approach (Section 8.2) we drive the learning and adaptation process by means
of three components [26, 27]: a standard supervised learning loss on labeled source data;
an adversarial learning module that exploits both labeled source data and unlabeled target
data; finally, a self-teaching strategy applied to unlabeled data. The last component ex-
ploits a region growing framework guided by the segmentation confidence. Furthermore, we
weighted this component on the basis of the class frequencies to enhance the performance
on less common classes.

2. In the second approach (Section 8.3) we refine the previous approach. Indeed, we enriched
the adversarial module, which is now driven by a couple of fully convolutional discrimi-
nators dealing with different domains: the first discriminates between ground truth and
generated maps, while the second between segmentation maps coming from synthetic or
real-world data. The self-training module exploits the confidence estimated by the dis-
criminators on unlabeled data to select the regions used to reinforce the learning process.
Furthermore, the confidence is thresholded with an adaptive mechanism based on the
per-class overall confidence.

159

8.2 UDAwith Adversarial Learning and Self-Teaching

As we discussed in Chapter 7, deep neural networks have shown impressive performance on this
task. However, they have the key drawback that a huge amount of labeled data is required for
their training, especially in case recent highly complex architectures are used.

Despite the impressive realism of recent video games graphics, there is still a large domain
shift between the computer generated data and real-world images acquired by video cameras on
cars. To be able to really exploit computer generated data in real-world applications the domain
shift issue needs to be addressed. The proposed method exploits a segmentation network based
on the DeepLab-v2 framework [5] that is trained using both labeled and unlabeled data in an
adversarial learning framework with multiple components. The first component that controls the
training is a standard cross-entropy loss exploiting ground truth annotations used to perform a
supervised training on synthetic data. The second is an adversarial learning scheme inspired by
previous works on semi-supervised semantic segmentation, i.e., dealing with partially annotated
datasets [350, 351]. We exploited a fully convolutional discriminator which produces a pixel-
level confidence map distinguishing between data produced by the generator (both from real or
synthetic data) and the ground truth segmentation maps. It allows to train in an adversarial
setting the segmentation network using both synthetic labeled data and real-world scenes without
ground truth information. Finally, the third term is based on a self-teaching loss. This key
component is based on the idea introduced in [350] that the output of the discriminator can
also be used as a measure of the reliability of the network estimations. This can in turn be
exploited to select the reliable regions in a self-teaching framework. However, this component
has been greatly improved in this work, both with respect to [350] and to [26]. First of all, the
output of the discriminator has been considered as a weight to be applied to the loss function
of the self-teaching component at each location, in place of the hard threshold mask used in
previous work [26]. Then, a novel region growing scheme is introduced in order to extend and
better represent the shape of reliable regions. This is a key difference because the previous
approaches [26,350] tend to almost always discard edge regions and small objects. Finally, since
the various classes have different frequencies, we also weighted the loss coming from unlabeled
data in proportion to the frequency of the various classes in the synthetic dataset. This allows to
obtain a better balance of the performance among the different classes. In particular, it avoids
dramatic drops in performance on less common classes, as small objects and structures.

8.2.1 Preliminaries

The work of [352] has opened the way to adversarial learning approaches for the semantic seg-
mentation task, while [258] to their application to semi-supervised learning. The approaches
of [350,351] are also based on adversarial learning but exploit a Fully Convolutional Discrimina-
tor (FCD) trying to discriminate between the predicted probability maps and the ground truth
segmentation distributions at pixel-level. These works targeted a scenario where only part of the
dataset is labeled but unlabeled data comes from the same dataset and shares the same domain
data distribution of the labeled ones.

The work of [26] starts from [350] but instead proposes to tackle a scenario where unlabeled
data refers to a different dataset with a different domain distribution, i.e., it deals with the
domain adaptation task. A common setting for this task is domain adaptation from synthetic
data to real-world scenes. Indeed, the development of advanced computer graphics techniques
enabled the collection of huge synthetic datasets for semantic segmentation. Examples of syn-
thetic semantic segmentation datasets for the autonomous driving scenario are the GTA5 [243]
and SYNTHIA [341] datasets, which have been employed in this work. However, there is a

160

Figure 8.1: Architecture of the proposed framework. The optimization is guidedby a discriminator loss and3 losses for the gen-

erator: a standard cross-entropy loss on synthetic data (LG,1), an adversarial loss (Ls,t
G,2) and a self-teaching loss for unlabeled

real data (LG,3).

cross-domain shift that has to be addressed when a neural network trained on synthetic data
processes real-world images, since in this case training and test data are not drawn i.i.d. from
the same underlying distribution as usually assumed [326,353–356].

Region growing is a long-standing problem in image segmentation methods being an unsuper-
vised approach that examines neighboring pixels of initial seed points and determines whether
the pixel neighbors should be added to the seed region depending on a region similarity crite-
rion. Such techniques have been recently applied to domain adaptation in semantic segmenta-
tion [248,260]. In particular in [260] a semantic segmentation network is trained to segment the
discriminative regions first and to progressively increase the pixel-level supervision by seeded
region growing [357]. In [248] the authors propose a saliency guided weakly supervised seg-
mentation network which utilizes salient information as guidance to help weakly segmentation
through a seeded region growing procedure. In [358] the region growing problem is represented
as a Markov Decision Process.

8.2.2 Architecture of the Proposed Approach

Our target is to train a semantic segmentation network in a supervised way on synthetic data
and to adapt it in a unsupervised way to real data. In this work, we name this network G, since
it has the role of the generator in the proposed adversarial training framework. A supplementary
discriminator networkD is used to evaluate the reliability of G’s output. This information can be
employed to guide the adaptation of G to unlabeled real data. In this section, we detail the CNN
architectures and the training procedure implementing the unsupervised domain adaptation.
Our approach is agnostic to the architecture of G and in general any semantic segmentation
network can be used. However, in our experiments G is a DeepLab-v2 network [5]. This widely
used model is based on the ResNet-101 backbone whose weights were pre-trained [119] on the
MSCOCO dataset [120].

Figure 8.1 shows the architecture of the proposed training framework. The optimization of
the network is driven by the minimization of three loss functions. The first loss function (LG,1)
is a standard multi-class cross-entropy. The segmentation network G is trained to estimate for
each input pixel the probability that it belongs to a class c inside the set of possible classes C. It
is optimized only on labeled synthetic data since the ground truth is required. In the following,

161

G(Xs
n) is used to represent the output of the segmentation network on the n-th input image,

Xs
n, from the source (synthetic) domain. Ys

n is used to refer to the one-hot encoded ground
truth segmentation related to input Xs

n. In this scenario, the multi-class cross-entropy loss LG,1

is formulated as:

LG,1 = −
∑
p∈Xs

n

∑
c∈C

Ys
n
(p)[c] · log

(
G(Xs

n)
(p)[c]

)
(8.1)

where p is the index of a pixel in the considered image, c is a specific class belonging to C and
Ys

n
(p)[c] and G(Xs

n)
(p)[c] are the values relative to pixel p and class c respectively in the ground

truth and in the generator (G) output. As mentioned above, this loss can be computed only on
the source (synthetic) domain where the semantic ground truth is available.

The second and the third loss functions, minimized during the training of G, aim at adapting
the semantic segmentation CNN G to real data without using ground truth labels for real data.
These loss functions are implemented by means of the discriminator network D, that is trained
to distinguish segmentation maps produced by the generator from the ground truth ones. The
peculiarity of this discriminator network is that it produces a per-pixel estimation, differently
from traditional adversarial frameworks where the discriminator outputs a single binary value
for the whole input image. The discriminator D is made of a stack of 5 convolutional layers
each with 4× 4 kernels with a stride of 2 and Leaky ReLU activation function. The number of
filters (from the first layer to the last one) is 64, 64, 128, 128, 1 and the cascade is followed by a
bilinear upsampling to match the original input image resolution. The discriminator is trained
by minimizing the loss function LD, that is a standard cross-entropy loss, between D’s output
and the one-hot encoding indicating if the input is produced by G (class 0) or if it is the ground
truth one-hot encoding semantic segmentation (class 1). LD can be formulated as:

LD = −
∑

p∈Xs,t
n

log(1−D(G(Xs,t
n))(p)) + log(D(Ys

n)
(p)) (8.2)

Notice that the class 0, associated to G’s output, can be produced both from an input Xs
n

coming from the source domain and from a real-world input Xt
n. This means that D can be

trained on both synthetic and real data, trying to discriminate generated data from ground
truth one. The segmented source and target datasets share a similar statistic, since low level
features of the color images are processed to leave place to the class statistic: for this reason
the training of D on real and synthetic data is possible. Another possible issue in the training
procedure could be related to the well distinguishable Dirac distributed segmentation ground
truth data. In principle, this could be easily distinguished from data produced by G. However,
we have investigated this issue and in general G produces segmentation maps very close to the
Dirac distribution after a few training steps. This forces D to capture also other statistical
properties of the two different types of input data. Notice that this issue has been investigated
also in [26, 350] with similar conclusions. The discriminator D is used to implement the second
loss function for the training of G, Ls,t

G,2. This loss function is an adversarial loss since G, the
generator in the traditional adversarial training scheme, is updated in order to create an output
that has to look similar to ground truth data from the D viewpoint. On a generic image Xs,t

n

this loss function can be formulated as:

Ls,t
G,2 = −

∑
p∈Xs,t

n

log(D(G(Xs,t
n))(p)) (8.3)

As for the training of D (Eq. (8.2)), Ls,t
G,2 can be optimized both on the source and on the

162

target data. In case the input is coming from the source dataset, we will refer to the loss function
of Eq. (8.3) with Ls

G,2, otherwise we will refer to it with Lt
G,2 in case of target data as input.

Notice that the generator is forced to adapt to the target real domain in an unsupervised way
by minimizing Lt

G,2. G is forced to produce data similar to what D considers ground truth also
on real data. Remember that the ground truth is not used for this loss.

The third loss function is inspired from the work of Hung et al. [350]. The idea is to interpret
the output of the discriminator D as a measure of the reliability of the output of G in case of
synthetic and real data. This reliability measure is used to realize a self-training on real data.
The predictions of G, assumed to be reliable by D, are converted to the one-hot encoding and
are used as a self-taught ground truth to train G on unlabeled target real data. This loss can
be formulated as

LG,3=−
∑
p∈Xt

n

∑
c∈C

DR(X
t
n)

(p) ·W s
c · Ŷ

(p)

n [c] · log
(
G(Xt

n)
(p)[c]

)
(8.4)

where Ŷn is the one-hot encoded ground truth derived from the per-class argmax of the generated
probability map G(Xn). Each contribution to the loss is weighted by two terms. The first (DR)
is a weighting term dependent on the output of the discriminator refined by a region growing
procedure that exploits pixel aggregation to improve the confidence estimation. The second
(W s

c) is a weighting function proportional to the class frequencies on the source domain.
More in detail, the first term finds the reliable locations in the segmented map and assigns

to them a weight interpreted as a confidence measure. The module computing this weighting
mask is named DR(·) and it takes as input a real image Xt

n. In the first step, a mask mTu
is

computed selecting confident points by applying a threshold Tu to the output of the discriminator
with input G(Xt

n). The discriminator output is interpreted as a confidence map related to the
segmentation map estimated on Xt

n in this phase. Formally, at each pixel location p we have:

m
(p)
Tu

=

{
1 if D(G(Xt

n))
(p) > Tu

0 otherwise
(8.5)

In the second step, for a generic confident pixel p in mTu
, assigned by G to class c∗, the

algorithm expands the confident region to a generic adjacent pixel p′ ∈ Xt
n if the output of

the segmentation network for the class c∗ (i.e., the one selected for point p) is greater than a
threshold TR at location p′. More formally, p′ is added to the mask if G(Xt

n)
(p′)[c∗] > TR. We

will denote with mR
Tu

the mask obtained by applying this region growing process to the original
mask mTu

. Finally, for each location pR selected by the updated mask mR
Tu

the weight is given
by the corresponding output of the discriminator D(G(Xt

n))
(pR). Thus, the resulting weights

DR(X
t
n) are:

DR(X
t
n) = mR

Tu
·D(G(Xt

n)) (8.6)

i.e., the weight is equal to the discriminator output for points selected by mR
Tu

and to 0 for
points not selected by the mask. Empirically we set Tu = 0.2 and TR = 1− 10−5 thus achieving
high reliability when expanding the confidence map.

The second weighting function is related to the class frequency on the source domain (W s
c).

It is defined as:
W t

c = 1−
∑

n|p ∈ Xs
n ∧ p ∈ c|∑

n|p ∈ Xs
n|

, (8.7)

where | · | represents the cardinality of the considered set.
This weighting function balances the overall loss when unlabeled data of the target set are

163

used, avoiding that rare and tiny objects (e.g., traffic lights or pole) are forgotten and replaced
by more frequent and large ones (such as road, building). Notice that W s

c is estimated on source
data since the ground truth of the target data is assumed to be unknown during the training
phase. Furthermore, W s

c does not change during the training process and so it is computed only
once.

Finally, the overall loss function for the training of G is a weighted average of the three losses,
i.e.:

Lfull = LG,1 + ws,tLs,t
G,2 + w′LG,3 (8.8)

We empirically set the weighting parameters as specified in Section 8.2.3. The discriminator is
trained minimizing LD (Eq. (8.2)) on ground truth labels and on the generator output computed
on a mixed batch composed by both source and target data. During the first 5000 steps, the
loss LG,3 is disabled, setting w′ = 0, allowing the discriminator to learn how to produce higher
quality confidence maps before using them. After this initial phase, all the three components of
the loss are enabled and the training ends after 20000 steps.

8.2.3 Experimental Results

The target of the proposed approach is to adapt a deep network trained on synthetic data to
real-world scenes. To evaluate the performance on this task we used the 4 different datasets
introduced in Section 7.4. The evaluation scenario is the same of recent competing approaches
as [273,326,359] in order to allow for a fair comparison. During the training stage all the images
have been resized and cropped to 750× 375 px for memory constraints. The testing on the real
datasets, instead, has been carried out at their original resolution.

We started by evaluating the performance on the validation set of Cityscapes. In the first
experiment, we trained the network using the scenes from the GTA5 dataset to compute the
supervised loss LG,1 and the adversarial loss Ls

G,2 while the training scenes of the Cityscapes
dataset have been used for the unsupervised domain adaptation, i.e., to compute the losses
Lt
G,2 and LG,3. Notice that no labels from the Cityscapes training set have been used. In the

second experiment, we performed the same procedure but we replaced the GTA5 dataset with
the SYNTHIA one.

Then, we switched to the Mapillary dataset and we repeated the two experiments using this
dataset: we performed the supervised training with GTA5 or SYNTHIA and we used the training
set of Mapillary, without any label, for the unsupervised domain adaptation. Similarly to the
previous scenario, we evaluated the results on the validation split of Mapillary.

8.2.3.1 Training Details

The proposed deep learning scheme has been implemented using the TensorFlow framework [125].
The generator network G (we used a DeepLab-v2 model) has been trained as proposed in [5]
using the Stochastic Gradient Descent (SGD) optimizer with momentum set to 0.9 and weight
decay to 10−4. The discriminator D has been trained using the Adam optimizer. The learning
rate employed for both G and D started from 10−4 and was decreased up to 10−6 by means
of a polynomial decay with power 0.9. We trained the two networks for 20, 000 iterations on a
NVIDIA GTX 1080 Ti GPU. The longest training inside this work, i.e., the one with all the loss
components enabled, takes about 20 hours to complete. Further resources and the code of our
approach are available at: https://lttm.dei.unipd.it/paper_data/semanticDA.

We assess the quality of our approach computing the mean Intersection over Union (mIoU),
as done by all competing approaches. Moreover, we compared our results with some recent
frameworks [26,273,326,350].

164

https://lttm.dei.unipd.it/paper_data/semanticDA

GTA5 → Cityscapes ro
ad

sid
ew

al
k

bu
ild

in
g

wa
ll

fe
nc

e

po
le

t
lig

ht

t
sig

n

ve
g

te
rr
ai
n

sk
y

pe
rs
on

rid
er

ca
r

tr
uc
k

bu
s

tr
ai
n

m
bi
ke

bi
ke

m
ea
n

Supervised (LG,1 only) 45.3 20.6 50.1 9.3 12.7 19.5 4.3 0.7 81.9 21.1 63.3 52.0 1.7 77.9 26.0 39.8 0.1 4.7 0.0 27.9
Ours (full) 81.0 19.6 65.8 20.7 12.9 20.9 6.6 0.2 82.4 33.0 68.2 54.9 6.2 80.3 28.1 41.6 2.4 8.5 0.0 33.3

Hoffman et al. [273] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
Hung et al. [350] 81.7 0.3 68.4 4.5 2.7 8.5 0.6 0.0 82.7 21.5 67.9 40.0 3.3 80.7 34.2 45.9 0.2 8.7 0.0 29.0
Zhang et al. [326] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9
Biasetton et al. [26] 54.9 23.8 50.9 16.2 11.2 20.0 3.2 0.0 79.7 31.6 64.9 52.5 7.9 79.5 27.2 41.8 0.5 10.7 1.3 30.4

Table 8.1: mIoU on the different classes of the Cityscapes validation set. The approaches have been trained in a supervised

way on the GTA5 dataset and the unsupervised domain adaptation has been performed using the Cityscapes training set. The

highest value in each column is highlighted in bold.

SYNTHIA → Cityscapes ro
ad

sid
ew

al
k

bu
ild

in
g

wa
ll

fe
nc

e

po
le

t
lig

ht

t
sig

n

ve
g

sk
y

pe
rs
on

rid
er

ca
r

bu
s

m
bi
ke

bi
ke

m
ea
n

Supervised (LG,1 only) 10.3 20.5 35.5 1.5 0.0 28.9 0.0 1.2 83.1 74.8 53.5 7.5 65.8 18.1 4.7 1.0 25.4
Ours (full) 80.7 0.3 75.0 0.0 0.0 19.5 0.0 0.4 84.0 79.4 46.6 0.8 80.8 32.8 0.5 0.5 31.3

Hoffman et al. [273] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.1
Hung et al. [350] 72.5 0.0 63.8 0.0 0.0 16.3 0.0 0.5 84.7 76.9 45.3 1.5 77.6 31.3 0.0 0.1 29.4
Zhang et al. [326] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0
Biasetton et al. [26] 78.4 0.1 73.2 0.0 0.0 16.9 0.0 0.2 84.3 78.8 46.0 0.3 74.9 30.8 0.0 0.1 30.2

Table 8.2: mIoUon the different classes of theCityscapes validation set. The approaches have been trained in a supervisedway

on the SYNTHIA dataset and the unsupervised domain adaptation has been performed using the Cityscapes training set. The

highest value in each column is highlighted in bold.

8.2.3.2 Evaluation on the Cityscapes Dataset

We started the experimental evaluation from the Cityscapes dataset. Table 8.1 refers to the
first experiment (i.e., using GTA5 for the supervised training). It shows the accuracy obtained
with standard supervised training, with the proposed approach and with some state-of-the-art
approaches. By simply training the network in a supervised way on the GTA5 dataset and
then performing inference on real-world data from the Cityscapes dataset a mIoU of 27.9% can
be obtained. The proposed unsupervised domain adaptation strategy allows to enhance the
accuracy to 33.3% with an improvement of 5.4%. By looking more in detail to the various class
accuracies, it is possible to see that the accuracy has increased on almost all the classes (only on
two of them the accuracy has slightly decreased). In particular, there is a large improvement on
the most common classes corresponding to large structures, since the domain adaptation strategy
allows to better learn their statistics in the new domain. At the same time the performance
improves also on less frequent classes corresponding to small objects due to the usage of the
class weights W t

c in the self-teaching loss component.
The method of Hung et al. [350], based on a similar framework, achieves a lower accuracy

of 29% mostly because it struggles with small structures and uncommon classes. The methods
in [273, 326] also have lower performance; however, they are also based on a different generator
network. The older version of our method, introduced in [26], achieves an accuracy of 30.4%, with
a gap of almost 3% with respect to the proposed approach, proving that the newly introduced
elements (i.e., the weighting in the self-teaching and the region growing strategy) have a relevant
impact on the performance.

Figure 8.2a shows the output of the supervised training, of the methods of [350] and [26]
and of our approach on some sample scenes, using the GTA5 dataset as source dataset and the
Cityscapes as target one. The supervised training leads to reasonable results, but some small
objects get lost or the object contours are badly captured (e.g., the rider in row 1 or the poles
in row 3). Furthermore, some regions of the street are corrupted by noise (e.g., see rows 1 and

165

2). The approach of [350] seems to lose some structures (e.g., the terrain in the third row)
and presents issues with small objects (the poles in row 3 get completely lost) as pointed out
before. The old version of the approach [26] has better performance, for example the people
are better preserved and the structures have better defined edges but there are still artifacts,
e.g., the road surface in row 2 and 3. Finally, the proposed method has the best performance
showing a good capability of detecting small objects and structures and at the same time a
reliable recognition of the road and of the larger elements in the scene: in all the selected images
it obtains a cleaner representation of the road removing the sidewalk class where is not present
but at the same time correctly localizes it in the second row differently from the other methods.
Similar discussion holds for the terrain class in row 3 and for the pole class whose detection has
been highly improved with respect to [350].

Adapting from SYNTHIA, the task is even more challenging with respect to the GTA5 case
since the computer generated graphics are less realistic. By training the network G in a su-
pervised way on SYNTHIA and performing inference on the real-world Cityscapes dataset, a
mIoU of 25.4% can be obtained (see Table 8.2). This value is smaller than the mIoU of 27.9%
obtained by training G on the GTA5 dataset. The performance gap confirms that the GTA5
dataset has a smaller domain shift with respect to real-world data, when compared with the
SYNTHIA dataset. By exploiting the proposed approach an accuracy of 31.3% can be obtained.
The improvement is very similar to the one obtained using GTA5 as source dataset, proving that
the approach is able to generalize to different datasets. In this case, there is a larger variability
among different classes, however notice the very large improvement on road and building classes.
The previous version of the method [26] has an accuracy of 30.2%

Furthermore, our framework outperforms the compared state-of-the-art approaches. The
method of Hung et al. [350], that exploits the same generator architecture of our approach,
obtains a mIoU equal to 29.4%. The approach of [326] has an even lower mIoU of 29.0%. The
method of [273] is the less performing approach and in this comparison it is even less accurate
than our synthetic supervised trained network, however it employs a different segmentation
network.

The fourth, fifth and sixth row of Figure 8.2a shows the output on the same sample scenes
discussed above when the SYNTHIA dataset is used as source instead of GTA5. The first thing
that stands out is that by training on the SYNTHIA dataset some very common classes as
sidewalk and road are highly corrupted. This is caused by the not very realistic textures used
for such classes in the SYNTHIA dataset. Furthermore, while the positioning of the camera in
the Cityscapes dataset is always fixed and mounted on-board inside the car, in SYNTHIA the
camera can be placed in different positions. For example, the pictures can be captured from
inside the car, from the top or from the side of the road.

The approach of Hung et al. [350] is able to correctly recognize the class road, correcting
the noise present in the synthetic supervised training. However, as mentioned earlier, it suffers
on small classes where it tends to lose small objects and to produce imprecise shapes. The
method of [26] and the proposed one have slightly better performance: the last two columns
of Figure 8.2a show how the unsupervised adaptation and the self-teaching component allow to
avoid all the artifacts on the road surface. The segmentation network now captures the real
nature of this class in the Cityscapes dataset. At the same time, our method is able to locate a
bit more precisely small classes as person and vegetation. However, in this setting the difference
between the old and new version of the proposed method is limited.

166

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle unlabeled

a)

T
o
C
it
y
sc
ap

es
F
ro
m

G
T
A
5

F
ro
m

S
Y
N
T
H
IA

b)

T
o
M
ap

il
la
ry

F
ro
m

G
T
A
5

F
ro
m

S
Y
N
T
H
IA

Image Annotation Supervised (LG,1) Hung et al. [350] Biasetton et al. [26] Ours (Lfull)

Figure 8.2: Semantic segmentation of some sample scenes extracted from the Cityscapes (a) and Mapillary (b) validation sets.

The first group of six rows is related to the Cityscapes dataset, the last six to the Mapillary dataset. For each group, the first

three rows are related to the experiments in which the GTA5 dataset is used as source. The last three rows are related to the

case in which the SYNTHIA dataset is used as source.

167

GTA5 → Mapillary ro
ad

sid
ew

al
k

bu
ild

in
g

wa
ll

fe
nc

e

po
le

t
lig

ht

t
sig

n

ve
g

te
rr
ai
n

sk
y

pe
rs
on

rid
er

ca
r

tr
uc
k

bu
s

tr
ai
n

m
bi
ke

bi
ke

m
ea
n

Supervised (LG,1 only) 66.5 24.4 46.1 17.9 21.6 24.8 11.8 5.9 70.7 25.6 66.1 57.3 10.2 79.7 37.3 39.8 4.6 10.1 1.7 32.7
Ours (full) 79.9 28.0 73.4 23.0 29.5 20.9 1.1 0.0 79.5 39.6 95.0 57.6 9.0 80.6 41.5 40.1 7.4 24.8 0.1 38.5

Hung et al. [350] 78.2 29.7 68.7 10.0 6.7 17.5 0.0 0.0 76.4 35.2 95.6 53.8 13.8 77.5 34.3 30.2 5.0 21.8 0.0 34.4
Biasetton et al. [26] 71.4 25.0 62.0 20.4 17.6 26.8 5.9 0.8 64.6 24.6 86.5 58.3 14.7 80.0 39.3 42.2 5.5 22.3 0.1 35.2

Table 8.3: mIoU on the different classes of theMapillary validation set. The approaches have been trained in a supervised way

on theGTA5dataset and the unsupervised domain adaptation has been performedusing theMapillary training set. The highest

value in each column is highlighted in bold.

SYNTHIA → Mapillary ro
ad

sid
ew

al
k

bu
ild

in
g

wa
ll

fe
nc

e

po
le

t
lig

ht

t
sig

n

ve
g

sk
y

pe
rs
on

rid
er

ca
r

bu
s

m
bi
ke

bi
ke

m
ea
n

Supervised (LG,1 only) 14.7 18.6 34.6 5.4 0.1 28.5 0.0 0.4 73.8 62.9 50.0 11.4 74.3 28.7 14.0 8.1 26.6
Ours (full) 57.6 18.3 62.1 0.4 0.0 23.7 0.0 0.0 79.4 94.8 52.4 9.2 74.2 28.3 4.0 6.9 32.0

Hung et al. [350] 36.8 20.1 53.9 0.0 0.0 23.7 0.0 0.0 73.9 95.6 43.4 0.1 64.6 19.0 0.4 0.5 27.0
Biasetton et al. [26] 16.4 19.1 42.2 2.7 0.0 33.1 0.0 1.3 76.5 88.0 50.4 10.9 69.9 25.5 6.1 9.2 28.2

Table 8.4: mIoU on the different classes of theMapillary validation set. The approaches have been trained in a supervised way

on the SYNTHIA dataset and the unsupervised domain adaptation has been performed using the Mapillary training set. The

highest value in each column is highlighted in bold.

8.2.3.3 Evaluation on theMapillary dataset

To ensure that our approach can generalize to other real datasets, we performed the same
experimental evaluation procedure also on the Mapillary dataset (reported in Tables 8.3 and
8.4). We started by using the GTA5 dataset for the supervised training as before. By simply
performing a supervised training on GTA5 and then testing on the Mapillary dataset a mIoU
of 32.7% can be obtained. The proposed approach allows to obtain a much more accurate
classification with a mIoU of 38.5%. Notice that the gain of almost 6% is consistent with the
results obtained on the Cityscapes dataset, proving that the performance of the approach is
stable across different datasets. The improvement can also be appreciated on both small and
large classes, the mIoU values of 14 out of 19 classes show a clear gain. This is also visible in
the qualitative results depicted in Figure 8.2b, where most of the artifacts on the road surface
present in the synthetic trained network disappear and the shape of the small objects is more
accurate. The results of [273] and [326] are not available for this dataset, however notice how
the approach outperforms by a large margin both [350] and the old version of the approach [26]
that are able to reduce only partially the artifacts on the road surface (visible in all the images),
on the cars (row 1) and on the buildings (row 3).

Furthermore, we can appreciate that also on Mapillary the accuracy is lower when adapting
from SYNTHIA leading to a mIoU of 26.6% only. As for Cityscapes, road and sidewalk classes
have an extremely low accuracy due to the poor texture representation (the visual results are
reported in the last 3 rows of Figure 8.2b). By exploiting the proposed unsupervised domain
adaptation strategy the mIoU increases to 32.0% with an improvement of 5.4%, again consistent
with the other experiments. In this case, the performance is more unstable across the various
classes but it is noticeable the large gains on road and building classes. This is also confirmed
by the qualitative results, for example we can appreciate that the proposed approach is the only
one able to achieve an accurate and reliable recognition of the road. The method of Hung et
al. [350] achieves a mIoU of 27% with a very limited improvement with respect to the synthetic
supervised training. It is strongly penalized by the poor performance on the small and uncommon
classes. The approach of [26] has slightly better performance (28.4%), but it has a quite large

168

LG,1 LG,2 LG,3
Region
Growing

Disc.
Weight.

Class Weight.
(W t

c)
mIoU
GTA

mIoU
SYNTHIA

X 27.9 25.4
X X 29.4 27.4
X X X 30.4 30.2
X X X X X 32.6 31.0
X X X X X 32.8 30.2
X X X X X 33.1 30.2
X X X X X X 33.3 31.3

Table 8.5: Ablation study on Cityscapes validation set. We analyze the influence of the losses LG,1 , LG,2 , LG,3 , and of the

strategies of region growing, discriminator weighting and class weightingW t
c .

gap with respect to the proposed method. The weighting scheme and the region growing strategy
introduced in this work allowed to obtain a large improvement in this setting.

8.2.3.4 Ablation Study

In this section, we are going to analyze the contributions of the various components of the
proposed approach. We focus on Cityscapes as target dataset for this study. The results of this
analysis are shown in Table 8.5. By training the generator with a synthetic supervised approach,
i.e., using only LG,1, it is possible to obtain a mIoU of 27.9% when GTA5 is the source dataset
and 25.4% when adapting from SYNTHIA. As mentioned in the previous sections, this is the
less performing approach. A slight improvement can be obtained by adding the adversarial
term LG,2 in the loss function. In this case, the mIoU increases of 1.5% and 2% when the
source datasets are GTA5 and SYNTHIA respectively. The use of the self-teaching loss LG,3 is
particularly useful when exploiting the SYNTHIA dataset, obtaining an improvement of almost
3%, probably because the domain shift from this dataset is larger. In the case of GTA5, the
improvement is smaller but still significant. Moving to the new elements introduced in this
work, the region growing strategy (i.e., masking with the extended mask mR

Tu
instead of using

mTu
) allows to a further performance enhancement, especially when using GTA5 with a 2.2%

increase, mostly due to the improved handling of medium and large size objects. When starting
from SYNTHIA the gain is more limited but still noticeable (almost 1%). The usage of the
discriminator output as a weighting factor for the self-teaching loss, without masking with mR

Tu
,

has a more unstable behavior. This leads to a very good improvement of 2.4% when starting
from GTA5 but having almost no impact when employed alone in the SYNTHIA case. Moreover,
we can observe that removing the class weighting term W c

t in Eq. (8.4), i.e., assigning the same
weight to all the classes, we obtain a mIoU of 33.1% and 30.2% when adapting from GTA5
and SYNTHIA, respectively. The values are not too far from the mIoU of the complete version
of the approach (33.3% and 31.3%, respectively). This proves that the performance are quite
stable with respect to the setting of the weights for the various classes: the approach can work
well even if the class frequencies on real data do not accurately match the statistics of synthetic
data. Notice how the complete version of our approach has the best performance. In particular
the discriminator-based weighting on the SYNTHIA dataset, that alone had a limited impact,
is useful when combined with the region growing scheme.

Finally, Table 8.6 analyzes the impact of the weights that control the relative relevance of the 3
losses. It is possible to notice that the most critical parameter is the weight of the adversarial loss
on the source domain ws, that has the largest impact on the final accuracy while the performance

169

ws wt w′ mIoU from GTA5 mIoU from SYNTHIA
×1 ×1 ×1 33.3 31.3

×1 ×1 ×10 32.5 29.8
×1 ×1 ×0.1 32.4 29.2

×1 ×10 ×1 31.0 28.8
×1 ×0.1 ×1 30.8 24.4

×10 ×1 ×1 27.2 23.3
×0.1 ×1 ×1 30.8 23.4
×4 ×1 ×1 29.1 29.0
×0.25 ×1 ×1 32.5 25.2
×2 ×1 ×1 30.1 30.5
×0.5 ×1 ×1 32.3 28.1

Table 8.6: Ablation study on the Cityscapes validation set when adapting from GTA5. Different values of the balancing hyper-

parameters of Eq. (8.8) are reported applying various scaling factors to each parameter. The default parameters arews =
10−2 ,wt = 10−4 ,w′ = 10−3 when adapting fromGTA5 andws = 10−2 ,wt = 10−3 ,w′ = 10−1 when adapting from

SYNTHIA.

are more stable with respect to the other two parameters.

8.3 UDAwith Adversarial Learning withMultiple Discriminators

In the second contribution [26,27], we move from the structure proposed in the previous section.
However, in this work [28] we use two discriminative networks, one to differentiate between
ground truth and predicted segmentations and the other to discriminate between segmentation
maps coming from synthetic and real-world data. Finally, a self-training component is introduced
based on the idea that the output of the discriminator provides a measure of the reliability of
the network estimations to be exploited in a self-training framework [26,350]. In previous works,
this module lacked two fundamental aspects: it was not class-wise adaptive and was not able to
update the thresholding parameters during training. In other words, different classes shared the
same confidence threshold to select regions for self-training, and its value was kept fixed during
all the learning process. In this work, instead, we introduce an adaptive thresholding scheme for
the selection of the regions used for self-training that enforces a balanced selection for all classes
and allows for variability over different training steps. Hence, the framework can accomplish
both inter-class confidence flexibility and time adaptability throughout the optimization phase.

In summary, the main contributions of this work are: (1) we introduce a novel adversarial
scheme exploiting multiple domain discriminators to align the source and target domains, (2) we
design a self-training module with adaptive confidence both over different classes and over dif-
ferent training steps, (3) we prove the effectiveness of our framework on 4 different experimental
scenarios outperforming competing approaches.

8.3.1 ProposedDomain Adaptation Strategy

The complete architecture of the proposed approach is now discussed. An overview of the
method is given in Figure 8.3. We denote with G the semantic segmentation network that we
want to adapt from supervised synthetic data to unlabeled real data. G takes the role of the
generator in our adversarial setup. The optimization of the segmentation network is driven

170

Figure 8.3: Architecture of the proposed approach. The semantic segmentation networkG is trained with the combination of

4 losses: a supervised cross entropy on source dataLG,0 , a double adversarial frameworkLs,t
G,1 andLt

G,2 , and a self-training

moduleLG,3 with class-wise and time-varying adaptive thresholdingmaskTf .

by the minimization of a multi-target objective involving four loss functions. In particular, to
guide the adaptation of G to unlabeled real data we employ two discriminative networks and a
self-training module.

Let us denote with Xs
n the generic n-th image in the source (synthetic) domain and with Ys

n

the corresponding ground truth segmentation, while Xt
n is the n-th real-world sample (for which

ground truth is not available during training). The first component of our approach, LG,0, is a
standard cross-entropy loss working on labeled synthetic data.

The second and the third loss functions, minimized during the training of G, are relative to the
adversarial training with the couple of discriminator networks. The first discriminator module
D1 is trained to distinguish between ground truth and generated maps (the latter either coming
from synthetic or real images). The peculiarity of this network is that it is a fully convolutional
model and it produces a per-pixel confidence estimation, differently from traditional adversarial
frameworks where the discriminator outputs a single binary value for the whole input image.
The key idea is that the discriminative action provides a measure of discrepancy between the
statistic of source annotations and both source and target prediction maps, and its optimization
leads to an indirect yet effective cross-domain distribution alignment [26,27,350].

The discriminator network D1 is made of a stack of 5 convolutional layers each using 4 × 4
kernels with a stride of 2 and Leaky ReLU activation function. The number of filters (from first
to last layer) is 64, 64, 128, 128, 1 and the cascade is followed by a bilinear upsampling to match
the original input image resolution. The network D1 is trained to minimize the loss LD1 that is
a standard cross-entropy loss between D1’s output and the one-hot encoding indicating whether
the input segmentation map is the ground truth (class 1) or it is produced by G (class 0), i.e.:

LD1
=−

∑
p∈Xs,t

n

log(1−D1(G(X
s,t
n))(p)) + log(D1(Y

s
n)

(p)) (8.9)

where p is a generic pixel in the image. Meanwhile, G is forced to produce segmentation maps
that resemble ground-truth annotations when inspected by D1:

Ls,t
G,1 = −

∑
p∈Xs,t

n

log(D1(G(X
s,t
n))(p)) (8.10)

171

The second discriminator, D2, is trained to differentiate between segmentation maps coming
from synthetic or real-world data. Differently from D1, D2 is always fed with the generator
output, i.e. with source or target images segmented by G, whereas no ground-truth information
is employed. D2 has the same structure as D1 except that its number of channels has been
reduced to 48, 48, 96, 96, 1, as its adaptation objective is complementary to the one of D1 and
requires less computational complexity to be accomplished. The adversarial loss for D2 can be
expressed as:

LD2 =−
∑

p∈Xs,t
n

log(1−D2(G(X
t
n))

(p)) + log(D2(G(X
s
n))

(p)) (8.11)

which is a standard cross-entropy loss similar to LD1
. Here the objective is formulated between

D2’s output and the one-hot encoding marking with 0 and 1 the segmentation maps produced
by G from respectively target and source images. The role of G in the second adversarial
competition is to fool D2, by computing sufficiently realistic target prediction maps resembling
the source domain ones. Hence, similarly to Eq. (8.10), the adversarial loss for G related to D2

is of the form:
Lt
G,2 = −

∑
p∈Xt

n

log(D2(G(X
t
n))

(p)) (8.12)

The second adversarial framework is specifically focused on the adaptation of target network
representations, in that G is trained to produce target segmentation maps which are close to
source ones from a statistical point of view. Thus it directly tackles the domain gap causing
the performance drop on the target set. Source-target alignment also happens within the first
adversarial scenario as a side effect. Indeed, G’s output is forced to be distributed as ground-
truth labels for both source and target inputs, but no actual cross-domain adaptation of network
embeddings is directly performed.

The last module in our adaptation framework implements a self-training strategy. As shown
by recent works [26,27,350], the output of the discriminator D1 can be interpreted as a measure
of confidence for predicted target pixels, since D1 should identify target predictions that deviate
from source ground-truth statistic. Hence, the output ofD1 can be exploited to select the reliable
predictions in the target segmentation maps. The selected output samples are then converted
into one-hot encoded data, which can be used as a self-taught ground-truth to train G directly
on unlabeled target samples. The self-training objective is expressed by the following loss:

LG,3=−
∑
p∈Xt

n

∑
c∈C
M(p)

f ·W
s
c · Ŷ

(p)

n [c] · log
(
G(Xt

n)
(p)[c]

)
(8.13)

where Ŷn is the one-hot encoded ground truth derived from the per-class argmax of the generated
probability map G(Xt

n), c is a specific class belonging to the set of possible classes C and W s
c

is a weighting function proportional to the class frequency on the source domain as introduced
in [26, 27]. M(p)

f [c,Xt
n] (for ease of notation we drop its dependencies on class and training

sample in all the equations) is the adaptive thresholding mask for the selection of the regions
used for self-training, defined as:

M(p)
f =

{
1 if

(
D1(G(X

t
n))

(p)>Tf [c,Xt
n]
)
∧
(
Ŷ

(p)

n [c] =1
)

0 otherwise
(8.14)

Differently from previous works [26,27,324,331], in which the confidence threshold was computed
before-hand and kept fixed throughout the training, here we propose to have both a class-level

172

and a training-stage adaptation of the threshold. Indeed, different classes typically have different
confidence values which may also vary during training. The class-wise confidence threshold
selection for a generic training step and a generic class c is formulated as:

Tf [c,Xt
n] = Qf (D1(G(X

t
n)[c])) (8.15)

where Qf represents the f -th percentile. The best results are obtained with f in the range of
75− 80% to enable self-training only in regions with high confidence on target data (as will be
shown in Figure 8.5). We compute Tf for every class at each training step by looking at network
predictions on target data in the current batch. This makes the model adaptive both to the
statistic of the various classes and to the different training phases. Finally, we can compute the
overall loss function for G with a weighted average of the four individual losses, i.e.:

Lfull = LG,0 + ws,t
1 L

s,t
G,1 + wt

2Lt
G,2 + w3LG,3 (8.16)

with weighting parameters ws,t
1 , wt

2 and w3 empirically set.

8.3.2 Experimental Results

8.3.2.1 Training Details

The approach is agnostic to the deep learning architecture used for G: in principle any semantic
segmentation network can be used, in our case we employ the well known DeepLab-v2 model [5]
with the ResNet-101 backbone. The weights are pre-trained [119] on the MSCOCO dataset [120].

The proposed deep learning scheme is implemented in TensorFlow [125] and the code is
available at https://lttm.dei.unipd.it/paper_data/semanticDA. The generator network
G is trained as suggested in [5] using the Stochastic Gradient Descent (SGD) optimizer with
momentum set to 0.9 and weight decay to 10−4. The discriminators D1 and D2 are trained
using the Adam optimizer. Following [26], the learning rate employed for both G and D1 starts
from 10−4 and is decreased up to 10−6 by means of a polynomial decay with power 0.9. As
for D2, the base learning rate is set to 10−4 and 5 × 10−4 for respectively the SYNTHIA and
GTA5 adaptation scenarios. Following the empirical validation and previous works [26,27,350],
the weighting parameters are set as ws

1 = 10−2, wt
1 = 10−3 and wt

2 = 10−2, independently of
the source and target datasets. The self-training parameter w3 is fixed to 5× 10−2 and 10−1 for
respectively SYNTHIA and GTA5 cases. This is indeed the most delicate parameter to tune, as
the inferior realism of the SYNTHIA dataset suggests a more cautious usage of the self-training
module to avoid flawed supervision that noisy target pseudo-labels may provide. The approach
is instead more stable with respect to the other weighting parameters. We train the model for
20K iterations on a NVIDIA RTX 2080 Ti GPU. The longest training inside this work, i.e., the
one with all the loss components enabled, takes about 6 hours to complete.

8.3.2.2 Evaluation on the Cityscapes Dataset

The first scenario we consider for evaluation purposes comprises the adaptation to the Cityscapes
dataset from both SYNTHIA and GTA5. As done by competing approaches [273,282,287], the
numerical performance is expressed in terms of mean Intersection over Union (mIoU) between
predicted maps and ground-truth labels over the Cityscapes validation set. The per-class mIoU
results of the evaluations are displayed in Table 8.7a) and 8.7b). We denote as supervised the
naïve approach relying only on source supervision and no form of adaptation, while the numerical
performance of our method as a whole is reported in the last row of each section.

173

https://lttm.dei.unipd.it/paper_data/semanticDA

Method ro
ad

sid
ew

al
k

bu
ild

in
g

wa
ll

fe
nc
e

po
le

t
lig

ht

t
sig

n

ve
g

te
rr
ai
n

sk
y

pe
rs
on

rid
er

ca
r

tr
uc
k

bu
s

tr
ai
n

m
bi
ke

bi
ke

m
ea
n

a)

To
C
ity

sc
ap

es Fr
om

G
T
A
5

Supervised (LG,0 only) 49.3 24.4 56.4 6.5 19.6 25.6 23.6 10.1 82.7 28.5 69.9 55.5 4.9 80.9 18.0 33.0 1.2 15.1 0.1 31.9
Hoffman et al. [273] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
Hung et al. [350] 81.7 0.3 68.4 4.5 2.7 8.5 0.6 0.0 82.7 21.5 67.9 40.0 3.3 80.7 34.2 45.9 0.2 8.7 0.0 29.0
Zhang et al. [326] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9
Biasetton et al. [26] 54.9 23.8 50.9 16.2 11.2 20.0 3.2 0.0 79.7 31.6 64.9 52.5 7.9 79.5 27.2 41.8 0.5 10.7 1.3 30.4
Michieli et al. [27] 81.0 19.6 65.8 20.7 2.9 20.9 6.6 0.2 82.4 33.0 68.2 54.9 6.2 80.3 28.1 41.6 2.4 8.5 0.0 33.3

Ours 77.7 35.9 67.2 18.9 12.1 26.2 15.9 5.9 83.7 33.3 72.7 53.9 4.2 82.6 21.5 41.1 0.1 13.9 0.0 35.1

b)

Fr
om

SY
N
T
H
IA

Supervised (LG,0 only) 17.9 24.2 38.6 5.0 0.0 28.7 0.0 4.5 79.3 - 80.8 54.0 8.9 75.7 - 35.4 - 4.2 3.9 28.8
Hoffman et al. [273] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 - 68.7 51.2 3.8 54.0 - 3.2 - 0.2 0.6 20.1
Hung et al. [350] 72.5 0.0 63.8 0.0 0.0 16.3 0.0 0.5 84.7 - 76.9 45.3 1.5 77.6 - 31.3 - 0.0 0.1 29.4
Zhang et al. [326] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 - 70.6 47.1 8.2 43.2 - 20.7 - 0.7 13.1 29.0
Biasetton et al. [26] 78.4 0.1 73.2 0.0 0.0 16.9 0.0 0.2 84.3 - 78.8 46.0 0.3 74.9 - 30.8 - 0.0 0.1 30.2
Michieli et al. [27] 80.7 0.3 75.0 0.0 0.0 19.5 0.0 0.4 84.0 - 79.4 46.6 0.8 80.8 - 32.8 - 0.5 0.5 31.3

Ours 72.0 26.6 66.1 1.8 0.0 30.2 0.0 4.3 81.4 - 82.2 51.7 4.0 82.2 - 37.9 - 7.7 5.9 34.6

c)

To
M
ap

ill
ar
y

Fr
om

G
T
A
5 Supervised (LG,0 only) 69.8 31.8 58.8 14.6 22.3 28.3 31.8 28.8 70.0 24.4 72.4 60.4 16.8 80.6 36.6 34.3 10.2 26.2 0.2 37.8

Hung et al. [350] 78.2 29.7 68.7 10.0 6.7 17.5 0.0 0.0 76.4 35.2 95.6 53.8 13.8 77.5 34.3 30.2 5.0 21.8 0.0 34.4
Biasetton et al. [26] 71.4 25.0 62.0 20.4 17.6 26.8 5.9 0.8 64.6 24.6 86.5 58.3 14.7 80.0 39.3 42.2 5.5 22.3 0.1 35.2
Michieli et al. [27] 79.9 28.0 73.4 23.0 29.5 20.9 1.1 0.0 79.5 39.6 95.0 57.6 9.0 80.6 41.5 40.1 7.4 24.8 0.1 38.5

Ours 80.0 43.3 75.4 19.4 29.7 29.6 23.3 16.2 78.5 33.5 93.7 59.0 20.3 82.2 44.5 43.4 2.5 22.1 0.0 41.9

d)

Fr
om

SY
N
T
H
IA Supervised (LG,0 only) 25.4 22.0 56.4 6.9 0.1 29.4 0.0 2.8 72.8 - 92.1 53.7 16.1 75.1 - 30.8 - 8.6 5.8 31.1

Hung et al. [350] 36.8 20.1 53.9 0.0 0.0 23.7 0.0 0.0 73.9 - 95.6 43.4 0.1 64.6 - 19.0 - 0.4 0.5 27.0
Biasetton et al. [26] 16.4 19.1 42.2 2.7 0.0 33.1 0.0 1.3 76.5 - 88.0 50.4 10.9 69.9 - 25.5 - 6.1 9.2 28.2
Michieli et al. [27] 57.6 18.3 62.1 0.4 0.0 23.7 0.0 0.0 79.4 - 94.8 52.4 9.2 74.2 - 28.3 - 4.0 6.9 32.0

Ours 59.0 28.4 68.6 0.7 0.0 29.8 0.0 1.8 77.5 - 94.9 54.6 12.6 76.8 - 28.0 - 11.2 14.7 34.9

Table8.7: Per-class andmean IoUon the four consideredUDAscenarios. Theapproacheshavebeen trained in a supervisedway

on the synthetic dataset and the unsupervised domain adaptation has been performed using the respective real-world training

set. The results are reported on the real-world validation sets.

Using GTA5 as source domain, the simple supervised approach achieves a final mIoU of 31.8%
on the target dataset. The introduction of the multi-domain adversarial learning scheme and
adaptive self-training module leads to a performance increment of 3.3%, boosting the mIoU up
to 35.1%. Moreover, the improvement is shared by the majority of the semantic classes. Some
categories characterized by semantic similarity between them (such as road, sidewalk and terrain)
or with appearance discrepancy across source and target domains (such as car, truck and bus)
seem to highly benefit from the adaptation, proving that our method succeeded in bridging the
domain gap. In Table 8.7 we also report results achieved by some competing approaches. It
can be noticed that our strategy outperforms all of them, including those relying on simpler
self-training and adversarial learning schemes (i.e., [26, 27, 350]), demonstrating the efficacy of
the multi-domain discrimination and of the adaptive thresholding techniques we introduced. In
Figure 8.4a) we show some sample segmented images from the Cityscapes validation set. We can
appreciate that our approach leads to a more precise detection of several semantic entities found
in the input image. For example, the road and sidewalk classes are subject to a more accurate
recognition, which supports the numerical results.

Section (b) of Table 8.7 reports the results of the adaptation from the SYNTHIA dataset.
As for the GTA5 case, our adaptation strategy represents a considerable improvement over the
supervised training on the source dataset. The mIoU achieved without adaptation (28.8%) is
pushed up to 34.6% by our framework. The increment of almost 6% is even higher than the one
achieved with the more realistic GTA5 dataset as source domain, and this proves the effectiveness
of the adaptation modules we developed also in a challenging environment with a larger statistical
gap across domains. For example, while texture discrepancy between Cityscapes and SYNTHIA
causes the road on real-world scenes to be hardly recognized by the segmentation network in lack
of adaptation, our strategy successfully provides the predictor with road detection capabilities.
Figure 8.4a) includes some qualitative results. Again, we can observe the improved semantic

174

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle unlabeled

a)

To
C
ity

sc
ap

es Fr
om

G
TA

5
Fr
om

SY
N
T
H
IA

b)

To
M
ap

ill
ar
y

Fr
om

G
TA

5
Fr
om

SY
N
T
H
IA

image annotation supervised (LG,1) Biasetton et al. [26] ours (Lfull)

Figure 8.4: Semantic maps of sample scenes extracted from Cityscapes (first four rows, a)) and Mapillary (last four rows b))

validation sets. For each group, the first two rows are related to the experiments in which the GTA5 dataset is used as source.

The last two rows are related to the case in which the SYNTHIA dataset is used as source.

175

understanding and detection accuracy on classes such as road and sidewalk with respect to the
baseline, as well as with respect to a competing approach based on adversarial and self-training
techniques [26].

8.3.2.3 Evaluation on theMapillary dataset

We evaluate our approach also on the Mapillary dataset. We start by using the GTA5 dataset
for the supervised training as before: the results are shown in Table 8.7c). With no adaptation
to the Mapillary dataset the network achieves a mIoU of 37.8%. Thanks to the multiple domain
discriminators and to the adaptive self-training techniques our framework is able to reach a
mIoU of 41.9%, significantly outperforming all the compared methodologies. We can notice that
the improvement with respect to the baseline approach is consistently distributed among the
semantic classes and it is particularly evident on the road or building ones. Qualitative results
are shown in the first two rows of Figure 8.4b), where we can verify that most of the noise present
in the supervised training and in [26] is filtered out by the proposed framework. In particular,
the vegetation and sidewalk categories highly benefit from the domain adaptation with class-wise
and time-variable confidence threshold selection.

Furthermore, we can appreciate that, also on the Mapillary dataset, the accuracy is lower
when the SYNTHIA dataset is used for supervised training, leading to a mIoU of 31.3% only.
As already noticed from the evaluations on Cityscapes, some classes (i.e., road, sidewalk and
building) have a low accuracy due to the poor texture representation and vastly profit by the
adaptation to the target domain. The complete framework increases the final mIoU to 34.9%
with an improvement of 3.8%, consistent with the previous experiments made across different
datasets. Remarkable are the percentage gains in the aforementioned classes: for example, the
road class more than doubles its accuracy and sidewalk’s IoU grows by 12.2%. The visual results
are reported in the last two rows of Figure 8.4b). Here, for example, we can appreciate that the
proposed approach is the only one to achieve an accurate and reliable recognition of road and
cars classes on the shown images, which confirms our previous analysis.

8.3.2.4 Ablation Study

In this section we present an accurate investigation of the effectiveness of the various modules of
the proposed framework. For this study we consider the performance on the Mapillary dataset
when adapting from GTA5. We start by evaluating the individual impact of each module:
the performance analysis is shown in Table 8.8. Let us recall that the baseline architecture,
i.e., the DeepLab-v2 network trained on synthetic data only, achieves a mIoU of 37.8% on real
data. Then, we analyze the remaining modules by removing one component at a time (row 2

LG,0 Ls
G,1 Lt

G,1 Lt
G,2 LG,3 Tf mIoU

X 37.8
X X X X X 39.9
X X X X X 40.3
X X X X X 40.7
X X X X 41.1
X X X X X 40.6
X X X X X fix 0.2 40.9
X X X X X X 41.9

Table 8.8: Ablation results on theMapillary validation set adapting fromGTA5.

176

Figure 8.5: Time average over the initial to current step interval of per-class confidence thresholds for different classes and at

different training steps on theMapillary dataset when adapting fromGTA5.

to 6). We can appreciate that all the components bring a significant contribution to the final
mIoU, which in the full version of the approach where all of them are enabled is 41.9%. The
impact of Ls

G,1, Lt
G,1 and LG,2 is clear by looking at Table 8.8: without each of them the accuracy

decreases with respect to the complete framework but remains higher than the source supervised
case. In particular, we performed a more detailed analysis of the self-training module. Having
no self-training leads to 41.1% of mIoU, while having self-training done on all pixels (without
thresholding with Tf) or using a fixed confidence threshold (e.g., setting a constant value of
Tf = 0.2 as in [26]) leads to 40.6% and 40.9%, respectively. These results show that self-training
is not effective if the reliable pixels are not accurately selected, e.g., if performed immutable over
the classes and the training steps. On the other side we found that self-training is effective with
confidence thresholds variable over classes and over training time.

We also analyzed the behavior of the per-class time-varying confidence values: they are shown
in Figure 8.5 for the GTA5 to Mapillary scenario. Here, we can appreciate how the confidence
thresholds vary over the training time and typically converge to a value which may be significantly
different among the various classes. While previous works [26, 27] fixed the threshold to 0.2,
here we can see how the desired value is variable and ranges between 0.04 and 0.4. Highly
confident classes typically have high confidence threshold, in order to propagate back very reliable
predictions through self-training as for instance road, sky and building. However, notice that train
and bike have high confidence threshold values only because they are predicted too rarely to be
useful for confidence assessment (i.e., the thresholds are piece-wise constant functions), hence
represent failure modes of the estimate. More challenging classes such as wall and fence, instead,
are characterized by a much lower confidence value. The most important aspect, however, is to
verify that our framework can adapt both to the properties of different classes and to the changes
in the network behavior during the training procedure. Additionally, we can compute the mean
threshold value averaged over all the classes at the end of the training phase and compare it with
previous works [26, 27]. The mean is 0.13 in the considered scenario and 0.19 in the adaptation
from GTA5 to Cityscapes, consistently with the value of 0.20 used in previous works [26,27].

177

8.4 Summary

In this section, a couple of novel schemes to perform unsupervised domain adaptation from syn-
thetic urban scenes to real-world ones have been proposed under the same common framework.
In the first contribution, two different strategies have been used to exploit unlabeled data. The
first is based on an adversarial learning framework, based on fully convolutional discriminators.
The second is a soft self-teaching strategy, based on the assumption that unsupervised predic-
tions labeled as highly confident by the discriminator are reliable. We also add a region growing
module that further refines the confidence maps on the basis of the segmentation output on
real-world images. In the second contribution, our framework was enriched by class-aware and
time-varying confidence thresholds to adapt to different classes and to different stages of learning
of the semantic segmentation network.

Experimental results on the Cityscapes and Mapillary datasets prove the effectiveness of the
proposed approach. In particular, we obtained good results both on large-size regions, thanks
to the region growing procedure, and on particularly challenging small and uncommon ones,
thanks to the class frequency weighting of the self-teaching loss.

Further research will address the exploitation of generative models to produce more realistic
and refined synthetic training data to be fed to the framework and the alignment of the latent
level representations learned from the two data domain distributions: this is the main focus of
the next chapter.

178

9
Input- and Feature- Level Domain Adaptation

9.1 Introduction

In the previous chapter we have seen how output-level domain adaptation can be performed to
leverage the results of an initial stage of training on a source domain distribution. This chapter,
instead, explores novel feature-level UDA strategies.

In Section 9.2 we present the first line of research, where we combine an input-level adaptation
strategy based on CycleGAN with a nav̈e feature-level adaptation by means of a couple of dis-
criminator networks [30]. In Section 9.3 we focus more deeply on sole latent-level adaptation by
means of features disentanglement via clustering, orthogonality and sparsity [31]. In Section 9.4
we extend previous considerations on feature-level adaptation and we propose a novel metric to
quantify the performance of UDA strategies [32,33].

9.1.1 Contributions

9.2 Input-Level Cyclic Consistency and Feature-Level Adversarial Learning

In a popular work, Hoffman et al. [275] introduce the CyCADA framework, which relies on the
CycleGAN [29] image-to-image translator for pixel-level adaptation. First of all, a generative
module, which is augmented with a semantic consistency constraint to avoid semantic alterations
of input data, is trained to perform cross-domain image translation. Then, the generator re-
sponsible for the source-to-target mapping is applied on source images before they are provided
to the predictor in a supervised training phase. Finally, a separate adversarial feature adap-
tation step is proposed. Unfortunately, the authors were not able to train the full framework
end-to-end with all the proposed modules, due to hardware constraints hindering the insertion of
a fully convolutional predictor (i.e., the segmentation network for semantic consistency) inside
an already memory-demanding generative module comprising four neural networks. Similarly
to [275], Chen et al. [276] propose an extension of the CycleGAN framework by introducing a
pair of feature domain discriminators and a couple of semantic segmentation networks.

In this section, we introduce an efficient UDA approach combining two strategies: we start
performing an image-level (i.e., input-level) domain adaptation using a model based on the
Cycle-GAN framework that converts the input synthetic images to the target (real) domain while
preserving the semantic content. Then, the data is sent to a MobileNet-v2 architecture [360]

179

Figure9.1: Architectureof theproposed framework. Yellowblockscorrespondto theCycleGANframework for image-to-image

translation. Original and translated scenes from both source and target sets are projected by the encoder to a latent space

on which we apply an extra couple of domain discriminators (green blocks). Structural consistency on generated samples is

enforced by the cycle-consistency constraint, whereas semantic uniformity throughout image mapping is promoted by the se-

mantic loss. The segmentation network is reported in blue.

that performs the semantic segmentation. In order to enhance the feature-level adaptation, an
additional couple of discriminators working at the intermediate feature level of the network is
employed. Moreover, an additional loss component forces also the consistency between the se-
mantic maps, thus avoiding the risk that the domain translation affects the semantic content.
Differently from other competing approaches [275, 276] that train independently the various
sub-components, we train the complete architecture end-to-end on both synthetic labeled data
and unlabeled real-world data in a single optimization framework based on adversarial learn-
ing. Finally, using the simple and fast MobileNet-v2 architecture, the inference stage of the
approach is suitable for real-time applications as the autonomous driving scenario chosen for the
experimental evaluation.

9.2.1 Proposed Approach

Our target is to train a semantic segmentation network in a supervised way on synthetic data
and then to adapt it in an unsupervised way to real-world data. We assume to have access
to synthetic (i.e., source) labeled images (xS , yS) ∈ XS × YS , as well as to real (i.e., target)
unlabeled images xT ∈ XT . Due to dissimilar marginal and joint distributions over input and
label spaces on both domains, deep models trained on source data struggle to generalize learned
knowledge to the target space. To address the effect of domain discrepancy, we resort to a
generative approach. We employ an adversarial framework to learn an image-level mapping
between source and target spaces. The objective is to produce adapted source images that
resemble target ones, while preserving the ground-truth information at our disposal. In this
way, we can introduce a form of target supervision by exploiting target-like annotated source
images to train the segmentation network.

Figure 9.1 shows the architecture of the proposed framework. As initial step, we adopt a
generative approach to learn an image-level mapping for cross-domain image projection. This is

180

achieved using an adversarial learning scheme exploiting a pair of generator-discriminator cou-
ples. Meanwhile, a semantic segmentation network is included to enforce semantic consistency
to the generative process. The objective is to perform realistic sample translations, while pre-
serving the semantic structure as identified by the semantic classifier. An additional feature-level
adaptation is further included, in the form of a pair of feature discriminators. The way they
operate is analogous to their image-level counterparts, as they enforce a statistical alignment of
source and target data representations. The key difference lies in the operating space, since they
act over an intermediate feature representation produced by the segmentation network, rather
than directly within the original image domain.

Our approach is independent of the segmentation architecture and in general any seman-
tic segmentation network can be used, however in our experiments we used the MobileNet-v2
network [360, 361] embedded inside the DeepLab-v3+ framework [4]. The primary component
of this widely utilized model is the depthwise separable convolution, a lightweight reinterpre-
tation of the standard convolutional layer responsible for both the efficiency and the reduced
weight of the architecture. In addition, inverted residual blocks in place of the standard residual
connections further enhance model compactness and size shrinkage.

9.2.1.1 Cycle Consistent Domain Adaptation

The generative module is based on the CycleGAN framework [29]. The source to target (direct)
mapping GS�T : XS → XT and the target to source one (inverse mapping) GT�S : XT → XS

are discovered by means of an adversarial competition exploiting a couple of discriminators DS

and DT . The role of the domain discriminators, following the original concept of GANs [108], is
to discriminate between real images in their original form and fake images, i.e., synthetic data
subjected to the domain translation. We resort to the standard adversarial objectives at the
image level to train separately each generator-discriminator couple:

Li,T (GS�T , DT , XS , XT)

= ExT∼XT
[log (DT (xT))]

+ ExS∼XS
[log(1−DT (GS�T (xS)))]

(9.1)

Li,S (GT�S , DS , XT , XS)

= ExS∼XS
[log (DS(xS))]

+ ExT∼XT
[log(1−DS(GT�S(xT)))]

(9.2)

With the aforementioned generative process, we are able to learn a joint source-target distri-
bution starting from the marginal ones, which means we can reproduce the same images in both
source and target styles. Unfortunately, since there are infinite joint distributions that match
the available marginal ones, we are not guaranteed that the mapping functions we discover are
preserving content structure and semantics. In other words, without any additional constraint
the GS�T projection could completely disrupt input source images, still producing new sam-
ples with target properties, but far from their original versions. For this reason, we employ an
additional loss term enforcing cycle-consistency:

Lcycle (GS�T , GT�S , XS , XT)

= ExS∼XS
[‖GT�S (GS�T (xS))− xS‖1]

+ ExT∼XT
[‖GS�T (GT�S (xT))− xT ‖1]

(9.3)

The reconstruction requirement provided by the cycle-consistency loss Lcycle should encourage

181

the preservation of structural properties throughout translations, resulting in a realistic image
generation that does not affect the semantic content.

The adversarial strategy we adopt for conditional image generation has proven to be suitable
for color and texture changes, but not for more drastic geometrical transformations [108]. This
is positive for our target, since we are looking for a cross-domain projection that allows us to
safely transfer ground truth information from an original image to its translated version.

9.2.1.2 Enforcing the Semantic Segmentation Consistency across Domains

Following the the idea introduced in [275], we embed the generative module in a task-specific
domain adaptation framework. The adversarial architecture is followed by a network performing
semantic segmentation on data from both source and target domains. In our work, we will
assume the usage of a fully convolutional network, that in our implementation is the MobileNet-
v2 network. We will denote it with M = [Me,Md], where Me is the encoder part of the network,
while Md is the decoder. M is pre-trained on the source domain, before its application in the
proposed framework.

Due to the lack of labeling data on the target domain, we can not perform supervised training
on this domain. However, we introduce a further loss component to enforce the semantic con-
sistency on the generative action: the segmentation network M is supplied with both original
and adapted versions of the same image and we measure the semantic discrepancies (i.e., the
differences in the segmentation network output) introduced by the projection between domains.
The error information is then propagated back through the classifier up to the generator, which
is optimized in order to minimize semantic alteration (among other objectives). We impose this
semantic uniformity by means of a semantic consistency loss:

Lsem (GS�T , GT�S ,M,XS , XT)

= Lce (M,GS�T (XS), ρ(M(XS)))

+ Lce (M,GT�S(XT), ρ(M(XT)))

(9.4)

where ρ(M(X)) is the argmax of the output of the semantic segmentation network and:

Lce (M,X, Y)=−E(x,y)∼(X,Y)

∑
h,w,c

y(h,w,c) · log(M(x)(h,w,c)) (9.5)

Notice that the cross-entropy loss Lce is computed over segmentation maps obtained by applying
the argmax function ρ on semantic predictions M(X), rather than over ground-truth labels.
Therefore, its effect is not to promote correct semantic predictions, but to force the generator to
yield transformed images that are semantically identical to the original ones when viewed under
the scope of M .

This scheme allows us to perform a measure of semantic distance in both domains, without
resorting to ground-truth information. On the other side, M is not a perfect predictor (and on
the target domain has typically lower performance), therefore an excessive emphasis on this loss
may cause undesired artifacts in the generative process.

9.2.1.3 Feature-level Domain Adaptation

Aiming at further improving our domain adaptation framework, we introduce an additional
adversarial module to perform feature-level domain adaptation. The core idea is to replicate
the adversarial strategy adopted for the image-to-image translation task, where the goal was a
pixel-level distribution alignment. The new objective is instead the adaptation of intermediate

182

feature representations, i.e., to ensure the proper adaptation at the level of the output of the
encoder network Me. The goal now is to make generated images from one domain appear
statistically identical to original images from the other domain when looking at their projections
in a latent space spanned by the segmentation network. More specifically, we add a couple of
feature discriminators and feed them with activations from the output of the MobileNet’s feature
extractorMe. The adversarial game, then, takes place between a couple of feature discriminators
and the joint action of the two original generators together with the encoder of the segmentation
network. The feature-level adversarial objectives are the following:

Lf,T (Me ◦GS�T , D
′
T)

= ExT∼XT
[log(D′T (Me(xT)))]

+ ExS∼XS
[log(1−D′T (Me(GS�T (xS))))]

(9.6)

Lf,S(Me ◦GT�S , D
′
S)

= ExS∼XS
[log(D′S(Me(xS)))]

+ ExT∼XT
[log(1−D′S(Me(GT�S(xT))))]

(9.7)

Where D′S and D′T are the feature discriminators working on data from the source and target
domain respectively.

Combining together all the different losses, the full objective becomes:

Ltot = (Li,S + Li,T) + λfeat · (Lf,S + Lf,T)

+λcycle · Lcycle + λsem · Lsem + λce · Ls
ce

(9.8)

We also denote Ls
ce = Lce(M,GS�T (XS), YS) the standard cross-entropy loss used to train

supervisedly M on source adapted data. The framework optimization then can be expressed as
a min-max problem:

min
GS�T ,GT�S ,M

max
DS ,DT ,D′

S ,D′
T

Ltot. (9.9)

As a result, we have access to a pair of image-to-image mappings capable of translating images
across domains, while, at the same time, making generated samples statistically indistinguishable
from true ones when projected into the feature space defined by the segmentation network.
Additionally, the semantic segmentation network M is adapted to work on the target data in
an unsupervised way (without using target ground truth) thanks to the loss Ls

ce. Since all the
components are simultaneously trained, when improving the image-to-image mappings also the
adaptation of M improves. For a more stable training and to avoid saturation effects [29], the
logarithm within adversarial losses is replaced by a L2-norm operator and the objectives are split
into separate terms for generators and discriminators individual optimization.

9.2.2 Implementation and Training Details

Network implementation. The image-level generators and discriminators (i.e., GS→T , GT→S ,
DS and DT) are based on the network architectures introduced in [29]. The generators are com-
posed of stride-2 convolutions, residual blocks and fractionally strided convolutions to recover
input dimensionality. Discriminators are fully convolutional networks as well, made by the
cascade of 5 stride-2 convolutional layers. To avoid excessive size compression, we employ the
same structure for feature-level discriminators (Df

S and Df
T) as well, but we modify the stride

value to 1 for all layers. As concerns the segmentation network M , we employ the DeepLab-
v3+ [4] with the MobileNet-v2 [360] as backbone. We select an output stride of 16 for the feature

183

extractor, whereas for the ASPP block we choose atrous rates of 6, 12 and 18 as suggested by [4].

Training details. Differently from [275], we train our framework in a single shot, so that all
the networks are simultaneously optimized according to Ltot. We initialize the weights of the
semantic predictor from its pre-trained version on the Pascal VOC dataset [114, 362]. We then
fine-tune it on the source domain for 90K steps using the standard cross entropy loss before the
actual optimization of the adaptation framework. All the other networks are instead trained
from scratch. We use the Adam optimizer [363] to train all the components of the proposed
approach.

After the initialization of the segmentation network, we train our model for a total of 80K
iterations with a single NVDIA GeForce GTX 1080 Ti. The segmentation network is kept fixed
for the first 20K steps, until the generators start performing acceptable translations, then we
train all the various components together. The large amount of model parameters and the high
resolution images from source and target sets prevents us from using full size data for training
purposes. To overcome this issue, we extract random patches of 600× 600 pixels from training
samples, which were previously resized to have a predefined width and the original aspect ratio,
and we use them as model inputs.

Concerning the parameters, we experimentally set the terms balancing the various components
in Ltot to λcycle = 20, λsem = 0.1, λfeat = 10−4 and λce = 1. For the training of the segmentation
network we set β1 (the exponential decay rate for the first moment estimates) to 0.9, and the
weight decay to 4× 10−5. The learning rate is subject to a polynomial decay of power 0.9, and
is decreased to 0 from its initial value (respectively 1 × 10−5 and 5 × 10−6 for the adaptation
from the GTA and SYNTHIA datasets). Moreover, we set a batch size of 5 when training the
semantic predictor alone in the initial stage, while for full framework optimization, we reduce
the batch size to 1 due to memory constraints. For the optimization of the image and feature
adversarial models we use a small β1 term of 0.5 as in [29]. This makes the training process more
unstable, but we notice no improvements by changing it. The learning rate for these modules is
set to 2× 10−4.

We developed our approach in TensorFlow [125] and the code is publicly available at https:
//lttm.dei.unipd.it/paper_data/UDAmobile/.

9.2.3 Experimental Results

In this section, we show some examples of the image translation module. Then, we show the
results of the main task, i.e., semantic segmentation on real data, starting from two different
synthetic datasets. In order to conclude, some ablation results are presented.

9.2.3.1 Image Domain Translation

The first module in our framework is the image-to-image adaptation in the image space between
the synthetic datasets and the real one (Cityscapes) and viceversa. We visualize such cyclic
translation in Figure 9.2, where we report the original, adapted and reconstructed images in
output from our model for each of the four different considered scenarios. We show both the
results when starting from synthetic data and when starting from real scenes.

The most obvious and noticeable difference lies in the shift of colors between real and syn-
thetic images. Synthetic imagery, indeed, are characterized by more vivid colors than the real
counterparts hence the adaptation framework needs to compensate for this issue as can be ver-
ified in all the proposed qualitative results. Additionally, the textures of some regions (such as
the road or the sky) of the images are completely different between the considered domains. In

184

https://lttm.dei.unipd.it/paper_data/UDAmobile/
https://lttm.dei.unipd.it/paper_data/UDAmobile/

GTA5 and especially in SYNTHIA (where the road texture is not realistic at all) the road is less
uniform than the one present in the Cityscapes dataset, so we could observe that our adaptation
framework compensate this aspect. In particular, the model adds some textures on the road
when converting an image to the synthetic dataset and it removes such textures when dealing
with the opposite task. The sky, instead, tends to appear more blue in the synthetic imagery
rather than in the real ones, where it appears more grayish.

Beside those changes in the appearance of the images, we could notice that in general the
semantic content and the geometrical structure is preserved unaltered. The objects do not
disappear and they do not change position, as we expect. This is ensured by a combination
of factors such as the semantic loss, the cycle-consistency loss and the adaptation loss at the
feature level which aims at preserving the extraction of similar features from the same objects
even if they belong to two different image-spaces.

Furthermore, when moving from synthetic to real domain, in certain pictures we can observe
that our model tends to add an ornament to the bottom of the images (e.g., in the second row
from GTA5 to Cityscapes). Although this is irrelevant for the semantic segmentation task, since
we exclude the car on which the camera is mounted, we argue that the image-space adaptation
is leading to reasonable outcomes because it tries to replicate the trademark of the car used for
the Cityscapes data acquisition.

A few artifacts are present especially in the sky region where the model tends to add some
shadows coming from clouds or buildings present in other images: this can be noticed in the
first and third adapted images from the GTA5 dataset. However, it is noticeable that the
cycle-consistency helps the model to recover the exact appearance of the sky of such images.

Table 9.1: mIoUon the different classes of theCityscapes validation set. The approaches have been trained in a supervisedway

on theGTA5 dataset and the unsupervised domain adaptation has been performed using theCityscapes training set. Themean

and per class highest results have been highlighted in bold.

ro
ad

sid
ew

al
k

bu
ild

in
g

wa
ll

fe
nc

e

po
le

t
lig

ht

t
sig

n

ve
g

te
rr
ai
n

sk
y

pe
rs
on

rid
er

ca
r

tr
uc
k

bu
s

tr
ai
n

m
bi
ke

bi
ke

m
ea
n

Source only 23.1 13.1 42.6 2.3 13.9 5.0 10.3 8.0 68.6 6.7 24.5 40.8 0.3 48.1 9.4 16.3 0.0 0.0 0.0 17.5
Ours (full) 87.6 36.7 83.5 29.1 17.8 33.6 24.3 35.2 83.1 28.9 76.3 59.1 14.0 85.9 25.4 29.4 2.6 19.5 9.3 41.1

CycleGAN [29] 84.9 36.4 74.3 12.9 7.1 23.6 7.9 19.9 60.2 13.4 45.8 46.8 5.4 72.4 18.0 22.3 0.8 3.2 0.5 29.3
CyCADA [275] 83.8 35.3 80.4 20.7 15.7 28.4 27.0 24.8 80.2 23.1 69.0 56.6 11.5 80.8 23.4 27.0 2.4 12.4 5.2 37.3

Target 97.7 81.9 91.0 47.6 50.1 58.4 62.3 73.4 91.4 59.8 94.3 77.2 50.5 93.2 59.2 74.8 55.8 49.5 73.0 70.6

9.2.3.2 Adaptation from the GTA5Dataset

The first set of experiments regards the unsupervised adaptation of the semantic segmentation
network M to the Cityscapes dataset after an initial stage of supervised training on the GTA5
dataset. To evaluate the adaptation performance of our framework we computed the mean
Intersection over Union (mIoU) between model predictions and the relative ground truth label
maps for the scenes in the Cityscapes validation set.

The results of these synthetic to real adaptation experiments are summarized in Table 9.1.
The baseline approach, i.e., the supervised training of the semantic segmentation on the GTA5
(source) dataset followed by testing on Cityscapes without any adaptation, leads to a very low
mIoU of 17.5% (first row). When compared to the training of the same network on the target
(Cityscapes) dataset (last row, denoted as Target), the huge difference reveals the struggle of
the predictor to overcome the statistical discrepancy between the source and target domains.

185

Synthetic → Real→ Synthetic Real → Synthetic → Real

G
TA

5
↔

C
ity

sc
ap

es
SY

N
T
H
IA
↔

C
ity

sc
ap

es

original adapted reconstructed original adapted reconstructed

Figure 9.2: Examples of image translations (adaptation and reconstruction of the original image) in the four different cases con-

sidered. In thefirstquadrant (up-leftof3×3 images)wemove fromtheGTA5dataset to theadapted images in thedomainof the

Cityscapes dataset to the reconstructed images in the GTA5 domain. The second quadrant (up-right) shows respectively: the

starting Cityscapes images, their translation to the GTA dataset and the reconstructed images in the domain of the Cityscapes

images. The third (down-left) and the fourth (down-right) quadrant are analogous to the first and the second ones using the

SYNTHIA dataset in place of GTA5.

Our unsupervised domain adaptation method brings a huge improvement over the naïve source
only approach, reaching a mIoU of 41.1% when employed in its full extent (5th row), with a
performance boost of 23.6% over the baseline. Moreover, the accuracy enhancement is well
distributed over all the semantic classes, from the most common ones (e.g. road, building, sky),
to the less frequent categories (e.g. train, motobike, bike). In particular notice that some of the
less frequent are never recognized when no adaptation is performed while the proposed approach
allows to detect them even if they remain very challenging. This proves the effectiveness of
our model in mitigating the statistical discrepancy through a combined feature and pixel level
alignment.

We compared the results we obtained on the Cityscapes validation set with two approaches
of the same family: namely, CycleGAN [29] and CyCADA [275]. Those are very well known
approaches and also represent the starting point for some architectural design choices we made.
For comparison purposes, we used the CycleGAN implementation from [364] and we implemented
the framework of [275] from scratch and inserted in it the same segmentation network we used in
our tests (i.e., DeepLabV3+ [4] with MobileNet-v2 [360] as backbone). As regards the training
details of the compared methodologies, we employed the standard training procedures proposed
in the respective papers: for CycleGAN [29] we train the model with rescaled images, while for
CyCADA [275] we train the model extracting random patches after a rescaling operation.

From Tables 9.1 and 9.2 we can appreciate that our method is able to outperform CyCADA
by about 4% and 5% respectively, which is uniformly distributed among classes: notice how
our approach is the best on 18 out of 19 classes (it is outperformed only by [275] on the traffic

186

light class). This has to be mostly attributed to the feature alignment process which directly
influences the generative action and also to the simultaneous optimization of all framework
components. Additionally, we could observe that CycleGAN has a much lower accuracy and lies
in between the training made only on source data and our full method. Indeed, it consists of a
simpler framework where only the image translation based on the cycle-consistency constraint
is present.

Figure 9.3 displays some qualitative results in terms of semantic prediction maps for different
adaptation strategies. The first and second columns include the original Cityscapes RGB images
and their corresponding label maps, while the last 3 columns show the segmentation outputs with
no adaptation (i.e., source only), using the approach of [275] and with the proposed unsupervised
domain adaptation strategy.

The first 4 rows of Figure 9.3 show the remarkable improvement achieved over the source only
baseline when resorting to the GTA5 dataset as source domain. The effect of the adaptation is
to boost the detection capability of the predictor M , as it manages to obtain a more accurate
understanding of the input target scene, both in terms of correct categorization and precise
spatial identification of the different semantic entities. All semantic classes happen to highly
benefit from the adaptation, leading to generally better semantic predictions. Anyway some
categories exhibit more noticeable improvements, such as the road and sky classes as it is possible
to see on the predicted maps in rows 1, 2 and 4.
Column 4 of Figure 9.2 shows the output of [275]: our method outperforms [275] on the majority
of the semantic classes, with a particularly noticeable improvement on some of them. For
instance, our approach in general leads to a more precise segmentation of the upper portion of
target scenes, mainly involving the sky and building classes. It is possible to notice how the
approach of [275] sometimes confuses part of sky as terrain or building (rows 1, 2 and 4). As
previously stated, this is due to the dataset bias occurring between source and target domains
in terms of color shift and change of texture, making the detection of semantic components
quite hard to achieve, especially when the classification involves different categories (such as sky
and building) sharing a common appearance on the source and target domains. Furthermore,
we observe that less frequent classes corresponding to small image details (e.g., traffic sign) are
more precisely localized, as well as more common categories lacking an always definite semantic
categorization (e.g. wall and sidewalk). Once again, this remarks the capability of our adaptation
framework to address domain discrepancy with the combined pixel and feature level alignment.

9.2.3.3 Adaptation from the SYNTHIADataset

In the second set of experiments we changed the source domain, replacing the GTA5 dataset
with the SYNTHIA one. Table 9.2 shows the numerical results we got from the evaluation.
As before, we started by training the semantic segmentation network on synthetic data and
measuring its performance on the Cityscapes validation set, which we employ as a baseline (first
row). The accuracy (18.2%) happens to be slightly higher than in the first scenario, even if the
adaptation task is more challenging due to a wider dataset bias. Anyway, the huge performance
gap with respect to the target-based supervised optimization still persists, leaving large room
for improvement.

Our adaptation framework managed to reduce the domain discrepancy quite successfully
boosting the mIoU up to 32.6% from the original 18.2% of the baseline, with an improvement of
almost 15%. As for the GTA5 to Cityscapes adaptation, the accuracy for all semantic categories
benefit from the unsupervised adaptation. For example, road segmentation is strongly improved,
starting from a mIoU for the road class of 1.4% (denoting basically no detection capability) and
reaching a final accuracy of 53.8%. This class is particularly interesting since the reason for the

187

Table 9.2: mIoUon the different classes of theCityscapes validation set. The approaches have been trained in a supervisedway

on the SYNTHIA dataset and the unsupervised domain adaptation has been performed using the Cityscapes training set. The

mean and per class highest results have been highlighted in bold.
ro
ad

sid
ew

al
k

bu
ild

in
g

wa
ll

fe
nc

e

po
le

t
lig

ht

t
sig

n

ve
g

sk
y

pe
rs
on

rid
er

ca
r

bu
s

m
bi
ke

bi
ke

m
ea
n

Source only 1.4 10.6 29.1 1.0 0.0 17.2 2.0 3.6 68.5 65.0 42.3 0.1 41.7 8.2 0.0 0.5 18.2
Ours (full) 53.8 21.3 69.4 3.7 0.1 31.6 3.5 12.6 77.5 75.2 51.9 13.2 64.1 15.9 10.8 16.7 32.6

CycleGAN [29] 42.9 26.7 44.6 0.5 0.1 29.2 3.5 5.8 67.1 70.8 46.0 3.4 32.8 7.0 2.4 3.7 24.2
CyCADA [275] 30.3 15.8 64.0 5.9 0.0 30.6 3.8 10.4 76.4 73.0 42.9 4.9 54.3 15.0 3.0 8.9 27.5

Target 97.8 83.7 91.2 47.7 49.7 58.8 63.0 73.9 92.4 94.4 77.9 53.7 94.1 80.5 44.7 73.5 73.6

low accuracy lies in the rather unrealistic synthetic road texture of SYNTHIA images, whose
semantic attributes are not easily generalizable to the Cityscapes dataset. To that end, our
framework introduces a substantial distribution alignment both at pixel level and inside the
intermediate feature space. We once again compared the adaptation performance of our model
with the one of CyCADA [275] in the third row. Our framework is more effective than the
competitor, with an average mIoU increase of 5%, shared by the majority of the classes. For
instance, the road accuracy is significantly enhanced by our model, proving the better capability
of reducing domain discrepancy. Again, the CycleGAN [29] approach has intermediate results
between the source only approach and CyCADA [275].

Some qualitative results for the adaptation from the SYNTHIA dataset are shown last 4
rows of Figure 9.3. They confirm the numerical evaluation: the strong diversity between the
Cityscapes and SYNTHIA datasets negatively affects the semantic understanding of the predic-
tor, as clearly visible in the third column showing the outputs of the baseline approach with no
adaptation. Even common classes such as road and building suffer from quite flawed semantic
detection leading to almost no understanding of target scene structure, with a worse perfor-
mance when compared to the GTA5 scenario. This has to be ascribed to the poor realism of
synthetic images and to the variable view point of SYNTHIA scenes, which are captured from
multiple camera angles and not exclusively from a car perspective as for the Cityscapes images.
The adaptation successfully mitigates the domain discrepancy providing the predictor with an
enhanced perception of the semantic morphology of target inputs. For example, the road, which
without adaption is incorrectly classified as building, probably due to its quite unrealistic texture
on source images, after the adaptation is detected with a much greater accuracy.

Furthermore, our approach shows some improvement also with respect to the method proposed
in [275]. For example, the adaption following [275] struggles in the correct segmentation of road
and sidewalk classes, which are easily mistaken one for the other, an issue greatly reduced in
the maps of our approach in the last column. At the same time, semantic predictions exhibit a
better detection accuracy on objects belonging to low frequency classes, such as motorbike and
bike, highlighting an increased robustness of our method due to the combined pixel and feature
level alignment and to the simultaneous optimization of all the network components.

9.2.3.4 Ablation Studies

Finally, we analyze in detail the performance gain brought by the different components of our
framework. For this evaluation we considered the domain adaptation from GTA5 to Cityscapes.
A relevant contribution is due to the CycleGAN-based image-to-image translator, which effec-
tively bridges the domain gap at the pixel level by generating realistic target-like labeled data
and pushes the accuracy on the Cityscapes validation set up to 39.1% (second row in Table 9.3).

188

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle unlabeled

To
C
ity

sc
ap

es
Fr
om

G
TA

5
Fr
om

SY
N
T
H
IA

Image Ground Truth Source only CyCADA [275] Ours (full)

Figure 9.3: Semantic segmentation of some sample scenes extracted from the Cityscapes validation set when adapting source

knowledge learned on the GTA5 (rows 1− 4) and SYNTHIA (rows 5− 8) datasets.

189

However, notice that this value is significantly different from the original CycleGAN [29] result
reported in Table 9.1 because in our framework the optimization of the segmentation network
is made jointly with the cyclic translation and the training considers patches of images. Then,
we evaluated the impact on the final adaptation performance of the semantic and feature-based
losses by alternately setting to 0 the λsem and λfeat parameters. The regularizing action of
the feature level adaptation allows to increase the accuracy to 39.6% (third row in Table 9.3)
with a small but noticeable impact. The semantic loss (fourth row in Table 9.3) has a larger
impact, leading to an improvement of 1.6% on the final score. Finally, by using both components
together we obtain a combined improvement of 2%, leading to the final accuracy of 41.1%.

Table 9.3: Ablation study on the Cityscapes validation set. The approaches have been trained in a supervised way on the GTA5

dataset and the unsupervised domain adaptation has been performed using theCityscapes training set. Themean and per class

highest results have been highlighted in bold.

ro
ad

sid
ew

al
k

bu
ild

in
g

wa
ll

fe
nc
e

po
le

t
lig

ht

t
sig

n

ve
g

te
rr
ai
n

sk
y

pe
rs
on

rid
er

ca
r

tr
uc
k

bu
s

tr
ai
n

m
bi
ke

bi
ke

m
ea
n

Source only 23.1 13.1 42.6 2.3 13.9 5.0 10.3 8.0 68.6 6.7 24.5 40.8 0.3 48.1 9.4 16.3 0.0 0.0 0.0 17.5
Ours (λsem, λfeat = 0) 87.8 39.1 81.0 24.8 16.0 31.9 27.2 25.7 78.6 22.9 69.7 55.5 16.7 85.3 25.7 31.0 4.4 14.7 5.6 39.1

Ours (λsem = 0) 88.3 37.1 81.1 25.4 15.3 33.6 29.5 28.8 80.0 24.4 69.2 56.0 15.6 85.0 25.5 30.8 3.9 16.3 6.2 39.6
Ours (λfeat = 0) 87.3 36.6 82.8 29.1 19.9 32.9 24.9 32.3 82.8 28.1 74.6 58.3 11.6 85.9 26.3 31.9 1.3 19.5 6.8 40.7

Ours (full) 87.6 36.7 83.5 29.1 17.8 33.6 24.3 35.2 83.1 28.9 76.3 59.1 14.0 85.9 25.4 29.4 2.6 19.5 9.3 41.1
Target 97.7 81.9 91.0 47.6 50.1 58.4 62.3 73.4 91.4 59.8 94.3 77.2 50.5 93.2 59.2 74.8 55.8 49.5 73.0 70.6

9.3 Feature-Level Regularization

In this contribution we focus more closely to latent-level adaptation alone. We propose to
disentangle the latent representations resorting to a feature clustering method that captures
the different semantic modes of the feature distribution and groups features of the same class
into tight and well-separated clusters. Furthermore, we introduce two novel learning objectives
to enhance the discriminative clustering performance: an orthogonality loss forces spaced out
individual representations to be orthogonal, while a sparsity loss reduces class-wise the number
of active feature channels. The joint effect of these modules is to regularize the structure of the
feature space.

As we observed there are three main levels to which adaptation may occur [13]: namely, at the
input, features or output stages. A popular solution has become to bridge the domain gap at an
intermediate or output representation level by means of adversarial techniques [27,273,275]. The
major drawback of these kind of approaches is that they usually perform a semantically unaware
alignment, as they neglect the underlying class-conditional data distribution. Additionally, they
typically require a long training time to converge and the process may be unstable.

Differently from these techniques, our approach is simple and does not require complex adver-
sarial learning schemes: it entails only a slight increase of computation time with respect to the
sole supervised learning. The main idea is depicted in Figure 9.4: we devise a domain adapta-
tion technique specifically targeted to guide the latent space organization and driven by 3 main
components. The first is a feature clustering method developed to group together features of the
same class, while pushing apart features belonging to different classes. This constraint, which
works on both domains, is similar in spirit to the recent progresses in contrastive learning for
classification problems [133]; however, it has been developed aiming at a simpler computation, as
the number of features per image is significantly larger than in the classification task. The sec-
ond is a novel orthogonality requirement for the feature space, aiming at reducing the cross-talk

190

Figure 9.4: The proposed domain adaptation scheme is driven by 3main components, i.e., feature clustering, orthogonality and
sparsity. These push features in the previous step (in light gray) to new locations (colored) where features of the same class are

clustered, while features of distinct classes are pushed away. To further improve performance, features of distinct classes are

forced to be orthogonal and sparse.

between features belonging to different classes. Finally, a sparsity constraint is added to reduce
the number of active channels for each feature vector: our aim is to enforce the capability of
deep learning architectures to learn a compact representation of the scene. The combined effect
of these modules allows to regularize the structure of the latent space in order to encompass the
source and target domains in a shared representation.

Summarizing, our main contributions are: (1) we extend feature clustering (similarly to con-
trastive learning) to semantic segmentation; (2) we introduce orthogonality and sparsity objec-
tives to force a regular structure of the embedding space; (3) we achieve state-of-the-art results
on feature-level adaptation on two widely used benchmarks.

9.3.1 Proposed Approach

In this section, we provide an in-depth description of the core modules of the proposed method.
Our approach leverages a clustering objective applied over the individual feature representations,
with novel orthogonality and sparsity constraints. Specifically, inter- and intra- class alignments
are enforced by grouping together features of the same semantic class, while simultaneously push-
ing away those of different categories. By enforcing the clustering objective on both source and
target representations, we drive the model towards feature-level domain alignment. We further
regularize the distribution of latent representations by the joint application of an orthogonality
and a sparsity losses. The orthogonality module has a two-fold objective: first, it forces feature
vectors of kindred semantic connotations to activate the same channels, while turning off the
remaining ones; second, it constrains feature vectors of dissimilar semantic connotations to acti-
vate different channels, i.e., with no overlap, to reduce cross interference. The sparsity objective
further encourages a lower volume of active feature channels from latent representations, i.e., it
concentrates the energy of the features on few dimensions.

A graphical outline of the approach with all its components is shown in Figure 9.5: the
training objective is given by the combination of the standard supervised loss with the proposed

191

Figure 9.5: Overview of the proposed approach. Features after supervised training on the source domain are represented in

light gray,while featuresof thecurrent steparecolored. Asetof techniques is employed tobetter shape the latent feature space

spanned by the encoder. Features are clustered and the clusters are forced to be disjoint. At the same time, features belonging

to different classes are forced to be orthogonalwith respect to each other. Additionally, features are forced to be sparse and an

entropyminimization loss could also be added to guide target samples far from the decision boundaries.

adaptation modules, i.e., it is computed as:

L′tot = Lce + λcl · Lcl + λor · Lor + λsp · Lsp (9.10)

where Lce is the standard supervised cross entropy loss. The other components will be detailed
in the following sections: the main clustering objective (Lcl) is introduced in Section 9.3.1.1. The
orthogonality constraint (Lor) is discussed in Section 9.3.1.2 and finally the sparsity constraint
(Lsp) is detailed in Section 9.3.1.3. The λ parameters balance the multiple losses and are
experimentally chosen using a validation set.
In addition, we further integrate the proposed adaptation method with an off-the-shelf entropy-
minimization like objective (Lem), to provide an extra regularizing action over the segmentation
feature space and ultimately achieve an improved performance in some evaluation scenarios. In
particular, we adopt the simple, yet effective, maximum squares objective of [325], in its image-
wise class-balanced version. Hence, we can define the ultimate training objective comprising the
entropy module as:

Ltot = L′tot + λem · Lem (9.11)

9.3.1.1 Discriminative Clustering

In the considered UDA setting, we are provided with plenty of samples Xs
n ∈ RH×W×3 from a

source dataset, in conjunction with their semantic maps Ys
n ∈ RH×W . Those semantic maps

contain at each spatial location a ground truth index belonging to the set of possible classes
C, which denotes the semantic category of the associated pixel. Concurrently, we have at our
disposal target training samples Xt

n ∈ RH×W×3 with no label maps (we allow only the avail-
ability of a small amount of target labels for validation and testing purposes). Despite sharing
similar high-level semantic content, the source and training samples are distributed differently,
preventing a source-based model to achieve a satisfying prediction accuracy on target data with-
out adaptation. We denote as S = F ◦ C the segmentation network composed of an encoder
and a decoder modules, namely the feature extractor F and the classifier C. Notice that the
proposed method is agnostic to the employed deep learning model, except for the assumption of
an auto-encoder structure and of positive feature values as provided by ReLU activations that
are typically placed at the encoder output (as almost all the current state-of-the-art approaches
for semantic segmentation).

192

To bridge the domain gap between the source and target datasets we operate at the feature
level. The discrepancy of input statistics across domains is reflected into a shift of feature
distribution in the latent space spanned by the feature extractor. This ultimately may cause the
source-trained classifier to draw decision boundaries crossing high density regions of the target
latent space [151], since it is inherently unaware of the target semantic modes extracted from
unlabeled target data. Thus, the classification performance over the target domain is strongly
degraded when compared to the upper bound of the source prediction accuracy.

We cope with this performance degradation by resorting to a clustering module, that serves
as constraint towards a class-conditional feature alignment between domains. Given a batch of
source (Xs

n) and target (Xt
n) training images (for ease of notation we pick a single image per

domain), we first extract the feature tensors Fs
n = F (Xs

n) and Ft
n = F (Xt

n), along with the
computed output segmentation maps Ss

n = S(Xs
n) and St

n = S(Xt
n). The clustering loss is then

computed as:
Lcl=

1

|Fs,t
n |

∑
fi∈Fs,t

n

ŷi∈S
s,t
n

d(fi, cŷi
)− 1

|C|(|C|−1)
∑
j∈C

∑
k∈C
k ̸=j

d(cj ,ck) (9.12)

where fi is an individual feature vector corresponding to a single spatial location from either
source or target domain and ŷi is the corresponding predicted class (to compute ŷi the segmen-
tation map Ss,t

n is downsampled to match the feature tensor spatial dimensions). The function
d(·) represents a generic distance measure, that we set to the L1 norm (we also tried the L2 norm
but it yielded lower results). Finally, cj denotes the centroid of semantic class j ∈ C computed
according to the standard formula:

cj =

∑
fi

∑
ŷi
δj,ŷi

fi∑
ŷi
δj,ŷi

, j ∈ C (9.13)

where δj,ŷi
is equal to 1 if ŷi = j, and to 0 otherwise.

The clustering objective is composed of two terms, the first measures how close features
are from their respective centroids and the second how spaced out clusters corresponding to
different semantic classes are. Hence, the effect provided by the loss minimization is twofold:
firstly, feature vectors from the same class but different domains are tightened around class
feature centroids; secondly, features from separate classes are subject to a repulsive force applied
to feature centroids, moving them apart.

9.3.1.2 Orthogonality

As opposed to previous works on clustering-based adaptation methods for image classification,
in semantic segmentation additional complexity is brought by the dense structured classification.
To this end, we first introduce an orthogonality constraint in the form of a training objective.
More precisely, feature vectors from either domains, but of different semantic classes according
to the network predictions, are forced to be orthogonal, meaning that their scalar product
should be small. On the contrary, features sharing semantic classification should carry high
similarity, i.e., large scalar product. Yet, feature tensors associated to training samples enclose
thousands of feature vectors to cover the entire spatial extent of the scene and to reach pixel-level
classification. Thus, since measuring pair-wise similarities requires a significant computational
effort, we calculate the scalar product between each feature vector and every class centroid cj
(centroids are computed using Eq. (9.13)). Inspired by [244, 250], we devise the orthogonality
objective as an entropy minimization loss that forces each feature to be orthogonal with respect

193

to all the centroids but one:

Lor = −
∑

fi∈F (Xs,t
n)

∑
j∈C

pj(fi) log pj(fi) (9.14)

where {pj(fi)} denotes a probability distribution derived as:

pj(fi) =
e⟨fi,cj⟩∑
k∈C e

⟨fi,ck⟩
, j ∈ C (9.15)

The loss minimization forces a peaked distribution of the probabilities {pj(fi)}, promoting the
orthogonality property as described above, since each feature vector is compelled to carry a high
similarity score with a single class centroid. The overall effect of the orthogonality objective is to
promote a regularized feature distribution, which should ultimately boost the clustering efficacy
in performing domain feature alignment.

9.3.1.3 Sparsity

To strengthen the regularizing effect brought by the orthogonality constraint, we introduce a
further training objective to better shape class-wise feature structures inside the latent space. In
particular, we propose a sparsity loss, with the intent of decreasing the number of active feature
channels of latent vectors. The objective is defined as follows:

Lsp = −
∑
i∈C
||c̃i − ρ||22 (9.16)

where c̃i stands for the normalized centroid ci in [0, 1]D and D denotes the number of feature
maps in the encoder output. We also empirically set ρ = [0.5]D. It can be noted that the
sparsifying action is delivered on class centroids, thus applying an indirect, yet homogeneous,
influence over all feature vectors from the same semantic category. The result is a semantically-
consistent suppression of weak activations, while rather active ones are jointly raised.

While the orthogonality objective aims at promoting different sets of activations on feature
vectors from separate semantic classes, the sparsity loss seeks to narrow those sets to a limited
amount of units. Again, the goal is to ease the clustering loss task in creating tight and well
distanced aggregations of features of similar semantic connotation from either source and target
domains, by providing an improved regularity to the class-conditional semantic structures inside
the feature space.

9.3.2 Experimental Setup

Model Architecture. The modules introduced in this work are agnostic to the underlying
network architecture and can be extended to other scenarios. For fair comparison with previous
works [151,282,325] we employ the DeepLab-V2, a fully convolutional segmentation network with
ResNet-101 [152] or VGG-16 [365] as backbones. Further details on the segmentation network
architecture can be found in [151, 282], as we follow the same implementation adopted in those
works. We initialize the two encoder networks with ImageNet [121] pretrained weights. In
addition, prior to the actual adaptation phase, we supervisedly train the segmentation network
on source data.

Training Details. The model is trained with the starting learning rate set to 2.5×10−4 and
decreased with a polynomial decay rule of power 0.9. We employ weight decay regularization

194

Table 9.4: Numerical evaluation of the GTA5 and SYNTHIA to Cityscapes adaptation scenarios in terms of per-class and mean

IoU. Evaluations are performed on the validation set of theCityscapes dataset. In all the experiments theDeepLab-V2 segmen-

tation network is employed, with VGG-16 (top) or ResNet-101 (bottom) backbones. ThemIoU* results in the last column refer

to the 13-classes configuration, i.e., classes marked with ∗ are ignored. MaxSquares IW (r) denotes our re-implementation, as

original results are provided only for the ResNet-101 backbone.

B Method Ro
ad

Sid
ew
alk

Bu
ild
ing

W
all

*

Fe
nc
e*

Po
le
*

T.
Li
gh
t

T.
Sig

n
Ve
ge
ta
tio
n

Te
rra
in

Sk
y

Pe
rso
n

Ri
de
r

Ca
r

Tr
uc
k

Bu
s

Tr
ain

M
ot
or
bik

e
Bi
cy
cle mIoU

(all)
mIoU*

(13-cl)

G
TA

5
→

C
ity

sc
ap

es

V
G
G
16

Source Only 26.5 13.3 45.1 6.0 15.2 16.5 21.3 8.5 78.0 8.3 59.7 45.0 10.5 69.1 22.8 17.9 0.0 16.4 2.7 25.4 -
FCNs ITW [273] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1 -

CyCADA (feat) [275] 85.6 30.7 74.7 14.4 13.0 17.6 13.7 5.8 74.6 15.8 69.9 38.2 3.5 72.3 16.0 5.0 0.1 3.6 0.0 29.2 -
CBST [323] 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9 -
MinEnt [151] 85.1 18.9 76.3 32.4 19.7 19.9 21.0 8.9 76.3 26.2 63.1 42.8 5.9 80.8 20.2 9.8 0.0 14.8 0.6 32.8 -

MaxSquare IW (r) [325] 81.4 20.0 75.4 19.4 19.1 16.1 24.4 7.9 78.8 22.9 65.9 45.0 12.3 74.6 16.1 10.3 0.2 11.3 1.0 31.7 -
Ours (L′

tot) 83.6 16.6 79.0 19.8 18.7 21.5 27.3 15.9 80.2 14.3 72.6 47.0 17.5 76.8 16.6 13.9 0.1 16.0 3.4 33.7 -
Ours (Ltot) 86.0 13.5 79.4 20.4 18.5 21.5 27.6 15.2 80.8 21.9 72.6 46.3 18.1 80.0 16.9 13.1 1.0 14.6 2.0 34.2 -

R
es
N
et
10
1

Source Only 81.8 16.3 74.4 18.6 12.7 23.5 29.3 18.1 73.5 21.4 77.6 55.6 25.6 74.1 28.6 10.2 3.0 25.8 32.7 37.0 -
AdaptSegNet (feat) [282] 83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.3 -

MinEnt [151] 84.4 18.7 80.6 23.8 23.2 28.4 36.9 23.4 83.2 25.2 79.4 59.0 29.9 78.5 33.7 29.6 1.7 29.9 33.6 42.3 -
SAPNet [366] 88.4 38.7 79.5 29.4 24.7 27.3 32.6 20.4 82.2 32.9 73.3 55.5 26.9 82.4 31.8 41.8 2.4 26.5 24.1 43.2 -

MaxSquare IW [325] 89.3 40.5 81.2 29.0 20.4 25.6 34.4 19.0 83.6 34.4 76.5 59.2 27.4 83.8 38.4 43.6 7.1 32.2 32.5 45.2 -
Ours (L′

tot) 88.7 32.2 81.8 24.1 22.1 30.8 37.6 32.8 83.4 36.3 76.0 60.0 27.0 81.0 34.2 43.0 8.0 23.4 38.1 45.3 -
Ours (Ltot) 89.4 30.7 82.1 23.0 22.0 29.2 37.6 31.7 83.9 37.9 78.3 60.7 27.4 84.6 37.6 44.7 7.3 26.0 38.9 45.9 -

SY
N
T
H
IA

→
C
ity

sc
ap

es

V
G
G
16

Source Only 7.8 13.7 66.6 2.2 0.0 23.9 4.8 13.3 71.2 - 76.5 49.2 12.1 67.1 - 24.5 - 9.8 9.2 28.3 32.8
FCNs ITW [273] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 - 68.7 51.2 3.8 54.0 - 3.2 - 0.2 0.6 20.2 22.9
Cross-City [277] 62.7 25.6 78.3 - - - 1.2 5.4 81.3 - 81.0 37.4 6.4 63.5 - 16.1 - 1.2 4.6 - 35.7
CBST [323] 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 - 81.9 49.1 14.5 66.0 - 6.6 - 3.7 32.4 35.4 36.1
MinEnt [151] 37.8 18.2 65.8 2.0 0.0 15.5 0.0 0.0 76.0 - 73.9 45.7 11.3 66.6 - 13.3 - 1.5 13.1 27.5 32.5

MaxSquare IW (r) [325] 9.1 12.7 72.5 1.0 0.0 22.3 7.0 8.4 80.0 - 77.9 49.4 10.0 71.8 - 23.8 - 6.0 13.5 29.1 34.0
Ours (L′

tot) 78.5 29.9 77.7 1.2 0.1 24.1 11.9 15.0 78.7 - 78.5 51.0 15.4 73.7 - 24.7 - 10.1 23.5 37.1 43.7
Ours (Ltot) 78.3 30.1 78.0 1.7 0.1 24.1 12.0 14.6 79.7 - 79.1 51.4 15.5 74.4 - 23.7 - 9.1 22.7 37.1 43.7

R
es
N
et
10
1

Source Only 39.5 18.1 75.5 10.5 0.1 26.3 9.0 11.7 78.6 - 81.6 57.7 21.0 59.9 - 30.1 - 15.7 28.2 35.2 40.5
AdaptSegNet (feat) [282] 62.4 21.9 76.3 - - - 11.7 11.4 75.3 - 80.9 53.7 18.5 59.7 - 13.7 - 20.6 24.0 - 40.8

MinEnt [151] 73.5 29.2 77.1 7.7 0.2 27.0 7.1 11.4 76.7 - 82.1 57.2 21.3 69.4 - 29.2 - 12.9 27.9 38.1 44.2
SAPNet [366] 81.7 33.5 75.9 - - - 7.0 6.3 74.8 - 78.9 52.1 21.3 75.7 - 30.6 - 10.8 28.0 - 44.3

MaxSquare IW [325] 78.5 34.7 76.3 6.5 0.1 30.4 12.4 12.2 82.2 - 84.3 59.9 17.9 80.6 - 24.1 - 15.2 31.2 40.4 46.9
Ours (L′

tot) 64.4 25.5 77.3 14.3 0.9 29.6 21.2 24.2 76.6 - 79.7 53.7 15.5 79.7 - 11.0 - 11.0 35.2 38.7 44.2
Ours (Ltot) 88.3 42.2 79.1 7.1 0.2 24.4 16.8 16.5 80.0 - 84.3 56.2 15.0 83.5 - 27.2 - 6.3 30.7 41.1 48.2

of 5 × 10−4. Following [325], we also randomly apply mirroring and gaussian blurring for data
augmentation during the training stage. To accommodate for GPU memory limitations, we
resize images from the GTA5 dataset up to a resolution of 1280 × 720 px, as done by [282].
SYNTHIA images are instead kept to the original size of 1280 × 780 px. As for the target
Cityscapes dataset, training unlabeled images are resized to 1024× 512 px, whereas the results
of the testing stage are reported at the original image resolution (2048 × 1024 px). We use a
batch size of 1 and the hyper-parameters are tuned by resorting to a small subset of labeled
target data that we set aside from the original target training set and reserve only for parameter
selection. As evaluation metric, we employ the mean Intersection over Union (mIoU). The entire
model is developed using PyTorch and trained with a single GPU. The code is available at
https://lttm.dei.unipd.it/paper_data/UDAclustering/.

9.3.3 Results

We evaluate the performance of our approach to two widely used synthetic-to-real adaptation
scenarios, namely the GTA5→ Cityscapes and SYNTHIA→ Cityscapes benchmarks. Table 9.4
reports the numerical results of the experimental evaluation. We compare our model to several
state-of-the-art methods, which, similarly to our approach, resort to a direct or indirect form
of feature-level regularization and distribution alignment to achieve domain adaptation. With
source only we indicate the naïve fine-tuning approach, in which no form of target adaptation
assists the standard source supervision.

195

https://lttm.dei.unipd.it/paper_data/UDAclustering/

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle unlabeled

Target Images Ground Truth Source Only Ours (Lcl) MaxSquare IW [325] Ours (Ltot)

Figure9.6: Semantic segmentationof somesamplescenes fromtheCityscapesvalidationdatasetwhenadaptation isperformed

from the GTA5 source dataset and the DeepLab-V2with ResNet-101 backbone is employed.

9.3.3.1 GTA5→Cityscapes

For the GTA5 → Cityscapes and ResNet-101 configuration, our approach shows state-of-the-
art performance in feature-level UDA for semantic segmentation, achieving 45.3% of mIoU,
which is further boosted up to 45.9% by the entropy minimization objective. By looking at
Table 9.4, we observe about 9% increase over the source only baseline, with the improvement
well distributed over all the classes. A similar behavior can be noted when switching to the less
performing VGG-16 backbone: we achieve 33.7% mean IoU with L′tot (i.e., without the entropy
minimization objective) and 34.2% with Ltot (i.e., with all components enabled) starting from
the 25.4% of the baseline scenario without adaptation.
When compared with other approaches, our method performs better than standard feature-level
adversarial techniques [273,275,282,366]. For example, with the VGG-16 backbone there is a gain
of 4.5% with respect to [275]. This proves that a more effective class-conditional alignment has
been ultimately achieved in the latent space by our approach. Due to the similar regularizing
effect over feature distribution and comparable ease of implementation, we also compare our
framework with some entropy minimization and self-training techniques [151, 323, 325], further
showing the effectiveness of our adaptation strategy even if the gap here is a bit more limited.
With both backbones, our novel feature level modules (L′tot) perform better than MaxSquare
IW [325]. Moreover, adding the entropy minimization objective from [325] to L′tot provides a
slight but consistent improvement. It is worth noting that our method does not rely on additional
trainable modules (e.g., adversarial discriminators [273,275,282,366]) and the whole adaptation
process is end-to-end, not requiring multiple separate steps to be re-iterated (e.g., pseudo-labeling
in self-training [323]). Moreover, being focused solely on feature level adaptation, it could be
easily integrated with other adaptation techniques working at different network levels, such as
the input (e.g., generative approaches) or output (e.g., self-training), as shown by the addition
of the output-level entropy-minimization loss.

Figure 9.6 displays some qualitative results on the Cityscapes validation set of the adapta-
tion process when the ResNet-101 backbone is used. We observe that the introduction of the
clustering module is beneficial to the target segmentation accuracy with respect to the source
only case. Some small prediction inaccuracies remain, that are corrected with the introduction
of the orthogonality, sparsity and entropy modules in the complete framework. By looking at

196

Table 9.5: Ablation results on the contribution of each adaptationmodule in theGTA5 toCityscapes scenario andwith ResNet-

101 as backbone.

Lcl Lor Lsp Lem mIoU
37.0

X 42.3
X 43.2

X 43.7
X 44.8

X X X 45.3
X X X X 45.9

the last two columns, we also notice that our entire framework shows an improvement over the
individual entropy-minimization like objective from [325], which is reflected in a better detection
accuracy both on frequent (e.g. road, vegetation) and less frequent (e.g. traffic sign, bus) classes.

9.3.3.2 SYNTHIA→Cityscapes

To further prove the efficacy of our method, we evaluate it on the more challenging SYNTHIA
→ Cityscapes benchmark, where a larger domain gap exists. Once more, our approach proves
to be successful in performing domain alignment with both ResNet-101 and VGG-16 backbones,
reaching state-of-the-art results for feature-level UDA in both configurations (see Table 9.4).
When ResNet-101 is used, the mIoU* on the 13 classes setting is pushed up to 48.2% from
the original 40.5% of source only, while the VGG-16 scenario witnesses an even more improved
performance gain of almost 11% over the no adaptation baseline till a final value of 43.7%.
Differently from the GTA5→ Cityscapes case, here the contribution of the entropy-minimization
module varies for the two backbones. The induced benefit is absent with VGG-16, since the
clustering, orthogonality and sparsity jointly enforced already carry the whole adaptation effort.
Besides, even the Lem objective alone (i.e., MaxSquares IW (r) [325]) displays quite limited gain
over the no adaptation baseline. On the contrary, the regularizing effect of the entropy objective
is strongly valuable in case the ResNet-101 backbone is used. Yet, the combination of all modules
together actually provides a noticeable boost over both the entropy and feature-level modules
separately applied. As for the GTA5 scenario, our model shows better performance than feature-
level adversarial adaptation [273,277,282,366] and output-level approaches [151,323] comparable
in computational ease.

9.3.3.3 Ablation Study

To verify the robustness of the framework, we perform an extensive ablation study on the
adaptation from GTA5 to Cityscapes with ResNet-101 as backbone. First, we examine the
contribution of each loss to the final mIoU; then, we investigate the effect of each novel loss
component.

The contribution of each loss to the adaptation module is shown in Table 9.5. Every loss
component largely improves the final mIoU results from 37.0% of the source only scenario up
to a maximum of 44.8%. Combining the 3 novel modules of this work, we achieve a mIoU of
45.3%, which is higher than all the losses alone, but lower than our complete framework with
all the losses enabled (45.9%).

197

Figure 9.7: T-SNE computed over features of single images from the Cityscapes validation set when adapting fromGTA5.

198

Clustering Loss. The effect introduced by the clustering objective (Lcl) is investigated by
means of the t-SNE tool [367] on features extracted from a sample image of the Cityscapes
validation set. The results are reported in Figure 9.7. We extract all feature vectors from a
single target image and reduce their dimensionality from 2048 to 2, so that we able to visualize
their disposition. Each single feature instance is then associated to a semantic class from the
ground-truth segmentation map, with the categorization expressed by the standard color map
we jointly report. To allow for the analysis of the aggregating effect of the clustering module, in
Figure 9.7 we show the t-SNE plots in the source only scenario, when only Lcl is enabled and
when all adaptation modules are turned on (Ltot). The effect brought by the clustering constraint
is twofold. From one hand, we can see how features of the same class are more tightly clustered
when Lcl is enabled, effect which is even further amplified by the class-conditional structural
regularization provided by the other components of our work (see Ltot). For instance, this is
particularly visible in road and vegetation in row 2. From the other hand, we can appreciate that
features belonging to different classes are more easily spaced apart, as shown in car or person in
row 1 or in traffic light in row 3.

Orthogonality Loss. We investigate the contribution of the orthogonality constraint Lor

via a similarity score defined as an average class-wise cosine similarity measure. The cosine
distance is first computed for every pair of feature vectors from a single target image. Then,
the average values are taken over all features from the same class to get a score for each pair of
semantic classes. The final values are computed by averaging over all images from the Cityscapes
validation set.

In Figure 9.8 we analyze the orthogonalizing action in three different configurations and we can
clearly see that Lor causes the similarity score to significantly increase on almost all the classes
(higher similarity reflects into lower orthogonality). To show the effect of the orthogonality
constraint alone, we compare the source only similarity score and the scenario with only Lor

enabled (Figure 9.8a). To investigate its effect when all the loss components are enabled, we
compared the similarity scores of the full approach with respect to source only (Figure 9.8b) and
to the case where all components but the Lor are enabled (Figure 9.8c). The results are robust
and coherent in showing an increased similarity score in the configurations where Lor is active.

The same considerations are visible in Figure 9.9 in which the matrices of class-wise similarity
scores are reported for the three aforementioned scenarios. In particular, we can see how the
diagonal is much brighter (i.e., high similarity for classes with themselves) when Lor is added,
while off-diagonal entries are darker.

Sparsity Loss. To understand the efficacy of the sparsity loss (Lsp) we compute the sparsity
scores as the fraction of activations in normalized feature vectors close to 0 or 1. Closeness is
quantified as being distant from 0 or 1 less than a threshold, which we set to 10−4. In Figure 9.10
we plot the histogram distribution of all normalized feature activations with bin size set to 0.05
in linear scale and in log scale. Here, we can observe that adding Lsp leads to a greater number
of occurrences of activations within 0 and 0.1 and within 0.95 and 1 than in the case without
sparsity constraint. In the middle, instead, the opposite is true. We refer the reader to Eq. (9.16)
to certify that this is indeed what the sparsity loss was aiming to achieve. Namely, the sparsity
constraint reduces class-wise the number of active feature channels pushing them either toward
0 (inactive features) or towards 1 (active features). As for the similarity scores, the sparsity
measures for a single target image are obtained through averaging over all feature vectors from
the same class. The final results correspond to the mean values over the entire Cityscapes
validation set. From Figure 9.10 we can appreciate that Lsp effectively achieves higher values of
sparseness for all the classes.

Ultimately, for more immediate visualization, we plot in the third image of Figure 9.10 the
difference of the sparsity distributions with and without Lsp. We can more easily verify that

199

a)

b)

c)

Figure9.8: Similarity scores computedover all the imageson theCityscapes validation setwhenadapting fromGTA5 toanalyze

the effect of the orthogonality constraint.

200

Figure 9.9: Class-wise similarity scores computed over images on the Cityscapes validation set when adapting fromGTA5.

201

Figure 9.10: Analysis of the distribution of feature activations computed over all the images on the Cityscapes validation set

when adapting fromGTA5.

202

extremely low (in closest range to 0) and extremely high (in closest range to 1) bins have positive
values while middle-range bins have negative values.

9.4 Feature-Level Regularization with Improved Prototypes Extraction

The last contribution of this chapter extends previous considerations on feature-level adapta-
tion [31] and builds on top of our previous work [32]. By employing latent-space shaping objec-
tive, our aims are to promote class-aware features extraction and features invariance between
source and target domains. Such improved regularity of the latent space has, in fact, shown to
promote generalization properties, leading to statistical alignment between the source and target
distributions when regularization is jointly applied over both domains [31,32].

First of all, a clustering objective groups feature vectors of each class tightly around their
prototypical representation. Second, a perpendicularity constraint over the class prototypes pro-
motes disjoint filter activation sets across different semantic categories. Finally, a regularization-
based norm alignment objective promotes uniform vector norms across source and target rep-
resentations, while jointly inducing progressively increased norm values. This, together with
the perpendicularity constraint, is able to reduce the entropy associated with the feature vector
channel activations.

We remark that the proposed techniques require the generation of accurate class prototypes
and the imposition of a strong relationship between predicted segmentation maps and feature
representations. Hence, we additionally develop a novel strategy to propagate semantic infor-
mation from the labels to the lower-resolution feature space (annotations downsampling).

We move from our previous work [32], which already achieved state-of-the-art results on
feature-level UDA in semantic segmentation. Compared to it, we introduced several novel con-
tributions. The computation of prototypes and feature vector extraction were refined. The first
now considers the prototype trajectory evolution for a better estimation (Section 9.4.1-B), while
the second exploits target information to reduce the domain shift (Section 9.4.1-C), additionally a
class-weighting scheme is used in the source supervision (Section 9.4.1-A). Then, each of the three
proposed space-shaping constraints was improved and additional ablation studies were performed
both for the approach (Section 9.4.6) and for the evaluation metric (Section 9.4.4). In particular,
the clustering objective was modified to be more resilient to outliers (Section 9.4.2.1); the perpen-
dicularity constraint now accounts for classes not present in the current batch (Section 9.4.2.2);
the norm augmentation now ignores low-activated channels (Section 9.4.2.3). Finally, extensive
experiments were conducted on many different scenarios. The results are reported on 4 back-
bones and 6 setups (2 synthetic-to-real and 4 real-to-real). Additional results using the unlabeled
Cityscapes coarse set [342] are reported, showing significant performance gains (see Table 9.6).

9.4.1 Problem Setup

First, we overview our setup, detailing the mathematical notation used throughout this section.
We start by denoting the input image space as X ⊂RH×W×3 and the associated output label
space as Y⊂CH×W , where H and W represent the spatial dimensions and C the set of classes.
Furthermore, we assume to have a training set T = T s

⋃
T t, where T s = {(Xs

n,Y
s
n)}

Ns
n=1 con-

tains labeled samples (Xs
n,Y

s
n) ∈ X s × Ys originated from a supervised source domain, while a

second set of unlabeled input samples T t = {Xt
n}

Nt
n=1 are drawn from a target domain (Xt

n ∈ X t).
We transfer the knowledge of semantic segmentation learned on the source domain to the unsu-
pervised target domain (i.e., without any label on the target set). Superscripts s and t specify
the domain: source and target, respectively.

203

As done by most recent approaches for semantic segmentation, we assume a task model
S = D◦E based on an encoder-decoder architecture i.e., made by the concatenation of two logical
blocks: the encoder network E, consisting of the feature extractor, and a decoder network D,
which is the actual classifier producing the segmentation map. We denote the features extracted
from a generic input image X as E(X) = F ∈ RH′×W ′×K

0+ , where K refers to the number
of channels and H ′ × W ′ to the low-dimensional latent space spatial resolution. Given the
structure of encoder-decoder convolutional segmentation networks, we can assume that each
class is mapped to a reference representation in the latent space, that should be as invariant as
possible to the domain shift. The techniques that will be introduced in Section 9.4.2 enforces
this goal by comparing the extracted features with some prototypes of the various classes. In the
remainder of this section we show how to associate feature vectors to semantic classes and how
to compute the prototypes.

A. Weighted Histogram-Aware Downsampling. Since the spatial information of an
image is mostly preserved while its content travels through an encoder-decoder network, we can
infer a strict relationship between any feature vector (i.e., the vector of features associated to a
single spatial location within the feature tensor) and the semantic labeling of the corresponding
image region.

Therefore, the first step of the extraction process is to identify a way to propagate the label-
ing information to latent representations (decimation), preserving the semantic content of the
image region (window) associated to each feature vector. Otherwise, the generation of erroneous
associations would significantly impair the estimation objective. For this task, we design a non-
linear pooling function: instead of computing a simple subsampling (e.g., nearest neighbor), we
compute a weighted frequency histogram over the labels of all the pixels in the window cor-
responding to a low-resolution feature location. The weights are inversely proportional to the
class-frequency in the source training dataset. Such histograms are then used to select appro-
priate classification labels for the downsampled windows, producing source feature-level label
maps {Isn}Ns

n=1. For what concerns the computation of the target counterparts ({Itn}Nt
n=1) see

Section 9.4.1-C and we remark that each Is,tn ∈ CH′×W ′ . Specifically, the choice is made by
selecting the label corresponding to the frequency peak in each window, only if such peak is
distinctive enough, i.e., if any other peak is smaller than Th times the biggest one (in a similar
fashion to the orientation assignment step in the SIFT feature extractor [368]). Empirically, we
set Th = 0.5. A key feature of this technique is its ability to introduce void-class samples when
a considered window cannot be assigned to a unique class, i.e., it contains mixed classification
labels.

B. Prototype Extraction. Once computed, the feature-level label maps {Is,tn }
Ns,t

n=1 can be
used to extract the set Fs,t

c of feature vectors belonging to a generic class c ∈ C in a training
batch B:

Fs,t
c =

{
Fs,t

n [h,w] ∈ RK
0+ | Is,tn [h,w] = c, ∀n ∈ B

}
, (9.17)

where [h,w] denote all possible spatial locations over a feature map, i.e., 0 ≤ h < H ′ and
0 ≤ w < W ′. Exploiting this definition, we can identify the set of all feature vectors in batch B
as the union Fs,t = (

⋃
c Fs,t

c)∪Fs,t
v where Fs,t

v are the sets of void-class samples. The class-wise
sets are then used to estimate the per-batch class prototypes on labeled source data by simply
computing their centroids:

pc[i] =
1

|Fs
c |
∑
f∈Fs

c

f [i] ∀i, 1 ≤ i ≤ K. (9.18)

Finally, to reduce estimation noise and obtain more stable and reliable prototypes, we apply

204

Figure 9.11: Visual representation of our two-pass feature vector classification strategy. The initial source-based classification

(in blue) can lead to erroneously classified target samples (purple shaded areas). This problem is tackled by computing target

prototypes as the centroids of the partitioned vectors (notice the shift compared to the original source prototype), these pro-

totypes are used as new classification centers (green boundary), producing a correct segmentation.

exponential smoothing:
p̂c = ηp̂′c + (1− η)pc. (9.19)

Where p̂c and p̂′c are the estimates of class c prototype respectively at current and previous
optimization steps. We initialized p̂c = 0 and empirically set η = 0.8. This strategy allows us to
keep track of classes that are not present in the current batch of source samples (in this case we
set η = 1 to propagate the previous estimate), allowing for a more robust prototype estimation.

C. Feature pseudo-labeling. While the histogram strategy can be seamlessly extended
to be used with pseudo-labels (i.e., network estimates for the unlabeled target samples, as was
our strategy in the previous work [32]), this approach can introduce instability in the training
procedure. To avoid such issue, we devise a novel way of extracting the target feature-level label
maps {Itn}Nt

n=1.
Our strategy exploits the euclidean distance in the latent space, computing a clustering of the
feature vectors around their prototype (see Figure 9.11). More in detail, we compute an initial
classification exploiting the prototypes computed over the source labeled data, which, due to the
domain shift, will not be adequately representative of the target distribution:

F̃ t
c = {Ft

n[h,w] if
σc(−||Ft

n[h,w]− p̂c||) > 0.5 ∀n ∈ B}

pt
c[i] =

1

|F̃ t
c |

∑
f∈F̃t

c

f [i] ∀i, 1 ≤ i ≤ K.
(9.20)

Where σc(·) is the softmax function computed over the classes. Then, we refine the classification
keeping only those vectors that have a high classification confidence according to a probability
distribution attained through a softmax function:

Itn[h,w] =

{
c σc(−||Ft

n[h,w]− pt
c||) > 0.5

void otherwise
(9.21)

205

Figure 9.12: Visual summary of our strategy. Features are associated to semantic classes and prototypes are computed from

them (9.4.1). The three proposed space shaping constraint are: ClassClustering, Prototypes Perpendicularity, NormAlignment

and Enhancement. Furthermore we apply also entropyminimization [325].

9.4.2 Proposed Latent-Level Constraints

In this section, we provide a detailed description of our approach, highlighting the key differences
with respect to our previous work. Our investigation moves from the fact that the discriminative
effect acquired by the model with the source supervised cross-entropy objective may not be
propagated to the target domain due to the distribution shift. To tackle such problem, in [32]
we proposed to use additional space-shaping objectives to increase the network generalization
capability, therefore improving robustness to distribution shifts from the original source training
data. In particular, we added three feature-space shaping constraints to the standard source-
supervision (Ls

CE), whose combined effect can be mathematically expressed by:

L = Ls
CE + λC · Ls,t

C + λP · Ls
P + λN · Ls,t

N . (9.22)

Here, LC represents the clustering objective acting on the feature vectors (Section 9.4.2.1), LP

the perpendicularity constraint applied to class prototypes (Section 9.4.2.2) and LN the norm
alignment goal (Section 9.4.2.3). For ease of notation, Eq. (9.22) reports each loss term once
(the s, t superscript here indicates the sum of source and target loss instances). For an improved
performance and to show that our approach can be applied on top of existing methods, we also
extended our objective with the entropy minimization strategy proposed in [325], leading to
L+ = L + λEM · LEM . By doing so, we also show that our space-shaping objectives provide
a different and complementary effect on the feature vectors when compared to the entropy
minimization constraint. An overview of the complete approach is reported in Figure 9.12.

9.4.2.1 Clustering of Latent Representations

Due to the domain shift between source and target domains, feature vectors originating from the
two distributions are misaligned. This inevitably causes some incorrect classifications of target
representations, in turn degrading the segmentation accuracy in the target domain. We introduce
our first loss, a clustering objective over the latent space, to mitigate this problem, seeking
for class-conditional alignment of feature distribution. We do so by exploiting the prototypical
representations introduced in Section 9.4.1 and forcing source and target feature vectors to tightly
assemble around them, regularizing the structure of the latent space and adapting representations
into a common class-wise distribution.

Differently from the previous work, we define the clustering objective as the L1 distance

206

between feature vectors and their associated class-prototype. This results in a more stable
training evolution and lower error rate in clustering, thanks to the outlier-rejecting properties
of the L1 norm. In particular, due to the quadratic nature of MSE, outliers with distances
greater than 1 have a strong push towards the clusters even when they should not. On the
other hand, the L1 loss is stronger than MSE for close samples, which are more representative
of each class, and is significantly gentler than L2 for distant outliers. The loss can be expressed
mathematically as:

Ls,t
C =

1

|C|
∑
c∈C

1

|Fs,t
c |

∑
f∈Fs,t

c

1

K

K∑
k=1

|p̂c[k]− f [k]|, (9.23)

This loss has multiple purposes: first, to better cluster representations in the latent space in a
supervised manner, thus reducing the probability of erroneous network classification. Second,
to perform self-supervised clustering on target samples exploiting our two-pass pseudo-labeling
strategy (see Section 9.4.1-C). Finally, to improve prototype estimates, since forcing tighter
clusters will result in more stable batch-wise centroids, which will be closer to the moving-
averaged prototypes.

9.4.2.2 Perpendicularity of Latent Representations

To further enhance the space-shaping action of the clustering objective, we introduce a prototype
perpendicularity loss. The idea is to improve the segmentation accuracy by better separating
the tight and domain-invariant clusters on both domains. By doing so, we allow the classifiers
to increase the margin between decision boundaries and feature clusters, and, consequently, we
reduce the likelihood of those boundaries to cross target high-density regions of the feature space
(i.e., regions populated by many target samples). We directly encourage a class-wise orthog-
onality property, not only increasing the distance among class clusters, but also encouraging
channel-wise disjoint activations between different semantic categories.

To account for perpendicularity in the loss, we exploit the inner product in the euclidean
space and its relationship with the angle θ between two vectors j and k, i.e., j · k= ||j|| ||k||cos θ.
Minimizing their normalized product is equivalent to maximizing the angle between them, since
feature vectors have non-negative values. To capture this, we enforce cross-perpendicularity
between any couple of prototypes:

Ls
P =

1

|C|(|C| − 1)

∑
ci,cj∈C,i ̸=j

p̂ci

||p̂ci ||
·

p̂cj

||p̂cj ||
. (9.24)

Eq. (9.24) computes the sum of the cosines over the set of all couples of non-void classes. Thanks
to the tight geometric relation between prototype estimates and feature vectors enforced by
Ls,t
C , the effect induced by the orthogonality constraint on the prototypes is propagated to the

vectors associated to them. The net result is the application of the shaping action to all feature
vectors of each class, thus promoting perpendicularity between all individual components of
distinct clusters. The loss seeks to increase the angular distance between latent representations
of separate classes, which is achieved when distinct sets of active feature channels are associated
to distinct semantic categories.

In contrast to our previous paper [32], we compute the loss on the exponentially smoothed
version of the prototypes (i.e., from Eq. (9.19)). This guarantees that the space will be more
evenly occupied by the classes, since all directions are considered in the computation of the loss,
instead of considering only the ones in the current batch.

207

9.4.2.3 Latent NormAlignment Constraint

The last constraint we propose acts on the norm of source and target feature vectors. In par-
ticular, we promote the extraction of latent representations with uniform norm values across
domains. Our objective is twofold. First, we aim at increasing the classification confidence
during target prediction, similarly to what achieved by adaptation strategies based on entropy
minimization over the output space [151]. Second, we assist the perpendicularity loss by reducing
the number of domain-specific feature channels exploited to perform classification. We argue,
in fact, that by forcing the network to produce consistent feature norms, we reduce the number
of channel activations switched on for only one of the two domains, as they would cause norm
discrepancies. Moreover, to reduce the possible decrease in norm value during the alignment
process, we introduce a regularization term that promotes norm increase. Differently from [32],
here the norm objective is encoded as a relative difference with a regularization term inversely
proportional to the norm value. This allows to obtain a value-independent loss where norm
values higher than the target are less discouraged. Moreover, we introduce a norm filtering
strategy to reduce the negative effects a careless increase in norm could imply. In particular,
we suppress low channel activations, stopping the gradient flow through them and preventing
the norm alignment procedure to increase their value, in contrast to what source supervision
indicates. Formally, we define the loss term as:

Ls,t
N =

1

|Fs,t
∗ |

∑
f∈Fs,t

∗

∣∣(f̄s +∆f)−||f ||
∣∣

f̄s
, (9.25)

where f̄s is the mean of the feature vector norms computed from source samples in the previous
optimization step, ∆f dictates the regularization strength (experimentally tuned to 0.1) and
Fs,t
∗ is a thresholded version of Fs,t where we set to 0 the low-activated channels of each feature

vector, stopping the gradient propagation:

Fs,t
∗ = {ϕ(f) ∀f ∈ Fs,t},

ϕ(f)i =

fi fi ≥ 1
K

K∑
j=1

fi,

0 otherwise.

(9.26)

Feature vectors are pushed towards the same global average norm value, regardless of their
labeling. This removes any bias generated by heterogeneous pixel-class distribution in semantic
labels, which, for example, would cause the most frequent classes to show larger norm than the
average. The constraint of Eq. (9.25) forces the inter-class alignment step, i.e., it ensures that
norms are progressively aligned throughout the training process towards a common value for all
the classes, while guaranteeing the value does not decrease significantly. In other words, the goal
value is computed on the source samples and it is the same for both datasets. An additional
benefit of rescaling the loss by the norm target is that the loss gradients will be limited in
magnitude and, therefore, more stable.

9.4.3 Implementation Details

Baseline Model. We used the common [31, 151,282,325,369] DeepLabV2 network [4–6], with
ResNet101 [152] as the backbone (with K = 2048 channels at the last level of the encoder) and
stride 8. We pre-train the model following the same procedure as our previous work [32], and
employing the same data augmentation techniques used during adaptation.

208

Training Procedure. We optimize the network using SGD with momentum of rate 0.9 and
weight decay regularization of 5× 10−4. The learning rate follows a polynomial decay of power
0.9 starting from 2.5 × 10−4 over 250k steps, following [325]. A subset of the original training
set was exploited as validation set for the hyper-parameters search in our loss terms. To reduce
overfitting we employ various dataset augmentation strategies: random left-right flip; white
point re-balancing ∝ U([−75, 75]); color jittering ∝ U([−25, 25]) (both applied independently
over color channels) and random Gaussian blur [323, 325]. We used one NVIDIA Titan RTX
GPU, with batch size of 2 (1 source and 1 target samples), training the network for 24, 750 steps
(i.e., 10 epochs of the Cityscapes-fine train split) and employing early stopping based on the
validation set.

The code developed for this work is publicly available at the following link: https://github.
com/LTTM/LSR.

9.4.4 Mean Adapted-to-Supervised RatioMetric

In this section we introduce a novel measure, called mASR (mean Adapted-to-Supervised Ratio),
in order to better evaluate the domain adaptation task than allowed by the usual mIoU.

The idea behind the new metric sparks from realizing that the mIoU is missing a key com-
ponent to evaluate an adaptation method: i.e., it does not account for the starting accuracy for
the different classes in supervised training. In particular, the objective of domain adaptation is
to transfer the knowledge learned on a source dataset to a target one, trying to get as close as
possible to the results attainable through supervised learning on the target domain. We design
mASR to capture the relative performance between an adapted architecture and its target su-
pervised counterpart, which we identify as a reasonable upper bound. Therefore mASR focuses
less on the absolute-term performance and more on the relative accuracy obtained by an adapted
architecture when compared to traditional supervised training.

We compare the per-class IoU score of the adapted network for each c ∈ C (IoUc
adapt) with

the results of supervised training on target data (IoUc
sup) and we compute mASR by:

mASR =
1

|C|
∑
c∈C

ASRc, ASRc def
=

IoUc
adapt

IoUc
sup

· 100. (9.27)

In mASR, the contribution of each class is inversely proportional to the capacity of the segmenta-
tion model to learn it in the supervised reference scenario, thus emphasizing the most challenging
semantic categories and producing a more class-agnostic adaptation score. In this metric, higher
means better and when the adapted network has the same performance as supervised training
the score is 100%.

As an example, the mASR scores reported in the last two columns of Table 9.6 allow to
identify at a glance the algorithms that more faithfully match the target performance.

To validate the new metric, we used as reference the supervised training on the Cityscapes
dataset and compared it with the training on corrupted versions of the same dataset using the
introduced mASR metric to evaluate the relative performance and so, indirectly, the domain shift
introduced by the perturbations. In Figure 9.13 we identified 5 types of perturbations which are
likely to be encountered by an agent moving outdoor (i.e., Gaussian noise, motion blur, snow,
fog, brightness) and we set 5 levels of noise intensity as defined by [370]. As expected, the higher
is the noise intensity and the lower is the adaptation score computed by mASR. Furthermore,
we can also have a hint of the most detrimental types of noise for adapting source knowledge:
namely, Gaussian noise, snow, motion blur. This can help us identify which set of samples we

209

https://github.com/LTTM/LSR
https://github.com/LTTM/LSR

Figure 9.13: mASR score as a function of the injected noise intensity.

should consider more in order to obtain a reliable model capable of handling these situations.
On the other hand, brightness and fog influence less the final results.

9.4.5 Results

In this section, we report the quantitative and qualitative results achieved by the proposed ap-
proach (LSR+) and we compare it with several feature-level approaches ([31, 282, 366]), with
some entropy minimization strategies ([151,325]) that have a similar effect on feature distribu-
tion, and finally with the conference version of our work [32]. An ablation study and a discussion
of the effects brought by the proposed loss terms is also presented.

Since our method is trained end-to-end, it allows to seamlessly add other adaptation tech-
niques, e.g., entropy minimization or adversarial input or output level approaches. To prove such
compatibility, we introduce an additional entropy-minimization loss [325] in our framework. We
start from considering two widely used synthetic-to-real benchmarks and a standard ResNet-101
as backbone architecture obtaining the results shown in Table 9.6. Then, a real-to-real bench-
mark [277] has also been used (see Table 9.7). To further verify the robustness of our setup, in
Table 9.8 we report some results using different backbones (i.e., ResNet50, VGG16 and VGG13).

9.4.5.1 Adaptation from Synthetic Data to Cityscapes

When adapting source knowledge from the GTA5 dataset to the Cityscapes one, our approach
(LSR+) achieves a mIoU of 46.9%, with a gain of 10% compared to the baseline and of 1% com-
pared to the conference version (LSR) [32], thanks to the enhanced latent space regularization.
In addition, it outperforms all competitors, with only the very recent works of [31] and [325] able

210

Table 9.6: Comparison of adaptation strategies in terms of IoU, mIoU and mASR (Section 9.4.5). Best in bold, runner-up

underlined. mIoU1 andmASR1 restricted to 13 classes, ignoring the classes with same superscript.

B
ac
kb

on
e

Se
tu
p

Configuration R
oa

d

Si
de

w
al
k

B
ui
ld
in
g

W
al
l1

Fe
nc

e1

Po
le
1

Tr
affi

c
Li
gh

t

Tr
affi

c
Si
gn

Ve
ge
ta
tio

n

Te
rr
ai
n

Sk
y

Pe
rs
on

R
id
er

C
ar

Tr
uc
k

B
us

Tr
ai
n

M
ot
or
bi
ke

B
ic
yc
le

mIoU mIoU1 mASR mASR1

R
es
N
et
10

1

Target only 96.5 73.8 88.4 42.2 43.7 40.7 46.1 58.6 88.5 54.9 91.9 68.7 46.2 90.7 68.8 69.9 48.8 47.6 64.5 64.8 - 100 100

Fr
om

G
TA

V

Source only [31] 71.4 15.3 74.0 21.1 14.4 22.8 33.9 18.6 80.7 20.9 68.5 56.6 27.1 67.4 32.8 5.6 7.7 28.4 33.8 36.9 - 54.0 -
ASN (feat) [282] 83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.0 - 56.9 -
MinEnt [151] 84.4 18.7 80.6 23.8 23.2 28.4 36.9 23.4 83.2 25.2 79.4 59.0 29.9 78.5 33.7 29.6 1.7 29.9 33.6 42.3 - 61.9 -
SAPNet [366] 88.4 38.7 79.5 29.4 24.7 27.3 32.6 20.4 82.2 32.9 73.3 55.5 26.9 82.4 31.8 41.8 2.4 26.5 24.1 43.2 - 63.1 -
MaxSquareIW [325] 87.7 25.2 82.9 30.9 24.0 29.0 35.4 24.2 84.2 38.2 79.2 59.0 27.7 79.5 34.6 44.2 7.5 31.1 40.3 45.5 - 62.2 -
UDA OCE [31] 89.4 30.7 82.1 23.0 22.0 29.2 37.6 31.7 83.9 37.9 78.3 60.7 27.4 84.6 37.6 44.7 7.3 26.0 38.9 45.9 - 67.3 -
LSR [32] 87.7 32.6 82.6 29.1 23.0 28.5 36.1 28.5 84.8 41.8 80.1 59.4 23.8 76.5 38.4 45.8 7.1 28.5 40.1 46.0 - 67.7 -
LSR+ (ours) 88.9 26.6 82.0 21.0 24.4 30.1 41.1 27.0 84.7 42.7 80.1 63.0 26.4 83.1 30.4 44.3 16.8 35.8 42.4 46.9 - 69.5 -
LSR+ on CS-full 89.3 28.7 82.1 25.2 27.5 31.9 40.3 33.2 84.7 38.7 81.2 63.2 27.2 85.2 34.7 43.9 9.8 37.2 47.7 48.0 - 71.3 -

Fr
om

SY
N
T
H
IA Source only [31] 17.7 15.0 74.3 10.1 0.1 25.5 6.3 10.2 75.5 - 77.9 57.1 19.2 31.2 - 31.2 - 10.0 20.1 30.1 34.3 41.7 44.6

ASN (feat) [282] 62.4 21.9 76.3 - - - 11.7 11.4 75.3 - 80.9 53.7 18.5 59.7 - 13.7 - 20.6 24.0 - 40.8 - 52.5
MinEnt [151] 73.5 29.2 77.1 7.7 0.2 27.0 7.1 11.4 76.7 - 82.1 57.2 21.3 69.4 - 29.2 - 12.9 27.9 38.1 44.2 51.1 56.3
SAPNet [366] 81.7 33.5 75.9 - - - 7.0 6.3 74.8 - 78.9 52.1 21.3 75.7 - 30.6 - 10.8 28.0 - 44.3 - 56.0
MaxSquareIW [325] 78.9 33.5 75.3 15.0 0.3 27.5 13.1 16.7 73.8 - 77.7 50.4 19.9 66.7 - 36.1 - 13.7 32.1 39.4 45.2 53.8 58.3
UDA OCE [31] 88.3 42.2 79.1 7.1 0.2 24.4 16.8 16.5 80.0 - 84.3 56.2 15.0 83.5 - 27.2 - 6.3 30.7 41.1 48.2 54.3 60.9
LSR [32] 81.0 36.9 79.5 13.4 0.2 28.7 9.0 16.1 79.1 - 81.7 57.9 21.6 77.2 - 35.3 - 14.2 35.4 41.7 48.1 56.5 61.6
LSR+ (ours) 82.6 38.4 80.6 15.5 0.3 31.8 6.7 16.3 81.7 - 82.5 58.4 20.2 81.3 - 32.7 - 15.3 36.7 42.6 48.7 57.7 62.1
LSR+ on CS-full 89.4 47.9 79.4 13.9 0.4 29.5 10.0 16.5 79.5 - 83.3 57.7 17.0 84.3 - 37.7 - 21.5 28.6 43.5 50.2 58.8 64.2

Fr
om

G
T
A
V

Road Sidewalk Building Wall Fence Pole T. Light T. Sign Vegetation Terrain
Sky Person Rider Car Truck Bus Train Motorbike Bicycle Unlabeled

Fr
om

SY
N
T
H
IA

(a)Color Image (b)Ground Truth (c) Source only (d)MSIW [325] (e)UDAOCE [31] (f) LSR [32] (g) LSR+ (ours)

Figure 9.14: Qualitative results on sample scenes taken from the Cityscapes validation split.

to get close to our result, while there is a quite relevant gap compared to all the other methods.
Such improvement is quite stable across most per-class IoU scores, and is particularly evident in
challenging classes, such as terrain and t. light where our strategy shows very high percentage
gains, and on train where we significantly outperform the competitors by doubling the score of
the second-best strategy.

Some qualitative results are reported in the top half of Figure 9.14. From visual inspection,
we can verify the increased precision of edges in the t. sign, t. light, pole and person classes in
both images. Furthermore, our approach is the only one to correctly classify the bus in the right
of the first image as such (confused as truck by the other strategies). Importantly, we can also
see the effects of our two-pass labeling (see Section 9.4.1-C) on the left of the top image (where
part of the fence is correctly classified by our strategy, while being missed by all competitors)
and of the second image (where LSR+ significantly reduces the confusion between sky and the
white building).

In the SYNTHIA to Cityscapes setup, LSR+ surpasses its conference version (LSR) by about
1% of mIoU in the 16-classes setup and by 0.6% in the 13-classes one, achieving a final score
of 42.6% and 48.7%, respectively. It also outperforms all the other competitors, with a slight

211

Table 9.7: Quantitative results on theCross-City real-to-real benchmark. (r) indicates that the strategywas re-trained, starting

from the official code. Best in bold, runner-up underlined.

T
ar
ge
t
C
it
y

Configuration R
oa
d

Si
de

w
al
k

B
ui
ld
in
g

T
.L

ig
ht

T
.S

ig
n

V
eg
et
at
io
n

Sk
y

P
er
so
n

R
id
er

C
ar

B
us

M
ot
or
bi
ke

B
ic
yc
le

mIoU

R
om

e

Source only [325] 85.0 34.7 86.4 17.5 39.0 84.9 85.4 43.8 15.5 81.8 46.3 38.4 4.8 51.0
Cross-City [277] 79.5 29.3 84.5 0.0 22.2 80.6 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9
ASN (feat) [282] 83.9 34.2 88.3 18.8 40.2 86.2 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8
MaxSquareIW [325] (r) 86.2 37.8 86.4 22.3 39.5 85.4 84.0 49.5 21.2 82.7 55.3 48.5 9.5 54.5
UDA OCE [31] (r) 85.6 35.0 87.9 23.1 42.0 85.9 89.2 49.3 24.3 82.8 48.8 48.5 9.0 54.7
LSR+ (ours) 83.4 34.5 88.1 29.0 44.5 85.5 93.9 51.9 31.3 83.2 44.7 51.5 8.8 56.2

R
io

Source only [325] 74.2 42.2 84.0 12.1 20.4 78.3 87.9 50.1 25.6 76.6 40.0 27.6 17.0 48.9
Cross-City [277] 74.2 43.9 79.0 2.4 7.5 77.8 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5
ASN (feat) [282] 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6
MaxSquareIW [325] (r) 79.5 50.7 84.5 14.9 17.7 80.8 85.7 54.5 29.6 75.1 37.0 40.6 24.5 51.9
UDA OCE [31] (r) 78.9 48.5 85.3 14.2 24.4 81.3 87.0 55.9 36.2 74.3 29.7 41.8 27.9 52.7
LSR+ (ours) 79.5 52.2 83.7 10.2 23.1 79.3 82.3 59.8 40.0 75.0 23.0 43.0 29.0 52.3

T
ok

yo

Source only [325] 81.4 28.4 78.1 14.5 19.6 81.4 86.5 51.9 22.0 70.4 18.2 22.3 46.4 47.8
Cross-City [277] 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8
ASN (feat) [282] 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9
MaxSquareIW [325] (r) 84.1 32.9 76.7 11.3 23.8 82.3 87.4 55.3 30.0 72.0 8.6 18.9 47.1 48.5
UDA OCE [31] (r) 85.0 33.3 77.9 8.5 25.5 82.5 89.4 56.1 29.2 72.4 2.1 12.3 41.9 47.4
LSR+ (ours) 84.2 34.6 78.2 16.8 22.6 83.3 89.3 55.0 33.2 72.0 8.6 20.5 52.2 50.0

T
ai
pe

i

Source only [325] 82.6 33.0 86.3 16.0 16.5 78.3 83.3 26.5 8.4 70.7 36.1 47.9 15.7 46.3
Cross-City [277] 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6
ASN (feat) [282] 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1
MaxSquareIW [325] (r) 80.9 31.3 83.3 12.9 13.4 75.4 89.5 31.8 3.9 69.0 44.3 49.4 33.3 47.6
UDA OCE [31] (r) 81.4 30.1 84.3 16.7 13.4 75.4 91.9 32.5 4.6 71.0 41.4 48.0 33.3 48.0
LSR+ (ours) 81.8 32.9 86.8 19.1 14.2 79.3 91.8 35.1 11.6 72.8 33.8 58.7 31.6 50.0

margin of 1% on average with respect to [31] and a larger one (more than 3%) with respect
to all the other approaches. Finally, we also considered additional unlabeled samples from the
Cityscapes dataset (i.e., taking the coarsely-labeled split) and we refer to this dataset as CS-full).
From Table 9.6), we can see that additional unlabeled data can further leverage the adaptation
process.

Qualitative results are reported in the bottom half of Figure 9.14, where the overall increase
in segmentation accuracy for many classes such as car, road and sidewalk is evident. In the first
image (third row of Figure 9.14) we can see how LSR+ is the only strategy to correctly classify
both rider and bike, whereas other strategies even miss the t. sign in the foreground. Similarly,
in the second image we note improvements on the prediction on such classes and, fundamentally,
of the road in foreground (confused for car and bycicle by the competitors).

9.4.5.2 Adaptation fromCityscapes to Cross-City

In this subsection we discuss the contents of Table 9.7, where the performance on the Cross-City
real-to-real benchmark is reported. This benchmark is comprised of 4 cities: Rome, Rio, Tokyo
and Taipei. When evaluated on those setups, our strategy reaches an mIoU score of 56.2%,
52.3%, 50.0% and 50.0% surpassing the source only model by 5.2%, 3.4%, 2.2% and 3.7%,
respectively. Importantly, our approach achieves consistent results across the setups (LSR+ is
the top scorer in 3 out of 4 setups and second in the remaining one) surpassing the average
best competitor score by 0.5% mIoU (52.1% versus 51.6%). We remark that the best competitor
changes depending on the setup, being [31], [31], [282] and [282] for Rome, Rio, Tokyo and Taipei,

212

Road Sidewalk Building T. Light T. Sign Vegetation Sky
Person Rider Car Bus Motorbike Bicycle Unlabeled

R
om

e
R
io

T
ok

yo
T
ai
pe

i

RGB Ground truth Source only MaxSquareIW [325] UDAOCE [31] LSR+ (ours)

Figure 9.15: Qualitative results on the Cross-City benchmark.

respectively, underlining the unstable performance of many approaches usually associated with
this benchmark.
Looking at the per-class IoU scores, we can see how our strategy significantly outperforms the
competitors in t. light and rider in the Cityscapes→Rome setup (increase of 6% of IoU), in
person and rider in the Cityscapes→Rio setup (increase of 4% of IoU) and in motorbike in the
Cityscapes→Taipei setup (increase of 9.3% of IoU).

In Figure 9.15 we report some qualitative results on the Cross-City benchmark. Here we
present two images for each city (Rome, Rio, Tokyo, Taipei) and compare our strategy with
three other strategies (Source only, MaxSquareIW [325] and UDA OCE [31]).
From a visual inspection of the images we can see an overall increase in the discrimination of
the object borders, particularly for classes such as car, road, building, vegetation and person.

In Rome we see how LSR+ is the only strategy that correctly identifies the rider behind the
cars in the second image. In Rio, our architecture significantly reduces the amount of confusion
regarding the building on the left of the second image. Again, in Tokyo, we note how LSR+ is
the only technique able to recognize the traffic sign on the right of the first image. Finally, in
Taipei, we see how our approach is the only to correctly identify the person and motorcycle in
the second image.

213

Table9.8: Additional quantitative resultswithmultiple backbones,GTAV→Cityscapes setup. (r) indicates that the strategywas

re-trained, starting from the official code.

Ba
ckb

on
e

Configuration mIoU mASR
R
es
N
et

50 Target only 65.2 100
Source only 27.6 39.1
MaxSquareIW [325] (r) 36.8 52.0
UDA OCE [31] (r) 36.6 51.7
LSR+ (ours) 40.9 58.6

V
G
G

16 Target only 59.6 100
Source only 25.5 42.4
MaxSquareIW [325] (r) 31.7 46.9
UDA OCE [31] (r) 34.2 51.5
LSR+ (ours) 37.2 57.2

V
G
G

13 Target only 59.5 100
Source only 28.5 42.6
MaxSquareIW [325] (r) 31.6 46.7
UDA OCE [31] (r) 16.8 23.3
LSR+ (ours) 36.3 55.5

Table 9.9: Ablation Studies, mIoU andmASR scores comparison when removing any of the losses.

LC LP LN LEM mIoU mASR
42.8 64.4

X X X 44.9 66.3
X X X 45.3 66.7
X X X 46.0 68.3
X X X 44.5 66.1
X X X X 46.9 69.5

9.4.5.3 Results with Different Backbones

Table 9.8 shows the performance of our strategy on GTAV→Cityscapes using multiple encoder-
decoder backbones in order to evaluate the generalization of the approach to different networks.
Here we can see how LSR+ outperforms the source-only models (i.e., without adaptation) by
13.3%, 12.7% and 7.8% using ResNet50, VGG-16 and VGG-13, respectively. Even more im-
portantly, we can see how the performance improvement is consistent across all backbones, in
opposition to what happens to competing strategies. Finally, we remark the stability of the
mASR score of our strategy, hovering around a mean of 57.0% with a very tight standard de-
viation of 1.4% (the other strategies have means 48.5% and 42.2%, and standard deviations of
2.45% and 31.3%, respectively).

9.4.6 Analyses of the Latent Space Regularization

In this section, we evaluate the impact of each component of the approach on the final accuracy.
From Table 9.9 we appreciate that each component brings a significant improvement in terms of
mIoU and that the best results are obtained when all components are enabled.

For visualization purposes, the plots of this section are computed on a balanced subset of
feature vectors (250 vectors per class) extracted from the Cityscapes validation set for a fair
comparative analysis across the classes.

214

Figure 9.16: t-SNE embedding of the target feature vectors: trajectories of prototypes sampled over200 training steps (on the
left), features produced by the final model embedded according to the shared t-SNE projection (right).

(a)Baseline (b) LSR (c) LSR+

Figure 9.17: t-SNE embeddings of the normalized feature vectors.

Two-pass prototypes and clustering. To investigate the semantic feature representation
learning produced by our approach we computed a shared t-SNE [367] embedding on the pro-
totypes sampled during the training procedure and of the target features produced by the final
model. We remind the reader that, in order to more effectively shift target features closer to the
source ones, we resort to a two-stage label assignment procedure which recovers target awareness
(by averaging target-extracted features) from prototypes computed on the source domain (by
centroid computation) as reported in Section 9.4.1-C. In the left plot of Figure 9.16 we report the
learned prototype trajectory embeddings, and on the right the respective feature vectors. Here
we can appreciate how prototypes get further apart while training goes on and how features
extracted from the target domain lie in a neighborhood of the prototype, which we recall is
computed exclusively via source-supervision. This underlines the effectiveness of our clustering
strategy, which is able to shift the target feature distribution closer to the source one.

Finally, to further analyze our clustering objective we produce additional t-SNE embeddings
starting from the normalized features (to remove the norm information, focusing on the angular
one), which is reported in Figure 9.17. Our strategy increases significantly the cluster sepa-
ration in the high dimensional space and the spacing between clusters belonging to different

215

Figure 9.18: Prototypes trajectories and target feature vectors projected via PCA. Projection is 3-dimensional; here we report

the threexy,xz and yz planes.

classes, promoting features disentanglement. As a side effect, this also reduces the probability
of confusing visually similar classes (e.g., the truck class with the bus and train ones).

In Figure 9.18 we report the PCA counterpart of Figure 9.17. Here we show how the distancing
of the prototypes and source-target alignment is preserved even when projected using a linear
function, as opposed to the non-linear t-SNE. In particular, Figure 9.18a) reports the prototypesà
trajectories, while Figure 9.18b) reports the target vectors embedding.

Weighted histogram-aware downsampling. In this work, we extended the scheme pro-
posed in [32] by adding class weights inversely proportional to the class-frequency in the training
dataset (see Section 9.4.1). The goal of the proposed frequency-aware setup is to label only fea-
ture locations with a clear class assignment. This aims to reduce cross-talk between neighboring
features of different classes, thus improving class discriminativeness at the latent space. We can
observe this phenomenon in Figure 9.19, where the label map downsampled via our frequency-
aware schemes (middle and right) marks some features close to the edges of objects as unlabeled,
keeping only faithful features. As expected, class-weighting (right plot of Figure 9.19) promotes
rarer classes at the feature level compared to the version without it [32] (middle plot of Fig-
ure 9.19): for instance, compare the traffic sign (in yellow). This is confirmed by the class
distribution of the downsampled segmentation maps (i.e., to match the spatial resolution of the
latent space), reported in Figure 9.20 for our weighted histogram-aware scheme, the previous
un-weighted histogram-aware scheme of the conference version [32] and the standard nearest
neighbor. In particular, the schemes based on histogram-awareness generally seldom preserve
small object classes, promoting unlabeled classification when discrimination between classes is
uncertain. Our weighted histogram-aware scheme improves uniformity across rarer or smaller
semantic categories, which were over-penalized by the previous approach [32], where all classes

216

(a)Nearest (b)Histogram (c)Weighted Histogram

Figure 9.19: Sample image downsampled nearest (left), frequency-aware [32] (middle) or weighted frequency-aware (LSR+).

Figure 9.20: Class frequency of the downsampled feature-level segmentationmaps.

Figure 9.21: Average inter-prototype angle.

were treated equally, regardless of their occurrence.
Perpendicularity. To analyze the effect of the perpendicularity constraint, Figure 9.21

shows the distribution of the average inner angle between a prototype’s direction and the di-
rection of each other prototype. Ideally, we aim at producing as perpendicular prototypes as
possible, in order to reduce the overlap of different semantic classes over feature channels (i.e.,
cross-talk). The red dashed line at 90 degrees shows the target value for perpendicularity, which
is also the upper bound for the angle, as our feature vectors have all non-negative coordinates.
From the figure, it emerges clearly that LSR-based approaches increase the inter-prototypical

217

Figure 9.22: Average channel entropy.

angle and that LSR+ makes prototypes even more orthogonal with an improvement of more
than 2 degrees on average.

Norm Alignment. We analyze the effect of the norm alignment constraint in Figure 9.22,
where we show the mean channel entropy for each class. We observe that the entropy corre-
sponding to feature vectors produced by LSR+ is significantly reduced, meaning that features
are characterized by more relevant peaks and fewer poorly-activated channels.

9.5 Conclusions

In this chapter we discussed some novel schemes to perform unsupervised domain adaptation
at the image level and at the feature level. In the first contribution we built a unified frame-
work combining cycle-consistency and adversarial domain adaptation both at image level and
at the feature level, differently from other competing works. We employed a MobileNet-v2 as
segmentation network which is lightweight enough to allow a single shot end-to-end training on
a single commercial GPU and to embed our full model in practical applications with limited
computational constraints.

In the second contribution we proposed a novel feature-oriented UDA framework, compris-
ing of three main objectives. First, features of same class and separate domains are clustered
together, whilst features of different classes are spaced apart. Second, an orthogonality require-
ment over the latent space discourages the overlapping of active channels among feature vectors
of different classes. Third, a sparsity constraint further reduces feature-wise the number of the
active channels. All combined, these modules allow to reach a regularized disposition of latent
embeddings, while providing a semantically consistent domain alignment over the feature space.

In the third contribution we introduced a set of latent-space regularization techniques to
address the domain shift in an unsupervised fashion. We achieved domain invariance by means
of multiple latent space-shaping constraints (namely, class clustering, class perpendicularity
and norm alignment), to space apart features belonging to different classes while clustering
together features of the same class in a consistent way on both the source and target domain. To
support their computation, we introduced a novel target pseudo-labeling scheme and a weighted
label decimation strategy. Finally, we designed a novel metric (mASR) to capture the relative
performance between an adapted model and its target supervised counterpart.

We hope that our analyses on latent-level adaptation can pave the way to employment of

218

a new family of feature-level techniques to enhance the discrimination ability of deep neural
networks; however, further research is needed to understand how to integrate our feature space
adaptation with other approaches targeting different network levels.

9.6 Final Remarks

This second part of the dissertation on unsupervised domain adaptation in semantic segmen-
tation started from the introduction of the problem and a careful categorization of the current
literature on the topic in Chapter 7. We outlined three main level where adaptation can occur
(namely at the output, input and feature level), and we proposed some techniques for each of
the adaptation levels. We analyzed output-level UDA contributions in Chapter 8 by means of
adversarial learning and self-training strategies. We presented input- and feature-level UDA con-
tributions in Chapter 9. We employed CycleGAN to translate the input images across domains,
and we applied feature-level disentanglement via adversarial learning, clustering, orthogonality
and sparsity.

The combination of multiple levels of adaptation seems a viable path that future research
could investigate to further improve the performance of an adapted deep neural model.

219

220

Part IV

Federated Learning of Visual
Models

221

10
Federated Learning on Non-IID Data

This part of the dissertation moves away from the classical centralized training setup and explores
Federated Learning (FL): a recently proposed training paradigm for decentralized model training.
FL aims at training a machine learning algorithm, for instance deep neural networks, on multiple
decentralized and private local datasets contained in local nodes without explicitly transmitting
data samples. The general principle consists in training local models on local data samples and
exchanging parameters (e.g., the weights and biases of a deep neural network) between these local
nodes at some frequency to generate a global model shared by all nodes. In this chapter, we aim
at introducing the general FL setup and we propose a novel aggregation method FairAvg [34],
which aggregates distributed contributions fairly from the user perspective (i.e., each user is
considered the same during aggregation), then we explore convergence properties and accuracy
of aggregated models.

10.1 An Introduction to Federated Learning

FL systems enable distributed training of machine learning models in a network of clients (also
called users, devices) with local data processed only at clients [371–374]. In FL systems, mod-
els are trained across multiple rounds. At the beginning of each round, every participating
user receives an initial model from a central server, optimizes the model on its local training
data and sends the updated model back to the server. The server then aggregates the received
local solutions and updates the aggregate model [15]. Up to certain extents, FL is similar to dis-
tributed optimization in the context of machine learning, however, some key differences for what
concern systems and statistical heterogeneity distinguish the two paradigms [15, 372, 373, 375].
The main difference between federated learning and distributed learning lies in the assumptions
made on the properties of the local datasets, as distributed learning originally aims at paral-
lelizing computing power where federated learning originally aims at training on heterogeneous
datasets. While distributed learning also aims at training a single model on multiple servers, a
common underlying assumption is that the local datasets are identically distributed (i.i.d.) and
roughly have the same size. None of these hypotheses are made for federated learning; instead,
the datasets are typically heterogeneous and their sizes may span several orders of magnitude.
Moreover, the clients involved in federated learning may be unreliable as they are subject to more
failures or drop out since they commonly rely on less powerful communication media (i.e., Wi-
Fi) and battery-powered systems (i.e., smartphones and IoT devices) compared to distributed

223

learning where nodes are typically datacenters that have powerful computational capabilities
and are connected to one another with fast networks [372,376].

A major challenge for convergence of federated optimization is statistical heterogeneity. Whilst
in centralized training data can be assumed i.i.d., decentralized data is generally highly imbal-
anced (e.g., local data may contain different numbers of samples for different classes on each
device) and non-i.i.d. (e.g., samples in remote clients may have large correlation due to user-
specific habits or preferences) [377].

Most of FL methods, starting from [15], aggregates weights of models according to local
dataset sizes, implicitly claiming that models trained on more samples are better and richer
compared to models trained with less samples, therefore adding more confidence to them. How-
ever, this policy misses other important properties of models and data, causing issues especially
for training convergence. First, this leads to unfair aggregation with respect to users. Indeed,
users with few local samples are considered less during aggregation and struggle to offer a real
contribution to federated optimization of the models. Second, in real-world settings statistical
heterogeneity (e.g., highly imbalanced and non-i.i.d. data) is diffused and can seriously harm
model training. Recently, some interest has been devoted to aggregation procedures and several
attention methods employing functions of difference between parameters of local and aggregate
models were proposed [378–382]. Nonetheless, also these methods fail in treating each user
fairly, since users with few samples are considered less during aggregation and cannot bring a
real contribution to federated optimization.

While it is known that FedAvg shows competitive results on i.i.d. data on convex loss land-
scapes [375, 383], it is clear that it cannot compete on non-i.i.d. and imbalanced data [383], as
users with fewer samples (but potentially high statistical variability) are considered less during
aggregation.

In this section, we show a comparative analysis of the baseline FedAvg, against a fair (uniform)
aggregation scheme from the user perspective (FairAvg), to explore relationship between the two
schemes in terms of convergence properties and accuracy of aggregated models. Experimental
analyses over a suite of non-i.i.d. and imbalanced datasets show that a fair aggregation can be
beneficial both for final accuracy and convergence rate, whilst at the same time reducing fluc-
tuations of accuracy toward the convergence value (measured via the autocorrelation function).
We observe that FairAvg is especially effective when few reporting clients participate in the
aggregation and when each client sees few classes (non-i.i.d. split), since a few users with many
local samples can bias the model toward the classes they observe if frequency-based aggregation
is performed.

10.2 Problem Statement: FedAvg and FairAvg

In an FL system consisting of a set of clients K = {1, 2, . . . ,K}, parameters Wk ∈ Wk of models
Mk :Wk ×Xk → Yk, are optimized at each client k ∈ K using its local dataset to learn feature
representations, where Xk = {xk,j}nk

j=1 and Yk = {yk,j}nk
j=1 denote respectively the set of sam-

ples and their ground truth labels (e.g., one-hot encoded vectors of category labels for image
classification, and vectors of segmentation maps for image segmentation) observed at the client
k. In centralized FL systems, a central server coordinates the optimization of a set of parameters
W of an aggregated modelM(W, ·) by minimizing a global learning objective L(W) [15] without
sharing local datasets Sk = {sk,j = (xk,j ,yk,j)}nk

j=1 by solving

min
W∈W

L(W) = min
W∈W

∑
k∈K

pkLk(W ;Sk), (10.1)

224

where the local objective is computed by

Lk(W ;Sk) =
1

nk

nk∑
j=1

lk(W ; sk,j ∈ Sk), (10.2)

with lk(·; ·) being a user-specific loss function, pk ≥ 0 is the weight of the objective Lk(·; ·)
of the kth client and

∑
k∈K pk = 1. McMahan et al. [15] proposed to use pk = nk

n , where
n =

∑
k∈K nk. Thereby, L(W) coincides with the training objective of the centralized setting.

However, optimization of model parameters by minimization of the local objectives Lk for data
distributions Dk over Xk × Yk under different conditions (e.g., imbalanced and non-i.i.d. data)
is challenging hindering convergence of model parameters to optima.

Many FL systems have been designed to solve the problem (10.1). In our setup, we consider
that first a subset Kt ⊆ K of K ′ clients is randomly selected according to pk at each federated
round t. Then, selected clients download the aggregate model W t ∈ Wt from a central server,
perform local optimization minimizing an empirical objective Lk(W

t;Sk) with learning rate η
for F epochs using a local optimizer such as SGD, and then send the final solutionW t+1

k back to
the server. The server averages the solutions obtained from the clients with weights proportional
to the size of the local datasets by

W t+1 =
∑
k∈Kt

at[k]W t+1
k , (10.3)

where at is the federated aggregation vector at t which determines the importance of the received
local models. The procedure is iterated for T −1 federated rounds and the final aggregate model
is then identified by WT .

Federated Averaging (FedAvg) is a benchmark federated optimization algorithm widely
used to solve the problem (10.1). The popular federated optimizer FedAvg, widely used in
FL systems, was proposed in [15]. FedAvg simply employs the frequency of local samples as
federated aggregation vector, by setting

at[k] =
nk∑

j∈Kt

nj
, ∀k ∈ Kt, ∀t. (10.4)

This choice was adopted by many recent methods [375,384–386], or replaced by attention values
derived from statistical discrepancy measures of model weights [378–382].

Fair Averaging (FairAvg). While FedAvg prioritizes model weights according to the local
frequency of samples, we argue that an unbiased fair policy for each user is to contribute equally
to the aggregated model. Hence, we propose to define at by

at[k] =
1

|Kt|
, ∀k ∈ Kt, ∀t. (10.5)

Fairness has been considered in resource division in multi-agent systems. A maximin sharing
policy improves performance of the worst agent [387] and a fair-efficient policy makes variation
of utilities of agents as small as possible [388]. Fairness in FL was examined from the perspective
of ensuring accuracy across clients. Agnostic FL [389] minimizes the maximal loss function of all
clients. In q-Fair FL [390], a more uniform accuracy distribution across clients is encouraged. In
hierarchically fair FL [391], more contributions lead to more rewards. However, previous works
ignore the fair user contribution. FedAvg and FairAvg approaches are summarized and compared

225

Algorithm 10.2 FedAvg and FairAvg.

Input: K, T, F,W 0, η,N .
for t = 0 to T − 1
A server samples Kt ⊆ K clients and sends them W t.
for k ∈ Kt

Update W t
k with Lk (10.2) and step size η to W t+1

k .
Send W t+1

k back to the server.
end for
FedAvg. The server computes at via (10.4).
FairAvg. The server computes at via (10.5).
The server computes W t+1 via (10.3).

end for

Table10.1: Statistics of theemployeddatasets (left) andhyper-parameters (right). In segmentationdatasets, imagebackground

is excluded, and the accuracy refers to the mIoU. DeepLab-V3+ [4] uses MobileNet-v2 [360, 361] as the backbone pre-trained

on ImageNet [330].

Dataset # Classes Clients Samples Samples/Client Model Distribution Central. Start lr Solver F Rounds Batch
Mean Std. Acc. (%) size

Synthetic 10 30 9, 600 320.0 1051.6 2 dense layers Power-law 78.5 0.01 SGD 20 200 10
MNIST 10 1, 000 61, 676 61.7 164.7 2-layer CNN Power-law 99.0 0.01 SGD 20 200 10
FEMNIST 10 200 16, 421 82.1 143.0 2-layer CNN Power-law 99.0 0.001 SGD 20 400 10
CelebA 2 9343 177, 457 19.0 7.0 4-layer CNN Power-law 92.6 0.1 SGD 20 200 10
FPascal Macro 4 100 6, 665 66.7 25.7 DeepLab-V3+ Power-law 79.7 10−4 Adam 2 400 16
FPascal 20 100 6, 665 66.7 25.7 DeepLab-V3+ Power-law 66.3 10−4 Adam 2 400 16
Sent140 2 772 40, 783 53 32 Stacked-LSTM Power-law 72.3 0.3 SGD 20 800 10
Shakespeare 80 143 517, 106 3, 616 6, 808 Stacked-LSTM Power-law 49.9 0.8 SGD 20 40 10

in Algorithm 10.2. Fairly treatment of users is a leading element in responsible AI [392].

10.3 Federated Learning Datasets

Some statistics of the employed federated datasets are reported in Table 10.1, inspired from [15,
393]. Synthetic data are sampled from a logistic regression model [375, 394]. MNIST [395] and
FEMNIST [395] refer to image classification, FPascal to semantic segmentation, whilst Sent140
[396] and Shakespeare [397] to text-classification and next-character prediction, respectively.

10.3.1 Synthetic Data Classification Dataset

First of all, we analyse our approach on highly non-i.i.d. synthetic data. For this purpose, we
follow a similar setup to that proposed in [375, 394] with the addition of heterogeneity among
clients.

• Synthetic: For each client k, we generate samples (xk, yk) ∈ Xk × Yk according to
the logistic regression model yk = argmax

c∈C
(softmax(Wxk + b)), xk ∈ R60, W ∈ R10×60,

bk ∈ R10. In the model, we first initialize Wk ∼ N (uk, 1), bk ∼ N (uk, 1), uk ∼ N (0, ϕ1),
xk ∼ N (vk,Σ), where the covariance matrix Σ is diagonal with Σj,j = j−1.2. Then, each
element of vk is drawn from N (Bk, 1), Bk ∼ N (0, ϕ2). Hence, ϕ1 controls how much local
models differ from each other, ϕ2 controls how much local data distribution at each client
differs from that of other clients. For our simulations, we set ϕ1 = ϕ2 = 1 being the most
heterogeneous, yet challenging, scenario. Other analyses have been carried out in [375].

226

Assuming that the underlying data generation model is agnostic, we employ a cascade of
2 dense layers with 128 and 256 units respectively, followed by a softmax output layer.

10.3.2 Real-World Image Classification Datasets

To further investigate accuracy on classification data, we explore real-world image classification
datasets, inspired from [15,375,393].

• MNIST: It is a classification task of 28 × 28px images containing handwritten digits 0-
9 [395]. To simulate a heterogeneous (non-i.i.d.) setting, we distribute data among 1, 000
clients such that each client has samples of only two digits and the number of samples
per client follow a power law distribution. To tackle this task we employ a simple custom
network with 5× 5 convolution layers (the first with 32 channels, the second with 64, each
followed by 2×2 max pooling), a fully connected layer with 256 units and ReLu activation,
and a final softmax output layer.

• FEMNIST: It is a classification task of 28×28px images containing 62-class handwritten
character digits [395]. Following [375], to generate heterogeneity we first subsample 10
lower case characters (from ’a’ to ’j’) and we distribute only 5 classes to each client. The
number of clients is 200. To tackle this task we employ a simple custom network with
5 × 5 convolution layers (the first with 32 channels, the second with 64, each followed by
2×2 max pooling), a fully connected layer with 256 units and ReLu activation, and a final
softmax output layer.

• CelebA: Finally, we generate non-i.i.d. CelebA [398] data (for classification of smiling
faces), such that the underlying distribution of data for each user is consistent with the
raw data. For this task, we use a 4-layer CNN each with 32 channels and followed by 2× 2
max pooling and ReLU activation, and a softmax layer.

10.3.3 Real-World Semantic Segmentation Datasets

Then, we investigate the accuracy on a dense prediction task, such as semantic segmentation. We
propose a new benchmark for federated semantic segmentation employing the Pascal VOC2012
dataset [114] in two different flavours.

• Pascal: We use the standard Pascal VOC2012 [114] semantic segmentation dataset. We
consider only images with one single class inside (in addition to the background) in or-
der to mimic classification splits. There are a total of 20 object-level classes (background
excluded) and we distribute data to each client according to a Dirichlet distribution with
concentration parameter α > 0. Low values of α mean that dataset is highly non-i.i.d.
among clients, and vice-versa for high α values [385,399]. The number of samples per client
follow a power-law distribution with parameter γ = 3. For this task, we use a DeepLab-
V3+ [4] architecture with MobileNet [361] as the encoder pre-trained on ImageNet [330].
To further elucidate on the data splitting mechanism, we report some dataset statistics
for different values of α in Figure 10.1. The first column represents the distribution of the
number of classes present on clients, while the second column represents the distribution
of clients having a certain amount of classes. In the most non-i.i.d. case considered (i.e.,
α = 0.01), each client only experiences samples from a few classes, while they progressively
observe more and more classes as the i.i.d.-ness improves. The third column of Figure 10.1
illustrates populations drawn from the Dirichlet distribution with different concentration

227

Distribution of # classes Distribution of # clients Per-client class distribution

α
=

0
.0
1

#
cl
as
se
s

#
cl
ie
nt
s

cl
ie
nt

ID

α
=

0
.0
5

#
cl
as
se
s

#
cl
ie
nt
s

cl
ie
nt

ID

α
=

0
.1

#
cl
as
se
s

#
cl
ie
nt
s

cl
ie
nt

ID

α
=

0
.2

#
cl
as
se
s

#
cl
ie
nt
s

cl
ie
nt

ID

α
=

0
.5

#
cl
as
se
s

#
cl
ie
nt
s

cl
ie
nt

ID

α
=

1
#

cl
as
se
s

#
cl
ie
nt
s

cl
ie
nt

ID

α
=

1
0
0
0

#
cl
as
se
s

#
cl
ie
nt
s

cl
ie
nt

ID

client ID (k) # classes per client class distribution

Figure 10.1: Dataset statistics of different data splitting schemes used by clients for the Pascal VOC2012 segmentation task.

The first column reports the distribution of the number of classes among clients (note that the background is present in all the

images). The second column shows the distribution of number of clients according to number of classes per client. The third

column reports the per-client distribution of classes depicted with different colors, where the client IDs are restricted to 30
randomly sampled clients for visualization purposes (the background is not included in the visualization and the colors refer to

the Pascal VOC2012 colormap).

parameters. For visualization purposes, we restrict to 30 randomly sampled clients and
each color refers to a different class (color coding scheme reflects Pascal VOC2012 col-
ormap). As expected, for low values of α, the distributions are similar but not identical to
a sort-and-partition approach (clients represented by very few colored segments) in which
each client only sees samples of one class (plus the background) [399], since we have a
highly imbalanced number of samples per each class and samples are distributed to clients

228

according to a power-law distribution. Experimentally, we verified that a simple extremely
i.i.d. sort-and-partition approach yields same results as the case with α = 0.01. For high
values of alpha, instead, the distribution of classes visible at clients becomes more i.i.d. as
each client sees samples from may different classes (clients represented by many segments
of different colors).

• Pascal macro: We follow the same exact splitting described for standard Pascal VOC2012
with the only difference that classes are hierarchically grouped according to their semantic
meaning into 5 classes (background included). The coarser set of classes is derived from
the notional taxonomy from [114,400]. The map from 21 to 5 classes is:

– Background: Background;
– Person: Person;
– Vehicles: Aeroplane, Bicycle, Boat, Bus, Car, Motorbike, Train;
– Household: Bottle, Chair, Dining Table, Potted Plant, Sofa, TV/Monitor;
– Animals: Bird, Cat, Cow, Dog, Horse, Sheep.

10.3.4 NLPDatasets

Finally, for some analyses we considered two NLP classification datasets to demonstrate the
generalization capability of our proposed methods to other tasks and domains.

• Shakespeare: it is a language modeling dataset extracted from The Complete Works of
William Shakespeare [15, 397]. Each speaking role in each play with at least two lines
represent a different client. The task is next-character prediction. This produced a dataset
with 1146 clients and there are 80 characters in total. To tackle this task, we used a
two-layer stacked LSTM with 100 hidden units followed by a densely-connected layer. We
set the length of the input sequence to 80 characters and we embed each character into a
learned 8-dimensional space.

• Sent140: it is a sentiment analysis task on tweets from Sentiment140 [396], where each
Twitter account corresponds to a client. To tackle this task, we used a two-layer stacked
LSTM binary classifier with 256 hidden units and pretrained 300D GloVe embedding [401]
followed by a densely-connected layer. We set the length of the input sequence to 25
characters and we embed each character into a 300-dimensional space.

10.4 Experimental Evaluation of Data Non-IID-ness

In this section, we investigate the relationship between statistical properties of federated aggre-
gation vectors at, ∀t, distribution of number of classes among clients, accuracy of models and
their stationarity over aggregation rounds.

Figure 10.2 shows the per-round aggregate accuracy (original accuracy values in row 1 and
values smoothed over a window of 10% rounds for visualization in row 2) and the training loss
(original in row 3 and smoothed in row 4). Further analyses of accuracy of aggregate models
achieved at the final round are given in Table 10.2 for a different number of reporting clients
K ′. In these results, FairAvg demonstrates to be particularly effective when as few as K ′ = 2
reporting clients are considered and to outperform FedAvg overall.

229

Synthetic MNIST FEMNIST Sent140 Shakespeare

A
cc
ur
ac
y

Sm
oo

th
ed

A
cc
.

Lo
ss

Sm
oo

th
ed

Lo
ss

Rounds Rounds Rounds Rounds Rounds

A
C
F

Lag Lag Lag Lag Lag

Figure 10.2: Classification accuracy (%), training loss and their respective smoothed versions over a window of 10% rounds

(which are smoothed for visualization). Last row reports the correlogramof the accuracy (reported as first row), i.e. a plot of the
autocorrelation function (ACF) for sequential values of lag. Different datasets are considered over the columns andK′ = 10
reporting users.

From first row of Figure 10.2, we observe that a fair policy is especially helpful on synthetic
and MNIST datasets, where it robustly outperforms FedAvg by a large margin. No clear winner
emerges on FEMNIST and Sent140 datasets, and FedAvg surpasses FairAvg on Shakespeare
data.

Table 10.2: Accuracy (%) of the aggregatemodel on the final round for different number of reporting clientsK′ .

Synthetic MNIST FEMNIST Sent140 Shakespeare
K′ 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
FedAvg 75.9 70.4 70.6 85.1 88.8 92.6 66.2 77.0 82.3 63.3 67.2 69.5 36.1 41.1 42.4
FairAvg 76.4 78.7 78.9 86.5 89.9 92.8 70.9 77.6 81.5 63.6 67.5 69.3 36.1 40.5 42.1

Beside the improvement in terms of accuracy, we remark how the fairness policy shows much
faster convergence and higher training stability. We can observe this latter claim by visually
inspecting the amount of fluctuations of accuracy (related to stationarity). While FedAvg (blue
curve) shows many bursts and irregular peaks and pitfalls, FairAvg (orange curve) generally
shows a more smoothed path toward the convergence value. This is due to the tailed distribution

230

Distribution of a Distribution of # clients

Sy
nt

he
ti

c
oc
cu

rr
en

ce
M

N
IS

T
oc
cu

rr
en

ce
F

E
M

N
IS

T
oc
cu

rr
en

ce
Se

nt
14

0
oc
cu

rr
en

ce
Sh

ak
es

pe
ar

e
oc
cu

rr
en

ce

Aggregation value # classes

Figure 10.3: Distribution of federated aggregation valuesat[k], ∀k, ∀t (left) and distribution of number of classes into clients

(right), over different datasets forK′ = 10 reporting users.

of local samples on non-i.i.d. and imbalanced datasets. We quantitatively measure stationarity
computing the correlogram, i.e., a plot of the autocorrelation function (ACF) for sequential
values of lag. Given a time-series accuracy vector f t (i.e., the series of accuracy values computed
at each round and reported in first row of Figure 10.2), its autocorrelation function at lag l is
defined by

ACF (r, l) , r[l]

r[0]
, ∀l, (10.6)

where r[l] represents the vector computed using the sample autocovariance function for lag l
defined by

r[l] =
1

T

T−l∑
t=1

(f t − f̄)(f t+l − f̄), (10.7)

where f̄ = 1
T

∑T
t=1 f

t denotes the average value.
The correlogram, then, shows stationarity of the time series or change of fluctuations in

the convergence of model parameters during federated optimization. Higher values of ACF
denote lower fluctuations, which are adverse to a smoothed convergence of the aggregate model
parameters to the final accuracy. From the plots, we observe that FairAvg robustly shows much
higher ACF values and thus lower fluctuations while reaching the final accuracy value.

231

Distribution of federated aggregation values at[k], ∀k, ∀t used by FedAvg is reported in the left
column of Figure 10.3 against the value employed by FairAvg. We remark that distribution of
aggregation values computed by FedAvg reflects information on the distribution of local number
of samples across clients by definition. More precisely, we observe tailed distributions (as a direct
consequence of power-law data splitting over the clients) where a large number of users have fewer
local samples compared to the case where datasets are distributed following a balanced splitting
scheme. Thereby, model parameters of most users are weighted by lower federated aggregation
values while aggregating models using FedAvg, compared to their aggregation by the FairAvg
scheme. As a result, a small number of users with many local data tend to influence more, and
eventually dominate, the resulting aggregated model.
This can be further verified in the right column of Figure 10.3, showing the distribution of clients
having a certain amount of classes within their local data. In particular, we notice that the total
number of classes for Synthetic, MNIST, FEMNIST, Sent140 and Shakespeare datasets is 10, 10,
10, 2 and 80, respectively (see Table 10.1). In the reported plots, instead, we can visualize how
each device observes much less classes in its local samples, thus hindering optimal convergence.
On synthetic data, users only see up to 4 classes (i.e., 40% of the total number of classes), on
MNIST up to 2 (i.e., 20%), on FEMNIST up to 3 (i.e., 30%), on Sent140 up to 2 (i.e., 100%) and
on Shakespeare up to 61 (i.e., 76.3%). Excluding binary classification on Sent140, where results
are overall even, then we observe that FairAvg approach outperforms FedAvg especially when
each client sees a lower percentage of number of classes (e.g., on Synthetic and MNIST datasets),
while it is surpassed when each client observes a higher percentage (e.g., on Shakespeare data).

10.5 Summary

Popularly employed federated optimization methods, such as FedAvg, aggregate models of users
with importance proportional to the frequency of their local samples. However, this leads to
unfair aggregation with respect to users.

In this section, we proposed a set of experiments to empirically explore the relationship
between fairness of aggregation schemes, accuracy of aggregated models and convergence rate of
federated optimization methods.

Experimental results on non-i.i.d. data showed that a fair aggregation scheme is beneficial
compared to FedAvg for both final accuracy and convergence rate, whilst reducing at the same
time fluctuations of accuracy of the aggregate model. Following experimental evidence, we
believe that FL models could employ federated aggregation values centered around the value
employed by FairAvg for uniform treatment of user contributions, as it is described in the next
chapter.

232

11
Federated Learning of Visual Feature

Representations

As we observed in Chapter 10, Federated Learning (FL) is a framework which enables distributed
model training using a large corpus of decentralized training data. Existing methods aggregate
models disregarding their internal representations, which are crucial for training models in vision
tasks. System and statistical heterogeneity (e.g., highly imbalanced and non-i.i.d. data) further
harm model training. To this end, we introduce a method, called FedProto, which computes
client deviations using margins of prototypical representations learned on distributed data, and
applies them to drive federated optimization via an attention mechanism [35]. Thus, FedProto
brings class-conditional prototype awareness to clients, differently from the competitors. In
addition, we propose three methods to analyse statistical properties of feature representations
learned in FL, in order to elucidate the relationship between accuracy, margins and feature
discrepancy of FL models. In experimental analyses, FedProto demonstrates competitive accu-
racy and convergence rate across image classification and semantic segmentation benchmarks
by enabling maximum margin training of FL models. Moreover, FedProto reduces uncertainty
of predictions of FL models compared to the baseline. To our knowledge, this is the first work
evaluating FL models in dense prediction tasks, such as semantic segmentation.

11.1 Introduction

Challenges of FL: Training models in FL systems introduces several novel challenges [372,373].
In this work, we address problems caused by system and statistical heterogeneity. System hetero-
geneity refers to variable computational (e.g., CPU, memory, battery level) and communication
(e.g., wifi) capabilities of each device [402, 403]. Early approaches suggest to drop devices that
fail to compute pre-determined workloads within a time window [15,371]. However, Li et al. [375]
showed that this has negative effects on convergence as it limits the number of effective devices
contributing to training and may induce bias, if dropped devices have specific data characteris-
tics. Hence, we tolerate partial workload on clients following recent works [375,404].

Statistical heterogeneity reflects another major challenge for convergence: whilst in centralized
training, data can be assumed independent and identically distributed (i.i.d.), decentralized data
is generally highly imbalanced (e.g., local data may contain different number of samples for
different classes on each device) and non-i.i.d. (e.g., samples in remote clients may have large

233

Figure 11.1: Visual data observed at distributed clients k ∈ K are non-i.i.d. and imbalanced. This represents a challenge for

federated learning of visionmodels with parametersWk, ∀k.

correlation due to user-specific habits or preferences) [377], as depicted in Figure 11.1.
Challenges of FL of visual feature representations: Representation learning has been a

prosperous technique used to perform complex computer vision tasks, such as image classification
and segmentation [102,103]. In this paradigm, a model is trained to learn rich feature represen-
tations of its inputs, and learned representations are employed by task specific predictors (e.g.,
classifiers or detectors). Current FL approaches focus on learning features by considering only
statistical properties of data, such as joint distribution of samples and their class labels [385],
and weights of models [375]. In FedAvg [15], weights are aggregated with importance scores pro-
portional to size of local datasets, ignoring the learning dynamics. A similar approach has been
followed by many subsequent methods [375,384–386]. More recently, increasing interest has been
devoted toward elucidating aggregation procedures. Attention methods [378–382] were proposed
using functions of difference between parameters of local and aggregate models. However, these
works disregard relationship between statistical properties of the learned representations.

Here, instead, we propose a prototype guided federated optimization method (FedProto),
which leverages the model aggregation procedure by prioritizing distributed models on basis of
their learned prototypical representations of object categories. In particular, FedProto consists
of three steps:

(i) Prototypical representations: First, we compute prototypical representations using
local and aggregate models motivated by their success in meta-learning [149, 405–409], domain
adaptation [13,31,410], semantic segmentation [140,141] and continual learning [21,411].

(ii) Confidence of local and aggregate models: Second, we compute confidence of local
and aggregate models with respect to their decision on local data using prototypical (hypothe-
sis) margins (PMs). PMs have been explored for developing learning vector quantization (LVQ)
methods [412–416]. In [417], PMs are shown to lower bound sample margins and provide a
rigorous upper bound of generalization error. Unlike PMs proposed for individual models, we
aim to measure the change in semantic representations of FL models learned at different clients
and over different rounds considering their generalization properties. Therefore, we first define a
novel semantic PM. Then, motivated by these theoretical results, we drive the model aggregation
process combining a confidence measure computed between local prototypes at the beginning
and at the end of the local optimization (i.e., Local PM), as well as a measure computed be-
tween aggregate and local prototypes at the server-level (i.e., Aggregate PM). Although margins

234

between features and prototypes have been used to solve other vision tasks (e.g., few-shot learn-
ing [408]), to our knowledge, our work is the first to compute margins among sets of prototypes
and employ them for federated optimization.

(iii) Prototype-based weight attention: Finally, we propose a weight attention mech-
anism during global aggregation of local models using non-linear functions (e.g., sigmoid) of
prototypical margins. In FL, state-of-the-art attention methods [379, 381] consider only statis-
tics of local models ignoring their effect on decision boundary. Instead, our attention mechanism
quantifies this information by margins and employs it for aggregation. We conjecture that our
mechanism enables maximization of latent-level margins in FL, which is experimentally justified
in Section 11.5.

Intuitively, driving the model to focus on class prototypes, we achieve a better shaping of
the inner space (thus acting as regularization constraint) that eventually eases the classifier
task, which is a harder task than feature extraction [418]. Therefore, FedProto shows better
convergence rate and accuracy, ultimately achieving a closer latent space organization to the one
centralized training would produce.
The main contributions of our work are as follows:
• We propose a novel FL algorithm (FedProto) which applies a prototypical margin-based model

attention mechanism to drive FL optimization in heterogeneous systems.
• We achieve state-of-the-art results on a variety of image classification and semantic segmen-

tation benchmarks. To the best of our knowledge, this is the first work exploring federated
learning of semantic segmentation models.

• We propose two quantitative metrics and a qualitative method based on entropy maps to
analyse statistical properties of feature representations learned in FL systems.

11.2 Prototype Guided Federated Learning

Prototypical representations have been successfully employed in various computer vision tasks
[21,149,407,410]. In this work, we employ prototypes for federated optimization of vision mod-
els. Our prototype guided federated optimizer (FedProto) is motivated by the results obtained
from the recent theoretical and experimental analyses of generalization capacity of latent class-
conditional prototypes [149,407].

Partial workload toleration: Optimizing local models with the same number of local
epochs at all clients is unfeasible for real-world applications [371, 375, 385]. A more natural
approach is to allow the epochs to vary according to the characteristics of the FL system, and
to properly merge solutions accounting for heterogeneity of the system. Indeed, we observe that
different clients in FL systems are likely to have very different resource constraints (causing
system heterogeneity), such as different data resources, hardware configurations (e.g., visual
sensors, cameras or processors), network connections and battery levels [372]. Therefore, we
allow partial amount of work to be conducted locally by each client prior to the aggregation
stage, as utilized in FedProx [375]. In other words, at each round, instead of dropping δ% of
clients that performed less epochs than the total number F in a predetermined amount of time,
we aggregate all the solutions sent from local clients tolerating partial workload, i.e., even if
the completed number of local epochs is F ′ < F . Following [375], we mimic this behavior by
uniformly sampling F ′ ∼ U([0, F)) on each client.

At each round t and client k, a local model M t
k(Wt

k;Xk) = Ct
k(Wt

c,k) ◦ Et
k(Wt

e,k;Xk) is com-
puted, where ◦ denotes function composition, and Wt

c,k ⊂ Wt
k and Wt

e,k ⊂ Wt
k denotes sets of

parameters of classifiers and encoders embodied in the model M t
k, respectively. For each input

xk,j ∈ Xk, its latent representation etk,j = Et
k(Wt

e,k;xk,j) is computed and then fed to a classifier

235

Ct
k(Wt

c,k; e
t
k,j) to retrieve class-wise probability scores. Features corresponding to the same class

are then averaged to construct local latent class-conditional prototypes.

11.2.1 Computation of Prototypes

At each round t > 0, class c ∈ C and client k ∈ Kt, the cth element of prototypes pt
k is computed

by
pt
k[c] =

∑
et
k,j,c∈F

t
k,c

etk,j,c
nt
k[c]

, ∀c ∈ C, ∀k ∈ Kt, (11.1)

where F t
k,c is the set of feature vectors etk,j,c extracted from the sample xk,j ∈ Xk belonging to

the class c, and nt
k[c] = |F t

k,c| is the cardinality of F t
k,c. At t = 0, we initialize prototypes as

p0
k[c] = 0, ∀c, k. Since features representing different classes have variable norm [419], we employ

min-max normalization over the channels and denote the normalized prototypes by p̂t
k.

11.2.2 Local and Aggregate PrototypeMargins

To guide the optimization, we rely on a combination of two clues derived from displacement of
prototypes:
1. Local Prototype Margin (LPM) measures deviation of on-client prototypes before and after

local training.
2. Aggregate Prototype Margin (APM) measures deviation of aggregate prototypes from local

prototypes.
As a measure for displacement, we embraced the margin theory [408, 412, 414, 415, 417, 420], in
which PMs measure the distance between features and class decision boundaries. In our work,
instead, we aim to measure change of semantic representations among clients over different
rounds for FL. Therefore, we propose a novel semantic PM next.
Definition 11.2.1 (Semantic PM - SPM). Given two prototype vectors pi and pj defined on
the same class space C, we restrict to C′ ⊂ C such that ni[c] > 0 and nj [c] > 0, ∀c ∈ C′, the
distance between prototypes corresponding to the same semantic label c is computed by

d+
i,j [c] = d(pi[c],pj [c]), ∀c ∈ C′, (11.2)

and the average distance between prototype of a certain class c and prototypes of different classes
is computed by

d−i,j [c] =
∑
c′ ̸=c
c′∈C′

d(pi[c],pj [c
′])

|c′ 6= c ∧ c′ ∈ C′|
, ∀c ∈ C′. (11.3)

Then, the SPM for class c is defined by

µ(pi[c],pj)
def
=

d−i,j [c]− d+
i,j [c]

d−i,j [c] + d+
i,j [c]

, ∀c ∈ C′. (11.4)

In FL, we employ SPMs in two cases, LPM and APM, which are defined in Definitions 11.2.2
and 11.2.3. In the analyses, we identify d(·, ·) by the Euclidean distance, since it has been shown
to outperform cosine similarity [140,149] or to achieve comparable performance [141,150].
Definition 11.2.2 (LPM). The LPM is defined by

µt
loc,k[c]

def
= µ(p̂t−1

k [c], p̂t
k), ∀k ∈ Kt, ∀c ∈ C (11.5)

and it measures change of local prototypes obtained from local models before and after their
local training.

236

Definition 11.2.3 (APM). The APM is defined to measure discrepancy between local and
aggregate set of prototypes by

µt
agg,k[c]

def
= µ(p̂t

k[c], p̂
t−1
agg), ∀k ∈ Kt, ∀c ∈ C (11.6)

where the aggregate set of prototypes is defined by

p̂t
agg[c]

def
=
∑
k∈Kt

nt
k[c]

nt
agg[c]

p̂t
k[c], ∀c ∈ C, (11.7)

with aggregate number of features nt
agg[c] =

∑
k∈Kt nt

k[c], ∀c ∈ C and initialization p̂0
agg[c] = 0.

We remark that APM requires transmission of prototypes from clients to server. However,
this does not raise privacy issues since prototypes represent only an averaged statistic over all
local data of already compressed feature representations, nor large communication overhead, as
the size of prototypes is negligible compared to the model size. Additionally, prototypes can be
shared with differential privacy without inadvertently leaking private information [421,422].

While local deviation measured by LPM gives a hint of how much a model adapts its inner
representation for each class, server-side deviation measured by APM tells how much a local
model changes its inner representations with respect to the prototypical representations aggre-
gated over previous rounds and clients. The effect of distributed versus centralized calculation
of margins is analysed in Section 11.5.1.

11.2.3 Federated Attention using PrototypeMargins

Client deviations are computed by summing over all the classes and applying a sigmoid function
σ [414,415] by

vt
ι[k] = σ

(∑
c∈C

µt
ι,k[c]

)
, ∀k ∈ Kt, ι ∈ {loc, agg}. (11.8)

Definition 11.2.4 (Local, aggregate and federated attention). A local (aggregate) weight at-
tention vector atloc (atagg) is computed normalizing the client deviations by

atι[k]
def
=

vt
ι[k]∑

j∈Kt vt
ι[j]

, ∀k ∈ Kt, ι ∈ {loc, agg} . (11.9)

The federated weight attention vector at is defined by

at[k]
def
=

{
nk∑

j∈Kt nj
, if t = 0

at
agg[k]+at

loc[k]

2 , if t > 0
(11.10)

Intuitively, each at[k] represents a measure of client drift: as prototypes computed using
weights Wk ∈ Wk of a model of a client k deviate from reference prototypes in terms of margin
(either locally or on server), higher attention is applied on the weights Wk ∈ Wk, and vice-
versa. We remark that, according to our definition, if a client is not able to build reliable latent
representations (low margin), then its model is considered less during aggregation.

Finally, federated attention vectors at are used to aggregate local weights at each tth round
by

W t+1 =
∑
k∈Kt

at[k]W t
k. (11.11)

237

Algorithm 11.3 FedProto.

Input: K, T, F,W 0, η,N .
for t = 0 to T − 1
A server samples Kt ⊆ K clients ∝ pk, and sends W t.
for k ∈ Kt

Compute local prototypes (11.1).
Update W t

k with Lk (10.2) and step size η to W t+1
k .

Compute local prototypes (11.1) and LPM (11.5).
Send W t+1

k , LPM and p̂t
k back to the server.

end for
The server computes APM (11.6), at (11.10) and W t+1 (11.11).

end for

Our proposed FL method which employs (11.11) to solve (10.1) is called FedProto and is
summarized in Algorithm 11.3.

11.3 Theoretical Motivation of FedProto

In this section we present more in-dept theoretical insights and motivations for our approach.
Our aim is to obtain a federated hypothesis function (e.g., a classification or segmentation
function) identified by a federated model M(W; ·) with good generalization properties by solving
the federated optimization problem

min
W∈W

L(W) = min
W∈W

∑
k∈K

pkLk(W ;Sk), (11.12)

where the local objective of the kth client is computed by

Lk(W ;Sk) =
1

nk

nk∑
j=1

lk(W ; sk,j ∈ Sk), (11.13)

with lk(·; ·) being a user-specific loss function, pk ≥ 0 is the weight of Lk(·; ·) and
∑

k∈K pk = 1.
Margin theory has been successfully employed for characterizing hypotheses of single models,

such as neural network models [423], with good generalization properties. Theoretical results
show that the generalization error of classification hypotheses (classifiers) can be upper bounded
by the margin of the hypotheses with respect to samples. Motivated by the success of mar-
gin theory for computing hypotheses, we consider solving (11.12) with margin maximization
constraints. To this end, we first define hypothesis functions of models.

11.3.1 HypothesisMargins

Definition 11.3.1 (Hypothesis functions). A function identified by a neural network model
M(W; ·) = C(W) ◦ E(W; ·) parameterized by a set of weights W is called a model hypothesis,
where C(W) identifies a classification hypothesis (classifier) and E(W) identifies an embedding
hypothesis.

Next we define the hypothesis margin for models.

238

Definition 11.3.2 (Hypothesis margin). The margin of the sample s = (x,y) ∈ X × Y with
respect to the hypothesis M(W ∈ W ;x) for class c ∈ C is defined by

θ(W,x,yc) =<M(W ;x),yc> −max
b ̸=c

<M(W ;x),yb>, (11.14)

where < ·, · > denotes vector inner product, and yc is the category label vector denoting mem-
bership of the sample to the cth category. The vector y can be defined by a one-hot vector,
where the cth element of yc is 1 if the sample belongs to the cth class, and its other elements are
equal to 0. More general codewords are proposed in [424].

Although we defined the hypothesis margin (11.14) for models M(W ; ·), the definition can be
applied for defining margins of classification and embedding hypotheses.

The hypothesis margin is used to reformulate the problem (11.12) by

max
θ̄(W)

min
W∈W

LΦ(W), (11.15)

where θ̄(W) = mins=(x,y)∈S θ(W,x,y) is the minimal margin over all the training set S = ∪k∈KSk
of the model, and the loss

LΦ(W) = Φ(θ(W,x,y)) (11.16)

is defined by a function Φ(·) of the margin, such as

Φ(θ(W,x,y)) =
∑
c∈C

e−[<M(W ;x),y>−<M(W ;x),yc>] (11.17)

avoiding nonlinearity of themax operator in (11.14). The following lemma shows that Φ(θ(W,x,y))
is lower bounded by the function of the margin e−θ(W,x,y).

Lemma 1 (Lower bounding loss by hypothesis margin). The loss function LΦ(W) (11.16) is
lower bounded by the function of the margin e−θ(W,x,y), such that

LΦ(W) > e−θ(W,x,y). (11.18)

Proof. The proof follows the results given in [425]

LΦ(W) =
∑
c∈C

e−[<M(W ;x),y>−<M(W ;x),yc>]

= 1 + e−θ(W,x,y)∑
yc ̸=y

e−[<M(W ;x),y>−<M(W ;x),yc>]+θ(W,x,y)

= 1 + e−θ(W,x,y)(
1+

∑
yc ̸=y,yc′

e−[<M(W ;x),yc′>−<M(W ;x),yc>]
)

≥ 1 + e−θ(W,x,y), (11.19)

where c′ = argmax
y ̸=yc

< M(W ;x),yc > . �

239

11.3.2 Optimizing HypothesisMargins in FL

In FL, FedAvg computes the parameters of model hypotheses at each round t+ 1 by

W t+1 =
∑
k∈Kt

λk,tW
t
k, (11.20)

= W t −
∑
k∈Kt

λk,tψk,t (11.21)

whereW t represents the global model parameters federately optimized at a server at round t and
distributed to clients, W t

k represents the local model parameters of client k computed at round t
and sent to the server, ψk,t

def
= (W t −W t

k), λk,t = nk∑
j∈Kt

nj
,
∑

k∈Kt λk,t = 1, nk is the number of

samples of the client k with model parameter W t
k, and Kt is the set of clients available at round

t. That is, updating parameters at the server using FedAvg is equivalent to applying SGD to
the “pseudo-gradient” −ψt with learning rate 1.

At each round t + 1, a federated optimizer optimizing hypothesis margins aims to move W
by a step along the direction of the largest decrease of the loss L(W) by

W t+1 =
∑
k∈Kt

Λk,tW
t
k, (11.22)

= W t −
∑
k∈Kt

Λk,tψk,t (11.23)

where
∑

k∈Kt Λk,t = 1, and

Λk,t = argmin
Λ̂k,t

Lk(W
t
k, Λ̂k,t;Sk) (11.24)

= argmin
Λ̂k,t

1

nk

nk∑
j=1

lk(∆
t+1
k ; sk,j), (11.25)

where ∆t+1
k =W t − Λ̂k,t∇W t

k
lk(W

t
k; sk,j ∈ Sk).

Lemma 1 suggests that training models by minimizing (11.16) provides hypotheses with
large margin. Therefore, the global parameters W t obtained from server are moved along
∇W t

k
lk(W

t
k; sk,j) at the round t + 1 to compute local parameters W t

k by minimizing the up-
per bound of the margin. Thereby, we have

−∇W t
k
lk(W

t
k;sk,j)=

∑
xj∈X

<M t+1
k (W t+1,xj), Λ̂k,t(xj)>, (11.26)

where
Λ̂k,t(xj) =

∑
c∈C

ξce
θk(W

t
k,xj ,y

c
j), (11.27)

with ξc = yn − yc
n.

11.3.3 PrototypeMargins

In order to make use of hypothesis margins while training models in FL, we need to first compute
margins θk(W t

k ∈ Wt
k,x ∈ Xk,y ∈ Yk) at each kth client with model M t+1

k (Wt
k;Xk). Then, the

240

margins with target labels Yk should be sent to the server for aggregation, ∀k ∈ Kt. However,
this approach may not be feasible due to communication complexity, and may violate privacy
requirements.

To address this problem, we consider another margin of a hypothesis identified by a prototype
p[c] as defined next.

Lemma 2 (Prototype margin of a sample (Lemma 1 in [426])). Let P = {p[c] : c ∈ C} be a
set of prototypes and x a sample point. Then the hypothesis margin of P with respect to x is
d+ − d− where

• d+ = ‖p[c]− x‖2,
• d− = ‖p[c′]− x‖2,
• p[c] is the closest prototype to x with the same label, and
• p[c′] is the closest prototype to x with the alternative label.

Definition 11.3.3 (Normalized prototype margin of a sample). The normalized prototype mar-
gin of x is defined by

µ(p[c],p[c′];x) =
d+ − d−

d+ + d−
. (11.28)

The next theorem shows the relationship between the hypothesis margin θ and the prototype
margin µ.

Theorem 3 (Relationship between margins for Lipschitz classifiers.). Suppose that the classifier
C(W ; ·) is a Lipschitz map1, |C| = O(ϵ−2 log(N)) is the number of classes, ϵ ∈ (0, 1), D ≥ |C|
is the dimension of features used to compute prototypes p[c], ∀c ∈ C and N is the size of the
training set S. Then, we have

(1− ϵ)‖µc,c′‖2 ≤ ‖θ(W,x,y)‖2 ≤ (1 + ϵ)‖µc,c′‖2, (11.29)

where µc,c′
def
= µ(p[c],p[c′];x).

Proof. We first expand θ(W,x,y) with prototype margin by

θ(W,x,y) = < M(W ;x),yc > − < M(W ;x),yc′ >

= C(W ;p[c])− C(W ;p[c′])

= WCd(p[c],p[c
′]) (11.30)

where d(p[c],p[c′]) is the Euclidean between prototypes, and c′ = argmax
b ̸=c

< M(W ;x),yb >.

We compute the norms by

‖θ(W,x,y)‖2 = ‖WCd(p[c],p[c
′])‖2

≥ ‖WC‖2‖d(p[c],p[c′])‖2 (11.31)
≥ ‖WC‖2‖µc,c′‖2, (11.32)

where (11.31) is obtained by the Cauchy–Bunyakovsky-Schwarz inequality and (11.32) is ob-
tained by the triangle inequality. The rest of the proof follows the Johnson-Lindenstrauss
Lemma [427]. �

1This assumption can be satisfied by applying spectral normalization on weights WC of the classifier.

241

In the next corollary, we explore the property

P def
= (1− ϵ)‖µc,c′‖2 ≤ ‖θ(W,x,y)‖2 ≤ (1 + ϵ)‖µc,c′‖2 (11.33)

for Gaussian parameters (weights) of classifiers, which are usually satisfied by classifiers of deep
neural networks.

Corollary 3.1 (Relationship between margins for Gaussian classifiers.). Suppose that ele-
ments of the parameter of the classifier WC are are i.i.d. from a standard normal distribution
N (0, 1/|C|). Then, the probability of preservation of norms is lower bounded by

Pr
(
P
)
≥ 1− Ω, (11.34)

where Ω = 2e|C|(ϵ
3−ϵ2)/4.

Proof. We first prove the upper bound for the complement of P by

Pr(P̂) ≤ Ω. (11.35)

Since parameters (weights) are i.i.d. from N (0, 1/|C|), we have

Pr
(‖θ‖2
‖µc,c′‖2

> (1 + ϵ)
)

= Pr
(
χ2
|C| > (1 + ϵ)

)
<

(1− 2ϱ)−|C|/2

eϱ|C|(1+ϵ)
(11.36)

where χ2
|C| is the chi-squared distribution with |C| degrees of freedom with ϱ ≥ 0, and the optimal

ϱ minimizing (11.36) is ϱ̂ = ϵ
2(1+ϵ) . Thereby, we have

Pr(P1) < e|C|(ϵ
3−ϵ2)/4, (11.37)

where
P1

def
= ‖θ‖2 > (1 + ϵ)‖µc,c′‖2. (11.38)

We have the similar upper bound

Pr(P2) < e|C|(ϵ
3−ϵ2)/4 (11.39)

for
P2

def
= ‖θ‖2 < (1− ϵ)‖µc,c′‖2. (11.40)

Since P̂ = P1 ∪ P2), we have
Pr(P̂) < 2e|C|(ϵ

3−ϵ2)/4 (11.41)

and

Pr(P) ≥ 1− 2e|C|(ϵ
3−ϵ2)/4 (11.42)

≥ 1− Ω. (11.43)

�

Corollary 3.1 provides a lower bound on the probability of preserving margins of hypotheses

242

and prototypes assuming that the distribution of weights of classifiers is a scaled Gaussian
N (0, 1/|C|). However, this result is also valid for weights i.i.d. from unscaled Gaussian N (0, 1)
as proposed in the following corollary.

Corollary 3.2 (Relationship between margins for unscaled Gaussian classifiers.). Suppose that
elements of the weights of the classifierWC are i.i.d. from a standard normal distribution N (0, 1).
Then, we have

Pr
(
Pu

)
≥ 1− Ω, (11.44)

where
Pu

def
=

C

D
‖µc,c′‖2 ≤ ‖θ(W,x,y)‖2 ≤

D

C
‖µc,c′‖2. (11.45)

Proof. The first part of the proof applies Theorem 3 and Corollary 3.1 for proving the property
Pu for unscaled Gaussian weights. The second part of the proof applies Corollary 3.1 for proving
the inequality (11.44). �

Theorem 3, Corollary 3.1 and Corollary 3.2 show that the norm of prototype margin is close
to the norm of hypothesis margin by ϵ ∈ (0, 1). In order words, distance between hypotheses
diverge from the distance between prototypes by 1 ± ϵ with probability lower bounded by a
function of ϵ. We employ this result to lower bound the error LΦ(W) in the following theorem.

Theorem 4 (Lower bounding loss by norm of prototype margin). The loss function LΦ(W)

(11.16) is lower bounded by a function of the prototype margin e−∥µc,c′∥
2
2 for any two prototypes

with c 6= c′ , such that
LΦ(W) > e−∥µc,c′∥

2
2 . (11.46)

Proof.

LΦ(W) =
∑
c∈C

e−[<M(W ;x),y>−<M(W ;x),yc>]

= 1 + e−∥θ∥
2
2

∑
yc ̸=y,yĉ

e−[A−B−G
2]

≥ e−∥θ∥
2
2 , (11.47)

where θ def
= θ(W,x,y),

A
def
= < M(W ;x),y > (11.48)

B
def
= < M(W ;x),yc > (11.49)

G
def
= < M(W ;x),yĉ > (11.50)

with ĉ = argmax
b ̸=c

< M(W ;x),yb >. By Theorem 3, Corollary 3.1 and Corollary 3.2, we have

e−∥θ∥
2
2 ≥ e−∥µc,c′∥

2
2 (11.51)

which implies
LΦ(W) ≥ e−∥µc,c′∥

2
2 . (11.52)

�

243

In [425] Saberian and Vasconcelos study the relationship between hypothesis margin, and
different types of loss functions such as logistic and exponential loss. These results are used to
lower bound different loss functions by hypothesis margins, which can be employed to bound
these loss functions by prototype margins. Since this analysis is beyond the scope of this work,
we consider applying Theorem 4 for different loss functions as a future work.

11.3.4 Federated Learning with PrototypeMargins

Similar to hypothesis margins, Theorem 4 proposes that minimizing the loss LΦ(W) provides
models with large prototype margin. While training models, we employ this result to minimize
training loss by maximizing prototype margins by

W t+1 =
∑
k∈Kt

at[k]W t
k (11.53)

= W t −
∑
k∈Kt

at[k]ψk,t (11.54)

where
∑

k∈Kt at[k] = 1. The weight attention functions of margins at[k], ∀k, t, are estimated by

at[k] = argmin
ât[k]

Lk(W
t
k, â

t[k];Sk) (11.55)

= argmin
ât[k]

1

nk

nk∑
j=1

lk(∆
t+1
k ; sk,j), (11.56)

where ∆t+1
k =W t − ât[k]∇W t

k
lk(W

t
k; sk,j ∈ Sk).

The maximum hypothesis margins Λk,t, ∀t can be computed by minimizing loss LΦ(W) at
each client as proposed in Lemma 1. Similarly, Theorem 4 shows that optimizing parameters of
local models by minimizing the loss LΦ(W) enables models to learn features with large prototype
margins at each round t. Then, local hypothesis margins Λk,t, ∀k, t can be linearly aggregated in
distributed linear models such as distributed boosting, as discussed in Section 11.3.2. However,
linear aggregation of margins may provide biased estimations for nonlinear or biased models,
such as models of deep neural networks trained with non-i.i.d. data, in FL. Therefore, we propose
two novel margin definitions to compute ât[k], ∀k, t:

• In order to incorporate information on the evolution of prototypes among different rounds
t− 1 and t, we define Local Prototype Margins (LPMs). The LPMs µt

loc,k, ∀k, t, measure
change of local prototypes obtained from local models before and after local training.

• In order to incorporate information on discrepancy between local and global (aggregate)
set of prototypes, we define Aggregate Prototype Margins (APMs).
The LPMs and APMs are then combined to approximate ât[k], ∀k at each round t.

11.4 Experimental Setup

Federated Datasets. We evaluate on various tasks, models and real-world federated vision
datasets. For all the considered datasets, we randomly split the data on each local client into a
training and a testing set with a 80/20 ratio. Full details on the experimental setup have been
introduced in Section 10.3.

Implementation Details. Utilized hyper-parameters are reported on the right side of Ta-
ble 10.1. We tuned learning parameters of each dataset on FedAvg (with F = 1 and no system

244

Figure 11.2: Experimental results for the classification task. Evaluation is performed across δ ∈ {0%, 50%, 80%} and a

moving average window of 10% rounds is applied for visualization. Solid lines and shaded regions represent the mean and

standard deviation, respectively.

heterogeneity) and, for fair comparison, we use the same parameters on all experiments for that
dataset. We set |Kt| = 10, ∀t for all datasets. Randomly selected clients and mini-batch orders
are kept fixed across all runs for comparative experiments. For simplicity, we use a constant
learning rate on classification tasks, and polynomially decaying learning rate with power 0.9 and
weight decay 4·10−5 [4,5] for segmentation tasks. For classification data, we measure accuracy as
the percentage of correct predictions, whilst for segmentation data we use the mean Intersection
over the Union (mIoU). All simulations are performed for 10% rounds more, and metrics are
moving averaged over a window of 10% rounds in the visualization.

We fix the number of selected clients to be 10 for all experiments and most of the hyper-
parameters has been reported in Table 10.1. Unless otherwise stated, we assume that FedAvg
does not tolerate partial local solutions (i.e., dropped clients are not aggregated), while FedProto
and FedProx do tolerate them. For Synthetic, MNIST, FEMNIST, and CelebA, we set the
proximal loss term of FedProx following the guidelines of [375], and the best accuracy is obtained
respectively for: 0.1, 1, 1, 0.01.

We developed our framework in Tensorflow [125]. We simulate the federated learning setup
(1 server and |K| clients) on a single NVIDIA GeForce RTX 2080 Ti GPU with 2 Intel Xeon
Gold 5220 CPU at 2.20GHz.

11.5 Experimental Analyses for Federated Vision

11.5.1 Federated Image Classification

In this section, we report an extensive evaluation of our approach on image classification tasks.
We compare FedProto with the baseline FedAvg, with the state-of-the-art regularization-based
FedProx [375] and with FedAtt [379], which employs weight-based attention. Figure 11.2 shows
per-round aggregate accuracy, training loss and gradients difference on the four classification
datasets introduced in Section 11.4. From the first row of Figure 11.2, we observe that FedProto
robustly outperforms FedAvg in terms of accuracy on every dataset. FedAtt brings minimal
improvement compared to FedAvg, proving that a simple weight-based attentive mechanism is
not very useful in vision tasks. FedProx, instead, leverages accuracy thanks to the toleration of

245

partial workload and presence of the proximal term. However, our approach can effectively match
or surpass the accuracy of FedProx. Additionally, we observe that both FedProto and FedProx
show much lower variance (narrower shaded region) than competing approaches by tolerating
partial results. Similar considerations are also reflected on the training loss (second row). The
third row reports the average of squared ℓ2 norm of difference of gradients over all clients, i.e.,
1
|K|
∑

k∈K ||∇Lk(W
t;Sk) − ∇L(W t)||22. As in [375], we interpret this dissimilarity measure as

a proxy of accuracy. In particular, we observe how FedProto shows smaller dissimilarity (i.e.,
better convergence [375]) compared to FedProx, thanks to the regularization effects brought by
the proposed modules. To better appreciate accuracy and loss gaps observed in Figure 11.2, we
give results obtained using the aggregate models at the final round in Table 11.1 where FedProto
shows significant improvements across all the datasets.

Ablation Studies. To explore the effect of the components of our approach on accuracy, we
report a comparative ablation study in Table 11.2. First, we noticed that our approach tends
to produce weights at deviating less from a fairness policy (i.e., aggregation of weights W t

k by
f t[k] = 1/K ′, ∀k, ∀t) than FedAvg, as also observed in other contemporary approaches [381,391].
A fair policy (row 2), indeed, outperforms FedAvg by a small margin. However, we argue that
this is an implicit effect of the weighted sampling scheme of the active clients at each round
introduced in Section 10.2. As a matter of fact, sampling active clients i.i.d. (row 3) brings
results comparable to FedAvg. Second, we analyse the toleration of partial workload. Adding it
on top of naïve implementations of FedAvg and Fairness (rows 4 and 5) improves the accuracy
and the robustness over different amounts of δ. At the same time, we remark that our approach
can achieve competitive performance even without tolerating partial workload (row 6).

Analyses of our model design are given in the last block of Table 11.2. Margin-based deviation
can be viewed as an enhanced measure rather than just using the distance between prototypes
belonging to the same class, i.e., using only d+ (row 7) from (11.2) to accommodate the class-
wise probability distribution obtained from the distributed clients during aggregation. Although
providing considerable improvements compared to FedAvg, we found margin-based deviation to
be generally more stable. Finally, employing only one of the two proposed clues (LPM and APM
in rows 8 and 9) still improves accuracy, and the combination of the two (last row) outperforms
the effect of the singular components.

Table 11.1: Final mean and std of accuracy (%) and loss from Figure 11.2. Centralized accuracy are 78.5, 99.0, 99.4, 92.6, and
losses are 0.33, 0.00, 0.00, 0.15 for Synth., MNIST, FEMNIST and CelebA.

FedAvg FedProx FedAtt FedProto

A
cc
ur
ac
y Synthetic 72.3± 2.6 74.8± 1.6 72.1± 2.7 78.7± 0.2

MNIST 88.8± 3.8 91.7± 0.2 88.4± 3.7 93.3± 0.2

FEMNIST 75.1± 7.7 81.1± 1.0 75.5± 7.5 82.5± 0.3

CelebA 86.2± 2.8 86.4± 2.4 83.4± 3.0 87.8± 0.4

Lo
ss

Synthetic 0.41± 0.06 0.37± 0.07 0.36± 0.12 0.36± 0.02

MNIST 0.39± 0.17 0.30± 0.02 0.41± 0.16 0.18± 0.02

FEMNIST 0.83± 0.35 0.55± 0.04 0.81± 0.34 0.51± 0.01

CelebA 0.38± 0.06 0.39± 0.03 0.43± 0.08 0.36± 0.02

Aggregate Mean Margin (AMM). To examine margin maximization properties of feder-
ated optimizers, we define a measure called aggregate mean margin (AMM) by

µ̄[t] =
1

|C|
∑
c∈C

µ(pt
agg[c],p

t
agg). (11.57)

246

Table 11.2: MNIST classification accuracy (%) of different strategies.

δ
Method 0% 50% 80% Avg. ± Std.
FedAvg 92.7 88.7 85.1 88.8± 3.8
Fairness 92.8 89.9 86.5 89.7± 3.2
Fairness sampling i.i.d. 92.5 88.4 84.9 88.6± 3.8
FedAvg + toleration 92.7 90.2 89.1 90.7± 1.8
Fairness + toleration 92.8 91.2 90.6 91.5± 1.1
FedProto (no toleration) 93.5 90.8 88.1 90.8± 2.7
FedProto (d+) only 92.8 92.4 92.1 92.4± 0.4
FedProto (APM only) 93.0 92.7 92.6 92.8± 0.2
FedProto (LPM only) 91.9 91.0 90.6 91.2± 0.7
FedProto 93.5 93.4 93.1 93.3± 0.2

Figure 11.3: Per-round AMM (µ̄[t]) values on classification datasets.

In Figure 11.3, we show change of AMM for different optimizers and datasets during training in
FL. FedProto achieves higher µ̄[t] compared to other optimizers. This is a direct consequence of a
better shaping of latent representations with improved class-discrimination acting as regularizer
for learning meaningful feature representations similar to centralized training. The AMM for
the last round, µ̄[T], is reported in Table 11.3. The results show a positive correlation between
AMM and accuracy (given in Table 11.1) with Pearson’s correlation coefficient ρ = 0.68 (p-value
0.01).

Federated Feature Discrepancy (FFD). FFD is devised to analyze how feature distribu-
tions provided by a modelMA trained with a federated optimizer A are closer to those generated
by centralized training of a model MC , compared to a baseline optimizer B. To this end, we
first compute distribution P t

k, ∀k of features provided by MA. Second, we train a model MC

on the same dataset without any distributed setting, and Q denotes the distributions obtained
from MC . Then, we compute the average Maximum Mean Discrepancy (MMD) [428] between

247

Table 11.3: Margin µ̄[T] of the final aggregatemodel and FFD (%).

Synthetic MNIST FEMNIST CelebA

µ̄
[T

] FedAvg 0.45 2.38 1.15 0.34
FedProx 0.48 2.14 1.14 0.47
FedProto 0.63 2.49 1.51 0.48
Centralized 0.60 8.68 3.61 0.48

FF
D FedProx 61.9 5.9 1.5 4.5

FedProto 64.5 7.7 5.7 7.8

Figure 11.4: Per-roundMMD from Eq. (11.58) on classification datasets. HigherMMD indicates features of the FL algorithm

to bemore similar to the features learned in centralized training.

P t
k and Q by

MMDt
A =

1

|Kt|
∑
k∈Kt

MMD(P t
k, Q). (11.58)

We define the FFD (%) between A and B as the relative gain of MMDT
A over MMDT

B by

FFD(A,B) =
MMDT

B −MMDT
A

MMDT
B

× 100. (11.59)

Since our interest is to give a comparison with respect to the baseline FedAvg, we set A to
FedProx or FedProto and B to FedAvg. The per-round MMD is shown in Figure 11.4 and
the final FFD values are reported in the bottom part of Table 11.3. Overall, we observe that
distributions of features learned using FedProto are consistently more similar to those learned in
centralized training than FedAvg: the higher is the MMD and the closer the features produced by
an FL algorithm are to those learned in centralized training. Last, we also note that FedProx can
achieve some latent regularization thanks to the proximal term, however it is robustly surpassed
by our proposed FedProto.

248

Figure 11.5: Comparison of distributions of the federated attention vectorat[k], ∀k, ∀t, on classification datasets for FedAvg
and our FedProto. FedProto produces attention values having a much lower variance from the average value (|K| = 10 is

used) compared to FedAvg. FedAvg weights, instead, follow the distribution of the number of samples, which could lead the

framework to ignore clients with less samples during aggregation, regardless of the statistical distribution of local samples.

11.5.2 Federated Attention Values in Image Classification

We mentioned that our approach tends to produce federated attention values at[k] deviating
less from a fairness policy (i.e., aggregation of weights W t

k by f t[k] = 1/K ′, ∀k, ∀t) than FedAvg,
as also observed in other contemporary approaches [381, 391]. In Figure 11.5, we compare the
distribution of federated attention values at[k], ∀k, ∀t, of FedAvg and of our approach. The
results show that FedProto produces attention values having a much lower variance from the
average value (we remark that |K| = 10 is used) compared to FedAvg. In particular, FedAvg
weights follow the same distribution of the number of samples, which could lead the framework
to ignore clients with less samples during aggregation, regardless of the statistical distribution of
local samples. Moving from these considerations, we found a fairness policy to have comparable
results to FedAvg (see Section 10.4) and to be significantly surpassed by our approach.

11.5.3 Federated Semantic Segmentation

We analyze our FedProto for federated semantic segmentation. Differently from image clas-
sification, segmentation task is more challenging as it involves dense predictions and highly
class-imbalanced datasets. Altogether, these circumstances make aggregating local models even
more severe.

We start by analyzing the effect of i.i.d. structure (i.i.d.-ness) of data on mIoU of federated
segmentation models. For this purpose, we distribute two benchmark datasets among clients
using the Dirichlet distribution with concentration parameter α (details are given in Section 11.4
and in Suppl. Mat.). Then, we train models on distributed data using the baseline FedAvg and

249

Figure 11.6: Change of mIoU on segmentation data distributed using different α values. Evaluation is performed across δ ∈
{0%, 50%, 80%}andamovingaveragewindowof10% rounds isapplied. Solidandshaded linesrepresentmeanandstandard

deviation.

our FedProto. The results depicted on Figure 11.6 show the relationship between convergence
of models and i.i.d.-ness of data. Note that, as the non-i.i.d.-ness of distributed data increases
by lower α, data heterogeneity and client drift increase. Our FedProto improves mIoU and
robustness compared to FedAvg on every configuration, and especially on highly non-i.i.d. data,
where class-conditional representations on certain remote clients could be non-reliable due to
the non-i.i.d. partitioning (only few samples for particular classes observed on certain clients).

A qualitative analysis on segmentation and entropy maps of two sample images comparing
the final aggregate models of FedAvg and FedProto on different data splitting configurations
(i.e., setting α ∈ {0.01, 0.1, 1}) is reported in Figure 11.7.

Segmentation maps: Output segmentation maps (rows 1, 4 and 7) improve when data are
more i.i.d., better resembling segmentation maps produced by centralized training. FedProto
significantly outperforms FedAvg for more non-i.i.d. data (α = 0.01): the cat in first row and
the horse in fourth row are correctly labeled and well-defined, whilst FedAvg labels them as
a mixture of other animals. The ability to distinguish between class ambiguity is the direct
consequence of a better latent space organization and regularization that FedProto achieves by
maximizing prototype margin.

Entropy maps: Second, we report the entropy map of the softmax probabilities of the final
model (rows 2, 5 and 8): i.e., HS = H(M(WT ;X)), with H(·) being the pixel-wise Shannon
entropy [151,429]. Low entropy (dark blue) indicates a peaked distribution which is the reflection
of high confidence of the network on its prediction, and vice-versa. Ideally, the entropy should
be low for every pixel. However, as we can observe from centralized training, contours of objects
and certain regions of the images (e.g., the mane of the horse in row 4) have high entropy due to
uncertainty on the precise edge localization of the objects or due to intrinsic ambiguity with other
classes (all considered animal classes have fur with similar pattern). With these considerations in
mind, we observe how FedProto produces generally darker entropy maps than FedAvg, especially
on non-i.i.d. data. Last, we analyze the feature-level entropy maps upsampled to match input
resolution (rows 3, 6 and 9). To compute it, features E(WT ;X) are first normalized to Ê(WT ;X),
such that the sum over the channels at each low-resolution pixel location is 1 (i.e., in order for

250

α = 0.01 α = 0.1 α = 1

S
eg
m
en
ta
ti
on

S
of
t.

E
n
tr
op

y
F
ea
t.

E
n
tr
op

y
S
eg
m
en
ta
ti
on

S
of
t.

E
n
tr
op

y
F
ea
t.

E
n
tr
op

y
S
eg
m
en
ta
ti
on

S
of
t.

E
n
tr
op

y
F
ea
t.

E
n
tr
op

y

RGB FedAvg FedProto FedAvg FedProto FedAvg FedProto Centralized GT

Figure 11.7: Qualitative results for models trained using FedAvg and FedProto using three non-i.i.d. to i.i.d. configurations of

Pascal VOC2012 dataset. For each of the three sample images, we depict; the output segmentation map (rows 1, 4 and 7), the

softmax-level entropy map (rows 2, 5 and 8), and the feature-level entropy map (rows 3, 6 and 9). As a reference, output maps

of models obtained using centralized training are shown on the second last column.

251

Figure 11.8: Comparison of t-SNE embedding plots of feature representations learned by FedAvg and by our FedProto, using

the Pascal VOC2012 segmentation benchmarkwith20 object level classes. Analyses are performed over different values ofα.
The background class is not included in the visualization, and the colors refer to the Pascal VOC2012 colormap.

them to be considered as probability vectors), and then we define HE = H(Ê(WT ;X)). In
this case, HE measures how representative a feature is at each pixel location. Ideally, features
corresponding to the desired class should be well activated so that the decoder can discriminate
between them and assign the correct label: this is the case of centralized training where features
corresponding to (certain parts of) the object class are bright (i.e., high entropy denoting many
activated patterns). We observe that FedProto produces a feature-level entropy map which is
more similar to centralized training than the map produced by FedAvg (particularly visible for
low α values).

One of the main effects of our proposed FedProto is a class-conditional latent-level regu-
larization, achieved via prototype guided federated optimization and margin maximization of
the aggregate model during its distributed training. In order to visually represent the main
effects, we report in Figure 11.8 the 2D t-SNE embeddings of the features of the final aggregate
model [367] for different values of α. Here, the background class is not included and the colors
refer to the Pascal VOC2012 colormap. Class membership for the low-resolution feature map is
obtained with simple nearest neighbor downsampling of the full-resolution segmentation maps.
By visual inspection, we observe that t-SNE embeddings produced using the final aggregate
model from FedProto are better subdivided into clusters (i.e., points of the same color). In par-
ticular, for α = 0.01, FedAvg confuses some animal classes (horse in pink, sheep in brown, cow in
green, cat in dark red and dog in purple) into one mixed point cloud on the top right part of the
plot, lacking class-discrimination at the feature level. FedProto, instead, produces a much clearer
separation among these (and others) classes, being able to build class-discriminative clusters at
the latent level (i.e., clusters points on the basis of their class membership). Similar discussion
can be made also for the remaining scenarios, with a progressively smaller difference between
t-SNE embeddings produced by FedAvg and FedProto as the data i.i.d.-ness increases.

11.6 Conclusions and FutureWork

In this section, we proposed FedProto, a distributed machine learning paradigm for vision mod-
els that can handle clients characterized by system and statistical heterogeneity. Previous ap-
proaches disregard internal representations to aggregate model weights. FedProto, instead, com-

252

putes client deviations based on the inner class-conditional prototypical representations and uses
them to drive federated optimization using an attentive mechanism. The experimental analyses
across a suite of federated datasets on both classification and semantic segmentation demon-
strated the effectiveness of our framework on both classification and segmentation datasets. In
particular, we established a new benchmark on federated semantic segmentation task outlining a
new research direction. We hope that our problem formulation and our approach will encourage
future works on this novel research topic.

253

254

12
Conclusions and Future Directions

12.1 Conclusions

This thesis has investigated the capability of deep neural network to adapt to changes in the do-
main distribution with a last insight on distributing model training across decentralized clients.
We started our analyses from adaptation to changes in the label space (continual learning), fol-
lowed by a study on progressive refinement of the label space over time (coarse-to-fine learning),
then we moved to analyze adaptation to unseen domain distributions without exploiting any
labels (unsupervised domain adaptation), and finally we devoted some attention to distributed
model training (federated learning). We undertook a comprehensive path touching many differ-
ent aspects toward distributed, ubiquitous and practical deployment of complex artificial vision
systems, focusing on the semantic segmentation task.

In the first part of the thesis, we introduced the problem of continual learning of novel se-
mantic concepts in dense labeling tasks. While traditional deep learning models assume that all
the data samples are available during the training phase and that the training is performed on
the entire dataset, we addressed the need of training deep neural networks on sequential tasks
with samples progressively available over time. A key trade-off emerged between overcoming
intransigence (i.e., inability) of the model of learning new tasks and limiting forgetting of past
tasks. We tackled these issues proposing various regularization-based techniques ranging from
knowledge distillation, parameter freezing, latent geometrical regularization and replay tech-
niques. First, we investigated how knowledge of previous tasks can be transferred to models
of subsequent tasks at different levels of the deep neural networks, and we observe that the
encoder parameters are less sensible to changes of the label-space data distribution. Second, we
presented some latent representation shaping techniques (such as prototype matching, feature
sparsification and contrastive-based objectives) to prevent forgetting whilst simultaneously im-
proving the recognition of novel classes. Last, we sampled replay data either from a conditional
GAN or from the web and we used them to alleviate catastrophic forgetting and background
inpainting to mitigate background shift.

In the second part of the thesis, we defined and tackled the coarse-to-fine learning of new
semantic concepts, where a deep learning model initially trained on a coarse set of classes is
updated to recognize either more refined categories than those originally introduced (semantic
level coarse-to-fine), or sub-parts belonging to the object-level class (spatial level coarse-to-fine).
In the semantic level coarse-to-fine scenario, we have explored multiple ways of feeding the output

255

of the coarse-level model to the fine-level model increasing the overall accuracy on the finer set
of classes. In the spatial level coarse-to-fine scenario, we refined the stacking of multiple model
architectures by feeding an embedded version of the output of the object-level (i.e., coarse-level)
model at the decoding stage of the fine-level model. This refinement guarantees higher object-
level semantic conditioning and guidance during the fine-level decoding stage. This architecture
was further reinforced by an auxiliary reconstruction module which reconstructs object-level
classes from part-level predictions, penalizing when part-level predictions are located outside
the respective object-level class. Finally, a graph matching constraint maintain the reciprocal
relationships between parts.

The third part studied the unsupervised domain adaptation task in semantic segmentation,
where a deep neural network trained on a source domain distribution is adapted to a target do-
main distribution using only target samples without labeling information. To address this task,
we first categorized all the approaches proposed in the literature outlining three main levels to
which adaptation may occur: namely, at the output level, at the input level and at the feature
level. We investigated a few methods covering all the adaptation levels. First, we proposed
an output-level adversarial learning framework based on fully-convolutional discriminators gen-
erating a confidence map of the segmentation output, which is later used for self-teaching. A
region growing module refined the confidence maps on the basis of the segmentation output on
real-world images. Then, our framework was enriched by class-aware and time-varying confi-
dence thresholds to adapt to different classes and different stages of learning of the semantic
segmentation network. Second, we investigated input-level alignment by means of cyclic do-
main transfer. Finally, feature-level domain alignment was enforced by using either latent-level
discriminators or latent-space shaping objectives enforcing features clustering, orthogonality,
sparsity and norm alignment. Additionally, we also showed how the proposed techniques are
complementary to other strategies in the literature.

The fourth and final part of the thesis, instead, was related to federated learning of deep
learning models. In this framework, data is available only at local clients and cannot be shared
with a central server; hence, model training is performed decentralized at each client and then the
solutions are shared with a central server and aggregated. First, we proposed a simple federated
aggregation scheme which is fair from the the users perspective and we showed how it can improve
with respect to the baseline FedAvg both the final accuracy value and the convergence rate, whilst
reducing at the same time fluctuations of accuracy of the aggregate model. Second, we developed
a more advanced aggregation scheme on the basis of client deviations computed from inner class-
conditional prototypical representation and we used them via an attentive mechanism. Thanks
to the guidance provided by the learned internal representations we were the first to evaluate on
semantic segmentation benchmarks, paving the way to decentralized deep scene understanding.

12.2 Open Problems and Future Directions

While automatic semantic scene understanding has been a particularly active field in the last few
years, there are several research directions still relatively unexplored. In this thesis we walked
through some of the current trending research directions in the computer vision community
related to semantic scene understanding. Most of the proposed techniques is completely (or
partially) agnostic with respect to the deep network architecture, to the task and to the dataset
employed for evaluation. Hence, future research will focus on evaluating even more the general
applicability of the algorithms in different contexts.

Furthermore, the accuracy on some single tasks (e.g., UDA alone, or CL alone) is reaching
satisfactory results and novel requirements (or tasks) are starting to emerge. Often, new tasks

256

are an evolution of previous ones and so techniques could be reused and extended to address
the novel requirements. For instance, hybrid approaches combining UDA and CL can overcome
the need for multiple changes in domains and tasks over time. Adding FL to the process we
would be able to cope with the real-world variability locally, without the need for sharing large
amount of data to a central server and reducing privacy concerns. These and other tasks are of
paramount importance toward the effective deployment of versatile visual systems in the wild.

257

258

References

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
3431–3440.

[2] F. Yu, V. Koltun, and T. A. Funkhouser, “Dilated residual networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 636–644.

[3] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2881–2890.

[4] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable
convolution for semantic image segmentation,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 833–851.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmen-
tation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), vol. 40, pp. 834–848, 2018.

[6] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image
segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[7] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, and J. Garcia-
Rodriguez, “A survey on deep learning techniques for image and video semantic segmentation,” Applied
Soft Computing, vol. 70, pp. 41–65, 2018.

[8] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, “A review of semantic segmentation using deep neural
networks,” International Journal of Multimedia Information Retrieval, vol. 7, no. 2, pp. 87–93, 2018.

[9] X. Liu, Z. Deng, and Y. Yang, “Recent progress in semantic image segmentation,” Artificial Intelligence
Review, vol. 52, no. 2, pp. 1089–1106, 2019.

[10] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning with neural
networks: A review,” Neural Networks, 2019.

[11] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez, “Continual learning
for robotics: Definition, framework, learning strategies, opportunities and challenges,” Information fusion,
vol. 58, pp. 52–68, 2020.

[12] X. Ren, L. Xie, C. Wei, S. Qiao, C. Su, J. Liu, Q. Tian, E. K. Fishman, and A. L. Yuille, “Generalized
coarse-to-fine visual recognition with progressive training,” arXiv preprint arXiv:1811.12047, 2018.

[13] M. Toldo, A. Maracani, U. Michieli, and P. Zanuttigh, “Unsupervised domain adaptation in semantic
segmentation: A review,” Technologies, vol. 8, no. 2, 2020.

[14] M. Mancini, “Towards recognizing new semantic concepts in new visual domains,” arXiv preprint
arXiv:2012.09058, 2020.

[15] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning
of deep networks from decentralized data,” in Artificial Intelligence and Statistics (AISTATS). PMLR,
2017, pp. 1273–1282.

[16] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proc. of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2006, pp. 535–541.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” Advances in Neural
Information Processing Systems Workshops (NeurIPSW), 2015.

[18] U. Michieli and P. Zanuttigh, “Incremental learning techniques for semantic segmentation,” in Proceedings
of the International Conference on Computer Vision Workshops (ICCVW), 2019.

[19] U. Michieli, M. Toldo, and P. Zanuttigh, “Unsupervised Domain Adaptation and Continual Learning in
Semantic Segmentation,” Advanced Methods and Deep Learning in Computer Vision, Elsevier, 2021.

[20] U. Michieli and P. Zanuttigh, “Knowledge distillation for incremental learning in semantic segmentation,”
Computer Vision and Image Understanding, vol. 205, p. 103167, 2021.

259

[21] ——, “Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent repre-
sentations,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[22] A. Maracani*, U. Michieli*, M. Toldo*, and P. Zanuttigh, “Generative replay for continual learning in
semantic segmentation,” in Proceedings of the International Conference on Computer Vision (ICCV),
2021.

[23] F. Cermelli, M. Mancini, S. R. Bulò, E. Ricci, and B. Caputo, “Modeling the background for incremental
learning in semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[24] M. Mel, U. Michieli, and P. Zanuttigh, “Incremental and multi-task learning strategies for coarse-to-fine
semantic segmentation,” Technologies, vol. 8, no. 1, p. 1, 2020.

[25] U. Michieli, E. Borsato, L. Rossi, and P. Zanuttigh, “GMNet: Graph Matching Network for Large Scale
Part Semantic Segmentation in the Wild,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2020.

[26] M. Biasetton, U. Michieli, G. Agresti, and P. Zanuttigh, “Unsupervised Domain Adaptation for Semantic
Segmentation of Urban Scenes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2019.

[27] U. Michieli, M. Biasetton, G. Agresti, and P. Zanuttigh, “Adversarial learning and self-teaching techniques
for domain adaptation in semantic segmentation,” IEEE Transaction on Intelligent Vehicles, 2020.

[28] T. Spadotto, M. Toldo, U. Michieli, and P. Zanuttigh, “Unsupervised domain adaptation with multiple do-
main discriminators and adaptive self-training,” in Proceedings of the International Conference on Pattern
Recognition (ICPR), 2020.

[29] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent
adversarial networks,” in Proceedings of the International Conference on Computer Vision (ICCV), 2017.

[30] M. Toldo, U. Michieli, G. Agresti, and P. Zanuttigh, “Unsupervised domain adaptation for mobile semantic
segmentation based on cycle consistency and feature alignment,” Image and Vision Computing, 2020.

[31] M. Toldo, U. Michieli, and P. Zanuttigh, “Unsupervised domain adaptation in semantic segmentation
via orthogonal and clustered embeddings,” in Proceedings of the Winter Conference on Applications of
Computer Vision (WACV), 2021.

[32] F. Barbato, M. Toldo, U. Michieli, and P. Zanuttigh, “Latent space regularization for unsupervised domain
adaptation in semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2021.

[33] F. Barbato, U. Michieli, M. Toldo, and P. Zanuttigh, “Adapting segmentation networks to new domains by
disentangling latent representations,” arXiv preprint arXiv:2108.03021, 2021.

[34] U. Michieli and M. Ozay, “Are All Users Treated Fairly in Federated Learning Systems?” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021.

[35] ——, “Prototype guided federated learning of visual feature representations,” arXiv preprint
arXiv:2105.08982, 2021.

[36] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,” Connection Science, vol. 7, no. 2, pp.
123–146, 1995.

[37] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there are complementary learning systems
in the hippocampus and neocortex: insights from the successes and failures of connectionist models of
learning and memory.” Psychological review, vol. 102, no. 3, p. 419, 1995.

[38] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The sequential
learning problem,” in Psychology of learning and motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[39] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empirical investigation of catastrophic
forgetting in gradient-based neural networks,” Proceedings of the International Conference on Learning
Representations (ICLR), 2014.

[40] S. Thrun, “Is learning the n-th thing any easier than learning the first?” in Advances in Neural Information
Processing Systems (NeurIPS), 1996, pp. 640–646.

[41] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An incremental learning algorithm for
supervised neural networks,” IEEE Transactions on Systems, Man, and Cybernetics, part C (Applications
and Reviews), vol. 31, no. 4, pp. 497–508, 2001.

260

[42] G. Cauwenberghs and T. Poggio, “Incremental and decremental support vector machine learning,” in
Advances in Neural Information Processing Systems (NeurIPS), 2001, pp. 409–415.

[43] R. Kemker, M. McClure, A. Abitino, T. L. Hayes, and C. Kanan, “Measuring catastrophic forgetting in
neural networks,” in Thirty-second AAAI conference on artificial intelligence, 2018.

[44] S. Doncieux, N. Bredeche, L. L. Goff, B. Girard, A. Coninx, O. Sigaud, M. Khamassi, N. Díaz-Rodríguez,
D. Filliat, T. Hospedales et al., “Dream architecture: a developmental approach to open-ended learning in
robotics,” arXiv preprint arXiv:2005.06223, 2020.

[45] S. Thrun and L. Pratt, Learning to learn. Springer Science & Business Media, 2012.
[46] S. Grossberg, “Adaptive resonance theory: How a brain learns to consciously attend, learn, and recognize

a changing world,” Neural Networks, vol. 37, pp. 1–47, 2013.
[47] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonstationary environments: A survey,”

IEEE Computational Intelligence Magazine, vol. 10, no. 4, pp. 12–25, 2015.
[48] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and representation

learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 2001–2010.

[49] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. 40, no. 12, pp. 2935–2947, 2018.

[50] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari, “End-to-end incremental learning,”
in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 233–248.

[51] K. Shmelkov, C. Schmid, and K. Alahari, “Incremental learning of object detectors without catastrophic
forgetting,” in Proceedings of the International Conference on Computer Vision (ICCV), 2017, pp. 3400–
3409.

[52] D. Li, S. Tasci, S. Ghosh, J. Zhu, J. Zhang, and L. Heck, “Efficient incremental learning for mobile object
detection,” arXiv preprint arXiv:1904.00781, 2019.

[53] F. Ozdemir and O. Goksel, “Extending pretrained segmentation networks with additional anatomical struc-
tures,” International journal of computer assisted radiology and surgery, vol. 14, no. 7, pp. 1187–1195, 2019.

[54] O. Tasar, Y. Tarabalka, and P. Alliez, “Incremental learning for semantic segmentation of large-scale remote
sensing data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12,
no. 9, pp. 3524–3537, 2019.

[55] M. Klingner, A. Bär, P. Donn, and T. Fingscheidt, “Class-incremental learning for semantic segmentation
re-using neither old data nor old labels,” in IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2020.

[56] A. Douillard, Y. Chen, A. Dapogny, and M. Cord, “Plop: Learning without forgetting for continual semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[57] R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, N. Díaz-Rodríguez, and D. Filliat, “Continual reinforce-
ment learning deployed in real-life using policy distillation and sim2real transfer,” in Proceedings of the
International Conference on Machine Learning Workshops (ICMLW), 2019.

[58] R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, G. Cai, N. Díaz-Rodríguez, and D. Filliat, “Discorl:
Continual reinforcement learning via policy distillation,” arXiv preprint arXiv:1907.05855, 2019.

[59] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in cognitive sciences, vol. 3,
no. 4, pp. 128–135, 1999.

[60] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars,
“Continual learning: A comparative study on how to defy forgetting in classification tasks,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI), 2019.

[61] Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira, “Re-evaluating continual learning scenarios: A catego-
rization and case for strong baselines,” Advances in Neural Information Processing Systems (NeurIPS),
2018.

[62] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang, “Error-driven incremental learning in deep convolutional
neural network for large-scale image classification,” in Proceedings of the ACM International Conference
on Multimedia. ACM, 2014, pp. 177–186.

[63] Y.-X. Wang, D. Ramanan, and M. Hebert, “Growing a brain: Fine-tuning by increasing model capacity,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
2471–2480.

261

[64] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow: A continual structure learning frame-
work for overcoming catastrophic forgetting,” in Proceedings of the International Conference on Machine
Learning (ICML), 2019.

[65] D. Roy, P. Panda, and K. Roy, “Tree-CNN: a hierarchical deep convolutional neural network for incremental
learning,” Neural Networks, 2019.

[66] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,” in Proceedings of
the International Conference on Machine Learning (ICML), 2017, pp. 3987–3995.

[67] T. Lesort, A. Stoian, and D. Filliat, “Regularization shortcomings for continual learning,” arXiv preprint
arXiv:1912.03049, 2019.

[68] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and D. Wierstra, “Pathnet:
Evolution channels gradient descent in super neural networks,” arXiv preprint arXiv:1701.08734, 2017.

[69] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catastrophic forgetting with hard attention
to the task,” in Proceedings of the International Conference on Machine Learning (ICML), 2018.

[70] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network by iterative pruning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.

[71] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Z. Zhang, and Y. Fu, “Incremental classifier learning
with generative adversarial networks,” arXiv preprint arXiv:1802.00853, 2018.

[72] O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, and M. Nabi, “Learning to remember: A synaptic
plasticity driven framework for continual learning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 11 321–11 329.

[73] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,” in Advances in
Neural Information Processing Systems (NeurIPS), 2017, pp. 2990–2999.

[74] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a unified classifier incrementally via rebalancing,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
831–839.

[75] T. Lesort, “Continual learning: Tackling catastrophic forgetting in deep neural networks with replay pro-
cesses,” arXiv preprint arXiv:2007.00487, 2020.

[76] R. Istrate, A. C. I. Malossi, C. Bekas, and D. Nikolopoulos, “Incremental training of deep convolutional
neural networks,” arXiv preprint arXiv:1803.10232, 2018.

[77] S. S. Sarwar, A. Ankit, and K. Roy, “Incremental learning in deep convolutional neural networks using
partial network sharing,” IEEE Access, 2017.

[78] X. Dai, H. Yin, and N. K. Jha, “Incremental learning using a grow-and-prune paradigm with efficient neural
networks,” IEEE Transactions on Emerging Topics in Computing, 2019.

[79] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
malho, A. Grabska-Barwinska et al., “Overcoming catastrophic forgetting in neural networks,” Proceedings
of the National Academy of Sciences (PNAS), vol. 114, no. 13, pp. 3521–3526, 2017.

[80] J. Schwarz, J. Luketina, W. M. Czarnecki, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and R. Hadsell,
“Progress & compress: A scalable framework for continual learning,” in Proceedings of the International
Conference on Machine Learning (ICML), 2018.

[81] P. Dhar, R. V. Singh, K.-C. Peng, Z. Wu, and R. Chellappa, “Learning without memorizing,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5138–5146.

[82] P. Zhou, L. Mai, J. Zhang, N. Xu, Z. Wu, and L. S. Davis, “M2kd: Multi-model and multi-level knowledge
distillation for incremental learning,” Proceedings of the British Machine Vision Conference (BMVC), 2020.

[83] T. Furlanello, J. Zhao, A. M. Saxe, L. Itti, and B. S. Tjan, “Active long term memory networks,” arXiv
preprint arXiv:1606.02355, 2016.

[84] J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, and C.-C. J. Kuo, “Class-incremental
learning via deep model consolidation,” Proceedings of the Winter Conference on Applications of Computer
Vision (WACV), 2020.

[85] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in Proceedings of the International
Conference on Computer Vision (ICCV), 2019, pp. 1365–1374.

[86] N. Passalis, M. Tzelepi, and A. Tefas, “Heterogeneous knowledge distillation using information flow model-
ing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 2339–2348.

262

[87] L. Yu, V. O. Yazici, X. Liu, J. v. d. Weijer, Y. Cheng, and A. Ramisa, “Learning metrics from teachers:
Compact networks for image embedding,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 2907–2916.

[88] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single network to multiple tasks by learning
to mask weights,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp.
67–82.

[89] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring mid-level image representations
using convolutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014, pp. 1717–1724.

[90] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory aware synapses: Learning
what (not) to forget,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp.
139–154.

[91] J. Mańdziuk and L. Shastri, “Incremental class learning approach and its application to handwritten digit
recognition,” Information Sciences, vol. 141, no. 3-4, pp. 193–217, 2002.

[92] H. Jung, J. Ju, M. Jung, and J. Kim, “Less-forgetting learning in deep neural networks,” arXiv preprint
arXiv:1607.00122, 2016.

[93] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” in Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[94] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian walk for incremental learning:
Understanding forgetting and intransigence,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 532–547.

[95] S. Hou, X. Pan, C. Change Loy, Z. Wang, and D. Lin, “Lifelong learning via progressive distillation and
retrospection,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 437–452.

[96] M. Welling, “Herding dynamical weights to learn,” in Proceedings of the Annual International Conference
on Machine Learning (ICML). ACM, 2009.

[97] R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin, M. Caccia, M. Lin, and L. Page-Caccia, “Online con-
tinual learning with maximal interfered retrieval,” in Advances in Neural Information Processing Systems
(NeurIPS), 2019, pp. 11 849–11 860.

[98] D. Li, S. Tasci, S. Ghosh, J. Zhu, J. Zhang, and L. Heck, “Rilod: near real-time incremental learning for
object detection at the edge,” in Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019,
pp. 113–126.

[99] A. Douillard, Y. Chen, A. Dapogny, and M. Cord, “Tackling catastrophic forgetting and background shift
in continual semantic segmentation,” arXiv preprint arXiv:2106.15287, 2021.

[100] S. Cha, B. Kim, Y. Yoo, and T. Moon, “Ssul: Semantic segmentation with unknown label for exemplar-
based class-incremental learning,” arXiv preprint arXiv:2106.11562, 2021.

[101] G. Nguyen, S. Chen, T. Do, T. J. Jun, H.-J. Choi, and D. Kim, “Dissecting catastrophic forgetting in
continual learning by deep visualization,” arXiv preprint arXiv:2001.01578, 2020.

[102] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 35, no. 8, pp. 1798–1828, 2013.

[103] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection
and semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014, pp. 580–587.

[104] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele, “Latent embeddings for zero-shot clas-
sification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 69–77.

[105] X. Peng, Z. Huang, X. Sun, and K. Saenko, “Domain agnostic learning with disentangled representations,”
in Proceedings of the International Conference on Machine Learning (ICML). PMLR, 2019, pp. 5102–5112.

[106] A. Achille, T. Eccles, L. Matthey, C. Burgess, N. Watters, A. Lerchner, and I. Higgins, “Life-long disen-
tangled representation learning with cross-domain latent homologies,” in Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[107] K. Javed and M. White, “Meta-learning representations for continual learning,” in Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[108] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in Neural Information Processing Systems (NeurIPS), 2014,
pp. 2672–2680.

263

[109] T. J. Draelos, N. E. Miner, C. C. Lamb, J. A. Cox, C. M. Vineyard, K. D. Carlson, W. M. Severa, C. D.
James, and J. B. Aimone, “Neurogenesis deep learning: Extending deep networks to accommodate new
classes,” in International Joint Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 526–533.

[110] N. Kamra, U. Gupta, and Y. Liu, “Deep generative dual memory network for continual learning,” arXiv
preprint arXiv:1710.10368, 2017.

[111] Z. Huang, W. Hao, X. Wang, M. Tao, J. Huang, W. Liu, and X.-S. Hua, “Half-real half-fake distillation for
class-incremental semantic segmentation,” arXiv preprint arXiv:2104.00875, 2021.

[112] Q. Hou, M.-M. Cheng, J. Liu, and P. H. Torr, “Webseg: Learning semantic segmentation from web
searches,” arXiv preprint arXiv:1803.09859, 2018.

[113] D. Modolo and V. Ferrari, “Learning semantic part-based models from google images,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), vol. 40, no. 6, pp. 1502–1509, 2017.

[114] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The Pascal Visual Object
Classes (VOC) challenge,” International Journal of Computer Vision (IJCV), vol. 88, no. 2, pp. 303–338,
2010.

[115] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for image understanding: Multi-class object
recognition and segmentation by jointly modeling texture, layout, and context,” International Journal of
Computer Vision (IJCV), vol. 81, no. 1, pp. 2–23, 2009.

[116] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for image categorization and segmenta-
tion,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[117] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through ade20k dataset,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
633–641.

[118] N. Díaz-Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni, “Don’t forget, there is more than forgetting:
new metrics for continual learning,” in Advances in Neural Information Processing Systems Workshops
(NeurIPSW), 2018.

[119] V. Nekrasov, “Pre-computed weights for ResNet-101,” https://github.com/DrSleep/tensorflow-deeplab-
resnet, Accessed: 2020-03.

[120] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
coco: Common objects in context,” in Proceedings of the European Conference on Computer Vision
(ECCV). Springer, 2014, pp. 740–755.

[121] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet: A large-scale hierarchical image database,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp.
248–255.

[122] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large scale incremental learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[123] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” in Proceed-
ings of the International Conference on Machine Learning, 2017, pp. 1321–1330.

[124] G. Csurka, D. Larlus, F. Perronnin, and F. Meylan, “What is a good evaluation measure for semantic
segmentation?” in Proceedings of the British Machine Vision Conference (BMVC), vol. 27, 2013, p. 2013.

[125] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard
et al., “Tensorflow: A system for large-scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[126] R. Aljundi, M. Rohrbach, and T. Tuytelaars, “Selfless sequential learning,” Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

[127] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2. IEEE,
2006, pp. 1735–1742.

[128] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via non-parametric instance discrim-
ination,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 3733–3742.

[129] C. Zhuang, A. L. Zhai, and D. Yamins, “Local aggregation for unsupervised learning of visual embeddings,”
in Proceedings of the International Conference on Computer Vision (ICCV), 2019, pp. 6002–6012.

[130] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” arXiv preprint arXiv:1906.05849,
2019.

264

[131] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation
learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020, pp. 9729–9738.

[132] I. Misra and L. v. d. Maaten, “Self-supervised learning of pretext-invariant representations,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 6707–6717.

[133] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual
representations,” Proceedings of the International Conference on Machine Learning (ICML), 2020.

[134] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” in Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2017, pp. 2051–2060.

[135] M. Ye, X. Zhang, P. C. Yuen, and S.-F. Chang, “Unsupervised embedding learning via invariant and
spreading instance feature,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 6210–6219.

[136] X. Ji, J. F. Henriques, and A. Vedaldi, “Invariant information clustering for unsupervised image classifi-
cation and segmentation,” in Proceedings of the International Conference on Computer Vision (ICCV),
2019, pp. 9865–9874.

[137] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan,
“Supervised contrastive learning,” Advances in Neural Information Processing Systems (NeurIPS), 2020.

[138] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann, “Contrastive adaptation network for unsupervised
domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4893–4902.

[139] J. Liang, R. He, Z. Sun, and T. Tan, “Distant supervised centroid shift: A simple and efficient approach
to visual domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 2975–2984.

[140] N. Dong and E. P. Xing, “Few-shot semantic segmentation with prototype learning.” in Proceedings of the
British Machine Vision Conference (BMVC), vol. 3, 2018.

[141] K. Wang, J. H. Liew, Y. Zou, D. Zhou, and J. Feng, “Panet: Few-shot image semantic segmentation with
prototype alignment,” in Proceedings of the International Conference on Computer Vision (ICCV), 2019,
pp. 9197–9206.

[142] Z. Tian, X. Lai, L. Jiang, M. Shu, H. Zhao, and J. Jia, “Generalized few-shot semantic segmentation,”
arXiv preprint arXiv:2010.05210, 2020.

[143] P. O. Pinheiro, “Unsupervised domain adaptation with similarity learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 8004–8013.

[144] S. Wu, J. Zhong, W. Cao, R. Li, Z. Yu, and H.-S. Wong, “Improving domain-specific classification by
collaborative learning with adaptation networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 5450–5457.

[145] S. Xie, Z. Zheng, L. Chen, and C. Chen, “Learning semantic representations for unsupervised domain
adaptation,” in Proceedings of the International Conference on Machine Learning (ICML), 2018.

[146] Z. Deng, Y. Luo, and J. Zhu, “Cluster alignment with a teacher for unsupervised domain adaptation,” in
Proceedings of the International Conference on Computer Vision (ICCV), 2019, pp. 9944–9953.

[147] S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa, “Generalized domain-adaptive dictionaries,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp.
361–368.

[148] H. Zhang, V. M. Patel, S. Shekhar, and R. Chellappa, “Domain adaptive sparse representation-based clas-
sification,” in IEEE International Conference and Workshops on Automatic Face and Gesture Recognition
(FG), vol. 1. IEEE, 2015, pp. 1–8.

[149] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in Advances in Neural
Information Processing Systems (NeurIPS), 2017, pp. 4077–4087.

[150] B. Oreshkin, P. Rodríguez López, and A. Lacoste, “Tadam: Task dependent adaptive metric for improved
few-shot learning,” Advances in Neural Information Processing Systems (NeurIPS), vol. 31, pp. 721–731,
2018.

[151] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “Advent: Adversarial entropy minimization for
domain adaptation in semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 2517–2526.

265

[152] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[153] C. He, R. Wang, S. Shan, and X. Chen, “Exemplar-supported generative reproduction for class incremental
learning.” in Proceedings of the British Machine Vision Conference (BMVC), 2018, p. 98.

[154] X. Chen and A. Gupta, “Webly supervised learning of convolutional networks,” in Proceedings of the
International Conference on Computer Vision (ICCV), 2015, pp. 1431–1439.

[155] S. K. Divvala, A. Farhadi, and C. Guestrin, “Learning everything about anything: Webly-supervised visual
concept learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 3270–3277.

[156] L. Niu, A. Veeraraghavan, and A. Sabharwal, “Webly supervised learning meets zero-shot learning: A hybrid
approach for fine-grained classification,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 7171–7180.

[157] B. Jin, M. V. Ortiz Segovia, and S. Susstrunk, “Webly supervised semantic segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3626–3635.

[158] T. Shen, G. Lin, C. Shen, and I. Reid, “Bootstrapping the performance of webly supervised semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 1363–1371.

[159] S. Hong, D. Yeo, S. Kwak, H. Lee, and B. Han, “Weakly supervised semantic segmentation using web-
crawled videos,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 7322–7330.

[160] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high fidelity natural image syn-
thesis,” in Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[161] “Tensorflow module of BigGAN-deep 512, https://tfhub.dev/deepmind/biggan-deep-512/1. Accessed on
18/03/2020.”

[162] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in
Proceedings of the International Conference on Machine Learning (ICML), 2019, pp. 6105–6114.

[163] “TensorFlow module of EfficientNet-b2, https://tfhub.dev/google/efficientnet/b2/classification/1. Ac-
cessed on 18/03/2020.”

[164] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings of the Inter-
national Conference on Machine Learning (ICML), 2009, pp. 41–48.

[165] O. Stretcu, E. A. Platanios, T. M. Mitchell, and B. Póczos, “Coarse-to-fine curriculum learning,” arXiv
preprint arXiv:2106.04072, 2021.

[166] J. Baxter, “A model of inductive bias learning,” Journal of Artificial Intelligence Research, vol. 12, pp.
149–198, 2000.

[167] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75, 1997.
[168] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmentation and support inference from

rgbd images,” in Proceedings of the European Conference on Computer Vision (ECCV), 2012.
[169] C. Couprie, C. Farabet, L. Najman, and Y. Lecun, “Convolutional nets and watershed cuts for real-time

semantic labeling of RGBD videos.” Journal of Machine Learning Research (JMLR), vol. 15, no. 1, pp.
3489–3511, 2014.

[170] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels with a common multi-scale
convolutional architecture,” Proceedings of the International Conference on Computer Vision (ICCV), pp.
2650–2658, 2015.

[171] J. Wang, Z. Wang, D. Tao, S. See, and G. Wang, “Learning common and specific features for rgb-d semantic
segmentation with deconvolutional networks,” Proceedings of the European Conference on Computer Vision
(ECCV), pp. 664–679, 2016.

[172] U. Michieli, M. Camporese, A. Agiollo, G. Pagnutti, and P. Zanuttigh, “Region Merging Driven by Deep
Learning for RGB-D Segmentation and Labeling,” International Conference on Distributed Smart Cameras
(ICDSC), Trento (Italy), 2019.

[173] X. Ren, L. Bo, and D. Fox, “RGB-D scene labeling: Features and algorithms,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[174] Y. Wang, B. Liang, M. Ding, and J. Li, “Dense semantic labeling with atrous spatial pyramid pooling and
decoder for high-resolution remote sensing imagery,” Remote Sensing, vol. 11, no. 1, p. 20, 2019.

266

https://tfhub.dev/deepmind/ biggan-deep-512/1
https://tfhub.dev/google/ efficientnet/b2/classification/1

[175] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features from RGB-D images for object
detection and segmentation,” Proceedings of the European Conference on Computer Vision (ECCV), pp.
345–360, 2014.

[176] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via multi-task network cascades,” Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3150–3158,
2016.

[177] Z. Ren and Y. Jae Lee, “Cross-domain self-supervised multi-task feature learning using synthetic imagery,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.
762–771.

[178] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses for scene geom-
etry and semantics,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7482–7491, 2018.

[179] E. Zakirov, “Pre-computed weights for Xception,” https://github.com/bonlime/keras-deeplab-v3-plus/, Ac-
cessed: 2019-10-20.

[180] S. Gupta, P. Arbelaez, and J. Malik, “Perceptual organization and recognition of indoor scenes from RGB-
D images,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2013.

[181] C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor semantic segmentation using depth informa-
tion,” Proceedings of the International Conference on Learning Representations (ICLR), 2013.

[182] G. Pagnutti, L. Minto, and P. Zanuttigh, “Segmentation and semantic labelling of rgbd data with convo-
lutional neural networks and surface fitting,” IET Computer Vision, vol. 11, no. 8, pp. 633–642, 2017.

[183] A. C. Măller and S. Behnke, “Learning depth-sensitive conditional random fields for semantic segmentation
of rgb-d images.” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
2014.

[184] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik, “Indoor scene understanding with rgb-d images: Bottom-
up segmentation, object detection and semantic segmentation,” International Journal of Computer Vision
(IJCV), vol. 112, no. 2, pp. 133–149, 2015.

[185] C. Cadena and J. Košecka, “Semantic parsing for priming object detection in indoors rgb-d scenes,” The
International Journal of Robotics Research, vol. 34, no. 4-5, pp. 582–597, 2015.

[186] J. Stückler, B. Waldvogel, H. Schulz, and S. Behnke, “Dense real-time mapping of object-class semantics
from rgb-d video,” Journal of Real-Time Image Processing, vol. 10, pp. 599–609, 2013.

[187] A. Wang, J. Lu, G. Wang, J. Cai, and T. Cham, “Multi-modal unsupervised feature learning for RGB-D
scene labeling,” Proceedings of the European Conference on Computer Vision (ECCV), pp. 453–467, 2014.

[188] A. Hermans, G. Floros, and B. Leibe, “Dense 3D semantic mapping of indoor scenes from rgb-d images,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2631–2638,
2014.

[189] S. Khan, M. Bennamoun, F. Sohel, and R. Togneri, “Geometry driven semantic labeling of indoor scenes,”
Proceedings of the European Conference on Computer Vision (ECCV), pp. 679–694, 2014.

[190] D. Lin, C. Guangyong, D. Cohen-Or, P.-A. Heng, and H. Huang, “Cascaded feature network for semantic
segmentation of rgb-d images,” Proceedings of the International Conference on Computer Vision (ICCV),
2017-10.

[191] H. Liu, W. Wu, and X. Wang, “Rgb-d joint modelling with scene geometric information for indoor semantic
segmentation,” Multimedia Tools and Applications, 2018-05.

[192] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3d graph neural networks for rgbd semantic segmentation,”
Proceedings of the International Conference on Computer Vision (ICCV), pp. 5209–5218, 2017-10.

[193] J. Dong, Q. Chen, X. Shen, J. Yang, and S. Yan, “Towards unified human parsing and pose estimation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp.
843–850.

[194] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-of-parts,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 1385–1392.

[195] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille, “Detect what you can: Detecting
and representing objects using holistic models and body parts,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1971–1978.

267

[196] H. Azizpour and I. Laptev, “Object detection using strongly-supervised deformable part models,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV). Springer, 2012, pp. 836–849.

[197] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based r-cnns for fine-grained category detection,”
in Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2014, pp. 834–849.

[198] Y. Wang, D. Tran, Z. Liao, and D. Forsyth, “Discriminative hierarchical part-based models for human
parsing and action recognition,” Journal of Machine Learning Research, vol. 13, no. Oct, pp. 3075–3102,
2012.

[199] J. Sun and J. Ponce, “Learning discriminative part detectors for image classification and cosegmentation,”
in Proceedings of the International Conference on Computer Vision (ICCV), 2013, pp. 3400–3407.

[200] J. Krause, H. Jin, J. Yang, and L. Fei-Fei, “Fine-grained recognition without part annotations,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5546–5555.

[201] X. Liang, S. Liu, X. Shen, J. Yang, L. Liu, J. Dong, L. Lin, and S. Yan, “Deep human parsing with active
template regression,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 37,
no. 12, pp. 2402–2414, 2015.

[202] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg, “Parsing clothing in fashion photographs,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012,
pp. 3570–3577.

[203] L. L. Zhu, Y. Chen, C. Lin, and A. Yuille, “Max margin learning of hierarchical configural deformable
templates (hcdts) for efficient object parsing and pose estimation,” International Journal of Computer
Vision (IJCV), vol. 93, no. 1, pp. 1–21, 2011.

[204] S. Eslami and C. Williams, “A generative model for parts-based object segmentation,” in Advances in
Neural Information Processing Systems (NeurIPS), 2012, pp. 100–107.

[205] Y. Song, X. Chen, J. Li, and Q. Zhao, “Embedding 3d geometric features for rigid object part segmentation,”
in Proceedings of the International Conference on Computer Vision (ICCV), 2017, pp. 580–588.

[206] W. Lu, X. Lian, and A. Yuille, “Parsing semantic parts of cars using graphical models and segment ap-
pearance consistency,” Proceedings of the British Machine Vision Conference (BMVC), 2014.

[207] J. Wang and A. L. Yuille, “Semantic part segmentation using compositional model combining shape and
appearance,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1788–1797.

[208] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, “Joint object and part segmentation using
deep learned potentials,” in Proceedings of the International Conference on Computer Vision (ICCV),
2015, pp. 1573–1581.

[209] H. Haggag, A. Abobakr, M. Hossny, and S. Nahavandi, “Semantic body parts segmentation for quadrupedal
animals,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016, pp.
000 855–000 860.

[210] Y. Zhao, J. Li, Y. Zhang, and Y. Tian, “Multi-class part parsing with joint boundary-semantic awareness,”
in Proceedings of the International Conference on Computer Vision (ICCV), 2019, pp. 9177–9186.

[211] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns for object segmentation and fine-
grained localization,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 447–456.

[212] F. Xia, P. Wang, X. Chen, and A. L. Yuille, “Joint multi-person pose estimation and semantic part segmen-
tation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 6769–6778.

[213] F. Xia, P. Wang, L.-C. Chen, and A. L. Yuille, “Zoom better to see clearer: Human and object parsing
with hierarchical auto-zoom net,” in Proceedings of the European Conference on Computer Vision (ECCV).
Springer, 2016, pp. 648–663.

[214] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture
for image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 39, no. 12, pp. 2481–2495, 2017.

[215] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale: Scale-aware semantic image
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 3640–3649.

[216] X. Liang, K. Gong, X. Shen, and L. Lin, “Look into person: Joint body parsing & pose estimation network
and a new benchmark,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 41, no. 4, pp. 871–885, 2018.

268

[217] X. Liang, L. Lin, X. Shen, J. Feng, S. Yan, and E. P. Xing, “Interpretable structure-evolving lstm,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
1010–1019.

[218] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing with graph lstm,” in Proceedings
of the European Conference on Computer Vision (ECCV). Springer, 2016, pp. 125–143.

[219] H.-S. Fang, G. Lu, X. Fang, J. Xie, Y.-W. Tai, and C. Lu, “Weakly and semi supervised human body part
parsing via pose-guided knowledge transfer,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[220] X. Nie, J. Feng, and S. Yan, “Mutual learning to adapt for joint human parsing and pose estimation,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 502–517.

[221] J. Zhao, J. Li, X. Nie, F. Zhao, Y. Chen, Z. Wang, J. Feng, and S. Yan, “Self-supervised neural aggregation
networks for human parsing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2017, pp. 7–15.

[222] F. Xia, J. Zhu, P. Wang, and A. Yuille, “Pose-guided human parsing with deep learned features,” Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2015.

[223] N. Díaz-Rodríguez, A. Lamas, J. Sanchez, G. Franchi, I. Donadello, S. Tabik, D. Filliat, P. Cruz, R. Montes,
and F. Herrera, “Explainable neural-symbolic learning (x-nesyl) methodology to fuse deep learning repre-
sentations with expert knowledge graphs: the monumai cultural heritage use case,” Information Fusion,
2021.

[224] A. Bennetot, J.-L. Laurent, R. Chatila, and N. Díaz-Rodríguez, “Towards explainable neural-symbolic
visual reasoning,” arXiv preprint arXiv:1909.09065, 2019.

[225] F. Emmert-Streib, M. Dehmer, and Y. Shi, “Fifty years of graph matching, network alignment and network
comparison,” Information Sciences, vol. 346, pp. 180–197, 2016.

[226] L. Livi and A. Rizzi, “The graph matching problem,” Pattern Analysis and Applications, vol. 16, no. 3, pp.
253–283, 2013.

[227] D. Das and C. G. Lee, “Unsupervised domain adaptation using regularized hyper-graph matching,” in
Proceedings of the IEEE International Conference on Image Processing (ICIP). IEEE, 2018, pp. 3758–
3762.

[228] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari, “Do semantic parts emerge in convolutional neural net-
works?” International Journal of Computer Vision (IJCV), vol. 126, no. 5, pp. 476–494, 2018.

[229] L.-C. Chen, “DeepLab official TensorFlow implementation,” Accessed: 2020-03-01. [Online]. Available:
https://github.com/tensorflow/models/tree/master/research/deeplab

[230] M. Wang andW. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing, vol. 312, pp. 135–153,
2018.

[231] S. Sun, H. Shi, and Y. Wu, “A survey of multi-source domain adaptation,” Information Fusion, vol. 24,
pp. 84–92, 2015.

[232] G. Csurka, “Domain adaptation for visual applications: A comprehensive survey,” Domain Adaptation in
Computer Vision Application, 2017.

[233] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in nlp,” in Proc. of the 45th annual
meeting of the association of computational linguistics, 2007, pp. 264–271.

[234] F. Fang, K. Dutta, and A. Datta, “Domain adaptation for sentiment classification in light of multiple
sources,” INFORMS Journal on Computing, vol. 26, no. 3, pp. 586–598, 2014.

[235] J. Jiang, “A literature survey on domain adaptation of statistical classifiers,” URL: http://sifaka. cs. uiuc.
edu/jiang4/domainadaptation/survey, vol. 3, pp. 1–12, 2008.

[236] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain adaptation: A survey of recent advances,”
IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 53–69, 2015.

[237] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with deep adaptation networks,”
in Proceedings of the International Conference on Machine Learning (ICML), 2015, pp. 97–105.

[238] P. P. Busto and J. Gall, “Open set domain adaptation,” in Proceedings of the International Conference on
Computer Vision (ICCV), 2017, pp. 754–763.

[239] J. Zhuo, S. Wang, S. Cui, and Q. Huang, “Unsupervised open domain recognition by semantic discrepancy
minimization,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 750–759.

269

https://github.com/tensorflow/models/tree/master/research/deeplab

[240] J. N. Kundu, R. M. Venkatesh, N. Venkat, A. Revanur, and R. V. Babu, “Class-incremental domain
adaptation,” in Proceedings of the European Conference on Computer Vision (ECCV), 2020.

[241] H. T. Ho and R. Gopalan, “Model-driven domain adaptation on product manifolds for unconstrained face
recognition,” International Journal of Computer Vision (IJCV), vol. 109, no. 1-2, pp. 110–125, 2014.

[242] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,” in
Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2010, pp. 213–226.

[243] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground truth from computer games,”
in Proceedings of the European Conference on Computer Vision (ECCV), B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds., vol. 9906. Springer International Publishing, 2016, pp. 102–118.

[244] K. Saito, D. Kim, S. Sclaroff, and K. Saenko, “Universal domain adaptation through self supervision,” in
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[245] M. Bucher, T.-H. Vu, M. Cord, and P. Pérez, “Buda: Boundless unsupervised domain adaptation in
semantic segmentation,” arXiv preprint arXiv:2004.01130, 2020.

[246] D. Li, J.-B. Huang, Y. Li, S. Wang, and M.-H. Yang, “Weakly supervised object localization with progressive
domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 3512–3520.

[247] N. Inoue, R. Furuta, T. Yamasaki, and K. Aizawa, “Cross-domain weakly-supervised object detection
through progressive domain adaptation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 5001–5009.

[248] F. Sun and W. Li, “Saliency guided deep network for weakly-supervised image segmentation,” Pattern
Recognition Letters (PRL), 2019.

[249] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto, “Unified deep supervised domain adaptation
and generalization,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp.
5715–5725.

[250] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko, “Semi-supervised domain adaptation via minimax
entropy,” in Proceedings of the International Conference on Computer Vision (ICCV), 2019.

[251] A. Vezhnevets and J. M. Buhmann, “Towards weakly supervised semantic segmentation by means of mul-
tiple instance and multitask learning,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2010, pp. 3249–3256.

[252] D. Pathak, E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional multi-class multiple instance learn-
ing,” arXiv preprint arXiv:1412.7144, 2014.

[253] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly- and semi-supervised learning
of a deep convolutional network for semantic image segmentation,” in Proceedings of the International
Conference on Computer Vision (ICCV), 2015, pp. 1742–1750.

[254] D. Pathak, P. Krahenbuhl, and T. Darrell, “Constrained convolutional neural networks for weakly super-
vised segmentation,” in Proceedings of the International Conference on Computer Vision (ICCV), 2015,
pp. 1796–1804.

[255] Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, J. Feng, Y. Zhao, and S. Yan, “STC: A simple to
complex framework for weakly-supervised semantic segmentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), vol. 39, no. 11, pp. 2314–2320, 2017.

[256] S. Hong, H. Noh, and B. Han, “Decoupled deep neural network for semi-supervised semantic segmentation,”
in Advances in Neural Information Processing Systems (NeurIPS), 2015, pp. 1495–1503.

[257] J. Dai, K. He, and J. Sun, “Boxsup: Exploiting bounding boxes to supervise convolutional networks for
semantic segmentation,” in Proceedings of the International Conference on Computer Vision (ICCV), 2015,
pp. 1635–1643.

[258] N. Souly, C. Spampinato, and M. Shah, “Semi and weakly supervised semantic segmentation using gener-
ative adversarial network,” arXiv preprint arXiv:1703.09695, 2017.

[259] A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain: Three principles for weakly-supervised
image segmentation,” in European Conference on Computer Vision. Springer, 2016, pp. 695–711.

[260] Z. Huang, X. Wang, J. Wang, W. Liu, and J. Wang, “Weakly-supervised semantic segmentation network
with deep seeded region growing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 7014–7023.

[261] Y. Wei, J. Feng, X. Liang, M.-M. Cheng, Y. Zhao, and S. Yan, “Object region mining with adversarial
erasing: A simple classification to semantic segmentation approach,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1568–1576.

270

[262] J. Ahn and S. Kwak, “Learning pixel-level semantic affinity with image-level supervision for weakly super-
vised semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 4981–4990.

[263] J. Lee, E. Kim, S. Lee, J. Lee, and S. Yoon, “Ficklenet: Weakly and semi-supervised semantic image
segmentation using stochastic inference,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 5267–5276.

[264] J. Ahn, S. Cho, and S. Kwak, “Weakly supervised learning of instance segmentation with inter-pixel
relations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 2209–2218.

[265] P. Z. Ramirez, A. Tonioni, S. Salti, and L. D. Stefano, “Learning across tasks and domains,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[266] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion: Maximizing for
domain invariance,” arXiv preprint arXiv:1412.3474, 2014.

[267] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Unsupervised domain adaptation with residual transfer
networks,” in Advances in Neural Information Processing Systems (NeurIPS), 2016.

[268] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” in AAAI, 2016, pp.
2058–2065.

[269] B. Sun and K. Saenko, “Deep CORAL: correlation alignment for deep domain adaptation,” in Proceedings
of the European Conference on Computer Vision Workshops (ECCVW), 2016, pp. 443–450.

[270] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in Proceedings of the
International Conference on Machine Learning (ICML), 2015, pp. 1180–1189.

[271] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lem-
pitsky, “Domain-adversarial training of neural networks,” Journal of Machine Learning Research (JMLR),
vol. 17, no. 1, pp. 2096–2030, 2016.

[272] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adaptation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
7167–7176.

[273] J. Hoffman, D. Wang, F. Yu, and T. Darrell, “FCNs in the wild: Pixel-level adversarial and constraint-based
adaptation,” arXiv preprint arXiv:1612.02649, 2016.

[274] Y. Li, L. Yuan, and N. Vasconcelos, “Bidirectional learning for domain adaptation of semantic segmen-
tation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[275] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell, “Cycada: Cycle-
consistent adversarial domain adaptation,” in Proceedings of the International Conference on Machine
Learning (ICML), 2018.

[276] Y.-C. Chen, Y.-Y. Lin, M.-H. Yang, and J.-B. Huang, “Crdoco: Pixel-level domain transfer with cross-
domain consistency,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[277] Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and M. Sun, “No more discrimina-
tion: Cross city adaptation of road scene segmenters,” in Proceedings of the International Conference on
Computer Vision (ICCV), 2017, pp. 1992–2001.

[278] L. Du, J. Tan, H. Yang, J. Feng, X. Xue, Q. Zheng, X. Ye, and X. Zhang, “SSF-DAN: separated semantic
feature based domain adaptation network for semantic segmentation,” in Proceedings of the International
Conference on Computer Vision (ICCV), 2019.

[279] S. Sankaranarayanan, Y. Balaji, A. Jain, S. Nam Lim, and R. Chellappa, “Learning from synthetic data:
Addressing domain shift for semantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 3752–3761.

[280] Z. Murez, S. Kolouri, D. J. Kriegman, R. Ramamoorthi, and K. Kim, “Image to image translation for
domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[281] X. Zhu, H. Zhou, C. Yang, J. Shi, and D. Lin, “Penalizing top performers: Conservative loss for semantic
segmentation adaptation,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 568–583.

271

[282] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chandraker, “Learning to adapt
structured output space for semantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 7472–7481.

[283] Y. Chen, W. Li, X. Chen, and L. V. Gool, “Learning semantic segmentation from synthetic data: A geo-
metrically guided input-output adaptation approach,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 1841–1850.

[284] W. Chang, H. Wang, W. Peng, and W. Chiu, “All about structure: Adapting structural information across
domains for boosting semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 1900–1909.

[285] Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Taking a closer look at domain shift: Category-level
adversaries for semantics consistent domain adaptation,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[286] J. Yang, W. An, S. Wang, X. Zhu, C. Yan, and J. Huang, “Label-driven reconstruction for domain adap-
tation in semantic segmentation,” Proceedings of the European Conference on Computer Vision (ECCV),
2020.

[287] Y. Chen, W. Li, and L. Van Gool, “Road: Reality oriented adaptation for semantic segmentation of urban
scenes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 7892–7901.

[288] Y. Zhang, Z. Qiu, T. Yao, D. Liu, and T. Mei, “Fully convolutional adaptation networks for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 6810–6818.

[289] H. Huang, Q. Huang, and P. Krähenbühl, “Domain transfer through deep activation matching,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV), 2018.

[290] Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang, “Significance-aware information bottleneck for domain
adaptive semantic segmentation,” in Proceedings of the International Conference on Computer Vision
(ICCV), 2019.

[291] T. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “DADA: depth-aware domain adaptation in semantic
segmentation,” in Proceedings of the International Conference on Computer Vision (ICCV), 2019, pp.
7363–7372.

[292] Y.-H. Tsai, K. Sohn, S. Schulter, and M. Chandraker, “Domain adaptation for structured output via
discriminative patch representations,” in Proceedings of the International Conference on Computer Vision
(ICCV), 2019, pp. 1456–1465.

[293] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and
unsupervised images through adversarial training,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 2242–2251.

[294] X. Peng and K. Saenko, “Synthetic to real adaptation with generative correlation alignment networks,” in
Proceedings of the Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018, pp.
1982–1991.

[295] X. Wang and A. Gupta, “Generative image modeling using style and structure adversarial networks,” in
Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2016, pp. 318–335.

[296] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative visual manipulation on the natural
image manifold,” in Proceedings of the European Conference on Computer Vision (ECCV). Springer,
2016, pp. 597–613.

[297] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic, “Generating images with recurrent adversarial networks,”
arXiv preprint arXiv:1602.05110, 2016.

[298] Q. Zhou, Z. Feng, G. Cheng, X. Tan, J. Shi, and L. Ma, “Uncertainty-aware consistency regularization for
cross-domain semantic segmentation,” arXiv preprint arXiv:2004.08878, 2020.

[299] C. Qin, L. Wang, Y. Zhang, and Y. Fu, “Generatively inferential co-training for unsupervised domain
adaptation,” in Proceedings of the International Conference on Computer Vision Workshops (ICCVW),
2019, pp. 1055–1064.

[300] P. Li, X. Liang, D. Jia, and E. P. Xing, “Semantic-aware grad-gan for virtual-to-real urban scene adaption,”
in Proceedings of the British Machine Vision Conference (BMVC), 2018.

[301] Y. Yang, D. Lao, G. Sundaramoorthi, and S. Soatto, “Phase consistent ecological domain adaptation,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

272

[302] R. Gong, W. Li, Y. Chen, and L. V. Gool, “DLOW: domain flow for adaptation and generalization,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
2477–2486.

[303] F. Ragusa, D. Di Mauro, A. Palermo, A. Furnari, and G. M. Farinella, “Semantic object segmentation in
cultural sites using real and synthetic data,” in Proceedings of the International Conference on Pattern
Recognition (ICPR). IEEE, 2021, pp. 1964–1971.

[304] K. Lee, G. Ros, J. Li, and A. Gaidon, “SPIGAN: privileged adversarial learning from simulation,” in
Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[305] J. Choi, T. Kim, and C. Kim, “Self-ensembling with gan-based data augmentation for domain adaptation
in semantic segmentation,” in Proceedings of the International Conference on Computer Vision (ICCV),
2019, pp. 6830–6840.

[306] W. Hong, Z. Wang, M. Yang, and J. Yuan, “Conditional generative adversarial network for structured
domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 1335–1344.

[307] F. Pizzati, R. d. Charette, M. Zaccaria, and P. Cerri, “Domain bridge for unpaired image-to-image trans-
lation and unsupervised domain adaptation,” in Proceedings of the Winter Conference on Applications of
Computer Vision (WACV), 2020, pp. 2990–2998.

[308] X. Huang, M. Liu, S. J. Belongie, and J. Kautz, “Multimodal unsupervised image-to-image translation,”
in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 179–196.

[309] Z. Wu, X. Han, Y. Lin, M. G. Uzunbas, T. Goldstein, S. Lim, and L. S. Davis, “DCAN: dual channel-wise
alignment networks for unsupervised scene adaptation,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 535–552.

[310] Z. Wu, X. Wang, J. Gonzalez, T. Goldstein, and L. Davis, “ACE: adapting to changing environments
for semantic segmentation,” in Proceedings of the International Conference on Computer Vision (ICCV),
2019, pp. 2121–2130.

[311] A. Dundar, M. Liu, T. Wang, J. Zedlewski, and J. Kautz, “Domain stylization: A strong, simple baseline
for synthetic to real image domain adaptation,” arXiv preprint arXiv:1807.09384, 2018.

[312] Y. Yang and S. Soatto, “FDA: fourier domain adaptation for semantic segmentation,” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[313] L. A. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolutional neural networks,” in
Advances in Neural Information Processing Systems (NeurIPS), 2015, pp. 262–270.

[314] ——, “Image style transfer using convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2414–2423.

[315] X. Huang and S. J. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization,”
in Proceedings of the International Conference on Computer Vision (ICCV), 2017, pp. 1510–1519.

[316] F. Pizzati, P. Cerri, and R. de Charette, “Comogan: continuous model-guided image-to-image translation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp.
14 288–14 298.

[317] B. Lütjens, B. Leshchinskiy, C. Requena-Mesa, F. Chishtie, N. Díaz-Rodríguez, O. Boulais, A. Sankara-
narayanan, A. Piña, Y. Gal, C. Raïssi et al., “Physically-consistent generative adversarial networks for
coastal flood visualization,” arXiv preprint arXiv:2104.04785, 2021.

[318] K. Saito, Y. Ushiku, T. Harada, and K. Saenko, “Adversarial dropout regularization,” in Proceedings of
the International Conference on Learning Representations (ICLR), 2018.

[319] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier discrepancy for unsupervised
domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 3723–3732.

[320] K. Watanabe, K. Saito, Y. Ushiku, and T. Harada, “Multichannel semantic segmentation with unsupervised
domain adaptation,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018.

[321] S. Lee, D. Kim, N. Kim, and S.-G. Jeong, “Drop to adapt: Learning discriminative features for unsupervised
domain adaptation,” in Proceedings of the International Conference on Computer Vision (ICCV), 2019,
pp. 91–100.

[322] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” in Actes de CAP 05,
Conférence francophone sur l’apprentissage automatique, 2005, pp. 281–296.

273

[323] Y. Zou, Z. Yu, B. Vijaya Kumar, and J. Wang, “Unsupervised domain adaptation for semantic segmentation
via class-balanced self-training,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 289–305.

[324] Y. Zou, Z. Yu, X. Liu, B. V. Kumar, and J. Wang, “Confidence regularized self-training,” in Proceedings
of the International Conference on Computer Vision (ICCV), 2019, pp. 5982–5991.

[325] M. Chen, H. Xue, and D. Cai, “Domain adaptation for semantic segmentation with maximum squares loss,”
in Proceedings of the International Conference on Computer Vision (ICCV), 2019.

[326] Y. Zhang, P. David, and B. Gong, “Curriculum domain adaptation for semantic segmentation of urban
scenes,” in Proceedings of the International Conference on Computer Vision (ICCV), 2017, pp. 2020–2030.

[327] Y. Zhang, P. David, H. Foroosh, and B. Gong, “A curriculum domain adaptation approach to the se-
mantic segmentation of urban scenes,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2019.

[328] C. Sakaridis, D. Dai, S. Hecker, and L. Van Gool, “Model adaptation with synthetic and real data for
semantic dense foggy scene understanding,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 687–704.

[329] D. Dai, C. Sakaridis, S. Hecker, and L. Van Gool, “Curriculum model adaptation with synthetic and real
data for semantic foggy scene understanding,” International Journal of Computer Vision (IJCV), pp. 1–23,
2019.

[330] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in Neural Information Processing Systems (NeurIPS), 2012, pp. 1106–1114.

[331] Q. Lian, F. Lv, L. Duan, and B. Gong, “Constructing self-motivated pyramid curriculums for cross-domain
semantic segmentation: A non-adversarial approach,” in Proceedings of the International Conference on
Computer Vision (ICCV), 2019, pp. 6758–6767.

[332] L. Tian, Y. Tang, L. Hu, Z. Ren, and W. Zhang, “Domain adaptation by class centroid matching and local
manifold self-learning,” IEEE Transactions on Image Processing (TIP), 2020.

[333] Q. Wang and T. P. Breckon, “Unsupervised domain adaptation via structured prediction based selective
pseudo-labeling,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2020, pp.
6243–6250.

[334] H. Tang, K. Chen, and K. Jia, “Unsupervised domain adaptation via structurally regularized deep cluster-
ing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 8722–8732.

[335] W. Shi, Y. Gong, D. Cheng, X. Tao, and N. Zheng, “Entropy and orthogonality based deep discriminative
feature learning for object recognition,” Pattern Recognition, vol. 81, pp. 71–80, 2018.

[336] W. Wang, D. Yang, F. Chen, Y. Pang, S. Huang, and Y. Ge, “Clustering with orthogonal autoencoder,”
IEEE Access, vol. 7, pp. 62 421–62 432, 2019.

[337] H. Choi, A. Som, and P. Turaga, “Role of orthogonality constraints in improving properties of deep networks
for image classification,” arXiv preprint arXiv:2009.10762, 2020.

[338] M. Ranzato, C. Poultney, S. Chopra, and Y. L. Cun, “Efficient learning of sparse representations with
an energy-based model,” in Advances in Neural Information Processing Systems (NeurIPS), 2007, pp.
1137–1144.

[339] M. Bucher, T. Vu, M. Cord, and P. Pérez, “Zero-shot semantic segmentation,” in Advances in Neural
Information Processing Systems (NeurIPS), H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 466–477.

[340] D. Smith and B. Burke, “Gartner’s 2019 hype cycle for emerging technologies,” Gartner, 2019.
[341] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia dataset: A large collection

of synthetic images for semantic segmentation of urban scenes,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3234–3243.

[342] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele,
“The Cityscapes dataset for semantic urban scene understanding,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3213–3223.

[343] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The Mapillary vistas dataset for seman-
tic understanding of street scenes,” in Proceedings of the International Conference on Computer Vision
(ICCV), 2017, pp. 4990–4999.

274

[344] D. Di Mauro, A. Furnari, G. Patanè, S. Battiato, and G. M. Farinella, “Sceneadapt: Scene-based domain
adaptation for semantic segmentation using adversarial learning,” Pattern Recognition Letters (PRL), vol.
136, pp. 175–182, 2020.

[345] U. Michieli and L. Badia, “Game theoretic analysis of road user safety scenarios involving autonomous
vehicles,” in 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio
Communications. IEEE, 2018, pp. 1377–1381.

[346] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,”
Proceedings of the 1st Annual Conference on Robot Learning, 2017.

[347] J. Kim and C. Park, “Attribute dissection of urban road scenes for efficient dataset integration,” in Inter-
national Joint Conference on Artificial Intelligence Workshops, 2018, pp. 8–15.

[348] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km: The oxford robotcar dataset,”
The International Journal of Robotics Research, vol. 36, no. 1, pp. 3–15, 2017.

[349] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image translation networks,” in Advances in
Neural Information Processing Systems (NeurIPS), 2017, pp. 700–708.

[350] W.-C. Hung, Y.-H. Tsai, Y.-T. Liou34, Y.-Y. Lin, and M.-H. Yang15, “Adversarial learning for semi-
supervised semantic segmentation,” in Proceedings of the British Machine Vision Conference (BMVC),
2018.

[351] X. Liu, J. Cao, T. Fu, Z. Pan, W. Hu, K. Zhang, and J. Liu, “Semi-supervised automatic segmentation
of layer and fluid region in retinal optical coherence tomography images using adversarial learning,” IEEE
Access, vol. 7, pp. 3046–3061, 2019.

[352] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using adversarial networks,” in
NIPS Workshop on Adversarial Training, 2016.

[353] T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars, “A deeper look at dataset bias,” in Domain
Adaptation in Computer Vision Applications. Springer, 2017, pp. 37–55.

[354] A. Torralba and A. Efros, “Unbiased look at dataset bias,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2011, pp. 1521–1528.

[355] B. Gong, F. Sha, and K. Grauman, “Overcoming dataset bias: An unsupervised domain adaptation ap-
proach,” in NIPS Workshop on Large Scale Visual Recognition and Retrieval, vol. 3. Citeseer, 2012.

[356] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba, “Undoing the damage of dataset bias,”
in Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2012, pp. 158–171.

[357] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. 16, no. 6, pp. 641–647, 1994.

[358] G. Song, H. Myeong, and K. Mu Lee, “Seednet: Automatic seed generation with deep reinforcement
learning for robust interactive segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 1760–1768.

[359] S. Sankaranarayanan, Y. Balaji, C. D. Castillo, and R. Chellappa, “Generate to adapt: Aligning domains
using generative adversarial networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 8503–8512.

[360] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and
linear bottlenecks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 4510–4520.

[361] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[362] “Pre-trained weights for MobileNet-v2 on Pascal VOC 2012 dataset, https://github.com/tensorflow/
models/tree/master/research/deeplab. Accessed on 20/12/2019.”

[363] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

[364] “Implementation on TensorFlow of the CycleGAN framework, https://github.com/vanhuyz/
CycleGAN-TensorFlow. Accessed on 20/12/2019.”

[365] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in
Proceedings of the International Conference on Learning Representations (ICLR), 2015.

275

https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/vanhuyz/CycleGAN-TensorFlow
https://github.com/vanhuyz/CycleGAN-TensorFlow

[366] C. Li, D. Du, L. Zhang, L. Wen, T. Luo, Y. Wu, and P. Zhu, “Spatial attention pyramid network for un-
supervised domain adaptation,” in Proceedings of the European Conference on Computer Vision (ECCV),
2020.

[367] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.” Journal of Machine Learning Research,
vol. 9, no. 11, 2008.

[368] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the International
Conference on Computer Vision (ICCV), vol. 2, 1999, pp. 1150–1157.

[369] W. Tranheden, V. Olsson, J. Pinto, and L. Svensson, “Dacs: Domain adaptation via cross-domain mixed
sampling,” in Proceedings of the Winter Conference on Applications of Computer Vision (WACV), 2021,
pp. 1379–1389.

[370] D. Hendrycks and T. G. Dietterich, “Benchmarking neural network robustness to common corruptions and
surface variations,” in Proceedings of the International Conference on Learning Representations (ICLR),
2019.

[371] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ,
S. Mazzocchi, H. B. McMahan et al., “Towards federated learning at scale: System design,” Conference of
Machine Learning and Systems (MLSys), 2019.

[372] P. Kairouz and H. B. McMahan, “Advances and open problems in federated learning,” Foundations and
Trends in Machine Learning, vol. 14, 2021.

[373] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future
directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[374] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[375] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in hetero-
geneous networks,” in Conference on Machine Learning and Systems (MLSys), 2020.

[376] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization: Distributed optimization beyond the
datacenter,” arXiv preprint arXiv:1511.03575, 2015.

[377] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-iid data,” arXiv
preprint arXiv:1806.00582, 2018.

[378] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang, “Personalized federated learning: An
attentive collaboration approach,” Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2021.

[379] S. Ji, S. Pan, G. Long, X. Li, J. Jiang, and Z. Huang, “Learning private neural language modeling with
attentive aggregation,” in 2019 International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–8.

[380] X. Peng, Z. Huang, Y. Zhu, and K. Saenko, “Federated adversarial domain adaptation,” in Proceedings of
the International Conference on Learning Representations (ICLR), 2019.

[381] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive weighting,” IEEE Transactions on
Cognitive Communications and Networking, 2020.

[382] P. Yu and Y. Liu, “Federated object detection: Optimizing object detection model with federated learning,”
in Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, ser. ICVISP
2019. New York, NY, USA: Association for Computing Machinery, 2019.

[383] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid data,” in
Proceedings of the International Conference on Learning Representations (ICLR), 2020.

[384] J. Hamer, M. Mohri, and A. T. Suresh, “Fedboost: A communication-efficient algorithm for federated
learning,” in Proceedings of the International Conference on Machine Learning (ICML). PMLR, 2020,
pp. 3973–3983.

[385] T.-M. H. Hsu, H. Qi, and M. Brown, “Federated visual classification with real-world data distribution,” in
Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2020.

[386] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold: Stochastic controlled
averaging for federated learning,” in Proceedings of the International Conference on Machine Learning
(ICML). PMLR, 2020, pp. 5132–5143.

[387] C. Zhang and J. A. Shah, “Fairness in multi-agent sequential decision-making,” in Advances in Neural
Information Processing Systems (NeurIPS), 2014, pp. 2636–2644.

276

[388] J. Jiang and Z. Lu, “Learning fairness in multi-agent systems,” in Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

[389] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in Proceedings of the International
Conference on Machine Learning (ICML). PMLR, 2019, pp. 4615–4625.

[390] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in federated learning,” in Proceedings
of the International Conference on Learning Representations (ICLR), 2019.

[391] J. Zhang, C. Li, A. Robles-Kelly, and M. Kankanhalli, “Hierarchically fair federated learning,” arXiv
preprint arXiv:2004.10386, 2020.

[392] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-
López, D. Molina, R. Benjamins et al., “Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

[393] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and A. Talwalkar, “Leaf: A
benchmark for federated settings,” Workshop on Federated Learning for Data Privacy and Confidentiality,
2019.

[394] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed optimization using an approxi-
mate newton-type method,” in Proceedings of the International Conference on Machine Learning (ICML).
PMLR, 2014, pp. 1000–1008.

[395] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[396] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant supervision,” CS224N
project report, Stanford, vol. 1, no. 12, p. 2009, 2009.

[397] W. Shakespeare, The complete works of William Shakespeare. Publically available at https://www.
gutenberg.org/ebooks/100.

[398] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the
International Conference on Computer Vision (ICCV), 2015-12.

[399] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-identical data distribution for federated
visual classification,” arXiv preprint arXiv:1909.06335, 2019.

[400] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The Pascal Visual
Object Classes Challenge: a Retrospective,” International Journal of Computer Vision (IJCV), vol. 111,
no. 1, pp. 98–136, 2015.

[401] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543.

[402] M. Rapp, R. Khalili, and J. Henkel, “Distributed learning on heterogeneous resource-constrained devices,”
arXiv preprint arXiv:2006.05403, 2020.

[403] C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling of federated mobile devices under compu-
tational and statistical heterogeneity,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 2, pp. 394–410, 2020.

[404] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, and H. B. McMahan, “Adaptive
federated optimization,” Proceedings of the International Conference on Learning Representations (ICLR),
2021.

[405] K. Allen, E. Shelhamer, H. Shin, and J. Tenenbaum, “Infinite mixture prototypes for few-shot learning,”
in Proceedings of the International Conference on Machine Learning (ICML). PMLR, 2019, pp. 232–241.

[406] F. Cermelli, M. Mancini, Y. Xian, Z. Akata, and B. Caputo, “A few guidelines for incremental few-shot
segmentation,” arXiv preprint arXiv:2012.01415, 2020.

[407] J. Kim, T.-H. Oh, S. Lee, F. Pan, and I. S. Kweon, “Variational prototyping-encoder: One-shot learning with
prototypical images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 9462–9470.

[408] A. Li, W. Huang, X. Lan, J. Feng, Z. Li, and L. Wang, “Boosting few-shot learning with adaptive margin
loss,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 12 576–12 584.

[409] X. Liu, F. Zhou, J. Liu, and L. Jiang, “Meta-learning based prototype-relation network for few-shot clas-
sification,” Neurocomputing, vol. 383, pp. 224–234, 2020.

277

https: //www.gutenberg.org/ebooks/100
https: //www.gutenberg.org/ebooks/100

[410] Y. Pan, T. Yao, Y. Li, Y. Wang, C. Ngo, and T. Mei, “Transferrable prototypical networks for unsupervised
domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 2239–2247.

[411] M. Zhang, T. Wang, J. H. Lim, G. Kreiman, and J. Feng, “Variational prototype replays for continual
learning,” arXiv preprint arXiv:1905.09447, 2019.

[412] B. Hammer, M. Strickert, and T. Villmann, “On the generalization ability of grlvq networks,” Neural
Processing Letters, vol. 21, no. 2, pp. 109–120, 2005.

[413] X.-B. Jin, C.-L. Liu, and X. Hou, “Regularized margin-based conditional log-likelihood loss for prototype
learning,” Pattern Recognition, vol. 43, no. 7, pp. 2428–2438, 2010.

[414] D. Nova and P. A. Estévez, “A review of learning vector quantization classifiers,” Neural Computing and
Applications, vol. 25, no. 3, pp. 511–524, 2014.

[415] A. Sato and K. Yamada, “Generalized learning vector quantization,” in Advances in Neural Information
Processing Systems (NeurIPS), 1995, pp. 423–429.

[416] P. Schneider, M. Biehl, and B. Hammer, “Adaptive relevance matrices in learning vector quantization,”
Neural computation, vol. 21, no. 12, pp. 3532–3561, 2009.

[417] K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby, “Margin analysis of the lvq algorithm,” in
Advances in Neural Information Processing Systems (NeurIPS), vol. 2, 2002, pp. 462–469.

[418] Z. Wojna, V. Ferrari, S. Guadarrama, N. Silberman, L.-C. Chen, A. Fathi, and J. Uijlings, “The devil is
in the decoder: Classification, regression and gans,” in International Journal of Computer Vision (IJCV),
vol. 127, no. 11. Springer, 2019, pp. 1694–1706.

[419] R. Xu, G. Li, J. Yang, and L. Lin, “Larger norm more transferable: An adaptive feature norm approach
for unsupervised domain adaptation,” in Proceedings of the International Conference on Computer Vision
(ICCV), 2019, pp. 1426–1435.

[420] S. Rosset, J. Zhu, and T. Hastie, “Margin maximizing loss functions.” in Advances in Neural Information
Processing Systems (NeurIPS), 2003, pp. 1237–1244.

[421] N. Rodríguez-Barroso, G. Stipcich, D. Jiménez-López, J. A. Ruiz-Millán, E. Martínez-Cámara, G. González-
Seco, M. V. Luzón, M. A. Veganzones, and F. Herrera, “Federated learning and differential privacy: Soft-
ware tools analysis, the sherpa.ai fl framework and methodological guidelines for preserving data privacy,”
Information Fusion, vol. 64, pp. 270–292, 2020.

[422] M. Ribero, J. Henderson, S. Williamson, and H. Vikalo, “Federating recommendations using differentially
private prototypes,” arXiv preprint arXiv:2003.00602, 2020.

[423] P. L. Bartlett, “For valid generalization, the size of the weights is more important than the size of the
network,” in Advances in Neural Information Processing Systems (NeurIPS). Cambridge, MA, USA:
MIT Press, 1996, p. 134–140.

[424] M. J. Saberian and N. Vasconcelos, “Multiclass boosting: Theory and algorithms,” in Advances in Neural
Information Processing Systems (NeurIPS). Red Hook, NY, USA: Curran Associates Inc., 2011, p. 2124–
2132.

[425] M. Saberian and N. Vasconcelos, “Multiclass boosting: Margins, codewords, losses, and algorithms,”
Journal of Machine Learning Research (JMLR), vol. 20, no. 137, pp. 1–68, 2019. [Online]. Available:
http://jmlr.org/papers/v20/17-137.html

[426] K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby, “Margin analysis of the lvq algorithm,” in
Advances in Neural Information Processing Systems (NeurIPS). Cambridge, MA, USA: MIT Press, 2002,
p. 479–486.

[427] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into a hilbert space,” Contemporary
mathematics, vol. 26, 1984.

[428] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-sample test,” The
Journal of Machine Learning Research, vol. 13, no. 1, pp. 723–773, 2012.

[429] W. Wan, J. Chen, T. Li, Y. Huang, J. Tian, C. Yu, and Y. Xue, “Information entropy based feature pooling
for convolutional neural networks,” in Proceedings of the International Conference on Computer Vision
(ICCV), 2019, pp. 3405–3414.

278

http://jmlr.org/papers/v20/17-137.html

List of Publications
Journals

[430] F. Barbato, U. Michieli, M. Toldo, and P. Zanuttigh, “Adapting segmentation networks to new domains by
disentangling latent representations,” submitted to IEEE Transactions on Multimedia, 2021.

[431] U. Michieli and P. Zanuttigh, “Knowledge Distillation for Incremental Learning in Semantic Segmentation,”
Elsevier Journal on Computer Vision and Image Understanding (CVIU), 2021.

[432] M. Toldo, U. Michieli, G. Agresti, and P. Zanuttigh, “Unsupervised Domain Adaptation for Mobile Se-
mantic Segmentation based on Cycle Consistency and Feature Alignment,” Image and Vision Computing
(IMAVIS), 2020.

[433] M. Toldo, A. Maracani, U. Michieli, and P. Zanuttigh, “Unsupervised Domain Adaptation in Semantic
Segmentation: a Review ,” Technologies, vol. 8, no. 35, 2020.

[434] M. Mel, U. Michieli, and P. Zanuttigh, “Incremental and Multi-Task Learning Strategies for Coarse-to-Fine
Semantic Segmentation,” Technologies, special issue on Computer Vision and Image Processing Technolo-
gies, vol. 8, no. 1, 2020.

[435] U. Michieli, M. Biasetton, G. Agresti, and P. Zanuttigh, “Adversarial Learning and Self-Teaching Techniques
for Domain Adaptation in Semantic Segmentation,” IEEE Transactions on Intelligent Vehicles (T-IV),
vol. 5, no. 3, pp. 508–518, 2020.

Conference Proceedings

[436] A. Maracani*, U. Michieli*, M. Toldo*, and P. Zanuttigh, “RECALL: Replay-based Continual Learning in
Semantic Segmentation,” International Conference on Computer Vision (ICCV) [acceptance rate=25.9%],
2021.

[437] U. Michieli and M. Ozay, “Are All Users Treated Fairly in Federated Learning Systems?” Conference on
Computer Vision and Pattern Recognition (CVPR), Workshop on Responsible Computer Vision (RCV),
2021.

[438] F. Barbato, M. Toldo, U. Michieli, and P. Zanuttigh, “Latent Space Regularization for Unsupervised
Domain Adaptation in Semantic Segmentation,” Conference on Computer Vision and Pattern Recognition
(CVPR), Workshop on Autonomous Driving (WAD), 2021.

[439] U. Michieli and P. Zanuttigh, “Continual Semantic Segmentation via Repulsion-Attraction of Sparse and
Disentangled Latent Representations,” Computer Vision and Pattern Recognition (CVPR) 2021 [accep-
tance rate approx. 23.6%], 2021.

[440] M. Toldo, U. Michieli, and P. Zanuttigh, “Unsupervised Domain Adaptation in Semantic Segmentation via
Orthogonal and Clustered Embeddings,” Winter Conference on Applications of Computer Vision (WACV)
[acceptance rate approx. 28%], 2021.

[441] U. Michieli, E. Borsato, L. Rossi, and P. Zanuttigh, “GMNet: Graph Matching Network for Large Scale
Part Semantic Segmentation in the Wild,” European Conference on Computer Vision (ECCV), Glasgow
(UK) [acceptance rate=26%], 2020.

[442] T. Spadotto, M. Toldo, U. Michieli, and P. Zanuttigh, “Unsupervised Domain Adaptation with Multiple
Domain Discriminators and Adaptive Self-Training,” International Conference on Pattern Recognition
(ICPR), Milan (Italy) [first round acceptance rate=35.6%], 2020.

[443] U. Michieli and P. Zanuttigh, “Incremental Learning Techniques for Semantic Segmentation,” International
Conference on Computer Vision (ICCV), Workshop on Transferring and Adapting Source Knowledge in
Computer Vision (TASK-CV), Seoul (South Korea), 2019.

279

[444] U. Michieli, M. Camporese, A. Agiollo, G. Pagnutti, and P. Zanuttigh, “Region Merging Driven by Deep
Learning for RGB-D Segmentation and Labeling,” International Conference on Distributed Smart Cameras
(ICDSC), Trento (Italy), 2019.

[445] M. Biasetton, U. Michieli, G. Agresti, and P. Zanuttigh, “Unsupervised Domain Adaptation for Seman-
tic Segmentation of Urban Scenes,” Conference on Computer Vision and Pattern Recognition (CVPR),
Workshop on Autonomous Driving (WAD), Long Beach (US), 2019.

[446] U. Michieli and L. Badia, “Game Theoretic Analysis of Road User Safety Scenarios Involving Autonomous
Vehicles,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Bologna (Italy), pp. 1377–1381, 2018.

[447] G. Cisotto, U. Michieli, and L. Badia, “A coherence study on EEG and EMG signals,” IEEE Global Wireless
Summit (GWS), Aarhus (Denmark), pp. 372–376, 2016.

Book Chapters

[448] U. Michieli, M. Toldo, and P. Zanuttigh, “Unsupervised Domain Adaptation and Continual Learning in
Semantic Segmentation,” Advanced Methods and Deep Learning in Computer Vision, Elsevier, 2021.

280

Acknowledgments

The journey towards my Ph.D. has been one of the most exciting ones so far, but it would not
have been possible without many people always believing in me, supporting me and contributing
to this amazing goal. I would like to thank them all in these few lines.

First, I want to sincerely thank my advisor, Pietro Zanuttigh, who welcomed me in his lab
and allowed me to grow as a researcher under his precious and assiduous supervision. Also, a
special thank for trusting me as a teaching assistant for many consecutive years. My sincere
gratitude goes to my advisor for the eight-months internship at Samsung Research UK, Mete
Ozay, who relentelessly supervised me with passion and dedication growing my scientific per-
spectives. Thank you. The choice to pursue a Ph.D. goes back to my M.Sc. thesis project in
Dresden, where Carlo Vittorio Cannistraci hosted me in his lab. I would like to thank him,
Alessandro Muscoloni and all the other amazing colleagues for having transferred to me their
passion and attitude towards research. Thank you!

I would like to express my gratitude to Natalia Díaz-Rodríguez and Giovanni Maria Farinella
for having taken the time to accurately read this thesis. It was a great honor for me to receive
their valuable feedback to improve the manuscript.

My path has been amazing thanks to the incredible fellows along the way. I really enjoyed
being part of the LTTM Lab. I would like to thank Gianluca Agresti and Sebastiano Verde
for having warmly welcomed me in the lab when I first arrived and for all the unforgettable
memories we shared. Thanks to Marco Toldo and Francesco Barbato for going through my
attempts to become a better supervisor, to Adriano Simonetto and Fabio Capraro for working
closely with me.

Thanks to all my co-authors, who enriched my knowledge and/or trusted me as co-supervisor
for their projects: Gianluca Agresti, Marco Toldo, Andrea Maracani, Francesco Barbato, Elena
Camuffo, Donald Shenaj, Edoardo Borsato, Luca Rossi, Giampaolo Pagnutti, Matteo Biasetton,
Mazen Mel, Giulia Rizzoli, Teo Spadotto, Maria Camporese, Andrea Agiollo. Thank you, it was
a great pleasure to work with you.

During these years, I had the chance to meet wonderful colleagues and friends, which con-
tribute to such an amazing journey: Francesco, Mattia, Alberto, Matteo, Paolo, Martina, Da-
vide, Federico, Tommaso, Matteo, Luca, Silvia, Leonardo, Marco, Daniel, Chiara, Michele, Giu-
lia, Elvina, Alessandro. For the frequent insightful discussions on deep learning and wonderful
moments around the world: thanks to Aga, Fabio, Ettore and Guglielmo.

On the personal side, thanks to all my long-time friends who always support me from around
the world: Nicola, Lucrezia, Marco, Sophia, Enrico. Thanks to my tennis buddy Giovanni and
to my ping-pong buddy Federico. Every time we can reunite it is always a great feeling as if we
have never been far apart. Thank you.

Last but not least, I would like to thank my family, from my cousins to my grandparents, for
always believing in me. A deep gratitude goes to my parents, Fabio and Elisabetta, for letting
me freely pursue this path and always supporting me. Grazie!

281

	Abstract
	List of figures
	List of tables
	Automatic Semantic Scene Understanding: an Overview
	Introduction
	Transfer Learning
	Contributions
	Outline of the Thesis

	I Semantic Recognition of New Categories in the Wild
	Continual Learning of New Semantic Concepts
	A Gentle Introduction to Continual Learning
	Problem Statement
	Continual Learning in Sparse Learning Tasks
	Experimental Setups in Continual Semantic Segmentation
	Techniques for Continual Semantic Segmentation
	Knowledge Distillation
	Parameter Freezing
	Geometrical Feature-Level Constraining
	Replay-based Learning

	Employed Datasets

	Knowledge Distillation from a Teacher Model
	Introduction
	Contributions

	Knowledge Distillation for Semantic Segmentation
	Class-Incremental Continual Learning Framework
	Network Architecture
	Proposed Method
	Distillation on the Output Layer (LDcls T)
	Distillation on the Intermediate Feature Space (LDenc)
	Distillation on Dilation Layers (LDdec)
	Similarity-Preserving Distillation on the Intermediate Feature Space (LDSPKD)

	Training Procedure
	Experimental Results on Pascal VOC2012
	Addition of One Class
	Addition of Multiple Classes
	Sequential Addition of Multiple Classes

	Experimental Results on MSRC-v2
	Ablation Studies
	Backbone Pre-Training
	Experimental Analyses on Disjoint Setup on VOC2012
	Ablation on Multi-Layer Knowledge Distillation

	Summary

	Latent-Space Regularization of the Learned Embeddings
	Introduction
	Background
	Contributions

	Problem Definition and Setups
	Method
	Prototypes Matching
	Contrastive Learning
	Features Sparsity
	Output-Level Knowledge Distillation

	Training Procedure
	Experimental Results
	Pascal VOC2012
	ADE20K
	Qualitative Results Across Incremental Steps
	Quantitative Results: per-Class Accuracy

	Ablation Study
	Design Choices
	Summary

	Replay-based Continual Learning in Semantic Segmentation
	Introduction
	Preliminaries
	Contributions

	Problem Formulation and Setup
	General Architecture
	Replay Strategies
	Implementation Details
	Experimental Results
	Analyses on Pascal VOC2012
	Qualitative Results
	Ablation Studies
	Analyses on Pre-Training
	Class Mapping Module
	Per-Class Quantitative Results
	Combining RECALL with Other Techniques
	Preliminary Analyses on ADE20K

	Conclusions
	Final Remarks

	II Coarse-to-Fine Learning of Semantic Categories
	Coarse-to-Fine Learning of Semantic Concepts
	Introduction
	Contributions

	Coarse-to-Fine Learning at Semantic Level
	Preliminaries
	Proposed Methods
	Training on the NYUDv2 Dataset
	Experimental Results

	Coarse-to-Fine Learning at the Spatial Level
	Preliminaries
	Proposed Method
	Graph-Matching for Semantic Parts Localization
	Training of the Deep Learning Architecture
	Experimental Results
	Ablation Studies

	Conclusions and Future Work

	III Semantic Recognition across New Visual Domains
	Unsupervised Domain Adaptation (UDA)
	Introduction
	Domain Adaptation (DA)
	Unsupervised Domain Adaptation (UDA)
	Application Motivations
	Outline

	Unsupervised Domain Adaptation for Semantic Segmentation
	Problem Formulation
	UDA in Semantic Segmentation: Adaptation Focuses

	Review of Unsupervised Domain Adaptation Strategies
	Weakly- and Semi-Supervised Learning
	Domain Discriminative
	Generative-based Approaches
	Classifier Discrepancy
	Self-Training
	Entropy Minimization
	Curriculum Learning
	Multi-Tasking
	Latent-Level Regularization
	New Research Directions

	A Case Study: Synthetic to Real Adaptation for Semantic Understanding of Road Scenes
	Source Domain: Synthetic Datasets of Urban Scenes
	Target Domain: Real-World Datasets of Urban Scenes
	Methods Comparison

	Summary

	Output-Level Domain Adaptation
	Introduction
	Contributions

	UDA with Adversarial Learning and Self-Teaching
	Preliminaries
	Architecture of the Proposed Approach
	Experimental Results

	UDA with Adversarial Learning with Multiple Discriminators
	Proposed Domain Adaptation Strategy
	Experimental Results

	Summary

	Input- and Feature- Level Domain Adaptation
	Introduction
	Contributions

	Input-Level Cyclic Consistency and Feature-Level Adversarial Learning
	Proposed Approach
	Implementation and Training Details
	Experimental Results

	Feature-Level Regularization
	Proposed Approach
	Experimental Setup
	Results

	Feature-Level Regularization with Improved Prototypes Extraction
	Problem Setup
	Proposed Latent-Level Constraints
	Implementation Details
	Mean Adapted-to-Supervised Ratio Metric
	Results
	Analyses of the Latent Space Regularization

	Conclusions
	Final Remarks

	IV Federated Learning of Visual Models
	Federated Learning on Non-IID Data
	An Introduction to Federated Learning
	Problem Statement: FedAvg and FairAvg
	Federated Learning Datasets
	Synthetic Data Classification Dataset
	Real-World Image Classification Datasets
	Real-World Semantic Segmentation Datasets
	NLP Datasets

	Experimental Evaluation of Data Non-IID-ness
	Summary

	Federated Learning of Visual Feature Representations
	Introduction
	Prototype Guided Federated Learning
	Computation of Prototypes
	Local and Aggregate Prototype Margins
	Federated Attention using Prototype Margins

	Theoretical Motivation of FedProto
	Hypothesis Margins
	Optimizing Hypothesis Margins in FL
	Prototype Margins
	Federated Learning with Prototype Margins

	Experimental Setup
	Experimental Analyses for Federated Vision
	Federated Image Classification
	Federated Attention Values in Image Classification
	Federated Semantic Segmentation

	Conclusions and Future Work

	Conclusions and Future Directions
	Conclusions
	Open Problems and Future Directions

	References
	Acknowledgments

