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ABSTRACT 

 
This research study addresses two issues for the identification of 

structural characteristics of civil infrastructure systems. The first one is 

related to the problem of dynamic system identification, by means of 

experimental and operational modal analysis, applied to a large variety of 

bridge structures. Based on time and frequency domain techniques and 

mainly with output-only acceleration, velocity or strain data, modal 

parameters have been estimated for suspension bridges, masonry arch 

bridges, concrete arch and continuous bridges, reticular and box girder 

steel bridges. After giving an in-depth overview of standard and advanced 

stochastic methods, differences of the existing approaches in their 

performances are highlighted during system identification on the different 

kinds of civil infrastructures. The evaluation of their performance is 

accompanied by easy and hard determinable cases, which gave good results 

only after performing advanced clustering analysis. Eventually, real-time 

vibration-based structural health monitoring algorithms are presented 

during their performance in structural damage detection by statistical 

models.  

The second issue is the noise-free estimation of high order displacements 

taking place on suspension bridges. Once provided a comprehensive 

treatment of displacement and acceleration data fusion for dynamic 

systems by defining the Kalman filter algorithm, the combination of these 

two kinds of measurements is achieved, improving the deformations 

observed. Thus, an exhaustive analysis of smoothed displacement data on a 

suspension bridge is presented. The successful tests were subsequently used 

to define the non-collocated sensor monitoring problem with the 

application on simplified models. 
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RIASSUNTO 

 
Questo lavoro di ricerca mira a due obiettivi per l'identificazione delle 

caratteristiche strutturali dei sistemi infrastrutturali civili. Il primo è 

legato al problema della identificazione del sistema dinamico, mediante 

analisi modale sperimentale e operativa, applicata ad una grande varietà di 

strutture da ponte. Basandosi su tecniche nel dominio del tempo e delle 

frequenze e, soprattutto, su dati di output di accelerazione, velocità o 

strain, i parametri modali sono stati stimati per ponti sospesi, ponti ad 

arco in muratura, ponti a travi in calcestruzzo e ad arco, ponti reticolari e 

ponti in acciaio a cassone. Dopo aver dato una panoramica approfondita 

dei metodi stocastici standard ed avanzati, sono state evidenziate le 

differenze degli approcci esistenti nelle loro performance per 

l'identificazione del sistema sui diversi tipi di infrastrutture civili. La 

valutazione della loro performance viene accompagnata da casi facilmente e 

difficilmente determinabili, che hanno dato buoni risultati solo dopo 

l'esecuzione di analisi avanzate di Clustering. Inoltre, sono stati sviluppati 

algoritmi di identificazione dinamica automatica in tempo reale basandosi 

sulle vibrazioni strutturali dei ponti monitorati, a sua volta utilizzati nel 

rilevamento dei danni strutturali tramite modelli statistici. 

Il secondo problema studiato riguarda la stima di spostamenti di ordine 

superiore che si svolgono sui ponti sospesi, eliminando il rumore di misura 

e di processo. Una volta fornito un trattamento completo della fusione dei 

dati di spostamento e accelerazione per i sistemi dinamici tramite il filtro 

di Kalman, la combinazione di questi due tipi di misurazioni ha mostrato 

un miglioramento nelle deformazioni osservate. Pertanto, è stata 

presentata un'analisi esauriente di un ponte sospeso e dei sui dati dinamici 

e di spostamento filtrati. I test positivi sono stati successivamente utilizzati 

per definire il problema dei sensori non collocati alla stessa locazione ed 

applicazione su modelli semplificati. 
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INTRODUCTION 

 

 

he purpose of Dynamic Identification of structural systems is to 

define, from testing and experimental recordings, the values of 

modal parameters, in terms of natural frequencies and respective 

vibration modes, with the scope of characterizing the dynamic 

behavior. After determining the characteristics of the system, it is possible 

to calibrate a numerical model, in order to obtain results as similar as 

possible to the real behavior of the structure. A calibrated Finite Element 

Model with experimental data reveals to be a very effective tool for 

evaluating capacity or structural changes, giving a reliable estimation of 

the system. 

Extending the dynamic tests to long-term periods it is most likely to 

monitor the global behavior of the structure and detect any possible 

damage due to abnormal dynamic behavior. Although the process of 

recording time-histories through Structural Health Monitoring is quite 

feasible, extracting the exact modal parameters (natural frequencies, 

damping ratios and mode shapes) is a delicate process. This is because 

these parameters represent the real physical system and their variation 

may imply changes in the structural properties.   

The mechanical behavior of a structure depends on its inertial 

characteristics and stiffness, which govern the response to an external 

excitation. While in general these characteristics are known, in system 

identification we want to determine this functional relation i.e. the relation 

between excitation and response. If measurements of input and output are 

available, the process is called deterministic system identification. In civil structures 

it is very difficult and costly to excite the system. Thus, output-only 

identification technique, which is performed by just measuring the 

structural response under ambient excitation (wind traffic, etc.), is the 

most commonly used procedure to get information from a structure 

T 
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without exciting it on purpose. So, if only the response is measurable and 

the excitation is ambient vibration, the SI is named stochastic system identification. 
The main assumption made in stochastic system identification is that the 

exciting force is white noise. 

Numerous papers have been published over the last 40 years on system 

identification. But, only after the publications of Astorm and Bohlin [1] [2], 

in which the maximum likelihood method was extended to a serially correlated 

time series to estimate ARMAX models, and of Ho and Kalman [3], in 

which the deterministic state space realization problem was solved using a 

certain Hankel matrix formed in terms of impulse response, the system 

identification theory started.  
Experimental tests for the determination of the modal parameters are 

based on the possibility to describe the dynamic behavior of the structure 

either by means of a set of differential equations in the time domain, or by 

a set of algebraic equations in the frequency domain. The techniques of 

dynamic identification can, therefore, be grouped in frequency domain 
techniques and time domain techniques.  

Methods defined in the frequency domain operate by obtaining the 

Frequency Response Function (FRF) from which it is possible to identify 

natural frequencies, damping ratios and mode shapes. The FRF is typically 

obtained by means of analysis based on Fast Fourier Transform (FFT). 

The simplest form of Frequency Domain is the Basic Frequency Domain or Peak 
Picking [4], where the identification of modes is obtained by evaluating the 

frequency corresponding to the peaks of the Power Spectral Density (PSD) 

plot. The method named Complex Mode Indication Function (CMIF) [5] is 

considered an extension of the PP method, in which a singular value 

decomposition (SVD) of the matrix of cross-spectra is introduced in order 

to separate the contribution of individual modes. This method was 

subsequently improved in the non-parametric method of Frequency Domain 
Decomposition (FDD) [6], and it is a method capable of taking into account 

the multiplicity of modes (more modes at close frequencies).  

A key step in stochastic realization (time domain) is either to apply the 

deterministic realization theory (Eigensystem realization Algorithm [24]) to a 

certain Hankel matrix constructed with sample estimates of the process 

covariances (later called covariance-driven stochastic system identification), or to apply 

the canonical correlation analysis (CCA) [7] to the future and past of the 

observed process. A well-known form of stochastic system identification is 

also the data-driven stochastic system identification where the estimate of the modal 
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parameters is represented by the error minimization (prediction error) between 

the Auto-Regressive Moving Average (ARMA) model estimate and the 

observations. 
These algorithms have shown to be implemented very efficiently and in 

a numerically stable way by using the tools of modern numerical algebra 

such as the SVD. In the mid-1980s QR decomposition and SVD emerged, 

and realization theory-based techniques have led to a development of 

subspace system identification (SSI) methods [8] [9] where we do not need 

optimization techniques or imposition of a canonical form system, so that 

they do not suffer from inconveniences encountered in applying prediction error 
methods. The method requires the model’s order selection and the 

distinction between structural and non-structural modes. This operation is 

usually carried out by means of stabilization diagrams. Subspace methods 

define the equation of motion in state form, given input signals and output 

responses using simple algebraic techniques such as QR decomposition, 

SVD and least-squares procedures. The name subspace is due to the property 

for which the matrices containing the measured signal can be interpreted 

as a vector space where the columns of this matrix represent a base of 

vectors, while the rows allow to obtain a sequence of estimates evaluated 

by Kalman filters [10]. A stochastic model in state space is then directly 

identified by the data output or measured by the correlation functions 

between the outputs. Accordingly to what has been described above, the 

subspace methods can be distinguished in data-driven SSI and covariance-driven 
SSI [11].  

An extensive comparison of time and frequency domain techniques has been 

carried out in this work, applied to several case studies of bridge 

structures. 

During the last years of technology development, sensors for SHM 

(especially the wireless one) are becoming very sophisticated for the 

particular use in civil infrastructures. Not only acceleration sensors but 

also displacement ones have become very accurate and provide high 

sampling frequencies compared to some years ago. The presence of both 

acceleration and displacement sensors during measurement campaigns 

provide a beneficial redundancy that can be utilized to better assess the 

structural behavior.  As the sampling frequencies of the different 

measurements are different, a multi-rate Kalman filter can be applied to 

process the data fusion [12]. Exploiting the smoothed results, a clear scene 

of the structural displacements taking place under heavy traffic loads can 

be achieved.    
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Outline of the thesis 

The primary goal of this work is to provide an in-depth overview of 
procedures of commonly used methods for system identification and to 
reveal their performance in real applications of bridge structures. Different 
kinds of structures will be analyzed, beginning from suspension bridges, 
slender concrete arch bridges, masonry arch bridges, concrete beam 
bridges, railway steel bridges, ending with highway steel box bridges. A 
new technique will be shown in the case of redundant acceleration and 
displacement measurements, in particular for suspension bridges, where an 
algorithm of data fusion will be analyzed in order to get noise-free and 
accurate deformation results. As a future research, the problem of non-
collocated sensors will be defined:  displacement estimation in nodes where 
only acceleration measurements are present.  

The first part of the thesis is devoted to some concepts frequently used 
throughout this study. More precisely, Chapter 1 introduces basic facts in 
stochastic processes and random signals, including probability and 
physical-variable state representation for stochastic estimation. After 
describing the observer design problem, the implementation of the Kalman 
filter for stochastic estimation is presented. The rest of Chapter 1 deals 
with the theory of dynamic systems and in particular with the state-space 
representation of the equation of motion, Impulse and Frequency Response 
Functions and discrete state-space representation. 

Chapter 2 considers the system identification problem going from the 
definition of controllability and observability matrices, identification of the 
DT Markov parameters and the modal parameter identification through 
the Eigensystem Realization Algorithm. Finally, an introduction to 
Stochastic Realization is given in the case of un-known input. 

Chapter 3 enters with more details in the stochastic system 

identification methods, giving a wide view of time and frequency domain 

system identification techniques. In particular, the Frequency Domain 

Decomposition and the Stochastic Subspace Identification (data-driven 

with principal component analysis and Canonical Correlation Analysis) will 

be also described, in relation to the applications that will be presented in 

Chapter 4. The last part of the chapter is dedicated to the description of 

three different procedures implemented for automated system identification 

used on SHM. Great effort has been focused on the cluster analysis 

implemented in an automatic system identification that accurately 

estimates modal parameters even in difficult case studies. 

In Chapter 4, the application of stochastic identification methods is 

carried out by analyzing the field data of ten bridges. It deals with the 



INTRODUCTION 5 

 
 

modal analysis through different stochastic system identification for 

different kinds of structures as suspension bridges, slender concrete arch 

bridges, masonry arch bridges, concrete beam bridges, railway steel bridges 

and highway steel box bridges. The structural identification will be applied 

in cases of demolition process, validation of a seismic retrofit intervention, 

damage assessment, strain measurements utilization in modal analysis and 

long term monitoring. Damage detection analysis is performed through 

implementation of regression models in the cases of bridge monitoring. 

Finally, for most structures, the comparison between newly developed 

techniques (SSI-ECCA [13]) and the conventional ones will be presented.  

Chapter 5 provides a comprehensive treatment of displacement and 

acceleration data fusion for dynamic systems. By defining the Kalman filter 

algorithm, the combination of these two kinds of measurements is 

achieved, improving the deformations observed. The efficiency of this 

technique is then demonstrated through the application on the 

measurements of the Manhattan Bridge in New York City. In fact, several 

accurate displacement plots will be presented for different load conditions 

of the studied structure. A future research topic is introduced at the end of 

the chapter concerning the problem of displacement estimation in nodes 

where only acceleration measurements are present. So, a simple 3-dof 

example for the ‘non-collocated sensor problem’ is presented. 

Finally, the principal deductions are summarized in the Conclusion 

section.  
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1  
STOCHASTIC PROCESSES AND 

DYNAMIC SYSTEMS   
 

 
This chapter follows a basic introduction to probability and random 

variables, with which all of us have some acquaintance. It deals with the 

concepts of random processes and the mathematical description of noise-

like signals with their spectral explanation. The concept of state model is 

described and how this contributes in analyzing stochastic data. Then a 

short explanation of the Kalman Filter process is reported as an accurate 

tool playing an important role in every sensing in systems of the real 

world. The second part of the chapter describes dynamic systems and in 

particular the state-space representation of the equation of motion. 
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1.1 Probability and random variables 

1.1.1 Why stochastic models are useful? 

In a physical system, such as a vehicle performance, a navigation system or 

a monitored bridge, the first step in understanding the behavior of the 

system is to formulate an adequate represented model. Through physical 

insights, fundamental “laws,” and empirical testing, the engineer tries to 

establish the relationships among certain variables of interest, inputs to the 

system, and outputs from the system. With such a mathematical model 

and the tools provided by system and control theories, he is able to 

investigate the system structure and its response. 

In order to observe the actual system behavior, measurement devices are 

constructed to quantify data signals proportional to certain variables of 

interest. These output signals and the known inputs to the system are the 

only information that is directly visible from the system behavior. There 

are several reasons why stochastic data processing helps to improve the 

performance of these systems. As we know, no mathematical system model 

is perfect because it is approximated by mathematical and physical laws, 

leaving some sources of uncertainty.  

A second deficiency of deterministic models is that dynamic systems are 

driven not only by our own control inputs, but also by disturbances which 

we can neither control nor model deterministically. At the other hand the 

sensors that we use to collect data from our system do not provide perfect 

responses because are affected by noise. Another situation is when we have 

different devices that measure the same signal and one must ask how to 

generate the best estimate based on these redundant data. So, to assume 

an adequate form of our model and reality, the techniques developed in 

stochastic science are very useful. 

 

1.1.2 Random signals and probability. 

If we look at the chart in the first page of this chapter, we see a signal that 

cannot be described with explicit mathematical functions such as sine 

waves or step functions. It was discovered in the early nineteen century 

that random signals could be described by probabilistic approaches and in 

particular in terms of their spectral content. Noise is usually present in 

every signal but we have to know how much does it condition our signals 
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and suppress it by means of filtering techniques. That is why one needs to 

understand noise and accordingly probability that plays a key role because 

it characterizes random signals.  

The probability that the outcome of a discrete event will favor a particular 

event is defined as 

𝑃(𝐴) =  
𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑓𝑎𝑣𝑜𝑟𝑖𝑛𝑔 𝑒𝑣𝑒𝑛𝑡 𝐴
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

 

where we read P(A) as “probability of event A”. This concept is then 
expanded to include the relative-frequency-of-occurrence or statistical 
viewpoint of probability.  
The probability of an outcome favoring either A or B is given by 

 𝑃(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵)      (1.1) 
 

If the probability of two outcomes is independent (one does not affect the 
other) then the probability of both occurring is the product of their 
individual probabilities: 

 𝑃(𝐴 ∩ 𝐵) = 𝑝(𝐴) ∙ 𝑝(𝐵)      (1.2) 
 

that is called the joint probability.  
Meanwhile the probability of outcome A, given an occurrence of outcome 
B, is called the conditional probability of A given B, and is defined as 

 )(
)()¦(

BP
BAPBAP ∩

=       (1.3) 

This is also called the conditional probability and similarly the conditional 
probability of B given A:  

 )(
)()¦(

AP
ABPABP ∩

=       (1.4) 

It is assumed here that P(B) and P(A) are not zero. If we combine (1.3) 
and (1.4) each equation can be solved for the probability A intersection B 
and the results equated. This leads to Bayes rule:  

 )(
)()A|()| (

BP
APBPABP =       (1.5) 

The joint probability array )( BAP ∩  contains all the necessary 

information for computing all marginal and conditional probabilities.  
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A common function representing the probability of random variables is 
defined by the cumulative distribution function that describes the 
probability assignment as it reflects onto equivalent events in the random 
variable (A) space.  

 𝐹𝐴(𝑥) = 𝑃(𝐴 ≤ 𝛿)      (1.6) 
 
where δ is a parameter representing a realization of A. 

 
Even more commonly used is its derivative, known as the probability 
density function: 

 𝑓𝐴(𝑥) = 𝑑
𝑑𝑥
𝐹𝐴(𝑥)      (1.7) 

 
which has the following properties: 

1. 𝑓𝐴(𝑥) is a non-negative function 

2. ∫ 𝑓𝐴(𝑥)𝑑𝑥∞
−∞ = 1 

3. 𝑃𝐴[𝑎, 𝑏] = ∫ 𝑓𝐴(𝑥)𝑑𝑥𝑏
𝑎  

From the definition of average or sample mean µ we can derive the 
Expected Value (or first statistical moment) for the continuous random 
variable as 

 𝐸(𝐴) = ∫ 𝑥𝑓𝐴(𝑥)𝑑𝑥∞
−∞ .      (1.8) 

 

It can be also used to define the expectation of a function of A: 

 𝐸(𝑔(𝐴)) = ∫ 𝑔(𝑥)𝑓𝐴(𝑥)𝑑𝑥∞
−∞ .      (1.9) 

 

If we express 𝑔(𝐴) = 𝐴𝑘 we can obtain the second moment of the random 
variable:    

 𝐸(𝐴2) = ∫ 𝑥2𝑓𝐴(𝑥)𝑑𝑥∞
−∞ .      (1.10) 

 

If we let 𝑔(𝐴) = 𝐴 − 𝐸(𝐴), we get the variance of the signal about the mean:  

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐴 = 𝐸 ��𝐴 − 𝐸(𝐴)�2� = 𝐸(𝐴2) − �𝐸(𝐴)�2      (1.11) 

The square root of the variance, known as the standard deviation: 

 𝜎𝐴 = �𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐴. 
   

(1.12) 
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1.1.3 Description of random signals. 

A special probability distribution known as the Normal or Gaussian 
distribution [14] has historically been popular in modeling random systems 
for a variety of reasons.  

 𝑓𝐴(𝑥) =
1

√2𝜋𝜎2
𝑒

1
2𝜎2

(𝑥−𝜇)2 

   
(1.13) 

Many random processes occurring in nature actually appear to be normally 
distributed, or very close, such is the case of the signals that are being 
recorded to study the behavior of a structure. It is defined a Normal signal, 
one in which all the density functions describing the process are normal in 
form. In the case of Gaussian process the variates are random variables 

A(t1), A(t2), … , A(tk),where the points in time may be chosen arbitrarily.  

A way to describe the process is to correlate it with itself at two different 
times. It is known that this is called the Autocorrelation function for a 
random process X(t): 

 𝑅𝑥(𝑡1, 𝑡2) = 𝐸[𝑋(𝑡1)𝑋(𝑡2)] 
   (1.14) 

Or in stationary case:  𝑅𝑥(𝑡1, 𝑡2) = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝑑𝑡)] where dt is the sampling 
interval.  

The autocorrelation function contains information about the frequency 
content of the process. For a stationary process, there is an important 
relation known as the Wiener-Khinchine relation:  

 𝑆𝑋(𝑗𝜔) = ℑ[𝑅𝑋(𝜏)] = � 𝑅𝑋(𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏
+∞

−∞
 

   
(1.15) 

where ℑ[𝑅𝑋(𝜏)] indicates the Fourier transform and ω is the frequency. This 
function is also called the power spectral density of the random signal. This 
important relationship ties together the time and frequency spectrum 
representations of the same signal. 

Cross spectral density functions for stationary processes X(t) and Y(t) are 
defined as  

 𝑆𝑌𝑋(𝑗𝜔) = ℑ[𝑅𝑋𝑌(𝜏)] = � 𝑅𝑋𝑌(𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏
+∞

−∞
 

   
(1.16) 

Another function that is closely related to the cross density is the 
coherence function. It is defined as  
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 𝛾𝑋𝑌2 =
|𝑆𝑋𝑌(𝑗𝜔)|2

𝑆𝑥(𝑗𝜔)𝑆𝑌(𝑗𝜔)
 

   
(1.17) 

Both the cross spectral density and coherence function are useful in 
analysis of experimental data, because computer technology has made it 
possible to easily transform time data to frequency. 

White noise is defined to be a stationary random process having a constant 
spectral density function, i.e. the autocorrelation function is a dirac delta 
function 𝛿(𝜏). Denoting the white noise spectral as A, we then have 
𝑆𝑊𝑁(𝑗𝜔) = 𝐴 and the correspondent autocorrelation function 𝑅𝑊𝑁(𝑗𝜔) =
𝐴𝛿(𝜏).  

1.2 Physical-variable states for stochastic 
estimation 

In many applications the noisy nature of the measurements is not taken 
into consideration. The noise is typically statistical in nature, which leads 
us to stochastic methods for addressing these problems. 

1.2.1 Deriving the state-variable model. 

State-space models are essentially a notational convenience for estimation 
and control problems, developed to make tractable what would otherwise 
be intractable analysis. 

If it is assumed that the various internal parameters (M,K,C) are 
determined, the problem can be considered as solved, but from an input-
output point of view it is really not necessary to know what these specific 
values are. From an external viewpoint, one only needs to determine, 
experimentally if you will, a relationship between the output function of 
time for a given input function of time, and a set of initial conditions, or 
the State. 

There are two distinct methods for deriving a state-variable model of a 
given linear time-invariant system: first deriving the state model from a 
given output-input transfer function; the second, deriving the state model 
directly from the original physical relationships. In the second case, the 
states are selected to correspond directly to physical variables in the 
system. These variables can be measured. The state model is not unique, 
indeed there are actually an infinite number of state model forms all 
describing the same system. The state-variable model is termed an internal 
model of the system, because the model can include dynamics that do not 
appear in the input-output, external transfer function model of the system.  
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A linear first order, time invariant state variable set of differential 
equations has the general form [15]: 

 
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 
(1.18) 

where 𝑥(𝑡) is the n-th order state vector and 𝑢(𝑡) is a single input signal; 
𝑦(𝑡) is the single output signal; A is termed 𝑛 × 𝑛 plant matrix; B is the 
𝑛 × 1 input matrix; C is the 1× n output matrix and D is a scalar.  

Taking the Laplace transform solved for X(s) and X(0) as initial state: 

 𝑋(𝑠) = (𝑠 − 𝑎)−1𝑋(0) + (𝑠 − 𝑎)−1𝑏𝑈(𝑠) (1.19) 

Taking the inverse Laplace transform of the first term (zero input portion 
of the state): 

 𝑋𝑧𝑖 = 𝑒𝑎𝑡(0) 
 

(1.20) 

The second term in Eq. (1.19) is the zero-state portion of the state, and its 
inverse Laplace transform is 

 
𝑋𝑧𝑖 = � 𝑒𝑎(𝑡−𝜏)𝑏𝑢

𝑡

0
(𝜏)𝑑𝜏 

 

(1.21) 

So the complete state solution will be: 

 𝑋𝑧𝑖 = 𝑒𝑎𝜏𝑥(0) + 𝑒𝑎𝜏 � 𝑒−𝑎𝜏𝑏𝑢
𝑡

0
(𝜏)𝑑𝜏 

   
(1.22) 

In general for a resolvent matrix 𝑒𝐴𝑡 

 

𝐴𝑑 = 𝑒𝐴𝑡 = 𝐼 + 𝐴𝑇 +
𝐴2𝑇2

2!
+ ⋯ 

𝐵𝑑 = � 𝑒𝐴𝑇𝑑𝑇
𝑇

0
= �𝐼 + 𝐴𝑇 +

𝐴2𝑇2

2!
+ ⋯�𝐵 

 

(1.23) 

One of the main reasons for going to a state-space description of the linear 
dynamic system is to be able to readily apply the tool of digital computing.  

If we set  𝑥𝑑(𝑘), 𝐴𝑑 = 𝑒𝐴𝑇 , 𝐵𝑑 = �∫ 𝑒𝐴𝑇𝑑𝑇𝑇
0 �𝐵, 𝑢(𝑘𝑇 − 𝜉) + 𝑢𝑑(𝑘) , than the 

discrete time-state representation of the continuous-state differential 

equation (1.12) is: 
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𝑥𝑑(𝑘) = 𝐴𝑑𝑥𝑑(𝐾 − 1) + 𝐵𝑑𝑢𝑑(𝑘 − 1)  

𝑦𝑑(𝑘) = 𝐶𝑑𝑥𝑑(𝑘) + 𝐷𝑑𝑢𝑑(𝑘 − 1) 
(1.24) 

To propagate the state forward in time, one only has to propagate the 

discrete state propagation. Only the current stage 𝑥𝑑(𝑘) is stored in the 

computer memory and the discrete parameters 𝐴𝑑 and 𝐵𝑑. 

𝐴𝑑 = 𝑒𝐴𝑇 ≈ 𝐼 + 𝐴𝑇        𝐵𝑑 = �∫ 𝑒𝐴𝜉𝑑𝜉𝑇
0 � 𝐵 ≈ 𝐵𝑇 + 𝐴𝐵𝑇2

2
      𝐶𝑑 = 𝐶         𝐷𝑑 = 𝐷 

1.2.2   The Observer Design Problem.  

There is a related general problem in the area of linear systems theory 
generally called the observer design problem. The basic problem is to 
determine (estimate) the internal states of a linear system, given access 

only to the system’s outputs. (Access to the system’s control inputs is also 
presumed, but we omit that aspect here. See for example [16] for more 

information.) This is akin to what people often think of as the ‘black box’ 
problem where you have access to some signals coming from the box (the 

outputs) but you cannot directly observe what’s inside. The many 
approaches to this basic problem are typically based on the state-space 
model presented in the previous section. There is typically a process model 
that models the transformation of the process state. This can usually be 
represented as a linear stochastic difference equation. 

 𝑥𝑑(𝑘) = 𝐴𝑑𝑥𝑑(𝐾 − 1) + 𝑑𝑢𝑑(𝑘 − 1) + 𝑤(𝑘 − 1)  (1.25) 

In addition there is some form of measurement model that describes the 
relationship between the process state and the measurements. 

 𝑦𝑑(𝑘) = 𝐶𝑑𝑥𝑑(𝑘) + 𝐷𝑑𝑢𝑑(𝑘 − 1) + 𝑣(𝑘) (1.26) 

The terms 𝑤 and 𝑣 are random variables representing the process and 
measurement noise respectively. 

We consider here the common case of noisy sensor measurements. There 
are many sources of noise in such measurements. For example, each type of 
sensor has fundamental limitations related to the associated physical 
medium, and when pushing the envelope of these limitations the signals are 
typically degraded. In addition, some amount of random electrical noise is 
added to the signal via the sensor and the electrical circuits. The time-

varying ratio of “pure” signal to the electrical noise continuously affects the 
quantity and quality of the information. The result is that information 
obtained from each sensor must be qualified as part of an overall sequence 
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of estimates, and analytical measurement models typically incorporate 
some notion of random measurement noise or uncertainty as shown above. 

There is the additional problem that the actual state transform model is 
completely unknown. While we can make predictions over relatively short 
intervals using models based on recent state transforms, such predictions 
assume that the transforms are predictable, which is not always the case. 
The result is that like sensor information, ongoing estimates of the state 
must be qualified as they are combined with measurements in an overall 
sequence of estimates. In addition, process models typically incorporate 
some notion of random motion or uncertainty as shown above.

1.3  The discrete Kalman filter 

The Kalman filter is essentially a set of mathematical equations that 
implement a predictor-corrector type estimator that is optimal in the sense 
that it minimizes the estimated error covariance - when some presumed 
conditions are met. Since the time of its introduction, the Kalman filter 
has been the subject of extensive research and application, particularly in 
the area of autonomous or assisted navigation. This is largely due not only 
to the advances in digital computing that made the use of the filter 
practical, but also to the relative simplicity and robust nature of the filter 
itself. Rarely do the conditions necessary for optimality actually exist, and 
yet the filter apparently works well for many applications in spite of this 
situation. 

An introduction to the general idea of the Kalman filter is offered in 
Chapter 1 of [14]. More extensive references include [10], [17] [18]. 

1.3.1 The principals  

In the previous paragraph the terms 𝑤 and 𝑣 were random variables; they 
are assumed to be independent and with normal probability distributions: 

 
𝑝(𝑤)~𝑁(0,𝑄), 

𝑝𝑣~𝑁(0,𝑅) 
(1.27) 

In practice, the process noise covariance and measurement noise covariance 
matrices might change with each time step or measurement.  

The A matrix in the difference equation (1.25) relates the state at the 

previous time step 𝑘 − 1 to the state at the current step 𝑘, in the absence 
of either a driving function or process noise. 
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We define 𝑥�−(𝑘) to be our a priori state estimate at step 𝑘 given 

knowledge of the process prior to step 𝑘, and 𝑥�(𝑘) to be our a posteriori 

state estimate at step k given measurement 𝑦(𝑘). We can then define the 
estimate error as 

 𝑒−(𝑘) = 𝑥(𝑘) − 𝑥�−(𝑘) (1.28) 

and associated error covariance matrix is 

 𝑃−(𝑘) = 𝐸[𝑒−𝑒−𝑇] + 𝐸[�𝑥(𝑘) − 𝑥�−(𝑘)��𝑥(𝑘) − 𝑥�−(𝑘)�𝑇]    (1.29) 

With the assumption of a priori estimate 𝑥�−(𝑘), we now seek to use the 

measurement 𝑦(𝑘) to improve the prior estimate. We choose a linear 
connection of the noisy measurement and the prior estimate as expressed 
in the equation: 

 𝑥�(𝑘) = 𝑥�−(𝑘) + 𝐾[𝑦(𝑘) − 𝐶𝑥�−(𝑘)] (1.30) 

where the x�(k) is the updated estimate and K is called the Kalman gain,  
that is obtained minimizing the covariance matrix of the error: 

 𝐾(𝑘) = 𝑃−(𝑘)𝐶𝑇[𝐶𝑃−(𝑘)𝐶𝑇 + 𝑅]−1 (1.31) 

The weighting by K is explained by thinking that as the measurement 

error covariance R approaches zero, the actual measurement y(k) is 

“trusted” more and more, while the predicted measurement Cx�−(k) is 
trusted less and less. On the other hand, as the a priori estimate error 

covariance P−(k) approaches zero the actual measurement is trusted less 

and less, while the predicted measurement Cx�−(k) is trusted more and 
more. 

The covariance matrix associated with the optimal estimate may now be 

computed. Referring to equation (1.25), substituting x�−(k) and K(k) we 
have 

 𝑃(𝑘) = 𝑃−(𝑘) − 𝐾(𝑘)[𝐶𝑃−1(𝑘)𝐶𝑇 + 𝑅]𝐾𝑇(𝑘) (1.32) 

or  

 𝑃(𝑘) = 𝑃−(𝑘)[𝐼 − 𝐾(𝑘)𝐶] (1.33) 

The Kalman filter estimates a process by using a form of feedback control: 
the filter estimates the process state at some time and then obtains 
feedback in the form of (noisy) measurements. As such, the equations for 
the Kalman filter fall into two groups: time update equations and 



1- STOCHASTIC PROCESSES AND DYNAMIC SYSTEMS 17 
 

 
 

measurement update equations. The time update equations are responsible 
for projecting forward (in time) the current state and error covariance 
estimates to obtain the a priori estimates for the next time step. The 
measurement update equations are responsible for the feedback - i.e. for 
incorporating a new measurement into the a priori estimate to obtain an 
improved a posteriori estimate. The final estimation algorithm resembles 
that of a predictor-corrector algorithm for solving numerical problems. 

So let’s recall this algorithm omitting the subscripts: 

 Time Update: 

 

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1) + 𝐵𝑢(𝑘) 

𝑃(𝑘) = 𝐴𝑃(𝑘 − 1)𝐴𝑇 + 𝑄 

   

(1.34) 

Measurement Update: 

 

𝐾(𝑘) =  𝑃(𝑘)𝐶𝑇[𝐶𝑃(𝑘)𝐶𝑇 + 𝑅]−1 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝐾(𝑘)[𝑦(𝑘 + 1) − 𝐶𝑥(𝑘)] 

𝑃(𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐶𝑇]𝑃(𝑘) 

   

(1.35) 

After each time and measurement update pair, the process is repeated with 
the previous a posteriori estimates used to project or predict the new a 
priori estimates. This recursive nature is one of the very appealing features 
of the Kalman filter - it makes practical implementations much more 
feasible than (for example) an implementation of a Wiener filter [18] which 
is designed to operate on all of the data directly for each estimate. The 
Kalman filter instead, recursively conditions the current estimate on all of 
the past measurements. 

An alternative form of the Kalman filter by algebraically manipulating the 
previous is:  

 𝑃(𝑘)−1 = 𝑃(𝑘 − 1)−1 + 𝐶𝑇𝑅−1𝐶 
𝐾(𝑘) = 𝑃(𝑘)𝐶𝑇𝑅−1 (1.36) 

Note that the updated covariance can be computed without first finding 

the gain. Also, the expression for the Kalman gain now involves P(k); 
therefore if we need K(k), this must be computed after the P(k) 
computation. Thus the order of computation in the recursive algorithm is 
reversed from that presented previously:  
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Figure 1.1 Alternative Kalman filter recursive loop [18]. 

1.4 Dynamic systems 

To describe the dynamics of a structural system under the excitation of 

any applied force, you must have a mathematical model of the system that 

allows to describe the relationship between forcing and displacements, 

velocities and accelerations. The typical approach to correlate the response 

x(t) of a system to the forcing f(t) is to solve the differential equation of 

motion with appropriate initial conditions. Not all problems, however, can 

easily be solved by simple integration. It is then convenient to seek the 

solution by means of the definition of the functions of frequency response. 

This section presents the basics of Structural Dynamics. A mathematical 

representation of mechanical systems based on the use of state variables is 

obtained.  

1.4.1 Equation of motion 

The conventional representation of a linear time invariant dynamic system 

with N-degree of freedom is based on the equation of motion: 

 𝑀𝑣̈(𝑡) + 𝐶𝑣̇(𝑡) + 𝐾𝑣(𝑡) = 𝑓(𝑡) (1.37) 

where 𝑣(𝑡), 𝑣̇(𝑡), 𝑣̈(𝑡) are, respectively, the vector of the displacements, 

velocities and accelerations corresponding to the various degrees of 

freedom; K, C, M are, respectively, the matrices of stiffness, damping and 

of the masses, each having size 𝑁𝑥𝑁. Finally, 𝑓 (𝑡) is the vector of external 

forces applied, of dimension N. 
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Natural frequencies, damping ratios and mode shapes are recovered from 

the homogeneous equation: 

 𝑀𝑣̈(𝑡) + 𝐶𝑣̇(𝑡) + 𝐾𝑣(𝑡) = 0 (1.38) 

whose solution is of the form 𝑣 = 𝜑𝑒𝜆𝑡. Substituting this form into the first 
equation we can obtain the eigenvalue problem related to the K, C, M: 

 (𝑀𝜆2 + 𝐶𝜆 + 𝐾)𝜑 = 0 (1.39) 

Resolving this equation N, complex eigenvalues and eigenvectors are 

obtained. The eigenvalues are generally presented in the form [19]:  

 𝜆𝑗 = −𝜔𝑗𝜁𝑗 + 𝑖𝜔�1 − 𝜁𝑗2 (1.40) 

where ωj is the undamped frequency and ζj is the relative damping ratio. In 

the case of underdamped systems, in which civil structures belong, the 

eigenvalues are obtained in conjugate couples: 

 𝜆2𝑗−1, 𝜆2𝑗 = −ωjζj ± 𝑖𝜔𝑗�1 − 𝜁𝑗2 (1.41) 

The corresponding couples of conjugate complex eigenvectors are of the 

form:  

 Ψ𝑗 = �
𝜑𝑗
𝜆𝑗𝜑𝑗�    

(1.42) 

Since such modal parameters are determined from the structure’s 
properties (mass, stiffness and damping), they can be used to describe the 

dynamic system’s behavior.  

1.4.2 Response to an impulse input 

For the estimation of the solution of a stable linear system, the response 

𝑣(𝑡) to an impulse excitation can be obtained from the unit impulse 

response function (IRF).  If we define with f(t) the input force and with 

y(t) the response, the IRF can be defined as [20]: 

 ℎ(𝑡) = 𝑦(𝑡)  when 𝑓(𝑡) = 𝛿(𝑡) (1.43) 

where t is the time measured from the instant of applying the function δ. 
For an arbitrary input the response of the system can be given by the 

convolution integral: 
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 𝑦(𝑡) = � ℎ(𝑡)𝑓(𝑡 − 𝜏) ∙ 𝑑𝜏
∞

−∞

 (1.44) 

which indicates that the response y(t) is given by a weighted sum of the 

input f(t) on the entire time history. 

A system is said to be with constant parameters, if the IRF is independent 

from the particular instant in which the impulse is applied. The system is 

said to be stable if for every input excitation that is limited, gives a limited 

response: 

 𝑦(𝑡) = � |ℎ(𝑡)| ∙ 𝑑𝜏 < ∞
∞

−∞

 (1.45) 

1.4.3 Frequency response function 

It is of particular importance the representation in the frequency domain. 

The frequency response function (FRF) is obtained by taking the Fourier 

transformation of the IRF: 

 𝐻(𝜔) = � ℎ(𝑡) ∙ 𝑒−𝑗2𝜋𝜔𝜏𝑑𝜏
∞

0

 (1.46) 

where  

ℎ(𝑡) = 0   for  𝜏 < 0 

If we define with f(t) the input force and with y(t) the response, from the 

definition of 𝐻(𝜔) and ℎ(𝑡) = 𝑦(𝑡) it is possible to attain, for every couple of 

excitation-response, the ratio between the Fourier transform of the 

response Y(ω) and the force F(ω): 

 𝐻(𝜔) =
𝑌(𝜔)
𝐹(𝜔)

  (1.47) 

To decrease the measurement errors some estimators of the FRF are used. 

The product between the response at time t  and at time t +τ is given by: 

 𝑦(𝑡)𝑦(𝑡 + 𝜏) = � � ℎ(𝜉)ℎ(𝜂)𝑥(𝑡 − 𝜉)𝑥(𝑡 + 𝜏 − 𝜂)𝑑𝜉𝑑𝜂
∞

0

∞

0

 (1.48) 

The right side of the equation (1.48) is the autocorrelation function defined 

in section 2.5.  
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Similarly, the product between the response y(t) and the ’input evaluated 

at t +τ: 

 𝑦(𝑡)𝑓(𝑡 + 𝜏) = � ℎ(𝜉)𝑥(𝑡)𝑥(𝑡 + 𝜏 − 𝜉)𝑑𝜉
∞

0

 (1.49) 

that is the cross correlation function Rxy(τ). Applying the Fourier 

transform of the previous two expressions, and recalling the definitions of 

the function of spectral density, it is possible to obtain alternative 

expressions for the frequency response function. So it is easy to obtain [20]: 

 𝐻1(𝜔) =
𝑆𝑓𝑥(𝜔)
𝑆𝑓𝑓(𝜔)

 

 
(1.50) 

that minimizes the effects of noise on the output. Alternatively, you can 

use the estimator 𝐻2(𝜔), defined as: 

 𝐻2(𝜔) =
𝑆𝑥𝑥(𝜔)
𝑆𝑥𝑓(𝜔)

 

 
(1.51) 

that instead reduces the effects of noise at the input. In the absence of 

measurement errors would verify the identity: 

𝐻1(𝜔) = 𝐻2(𝜔) = 𝐻(𝜔) 

Finally, to verify the reliability of the measurement carried out and control 

the congruence between the estimators, one can use the coherence function 

𝛾2(𝜔), defined by the following expression: 

 𝛾2(𝜔) =
�𝑆𝑓𝑥(𝜔)�2

𝑆𝑓𝑓(𝜔)𝑆𝑥𝑥(𝜔)
 

 
(1.52) 

which indicates how the response is consistent with the excitation. 

If 𝛾2(𝜔) < 0,75, experimental data tend to be unreliable, in the sense that 

the signal/noise ratio is low. Even the presence of excitations not measured 

or the nonlinear behavior of the system are causes which may give rise to 

low values of coherence. 

Regarding the FRF, more precisely, we define the function Receptance 

α(ω) as the ratio between the transform of the displacement y(t) of a point 

of the system and the Fourier transform of the forcing y(t) applied [20]: 

 𝛼(𝜔) =
𝑌(𝜔)
𝐹(𝜔)

  (1.53) 
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Similarly, we define as Mobility the ratio between the Fourier transform of 

the velocity 𝑦̇ of a point of the system and the transform of forcing f. 

Finally, the Inertance function 𝐴(𝜔) is defined as the ratio between the 

transformed acceleration 𝑦̈ of a point and the Fourier transform of the force 

f(t): 

 𝐴(𝜔) =
𝑌̈(𝜔)
𝐹(𝜔)

  (1.54) 

The Receptance can be written as: 

 𝛼(𝜔) =
1

(−𝜔2 ∙ 𝑀 + 𝑖𝜔 ∙ 𝐶 + 𝐾)
 . (1.55) 

Using the Modal matrix 𝜑 whose columns are the eigenvectors, after some 

mathematical manipulations based on the mode shapes we obtain:  

 𝛼𝑗𝑘(𝜔) = �
𝜙𝑟𝑗𝜙𝑟𝑘

(𝜔𝑟2 − 𝜔2 + 2𝑖𝜁𝑟𝜔𝑟𝜔)

𝑁

𝑟=1

 (1.56) 

 At the same time, the Inertance can be extracted [20]: 

 𝐴𝑗𝑘(𝜔) = −�
𝜔2 ∙ 𝜙𝑟𝑗𝜙𝑟𝑘

(𝜔𝑟2 − 𝜔2 + 2𝑖𝜁𝑟𝜔𝑟𝜔)

𝑁

𝑟=1

 (1.57) 

So the FRF in displacement terms is the sum of 2N elements, as the 

equation of motion in state form has 2N components. Having 2N complex 

conjugate eigenvectors, equation (1.57) becomes [20]: 

 𝛼𝑗𝑘(𝜔) = ��
Ψ𝑗𝑟Ψ𝑘𝑟

(𝑖𝜔 − 𝜆𝑟)
−

Ψ𝑗𝑟∗ Ψ𝑘𝑟∗

(𝑖𝜔 − 𝜆𝑟∗)
�

𝑁

𝑟=1

 (1.58) 

The Frequency Response Function has an important role in the frequency 

domain system identification techniques, while the Impulse Response 

Function is important for the time domain system identification 

techniques.  

1.4.4 State space formulation 

In the previous paragraph the equation of motion was presented with the 

mathematical model that governs the dynamics of a mechanical system 

with N degrees of freedom (frequencies, modal damping and mode shapes).  
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By defining a state vector 𝑥(𝑡) = �𝑣(𝑡)
𝑣̇(𝑡)�, the second-order differential 

equation of motion can be reformulated in the form of a first-order matrix 

differential equation [19]: 

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (1.59) 

where 𝐴 ∈ ℜ𝑛𝑥𝑛 (𝑛 = 2𝑁) and  𝐵 ∈ ℜ𝑛𝑥𝑟 are defined as: 

 𝐴 = � 0 𝐼
−𝑀−1𝐾 −𝑀−1𝐶�          𝐵 = � 0

𝑀−1�              𝑢(𝑡) = � 0
𝑓(𝑡)� (1.60) 

The system is formed by 2N differential equations of the first order. The 

corresponding equations of free motion are written by placing equal to 

zero, at every instant, the vector of external forces u(t), from which it 

follows: 

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) (1.61) 

Considering a harmonic solution of the type 𝑥(𝑡) = 𝜓𝑒𝜆𝑡, the eigenvalue 

problem related to A is obtained: 

 𝜓𝐵 = 𝜆𝜓 (1.62) 

where 𝜓 is a complex vector of 2N dimension, while 𝜆 is a complex 

parameter.  

When recording the experimental response of a structure, measurements 

are performed in correspondence of some degrees of freedom. If it is 

assumed that the measurements y(t) are acquired through a number of 

sensors equal to one, between transducers accelerations, velocities and 

displacements, the equation of motion can be associated with the equation 

of observability: 

 𝑦(𝑡) = 𝐶𝑎𝑣̈(𝑡) + 𝐶𝑣𝑣̇(𝑡) + 𝐶𝑑𝑣(𝑡) (1.63) 

In the above formula matrices Ca Cv and Cd are used to select the degrees of 

freedom recorded during acquisition. Such matrices have all components 

equal to zero except the elements at the i-th degree of freedom in which is 

placed the measuring instrument. In general, acceleration measurements 

are recorded for system identification purposes, although, recent technology 

developments allow to directly measure displacements (GPS sensors, see 

Chapter 5 ).  
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Whereas the motion equation and the equation of observability, the 

representation of the mechanical system in a second order form is therefore 

obtained: 

 
𝑀𝑣̈(𝑡) + 𝐶𝑣̇(𝑡) + 𝐾𝑣(𝑡) = 𝑓(𝑡) 

𝑦(𝑡) = 𝐶𝑎𝑣̈(𝑡) + 𝐶𝑣𝑣̇(𝑡) + 𝐶𝑑𝑣(𝑡) 
(1.64) 

Introducing the following equations: 

 

𝐶 = [𝐶𝑑 − 𝐶𝑎𝑀−1𝐾 𝐶𝑣 − 𝐶𝑎𝑀−1𝐶] 

𝐷 = 𝐶𝑎𝑀−1            𝑢(𝑡) = � 0
𝑓(𝑡)� 

(1.65) 

the measurement equation can be written as follows: 

 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (1.66) 

The matrices C and D are matrices of coefficients of dimensions, 

respectively, lx2N and lxN. Considering the equation of motion in form of 

state and observability, we finally obtain the representation of state of a 

mechanical system with N degrees of freedom in the form: 

 
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 
(1.67) 

1.4.5 Discrete state-space model 

During the experimental acquisition, the physical quantities such as 

displacement, velocity and acceleration are available in discrete time, as 

data sequences. Is therefore necessary to reformulate the model from 

continuous to discrete representation. Defining t0 as the generic instant, 

the solution at time t is given by the following Lagrange formula: 

 𝑥(𝑡) = 𝑥𝐿(𝑡) + 𝑥𝐹(𝑡) (1.68) 

where  

 𝑥𝐿(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0) (1.69) 

is the component due to free vibration, while: 

 𝑥𝐹(𝑡) = �𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝑡)𝑑𝜏
𝑡

𝑡0

 (1.70) 
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corresponds to the forced motion. Placing 𝑡0 = 𝑘Δ𝑡  and   𝑡 = (𝑘 + 1)Δ𝑡  it’s 
possible to obtain the discrete representation: 

 
𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘  
(1.71) 

The matrices 𝐴𝑑 and 𝐵𝑑 represent the corresponding discrete time 

equivalent of 𝐴 and 𝐵, respectively, and they are obtained from their 

continuous-time counterparts: 

  

𝐴𝑑 = 𝑒𝐴Δ𝑡  

𝐵𝑑 = � 𝑒𝐴𝜏𝑑𝜏𝐵 = [𝐴 − 𝐼]𝐴−1𝐵
Δ𝑡

0

 
(1.72) 

Equations (1.71) are referred to as a discrete-time state space model of 

dynamic systems.  

The main task of system identification is to obtain a quadruple [A, B, C, D] that provide the 
mapping between given sequences of forces 𝑢(𝑘) and measurements 𝑦(𝑘). 

With regard to the characteristic value, 𝐴𝑑 can be written in terms of the 

eigenvalues and eigenvectors of 𝐴 such as: 

 𝐴 = Ψ𝑒Λ𝑐Δ𝑡Ψ−1 (1.73) 

and the eigenvalues of 𝐴𝑑, denoted by λdi, are related to their continuous 

counterparts by  𝜆𝑑𝑖 = 𝑒𝜆𝑐𝑖𝛥𝑡. 

Once the [A, B, C, D] are obtained (different methods, see Chapter 2 and 

Chapter 3), the eigenvalues of A and the corresponding damping ratios can 

be evaluated by: 

 
𝑓𝑗 =

�𝑙𝑛�𝜆𝑗̅��
2𝜋𝛥𝑡

 ,        𝜉𝑗 = −
𝑅𝑒(𝑙𝑛�𝜆𝑗̅�)
�𝑙𝑛�𝜆𝑗̅��

 

 

(1.74) 
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2  
SYSTEM IDENTIFICATION  

 

 
 

 
This chapter follows the basic dynamics introduction (estimate structural 

vibration responses of the system subject to any type of excitation) 

discussed in the previous chapter, and deals with system identification 

(identify dynamic properties of a system from measurements of its 

response) with the discrete time realization. Using the de-convolution 

process, the Markov parameters are obtained. Furthermore, the disposition 

of Markov Parameters in  Hankel matrices and the use of singular value 

decomposition makes possible to obtain a realization of 𝐶𝑑  and 𝐵𝑑. 

Finally, the discrete time system matrix 𝐴𝑑 is obtained. The last step is 

the extraction of eigenvalues and eigenvectors of 𝐴𝑑. 
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2.1 Introduction 

The main reason of interest in the experimental modal analysis is related 

to the consideration that the dynamic behavior of a structure is a kind of 

“fingerprint” in the sense that it depends only on its intrinsic characteristics 

(mass, stiffness, damping, constraints, etc.) and not on the extent or the 

type of load applied: therefore, if there are not internal modifications to the 

system (as, for example, of structural damage), the behavior of the 

structure remains unchanged, otherwise, you will notice a change in the 

natural frequencies and vibration modes. Furthermore, the structural 

identification is itself a non-destructive technique, and as such can be 

applied both to new structures, for example in the testing phase, and to 

existing structures.  

 

 

Figure 2.1 System identification Flowchart 

 Generally the problem is simplified, identifying the groups of 

characteristic parameters of the system; for example, the hypothesis of 

linear behavior (but also stationarity and observability) of the structure 

and its schematization according to a system having a finite number of 

degrees of freedom, that leads to the equation of motion. Therefore, the 
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experimental tests for the determination of the modal parameters are based 

on the possibility to describe the dynamic behavior of the structure either 

by means of a set of differential equations in the time domain, or by a set 

of algebraic equations in the frequency domain. The techniques of dynamic 

identification can, therefore, be grouped in frequency domain and time 

domain techniques. If measurements of input and output are available, the 

process is called deterministic system identification. On the other hand, if only the 

response is measurable and the excitation is ambient vibration, the SI is 

named stochastic system identification. 

2.2 Controllability and observability 

A state 𝑥1 is reachable if there is a way to take the system from the origin 

to  𝑥1 in finite time, given the input locations. A state  𝑥1 is controllable if 

there is a way to take the system  𝑥1 to the origin in finite time given the 

input locations. In our applications the system matrices are non-singular 

and reachability and controllability are equivalent. So if we apply this 

definition to the first of equations (1.71) the result is as follows [21]: 

 

𝑥(1) = 𝐴𝑑𝑥(0) + 𝐵𝑑𝑢(0) 

𝑥(2) = 𝐴𝑑𝑥(1) + 𝐵𝑑𝑢(1) = 𝐴𝑑�𝐴𝑑𝑥(0) + 𝐵𝑑𝑢(0)� + 𝐵𝑑𝑢(1)

= 𝐴𝑑2𝑥(0) + 𝐴𝑑𝐵𝑑𝑢(0) + 𝐵𝑑𝑢(1) 

(2.1) 

 𝑥(𝑘) = 𝐴𝑑𝑘𝑥(0) + �𝐴𝑑
𝑘−𝑗−1𝐵𝑑𝑢(𝑗)

𝑘−1

𝑗=0

      𝑘 ≥ 0 (2.2) 

If we bring  the first term of equation (2.2) at the left side, we obtain: 

 𝑥(𝑘) − 𝐴𝑑𝑘𝑥(0) = 𝐶𝑘𝑈𝑘  (2.3) 

where 𝐶𝑘 and  𝑈𝑘 are defined as: 

 𝐶𝑘 = [𝐵𝑑 𝐴𝑑𝐵𝑑 ⋯ 𝐴𝑑𝑘−1𝐵𝑑]      𝑈𝑘 = �

𝑢(𝑘 − 1)
𝑢(𝑘 − 2)

⋯
𝑢(0)

�   (2.4) 

The matrix 𝐶𝑘 represented in equation (2.4) is called the controllability 

matrix. In considering the state-space model (equation (1.71)), it can be 

controllable if and only if 𝐶𝑘 has rank n, the order of the system (full 
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column rank). To decide how many terms we do need for attaining a full 

rank, the Cayley-Hamilton theorem says that the largest power that is not 

a linear combination of previous powers is N-1 (where N=system order) so, 

to check controllability we only need to consider CN; if the system is not 

controllable at k = N it is not controllable. 

Uncontrollable modes cannot be excited from the input locations and 

cannot, therefore be identified. 

A system may be controllable but some modes may only be “marginally so” 
and thus may be difficult to identify. A practical question then is, how to 

locate excitation sources to minimize controllability difficulties in a certain 

bandwidth. The controllability Gramian [21] offers guidance. The minimum 

norm input sequence required to take the system from the origin to the 

state x in k steps is: 

 𝑈𝑘 = 𝐶𝑘−∗ 𝑥(𝑘)  (2.5) 

It can be shown that: 

 |𝑈𝑘|2 = 𝑥(𝑘)𝑇𝑊𝑐
−1𝑥(𝑘)  (2.6) 

where the controllability Gramian (that helps to find the input locations) 

[21]  is: 

 𝑊𝑐 = 𝐶𝑘𝐶𝑐𝑇  (2.7) 

The state x(0) is observable if it can be obtained from observations of the 

inputs and the outputs. A state is constructible if one can identify it from 

the current and past values of the inputs and outputs. Observability 

implies constructability if the system matrix is not singular. 

Similarly to the case of controllability, we can construct the observability 

matrix from the second of equations (1.71): 

 𝑦(𝑘) = 𝐶𝑑𝐴𝑑𝑘𝑥(0) + �𝐶𝑑𝐴𝑑
𝑘−𝑗−1𝐵𝑑𝑢(𝑗)

𝑘−1

𝑗=0

+ 𝐷𝑑𝑢(𝑘) (2.8) 

If we bring  the first term of equation (2.8) at the left side, we obtain [22]: 

 𝐶𝑑𝐴𝑑𝑘𝑥(0) = 𝑦(𝑘) −�𝐶𝑑𝐴𝑑
𝑘−𝑗−1𝐵𝑑𝑢(𝑗)

𝑘−1

𝑗=0

+ 𝐷𝑑𝑢(𝑘) (2.9) 



2-SYSTEM IDENTIFICATION 31 

 
 

States contained on the null space of the observability matrix are 

unobservable (i.e., if the system is given an initial condition in the 

unobservable space and no loads act, the measurements would remain 

identically zero). 

As in the case of the controllability, Cayley-Hamilton ensures that the 

rank of this matrix will not increase after the power of the system matrix 

is N-1 so it is sufficient to stop at n = N to check the rank. The 

observability matrix is: 

 𝑂𝑘 = �

𝐶𝑑
𝐶𝑑𝐴𝑑
⋮

𝐶𝑑𝐴𝑑𝑁−1
� (2.10) 

Since states that are not observable “cannot be seen” from the sensors, only 

observable states can be identified. 

2.3 Identification of a DT model in state-space 
form 

The principal steps to complete a system identification are:  

• Use de-convolution to compute the DT Markov parameters,  

• Organize the Markov parameters in Hankel Matrices and use 

Singular Value decomposition to obtain a realization. 

The weighting-sequence model in equation (2.9) forms the so called Markov 

Parameters: 

 𝑌𝑙 = 𝐶𝑑𝐴𝑑𝑙−1𝐵𝑑      𝑙 = 𝑘 − 𝑗 (2.11) 

So equation (2.9) can be rewritten as: 

 𝑦(𝑘) = 𝐶𝑑𝐴𝑑𝑘𝑥(0) +    �𝑌𝑙𝑢(𝑘 − 𝑙)
𝑘

𝑙=0

 (2.12) 

Markov parameters are invariant to state transformations. Since, they are 

the pulse responses of the system, they must be unique for a given system. 

This formulation is the basis for the Observer Kalman filter Identification 

(OKID) that was developed by [23]. Note that the input-output description 

in equation  (2.12) is valid only under zero initial conditions (steady-state). 

It is not applicable if the transient effects are present in the system. If the 

system is asymptotically stable, then there are only a finite number of 
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steps in the weighting sequence model. However, for lightly damped 

systems, the number of terms in the weighting sequence model can be too 

large. Under these conditions, the state-space observer model is 

advantageous. 

We can eliminate the initial condition from the input-output relation, 

provided that we start looking at the output sequence no earlier than step 

p+1, so: 

 𝑦(𝑘) = �𝑌𝑙𝑢(𝑘 − 𝑙)
𝑝+1

𝑙=0

 (2.13) 

Equation (2.13) can be represented also in the following sequence [21]:  

 

[𝑦ℎ 𝑦ℎ+1 … 𝑦𝑧]

= [𝑌0 𝑌1 … 𝑌𝑝+1] �

𝑢(ℎ)
𝑢(ℎ − 1)

⋮
𝑢(ℎ − (𝑝 + 1))

𝑢(ℎ − 1)
𝑢(ℎ)
⋮

𝑢(ℎ − 𝑝)

⋯
⋮
⋮

…

𝑢(𝑧)
⋮
⋮

𝑢(𝑧 − (𝑝 + 1)))
� (2.14) 

or in short form: 

 𝑦ℎ𝑧 = Υ𝑝+1𝑈ℎ𝑧𝑝 (2.15) 

where 𝑈ℎ𝑧𝑝 is known as the Toeplitz Block. The equation has a unique 

solution provided that 𝑈ℎ𝑧𝑝 is full row rank.  

If we add and subtract the term Gy(k) to first of equations (1.71), the 

following is obtained: 

 
𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘) + 𝐺𝑦(𝑘) − 𝐺𝑦(𝑘) 

𝑦(𝑘) = 𝐶𝑑𝑥(𝑘) + 𝐷𝑑𝑢(𝑘) 
(2.16) 

Then, substituting the second expression on the first one: 

 

𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘) + 𝐺𝑦(𝑘) − 𝐺(𝐶𝑑𝑥(𝑘) + 𝐷𝑑𝑢(𝑘)) 

𝑥(𝑘 + 1) = (𝐴𝑑 − 𝐺𝐶𝑑)𝑥(𝑘) + [𝐵𝑑 − 𝐺𝐷𝑑)𝐺] �𝑢(𝑘)
𝑦(𝑘)� 

or 

𝑥(𝑘 + 1) = 𝐴̅𝑥(𝑘) + 𝐵�𝑣(𝑘) 

(2.17) 
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Exactly the same form as the original expression except that the input now 

includes the true input and the output and the matrices are modified. The 

output equation has not changed. 

Repeating the considerations performed from equation (2.11) to equation 

(2.15), the Observer Markov Parameters (OMP)  Υ�𝑝+1 are obtained by 

solving: 

 𝑦ℎ𝑧 = Υ�𝑝+1𝑉ℎ𝑧𝑝 (2.18) 

The Observer Markov Parameters depend on p but the Markov 

Parameters (which are unique) can be extracted from any OMP set that 

satisfies equation (2.18).  

At this point, let’s see the extraction of MP from OMP. Considering both 

solution equations (2.15) and (2.18) we obtain: 

 
𝑌𝑗 = 𝐶𝑑𝐴𝑗−1𝐵𝑑 

𝑌�𝑗 = 𝐶𝑑𝐴̅𝑗−1𝐵 
(2.19) 

For j=1: 

 
𝑌1 = 𝐶𝑑𝐵𝑑 

𝑌�1
(1) = 𝐶𝑑𝐵𝑑 − 𝐶𝑑𝐺𝐷𝑑  ,   𝑌�1

(2) = 𝐶𝑑𝐺  
(2.20) 

So 

 
𝑌1 = 𝑌�1

(1) + 𝑌�1
(2)𝑌0 

𝑌�1
(1) = 𝑌1 − 𝑌�1

(2)𝑌0  
(2.21) 

For j=2 and j=3: 

 
𝑌2 = 𝑌�2

(1) + 𝑌�1
(2)𝑌1 + 𝑌�2

(2)𝑌0 

𝑌3 = 𝑌�3
(1) + 𝑌�1

(2)𝑌2 + 𝑌�2
(2)𝑌1 + 𝑌�3

(2)𝑌0 
(2.22) 

In general, we can state that the extraction of Markov Parameters is 

possible with the formulation: 

 𝑌𝑘 = 𝑌�𝑘
(1) + �𝑌�𝑗

(2)𝑌𝑘−𝑗

𝑘

𝑗=1

 (2.23) 
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2.4 The Eigensystem Realization Algorithm 

Since from the previous section we extracted the Markov Parameters 

[𝐷,𝐶𝐴𝑖𝐵], the matrices 𝐴,𝐵,𝐶,𝐷 separately represent the realization of the 

system. Such parameters can be achieved through the eigensystem 

realization algorithm [21].  

Let us define the block Hankel matrix 𝐻𝑘 as: 

 𝐻𝑘 =

⎣
⎢
⎢
⎡𝑌𝑘+1 𝑌𝑘+2
𝑌𝑘+2 𝑌𝑘+2

⋯ 𝑌𝑘+𝛽
⋯ 𝑌𝑘+𝛽+1

⋮ ⋮
𝑌𝑘+𝛼 ⋯

    ⋮ ⋮
   ⋯ 𝑌𝑘+𝛽+𝛼−1⎦

⎥
⎥
⎤
 (2.24) 

where the number of 𝛼 and 𝛽 blocks is arbitrary.  

We now recall that the observability block of order 𝛼 is given by: 

 𝑃𝛼 = �

𝐶𝑑
𝐶𝑑𝐴𝑑
⋮

𝐶𝑑𝐴𝑑𝛼−1
� (2.25) 

And the controllability block of order 𝛽 is: 

 𝑄𝛽 = �𝐵𝑑 𝐴𝑑𝐵𝑑 ⋯ 𝐴𝑑
𝛽−1𝐵𝑑� (2.26) 

It follows, therefore, that: 

 𝑃𝛼 = �
𝐶𝑑𝐴𝑑𝑘𝐵𝑑  𝐶𝑑𝐴𝑑𝑘+1𝐵𝑑 ⋯
𝐶𝑑𝐴𝑑𝑘+1𝐵𝑑 𝐶𝑑𝐴𝑑𝑘+2𝐵𝑑 ⋯

⋮ ⋮ ⋮
� (2.27) 

or in other words the block Hankel matrix 𝐻𝑘 is equal to the product of 

the observability block of order 𝛼 times the system matrix to the power k 

times the controllability block of order 𝛽: 

 𝐻𝑘 = 𝑃𝛼𝐴𝑑𝑘𝑄𝛽 =

⎣
⎢
⎢
⎢
⎡𝑌𝑘+1 𝑌𝑘+2
𝑌𝑘+2 𝑌𝑘+2

⋯ 𝑌𝑘+𝛽
⋯ 𝑌𝑘+𝛽+1

⋮ ⋮
𝑌𝑘+𝛼 ⋯

    ⋮ ⋮
   ⋯ 𝑌𝑘+𝛽+𝛼−1⎦

⎥
⎥
⎥
⎤
 (2.28) 

From equation (2.28) we have: 
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 𝐻0 = 𝑃𝛼𝑄𝛽  (2.29) 

If H is a matrix, then there exist two orthonormal matrices 𝑅 and S so that 

(performing a Singular value Decomposition): 

 𝐻0 = 𝑅ΣST (2.30) 

where, Σ is a matrix with the same dimension as 𝐻0, but diagonal. 

Recalling from previous discussion that the rank of the observability and 

controllability blocks is not bigger than the order of the system and that 

the rank of a product is never larger than the smaller rank of the 

multipliers we conclude that the rank of 𝐻0 is no larger than N - 

independently of the size of the blocks 𝛼 and 𝛽 - where N is the system 

order. 

Examining the dimensions of 𝐻0𝜖 𝑅(𝛼𝑚)𝑥(𝛽𝑟) and knowing that the rank of 

𝐻0 is not controlled by the number of blocks we select these block sizes 

such as: 

 𝛼 ≥
𝑁
𝑚

           𝛽 ≥
𝑁
𝑟

 (2.31) 

We have, therefore: 

 
𝐻0 = [𝑅𝑆 𝑅𝑛] �ΣS 0

0 0�
[𝑉𝑆 𝑉𝑛]𝑇 

𝐻0 = 𝑅𝑆𝛴𝑆𝑉𝑇 
(2.32) 

We can express the non-zero singular values as a product of two diagonal 

matrices: 

so 

𝛴𝑆 = 𝐸1𝐸2 
 

𝐻0 = (𝑅𝑆𝐸1)(𝐸2𝑉𝑇) 
(2.33) 

and recalling equation (2.29), it is simply to set  

 𝑃𝛼 = 𝑅𝑆𝐸1       𝑄𝛽 = 𝐸2𝑉𝑆𝑇 (2.34) 

Recalling equation (2.25) we can say that the realization of the state to 

output matrix 𝐶𝑑 is given, therefore, by the first m rows of the matrix 

𝑅𝑆𝐸1. On the other hand from equation (2.26), it is possible to obtain a 

realization of the input state matrix 𝐵𝑑, therefore, by the first r columns of 

the matrix 𝐸2𝑉𝑆𝑇. 
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We now face the question of how to compute the system matrix 𝐴𝑑. There 

are various ways to go about it; a commonly used one uses the block 

Hankel matrix 𝐻1 as illustrated next. 

 𝐻1 = 𝑃𝛼𝐴𝑑𝑄𝛽 = (𝑅𝑆𝐸1)𝐴𝑑(𝐸2𝑉𝑇) (2.35) 
Recognizing the orthogonality of the matrices 𝑅𝑆 and 𝑆𝑆 one gets 

 𝐴𝑑 = 𝐸1−1𝑅𝑛𝑇𝐻1𝑆𝑛𝐸2−1 (2.36) 
And since 𝐷𝑑 is the first Markov parameter we have obtained a DT 

realization. Now, taking in consideration the Zero Hold Assumption, 𝐴𝑑 is 
converted in continuous form. Finally, using the Jordan Form 𝐴𝑐 = ΦΛΦ−1, 

𝑋 = ΦY: 

 𝑌̇ = ΛY + Φ−1_𝐵𝑐𝑈 
𝑦 = CcΦ𝑌 + 𝐷𝑐𝑈 (2.37) 

where Λ = diag(λ1, λ2 … λ1), from which λj = −𝜔𝜁 ± 𝜔�1 − 𝜁2𝑖 . 

The identification approach where the Markov parameters are extracted 

from the Observer and the untangling using ERA is known in the 

literature as the ERA-OKID Algorithm. 

2.5 Introduction to stochastic realization 

There are instances where we can only measure output signals. If we know 

nothing about the input then we can’t say anything about the system from 

the output but, if some assumptions on the input are reasonable then 

significant information can be extracted from the output signals. In 

absence of the input, it is impossible to calculate the frequency response 

function. However, by assuming that the input is stationary white noise, 

the system realization can be written as follows: 

 
𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝑤(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑣(𝑘) 
(2.38) 

where 𝑤 and 𝑣 are process and measurement noises, assumed to be 

uncorrelated zero mean white noise of unknown covariance. The matrices 𝐴 

and 𝐶 are system and observation matrices, respectively.  

As already mentioned, it is assumed that the stochastic process is 

stationary, and the state is uncorrelated with both, process noise and 

output noise, so the following expressions are true: 
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𝐸(𝑥𝑘𝑣𝑘𝑇) = 0         𝐸(𝑥𝑘𝑤𝑘𝑇) = 0      𝐸(𝑥𝑘+1𝑥𝑘+1𝑇 ) = Σ 

or 

𝐸[(𝐴𝑥𝑘 + 𝑤𝑘)(𝐴𝑥𝑘 + 𝑤𝑘)𝑇] = Σ 
(2.39) 

The whiteness property and statistically independent property between the 

noises and the system’s past measurements allow us to represent output 

covariance matrices in the form of Markov parameters. 

Computing the multiplications inside the second equation of (2.39): 

 𝐸(𝐴𝑥𝑘𝑤𝑘𝑇) + 𝐸(𝐴𝑥𝑘𝑥𝑘𝑇𝐴𝑇) + 𝐸(𝑤𝑘𝑤𝑘𝑇) + 𝐸(𝑤𝑘𝑥𝑘𝑇𝐴𝑇) = Σ (2.40) 

which simplifies into: 

 𝛴 = 𝐴𝛴𝐴𝑇 + 𝑄 (2.41) 

where 𝑄 = 𝐸(𝑤𝑘𝑤𝑘
𝑇). We define the output covariance function matrix Λ𝑖 for 

a time step i: 

 Λ𝑖 = 𝐸(𝑦𝑘+1𝑦𝑘𝑇) (2.42) 

Substituting the output equation (2.38), one gets: 

 
Λ𝑖 = 𝐸[(𝐶𝑥𝑘+1 + 𝑣𝑘+𝑖)(𝐶𝑥𝑘 + 𝑣𝑘)𝑇] 

Λ𝑖 = 𝐸(𝐶𝑥𝑘+1𝑣𝑘) + 𝐸(𝐶𝑥𝑘+𝑖𝑥𝑘𝑇𝐶𝑇) + 𝐸(𝑣𝑘+𝑖𝑣𝑘𝑇) + 𝐸(𝑣𝑘+𝑖𝑥𝑘𝑇𝐶𝑇) 
(2.43) 

Assuming that the noise is white, 𝐸(𝑣𝑘+𝑖 𝑣𝑘𝑇) = 0   and recalling that 

𝐸(𝑥𝑘𝑣𝑘𝑇) = 0 : 

 Λ𝑖 = 𝐸(𝐶𝑥𝑘+𝑖𝑥𝑘𝑇𝐶𝑇) = 𝐶𝐸(𝑥𝑘+𝑖𝑥𝑘𝑇)𝐶𝑇 (2.44) 

From the state recurrence it is a simple matter to show that: 

 x𝑘+1 = 𝐴𝑖𝑥𝑘 + 𝐴𝑖−1𝑤𝑘 + 𝐴𝑖−2𝑤𝑘+1 +  ⋯+ 𝑤𝑘+𝑖−1 (2.45) 

Post-multiplying by 𝑥𝑘𝑇 and taking the expectations: 

 𝐸�𝑥(𝑘+𝑖)𝑥𝑘𝑇� = 𝐴𝑖𝐸(𝑥𝑘𝑥𝑘𝑇) = 𝐴𝑖Σ (2.46) 

 Substituting in equation (2.44), the following expression is obtained:  

 Λ𝑖 = 𝐶𝐴𝑖Σ𝐶𝑇 (2.47) 

Recalling equation (2.43), it can be noticed that for 𝑖 = 0 and for 𝑅 =
𝐸(𝑣𝑘𝑣𝑘𝑇) we have: 



38 2-SYSTEM IDENTIFICATION 

 
 

 Λ0 = 𝐶Σ𝐶𝑇 + 𝑅 (2.48) 
and  for 𝑖 ≠ 0: 

 Λ𝑖 = 𝐶𝐴𝑖Σ𝐶𝑇 (2.49) 

Defining 𝐺 = 𝐸�𝑥𝑘+1𝑦𝑘𝑇� = 𝐸[(𝐴𝑥𝑘 + 𝑤𝑘)(𝐶𝑥𝑘 + 𝑣𝑘)𝑇] and performing the 

multiplications: 

 

𝐺 = 𝐸[𝐴𝑥𝑘𝑣𝑘𝑇 + 𝐴𝑥𝑘𝑥𝑘𝑇𝐶𝑇 + 𝑤𝑘𝑣𝑘𝑡 + 𝑤𝑘  𝑥𝑘𝑇𝐶𝑇] 

or  
𝐺 = 𝐴ΣCT 

(2.50) 

We know that equation (2.49) can be formulated as [21]: 

 Λ𝑖 = 𝐶𝐴𝑖−1AΣ𝐶𝑇 (2.51) 

But 𝐺 = 𝐴ΣCT, so equation (2.49) can be rewritten as: 

 Λ𝑖 = 𝐶𝐴𝑖−1G (2.52) 

We saw in section 2.4 that the Markov Parameters in the known input 

case are given by   

 𝑌𝑖 = 𝐶𝑑𝐴𝑖−1𝐵 (2.53) 

We conclude that the output covariance can be treated as Markov 

Parameters of a system having the matrices [A,G,C]. We can, therefore, 

estimate the output covariance and from there join our ERA algorithm at 

the point where the Hankel matrices are formed and proceed without any 

changes to obtain a realization for [A G C]. It is possible, at this point, to 

extract natural frequencies, mode shapes and damping ratios from the state 

matrix A.  



  

 

 

3  
STOCHASTIC SYSTEM 

IDENTIFICATION 
 

 

 

 
Following the introduction given in section 2.5, this chapter describes in 

detail system identification techniques in the case of stochastic input or 

output-only measurements. Since the techniques are divided into time and 

frequency domain system identification, both groups are presented. In 

particular, the Frequency Domain Decomposition, the Stochastic Subspace 

Identification and an Enhanced SSI will be described, in relation also to 

the applications that will be presented in Chapter 4. Three types of 

automatic system identification have been implemented for the dynamic 

SHM of bridges. 
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The primary assumption in the development of stochastic system identification 
techniques is to consider the input signal as a white noise. Under this 

consideration, the representation of the dynamic system parameters in the 

frequency domain is given by the Power Spectra Density, while for the time-
domain case, covariance functions of the response and the realization of 

ARMA or state-space models are able to represent the system’s properties.  

 

3.1 Frequency Domain Decomposition 

This technique is an extension of the classical approach in the frequency 

domain of PP (Peak Picking). It is a non-parametric method capable of 

taking into account the multiplicity of vibration modes at close frequencies. 

This is because, unlike the classical technique PP, it has been introduced a 

singular value decomposition (SVD) of the spectra matrix in order to 

separate the contribution of individual modes. Subsequently this technique 

has been extended to the Enhanced FDD [6]. 

An important property that relates the function of autocorrelation in 

equation (0.14) with the Power Spectral Density function is given by its 

Fourier transform: (0.12) 

 𝐺𝑥(𝑓) = 2� 𝑅𝑥(𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏 = 4� 𝑅𝑥(𝜏) cos(2𝜋𝑓𝜏) 𝑑𝜏
+∞

0

+∞

−∞
 (3.1) 

where Gx(f) is always positive. On the other hand if we take the Fourier 

transform of equation (0.48) we obtain the important relation: 

 𝐺𝑦(𝑓) = |𝐻(𝑓)|2𝐺𝑥(𝑓) (3.2) 

With similar steps to cross functions, you get another important relation: 

 𝐺𝑥𝑦(𝑓) = 𝐻(𝑓)𝐺𝑥(𝑓)  = 2� 𝑅𝑥𝑦(𝜏)
+∞

−∞
𝑒−𝑖2𝜋𝜔𝜏𝑑𝜏 (3.3) 

That is, the Fourier Transform of the cross-correlation functions 𝑅𝑥𝑦(𝜏)  is 
called cross-spectrum (CSD). As a result, the functions of cross-correlation 

will occupy the off-diagonal terms of the PSD matrix while the functions of 

autocorrelation terms are the diagonals of the former. 
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Consider a system with r inputs 𝑥𝑖(𝑡)  𝑖 = 1,2, … , 𝑟 and a measurement 

output 𝑦(𝑡); one may think that 𝑦(𝑡), is the sum of many 𝑦𝑖(𝑡)  𝑖 = 1,2, … , 𝑟: 

 𝑦(𝑡) = �𝑦𝑖(𝑡)
𝑟

𝑖=1

   𝑜𝑟    𝑦𝑖(𝑡) = 𝑦1 ∪ 𝑦2 …∪ 𝑦𝑘 ∪ …∪ 𝑦𝑛 (3.4) 

We know that xr(t) → hr(τ) → yr(t) and from equations (0.44) and (0.48) 

we obtain the Fourier transform: 

 𝐺𝑦(𝑓) = ��𝐻𝚤���(𝑓)𝐻𝑗(𝑓)𝐺𝑖𝑗(𝑓)
𝑟

𝑗=1

𝑟

𝑖=1

 (3.5) 

where the symbol "-" indicates the complex conjugate. If we define an r-

dimensional vector of inputs 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑟(𝑡)], its r-dimensional 

frequency response function 𝐻(𝑓) = [𝐻1(𝑓),𝐻2(𝑓), … ,𝐻𝑟(𝑓)], a cross-

spectra vector of the output 𝑦𝑖(𝑡)  with the input  𝑥𝑖(𝑡): 

𝐺𝑥𝑦(𝑓) = �𝐺𝑥1𝑦(𝑓),𝐺𝑥2𝑦(𝑓), … ,𝐺𝑥𝑟𝑦(𝑓)� and at last a matrix 𝑟 × 𝑟 for every 

input 𝑥𝑖(𝑡) 

 𝐺𝑥𝑥(𝑓) =

⎝

⎜⎜
⎛

𝐺𝑥1𝑥1(𝑓) 𝐺𝑥1𝑥2(𝑓) ⋯ 𝐺𝑥1𝑥𝑟(𝑓)
𝐺𝑥2𝑥1(𝑓) 𝐺𝑥2𝑥2(𝑓) ⋯ 𝐺𝑥2𝑥𝑟(𝑓)

⋮
⋮

𝐺𝑥1𝑥𝑟(𝑓)

⋮
⋮

𝐺𝑥𝑟𝑥2(𝑓)

⋮
⋮

⋯ 𝐺𝑥1𝑥1(𝑓)⎠

⎟⎟
⎞

 (3.6) 

then equation (3.4) becomes: 

 𝐺𝑦𝑦(𝑓) = 𝐻(𝑓)𝐺𝑥𝑥(𝑓)𝐻𝐻(𝑓) (3.7) 

where 𝐺𝑥𝑥(𝑓) is the matrix of spectral density of the inputs, 𝐻(𝑓) is the 

matrix of frequency response functions and 𝐺𝑦𝑦(𝑓) is the  spectral density 

matrix of the output:  

 𝐺𝑦𝑦(𝑓) =

⎝

⎜
⎛
𝐺𝑦1𝑦1 𝐺𝑦1𝑦2 ⋯ 𝐺𝑦1𝑦𝑚
𝐺𝑦2𝑦1 𝐺𝑦2𝑦2 ⋯ 𝐺𝑦2𝑦𝑚
⋮

𝐺𝑦𝑚𝑦1
⋮

𝐺𝑦𝑚𝑦2
⋮

⋯ 𝐺𝑦𝑚𝑦𝑚⎠

⎟
⎞

 (3.8) 

At the basis of the FDD technique is the decomposition of the system 

response in a set of simple systems with single degree of freedom, one for 

each mode to identify. This decomposition takes place through the 

identification of a spectral bell around the peak considered, that 

corresponds to the k-th mode. Furthermore, a SVD of the spectral matrix 

is introduced in order to separate the contribution of each mode from 
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which is possible to distinguish the frequency peaks directly from the 

matrix of spectral densities. From an analytical point of view consists in 

obtaining vectors and singular values of the matrix of spectral density as 

follows: 

 𝐺𝑦𝑦(𝑓) = 𝑈𝑆𝑈𝐻 (3.9) 

In matrix form: 

 𝑆 = �

𝑆1 0
0 𝑆2

0 0
0 0

0 0
0 0

⋱ 0
0 𝑆𝑚

�             𝑈 = �

𝑢11 𝑢12
𝑢21 𝑢22

⋯ 𝑢1𝑚
⋯ 𝑢2𝑚

⋮ ⋮
𝑢𝑚1 𝑢𝑚2

⋮ ⋮
⋯ 𝑢𝑚𝑚

� (3.10) 

where U is a matrix of orthonormal components of the singular vectors 

calculated as a function of 𝜔 from which it is possible to derive the 

singular vector plots; S is a diagonal matrix containing the singular values 

and 𝑈𝐻 is the matrix of the right components of the vector. From a 

graphical point of view, the singular values are obtained through an 

envelope of the components of the orthonormal singular vectors. So the 

first singular value line contains almost all the modes identified, while the 

other lines can contain any left mode that are close to the previous ones 

(see Figure 3.1).  

On the peak of the k-th mode, the corresponding singular value is a good 

estimate of the modal form  𝜑� = 𝑢1. The singular value represents the PSD 

function of the corresponding SDOF system given by: 

 𝐺𝑦𝑦(𝜔) = �
𝑑𝑘𝜑𝑘𝜑𝑘𝑇

𝑖𝜔 − 𝜆𝑘

𝑛

𝑘=𝑆𝑢𝑏(𝜔)

+
𝑑𝑘���𝜑𝑘����𝜑𝑘𝑇����

𝑖𝜔 − 𝜆𝑘���
 (3.11) 

The last expression is similar to equation (3.7) in the case where the input 

is white noise.  

In the basic version of FDD, natural frequencies are mainly the peaks of 

the singular vector plots and damping ratios can roughly be estimated by 

the half-power bandwidth method. In the Enhanced version of the FDD, 

damping ratios and modes are estimated in a more accurate way.  

The first step in the EFDD technique is to select the right spectral bell 

representing the SDOF system. This is realized by the use of the singular 

vector, (corresponding to the peak singular value) as a reference and 

comparing it in terms of MAC (Modal Assurance Criterion) [24] [25]: 
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 𝑀𝐴𝐶(𝜑𝑟 ,𝜑𝑖) =
[𝜑𝑟𝐻𝜑𝑖]2

[𝜑𝑟𝐻𝜑𝑟] ∙ [𝜑𝑖𝐻𝜑𝑖]
 (3.12) 

where 𝜑𝑟 is the reference singular vector and 𝜑𝑖 represent the singular 

vectors corresponding to the singular values in the neighborhood of the 

peak. One can fix a reference value of MAC and proceed with the 

comparison. If during the comparison with the i-th vector a MAC greater 

than the chosen level is obtained, this vector is selected and the 

corresponding singular value contributes to the definition of the spectral 

bell under the selected mode.  

At this point the spectral area previously identified is transferred in the 

time domain with an Inverse Discrete Fourier Transform in order to obtain 

a SDOF system represented by a normalized autocorrelation function: 

 𝑅(𝜏) = �𝑠1(𝜔)𝑒−𝑖𝜔𝜏𝑑𝜏 (3.13) 

From this function, having a decreasing trend over time, the value of 

damping ratio can be extracted. The damping ratio is calculated by 

performing the logarithmic decrement: 

 𝛿 =
2
𝑘

ln
𝑟0

|𝑟𝑘| (3.14) 

where 𝑟0 is the initial value of the autocorrelation function and 𝑟𝑘 is the k-

th step. The damping ratio is thus obtained by: 

 𝜉 =
𝛿

√𝛿2 + 4𝜋2
 (3.15) 

The frequency is determined by linear regression between measured 

intervals intersected with the time axes and extreme intervals. It is 

observed that the time interval between the intersection of the function 

with the time axis and a peak corresponds to a quarter of a period; 

consequently the frequency will be identified by taking into account two 

cycles in the plot of the autocorrelation. 

3.2 Stochastic subspace Identification – PCA 

A widely used technique of stochastic system identification is the Stochastic 

Subspace Identification [4] [7] [8] [9]. The basic idea in this method is to 

build a state-space model which estimates state vectors from output 

responses by decomposing them by LQ or SVD.  
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3.2.1 The general concept 

If we suppose that an estimate of a sequence of state vectors of the state-

space model is constructed from the observed input-output data (equation 

(0.67)), then for t = 0, 1, 2, … , N-1, where N is the number of data, we 

have 

 �𝑥 �(𝑡 + 1)
𝑦(𝑡) � = �𝐴 𝐵

𝐶 𝐷� �
𝑥 �(𝑡)
𝑢(𝑡)� + �𝜂(𝑡)

𝜈(𝑡)� (3.16) 

Where x�  ∈ Rn is the estimate of state vector, u ∈ Rm the input, y ∈ Rp the 

output, and η, ν are the residuals. It may be noticed that since all the 

variables are given, (3.16) is a regression model for system parameters 

Θ:=�𝐴 𝐵
𝐶 𝐷�  ∈ 𝑅(𝑛+𝑝) (𝑛+𝑚). This class of approaches are called the direct 

N4SID methods. This estimate uniquely exists if the rank condition  

 𝑟𝑎𝑛𝑘 � 𝑥̅
(0), 𝑥̅(1), … , 𝑥̅(𝑁 − 1)

𝑢 (0),𝑢(1), … ,𝑢(𝑁 − 1)� (3.17) 

is satisfied. Moreover, the covariance matrices of the residual are given by: 

 � 𝑄 𝑆
𝑆𝑇 𝑇

� =  
1
𝑁
� �𝜂(𝑡)

𝜈(𝑡)� [𝜂𝑇(𝑡), 𝜈𝑇(𝑡)]
𝑁−1

𝑡=0

 (3.18) 

Thus, by solving a certain algebraic Riccati equation, we can derive a 

steady state Kalman filter of the form: 

 �𝑥�(𝑡 + 1)
𝑦(𝑡) � = �𝐴 𝐵

𝐶 𝐷� �
𝑥�(𝑡)
𝑢(𝑡)� + �𝐾𝐼𝑃

� 𝑒̂(𝑡) (3.19) 

where K is the steady state Kalman gain, x� is the estimate of state vector 

and  e� is the estimate of innovation process. 

Computation of state vectors 

As already mentioned above, the LQ decomposition is a basic technique in 

subspace identification methods. Suppose that we have an input-output 

data from an LTI system. Let the block Hankel matrices be defined by: 

 𝑌0 | 𝑘−1 = �

𝑦(0)         𝑦(1)
𝑦(1)         𝑦(2)

⋯     𝑦(𝑁 − 1)
⋯ 𝑦(𝑁)

⋮ ⋮
𝑦(𝑘 − 1) 𝑦(𝑘)

⋱ ⋮
⋯ 𝑦(𝑘 + 𝑁 − 2)

� ∈ 𝑅𝑘𝑝∙ 𝑁 (3.20) 
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𝑌𝑘 |2𝑘−1 = �

𝑦(𝑘)  𝑦(𝑘 + 1)
𝑦(𝑘 + 1)  𝑦(𝑘 + 2)

⋯    𝑦(𝑘 + 𝑁 − 1)
⋯ 𝑦(𝑘 + 𝑁)

⋮ ⋮
𝑦(2𝑘 − 1) 𝑦(2𝑘)

⋱ ⋮
⋯ 𝑦(2𝑘 + 𝑁 − 2)

� ∈ 𝑅𝑘𝑚 ∙𝑁 

Where k > n and N is sufficiently large. Let p and f denote the past and 

the future, respectively. Then we define the past as Up ∶=  U0 | k−1 and  

Yp ∶=  Y0 | k−1. Similarly we define the future data as 𝑈𝑓 ∶=  𝑈𝑘 | 2𝑘−1 and  

𝑌𝑓 ∶=  𝑌𝑘 | 2𝑘−1.  

Let the LQ decomposition be given by: 

�
𝑈𝑓
𝑊𝑝
𝑌𝑓
� = �

𝑅11 0 0
𝑅21 𝑅22 0
𝑅31 𝑅32 𝑅33

� �
𝑄1𝑇

𝑄2𝑇

𝑄3𝑇
� 

where R11 ∈ Rkm  km, R22 ∈ Rk(m+p) ∙ k(m+p), and R33 ∈ Rkp  kp are upper 

triangular and 𝑄𝑖 , 𝑖 =  1, 2, 3 are orthogonal matrices. The oblique 

projection of the future 𝑌𝑓 onto the join past Wp ≔  �
Up
Yp
� along the future 

𝑈𝑓 is given by 

𝜉 ≔ 𝐸�||𝑈𝑓�𝑌𝑓|𝑊𝑝� = 𝑅32𝑅22∗ 𝑊𝑝 

where (.)* denotes the pseudo-inverse. 𝜉 can be factored as a product  of 

the extended observability matrix 𝒪𝑘 and the future state vector Xf ≔
 [x(k), … , x(k + N − 1) ] ∈ Rn N: 

𝜉 = 𝑂𝑘𝑋𝑓 = 𝑅32𝑅22∗ 𝑊𝑝 

Suppose that the SVD of ξ be given by ξ = U∑VT with rank(∑) = n. Thus 

we can take the extended observability matrix as  

 𝑂𝑘 = 𝑈 𝛴
1
2        (3.21) 

It follows that the state vector is given by 𝑋𝑓 = 𝑂𝑘∗𝜉 =  𝛴1/2𝑉𝑇 . 
Alternatively, by using a so-called shift invariant property of the extended 

observability matrix of (3.21), we can respectively compute matrices A and 
C as  

𝐴 = 𝑂𝑘−1∗ 𝑂𝑘(𝑝 + 1 ∶ 𝑝𝑘, 1 ∶ 𝑛),       𝐶 = 𝑂𝑘(1 ∶ 𝑝, 1 ∶ 𝑛) 
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The approaches used in the stochastic identification are the classical 

method or subspace method. In the classical method, a transfer function 

model is first identified, and then a state space model is obtained by using 

some realization technique. In the subspace methods, we first construct the 

state estimates from given input-output data by using a simple procedure 

based on tools of numerical linear algebra, and a state space model is 

obtained by solving a least-square problem. An important point of the 

study of subspace methods is to understand the key point of how the 

Kalman filter state vectors and the extended observability matrix are 

obtained by using tools of linear algebra. 

3.2.2 Stochastic LTI system and state estimation 

In section 2.5 we defined a stochastic Linear Time Invariant system of the 
form (2.38): 

 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝑤(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑣(𝑘) 
(3.22) 

and covariance matrices in equations (2.39) -(2.41):  

𝐸 ��𝑤(𝑡)
𝑣(𝑡)� [𝑤𝑇(𝑠), 𝑣𝑇(𝑠)]� =  �

𝑄(𝑡) 𝑆(𝑡)
𝑆𝑇(𝑡) 𝑅(𝑡)� 𝛿

(𝑘 − 𝑠) 

where 𝑄(𝑡)  ∈ 𝑅𝑛 𝑛 is nonnegative definite, and 𝑅(𝑡)  ∈ 𝑅𝑝 𝑝 is positive definite 

for all 𝑡 =  0, 1, … , and δ(k- s) = 1 when k = s, otherwise δ(k- s) =  0. In this 
way, the Markov parameters can be represented by equation (2.52): 

Λ𝑖 = 𝐶𝐴𝑖−1G 
Explicitly, output covariance matrices can be treated as Markov 

Parameters of a system having the matrices [A,G,C]. Given the output 

observations of a dynamic system, the stochastic identification can be 

considered as the realization of a set [A,C, Λi,G].  

The problem to solve in the state estimation is to find the minimum 

variance estimate x�(t + m|t) of the state vector x(t + m) based on the 
observations up to time t. This is equivalent to designing a filter that 

produces x�(t + m|t) minimizing the performance index: 

𝐽 = 𝐸{ ||𝑥(𝑡 + 𝑚) −  𝑥�(𝑡 + 𝑚|𝑡)||2 } 
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where x�(t + m|t) is Ft-measurable. The optimal estimate is expressed in 

terms of the conditional expectation of 𝑥(𝑡 + 𝑚) given ℱ𝑡   as: 

𝑥�(𝑡 + 𝑚|𝑡) = 𝐸{𝑥(𝑡 + 𝑚)|ℱ𝑡} 

Let the estimation error be defined by 𝑥�(𝑡 + 𝑚|𝑡) ∶= 𝑥(𝑡 + 𝑚) − 𝑥�(𝑡 + 𝑚|𝑡) 
and the error covariance matrix be: 

𝑃(𝑡 + 𝑚|𝑡) ≔ 𝐸{[𝑥(𝑡 + 𝑚) − 𝑥�(𝑡 + 𝑚|𝑡)][𝑥(𝑡 + 𝑚) − 𝑥�(𝑡 + 𝑚|𝑡)]𝑇} 

For Gaussian process, the conditional expectation 𝑥�(𝑡 + 𝑚|𝑡) is a linear 

function of observations y(0), y(1), ..., y(t), so that  the optimal estimate  

coincides with the linear minimum variance estimate of 𝑥(𝑡 + 𝑚) given 
observations up to time t. More precisely, we define a linear space 
generated by the observations as: 

 𝔜𝑡 = �𝑐 + �𝐴𝑖𝑦(𝑖)
𝑡

𝑖=0

| 𝑐 ∈ 𝑅𝑛;  𝐴𝑖 ∈ 𝑅𝑛∙𝑝 � (3.23) 

The space 𝔜𝑡 is called the data space at time t. The minimum variance 

estimate 𝑥�(𝑡 + 𝑚|𝑡) is given by the orthogonal projection of x(t + m) onto 𝔜𝑡: 

𝑥�(𝑡 + 𝑚|𝑡) = 𝐸�{𝑥(𝑡 + 𝑚)|𝔜𝑡} 

Let us introduce now a Kalman filter gain matrix derived by the following 
equations: 

 
𝑥�(𝑡 + 1) = 𝐴(𝑡)𝑥�(𝑡) + 𝐾(𝑡)[𝑦(𝑡) − 𝐶(𝑡)𝑥�(𝑡)]  

𝑥�(𝑡|𝑡) = 𝑥�(𝑡) + 𝐾𝑓(𝑡)[𝑦(𝑡) − 𝐶(𝑡)𝑥�(𝑡)]  
(3.24) 

where the innovation process is 𝑒(𝑡) = 𝑦(𝑡) − 𝐶(𝑡)𝑥�(𝑡) and the Kalman gains 

are 𝐾(𝑡) = [𝐴(𝑡)𝑃(𝑡)𝐶𝑇(𝑡) + 𝑆(𝑡)][𝐶(𝑡)𝑃(𝑡)𝐶𝑇(𝑡) + 𝑅(𝑡)]−1 and 

𝐾𝑓 = 𝑃(𝑡)𝐶𝑇[𝐶(𝑡)𝑃(𝑡)𝐶𝑇(𝑡) + 𝑅(𝑡)]−1. The error covariance matrix is derived from: 

𝑃(𝑡 + 1) = 𝐴(𝑡)𝑃(𝑡)𝐴𝑇(𝑡) − 𝐾(𝑡)[𝐶(𝑡)𝑃(𝑡)𝐶𝑇(𝑡) + 𝑅(𝑡)]𝐾𝑇(𝑡) + 𝑄(𝑡) 
𝑃(𝑡|𝑡) = 𝑃(𝑡) − 𝑃(𝑡)𝐶𝑇(𝑡)[𝐶(𝑡)𝑃(𝑡)𝐶𝑇(𝑡) + 𝑅(𝑡)]−1𝐶(𝑡)𝑃(𝑡) 

We see that the Kalman filter is a dynamic system that recursively 

produces the estimates 𝑥�(𝑡 + 1) and 𝑥�(𝑡|𝑡) by updating the old estimates 

based on the received output data y(t). The Kalman filter is, therefore, an 

algorithm suitable for the on-line state estimation. It follows from the 

definition of the innovation process e, that the Kalman filter equation is 

also written as 
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𝑥�(𝑡 + 1) = 𝐴(𝑡) 𝑥� (𝑡) + 𝐾(𝑡) 𝑒(𝑡) 

𝑦(𝑡) = 𝐶(𝑡) 𝑥�(𝑡) + 𝑒(𝑡) 
(3.25) 

The two models (3.22) and (3.25) are equivalent state space 

representations that simulate the same output process y. The innovation 

model is less redundant in the noise model, and is used in stochastic 

realization, or the state space system realization. 

For a stochastic LTI system (3.22), it follows from (3.24) that the Kalman 
filter is expressed as: 

 𝑥�(𝑡 + 1) = 𝐴 𝑥�(𝑡) + 𝐾(𝑡)[𝑦(𝑡) − 𝐶𝑥�(𝑡)]  (3.26) 

where x�(t) ≔ x��t|t − 1)� . The Kalman filter is given by: 

𝐾(𝑡) = [𝐴𝑃(𝑡)𝐶𝑇 + 𝑆][𝐶𝑃(𝑡)𝐶𝑇 + 𝑅)]−1 

The error covariance matrix (Riccati equation) becomes: 

𝑃(𝑡 + 1) = 𝐴𝑃(𝑡)𝐴𝑇 − 𝐾(𝑡)[𝐶𝑃(𝑡)𝐶𝑇 + 𝑅]𝐾𝑇(𝑡) + 𝑄 

where 𝑃(𝑡) ≔ 𝑃�𝑡|𝑡 − 1)�. Suppose that a solution P(t) of the Riccati 

equation converges to a constant matrix as t → ∞. Put P(t) = P(t+1) = P 
in Riccati equation to get an algebraic Riccati equation (ARE). 

𝑃 = 𝐴𝑃𝐴𝑇 −  (𝐴𝑃𝐶𝑇 + 𝑆)(𝐶𝑃𝐶𝑇 + 𝑅)−1(𝐴𝑃𝐶𝑇 + 𝑆)𝑇 + 𝑄 

In this case K(t) converges to a stationary Kalman gain, 𝐾 = [𝐴𝑃𝐶𝑇 +
𝑆][𝐶𝑃𝐶𝑇 + 𝑅)]−1. Hence, the filter equation (3.26) becomes 

 𝑥�(𝑡 + 1) = [𝐴 − 𝐾𝐶]𝑥�(𝑡) + 𝐾 𝑦(𝑡) (3.27) 

This Kalman filter model plays a crucial role in the implementation of 
system identification using only output information because the Kalman 

state vector x�(k) at the k-th time step can be represented in terms of the 

initial state vector x�(0) and the past output observations y(t) for t < k as 
follows 

 𝑥�(𝑡) = (𝐴 − 𝐾𝐶)𝑡  𝑥�(0) + �(𝐴 − 𝐾𝐶)𝑖  𝐾 𝑦(𝑡 − 𝑖 − 1)
𝑘−1

𝑖=0

 (3.28) 

For convenience of representation, it is assumed that the estimate of the 

Kalman state vector x�(t) at the t-th time step is influenced by the infinite 

number of its past output vectors (i.e. y(t) for −∞ <  𝑡 <  𝑘 − 1). Under 
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this assumption, from Equation (3.28), the Kalman state vector x�(t) can be 
represented in a matrix form as 

 𝑥�(𝑡) = 𝛹𝑘𝑦𝑘− (3.29) 

where  

𝛹𝑘 = [𝐾, (𝐴 − 𝐾𝐶)𝐾, (𝐴 − 𝐾𝐶)2𝐾, … ]  ∈ 𝑅𝑛(𝑝∙∞),      𝑦𝑘− = �

𝑦(𝑡 − 1)
𝑦(𝑡 − 2)
𝑦(𝑡 − 3)

⋯

� ∈ 𝑅𝑚∙∞ 

The Kalman state vector x�(t) at the t-th time step is the minimum 
variance estimate of the state vector x(t) at the t-th time step. Such 
minimum variance properties make it easy to represent the relationships 

between x�(t) and x(t) in vector spaces (see equation (3.23). 
In fact, the output vector 𝑦(𝑡 + 𝑘) at the (𝑡 + 𝑘) − 𝑡ℎ time step for 𝑘 ≥  0 
can be represented by: 

 𝑦(𝑡 + 𝑘) = 𝐶𝐴𝑘𝑥(𝑡) + �𝐶𝐴𝑠−1𝑤(𝑡 + 𝑘 − 𝑠) + 𝑣(𝑡 + 𝑘))
𝑘

𝑠=1

 (3.30) 

Thus, orthogonally projecting the vector 𝑦(𝑡 + 𝑘) on the space 𝔜𝑡 leads to: 
𝑦(𝑡 + 𝑘)/𝔜𝑡 = 𝐶𝐴𝑘𝑥�(𝑡) 

The last equality comes from the fact that the current and future process 
and measurement noises are uncorrelated with the past output. This allows 
us to estimate the Kalman state vectors using only output observations. 

 

3.2.3 Data matrices of stochastic systems 

With regard to equation (3.25), the output vectors 𝑦(𝑡) for 𝑡 ≥ 𝑘, which can 

be predicted using 𝑥�(𝑡), can be represented as: 

�

𝑦(𝑘)
𝑦(𝑘 + 1)

⋮
𝑦(2𝑘 − 1)

� = �
𝐶
𝐶𝐴
⋮

𝐶𝐴𝑘−1
� 𝑥�(𝑘) + �

     𝐼
   𝐶𝐾      ⋱

⋮ ⋱
𝐶𝐴𝑘−2𝐾 ⋯

𝐼
𝐶𝐾 𝐼

� �

𝑒(𝑘)
𝑒(𝑘 + 1)

⋮
𝑒(2𝑘 − 1)

� 

where  

𝑦𝑘+ = �

𝑦(𝑘)
𝑦(𝑘 + 1)

⋮
𝑦(2𝑘 − 1)

�  ∈ 𝑅𝑘𝑝 ,       𝑒𝑘+ = �

𝑒(𝑘)
𝑒(𝑘 + 1)

⋮
𝑒(2𝑘 − 1)

� ∈ 𝑅𝑘𝑚 ,      𝑂𝑘 =  �
𝐶
𝐶𝐴
⋮

𝐶𝐴𝑘−1
� 

and the Toeplitz matrix: 
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𝜓𝑘 = �
     𝐼

   𝐶𝐾      ⋱
⋮ ⋱

𝐶𝐴𝑘−2𝐾 ⋯
𝐼
𝐶𝐾 𝐼

�  ∈ 𝑅𝑘𝑝∙𝑘𝑚  

So we have 

 𝑦𝑘+ = 𝑂𝑘𝑥�(𝑘) + 𝜓𝑘  𝑒𝑘+ (3.31) 

Putting equation (3.29) into (3.31) we have: 

 𝑦𝑘+ = 𝑂𝑘𝑥�(𝑘) + 𝜓𝑘  𝑒𝑘+ (3.32) 

In this equation, as the output residual vector 𝑒𝑘+(𝑘) at the 𝑘 − 𝑡ℎ time step 

is uncorrelated with the past output vector 𝑦(𝑡) for 𝑡 <  𝑘, the vector 𝑦𝑘− of 

the past output vectors is totally independent of the vector 𝑒𝑘+ of the future 
residual vectors; 

Similarly for the determination of the Kalman state vector sequence, future 
output data matrix can be formulated in terms of the Kalman state vector 

sequence X�0|k−1,  as well as the output residual vectors as follows: 

 𝑌𝑘|2𝑘−1
+ = 𝑂𝑘𝛹𝑘𝑌0|𝑘−1

−   + 𝜓𝑘  𝑒𝑘|2𝑘−1
+  (3.33) 

with obvious meaning of the symbols from (3.31). Now the problem is 

solved when we have estimated the principal directions, Ψk, of Yk|2k−1
−  that 

maximize the covariance between the past and future outputs. Some well-
known methods for determining the principal direction are the principal 
component analysis and canonical correlation analysis (see section 3.3.1).   

We usually consider rectangular data matrices with a large number N of 
columns. Thus if we apply the LQ decomposition to rectangular matrices, 
then we get block lower triangular matrices with zero block at the upper-

right corner. In the numerical implementation, the estimate of X�0|k−1 can 

be obtained through a LQ decomposition of the output data matrix, 

denoted by Y−+, which can be decomposed into Y0|k−1
−  and  Yk|2k−1

+ as 

follows: 

 𝑌−+ = �
𝑌0|𝑘−1
−  

𝑌𝑘|2𝑘−1
+ � = �𝐿11 0

𝐿21 𝐿22
� �𝑄1

𝑇

𝑄2𝑇
�      (3.34) 

where L is a lower triangular matrix and Q is the orthogonal matrix. 
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This allows us to represent Y0|k−1
−  and Yk|2k−1

+  as follows 

 𝑌0|𝑘−1
−  = 𝐿11 𝑄1𝑇 ,      𝑌𝑘|2𝑘−1

+ = 𝐿21𝑄1𝑇 + 𝐿22𝑄2𝑇      (3.35) 

So the matrices of Hankel (equation (3.50)) and Toeplitz (equation (3.51)) 
become: 

𝐻 = 𝐿21𝐿11𝑇  

𝑇− =  𝐿11𝐿11𝑇 ,        𝑇+ = 𝐿21𝐿21𝑇 + 𝐿22𝐿22𝑇  

3.2.4 Realization algorithm for the SSI  

The covariance matrices 𝑇− and 𝑇+ can be decomposed in :  

𝑇− = 𝐿𝐿𝑇 ,      𝑇+ = 𝑀𝑀𝑇 

By computing the SVD of the normalized covariance matrix we obtain: 

𝐿−1𝐻𝑀−𝑇 = 𝑈𝛴𝑉𝑇 ≅ 𝑈�𝛴�𝑉�𝑇 

where Σ� is obtained by deleting sufficiently small singular values of Σ, so 

the dimension of the state vector becomes n� = dimΣ�. The next step is to 

compute observability and controllability matrices by: 

𝑂𝑘 = 𝐿𝑈�𝛴�1/2,       𝜓𝑘 = 𝛴�1/2𝑉�𝑇𝑀𝑇 

Now it is possible to extract the estimate of A , C , 𝐶̅ by:  

𝐴 = 𝑂𝑘−1∗ 𝑂�𝑘 ,       𝐶 = 𝑂𝑘 (1 ∶ 𝑝, ∶),      𝐶� = 𝜓𝑘(: , 1 ∶ 𝑝) 

where 𝑂�𝑘 = 𝑂𝑘(𝑝 + 1 ∶ 𝑘𝑝, ∶). Then the covariance matrix of 𝑦𝑠 is given by 

𝛬𝑠(0) ≔ 𝑂𝑘 (1 ∶ p, 1 ∶ p).  So the Kalman gain is given by: 

𝐾 = (𝐶̅𝑇 − 𝐴𝛴�𝐶𝑇)(⋀𝑠(0) − 𝐶𝛴�𝐶𝑇)−1 

so that the innovation model becomes:  

𝑥𝑠(𝑡 + 1) = 𝐴𝑥𝑠(𝑡) + 𝐾(𝑡) 𝑒(𝑡) 

𝑦𝑠(𝑡) = 𝐶𝑥𝑠(𝑡) + 𝑒(𝑡) 

Another method for determining the state matrices is by computing first 

the state vectors from the principal direction matrices (equation (3.18)):  

𝑥̅(𝑖) = 𝑉𝑇𝑇−−𝑇/2𝑦(𝑖) . 

If we define matrices with N-1 columns: 
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𝑋�𝑘+1 = 𝑋�𝑘(: ,2:𝑁),      𝑋�𝑘 = 𝑋�𝑘(: ,1:𝑁 − 1),      𝑌�(𝑘|k) = 𝑌(𝑘|k)(: ,1:𝑁 − 1) , 

we can compute the matrices 𝐴 ,𝐶  by applying a least square method: 

�
𝑋�𝑘+1

𝑌�(𝑘|k)
� = �𝐴𝐶� 𝑋

�𝑘 + �
𝜌𝑤
𝜌𝑣
� 

where 𝜌𝑤 𝑎𝑛𝑑 𝜌𝑣 are residuals. Then, we compute the covariance of residuals: 

� 𝑄 𝑆
𝑆𝑇 𝑅

� =
1

𝑁 − 1
�
𝜌𝑤𝜌𝑤

𝑇 𝜌𝑤𝜌𝑣
𝑇

𝜌𝑣𝜌𝑤
𝑇 𝜌𝑣𝜌𝑣

𝑇� 

Now it’s easy to solve the Riccati equation: 

𝑃 = 𝐴𝑃𝐴𝑇 −  (𝐴𝑃𝐶𝑇 + 𝑆)(𝐶𝑃𝐶𝑇 + 𝑅)−1(𝐴𝑃𝐶𝑇 + 𝑆)𝑇 + 𝑄 

and we have the Kalman gain: 

𝐾(𝑡) = [𝐴𝑃𝐶𝑇 + 𝑆][𝐶𝑃𝐶𝑇 + 𝑅)]−1 

Finally the innovation model (3.25) can be computed.  

 

3.3 SSI via CCA and Enhanced CCA 

In the previous section we have seen that in the SSI technique, the state 

vector has been estimated from the Kalman filter with a sort of updating 

process. In fact, the state vector has been estimated from the combination 

of the past output vectors in different time steps. If we try to analyze the 

mutual dependence between two sets of output vectors we can estimate the 

state vector that is related to them. This concept belongs to the well-

known techniques of multivariate analysis used for dimension reduction 

problems. Multivariate analysis deals with observations on more than one 

variable where there is some inherent independence between the variables. 

One of the principal classes of this kind is the Canonical Correlation 

Analysis (CCA).  

In this section the introduction to the CCA technique [7] and its further 

development to the Enhanced CCA [13] will be presented.  

After obtaining the weighting matrices from these techniques, one can use 

them to compute the procedures seen in the previous section (SSI).  
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3.3.1 Canonical Correlation Analysis 

The CCA is a technique of multivariate statistical analysis that correlates 

two sets of variables by finding a new coordinate system in the space of 

each set. CCA combines dependent variables to find pairs of new variables 

which have the highest correlation. However, the canonical variables (CV), 

even when highly correlated, do not necessarily explain a large portion of 

the variance of the original tables. This makes the interpretation of the CV 

sometimes difficult, but CC is nonetheless an important theoretical tool 

because most multivariate techniques can be interpreted as a specific case 

of CC. [7] gives a clear description of the CCA. 

Let x and y be two vectors (e.g. past and future output vector) defined by: 

 𝑥 = �

𝑥1
𝑥2
⋮
𝑥𝑘

� ∈ ℝ𝑘 ,         𝑦 = �

𝑦1
𝑦2
⋮
𝑦𝑙

� ∈ ℝ𝑙 (3.36) 

we define linear spaces defined by x and y: 𝕏 = 𝑠𝑝𝑎𝑛{𝑥1, … , 𝑥𝑘}, 𝕐 =
𝑠𝑝𝑎𝑛{𝑦1, … ,𝑦𝑙}. First we find the vectors 𝑤1 ∈  𝕏 and 𝑧1 ∈  𝕐 with the 

maximum mutual correlation, and define (𝑤1, 𝑧1) as the first coordinates in 

the new system. Then we find 𝑤2 ∈  𝕏 and 𝑧2 ∈  𝕐 such that their 

correlation is maximum under the assumption that they are uncorrelated 

with the first coordinates (𝑤1, 𝑧1). This process is repeated until two new 

coordinate systems are determined. 

Let the covariance matrices of two vectors x and y  be given by: 

 Σ = E ��
𝑥
𝑦� [𝑥𝑇 𝑦𝑇]� = �

Σxx Σxy
Σyx Σyy

� (3.37) 

where it is assumed for simplicity that Σxx > 0 and Σyy > 0. We also 

assume that 𝑘 ≤ 𝑙. We define two scalars variables: 

  𝑤1 = 𝑎𝑇𝑥 = �𝛼𝑖𝑥𝑖

𝑘

𝑖=1

,      𝑧 = 𝑏𝑇𝑦 = �𝛽𝑗𝑦𝑗

𝑙

𝑗=1

 (3.38) 

by using two vectors 𝑎 ∈ ℝ𝑘 and 𝑏 ∈ ℝ𝑙, respectively. We shall find the 

vectors 𝑎 and 𝑏 that maximaze the correlation between 𝑤1 and 𝑧1, which is 

expressed as: 



54 3- STOCHASTIC SYSTEM IDENTIFICATION 

 
 

 𝜌 =
𝑐𝑜𝑣{𝑎𝑇𝑥, 𝑏𝑇𝑦}

�𝑐𝑜𝑣{𝑎𝑇𝑥}  �𝑐𝑜𝑣{𝑏𝑇𝑦} 
=

𝑎𝑇Σ𝑥𝑦𝑏

�(𝑎𝑇Σ𝑥𝑥𝑎)(𝑏𝑇Σ𝑦𝑦𝑏)
 (3.39) 

Note that if a pair (𝑎, 𝑏) maximazes 𝜌, than the pair (𝑐1𝑎,  𝑐2𝑏) also 

maximizes 𝜌 for non-zero scalars 𝑐1, 𝑐2. Thus, we impose the conditions 

𝑎𝑇Σ𝑥𝑥𝑎 = 1 and 𝑏𝑇Σ𝑦𝑦𝑏 = 1. The problem of maximizing 𝜌 under the 

aforementioned conditions, is solved by means of the Lagrange function : 

 ℒ = 𝑎𝑇Σ𝑥𝑦𝑏 +
1
2
𝜆1(1− 𝑎𝑇Σ𝑥𝑥𝑎) +

1
2
𝜆2(1− 𝑏𝑇Σ𝑦𝑦𝑏) (3.40) 

Then, differentiating the Lagrange function and setting equal to zero: 

 
𝜕ℒ
𝜕𝑎

= Σ𝑥𝑦𝑏 − 𝜆1Σ𝑥𝑥𝑎 = 0,   
𝜕ℒ
𝜕𝑏

= Σ𝑦𝑥𝑎 − 𝜆2Σ𝑦𝑦𝑏 = 0 (3.41) 

Pre-multiplying the first equation of (3.41) by 𝑎𝑇 and the second by 𝑏𝑇, 
letting 𝜆1 = 𝜆2 = 𝜌 and since Σ𝑦𝑦 > 0 it follows that: 

 (Σ𝑥𝑦Σ𝑦𝑦−1Σ𝑦𝑥 − 𝜌2Σ𝑥𝑥)𝑎 = 0,    𝑎 ≠ 0 (3.42) 

Since the only condition that 𝑎 has a non-trivial solution is that  

 det(Σ𝑥𝑦Σ𝑦𝑦−1Σ𝑦𝑥 − 𝜌2Σ𝑥𝑥) = 0 (3.43) 

If Σ𝑥𝑥 = Σ𝑥𝑥
−1/2Σ𝑥𝑥

𝑇/2  and Σ𝑦𝑦 = Σ𝑦𝑦
−1/2Σ𝑦𝑦

𝑇/2 , and if we define 

Θ = Σ𝑥𝑥
−1/2Σ𝑥𝑦Σ𝑥𝑥

𝑇/2
then: 

 det(ΘΘ𝑇 − 𝜌2𝐼𝑘) = 0 (3.44) 

where 𝜌2 is eigenvalue of ΘΘ𝑇. Let 𝑎1,𝑎2 … ,𝑎𝑘 be the corresponding 

eigenvectors obtained from (3.43). Then, we define the matrix 𝐿 =
[𝑎1,𝑎2 … , 𝑎𝑘] ∈ ℝ𝑘x𝑘. Repeating the operations from (3.43) to (3.44) in order 

to eliminate 𝑎, we can define the matrix 𝑀 = [𝑏1,𝑏2 … , 𝑏𝑘] ∈ ℝ𝑙x𝑙.  𝐿 and 𝑀 

are the square root inverses of the covariance matrices Σ𝑥𝑥 and Σ𝑦𝑦, 
respectively.   

Let 𝑤 = 𝐿𝑇𝑥 and 𝑧 = 𝑀𝑇𝑦. Then 𝐸(𝑤𝑤𝑇) = 𝐼𝑘 and 𝐸(𝑧𝑧𝑇) = 𝐼𝑙 and 

𝐸(𝑤𝑧𝑇) = 𝑑𝑖𝑎𝑔(𝜌1,𝜌2, … ,𝜌𝑘) = 𝐷. The elements of canonical vectors 𝑤 and 
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𝑧 are white noises with zero mean and unit variance, and they are arranged 

in descending order of mutual correlations. Thus, both whitening and 

correlating two vectors can perform by the CCA.  

If we suppose that the covariance matrices of 𝑥 and 𝑦 are given by (3.37), 
then the canonical correlations are computed by the SVD: 

   Θ = Σ𝑥𝑥
−1/2Σ𝑥𝑦Σ𝑦𝑦

−𝑇/2 = 𝑈𝐷𝑉𝑇 (3.45) 

Also, the canonical vectors are given by: 

 𝑤 = LT𝑥 = 𝑈𝑇Σ𝑥𝑥
−1/2𝑥,      𝑧 = 𝑀𝑇𝑦 = 𝑉𝑇Σ𝑦𝑦

−1/2𝑦 (3.46) 

Once the state vectors have been estimated with the CCA, we can 

construct the realization problem similarly as in section 3.2. If we suppose 

that the mean of the output vector 𝑦 is zero, then the covariance matrix is 

given by: 

 𝛬(𝑙) = 𝐸{𝑦(𝑡 + 𝑙)𝑦𝑇(𝑡)},    𝑙 = 0, ±1, …  (3.47) 

Given the covariance matrices of a stationary process 𝑦, the stochastic 

realization problem is to find a Markov model of the form of equation 

(2.38), where the covariance matrices of the white noises  𝑤 and 𝑣 are: 

 Σ = E ��
𝑤(𝑡)
𝑣(𝑡)� [𝑤𝑇(𝑠) 𝑣𝑇(𝑠)]� = �Q S

St R
� 𝛿𝑡𝑠 (3.48) 

Let 𝑡 be the present time. We can define the future and past vectors: 

 𝑓(𝑡) = �
𝑦(𝑡)

𝑦(𝑡 + 1)
⋮

� ,         𝑝(𝑡) = �
𝑦(𝑡 − 1)
𝑦(𝑡 − 2)

⋮
� (3.49) 

Then, the cross-covariance matrix of the future and past is given by: 

 𝐻 = 𝐸[𝑓(𝑡)𝑝𝑇(𝑡)] = �

𝛬(1) 𝛬(2)
𝛬(2) 𝛬(3)

𝛬(3) ⋯
𝛬(4) ⋯

𝛬(3) 𝛬(4)
⋮ ⋮

𝛬(5) ⋯
⋮ ⋱

� (3.50) 

And the covariance matrices of the future and past are respectively given 

by: 
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 𝑇+ = 𝐸[𝑓(𝑡)𝑓𝑇(𝑡)] = �

𝛬(0) 𝛬𝑇(1)
𝛬(1) 𝛬(0)

𝛬𝑇(2) ⋯
𝛬𝑇(1) ⋯

𝛬(2) 𝛬(1)
⋮ ⋮

𝛬(0) ⋯
⋮ ⋱

� (3.51) 

and  

 𝑇− = 𝐸[𝑝(𝑡)𝑝𝑇(𝑡)] = �

𝛬(0) 𝛬(1)
𝛬𝑇(1) 𝛬(0)

𝛬(2) ⋯
𝛬(1) ⋯

𝛬𝑇(2) 𝛬𝑇(1)
⋮ ⋮

𝛬(0) ⋯
⋮ ⋱

� (3.52) 

H  is a block Hankel Matrix and 𝑇(± ) are block Toeplitz matrices. Hence, 

from (3.45) and (3.46), and noting that Σ𝑥𝑥
−1/2Σ𝑥𝑦Σ𝑦𝑦

−𝑇/2 = 𝑇+
−1/2𝐻𝑇−−𝑇/2, the 

estimate of the state vector can be represented as: 

 𝑥̅(𝑖) = 𝑉𝑇𝑇−−𝑇/2𝑦(𝑖) (3.53) 

Afterwards, these vectors are used to calculate the Kalman state estimates. 

3.3.2 Enhanced CCA 

Thus, Hong [13] in 2010 has developed an Enhanced CCA technique in 

order to deal with non-white noise in the measurements.  In the ECCA, 

individual future output vectors are separately normalized, so the Hankel 

matrices 𝑇�+ 𝑎𝑛𝑑 𝑇− are 

 𝑇�+ =

⎣
⎢
⎢
⎡
 

𝛬(0)
𝛬(0)

𝛬(0)
⋱ ⎦
⎥
⎥
⎤
 (3.54) 

The estimation of the state vector can be determined by defining the 

singular value decomposition as: 

 𝑇�+
−1/2𝐻𝑇−−𝑇/2 = 𝑈𝐷𝑉𝑇 (3.55) 

and the estimate of the state vector is determined similarly as in equation 

(3.53).  

Then, these vectors are used to calculate the Kalman state estimates. Once 

a sufficient number of Kalman state estimates are obtained, a least-squares 

problem may be set to determine the system matrices: 
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X�{𝑖+1|𝑖+𝑗}
Y{𝑖|𝑖+𝑗−1}

= �AC�X�{𝑖|𝑖+𝑗−1} + E�  

 
In this expression, A and C are the unknown system matrices that will be 

solved using this equation, E� is the residual of the least squares solution 

which is associated with the process and measurement noises, and the 

remaining matrices are defined: 

 

 

X�{𝑖|𝑖+𝑗−1} = [x�(𝑖)   x�(𝑖 + 1)   ⋯   x�(𝑖 + 𝑗 − 1)] 

X�{𝑖+1|𝑖+𝑗} = [x�(𝑖 + 1)   x�(𝑖 + 2)   ⋯   x�(𝑖 + 𝑗)] 

Y{𝑖|𝑖+𝑗−1} = [y(𝑖)   y(𝑖 + 1)   ⋯   y(𝑖 + 𝑗 − 1)] 

 

 
Now it is possible to determine the frequencies, modal damping ratios and 

mode shapes of the structure using order system matrices. 

3.4 Automatic OMA implemented for SHM 

Variations in the behavior of the system can be associated with the decay 

of mechanical properties [26]. The principal idea of structural health 

monitoring systems is that changes in their modal parameters are related 

to structural change and damage, so they can be used to understand the 

changings happening to the structure, since they are correlated to stiffness, 

damping and mass properties of a certain structure.  

In particular, natural frequencies are able to provide valuable knowledge 

about the structural condition. The monitoring of modal parameters by 

repeated system identification has become nowadays an effective way to 

get accurate information by vibration Structural Health Monitoring 

(SHM). Hence, the comfort of using OMA as a means of SHM, is due to 

the fact that automated system identification algorithms can be 

implemented in order to get automatic and accurate modal parameter 

identification.  

In this study three different kinds of automated procedures in the 

frequency and time domain have been implemented and developed using 

the modal techniques presented previously in the Chapter, i.e. the FDD, 

SSI and the ECCA. These techniques are shown in the following 

paragraphs.  
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3.4.1 Automated FDD 

The FDD technique was previously described in this chapter. Its 
application in the SHM problem is straightforward when the pick peaking 
technique is used in an automated procedure as in [27] [28].  In order to 
improve the accuracy, it is suggested to use other comparison parameters, 
besides the peak searching. A largely used parameter is the Modal 
Assurance Criterion (MAC) that distinguishes clearly two similar modes.  

Relying on the literature, for the case of frequency domain, the method 
presented here was further developed in order to avoid the need of a 
reference previous estimation of the modal parameters of a structure. The 
procedure can be described with the following steps: 

→ The first step is based on the comparison of a large number of 
datasets (say 30-50 recorded signals). MAC calculation is performed 
between the first singular vectors (SV) corresponding to the first 
singular values of the first dataset and all the other SV of the other 
datasets. Then this operation is repeated for each dataset (i.e. 
MAC calculation between the selected recording and all the others). 
This operation is completed frequency line by frequency line, 
obtaining a Frequency vs. MAC function for every comparison. 
After performing n sequence evaluations, a final average Frequency 
vs. MAC function is plotted. 

→ Hence, at a certain frequency line the corresponding MAC value is 
accepted for further analysis if it is greater than a certain value (0.8 
in all case studies analyzed in this thesis). Moreover, MAC values 
accepted must appear sequentially for at least 10 times, otherwise 

they cannot define the so called ‘modal domain’. By repeating this 
procedure for the whole investigated frequency range, all the modal 
domains are identified. (Figure 3.1) 

→ After defining the possible range of interest, every dataset is 
analyzed locally aiming to find the structural modes within the 
modal domain. Consequently, identification of maximum peaks are 
performed in the frequency lines corresponding to the previously 
defined range.  

→ The computation of another MAC calculation between singular 
vectors of the peak and a predefined range of frequency lines 
around the peak is carried out. 

→ If the number of points is greater than a user-defined value and if 
such points are distributed in both sides of the peak, than it is 
considered as a structural mode and is stored in another array.  

→ If the algorithm finds more structural modes than the predefined, a 
second control is performed by comparing their mode shapes with a 
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reference set (Only one or two modes out of ten automatically 
identified required this control for the applications presented here). 

→  If no peak in the modal domain complies the controls, it is 
assumed to be a noise peak and the corresponding frequency lines 
are removed from the search domain. 

→ The procedure is repeated for all the modal domain ranges, until 
the predefined number of modes has been identified. 

  
Figure 3.1 Example of MAC – Frequency plot on the People’s New Bridge. 

The procedure has been applied to two cases in Chapter 4 for the dynamic 
monitoring of two bridges, showing a good performance. As a matter of 
fact, all the automatic identification results were compared with the 
repeated manual identification through a commercial software, which 
showed high correlation.   

3.4.2 Automated SSI 

Time domain Automated Identification procedures using parametric 

methods have been recently developed [29]. The principal result of a 

Stochastic Subspace method is the identification of modal parameters via 

the stabilization diagram. Actually, for the developed automated 

technique, this is the crucial element of the procedure. The automated 

technique uses the well-known data-driven SSI which needs a model order 

number to be defined by the user.  

The procedure relies on the previous estimate of the modal parameters of 

an averaged reference identification. For this ‘reference’ identification, a list 

of the natural frequencies mode shapes and a range defining the modal 

domain is considered. The only user-defined parameters needed to 
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implement the automatic procedure are the minimum model’s order n and 

the MAC rejection level. The repeated SSI technique over all the 

monitoring records with definite values of n and MAC marks the 

automated process. After each modal analysis a stabilization diagram, 

which provides the selection of structural modes is computed. For the 

selection of these modes a procedure has been implemented that, among all 

the modes identified as stable, extracts structural ones through a triple 

control: frequency range, the model’s order and MAC level.  

The algorithm selects only those modes contained within a neighborhood of 

estimated frequency, defined by the range previously set and subsequently 

further restricts the research area properly going to exclude any mode 

corresponding to a model order, lower and greater than a certain value. 

Among all modes estimated until this step, the program proceeds to 

extract the one whose MAC is higher than a control value. Eventually, the 

modal parameters and the date of acquisition are saved in a matrix which 

is used to plot the standard date vs. time diagram.  

This technique has been tested with all the applications and has been used 

for the two cases of SHM systems in Chapter 4.  

3.4.3 Automated Clustering via ECCA 

In order to develop this automated technique the initial ideas have been 

taken not only from the previous method, but they are also based on 

modal analysis in the time domain, using the advanced SSI technique 

called ECCA. Essentially, the main element which detects the stable 

modes in this case is the damping vs. frequency plot.  

Parametric analyses 

The consistency of the results is an important issue in the ambient 

vibration identification problems. Unfortunately, the real model’s order 

which better fit the recorded data is unknown. Some of the parameters 

which can influence the identification results are the number, i, of the 

block rows of the output data matrix and the model’s order, n. So, by 

combining these parameters in infinite ways, we can get different results, 

but as we know, only the stable modes can be considered as structural 

modes [30]. 

The presented approach for automatic estimation of modal parameters is 

composed by the following steps: (a) run analysis with different values, i, 
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and the model’s order, n; (b) apply rules in order to clean the noise modes; 

(c) apply a cluster analysis; (d) plot frequency vs. damping results of stable 

modes; (d) determine mean values of structural modes and their 95% 

confidence intervals. 

 Modes are identified from each analysis conducted by using a different 

pair of (i, n). Among the identified modes from all the possible pairs (i, n), 

modes that can be considered as noise ones are eliminated first, then, the 

remaining modes are grouped with respect to their frequencies and mode 

shape vectors. Noise modes can be detected by considering the fact that:  

• the estimation of structural modes is not affected by the specific 

selection of i and n;  

• mode shapes corresponding to structural modes are likely to be 

similar in different analysis;  

• and probably large damping values belong to noise frequencies.  

A single mode should be identified within a single cluster at least 30 times 

using different combinations of n and i.  

Cleaning procedure 

In order to lead to a more evident mode selection, before applying the 

clustering rules, a cleaning procedure has been developed.  First of all, after 

extracting all the poles from all analyses, modes whose damping ratio is 

negative or larger than 15% are eliminated.  In SSI techniques spurious 

modes are eliminated by means of stabilization diagrams, where stable 

modes for different model’s order are emphasized. Stability property of the 

poles is an indicator of structural modes assuming that noise poles do not 

appear with varying order of the model. In our case, similar noise 

eliminating rules used in a stabilization diagram are applied; however, 

these include not only variations of model’s order, but also the number of 

block rows. Considering only modes remaining from the previous step, the 

identified modes are compared: modes are grouped on the basis of 

analogous frequency, damping and mode shape values, and after that, 

modes having frequencies that differ from each other by more than 1% are 

eliminated. In particular, the procedure begins from the definition of 

similarity rules applied on every loop of different n and i. The algorithm 

distinguishes only stable modes which are stored in the following matrix: 
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�

𝑓1 𝜉1
𝑓2 𝜉2

⋯ Φ1
⋯ Φ2

⋮ ⋮
𝑓𝑙 𝜉𝑙

⋮ ⋮
⋯ Φ𝑙

� 

where 𝑓𝑙, 𝜉𝑙 and Φ𝑙 are the frequency, damping and mode shape vector of 

the 𝑙 − 𝑡ℎ identified mode. Among all the poles identified with the previous 

analyses, only M of them are considered to be physical modes. The matrix 

containing stable modes has been constructed by choosing poles extracted 

from all the analyses with the following rules: 

𝑠𝑡𝑎𝑏𝑙𝑒 𝑚𝑜𝑑𝑒 𝑖𝑓 � 
 ∆𝑓𝑛,𝑛−1 ≤ ∆𝑓𝑙𝑖𝑚
∆𝜉𝑛,𝑛−1 ≤ ∆𝜉𝑙𝑖𝑚

𝑀𝐴𝐶𝑛,𝑛−1 ≤ 𝑀𝐴𝐶𝑙𝑖𝑚
  

 ∆𝑓𝑛,𝑛−1 = |∆𝑓𝑛 −∆𝑓𝑛−1|
∆𝑓𝑛−1

      ∆𝜉𝑛,𝑛−1 = |∆𝜉𝑛 −∆𝜉𝑛−1|
∆𝜉𝑛−1

      𝑀𝐴𝐶𝑛,𝑛−1 = 𝑀𝐴𝐶(Φ𝑛,Φ𝑛−1) 

where ∆𝑓𝑙𝑖𝑚, ∆𝜉𝑙𝑖𝑚 and  𝑀𝐴𝐶𝑙𝑖𝑚 are small tolerances defined according to the 

application, while MACn,n−1 is the modal assurance criterion between Φn 

and Φn−1. The n-th  mode is said to be stable when it is similar, in terms 

of frequency, damping ratio and mode shape to a minimum number of 

other modes.  

Clustering procedure 

To remove further noise modes, at this point, mode shapes, that show 

irregular behavior in relation to the group, are eliminated by operating 

with the following cluster analysis containing only those poles that 

correspond to the same mode. The aim of cluster analysis is to group all 

modes, cleared from the previous step, into separate sets belonging to the 

same structural mode. At the end, each cluster will contain only the stable 

frequency, damping and mode shape of the particular mode. The 

separation procedure is obtained by the use of a mutual distance between 

all clusters as follows: 

𝑑(𝑗, 𝑙) = �𝑓𝑗 − 𝑓𝑙�+ 1 −𝑀𝐴𝐶(Φ𝑗,Φ𝑙) 

where 𝑓𝑗 and 𝑓𝑙 are frequencies of modes j and l and Φ𝑗,Φ𝑙 the 

corresponding mode shapes.  

At the first step, a random mode is compared with all the data containing 

the stable modes, and the 𝑛 ∗ 𝑖 distances are computed for this comparison. 

The first cluster is created from the candidates that fulfill the limit 
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𝑑(𝑗, 𝑙) ≤ 𝑑lim, where 𝑑lim is a user-defined maximum allowed value that 

depends on the mean and standard deviation of the previous step. The first 

cluster is removed from the matrix and, the procedure is repeated for the 

second cluster and so on, until all different modes are grouped. At this 

point, two clusters that are close together are collected in a single cluster, 

and the mutual distance between all clusters is recomputed. As a last step, 

the average of the elements of all clusters is calculated and the clusters 

that contain less than the average value are eliminated. The procedure 

stops at the stage in which a certain number of clusters will be created. 

Each cluster can be plotted in terms of histograms, containing the number 

of elements of each data-set and in terms of frequency vs. damping. 

Clusters containing a minimum number (defined by the mean and 

standard deviation values) are selected for the candidate modes, otherwise 

they are rejected. 

Confidence intervals 

The merged cluster available can now be described by means of statistical 

parameters. Each modal parameter is characterized by a mean value (𝑓, 𝜉), 

standard deviation 𝜎 and its 95% confidence intervals can be calculated as: 

𝑓𝑖 = �𝑓 −
�1−0.5

2 �𝜎𝑓 

√𝑁
  ,        𝑓 +

�1−0.5
2 �𝜎𝑓
√𝑁

�  

𝜉𝑖 = �𝜉 −
�1−0.5

2 �𝜎𝜉 

√𝑁
  ,        𝜉 +

�1−0.5
2 �𝜎𝜉
√𝑁

�  

where N is the number of elements in a cluster, 𝜎𝑓 and 𝜎𝜉 are standard 

deviations of frequency and damping. 

Automatically repeated procedure 

The clustering algorithm is finally repeated in a third loop for all the data 

records from the monitoring period. For each cycle, the damping vs. 

frequency plot is formulated and accurate modal parameters are estimated. 

These parameters, together with the mode shapes, are stored in a matrix 

formed by as many lines as the data records. Finally, the accurate results 

are presented on frequency/damping vs. time diagrams.  

This procedure neither relies on the prior estimate reference identification 

nor implies user tuned parameters for different applications. The 

parameters to be defined are: model’s order range, blocks number range, 

distance limit between clusters, frequency limit, damping limit and MAC 

limit value. Once these parameters have been decided and calibrated, it 
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has been proved to work properly for different kinds of structures without 

any change.  

This technique has been successfully applied to many case studies 

presented in Chapter 4, and compared with the other automatic techniques 

developed.  

 

  



  

 

4  

APPLICATIONS: SYSTEM ID. ON 
BRIDGES   

 

 

 
This chapter describes the structural identification through vibrational 
tests and monitoring on ten bridge structures. It deals with the modal 
analysis through different stochastic system identification for different 
kinds of structures such as suspension bridges, slender concrete arch 
bridges, masonry arch bridges, concrete beam bridges, railway steel bridges 
and highway steel box bridges. Advanced Cluster analysis, automatic 
algorithms for modal parameter identification and Regressive models will 
be applied for accurate data processing.  Then, a summary of the results 
carried out is reported in order to differentiate the behavior of the group of 
structures. 
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4.1 Introduction 
In the context of a large project developed between the University of 

Padua and the Regional Road Authority of Veneto, in the North-East of 

Italy, a great number of bridges were subject to structural investigation in 

order to examine their safety evaluation. The project initiated with the 

visual inspection and cataloguing of a total of 500 bridges (150 of which 

evaluated and analyzed by the author) of various structural kinds from 

masonry to reinforced and steel bridges. The additional step was to extend 

the investigation up to 80 bridges by using destructive and non-destructive 

tests in order to increase the material characterization of all kinds of 

structures available in the database. After that, a simplified procedure to 

evaluate the structural behavior of the entire fixed network has been 

developed by the team of University of Padua. During this step, 

parameterization of the safety levels and indexing of the structures not 

satisfying the National Code levels was carried out. This phase also 

stimulated the individuality of the first bridges to execute deeper 

structural identification and to simulate the response through numerical 

models. In particular, most of the structures presented in this work are 

crucial infrastructures, part of the database previously analyzed.  

  
Figure 4.1 Example of a portion of the analyzed network of bridges 

Dynamic identification techniques give a fundamental contribution in the 

calibration and updating of numerical results, because even the most 

refined FE model can hardly catch the real mechanical behavior of such 

structures, due to uncertainties in the material properties, the structural 

arrangement and the construction technology. The procedure that has been 

used during this study can be listed as follows: 

→ Investigation, damage survey and material characterization of the 

structure. 

→ Vibrational tests for dynamic characterization. 
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→ Numerical Modeling and calibration (trial-error methods). 

→ Structural verification. 

→ Installation of monitoring systems on critical bridges to control the 
behavior of the structure. 

→ On-line automatic system identification of the bridge modal 
parameters 

In the following paragraphs the application of the theoretical methods 

described in previous chapters will be presented. The first aim of this study 

is to present the behavior of different kinds of infrastructures under 

dynamic identification tests, emphasizing the particular response problems 

of suspension bridges, concrete arch bridges, masonry arch bridges, 

concrete beam bridges, reticular steel bridges and steel box bridges. In 

addition, the structural identification will be applied in cases of demolition 

process, validation of a seismic retrofit intervention, damage assessment 

and long term monitoring. The second aim is to compare the performance 

of the well-known Modal Analysis techniques SSI and FDD with the newly 

developed ECCA technique. It will be clearly seen how the new technique 

extracts additional modal information from the structures, especially when 

accompanied by advanced cluster analysis. Advanced Cluster analysis, 

automatic algorithms for modal parameter identification and Regressive 

models will be applied for accurate data processing.  Finally, summary 

remarks will conclude the overall framework of the applications.   

4.2 Concrete Arch bridges 

4.2.1 St. Giustina Bridge 

4.2.1.1 Description of the structure and measurement campaigns 

The bridge of St. Giustina is a 68,0m single arch span, two-lane reinforced 

concrete valley overpass. It is located in the Region of Trento (Italy) in 

front of the St. Giustina Dam. The main characteristics and general layout 

are shown in Figure 4.3. 

The bridge is supported by two tapered arches (open spandrel arcs) linked 

together by several r.c. beams. The height of the arch’s section is 2,50m at 

the basis and 1,80m at the crown. Along the length of the arch there are 

16 vertical concrete columns that connect the arches with the slab forming 

a rigid frame. All the columns are connected together with cross struts; the 

outer and higher columns are also transversally braced by X-shaped steel 

struts. The deck of the bridge is 9,00m wide for two traffic lanes and two 
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pedestrian walkways and consists of a cast in place r.c. slab supported by 6 

longitudinal girders and 17 transversal beams. The bridge is fixed to the 

foundations at the basis of the arches and left free to move on the 

abutments.  

Foundations at the beginning have been modeled as fixed in the Finite 

Element Model but as shown below, some sensitivity analysis has been 

developed changing the rotational stiffness of the foundations. The St. 

Giustina Bridge contains inside the concrete structure, the frame of the old 

steel bridge of St. Giustina erected in 1888 (Figure 4.3) The old steel 

bridge was incorporated inside the new bridge in a reinforcement 

intervention in 1960. From the different models developed, it has been 

demonstrated that, the presence of the steel structure inside the concrete 

has no influence in the dynamic analysis, due to huge geometrical 

difference of their cross sections. 

Before the bridge was subjected to ambient vibration testing, several other 

destructive and non-destructive tests such as pullout, ultrasonic pulse 

wave, rebound hammer, traction tests on steel bars and core sampling 

(compression tests on concrete) techniques were executed in order to 

characterize the mechanical features of materials on-site and in the 

laboratory. 

The acquisition campaigns were carried out in January 2010. During the 

three-day tests, generally low temperatures were detected and for this 

reason increasing values in the natural frequencies were expected because 

of the formation of ice inside the concrete and inside the road pavement. In 

order to obtain a good spatial resolution, the survey resulted in eight 

different setups (Figure 4.2, similar to [31]). Piezoelectric accelerometers with 

vertical axes were used to measure the bridge’s response. Three 

accelerometers were placed as a reference in the middle of the bridges and 

eight others were simultaneously moved to cover the entire area of the 

bridge. 

 

  Figure 4.2 Sensor locations and directions for the St. Guistina bridge tests. 
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  Figure 4.3 St. Giustina bridge: plan, elevation, cross-sections and photos. 
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The correct positioning of the accelerometers, placed along the concrete 

arch, was made possible thanks to the intervention of two climbers (Figure 

4.3). The ambient accelerations time series were recorded for nearly 11 

minutes with sampling frequency of 100 Hz (interval of 0,01s). For the 

spectral analysis a number of 2048 frequency lines was considered sufficient 

for the correct definition of the signal and overlapping windows of 66.67%. 

 

  Figure 4.4 Average PSD for each setup configuration resulted from the tests. 

4.2.1.2 Identification of the modal parameters 

The extraction of modal parameters from ambient vibration data was 

carried out by using the Frequency Domain Decomposition (FDD) 

developed by Brincker et al. [6]. As expected, the principal natural 

frequencies were identified between 0 and 15 Hz. In Figure 4.5 the singular 

values and the modes identification are shown. There can be clearly 

distinguished structural modes in frequencies 3.36, 4.56, 6.20, 8.47, 8.96, 

9.52, 10.91, 12.04, 13.94, 16.50 and 17.21 Hz.  Figure 4.6 shows that the first 

mode is a transversal mode, the second mode is a vertical mode and the 

third one is a torsional mode. 
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  Figure 4.5 Singular values and identification of natural frequencies (FDD). 

 

 

 

 

 

Figure 4.6 FEM and Experimental mode shapes of St. Giustina Bridge. 

4.2.1.3 Comparison between experimental and FE models 

Two different F.E models with two different software (Straus7 [32], and 

Midas [33]) have been created. All the materials, used in the model, were 

determined by laboratory tests of ten core samples taken from the 

S.Giustina Bridge. Arches, columns, and girders have been modeled with 

beam elements, while the deck slab is modeled with 4-node shell elements. 

From the comparison between experimental and analytical models almost 

all structural modes correspond with each other. The correlation of modal 

parameters can be analyzed both in terms of identified and calculated 

natural frequencies (Table 4.1) and by corresponding mode shapes using 

correlation coefficients or MAC (modal analysis criteria) values [25]. 
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Table 4.1 Correlation between numerical and experim.  modal behavior. 

Mode FDD  
f (Hz) 

Model 1 (Straus7) Model 2 
(Midas/Gen) 

 

f (Hz) ∆ (%) MAC f (Hz) ∆ (%)  
1 3.369 3.402 1.039 0.967 3.312 -1.692  
2 4.565 4.952 8.478 0.843 5.057 10.778  
3 6.201 5.636 -9.111 0.645 6.068 -2.145  
4 8.472 8.332 -1.653 - 8.852 4.485  
5 8.96 9.187 2.533 - - -  
6 10.91 10.520 -3.575 - 10.324 -5.371  
7 12.04 12.540 4.153 0.610 - -  
8 13.94 13.630 -2.224 - - -  
9 16.5 14.800 -10.303 0.287 - -  
10 17.21 17.050 -0.930 0.347 17.931 4.189  
11 21.68 20.550 -5.212 0.521 - -  

From the obtained results (modal model and updated FE model), it can be 

observed that the theoretical model describes accurately the mode shapes 

extracted from the FDD with an average error of 4.6%. Furthermore the 

OMA allowed to identify three eigen-modes not predicted from the FE 

model. This can be traced back to one of the most important parameters 

that has influenced the results, i.e. the temperature. In fact, during the 

acquisition campaigns the temperature oscillated between -2°C and -7°C.  

4.2.1.4 Sensitivity analyses 

A sensitivity study (Figure 4.7) was performed on the St. Giustina Model 

Bridge, varying the stiffness of the elastic springs simulating the boundary 

conditions at arch bases and the Young’s modulus of elasticity of reinforced 

concrete elements.  

 

Figure 4.7 Sensitivity analysis: spring stiffness at the foundation of the arch. 



4- APPLICATIONS: SYSTEM ID. ON BRIDGES  73 

 
 

The parametric results show, with adequate approximation, that the 

dynamic characteristics vs. the soil elasticity do not change after a certain 

value, so it is correct to model the constrains as fixed. 

Another parametric study has been conducted on the elastic modulus of 

the concrete present on the structure. 

 

Figure 4.8 Sensitivity analysis on the elastic modulus. 

As we know, temperatures lower than 0°C influence in a considerable way 

on the dynamic behavior as they determine a more rigid structure. This is 

due to the passage of water, present in the cortical layers of concrete, from 

liquid to solid state thus causing a consequent volume increase and 

eventually an increase in stiffness (connected to E) and frequency values. 

The same thing may have happened on the St. Giustina under low 

temperatures causing difficult transversal and longitudinal movement of 

the deck and pavement determined by the elastic modulus change (Figure 

4.8).  

4.2.2 Rovere Bridge 

4.2.2.1 Dynamic tests on Gerber type arch structure 

The Roverè bridge is a 76,0m single arched span, two-lane reinforced 

concrete valley overpass. It is located in the north of the city of Verona 

(Italy) and was constructed in the sixties. The main characteristics and 

general layout are shown in Figure 4.9. The bearing structure is realized by 

four r.c. tapered arches that do not support in a complete manner the deck 

(as in the case of usual arc structures), but provide support to the central 
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part of the roadway, whereas a second part of the deck is built with the 

traditional Gerber technique. The height of the section of the arch is 0,75m 

at the base and 1,40m near the key position. Near the basis of the arches 

there are supporting walls rising up and connecting with the deck to hold 

the first span of the bridge deck and the second part obtained by a saddle 

in a cantilever area, creating almost 7 expansion joints in total. The 

roadway has a difference in level of 6,0m from the entrance and the exit 

section, namely a 7,9% slope. Differently from the previous structure, this 

one presents a high level of degradation of concrete and steel materials.  

 

 

 

 

Figure 4.9 Roverè bridge: plan, elevation, cross-sections and photos. 
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Especially the lower extrados of the arches has no concrete cover and the 

corroded bars are clearly visible. Measurement campaigns took place in 

November 2009 and lasted three days. The configuration of acceleration 

sensors (Figure 4.10) and the data acquisition system were very similar to 

the case of the St. Giustina Bridge, due to their similarity. In this case the 

installation of the sensors onto the arches was made possible by the use of 

a by-bridge truck. 

The ambient accelerations time series were recorded for nearly 11 minutes 

with sampling frequency of 100 Hz. 

 

 

  Figure 4.10 Sensor location for the Rovere bridge tests. 

4.2.2.2 Modal identification 

The extraction of modal parameters from ambient vibration data was 

carried out in the same way as the previous application (FDD and Peak 

Picking). It can be clearly seen that the two graphs (Figure 4.4 and Figure 

4.11) present similar features and the first six modes are in both cases 

included in the range of 3 -10 Hz.  Figure 4.12 shows that the first mode is a 

transversal + torsional mode, the second mode is a vertical mode and the 

third one is a vertical of side spans mode. As it will also be noticed in the 

mode shapes, the two arch structures, studied until now, have a very akin 

behavior and demonstrate immediately the slenderness of the arches, 

having a first vertical mode shape that mainly involves the concrete arches. 

Because of being slender structures, the two arch bridges were simply 

identified (structural modes), thus revealing similar sharp peaks in the 

Upstream

Downstream
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PSD representation. As it will be discovered during other applications, this 

doesn’t happen with rigid concrete bridges or generally in masonry bridges.   

 
  Figure 4.11 Frequency Domain Decomposition Method for the identification of natural 

frequencies of Rovere Bridge. 

 

Figure 4.12 FEM and Experimental mode shapes of St. Giustina Bridge. 

4.2.2.3 Comparison between experimental and FE model 

The second bridge has been modeled using beam elements for arches and 

girders; plate elements for deck slab; wall elements (implemented in 

Midas/Gen [33]) for vertical walls. The Gerber cantilever bearings have 

been modeled with elastic springs for transversal and longitudinal 

displacements, and rigid links for vertical displacements. A good match 

was found between F.E. model and experimental data shown by the low 

percentage of difference (Table 4.2), in terms of natural frequencies. In some 

cases the modal analysis extracted mode shapes that was not feasible to 

find with the FE model, thus making this a sign of a model which needs to 

be studied in more detail.  
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Table 4.2 Correlation between numerical and experim.  modal behavior. 

Mode FDD  
f (Hz) 

Model  (Midas/Gen) 
f (Hz) ∆ (%) MAC 

1 3.027 3.007 0.665 0.92 
2 4.858 4.683 3.737 0.94 
3 6.494 - - - 
4 7.422 7.320 1.393 0.81 
5 8.179 8.025 1.919 0.85 
6 8.716 - - - 
7 9.497 9.384 1.204 - 
8 11.23 - - - 
9 12.26 - - - 
10 13.38 13.333 0.353 - 
11 16.87 - - - 

 

4.2.3 Dynamic tests during the demolition of 
Tronto Bridge 

4.2.3.1 The demolition process 

In a project developed in San Benedetto del Tronto, central-east region of 

Italy, an arch bridge was subject to demolition due to life-cycle damage, 

after a new steel bridge was constructed. The old bridge was composed of 

five reinforced concrete arch spans, supported by masonry piers and 

abutments. Every span is composed by two parallel arches (15.5m) 

connected together with a reinforced concrete slab, casted between the two 

spandrel walls. The structure was bearing a two-lane roadway, one lane per 

direction, plus two sidewalks with a cross section of 12.30 m. The average 

thickness of the arch is 0,60 m. The maximum height of the piers is 6.5 m 

and their section is rectangular with dimensions 2.5 x 12.50 m. 

The demolition process began on the 14th of November 2011, and the first 

step was to remove the pavement and the roadbed as shown in the photos 

in Figure 4.14.  

The four principal sequences of the demolition process were:  

• Removal of the roadbed and emptying of the infill material 
• Demolition of the first three arches 
• Demolition of the first three piers 

• Demolition of the two remained arches and their piers 
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Figure 4.13 Prospect, longitudinal and cross section of the Tronto bridge. 

  

  

Figure 4.14 Sequential demolition process of the Tronto bridge. 

4.2.3.2 Measurement campaigns  

During November - December 2011 several acquisition campaigns were 

carried out. The first measurements were performed in the first phases of 

the demolition process, i.e. in November 2011, when the roadbed and 

partial infill material was removed from the bridge.  
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Figure 4.15 Cross section of the bridge. Two principal demolition configurations: a) five 

spans with some infill material, b) two spans without infill material. 

The side on which the tests were performed, is the part which was 

demolished at the end, in hypotheses to repeat the measures after the 

demolition of three spans. In this description, only the local configuration 

will be considered in order to evaluate the differences encountered before 

and after the demolition of the 3/5ths part of the bridge. In the first case, 

the measurements were recorded with 16 velocity sensors for nearly 4 

minutes with a sampling frequency of 200 Hz.  

 

  
Figure 4.16 Velocity sensor configurations for the local measurements: entire bridge and the 

two spans remaining after demolition.   

In the second case, three of the five spans were demolished, and only two 

spans on the Abruzzo side remained. Tests were performed in overlapping, 

but not simultaneously, with velocity and acceleration sensors (Figure 4.16). 
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4.2.3.3 Modal Analysis before and after the partial demolition 

As previously mentioned, measurements have been taken before and after 

the demolition of three spans. In fact, the different results will be presented 

in this paragraph in terms of analysis conducted before and after the 

partial demolition. Modal analysis was carried out by using standard 

methods as Frequency Domain Decomposition (FDD) and the data-driven 

Stochastic Subspace Identification (SSI) technique. From the very 

beginning it was seen that noisy data were recorded and the structure was 

not sufficiently excited in order to capture its dynamic characteristics, so it 

was difficult to get clear results [34].   

Velocity measurements were taken before and after the partial demolition, 

so it was straightforward to compare the results. In Figure 4.17 the Power 

Spectral Densities of the velocity measurements, before and after the 

demolition, are shown. The plots present similar features, but more 

importantly present a shift in the natural frequency values. In particular 

the first peak present in the first graph has a shift of nearly 1 Hz in 

relation to the second graph, resulting in an increase from 3.97 to 5.20 Hz, 

respectively before and after the partial demolition. Although, the SSI and 

FDD methods weren’t capable of identifying many natural frequencies 

(noisy results), they revealed that the structure, after the partial 

demolition, seems to be more rigid than the entire structure (Table 4.3 and 

Table 4.4). These surprising results will be reviewed and exalted in the next 

paragraphs, but also validated with a theoretical model that represents the 

demolition process.   

Figure 4.18 shows the FDD graphs before and after the demolition process for 

the case of velocity data recorded. Although already in the first plot the 

selection of the modes was not simple, when we consider the second plot, 

regarding the tests after the demolition, it is impossible to identify more 

than two modal modes.  
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BEFORE demolition    AFTER demolition 

 
Figure 4.17 PSD of the velocities before and after the partial demolition.   

Table 4.3 Differences between  
Modal Analysis before the demolition (velocity data). 

Mode FDD SSI 
f [Hz] Damp[%] f [Hz] Damp[%] 

1 3.959 1.58 3.90 8.8 
2 5.024 0.96 5.003 6.2 
3 5.949 0.55 5.95 4.6 
4 6.930 0.37 6.956 7.2 

 
Table 4.4 Differences between  

Modal Analysis after the demolition (velocity data). 

Mode FDD SSI 
f [Hz] Damp[%] f [Hz] Damp[%] 

1 5.206 0.116 5.24 8.2 
2 - - 6.14 9.2 
3 7.335 0.815 7.345 6.4 
4 - - 9.46 4.2 

   
Figure 4.18 The FDD method with velocity data before and after the partial demolition.   
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Figure 4.19 Four mode shapes of the two spans subject to analysis.  

 

  
 

Figure 4.20 The FDD developed with accelerations after the partial demolition.  
 

Both FDD (also implemented in Matlab) and SSI techniques revealed 

few results; so it is difficult to certainly select the right modal parameters 

of the analyzed structure. For this reason, another study and some cluster 

analyses will be developed to get the best results from this interesting 

demolition process. 

In the case of the acceleration measurements, the analysis is clearer and it 

was possible to identify more modal parameters than the case with velocity 

data after the demolition, although the first two principal frequencies 

coincide. Here, again, we have the confirmation that the natural vibration 

frequency values have increased after the partial demolition of three spans. 

4.2.3.4 Modal Analysis via the ECCA 

During the previous analysis with the standard modal methods we 

encountered some difficulties in finding the principal modal parameters of 

5 10 15 20 25 30

-200

-180

-160

-140

-120

-100

-80

FDD - Singular values

Frequency [Hz]

SV
D

.[d
eb

]

Mode 
FDD 

f [Hz] Damp 
[%] 

1 5.21 0.17 
2 - - 
3 7.91 0.86 
4 9.45 1.35 
5 11.7 1.33 
6 13.2 1.58 



4- APPLICATIONS: SYSTEM ID. ON BRIDGES  83 

 
 

the studied structure. In this paragraph some of the results obtained from 

the analysis with the ECCA method [13] (see section 3.3) will be shown. In 

this case, it was possible to identify more dynamic parameters and validate 

the previous results. 

Theoretically, the order of a system’s model is supposed to be determined 

by the singular value distribution in the SVD of the observability matrix 

Oi. In order to determine the order with the ECCA technique, the singular 

value distribution has been plotted in Figure 4.21. 

 
Figure 4.21  Normalized singular value distributions for the ECCA. 

According to the gap present in the singular value plot, a model order of 

19 can be chosen and then we can continue with the estimation of the 

modal parameters. The first values extracted: 5.202Hz, 7.468Hz, 9,73Hz 

and 11.43Hz helped immediately to concentrate the research around these 

values, for the “after demolition” case. Although the stabilization diagram 

subsequent to the SSI-ECCA technique gave more information about the 

modal parameters, it was difficult to clearly distinguish the structural 

modes. So a 60% overlap was applied to all the data, and in this way 

different parametric analysis were carried out resulting in the identification 

of higher modes, previously invisible. In order to capture every vibration 

frequency, different low pass filters were applied to the data, in relation to 

the frequency needed.  In Figure 4.22 and Figure 4.23, it is obvious how the 

frequency values related to the model order number show a stable trend, 

especially for the first modes. 
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Figure 4.22  Natural frequencies  relatively to the system model order (before demolition). 

  
Figure 4.23  Natural frequencies relatively to the system model order (after demolition). 

To examine the variations of the damping ratio estimates with the model’s 
order, three modes have been considered: one around 5.2 Hz; the other 

around 7.47 Hz; and the third around 9.73 Hz. The damping ratios of these 

three modes are extracted from the models with different orders (such 

models are realized via the ECCA method) and displayed in Figure 4.24. 

In the frequency range of 3-30, a total of 11 structural modes were 

identified with the ECCA (far more than the standard techniques). Four of 

them (first vertical-longitudinal, second hybrid vertical-torsional 

antisymmetric, third vertical and fourth torsional mode) are presented in 

Figure 4.19. The results reveal ones again that every vibrating mode, after 

the partial demolition, has a shift towards higher values. 
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Figure 4.24  Damping values in relation to the model’s order (after demolition). 

4.2.3.5 Cluster Analyses 

In order to take into account all the variations of estimated structural 

modes that can arise from different choices of the model’s order, a cluster 

analysis (see Section 3.4.3) has been applied to the data of the “after 

demolition” case.  

For a proper identification, a single mode should be identified within a 

single cluster at least 30 times, using different combinations of n and i. In 

this study, considering values of the model’s order n ranging from 40 to 160 

with increments of 5, and by considering the value of i number of blocks 

ranging from 40 to 120 with increments of 4, a total of 480 analyses have 

been conducted (Figure 4.25). 

Results 

The acceleration responses of the Tronto Bridge were subject to Band-pass 

filtering and de-trend processing before applying the identification 

algorithm. The results of clustering steps are presented in Figure 4.25 - Figure 

4.27, where modal properties are plotted in terms of the frequency and 

damping ratio. Figure 4.25 shows all modes that have been identified by the 

total parametric analysis and the ones remaining after eliminating modes 

with damping larger than 15%.   
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Figure 4.25 Modes identified from all analysis and modes with damping ≤ 15%. 
 

 
Figure 4.26 Stable modes remaining from the cleaning procedure 

 

 
Figure 4.27 Cluster analysis: Modes remaining after applying the clustering  

rules and number of elements in each cluster. 
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Figure 4.28 Mean Values and their 95% confidence intervals of stable modes. 

 
Figure 4.28 represents the final results of the cluster analysis and a total of 

20 groups can be observed, which indicates that a total of 20 structural 

modes are identified from the cluster analysis. Mean values and confidence 

intervals estimated modal parameters with very small uncertainties. In 

such analysis, even close modes seem to be well distinguished whereas noise 

modes are efficiently eliminated. Comparing Figure 4.26 and Figure 4.28, most 

of the noisy modes are eliminated by inspecting the consistency between 

modes estimated using different pairs of n and i.  

With regard to modal parameters estimations, the natural frequencies and 

damping ratios can be calculated from the individual groups in relationship 

to their statistical properties (e.g. mean, standard deviation). Table 4.5 

presents the mean and standard deviation values of 12 natural frequencies 

identified in this study from the cluster analysis. It is noteworthy to 

mention that the distribution of the frequencies is quite small, showing a 

good clustering process. Furthermore, in the last column of the table, the 

number of times a mode has appeared (in the 480 analyses) is also shown.  

To summarize it, the ECCA has shown a good performance in identifying 

the modal parameters, especially when other standard techniques do not 

give a precise view of the structural modes. The ECCA method performs 

better than the others in discriminating structural modes from the noise 

ones. In addition, the use of the complementary clustering analysis for the 

parameter selection and discrimination between structural and noise modes 

helped to precisely choose the proper modes. This set of parameters is used 

in the subsequent study of the updated FE model of the Tronto Bridge, 

which will help to understand the structural behavior of the demolished 

bridge.  
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Table 4.5 The identified frequencies [Hz] from the cluster analysis  
for the experimental problem. 

Mode Freq. mean 
[Hz] 

Freq. 
Std 

Num of times 
found 

1 5.2049 0.0280 98 
2 7.4666 0.0441 230 
3 9.7291 0.0489 210 
4 11.4604 0.0563 155 
5 14.2099 0.0887 232 
6 15.5820 0.0563 255 
7 20.3015 0.0936 205 
8 21.5218 0.1206 94 
9 23.1927 0.0671 345 
10 24.6084 0.0942 452 
11 27.6969 0.1311 112 
12 29.4251 0.1249 392 

 
As we know, not all modes observed in one segment of the data can be 

equally detected in all other segments since, depending on the excitation, 

different modal responses may be amplified at different times. Herein 

another statistical analysis is used to overcome this issue, refining the 

ECCA results. In fact, for the velocity data recording case, another 

statistical analysis was carried out in order to understand the distribution 

of the frequencies in the recorded signals.  

The time history set was divided into 15 non-overlapping segments, each of 

2460 points long, and separate state models were analyzed for these 

segments. The modal identification process for both cases (before and after 

demolition) was repeated in each segment.  In this way, frequency values 

of the structural modes and their distribution were found. The order of the 

state-space models were determined based on the singular values carried 

out from the ECCA method. The optimum model order for the time 

histories of the set after the demolition appeared to be between 22 and 28, 

while in the case of the series before the demolition of the bridge, the 

optimum value was chosen between 26 and 34. If we represent the results 

in histogram graphs (Figure 4.29 and Figure 4.30) it is easy to observe their 

distribution in the two studied cases of “before and after demolition”.  

For almost every mode analyzed, it was possible to capture the 

corresponding frequency value in each segment of the time series. 

Eventually, the graphs display once again and clearly the frequency shift 

present in the structure, before and after the partial demolition.  
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Figure 4.29 Appearance of the first mode among the time segments, before and after 
the demolition. Representation of the damping ratio for both cases.   
 

 
Figure 4.30 Appearance of the other modes among the time segments, before and after 
the demolition.  
 

4.2.3.6 Validation of the demolition process with FEM Analysis 

Generally, modal identification of bridges and other civil structures is 

required for the validation of finite element models used to predict static 

and dynamic structural behavior, either at the pre-functional stage or in 

case of structural damage or monitoring. The correlation of modal 

parameters can be analyzed both in terms of identified and calculated 

natural frequencies, and by the corresponding mode shapes using 

correlation coefficients or MAC (modal analysis criteria) values. In our 

case, this general use was more or less converted, i.e., the FE model was 

not only updated from the experimental results, but also served as a means 

of demolition scenario validation.   

A tridimensional FE model of the Tronto Bridge has been developed in the 

STRAND7 [32] environment. Geometric and materials characterization has 
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been performed according to the surveys carried out in situ and in lab, 

even though several sensitivity analyses have been developed in order to 

calibrate the model. The concrete arches have been modeled with four node 

plate elements anchored at the masonry abutments and piers (plate 

elements). A high elastic modulus was assigned to the arches due to the 

fact that they are composed by concrete; while a low value has been 

assigned to the piers and abutments because they are made with external 

masonry walls filled with gravel material. In order to create the same 

situation existing during the tests, only the standing spandrel walls and 

part of the infill material were modeled, without the roadbed or slab. In 

fact, during the first tests before the demolition of the three spans, it was 

estimated that only one third of the infill material was present. Since it has 

poor mechanical characteristics, the infill material has been modeled as 

non-structural mass and has been placed on top of the piers between the 

arches. Three-degree-of-freedom elastic springs are placed at the bottom of 

the piers and at the abutments to reproduce soil-structure deformability.  

After defining the base model and updating it according to the 

experimental data, a second model group has been generated. This model 

wants to reproduce what was left in site after the demolition of three spans 

of the bridge; from the previous model only the first two spans were 

present and a small portion of the infill material was extracted. In 

summary, we have two groups of models representing the bridge before and 

after the partial demolition, in accordance with the measurement 

configurations. 

 
 

Figure 4.31 3D Finite Element Calibrated Model of the Tronto bridge: before and after 
partial demolition.  

 
continues 
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Figure 4.32 First principal modes (3.989Hz and 6.011Hz) calculated by means of the 
calibrated FE model before the demolition of three spans.  

 

  
 

Figure 4.33 First principal modes (5.226 Hz and 7.264 Hz) of the calibrated FE model after 
the demolition of three spans.  

 
Table 4.6 Comparison between experimental and theoretical models before and 

after the demolition . 

Mode Experimental MAC FEM 
Before After Exp. Before After 

1 3.959 5.204 0.46 3.989 5.226 
2 5.949 7.466 0.56 6.011 7.264 
3 6.950 9.729 0.60 6.413 8.245 
4 10.58 11.460 - 10.02 10.25 
5 12.95 14.209 - 12.50 13.42 

Figure 4.32, Figure 4.33 and Table 4.6 show the results of what was carried out 

from the model updating and demolition scenario. In Figure 4.33 it can easily 

be noticed that the first mode shapes and natural frequencies of the entire 

structure are clearly similar to the results that were captured during the 

dynamic tests, before the demolition of the three spans. In fact, on both 

cases the first mode is a longitudinal arch bending one while the second is 

a vertical - torsional mode.  

 A better view of what happened in both cases of the experimental and 

analytical model, before and after the demolition, is shown in Table 4.6, 

where one can notice that the overall frequency values in both cases have 

augmented. We can now state that what was observed in the field from the 

experimental tests is also confirmed by the FE models. This result, at the 

beginning unexpected, is probably due to the order change of the mode 

shapes, to the different boundary conditions and small change of material 

present before and after the demolition.  
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An interesting topic in this study was the evaluation of the MAC value 

between the Modal model before and after the demolition. Poor correlation 

existing between the two cases show that mode shapes are different before 

and after the partial demolition, probably because the structure has 

changed. The structural change has been displayed although the change in 

frequency and mode shape switch. To validate the aforementioned result 

some other bridges were taken into consideration. Two other dynamically 

investigated arch bridges [35] were submitted to the demolition process 

through FE analysis (as they were not scheduled for real demolition). 

Surprisingly, they revealed the same result like the previous studied case: 

the natural frequency values always increase after the destruction of some 

of the spans of the bridges. 

4.3 Masonry Arch bridges 

4.3.1 Evaluation of the seismic intervention on Gresal 
Bridge 

4.3.1.1 Measurements of the retrofitted bridge 

The Gresal bridge is located in the North-East of Italy, in the Belluno 

province; it was built in the early XIX century and is currently used as a 

vehicular bridge, representing for the regional road network an important 

overcrossing of the Gresal river. The structure is a three span stone 

masonry arch bridge, with a total length of 67,40 m: the three spans are 

almost equal, the single arch clear length is about 15m;  their shape is 

almost semicircular with a radius of 7.39m,  slightly increasing at the 

springers. The average thickness at the crown is 0,50m. The maximum 

height of the two piers is 12,75m and their section is rectangular.  

The roadway is 6.09m wide, and laterally the spandrel stone walls emerge 

beyond the deck level forming two 45cm thick parapets. The structural 

investigation has consisted in three core samples taken in the stone arch 

and a geometrical survey. These investigations have allowed to determine 

the thickness of the brick stone, as well as the layering of the material 

between the pavement and the masonry vault; and furthermore to 

characterize the mechanical property of the infill material. The infill has 

good mechanical characteristics and is made by loose material, stones and 

pebbles.  

A retrofit intervention has been carried out, and a new r.c. slab has been 

built under the pavement. It was anchored to the piers with high strength 

vertical ties and restrained at the abutments in order to create a new 
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resistance arrangement withstanding inertial forces. The dynamic behavior 

has been initially assessed with numerical models comparing the response 

of the bridge before and after the repair, and has subsequently been tested 

by the Output-Only technique to detect the variation of the modal 

response induced by the strengthening intervention.  

The effectiveness of the strengthening technique has been tested with 

appropriate nonlinear analytical models, comparing the seismic capacity of 

the bridge before and after the repair intervention. The capacity of the 

bridge has been increased (the ultimate displacement in the inelastic field) 

by the retrofit both in the longitudinal and transverse direction; the latter 

was the most vulnerable in the existing bridge, mostly due to the 

slenderness of the high piers. 

 

  
Figure 4.34 Panoramic view and piers of the Gresal Bridge. 

During February 2011 an acquisition campaign was carried out and 

piezoelectric accelerometers with vertical axes were used to measure the 

bridge’s response. The sensor configuration (Figure 4.36) was mainly 

concentrated on the arches due to the facts that they were the key 

elements of the structure. Three acquisitions have been registered, one for 

every arch (Figure 4.36). 

 
Figure 4.35 Longitudinal section with new structural elements (rc slab, micropiles and 

vertical ties) 
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Figure 4.36 Sensor location on the arches for the Gresal bridge tests and PSD for the three 

setups. 

4.3.1.2 Identification of the modal parameters 

The extraction of modal parameters from ambient vibration data has been 

carried out by using the Frequency Domain Decomposition (FDD), the 

reference-based stochastic subspace identification [4] and the Operational 

poly-reference least squares complex frequency domain identification [36]. 

The analyses included frequencies corresponding to the first 10 eigenmodes. 

In Figure 4.37 the first modes identified are shown and it can be seen that 

the first six modes are included in the range 4-20 Hz. 
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Figure 4.37 The stabilization diagram in the ref-SSI method. 

Table 4.7 Comparison between more Modal Techniques 

Mode Identification Method 
FDD SSI pLSCF 
f [Hz] f [Hz]     ξ[%] f [Hz] ξ[%] 

1 4,932 4,962 3,512 4,991 1.621 
2 8,350 7,762 6,518 - - 
3 9,619 - - 9,675 0.625 
4 10,500 10,118 1,624 10,590 0.087     
5 11,080 10,825 4,084 - - 
6 11,430 14,788 1,141 12,849 0.721      
7 16,650 17,675 2,328 - - 
8 18,600 18,977 4,137 - - 
9 19,240 - - 19,045 0.510 
10 19,530 21,438 5,025 - - 

 

For each method, in Table 4.7, natural frequencies identified and damping 

(where assessed) are shown. The frequencies not reported in the table refer 

to the unstable modes highlighted during the analysis of experimental 

data. 

4.3.1.3 Model Updating and comparison with the retrofitted case 

During the study of the bridge over the Gresal river, for the finite element 

model implemented, using the program Straus7, brick elements were used 

to model piers, abutments, spandrel walls and the infill. In particular, we 

have used two models: one for modeling the final bridge with its seismic 

retrofitting, and another to model the bridge before the intervention. 

Regarding the modeling of the intervention (Figure 4.38), the micropiles and 

Dywidag bars were modeled with beam elements positioned at the 
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abutments and at the piers; the same method was also used to model the 

integrative r.c. slab.  

 

Figure 4.38 FE model used and the sensitivity analysis conducted. 

As part of the calibration of the FE model with the experimentally 

measured data, a study has been made on two levels of sensitivity: one for 

the infill material modulus and another for the stone material constituting 

the bridge. Being in the presence of very massive stone blocks composing 

the arches, the values of  elastic modulus can reach abnormal values in 

reference to usual masonry structures. The test results showed that the 

increase of elastic modulus induces a linear increase in the natural 

frequencies for all the modes being considered (Figure 4.38).  

After calibrating, the model was put in comparison with the Modal model 

in terms of natural frequency and mode shape values (MAC).  

Table 4.8 Correlation between numerical and experim. modal behavior 

Mode FDD 
 f [Hz] 

Model [Straus7] 
f [Hz] ∆ [%] MAC 

1 4,932 4,924 0,17 0,977 
2 8,350 7,923 5,39 0,820 
3 9,619 8,202 17,28 0,809 
4 10,500 10,993 -4,48 0,825 
5 11,080 11,193 -1,01 0,960 
6 11,430 12,731 -10,22 0,291 
7 16,650 15,992 4,12 0,906 
8 18,600 16,416 13,31 0,671 
9 19,240 17,174 12,03 - 
10 19,530 18,878 3,45 - 

 
From the results reported in Table 4.8, it was obtained a high correlation 

between the experimental frequencies and those derived from the numerical 

model, for the first five modes. One can observe a close similarity from the 

comparison between the same mode shapes, presented in Figure 4.39, as well. 

In particular, from both experimental and numerical evaluations, the first 
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vibration mode is of a bending type in the transverse direction, the second 

is a bending type in the longitudinal direction, while the third is torsional. 

 
1st

  

2nd

  
EXP FEM 

Figure 4.39 Comparison between experimental and analytical for the first and second mode 

shape. 

The comparison, between the pre-intervention and post intervention 

frequencies, is shown in Figure 4.40.  

 

Figure 4.40 Natural frequencies comparison of the bridge before and after the intervention 

By comparing the results of the two dynamic models, it was observed how 

the intervention slightly improved the seismic response of the bridge. We 

came to the conclusion that the retrofit increases the elastic stiffness 

(consequently the natural frequencies) less than expected, but enhances 

considerably the ultimate capacity of the structure in non-linear field.  
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4.3.2 Liberty Bridge: a very squat structure. 

4.3.2.1 Description of the structure and measurement campaigns 

The Liberty Bridge (constructed in 1930) is located along Regional Road 

11, between the towns of Mestre and Venice in Italy. It is a bridge of 

strategic importance, being the only road bridge that connects the city of 

Venice to the mainland. The structure can be schematized as a succession 

of vaults combined with piers, abutments and terrain embankments. 

Between each square there are seven series of masonry vaults. Each series 

consists of five vaults, resulting in a total of 227 arches. The overall length 

of the infrastructure between Venice and the mainland is 3623.58 meters. 

The width of the bridge is 20 meters, comprises a parapet of 0.50 m, a 

sidewalk of 3 m, a road width of 15.75 m and a runway of 3 m reserved for 

cyclists. The height of the piers is 2 meters. Their thickness is 1.50 m, and 

the pier-abutment is 13.74 m thick. Each vault has a span of 10.63 m, the 

arch rise is 1.31 m and  the thickness is 0.65 at the crown. 

 

 
Figure 4.41 Panoramic views of Liberty Bridge in Venice. 

As it can be easily noticed from Figure 4.43, the bridge has a squat and stiff 

structure. From the beginning, high values of natural frequencies were 

expected and this was proved by the experimental investigations. The 

main concern in the case of Liberty Bridge was the effect of the marine 

environment on the structure. In fact, during its age and before the 

dynamic tests, several material characterization campaigns has been 

carried out on the structure.  

On June and July 2010 two vibrational acquisition campaigns (Figure 4.42) 

took place. The first measurements were done over the bridge, but during 

the second campaign, the sensors were installed under the vaults by means 

of small boats.  
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Although two series of measurements were taken, both of them carried 

noisy data and poor results could be reached. One of the main reasons was 

the low flexibility of the structure and the disposability to reveal its 

behavior, at least with the available instrumentation.   

 
Figure 4.42 The disposition of accelerometers on the bridge during the two campaigns. 

 

 
Figure 4.43 Longitudinal view of one of the vaults and the pear of Liberty Bridge. 



100 4- APPLICATIONS: SYSTEM ID. ON BRIDGES 

 
 

  

Figure 4.44 Sensor installation on the structure. 

4.3.2.2 Modal analysis 

As the first step, the Frequency Domain Identification was used to analyze 

the measured data. For the singular values, for each dataset, difficulties in 

extracting the exact structural modes were revealed since the graph didn’t 
present clear peaks as in the previous cases. 

 
Figure 4.45 Example of Power Spectral Density graph for one of the setups. 

The first natural frequency is at the value of 12.24 Hz. Two other clear 

peaks show up at 22.1 Hz and at 26.6 Hz as observed from Figure 4.45. 
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that were seen during all the applications presented in this work, had 

values that go from 2 to 6 Hz.  

To integrate the results that were given by the preliminary analysis and 

the FDD, another method was used, in the time domain. This is the SSI 

Enhanced Correlation Covariance Analysis. In order to evaluate as much 

structural modes as possible, different model’s orders has been chosen and 

a high value of block numbers have been selected. From the stabilization 

diagram (Figure 4.46), one can notice that the stable modes correspond to 

some of the values that were extracted by the previous analysis, but other 

structural modes were also discovered. In fact, the second mode of 12.8 Hz 

and the third of 14.50 Hz were not possible to identify from the FDD 

technique. In Figure 4.47 one can notice that the first mode shape is an 

asynchronous vertical deflection of the vaults, whereas the second mode is 

a longitudinal and vertical mode shape. 

 

 
 

Figure 4.46 Stabilization diagram obtained from the ECCA method and results of cluster 

analysis. 
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More accurate results were needed for this case study. So a valuable 

solution in cases of squat structures is the use of cluster analysis (SSI 

analyses, with different block number and model’s order, clustered) able to 

estimate all structural modes more precisely. In Figure 4.46 the results of the 

cluster analysis applied to the Liberty Bridge data are represented. It can 

be observed that the accuracy is quite good, especially for the higher well 

amplified modes. 

4.3.2.3 Comparison between experimental and FE model. 

After identifying the first natural frequencies with the aforementioned 

methods, we are now ready to compare them with the FE model 

developed.   

The elements used in the model are brick elements, since it was not 

considered possible and convenient to schematize the complex structure 

with single or two-dimensional elements. Five arches of the bridge were 

modeled, at the ends of which have been placed symmetry constraints to 

represent the presence of abutments and the continuity of the long bridge. 

It can be observed that the theoretical model describes accurately the 

mode shapes extracted from the experimental analysis. But the Finite 

Element Model showed several mode shapes that were not possible to find 

with the OMA. 

 

  

Figure 4.47 Comparison between experimental and analytical first and second mode shape. 

 

 

 

 

 

 



4- APPLICATIONS: SYSTEM ID. ON BRIDGES  103 

 
 

4.4 Reticular and box girder steel bridges 
4.4.1  Fosso Bridge 
4.4.1.1 In-site measurement on the railway bridge 
The analyzed bridge is located in Saint Stino of Livenza along the railway 

line that connects Venice with Trieste in Italy. Its steel reticular truss 

structure is built in 1922, with the overall length of 33.6m and the width of 

4.5m. Being subject to the phenomena of fatigue due to train loads, the 

bridge has been replaced with a new one. Besides the dynamic tests, some 

elements of the bridge were subject to fatigue tests in the laboratories of 

the University of Padua, in order to determine their lifetime. In absence of 

the original projects, detailed geometric survey has been done. The 

structure is very complex because each section is obtained by overlapping 

steel plates of varying thickness from 10 to 12 mm (riveted together). 

There are some differences due to metal plates added over the years to 

cover the machine gun holes (2nd World War) that have weakened the 

structure. The bridge has a substantial symmetry along the longitudinal 

and transverse direction with ten repetitive modules of 3.36m. 

  
Figure 4.48 Views of the bridge during measurement operations and from below. 

Measurements took place on the bridge in June 2011. Four different 

configurations (Figure 4.49) of sensors were installed in order to get the 

vibrations of the reticular trusses in both lower and higher parts. The 

number of gaining points used, is conditioned by the spatial resolution 

needed to characterize appropriately the shape of the most relevant modes 

of vibration (according to preliminary finite element model). The ambient 

accelerations time series were recorded for nearly 11 minutes with sampling 

frequency of 100 Hz (interval of 0,01s). For the spectral analysis a number 

of 2048 frequency lines was considered sufficient for the correct definition 

of the signal and overlapping windows of 66.67%. 
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Figure 4.49 All setups with all connected channels. 

4.4.1.2 Dynamic identification results 

During the registration of the signal from the bridge, two cases of signals 

were distinguished: with train and without train passing. This is crucial for 

the modal analysis, since the presence of a convoy changes radically the 

masses of the structure and the dynamic response is different from what 

should be. Furthermore during a train route, the signal is highly amplified 

(Figure 4.50) causing distortion and other problems. 

  
Figure 4.50 Acceleration signal without and with train presence. 

 

Figure 4.51 Zoomed view with train presence. 
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Figure 4.52 Prospect, cross section and instrumentation installation. 

One can notice from Figure 4.50 and Figure 4.51 that there is an amplification 

of the signal during the train passage, and it is noteworthy to mention the 

free decay after the convoy has left the structure. The structure managed 
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to dissipate the vibrations in 15-20 seconds showing a nearly perfect 

damping graph similar to theoretical results.  

The FDD analysis implemented in Matlab gave also a well-defined graph 

that is presented in Figure 4.53. 

 

Figure 4.53 Average SVD for all signals. 

 
Figure 4.54 Stabilization diagram (ECCA) obtained from Fosso bridge. 

Other techniques of modal analysis have been used to assess the dynamic 
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15 structural modes were found but only six of them are enlisted in Table 

4.9. 

Table 4.9 Comparison between more Modal Techniques 

Mode FDD 
 f [Hz] 

SSI-data SSI-ref ECCA 
f [Hz] f [Hz] f [Hz] 

1 3.974 3.935 3.960 3.979 
2 6.657 6.648 6.661 3.884 
3 8.202 8.356 8.061 8.210 
4 8.813 8.914 8.766 8.820 
5 9.424 - - 9.452 
6 9.897 9.885 10.063 9.892 

(a)   

(b)  
Figure 4.55 (a)Frequency and Damping ratio vs. model’s order and (b) cluster analysis 

results. 

At this point, the first three natural frequencies were separated from the 

whole results, and were analyzed in relation to the change of the model’s 
order; and for the respective damping ratio values has been done the same 

thing as well. In both cases, it can be observed (Figure 4.55-a) that the 

values are impressively stable and in particular the damping values remain 

constant without having many shifts as usually seen for other structures. 

In Figure 4.55-b the results of a cluster analysis applied to the Fosso Bridge 
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response are represented. It can be observed how the accuracy is quite high 

especially for the damping ratio. 

4.4.1.3 Sensitivity analysis on the FE model. 

Because of the complexity of the sections, during the model construction, 

all the critical sections have been created through made-up beam sections. 

Different models with progressively higher levels of detail, going to outline 

bracing, parapets and the rails have been created. In order to increase the 

rigidity of the model the gusset plates have also been modeled as shell 
elements. Non-structural masses have been added in order to represent the 

large amount of rivets and bracing elements. During the analysis, it was 

observed that the values of the frequencies were grossly affected by the 

masses inserted; for this reason a precise calculation was done to consider 

all non-modeled masses. After this clustering analysis with the change in 

mass and elasticity module, a highly accurate FE model was attained 

(Figure 4.56) through ‘trial-error’ method calibration. 

  

Figure 4.56 Frequency comparison between Exp. and FE data. 

  

  
 

Figure 4.57 1st , 2nd and 3rd mode shape: FE and Exp. model. 
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In Figure 4.56 one can observe the perfect correlation that exists between the 

analytical and the experimental model. In fact, the disposition of the 

values in the graph is akin to a linear dependence, moreover disposed at 

45°. It is useless to say that the MAC values in this case are very close to 

unity (0.9614, 0.9643, 0.9645, 0.8368 for the first 4 mode shapes). Therefore, 

having satisfied this condition for the main modes of vibration, the model 

can be assumed as well calibrated and can be used as an analytical tool 

(fatigue tests).  

4.4.2 Musile Bridge 

4.4.2.1 Dynamic tests on the reticular bridge  

The Musile reticular steel bridge is very similar to the previous structure, 

but with 3 spans of over 50m each overpassing the Musile river. The bridge 

is composed by double separate reticular structures equipped with diagonal 

rods and vertical supports that connect the two lower and upper currents, 

all resting on masonry pears and abutments. The measurement campaigns 

have been carried out in September 2012, before the bridge (constructed in 

1920) has been disposed of and replaced in October 2012 for its uncertain 

durability. It was interesting to analyze the second of this kind of bridges, 

that revealed similar behaviors. The steel structure, as it will be seen, 

enhances the modal characteristics in the sense that the peak modal 

analysis are well marked, and this results in an easier identification of 

structural peaks. 

   

Figure 4.58 View of Musile bridge and sensor installation on it. 

Some of the preliminary results are summarized in the following figures. 

The first responses of train passages are presented in Figure 4.59, where 12 

sensors recorded a signal of 1300 seconds long. Performing an average RMS 



110 4- APPLICATIONS: SYSTEM ID. ON BRIDGES 

 
 

over every 100 samples (1 sec), the continuous RMS was constructed. It 

shows the courses of two trains in the studied deck (high peaks) and other 

trains on the opposite direction deck. Then the signals were subdivided in 

five segments and their RMS is showed in the same figure, displaying high 

values for the fourth segment due to high speed train passage. It is 

noteworthy to mention the influence of the load excitation to identified 

frequencies presented in  Figure 4.63. Although only a small amount of data 

is available, it seems that frequency values are lower when the level of 

excitation is higher.  

 

Figure 4.59 Average RMS for the five segments, long time series and their RMS. 

 
Figure 4.60 PSD for all signals and for each signal. 
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4.4.2.2 System identification and model calibration 

The acquisition campaign is quite similar to the Fosso Bridge, but here a 

new acquisition data board was applied in order to reduce the number of 

setups. Two setups with thirteen accelerometers each made possible to 

acquire sufficient data on the studied span.  As it can be seen on Figure 4.60, 

the simple PSD of each signal reveals quite accurate results, even though 

other standard modal analysis were performed.  

 

 
Figure 4.61 Sensor deployment and identified modes with the FDD technique. 

 
Figure 4.62 PSD peaks and stabilization diagram with SSI for the Musile Bridge. 
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Figure 4.63 Frequency vs. excitation level through the five data series. 

EFDD (Figure 4.61) and SSI (Figure 4.62) analysis have been executed for the 

Musile Bridge, revealing accurate results in structural mode identification. Over 20 

modes were estimated ranging from 2-25Hz  
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for the last requirement a detailed analysis was carried out: ideal fixed constrains were not 

suitable, so adequate translational stiffness were associated to the free supports in the 

longitudinal direction and rotational stiffness around Z axis; instead, to the hinges, only 

rotational stiffness around Z axis have been associated. The constraints listed above were 

also connected to the structure by a rigid beam.  

The final result is a high correlation between FE model and experimental model as 

presented in Figure 4.64 and in Table 4.10. 

Table 4.10 Comparison between FEM and Modal model 

FEM 
modes 

FEM. 
Freq. 

Exp. 
modes 

Exp. 
Freq. 

MAC. 

1 2,498 1 2,872 0,84 
3 5,86 4 5,872 0,80 
4 6,439 5 6,785 0,85 
5 8,794 6 7,239 0,82 
6 10,03 7 11,02 0,82 
7 10,15 8 11,81 0,73 
8 10,21 9 11,94 0,75 

 

4.4.3 Mincio Bridge: fatigue deterioration 

4.4.3.1 Operational Modal Analysis with four techniques. 

The Bridge on Mincio River is situated in Peschiera del Garda on the A4 

Milan-Venice highway. The three-span bridge consists of two steel box 

continuous girders, side by side disposed,  resting on concrete abutments 

and piers. The lateral spans are 41m long and the central one is 70m long 

(152m total length). The overall width is 15.55m. The cross-section of the 

bridge has constant height, equal to approximately 3.30 m, and is 

constituted by a monocellular trapezoidal box having the lower flange of a 

width of 5m and the upper flange of 7m plus the wings of 2.5m each. The 

orthotropic plate (Fe 510 steel) permits to put the pavement directly on it, 

without any concrete slab. The plates constituting the thin walls of the 

cross section are stiffened longitudinally by "V" shape bracing, welded 

continuously to the plates. The principal reason of analyzing this structure 

was the deterioration of member welds due to fatigue. In fact, under the 

passage of the highway traffic, the ribs reinforcing the upper orthotropic 

deck have begun to detach. The first step was to install a strain 

monitoring system that was able to observe the micro-deformation taking 

place due to fatigue. After that, a dynamic identification was performed in 

order to update the model expected to reproduce the damage verified. A 

challenging step is that of using the strain-gage data to obtain dynamic 

results and compare them with the standard identification by 
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accelerometers. This argument will be studied in more detail in the next 

paragraphs.  

 

   

Figure 4.65 Views of the Mincio steel box girder bridge. 

During its lifetime, the considered structure has been monitored and 

studied with almost all kinds of measurement techniques (Figure 4.66). Only 

10 years after the construction it has been subject to a novel monitoring 

technique at the time, i.e. fiber optic (FBG) for strain measurement. 

Warning results were collected. The structure begun to deteriorate and 

soon cracks appeared on the ribs due to fatigue. Dynamic test campaigns 

with accelerometers were performed in December 2011; FE models were 

calibrated in order to assess the damage due to fatigue. Afterwards, a 

welding intervention took place during January-March 2012. In order to 

control the behavior of this latter intervention a strain monitoring system 

was installed in April 2012. During this long term monitoring, not only 

strain and stress analysis were executed, but also the global dynamic 

behavior of the bridge was monitored. The results of the dynamic tests and 

monitoring campaigns with strain data are detailed in the next paragraphs. 

After the low efficiency of the local welding campaign executed previously, 

a major retrofitting intervention will be applied in a near future in order to 

bring the structure in a safe condition. 

 
Figure 4.66 Lifecycle structural condition of Mincio Bridge. 
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Operational Modal Analysis has been performed on December 2011 with 

piezoelectric acceleration sensors disposed with only three setups inside the 

box girder. The symmetry of the structure allowed to reduce as much as 

possible the measurement points. The cross section of the modal model has 

been schematized with a triangular section, based on the location of the 

sensors. They are positioned laterally in the upper transverse, while 

centrally at the base of the caisson. 

 
Figure 4.67 Cross-section of the steel box girder decks. 

Besides the FDD, the SSI and the Polyreference Least Square Complex 

Frequency identification (PLSCF), the newly developed method of the 

ECCA (Figure 4.69), has been used in order to validate it with this kind of 

structures. Before conducting a parametric analysis on the number of the 

model order and blocks number, with which the matrix will be divided for 

the past and future analysis, the ECCA method was applied related to a 

specific model order. In determining the order of the system with the 

ECCA technique, the singular value distribution is plotted in Figure 4.69. 

According to the gap present in the singular value plot, a model order of 

16 (from the SVD during the SSI method an order of 14 was determined) 

can be chosen and continue the valuation of the modal parameters.  

 
Figure 4.68 Scheme of the sensor distribution on the bridge. 

The stabilization diagram permits to identify the modes whose properties 

do not change significantly when varying the model order. Modes classified 

as “stable” are considered as structural modes. As expected for steel 

bridges, the definition of structural modes in this particular case is clearly 
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given by the stabilization diagram with the ECCA (Figure 4.70). Observing 

Table 4.11, where a detailed comparison between the techniques used is 

presented, one can notice that the Enhanced CCA can identify two hidden 

structural modes that the other methods did not discover. This is also 

confirmed by the stabilization diagram below.  

 
Figure 4.69 Normalized singular values and linear PSD on the Mincio bridge. 

 
Figure 4.70 Structural modes identified with the ECCA method. 

Table 4.11 Comparison between four modal techniques. 

Mode FDD 
 f [Hz] 

SSI PLSCF ECCA 
f [Hz] f [Hz] f [Hz] 

1 2,164 2,168 2,167 2.162 
2 4,339 4,492 4,247 4.240 
3 5,525 - - 5.009 
4 6,585 6,365 6,356 6.171 
5 9,496 9,578 9,489 9.489 
6 - - - 12.630 
7 13,08 13,041 13,067 13.040 
8 - - - 13.480 
9 13,73 13,782 13,803 13.910 
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As mentioned above in this paragraph, a detailed FE model was intended 

to calibrate in order to use it as a damage assessment scenario. A large 

amount of beam and plate elements were used to model the structure, and 

the calibrated result by ‘error and trial’ method is shown in Figure 4.72. 

 
Figure 4.71 Mode shape comparison between updated FEM and OM model. 

4.4.3.2 Experimental Modal Analysis 

As we all know, the difference between the OMA and the Experimental 

modal analysis [37] [38] [39] [40] is that in the first case we record 

measurements of only the response of the structure due to ambient 

excitation, whereas in the second case there is an external known 

excitation that we apply to the structure and measure both input and 

output data. Being economically more convenient, OMA is nowadays used 

at almost every modal application, but in some cases where the structures 

are flexible and susceptible to even light excitations, the EMA can also be 

used. In fact, in the Mincio Bridge a heavy Impact Hammer has been used 

to hit the steel structure in order to measure its excitation together with 

the acceleration sensors installed. Figure 4.72 refers to the results collected 

after the impact on the main plate at the basis of the steel box.  
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Figure 4.72 Recorded signals for the Impact Hammer and one accelerometer. 

The acceleration applied by the Hammer overpasses 1 m/s2 and the 

registered acceleration by the sensors goes until 0.5 m/s2. Theory tells us 

that with these two signals the Frequency Response Function can be 

constructed in order to get the dynamic behavior of the system. The FRF 

is represented in Figure 4.73, where the first two natural frequencies can be 

identified. The excitation on the structure was an impulse that lasted for a 

very short time, so the measured time series are very short. This is the 

reason why we don’t see a clear FRF graph where all the peaks can easily 

be identified. However it has once again been shown that different modal 

techniques can provide the real dynamic performance of the system under 

unknown or known external excitation with good accuracy.  

 
Figure 4.73 FRF for the Mincio bridge under hammer impact. 
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4.4.3.3 Modal Analysis with strain gauge sensors 

The next challenging step in this study is to use the strain data [41] [42], 

sampled at high frequencies, to extract the dynamic behavior of the 

structure. Let’s suppose the data are equivalent of acceleration or velocity 

and perform the usual modal analysis to identify the principal vibrational 

modes. On the bridge a large number of strain gauges (56) has been 

installed, so choosing the proper ones it is possible to get real pseudo-

vibrations from the monitoring system. The disposition of the sensors has 

been decided in order to observe the structural behavior of the bridge in its 

critical points. For simplicity, it was chosen to place the sensors only in the 

East girder, in five sections (A, B, C, D, E). In particular sections B and D 

corresponds to the position of the piers whereas section C is disposed in 

correspondence to the middle point of the main central span. For each 

section were placed a number of sensors from a minimum of nine to a 

maximum of thirteen strain gauges, arranged both inside and outside of 

the steel box of the deck, in the longitudinal and transversal directions. 

Multicore cables of 0.5 mm2 section connecting the strain gauges with the 

system have been chosen in such a way that, for longer cables (about 90 

m) the measured strain to the strain gauges was not appreciably affected 

from the resistance growth of the electrical system (this increase is still 

limited to maximum about 5Ω, measured in the laboratory). A preliminary 

study has been performed looking only at sensors number 6 which are 

disposed on the lower flange of the caisson, at five locations along the 

bridge (Figure 4.74). The data resulting from each sensor was normalized 

relatively to the maximum value of strain detected by each sensor. As we 

know, strain measurements are characterized not only by low frequency 

signal features but also by high frequency samples. Thus, each channel has 

been subjected to a Bessel High-pass Filter of 1 Hz, for eliminating the 

oscillations of the signal. At the end a de-trend and phase correction has 

been applied in order to resemble the signal (Figure 4.75).  

 

continues  
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Figure 4.74 Strain gauges disposition on the cross section and along the bridge. 

The SVD represented in Figure 4.76, displays the identified modes resulted 

from strain measurements and its correspondent with acceleration data.  

One can notice that frequencies able to identify with the strain gauges are 

2.14Hz, 4.25Hz 5.52Hz, 6.04Hz, 6.58 Hz, 9.50Hz, 13.08Hz, ecc., very similar 

to results obtained with accelerations. A more detailed comparison can be 

made with the following stabilization diagram (Figure 4.77). It is noted that 

comparing diagrams: Figure 4.70 and Figure 4.77 are very similar and 

structural modes correspond in the two cases. So we can say that modes 

2.12Hz, 4.25Hz, 4.85Hz, 6.07Hz, 8.86Hz, 11.63Hz, 13.43Hz, 15.89 Hz, 

17.04Hz, 20.7Hz and 21.91Hz were successfully identified through the 

analysis of strains. 

  

 
Figure 4.75 Strain measurements before and after filtering. 
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Figure 4.76 FDD results from strain and acceleration measurements. 

In the second case of strains, other signs of non-structural modes are 

present, but through a cluster analysis, only structural modes can be 

highlighted. Ten principal structural modes were identified and compared 

with the conventional analysis of acceleration data. Since a high correlation 

is found, these types of cheap sensors can probably be applied in order to 

estimate the global dynamic behavior of such bridges, together with the 

local strain monitoring. In fact, such analysis has led to the development of 

an algorithm that automatically calculates the main vibration frequencies, 

via strain measurements, through the FDD method. This automated FDD 

procedure is described in Section 3.4, where the associated singular vectors 

at each frequency are estimated. The extraction of the modal parameters 

for monitoring purposes, is assessed by automated peak-picking procedure 

and evaluation of the mode shapes at every peak frequency. After the 

comparison of every frequency line, through MAC value, with the peak 
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frequency, the monitoring development of each mode is generated (Figure 

4.78). 

 
Figure 4.77 Stabilization diagram from strain measurements on the bridge. 

 
Figure 4.78 Frequency monitoring through Automated FDD Strain measurements. 

As can be seen from the SHM with this cheap technique, powerful results 

are obtained. In this case the global behavior of the structure is quite 

stable and shows slight fluctuations due to temperature.  

A detailed development of the first natural frequencies extracted by 
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4.79. The automated procedure seems to be very effective as it clearly 

follows the manual identification technique.   

 
Figure 4.79 Comparison between modes extracted by Automated FDD and manually by 

Artemis software. 

 

4.5 Concrete beam bridges 
4.5.1 Monitoring the highly damaged “People’s New 

Bridge” 

4.5.1.1 Structural identification of the damaged structure 

The bridge is located in the city center of Verona and is characterized by 

three spans having a total length of over 90m. The structure holds a four-

lane roadway, two for each direction of travel, plus two sidewalks for a 

total width of 14.32 m (see Figure 4.80). The static schema consists of seven 

main girders and eleven cross beams in the transverse direction with 

stiffening function. The 7 girders and the thin slab (18 cm), due to bad 

maintenance since constructed in 1946, revealed severe damage in the 

middle of the spans due to water percolation. Girders’ and cross beams’ 
concrete (Figure 4.81) is highly deteriorated, moldy and carbonated. Before 

deciding to retrofit it, the Municipality required to evaluate the life of the 

bridge. It was subject to investigations, like an ambient modal test to 

detect the principal modal parameters and in each structural element lots 

of destructive and non-destructive tests were executed. 
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Figure 4.80 Section of the People’s New bridge and the main beams damaged. 

The vibration acquisition campaigns were carried out in two days, on May 

10 and 11, 2011. The flow of vehicles over the bridge was normally allowed 

[26] in a single direction of travel, in a two-lane carriageway. The owner 

has required the sensors not to be placed on the stone or marble elements, 

so the accelerometers has been placed on the roadway where the thickness 

of the pavement was very small (in spite of that very good results were 

obtained). Eleven setup measurements were installed with 8 DOFs each 

(total 88 DOFs) allowing a high resolution areal coverage (Figure 4.82). It 

can be seen that the two plots in Figure 4.83 (FDD and SSI method) present 

very similar features and comparable natural frequency values. For both 

methods, identified modes and damping ratios are listed in Table 4.12.  

 

   

Figure 4.81 View of the People’s New Bridge and the damaged elements. 
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Figure 4.82 Monitoring sensor installation after the eleven configurations. 

 

 
Figure 4.83 Average of Auto Spectral Densities for all tests and stabilization diagram (SSI). 
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Table 4.12 Comparison between modal techniques and FEM. 

Mode FDD 
 f [Hz] 

SSI FEM 
f [Hz] f [Hz] 

1 4.980 4.985 4.958 
2 6.250 - 5.654 
3 6.738 6.702 5.895 
4 7.422 7.337 6.605 
5 8.691 8.691 7.510 
6 8.960 - 7.510 
7 - 10.466 10.89 
8 11.600 12.308 12.91 
9 15.060 14.384 13.87 

 

4.5.1.2 Sensitivity analysis and FEM calibration 

A preliminary analysis revealed that the 3D F.E. model initially was 

underestimating the real deformations and the actual stiffness of the 

bridge. Therefore the influence of a possible change in the system 

constraint modeling was evaluated by a sensitivity analysis on the elements 

and the restraints. Originally, all translational and rotational DOF were 

free except vertical translation at the supports. This configuration has been 

changed, and the percentage error between FEM and experimental 

frequencies, depending on the type of constraints, have been plotted (Figure 

4.84). 

 

Figure 4.84 Sensitivity analysis: % error between FE and Experimental frequencies, 
depending on the type of DOF Constraint. 

The comparison in terms of frequencies between results of different DOF 
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Consequently, the FE model has been updated by fixing horizontal 

translations at the connections, since translating possibilities no longer 

exists, letting the rotations free. Figure 4.85 shows that the first mode is a 

vertical bending mode of the mid-span, second and third modes are 

bending modes of the lateral spans, while 4th, 5th and 6th are all torsional 

modes. It can easily be observed that these modes have the same form in 

both numerical and experimental results. 

 
Figure 4.85 . Comparison between FEM and experimental identified mode shapes. 

In order to study in more details the structural response of the most 

deteriorated elements some validations have been conducted under the 

Italian Codes (NTC 2008). In order to simulate the behavior of the 

degradation, it has been considered a reduced section of concrete. This 

vulnerability analysis revealed the deficiency of the elements and suggested 

the installation of a permanent monitoring system. 

4.5.1.3 Structural Health Monitoring  

A monitoring system has been installed in order to evaluate the general 

behavior of the structure for further damage detection and the local 

displacement at the damaged elements. Guided by the need to monitor 

only some essential parameters, a few sensors were installed (Figure 4.86).  
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The hardware include: 

• PC all in one, 24’’, CPU atom 1.6 GHz, 160 Gb hard disk; 
• 2 accelerometer modules NI 9234, 4 channels 24bit each, 51.2KS/s; 
• master real-time embedded NI 9792, CPU 533MHz, 2GB disc, 256MB 

ram, VXWorks OS; 
• 1 module NI 9215, 4 channels, 16bit, 100KS/s; 

 

  

 

Figure 4.86 . SHM schematic representation. 

Three automated modal identification algorithms has been implemented in 

order to continuously estimate the modal parameters during monitoring 

[43] [44]. During these eight months of data gathering the behavior of the 

structure stood stable from both dynamic and static point of view. In fact, 

the Modal Parameters did not show worrisome jumps due to possible 

further damage (Figure 4.87), but followed the trend of environmental 

parameters. In particular, during May – June 2012, several seismic events 

occurred at nearly 100km from the structure (Emilia Earthquakes). Some 

of these events were captured by the system, showing a slight change in 

the frequency values. During the first event, in reference to the PGA, the 

amplification factor of the accelerations on the bridge is about 11 (Figure 

4.88). Another big seismic event was the one of the 3rd of June 2012, during 

which a modal analysis was performed. An increase in the frequency values 

between the two seismic events was found. Right after these events the 

structural modes became stable. No structural change due to ongoing 

damage was detected so far (Figure 4.87), as it will also be confirmed by the 



4- APPLICATIONS: SYSTEM ID. ON BRIDGES  129 

 
 

regression models. In Figure 4.87 and Figure 4.89, the development of the 

identified modes by automated Cluster ECCA, SSI and FDD is presented.  

 
Figure 4.87 Natural Frequencies observed during the monitoring period.  

 
Figure 4.88 . Accelerations during the May 20th 2012 event on the bridge. 

Besides the automated procedure, a repeated manual modal 

identification was performed by a commercial software for the purpose of 

comparing the obtained results. They ended up to be quite similar for all 

the techniques, revealing slight differences (Figure 4.89) in some modes, 

although equally being effected by temperature. The three automated 

procedures have been successfully validated for the response of this 

structure, and have also been used in the other case studies.  
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Figure 4.89 Comparison between the four methods implemented: Modes 1-7. 

4.5.1.4 Loading effects on modal parameters  

An important factor with relevant influence on the natural frequencies is 
the amplitude of bridge vibration, which is related to traffic intensity. The 
root mean square (RMS) of accelerations is showed in Figure 4.90 during 
one week of continuous recording. It is easily noticeable that during night 
hours limit traffic is present and vibrations on the bridge are lower than 
daily hours. The cycle is repeated every 24 hour and it is believed to affect 
the frequencies of the structure as characterized in Figure 4.91. In fact, the 
second and third modes are the modes that experience the highest daily 
effects. The influence of vibration amplitude are observed on the frequency 
plots, where there is a frequency increase, when the excitation level is low. 
With respect to this aspect, it should be stressed that a trend for a linear 
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relation between these two quantities exists and can be observed in Figure 

4.91 (bottom).  

  
Figure 4.90  RMS evolution during the continuously recorded week. 

 

 
Figure 4.91  Natural frequency vs. RMS values during the continuously recorded week 

(top) time evolution, (bottom) RMS – Frequency relation. 

 

17 Dec 18 Dec 19 Dec 20 Dec 21 Dec 22 Dec 23 Dec 24 Dec 25 Dec
0

0.002

0.004

0.006

0.008

0.01

Date

RM
S 

[m
/s

2 ]

RMS evolution 17 - 24 Dec 2012

 

 
acc1 acc2 acc3 acc5 acc6 Mode 2

6.5

6.6

6.7

6.8

6.9

7

Fr
eq

ue
nc

y 
[H

z]

18 Dec 19 Dec 20 Dec 21 Dec 22 Dec 23 Dec 24 Dec 25 Dec
0

1

2

3

4

5

6

7
x 10-3

Date [2012]

RM
S 

[m
/s

2 ]

RMS vs. Frequency  17 Dec - 24 Ded 2012

 

 

4

5

6

7

8

9

10

11

Fr
eq

ue
nc

y 
[H

z]

RMS 1st Mode 2nd Mode 3rd Mode 4th -5th Mode

0 2 4 6
x 10-3

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9

RMS [m/s2]

Fr
eq

ue
nc

y 
[H

z]

RMS vs. Frequency - first 4 Freq

 

 

0 2 4 6
x 10-3

6

6.25

6.5

6.75

7

7.25

7.5

RMS [m/s2]

Fr
eq

ue
nc

y 
[H

z]

RMS vs. 2nd Frequency

 

 



132 4- APPLICATIONS: SYSTEM ID. ON BRIDGES 

 
 

4.5.1.5 Environmental Effects and Regression Models 

In order to highlight the effects of changing environment on the natural 

frequency of the principal modes, frequency estimates were correlated to 

temperature during the monitored period (Figure 4.97). Generally, all modes 

show slight change with temperature and particularly in the fourth mode 

the linear dependency is highlighted by a linear correlation. Actually, the 

plot shows a decreasing trend of frequencies when temperature increases. 

However, some frequencies are less influenced by temperature, continuing a 

horizontal trend. This is due to the slight thermal and humidity swing 

verified during the year’s monitored period as displayed in Figure 4.92. 

 
Figure 4.92 . Temperature and Relative Humidity over 1/2 year. 

Besides the dynamic and the environmental monitoring, several 

displacement potentiometers were installed on the main girders of the 

bridge in order to detect any crack opening due to damage or overpassing 

traffic loads. These readings are related to environmental parameters, since 

it turns out to be depending on. As it is also evidenced by the finite 

element model, the movements expected from ordinary loads are of the 

order of millimeters for the entire length of the beam, while the portions of 

the beams monitored the order of movements is less than one millimeter. A 

regular trend of movements is observed, congruent with the environmental 

parameters (Figure 4.93, inversely proportional to temperature and directly 

proportional to humidity). Despite the many damages and corroded bars 

present, there are good reserves of resistance evidenced by the small 

natural frequency and displacement fluctuations. 

05/12 06/12 06/12 07/12 07/12 08/12 09/12 09/12 10/12 10/12 11/12
0

10

20

30

40

Te
m

pe
ra

tu
re

 [°
C]

Date [mm/yy]

 Temperature vs Time

 

 

05/12 06/12 06/12 07/12 07/12 08/12 09/12 09/12 10/12 10/12 11/12
20

40

60

80

100

120

R.
 H

um
id

ity
 [%

]

Date [mm/yy]

Humidity vs Time

Temperature
Interpolation



4- APPLICATIONS: SYSTEM ID. ON BRIDGES  133 

 
 

 
Figure 4.93 . Crack monitoring on one of the girders of People’s New Bridge. 

 

 
Figure 4.94 . Crack monitoring on two of the girders of the Bridge and temperature plot. 

In Figure 4.94 the deflection on beams n. 2 and 3 have been compared. The 

plots relate the displacements between a well-conserved element (beam n. 

3) and the adjacent damaged beam n.2. Although the entities are relatively 

small, it was observed that the damaged beam tends to deform more in 

relation to expansion due to the temperature. 
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elasticity parameters are heavily dependent on temperature, such as steel. 

Concrete or masonry structures, instead, show a decrease of frequencies in wet 

periods, in particular in the presence of precipitations. This is due to absorption of 

water, which, by decreasing their rigidity, increases their mass.  

It is therefore possible to evaluate the level of correlation of the natural frequencies 

of the structure with any environmental variable measured in site. In addition to 

temperature, one can even estimate the effects of vehicular traffic, in the case of 

road bridges. The more interesting side, on the most innovative applications, is 

related to the detection of damage. It is possible, in fact, once identified all 

environmental variables that determine the independent oscillatory behavior of the 

structure, to isolate possible effects due to events of irreversible damage, revealed 

by a permanent decrease of frequencies. The modal operational automated 

identification techniques allow to record changes in the oscillatory behavior in real 

time, and quickly detect the anomaly. The implications of the development of 

techniques of dynamic identification, of statistical modeling of the response of 

structures, and gathering and processing data in real time are important especially 

in the context of particularly sensitive structures. 

The objective to be achieved in the present study is to verify whether the 

extensiveness of some environmental variables measured in situ influence the static 

or dynamic behavior of a structure. Therefore, it is very important to eliminate 

the influence of these factors, so that small changes due to damages can be 

detected. This is made possible by the use of regressive models able to determine 

the modal characteristics of the structure or static variables starting from a 

predefined input. Comparing the trend of the measured output variables and the 

variables estimated by the model, the model can be validated, confirming that the 

input variable chosen substantially, determines the response. 

As described in [45], structural health monitoring is based on real-time 

monitoring of structural parameters, but what information is important 

and which data should be processed and stored for damage detection is a 

crucial point.  

The task of damage analysis can be subdivided in four steps (partly 

applied to People’s New Bridge): 

• Geometrical and structural survey, damage survey, mechanical 

materials characterization, dynamic tests and numerical model 

analysis, static and dynamic analysis. 

• SHM of the structure with a limited number of sensors (as in this 

case). Data storage and periodically data processing for damage 

detection. Global modal parameters should be related to 

environmental and traffic effects. 
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• When a damage alarm is triggered, an intensive dynamic survey 

with more sensors and measuring points should be performed. This 

phase aims to detect and locate the possible damage after 

eliminating the environmental effects. 

• Nondestructive tests and local inspections should be carried out in 

order to locally assess the damage. Other advanced techniques as 

sonic or tomographic analysis can be used to define in detail the 

damage.  

In the framework of a dynamic monitoring project, a regression model for 

each frequency has to be built. These should be constructed using data 

collected during at least an entire year, so that the influence of 

environmental factors in the natural frequencies is well characterized by 

considering a large range of variation, with data from summer and winter 

periods.  

The models that will be used later, for the simulation of the behavior of 

monitored structures, may be placed in the framework of linear time 

invariant systems.  

 𝑦(𝑡) = �𝑔(𝑘)𝑢(𝑡 − 𝑘)
∞

𝑘=1

+  𝑣(𝑡) (4.1) 

where y(t) is the output, k is the time step, g is the impulse response 

function, u is the measured variable, v is the disturbance (measurement 

noise and unknown input). While, the shift operator 𝑞𝑢(𝑡) = 𝑢(𝑡 + 1).  

Equation (4.1) can be written as: 

 𝑦(𝑡) = 𝐺(𝑞)𝑢(𝑡) + 𝐻(𝑞) 𝑒(𝑡) (4.2) 

where G is the transferring operator and constitutes a sequence of random 

variables with zero mean. Let us introduce now the concepts of simulation 

and prediction. The first is given by a time series of input u*, in deriving 

an estimate y* by the simple relationship: 

 𝑦∗(𝑡) = 𝐺(𝑞)𝑢∗(𝑡) + 𝐻(𝑞) 𝑒∗(𝑡) (4.3) 

where e is a white noise. The prediction, instead, introduces the number of 

time steps, at which one wants to make the prediction. It takes the 

following form: 

 𝑦�(𝑡|𝑡 − 1) = 𝐻−1(𝑞)𝐺(𝑞)𝑢(𝑡) + [1 − 𝐻−1(𝑞)] 𝑦(𝑡) (4.4) 

The models used in here are called AutoRegressive output with eXogeneus 

inputs (ARX) and assume the following expression: 
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 𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯+ 𝑎𝑛𝑎𝑦(𝑡 − 𝑛𝑎) = 𝑏1𝑢(𝑡 − 𝑛𝑘) +⋯+ 𝑏𝑛𝑏𝑦(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1) + 𝑒(𝑡) (4.5) 

where na and nb are called orders of the model, 𝑎𝑖 and 𝑏𝑖 are coefficients for 

the autoregressive and exogeneous part and nk is the delay. We can now 

introduce the following vectors: 

𝜃 = �𝑎1, … , 𝑎𝑛𝑎 ,𝑏1, … , 𝑏𝑛𝑏�
𝑇 

𝐴(𝑞) = 1 + 𝑎1𝑞−1 + ⋯+ 𝑎𝑛𝑎𝑞
−𝑛𝑎 

𝐵(𝑞) = 1 + 𝑏1𝑞−1 + ⋯+ 𝑏𝑛𝑏𝑞
−𝑛𝑏 

Comparing equations (4.4) and (4.5), we obtain: 

𝐺(𝑞,𝜃) =
𝐵(𝑞)
𝐴(𝑞)   ,        𝐻(𝑞,𝜃) =

1
𝐴(𝑞) 

The choice of the delay depends on the type of that process that is meant 

to simulate. In the case where the inertia of the system is small, i.e., the 

response takes place with a limited time lag, it is assumed that 𝑛𝑘 = 0. 

Before applying this method to the crack openings (Figure 4.94) of the 

People’s New Bridge, we will now consider which is the variable input 

more influential on the response of the structure, including temperature 

and humidity. This is done by considering the correlation coefficient 

between two signals x and y: 

𝑟 =
𝑐𝑜𝑣(𝑥,𝑦)
𝜎𝑥𝜎𝑦

 

The value of the correlation coefficient ranges between -1 and +1: the 

closer to unity, the more the two variables are related. The correlations 

are:  

  T-H y-T y-H 

r -0,8038 -0,9409 0,776 

Note how all the variables are related. The temperature, it is therefore 

chosen, as a representative variable, since it presents a higher correlation 

coefficient. This choice can be checked a posteriori, after having 

implemented the SISO autoregressive model based on the only thermal 

input. 

Similarly to [45], the variables were first normalized so as to avoid any 

offset, as follows: 

𝑌 =
𝑦 − 𝑦�
𝜎𝑦

 

A linear regression model of ARX type is used, described by Equation (4.5). 
The choice of the orders na, nb, nk, was carried out by opting for the most 

closer model to the measures carried out, in addition the delay was set to 
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0, since the inertia of the process is moderate. The parameters used to 

evaluate the adequateness of the model are the loss function, the final 

prediction error (FPE) and the coefficient of determination, respectively: 

𝑉 =
1
𝑁�𝑒𝑘2  ,      𝐹𝑃𝐸 = 𝑉

1 + 𝑑/𝑁
1 − 𝑑/𝑁

𝑁

𝑘=1

,       𝑟2 = �
𝑐𝑜𝑣(𝑥,𝑦)
𝜎𝑥𝜎𝑦

�
2

 

where N is the number of measurements, d the number of estimated 

parameters and k the time step. The parameters of the model, equal to 

𝑛𝑎 + 𝑛𝑏, were calculated using a least-squares procedure, minimizing the 

residue: 

𝑒̂𝑘 = 𝑦𝑘 − 𝑦�𝑘 
where 𝑦𝑘 is the measured output and 𝑦�𝑘 is the output predicted by the 

model at the same time step. The residue was then reported on a time 

chart, together with the relative confidence interval, calculated as follows: 

�𝑦 − 𝑡𝛼/2,𝜈𝜎 ,   𝑦 + 𝑡𝛼/2,𝜈𝜎 � 

where 𝑡𝛼/2,𝜈  is the t-student distribution with ν degrees of freedom, for a 

probability of 0.025. When the sample is relatively large, this value tends 

to 1.96. The model parameters and confidence intervals were estimated for 

an initial period chosen arbitrarily, defined as the estimation period. It is 

therefore assessed the validation period, where the residues must not 

overwhelmingly come out the confidence interval. Thus, the detection of 

damage should be carried out by observing shifts that significantly go out 

of the confident intervals. Although at least one year of monitoring is 

needed, the following plots show the results on a limited time: the 

evaluation and the validation phases are separated by a vertical black line. 

It is first presented a table comparing the static and dynamic models. 

Table 4.13 Static and dynamic regressive models results 

  ARX Model Static Regression Model 

Crack Orders V FPE r2 Orders V FPE r2 

1 190 0,00227 0,002275 0,9481 010 0,11519 0,115206 0,8808 
2 190 0,00208 0,002078 0,9519 010 0,11961 0,119631 0,8918 

The residue plot shows that the model estimates in a correct way the 

displacement, because the validation residues remain within the confidence 

interval. Moreover, as seen from the graph of the autocorrelation of the 

residuals, the latter can be treated essentially as a process of white-noise. 

Therefore it can come to the conclusion that the temperature is the 

independent variable that influences the crack opening of the bridge. In 

case one wants to make the detection of the damage through this kind of 

output, it would be sufficient to isolate only the thermal effect. 
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Figure 4.95 Measured and Estimated Output and their residue. 

 
Figure 4.96 Time evolution of displacement before and after the elimination of the 

environmental effects (regression model).  

Figure 4.96 shows the time evolution of the displacement on beam number 
two over a period of 8 months before and after the elimination of the 
environmental effects with the dynamic regression. It can be observed (also 
in Figure 4.97) that the variation of this value is reduced to a small range, 
which proves that the selected regression model takes into account the 
factors with greater influence on the output.  

  
Figure 4.97 Temperature effects on the static and dynamic measurements.  
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A similar procedure of environment effects elimination was used for the 

dynamic data of the People’s New Bridge. Although less effected by 
temperature (because data were available for less than a year), the natural 
frequencies showed some dependency, and a good regression model was 
estimated. Figure 4.98 shows the fitting model through the normalized 
frequency with the 95% confidence intervals and the autocorrelation of the 
simulated errors. In general, the model represents the frequency variation 
with a reasonable fitting. The model can be used for damage detection, and 
frequency shifts that significantly stay outside the confidence intervals are 
valuable candidates. At this point, few data are available, and for an 
accurate model, another year of monitoring is needed to proper calibrate 
the model.  

  

 
Figure 4.98 ARX Model of mode 1 and 4, CI, Residue and Autocorrelation. 

The reduction of the range of variation of the natural frequencies after 
their correction by the regression model can be also be evidenced by the 
use of histograms. Figure 4.99 presents the histograms of the first and fourth 
natural frequency. After the application of the regression model, 
frequencies are concentrated in a narrower range, correcting the influence 
of temperature.   
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Figure 4.99 Histogram of the mode 1 and 4: distribution before and after the elimination of 

environmental effects.  

 

4.6 Suspension bridges 

4.6.1 Monitoring of the Manhattan Bridge 

4.6.1.1 The suspension bridge 

The Manhattan Bridge (Figure 4.100) was opened to traffic in 1909 and since 

then has become a major artery for both highway and rapid transit traffic 

crossing New York City’s East River, between Brooklyn and Manhattan 

[46] [47]. 
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Figure 4.100 First photos during construction, opening and current conditions of 

the Manhattan Bridge. 

The main river crossing is a suspension bridge with a main span of 448 

meters (1470 feet) and two side spans of 221 meters (725 feet) each. The 

Manhattan approach is about 394 meters (1293 feet) long and the 

Brooklyn approach about 369 meters (1212 feet) (Figure 4.102), with a total 

length of 2,089 m (6855 feet). The main structural elements are: steel 

cables, steel boxed deck, masonry foundations, steel pylons and masonry 

anchorages. There are 4 cables with 27 strands each and diameter of 21 

inches (largest at that time). The width of the deck is 36.6 m and the 

depth is 7.3 m, while the height of the pylons is 102.4 m. 

The cross section is similar for both approaches and suspended spans 

(Figure 4.101). In the suspended spans, the bridge has four cables, each 

supporting a stiffening truss. At the approaches, the trusses are supported 

on unreinforced concrete filled stone masonry piers. There are seven simply 

supported truss spans in each approach. The bridge carries seven lanes of 

vehicular traffic on three separate roadways and four transit tracks. Two 

upper roadways, with two lanes each, are located at the level of upper 

truss chords between each pair of inner and outer truss. The three-lane 

lower roadway is located at the lower truss chord level between the two 

inner trusses. 

After some years of operation, traffic on the bridge was considerably 

increasing and the suspended spans of the bridge started exhibiting 
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abnormal deterioration due to twist generated by eccentric loads when 

transit trains passed on one side of the bridge. A rehabilitation strategy 

(the $834M Manhattan Bridge Reconstruction Program that began in 

1982) to address fatigue and corrosion damage was developed, including 

the installation of a truss stiffening system (to reduce twisting), 

implemented over the course of several years while maintaining most of the 

bridge traffic. The effect was achieved by creating “torque tubes” with new 

braces under the roadways and strengthening the truss diagonals. During 

the measurements presented herein, the difference in elevation between 

opposite cross section edges at mid-span under asymmetric train 

distribution reached about 0.5m, which is lower than what was estimated 

before the intervention. 

Manhattan Bridge was the first suspension bridge to use flexible steel 

towers, unlike some other bridges such as the Williamsburg and the George 

Washington that used braced steel towers. The Manhattan bridge was the 

first modern steel suspension bridge to use a Warren type stiffening truss. 

It was the first modern steel suspension bridge to use two suspender ropes 

straddled over the main cables to attach to the floor beams. As many as 

75,000 vehicles and 970 subway trains cross the bridge daily. The bridge 

towers were designed for up to 4 ft (1.22 m) total sway at the top, thus 

eliminating the need for the traditional rollers under the cable saddles. 

Each of the four cables was composed of nearly 10,000 wires bundled into 

the 37 strands. 

 
Figure 4.101  Cross section of the Manhattan Bridge. 

4.6.1.2 Monitoring campaigns 

During September-October 2008 a sophisticated monitoring system was 

installed on the Manhattan Bridge by the team of the Department of Civil 

Engineering and Engineering Mechanics of Columbia University - New 
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York. During this period, vibration and displacement measurements were 

monitored in several locations of the bridge. The main objectives for these 

tests were to identify the dynamic behavior of the structure in order that a 

computational model could be refined and verified for use in other dynamic 

(seismic) analyses. 

The instrumentation consisted of a portable network of data-loggers, each 

with its accompanying triaxial force balance accelerometer. Since there are 

no interconnecting wires, each data-logger is triggered independently and 

has the time base synchronized accurately. Each data-logger has a highly 

accurate internal clock which was resynchronized every 30 minutes through 

a small GPS receiver. The sensitivity of the monitoring instrumentation 

was set to 2.5 volts/g. Therefore, this was adequate to detect the low 

frequencies of response of the structure even below 1 Hz. The sampling 

frequency was of 200 Hz and the recording length of nearly 1 hour. With 

this recording configuration four time windows were registered per day in 

hours where traffic and ambient excitation were very different.   

The accelerometers were placed on the top of the outer truss next to the 

upper roadway and well secured between the chord member lacing. They 

were disposed in number and position in order to capture the global 

dynamic response of the structure (Figure 4.103 and Figure 4.105). 

In addition to the accelerometer sensor array, GPS instruments were used 

to measure displacements, especially the very low frequency displacements 

such as the deflection produced by passing subway trains or the very low 

frequency motions caused by wind loading. Such pseudo dynamic motions 

have very little accompanying acceleration and are often undetected by 

accelerometers. In this application there were used one reference station 

antenna near the Brooklyn anchorage and four roving stations in order to 

cover the pre-planned positioning points such as the upper deck or the top 

of the towers. 
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Figure 4.102   Longitudinal section of the Manhattan Bridge. 
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Figure 4.103   Example of global sensor configurations: vertical positioning.   

 
Figure 4.104   A typical GPS antenna and accelerometer installation.   

In this way the different measurements between the fix position and the 

moving ones can measure accurately the relative motion. The GPS 

receivers had a lower sampling rate of 10 Hz, but still challenging in this 

new technology.  

 
continues  
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Figure 4.105   Installation of the sensors on the deck and on the Manhattan Tower.   

In Figure 4.105, and Table 4.14 it is seen how the different sensors are located 

on the structure. For over a month, there have been recorded more than a 

dozen configurations (where the sensor positions changed frequently), but 

here only the collocated sensors have been presented (for data fusion where 

both acceleration and displacement measurements are recorded). Table 0.14 

includes also the 5 configurations used to initially extract the dynamic 

response of the bridge. In Table 4.14 the ACC indicates an accelerometer 

and MAB indicates a GPS station, whereas the other symbols refer to the 

possible position of the sensor on the structure. For example, if we consider 

the position PP6262NE, this means: the panel point number 62 (see Figure 

4.102) on the deck on the northern side of the bridge and on the east half. If 

we consider TBN, this means that it is located on Brooklyn tower top, on 

northern side.  

4.6.1.3 Dynamic results: Modal Analysis 

During the dynamic tests [48] [49] [50] [51] on the Manhattan Bridge, 

windows of 60 minutes with 200 Hz of sampling frequency were recorded. 

In this way each measurement consisted of nearly 720 000 point samples 

and has a Nyquist frequency of 100 Hz. With regard to the amplitudes of 

the accelerations, the vertical responses are in general double the 

transverse response: the maximum amplitude in the vertical direction 

observed in channel 1 (mid-span) is 1.1066 m/s2 while the largest value in 

transverse direction is 0.7099 m/s2. 

An example of the time series from one of the deployments on Manhattan 

Bridge is presented in Figure 4.106. The signals are accelerations in three 

directions recorded for 60 minutes.  A Power Spectral Density graph is 

then obtainable by using the Welch’s method (Figure 4.108). A very high 

frequency resolution (0.003 Hz) could be reached here because the number 

of samples was high. 
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The data recorded were selected in order to analyze the dynamic behavior 

of the structure as a whole. So 5 different configurations recorded at 3am 

were selected in order to have a uniform excitation on the structure free 

from the potential effect of the numerous subway trains which cross the 

bridge during the rush hour period.   

 
Figure 4.106 Mid of side span acceleration example ACC3:by day. 
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The average RMS value, in the case of the vertical direction was evaluated 

over the time interval of 1 second, leaving the RMS length the same as the 

original signal. As a result, in Figure 4.106 it can be noticed that every peak 

of the RMS corresponds to each train passage. The threshold estimated 

underlines a certain value of load excitation under which there are no train 

courses but only road traffic. In fact, this tool might be a precious means 

of traffic monitoring for the owner, so different patterns can be detected 

for a rush hour and by night (Figure 4.107 and Figure 4.111). An average of 

twenty trains courses per hour is observed during day times, whereas only 

four passages are witnessed at night hours.  

The extraction of modal parameters from ambient vibration data was 

carried out by using standard methods as Frequency Domain 

Decomposition (FDD), and the data-driven Stochastic Subspace 

Identification (SSI) technique. After extracting the modal parameters with 

these methods, the newly developed Enhanced Canonical Correlation 

Analysis has been applied in order to validate it. The analysis included 

frequencies corresponding to the first Eigen-modes in a range of 0 - 1.5Hz. 

 
Figure 4.107 Mid of side span acceleration example and RMS: by night. 
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Figure 4.108 PSD of the mid of side span in ACC3 transversal and vertical direction.   

 
Figure 4.109 Identified modes with FDD for Setup test no.5 (27 channels).  
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Table 4.14 Identified mode shapes of the Manhattan Bridge 

 
1st lateral - 0.1963 Hz 

 
 

1st vertical - 0.2336 Hz 

 
2nd vertical - 0.3076 Hz 

 
3rd  vertical - 0.3551 Hz 

 
1st torsional - 0.3732 Hz 

 
2nd  torsional - 0.3923 Hz 

 
3rd  torsional - 0.4343 Hz 

 

 
 

4th  vertical - 0.4759 Hz 

 
5th  vertical - 0.5055 Hz 

 
2nd  lateral - 0.5772 Hz 
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3rd  lateral - 0.5934 Hz 

 

 
4th  torsional - 0.6824 Hz 

 
 

5th  torsional - 0.7428 Hz 

 
 

3rd  lateral - 0.8216 Hz 

 
6th  vertical - 0.9863 Hz 

 
 

8th  vertical – 1.355 Hz 
Table 4.15 Identified mode shape and damping ratios  

Mode Frequency 
[Hz] 

Damping 
Ratio [%] 

1 0.1963 1.182 
2 0.2336 3.556 
3 0.3076 2.011 
4 0.3551 1.841 
5 0.3732 0.7033 
6 0.3923 0.5964 
7 0.4343 0.5454 
8 0.4759 0.704 
9 0.5055 0.642 
10 0.5772 0.6928 
11 0.5934 0.7184 
12 0.6824 0.5042 
13 0.7428 0.7795 
14 0.8216 1.815 
15 0.8748 0.3848 
16 0.9351 0.8416 
17 0.9863 1.053 
18 1.082 0.4682 
19 1.102 0.3316 
20 1.355 0.8564 

 
On the acceleration signals extracted from one hour registration during a 

day-night cycle (i.e. at 3am, 8am, 12pm and 5pm), a parametric analysis 

has been done. This time, the purpose was to evaluate the differences in 

the frequency shift through the Welch PSD on the signals on 4 moments of 
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the day. As observed from Figure 4.110 and Table 4.17, there are slight 

differences between the four results, but generally the difference is under 2 

%. This is due not only to the conservation of loads conditions on the 

bridge, but also to the minimal thermal gradients existing during the daily 

monitoring campaigns. 

Table 4.16 Comparison of natural frequencies in a day-night cycle record.  

Mode Freq.[Hz] 
3am 

Freq.[Hz] 
8am 

Freq.[Hz] 
12pm 

Freq.[Hz] 
17pm 

1 0.2320 0.2210 0.2238 0.2238 
2 0.3702 0.3715 0.3715 0.3702 
3 0.3936 0.3923 0.3923 0.3923 
4 0.4351 0.4351 0.4323 0.4337 
5 0.4959 0.5069 0.4945 0.4959 
6 0.5967 0.5981 0.6022 0.6008 
7 0.7307 0.7431 0.7320 0.7307 
8 0.8052 0.8163 0.8080 0.8094 

 

 
Figure 4.110 PSDs for four different hours of the day-night cycle.   
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Figure 4.111 Average RMS of signals on four different hours of the day.   

4.6.1.4 Cable vibration analysis 

During the monitoring campaigns, besides the deck and the towers of the 

Manhattan Bridge, the cables were also instrumented with acceleration and 

displacement sensors. The principal locations investigated are at mid-span, 

above the deck sensor, at 1/4 of the main span and at 1/3 of the side span. 

The first of these locations was monitored with both triaxial accelerometer 

and a GPS displacement sensor, whereas the other two only with 

accelerometers.  

The general trend of the data collected from the cables reveal a quite 

similar response with the deck motions. We see that peaks coincide 

especially in the vertical direction. In Figure 4.112 the PSD for the three 

directions of the accelerations in the mid-span deck and in the respective 

position on the cable is represented. As already mentioned, there is no 

difference in the vertical motion, since a vertical amplification would 

presumably be accompanied by stretching of the suspender ropes. On the 

other hand it is easy to observe that the transversal motion is amplified 

around 0.4 Hz and at 0.7 Hz (probably a cable mode only).  
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Figure 4.112 Comparison of PSD of the cable accelerations at the mid-span (above PP82N) 

and at the deck (PP822N). 
 

In Figure 4.113, the PSD for the three directions in the mid-span cable and 

at 1/4 of the deck on the cable is presented. In this case the vertical 

distinct is more evident because of the difference in the sensor’s distance 

from the deck and due to the flexibility of the cord at 1/4 span. Note that 

the motion at 0.659Hz is about half the motion at mid-span. 

4.6.1.5 Modal parameter identification via the ECCA 

During the previous analysis with the standard modal methods we saw 

some good results in finding the principal modal parameters. In this 

paragraph some of the results obtained from the analysis with the ECCA 

will be shown. It will be seen that, in this case, it was possible to identify 

more dynamic parameters, and at the same time confirm the previous 

results.  
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Figure 4.113 PSD of the cable accelerations at the mid-span (above PP82N) and at 1/4 of 

the span (PP62NW). 

  The stabilization diagram permits to identify the modes whose properties 

do not change significantly when varying the model order. Modes classified 

as “stable” are considered as structural modes. However, such modal 

parameter estimates, especially damping ratios, are influenced by the 

particular selection of the model order, as presented in Figure 4.115. Different 

filters were applied to all the data, and different parametric analysis were 

carried out resulting in the identification of higher modes, previously 

invisible. In order to capture every vibration frequency, various low pass 

filters were applied to the data, in relation to the frequency needed.  On 

Figure 4.114  it can be noted how the frequency values related to the model 

order number show a stable trend, especially for the first modes. To 

examine the variations of the damping ratio estimates with the model’s 
order, all the modes have been considered. It seems (Figure 4.115) that the 

proper model order of the model is for sure greater than 75. 
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Figure 4.114 Stabilization Diagram for the ECCA, Manhattan Bridge. 

 

  
Figure 4.115 Natural frequencies relatively to the system model order and damping ratios. 

The damping ratios of these modes are extracted from the models with 

different orders (such models are realized via the ECCA method) and 

displayed in Figure 4.115. In this figure, a small variations of the damping 

ratio estimates related to the model’s order can be observed for all the 

modes. In the frequency range of 0-1.5, a total of 20 structural modes are 

identified. 
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4.6.1.6 Monitoring results 

The monitoring campaigns lasted for more than one month and were 

prepared to cover the entire elements of the bridge. Besides the detailed 

modal analyses conducted on different configurations, a general review of 

the change of the modal parameters during the monitoring period was 

carried out. All day-night cycles (four times in 24h) registered were 

analyzed and for each day the principal natural frequencies and damping 

ratio were observed.  The aim of this study was to extract any noteworthy 

change in the monitored structural system: for example, frequency shifts. 

This kind of analysis was computationally expensive because of the high 

resolution of the signal and the long time series recorded. In particular, 

every single registration (724000 points x 24 channels) was analyzed with 

the automated SSI and FDD method in order to get all the modal 

parameters.   

Some of the principal structural modes (extracted with the SSI) are 

presented in Figure 4.116 in relation to the period of measurement. It can be 

noticed that apparently no important shifts are present in the data, 

showing only the slight fluctuations related to environmental  factors and 

load conditions.  

 
Figure 4.116 Frequency distribution for the monitoring period (SSI technique). 
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Figure 4.117 Frequency shifts for the 20 modes identified (FDD) and a close-up of the first 

5 modes during the monitoring period. 
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can realize that they are closely correlated. Instead, damping ratios Figure 

4.119 fluctuate a lot during the monitored period, but seem to stay under 

values of 4%.  

 
Figure 4.118 Temperature values during the monitoring period. 

 

 
Figure 4.119 Damping ratios for the first 6 modes identified during the monitoring period. 
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4.7 Summary of the dynamic features and 
performance of OMA techniques  

In this chapter, a wide picture of different applications has been 

presented. The main aim of this study was to understand the different 

behavior of several kinds of bridges and their affinity to modal analysis 

techniques. After looking into detail each analysis, it is now appropriate to 

compare their dynamic performance and their sensitivity to several system 

identification techniques.  In fact, among others, so far we have seen the 

response of suspension bridges, slender concrete arch with upper deck 

bridges, masonry arch bridges, simply supported concrete bridges, reticular 

steel bridges and steel box girder bridges. Within these analysis, structural 

identification helped to investigate cases of demolition assessment, 

validation of a seismic retrofit, damage assessment, short and long term 

monitoring with acceleration and strain data and apparently model 

updating for each structure.  

 If we look at every group of bridges analyzed, we must certainly start 

with slender reinforced concrete (RC) arch bridges. We saw that this   

together with steel bridges were the most susceptible to ambient 

vibration.  Indeed, it was clearly simple to distinguish structural modes 

using basic techniques as PSD or FDD analysis because very clear peaks 

were estimated. Both structures had similar features of natural frequencies 

and mode shapes; it was observed that in this kind of structures, the first 

mode is a transversal mode (that involves the central part of the arch) 

while the second mode is a clear vertical one. From this fact, it can 

obviously be stated that in order to extract the dynamic behavior (for 

seismic assessment) of these structures, it is important to monitor the arch 

vibrations installing sensors not only on the deck but also on the structural 

arch (operation not easily feasible).  Once this is fulfilled, one can obtain 

clear results with simple data analysis. 

Another case of concrete arch is the demolition of the Tronto bridge, 

where the system identification was a challenging process. Actually, during 

the demolition process, two measurement campaigns were performed and 

in both cases the FDD technique could barely find two modes. The PSD 

showed a flat plot due to noisy data, but most of all, due to low 

amplification of the principal modes.  Being a squat structure, it is not 

willing to be identified, but an important contribution was given by the 

application of new OMA techniques which are capable of extracting the 

structural modes from noisy data. The standard SSI and FDD methods 

weren't capable of identifying the principal modes. After applying the 

ECCA, several modes were identified and only after performing a cluster 
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analysis, more than 20 structural modes were estimated. In both cases, 

before and after the demolition, the estimation of more modes confirmed 

the structural change taking place during the demolition process. The 

results revealed that every mode, after the partial demolition, tends to 

increase towards higher values.  

Masonry arch bridges behave in different ways depending on the type of 

the structural components. In the case of high rise arches with high piers, 

it is easy to get dynamic estimations. In fact, standard system 

identification techniques perform very well in the cases when the sensors 

are positioned along the arches. Generally, in this kind of structures, the 

first mode is a transversal mode and the second one is longitudinal, due to 

the fact that the piers are very slender.  An important role of system 

identification was also the seismic retrofitting assessment. By comparing 

the system identification before and after the intervention, it was possible 

to observe that the retrofit increased the seismic response of the bridge, 

revealing a higher stiffness shown by higher identified frequencies.   

On the other hand, when we deal with squat masonry arch bridges, 

where the arch rise is very low, system identification, at least with 

conventional instruments, encounters a challenging aspect: the 

impossibility to get proper excitation of the principal structural modes. 

This was the case of Liberty Bridge, where the conventional techniques 

could hardly identify the first mode (12.24 Hz). Using the ECCA technique 

and clustering analysis, more vibrating modes were estimated, but only 

with a high model order and a stabilization diagram application. The 

rigidity of the structure and the squat piers contribute on the rigid 

deformation of the structure; the first modes involve only vertical 

deflections of the arches accompanied with slight longitudinal pier 

deflection. Although eventually some of the principal natural frequencies 

were identified, these kinds of stiff structures remain a challenging issue for 

operational modal analysis. 

When we talk about steel structures and in particular for steel bridges, 

we know that they are very flexible and as a consequence easy to identify 

by ambient vibration methods. In the case of reticular steel bridges, due to 

symmetric geometry, few sensors can get pretty accurate results.  In both 

reticular bridges analyzed, principal modes (first transversal and second 

vertical) were identified using both time and frequency domain techniques 

that showed excellent results. In fact, using the stabilization diagram, it 

appeared to be really simple to estimate the stable structural modes, and 

at the same time peaks of the PSD appeared to be very sharp. 

Experimental and theoretical models, in this case, were perfectly 
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correlated, so MAC values were close to unity. It is also noteworthy to 

mention that when we tried to plot damping ratios associated to the first 

modes in relation to the model's order, we could observe that damping is 

impressively stable without any jump, as usually seen in other structures. 

While ambient vibration is quite feasible for these systems, their 

disturbance by high speed heavy loads overpassing the bridge can cause 

high signal amplification and consequential distortion. The last 

consideration on reticular steel bridges is that their model calibration is 

very sensitive to mass participation, so models must be very detailed and 

the presence of the huge amount of rivets and rail connections must be 

taken into account.  

Remaining in the field of steel bridges, when we talk about box girder 

structures, it reminds us of their massive orthotropic plates forming the 

caisson. The easiest way of carrying out dynamic tests on these structures 

is to deploy the instruments inside the caisson, attaching the sensors 

directly to the steel plates or bracing elements.  Generally, all OMA 

techniques performed well in identifying structural modes, but FDD and 

ECCA could estimate more modes than standard SSI and PLSCF. The 

typical modes, are vertical bending mode shapes of the central span, then 

vertical modes of lateral spans and so on. Being in presence of a very 

flexible system, it was possible to perform an experimental modal analysis 

with the application of a heavy impact hammer that could excite 

vibrations over the gravity values. After constructing the FRF, a couple of 

modes (pretty close to the OMA) were identified even with this method, 

demonstrating the efficiency of both techniques. Since the system 

identification aim, in this case, was to update a FE model that could assess 

the deterioration under fatigue, together with the accelerometers, a strain 

monitoring system composed of 56 strain gauges was installed. Besides the 

fatigue monitoring, a challenging step was to obtain dynamic results from 

strain data. In fact, after applying filters and de-trending functions to the 

strain signals, conspicuous results were obtained. Ten principal structural 

modes were identified and compared with the conventional analysis of 

acceleration data. Since a high correlation was found, it was observed that 

for steel bridges these kind of cheap strain monitoring strategy can 

successfully be applied in order to estimate the global dynamic behavior of 

the system, together with the local dynamic strain monitoring. This was 

confirmed by the automated mode estimation developed in order to check 

the effectiveness of modal analysis by strain data. Thus, all principal 

modes were tracked during this several months of monitoring, showing a 

stable behavior. 
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Simply supported or continuous RC bridges are not as hard to identify 

as masonry bridges, but (for sure) harder than steel bridges. Actually, their 

dynamic behavior is an intermediate way between masonry and steel 

structures.  When considering damaged RC bridges, their behavior is 

highly influenced by the level of damage present in the structural elements 

or in the constraints. So, only after considering these aspects, a model can 

be updated properly in order to catch the principal vertical bending modes 

of the central span and the side spans. After installing a permanent SHM 

system, the local and global behavior of the damaged structure was 

monitored under traffic load, environment effects and under seismic events 

as well. The implementation of automatic dynamic identification 

algorithms made it easy to control the modal parameters on time and to 

develop regression models that permitted the possible damage detection. 

During the survey, a stable performance was observed, highlighting only 

some frequency shifts during the seismic events. 

Finally, suspension bridges are the most remarkable structures that 

cover this structural identification study. Suspension bridges have a 

considerably different dynamic behavior relatively to all the other classes 

previously described. The vibration levels, in such structures, can reach 

values of 1m/s2 in operational conditions. Despite this, appropriate sensors 

must be used in order to pick out the low frequencies that characterize 

these systems, deploying wireless data loggers that overcome the problem 

of cable length (bridge spans of 0.5-0.9km). Deck, cables and towers must 

be monitored in order to extract the global behavior by means of high 

resolution data recording. Due to all these circumstances, it was possible to 

estimate over 20 structural modes within 0-1.5Hz on the Manhattan Bridge 

by using frequency and time domain techniques. The principal mode 

shapes involve the main truss in both transversal and vertical direction, 

followed by the vertical bending mode of lateral spans and with other 

vertical and torsional modes, too. In this case, at the beginning, the ECCA 

did not show a good performance but after applying appropriate filters and 

high model's order the same results of the FDD were obtained. Additional 

GPS sensors were collocated with the accelerometers, noticing large 

deflections (typical of suspension bridges) of all spans under transit train 

loads. This kind of deployment would not be applicable to the previous 

classes of bridges due to the fact that displacements taking place, are of 

one or two orders smaller than in suspension bridges. Eventually, the huge 

amount of monitoring data were subject to long term survey that revealed 

stable behavior, although some slight fluctuations related to environmental 

factors as wind and temperature were seen. 



 

 

5  
DISPLACEMENT AND 

ACCELERATION DATA FUSION  
 

 

 
This chapter deals with the GPS displacement and FB acceleration data 
fusion. Combining together these kinds of measurements, a very accurate 
velocity and displacement estimate can be achieved through the 
implementation of the Kalman filter. Exploiting the smoothed results, a 
clear scene of the structural displacements taking place under the heavy 
traffic loads on the bridge is obtained. At the end of the Chapter, a future 
research topic is described. 
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During the last years of technology development, sensors for SHM 

(especially the wireless ones) are becoming very sophisticated for the 

particular use in civil infrastructures. Not only acceleration sensors but 

also displacement ones have become very accurate and provide high 

sampling frequencies compared to some years ago. The presence of both 

acceleration and displacement sensors, during measurement campaigns, 

provides a beneficial redundancy that can be utilized to better assess the 

structural behavior.   

All over the world, there are already several advanced applications of SHM 

systems on bridges [52]. Trying to cover representative examples from 

different countries, the following applications can be mentioned: Tsing Ma 

Bridge in Hong Kong, Akashi Kaikyo Bridge in Japan, Seohae Bridge in 

Korea, Confederation Bridge in Canada, Commodore Barry Bridge in the 

United States and Oresund Bridge in Denmark. 

In the context of this study, the Manhattan Bridge in the City of New 

York was subject to condition assessment via SHM system through FB 

accelerometers and GPS displacement sensors. During the monitoring 

process, several dynamic tests were carried out with different kinds of 

measurement sensors and different configurations. The main aim of the 

study is to give a structural assessment of the structure by evaluating its 

modal parameters from ambient output-only measurements, but also 

observing the displacement effects of transit trains over the bridge. The 

most interesting aspect is the fusion of the measured acceleration data with 

collocated displacement data, based on which accurate velocity and 

displacement data will be estimated with the Kalman filtering technique 

[47] [53] [54]. As the sampling frequencies of the various measurements are 

different, a multi-rate Kalman filter [12] is also used to process the data 

fusion. This technique, together with the dynamic analysis developed, will 

help to get consistent results which are used to update FE models 

representing the real behavior of the Manhattan Bridge. 

 

5.1 Displacement results of Manhattan Bridge 
At the same time of the acceleration observations, displacement motions 

with GPS sensors were also recorded. The GPS monitoring was able to 

capture the overall vertical deflection as well as the rotation of the deck 

(Figure 5.4) at mid-span due to passing subway trains. It is also interesting 

to observe the lateral displacement of the deck and the longitudinal 

deflection of the towers during these measurements.  
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As it can be perceived on Figure 5.1 there is relevant displacement in the 

vertical direction that overpasses 490mm during the MTA subway train 

passages. On the other hand, in transversal direction, lower motions take 

place, and in the longitudinal one there are nearly no significant 

displacements. 

 
Figure 5.1   Sample mid-span (Manhattan-bound) GPS observation. 

Figure 5.2 presents the vertical displacement of the central section of the 

main span resulting from the passage of a single train over the deck. The 

measured peak displacement at mid-span is 46.5 cm but it decreases 

moving towards the bridge piers. The train entrance can clearly be 

identified by the vertical deflections of the cross-sections of the side span 

because a positive vertical deformation of 15.3 cm can be detected when 

the train passes to the side span. Afterwards, the deflection begins to 

become negative until the peak of 46.5cm (when the train is in the middle 

span); then the deflection increases and returns positive after the train has 

passed. 
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Figure 5.2   Displacements during the passage of a train. 

 
Figure 5.3 Differential deflection and rotation of the deck.  

 
Figure 5.4   Maximum rotation of the cross section during a train route on the left 

tracks and sensor location. 
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Figure 5.5   Displacement on 1/2-side span during four time-windows of a day-

night period. 

Although very hard to achieve, a window of displacements without train 

load deflections, was extracted from the original data during the cycle of a 

day-night recordings. During these windows, the temperature gradient is 

only 5 degrees Celsius, so the observations taken show that there is small 

influence of temperature in the structure’s deflection. This was repeated 

during the 25 days of recordings resulting in the same behavior.  

 

5.2 Data fusion via the Kalman filter 
implementation  

The main aim of monitoring the structure was to assess the response of the 

bridge under a variety of factors such as heavy traffic and ambient 

vibrations, but also to reveal the possible combination of both methods of 

measurements, GPS and FBA. When it is possible to exploit the presence 

of collocated acceleration and displacement sensors, very accurate motion 

trend can be achieved.   

With respect to the frequency of the structure, acceleration measurements 

are sensitive to vibrations of the bridge at its natural frequencies. Whereas, 
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the GPS capture slow deflections caused by the passage of traffic on the 

structure. The acceleration measurement has high-frequency resolution and 

high sampling frequency, in contrast with the low sampling of the 

displacement. The combination of these two kinds of measurements can 

improve the deformations observed, joining data samples at different 

frequencies. The use of the Kalman Filter algorithm made possible to 

estimate more accurate displacements and velocity, based on measured 

displacements and accelerations. Regarding acceleration and displacement 

measurements, the process can be modeled as: 

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤, 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣 

(5.1) 

Or in matrix form: 

 
�𝑥̇𝑥̈� = �0 1

0 0� �
𝑥
𝑥̇� + �01� 𝑥̈𝑚 + �01� 𝑣𝑎  

𝑦 = [1 0] �𝑥𝑥̇� + 𝑣𝑑  
(5.2)  

where 𝑥̈𝑚 and 𝑦 are the measured acceleration and displacement, va and vd 
are the associated noise measurement proportional to the noise covariance 

(q and r) with  𝑤~(0,𝑄), 𝑄 = �0 0
0 𝑞�; 𝑣~(0,𝑅), 𝑅 = 𝑟  .  

Considering the discretization of the state matrices at time steps 𝑇𝑎, the 

system becomes: 

 

�𝑥1(𝑘 + 1)
𝑥2(𝑘 + 1)� = �1 𝑇𝑎

0 1 � �
𝑥1(𝑘)
𝑥2(𝑘)� + �𝑇𝑎

2/2
𝑇𝑎

� 𝑢(𝑘) + �𝑇𝑎
2/2
𝑇𝑎

� 𝑣𝑎(𝑘) 

𝑦 = [1 0] �𝑥1(𝑘)
𝑥2(𝑘)� + 𝑣𝑑(𝑘) 

(5.3)  

Written in short form: 

 𝑥(𝑘 + 1) = 𝐴𝑇𝑥(𝑘) + 𝐵𝑇𝑢(𝑘) + 𝑤(𝑘), 
𝑦(𝑡) = 𝐶𝑥(𝑘) + 𝑣(𝑘) 

(5.4)  

The covariance matrices of the discrete system are  

 
𝑄𝑑 = � 𝑒𝐴𝜏𝑄𝑒𝐴𝑇𝜏𝑑𝜏

𝑇𝑎

0
= �𝑞𝑇𝑎

3/3 𝑞𝑇𝑎2/2
𝑞𝑇𝑎2/2 𝑞𝑇𝑎

� 

𝑅𝑑 =
𝑅
𝑇𝑎

 

(5.5)  

These equations represent the formulation on which the Kalman Filter has 

been applied in order to estimate the displacement and velocity. The 

Kalman filter estimates a process by using a form of feedback control: the 



5- DISPLACEMENT AND ACCELERATION DATA FUSION 171 
 

 
 

filter estimates the process state at some time and then obtains feedback in 

the form of (noisy) measurements. As such, the equations for the Kalman 

filter fall into two groups: time update equations and measurement update 

equations [55].  

The time update equations are responsible for projecting forward (in time) 

the current state and error covariance estimates to obtain the a priori 

estimates for the next time step. The measurement update equations are 

responsible for the feedback - i.e. for incorporating a new measurement into 

the a priori estimate to obtain an improved a posteriori estimate. The final 

estimation algorithm resembles that of a predictor-corrector algorithm for 

solving numerical problems. 

Time Update: 

 𝑥(𝑘) = 𝐴𝑥(𝑘 − 1) + 𝐵𝑢(𝑘) 
𝑃(𝑘) = 𝐴𝑃(𝑘 − 1)𝐴𝑇 + 𝑄 

(5.6)  

Measurement Update: 

 

𝐾(𝑘) =  𝑃(𝑘)𝐶𝑇[𝐶𝑃(𝑘)𝐶𝑇 + 𝑅]−1 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝐾(𝑘)[𝑦(𝑘 + 1) − 𝐶𝑥(𝑘)] 

𝑃(𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐶𝑇]𝑃(𝑘) 

(5.7)  

where K is the Kalman gain. The process is repeated with the previous a 

posteriori estimates used to project or predict the new a priori estimates. 

5.2.1 Multi-rate Kalman filter 

When designing the overall fusion algorithm, we must take into 

consideration the multi-rate sensor collection, and design our algorithm 

appropriately. That is, we need to fuse inertial and GPS data, when we are 

sampling our inertial sensors at 200 Hz and receiving GPS data at 10 Hz. 

Here, the term “fusion” refers generally to the process of combining two 

sets of data to produce a better output. Sensor fusion can be accomplished 

with a filter, or it can be done by weighting each set of data based on a set 

of rules. 

With a loosely coupled integration, the GPS measurements are 

preprocessed by a Kalman filter internal to the GPS receiver, which 

produces “GPS derived” geographic position and velocity as the receiver 
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outputs. That is, our Kalman filtered state vector is not directly dependent 

on the GPS receiver output. Instead, we use some sort of fusion algorithm 

to combine the output from the Kalman filtered inertial data and the GPS 

data. 

If we assume that the displacement measurement sampling interval is 𝑇𝑑 

and the acceleration measurement sampling frequency is 𝑇𝑎, their ratio 

𝑇𝑑/ 𝑇𝑎 = 𝑀 is an integer. Since no displacement is available between the 

times 𝑘𝑇𝑑, this is equivalent to optimal filtering with arbitrary large 

displacement  errors so 𝑅𝑑−1 → 0 and hence 𝐾 → 0. Thus only the time 

update is performed: 

 
𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘) 

𝑃(𝑘 + 1) = 𝐴𝑑𝑃(𝑘)𝐴𝑑𝑇 + 𝑄𝑑 . 
(5.8)  

When displacement measurements are available at time 𝑘𝑇𝑑, both the time 

and measurement updates should be computed.  

5.2.2 Smoothing 

We will consider the recursive smoothing problem i.e., we wish to form the 

optimal estimate at some point back in the past, relative to the current 

measurement. In general, the recursive algorithms for smoothing are 

considerably more complicated than those for filtering and prediction. It 

works through a combination of the forward Kalman filtering and 

backward filtering over the entire sequence of available measurements.  

The Kalman smoothing can be classified [18] in three categories:  

• Fixed-interval smoothing. The time interval of measurements is 

fixed, and we seek optimal estimates at some interior points. Off-

line problem.  

• Fixed-point smoothing. In this case we seek an estimate at a single 

fixed point in time, and we think of the measurements continuing 

in indefinitely ahead of the point estimation.  

• Fixed-lag smoothing. We imagine the measurement information 

proceeding on indefinitely with the running time variable t, and we 
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seek an optimal estimate of the process at a fixed length of time 

back in the past. 

The smoothing algorithms investigated here are based on fixed-lag 

smoothing. Brown and Hwang [18] proposed a simple way to implement 

fixed-lag smoothing by using Rauch-Tung-Striebel (RTS) algorithm for 

fixed-interval smoothing in fixed-lag smoothing. We can first filter up to 

the current measurement and then sweeping back a fixed number of steps 

with the RTS algorithm. If the number of backward steps is small, this is a 

simple way and effective way of doing fixed-lag smoothing.  

The recursive equations for the backward steps are 

 𝑥�(𝑘|𝑁) = 𝑥�(𝑘|𝑘) + 𝐴𝑏(𝑘)[𝑥�(𝑘 + 1|𝑁) − 𝑥�(𝑘 + 1|𝑘)] (5.9)  

where x�(k|N) is the smoothed estimate and Ab is the smoothing gain 

given by 

 𝐴𝑏(𝑘) = 𝑃(𝑘|𝑘)𝐴𝑑𝑇𝑃−1(𝑘 + 1|𝑘). (5.10)  

5.2.3 GPS displacement and data fusion results 

In the following figures, the estimated displacement taking place in one 

hour of measurement on the 24th of October 2008 at noon in different 

location of the bridge is reported. In Figure 5.6 the measurement for the 

mid-span north location is showed. The first panel represents the graphs of 

the actual displacement confronted with the estimated one by the Multi-

rate Kalman Filter; whereas in the second section the smoothed version of 

the above signal is showed. Comparing the peaks of displacement and 

accelerations presented in the third panel, it can be observed that they 

perfectly match and point out that there are up to 20 passages of subway 

trains within one hour on the bridge. 
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Figure 5.6   Multi-rate Kalman filtering results for the signal on North mid-span 
(vertical disp.). 

Figure 5.6 and Figure 5.7 represent the whole displacement for the signal on 

North mid-span of the recording hour and a zoomed window of 40 seconds, 

respectively. It can be observed that the estimated smoothed displacement 

follows a more significant law of deflection, eliminating also the 

measurement noise present in the signal. The procedure not only reduces 

the GPS measurement noise, but it also gives the possibility to study the 

signal beyond its Nyquist frequency. As we know the Nyquist frequency is 

the bandwidth of a sampled signal, equal to half the sampling frequency, 

i.e. 5 Hz in our case. So it is impossible to get information beyond this 

frequency with our displacement measurements. Combining acceleration 

and displacement signals with the Multi-rate Kalman filtering, makes 

possible to detect frequencies higher than the low sampling rate. These 

results can also be observed in Figure 5.8 and Figure 5.9, where the 

deflection of the side span for an hour and a single train passage are 

depicted. 
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Figure 5.7 Smoothed Kalman filtering (displacement) on North mid-span and 
acceleration (40 sec Zoom). 

 
Figure 5.8 Multi-rate Kalman filtering results for the signal on South side-span 

(vertical disp.). 
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Other elements with interesting results can also be the towers. During 

monitoring, different disposition of GPS and acceleration sensors were used 

in order to detect the motion in all directions. It can be observed from 

Figure 5.11 that the towers are very flexible (designed on purpose). In fact, 

in the longitudinal direction when trains are overpassing the bridge some 

displacement of the order of 80mm can be noticed. Bearing in mind that 

the height of the tower is 100m we can say that it has 1 % out of plain 

deflection. 

 

Figure 5.9 Smoothed Kalman filtering on South mid-span (40 sec Zoom). 

 

Figure 5.10 Multi-rate Kalman filtering on Brooklyn tower longitudinal deflection 

(30 sec Zoom). 
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Figure 5.11 Multi-rate Kalman filtering on Brooklyn tower longitudinal deflection. 

A Kalman filtering technique with multi-rate estimates has been applied to 

the Manhattan bridge data in order to accurately estimate the velocity and 

displacement from noise contaminated measures of the acceleration and 

displacement. The results show that this technique can estimate 

displacement precisely integrating the higher rates of accelerometers to the 

low sampling frequency of the GPS sensors. A maximum deflection of 49.0 

cm has been observed on the deck during the passage of a transit train, 

applying to the structure not a negligible rotation transmitted in the form 

of torsional stresses on the deck. 

It is also noticeable to comment the vertical displacement taking place in 

the middle of the central span during the monitoring period. In fact max 

min deflections taking place each day on the bridge are plotted in Figure 

5.12 also related to temperature. 
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Figure 5.12 Maximum and minimum vertical displacement in the mid-span during 

the monitoring period. 

 

5.3 Non-collocated sensor problem as a future research 

As exposed in the previous section, in presence of multiple sensors, highly accurate 

results can be estimated for the response of a structure. Nowadays, sensors allow 

to obtain measurements with high sampling rate, but they still appear to be 

expensive. In case of limited sources, acceleration (or velocity) sensors cover 

almost all the structural nodes, while displacement GPS sensors are positioned in 

few nodes. This can be an unfavorable situation when a particular node of the 

structure must be measured, and there are only acceleration measures available. 

So the non-collocated problem, to be defined in this section is connected to the 

problem of estimating displacement features of a node where we actually have only 

acceleration measures. Three possible solutions will be introduced here, reminding 
that this part of study is just at the beginning, but of a significant interest for the 
author.  

On the basis of the first solution stands the theoretical formulation of the modal 

contribution, in order to extract the behavior of the structure where we don’t 

have measurements, exploiting the available displacement data and the identified 

modal parameters. The basic idea will be presented in the following simple 

example.  
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A three-mass system [56] is used mainly for illustration purposes, and to make 

concepts easy to follow. Its simplicity allows for easy analysis, and for 

straightforward interpretation. The system is shown in Figure 5.13. In this figure 

𝑚1,𝑚2, and 𝑚3 represent system masses, 𝑘1, 𝑘2,𝑘3 are stiffness coefficients, while 

𝑑1,𝑑2,𝑑3 are damping coefficients. 

 
Figure 5.13 A simple 3-dof dynamic system. 

Let 𝑛𝑑 be the number of degrees of freedom of the system (linearly independent 

coordinates describing the finite-dimensional structure), let r be the number of 

outputs, and let s be the number of inputs. A flexible structure in nodal 

coordinates is represented by the following second-order matrix differential 

equation: 

 𝑀𝑥̈ + 𝐶𝑥̇ + 𝐾𝑥 = 𝐵𝑇𝑢 
𝑦 = 𝐶𝑇𝑥 + 𝐷𝑇𝑥̇ 

(5.11)  

In this equation 𝑥 is the ndx1 nodal displacement vector; 𝑥̇ is the nodal velocity 

vector; 𝑥̈ is the nodal acceleration vector; u is the s x1 input vector; y is the 

output vector, r x1; M is the mass matrix, nd x nd ; C is the damping matrix, nd x 
nd; and K is the stiffness matrix, nd x nd. The input matrix BT is nd x s, the output 

displacement matrix BT is r x nd, and the output velocity matrix 𝐷𝑇 is 𝑟 𝑥 𝑛𝑑. For 

this system we selected masses 𝑚1 = 𝑚2 = 𝑚3 = 1, stiffness 𝑘1 = 𝑘2 = 𝑘3 = 3 and a 

damping matrix proportional to the stiffness matrix, 0.01𝐾.   

There is a single input force at mass 3, and four outputs: displacement and 
velocity of mass 1 and velocity of masses 2 and 3. 

The stiffness and damping matrices are: 

𝐾 = �
𝑘1 + 𝑘2 −𝑘2 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3
� ,    𝐶 = �

𝑐1 + 𝑐2 −𝑐2 0
−𝑐2 𝑐2 + 𝑐3 −𝑐3

0 −𝑐3 𝑐3
� 

The natural frequency matrix and the modal matrix are: 

𝜔2 = �
3.1210 0 0

0 2.1598 0
0 0 0.7708

�               Φ = �
0.5910 0.7370 0.3280
−0.7370 0.3280 0.5910
0.3280 −0.5910 0.7370

� 

In order to obtain a state representation from the nodal model as in equation of 
motion we rewrite equation (5.11) as follows (assuming that the mass matrix is 
nonsingular): 
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𝑥̈ + 𝑀−1𝐶𝑥̇ + 𝑀−1𝐾𝑥 = 𝑀−1𝐵𝑇𝑢 

𝑦 = 𝐶𝑇𝑥 + 𝐷𝑇𝑥̈ 

We define the state vector x as a combination of the structural displacements, x, 

and velocities, ẋ, i.e., 

𝒙 = �
𝑥1
𝑥2� = �𝑥𝑥̇� 

And thus 

𝒙̇ = 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡)     𝑥1̇ = 𝑥2  

𝑥̇2 = −𝑀−1𝐶𝑥2 − 𝑀−1𝐾𝑥1 + 𝑀−1𝐵𝑇𝑢 

𝑦 = 𝐶𝑇𝑥1 + 𝐷𝑇𝑥2 

Combining the above equations into one, we obtain the state equations, with the 
following state-space representation: 

        𝐴 = � 0 𝐼
−𝑀−1𝐾 −𝑀−1𝐶�,                     𝐵 = � 0

𝑀−1𝐵𝑇
�  ,      𝐶∗ = [𝐶𝑇 𝐷𝑇] 

0 0 0 1 0 0  0  1 0 0 1 0 0 
0 0 0 0 1 0  0  0 0 0 0 1 0 
0 0 0 0 0 1  0  0 0 0 0 0 1 

-6 3 0 -0.06 0.03 0  0        
3 -6 3 0.03 -0.06 0.03  0        
0 3 -3 0 0.03 -0.03  1        

Thus we can determine the transform function. The magnitude and phase of the 
transfer function are plotted 

 
Figure 5.14 The displacement transfer functions of single modes: (a) Magnitudes 

show three resonance peaks; and (b) phases.  

From dynamics theory [57] [58] [59] it is known that the modal participation factor 
is an important element to express displacement and acceleration by:  
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 𝒖 = 𝑞1(𝑡)𝜙1 + 𝑞2(𝑡)𝜙2 +  … +  𝑞𝑛(𝑡)𝜙𝑛  = �𝑞𝑛(𝑡)𝜙𝑛
𝑛

 (5.12)  

where un = qn(t)ϕn is the n-th modal displacement response component, referring 
to the modal contribution to the total displacement response; ϕn   is the n-th 
natural vibration mode; qn  is the modal coordinate. 

 
Figure 5.15 Impulse response of the simple system: (a) Time history of 

displacement measurement at mass 1; and (b) its spectrum. 

In our case the previous expression would be: 

Measurement equation: 

⎣
⎢
⎢
⎢
⎢
⎡
𝑥1
𝑥2
𝑥3
𝑥1̇
𝑥2̇
𝑥3̇⎦
⎥
⎥
⎥
⎥
⎤
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⎣
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⎢
⎢
⎡
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⎥
⎥
⎥
⎥
⎤

 

or written in short form: 

𝒚(𝑡) = 𝐶𝒙(𝑡) 

This, as it is shown later, will be our measurement equation of the state space 
model.  On the other hand we have the equation of motion [60]: 

𝑀𝑥(𝑡)̈ + 𝐶𝑥(𝑡)̇ + 𝐾𝑥(𝑡) = 𝑓(𝑡) 

A more convenient way of solving this is to define a state vector z(t) as 

𝑧(𝑡) = �𝑥(𝑡)
𝑥̇(𝑡)�,    𝐴 = � 0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶� ,     𝐹(𝑡) = � 0
𝑀−1𝑓(𝑡)�. 

So the equation of motion can be written: 

𝒛̇(𝒕) = 𝑨𝒛(𝒕) + 𝑭(𝒕) 

The normal mode method [60] represents the response as a summation of normal 
mode coordinates, and the in state space form it can be written as 

0 50 100 150 200 250 300
-0.5

0

0.5

time

D
is

pl
ac

em
en

t o
f m

as
s 

1

0 5 10 15
0

1

2

3

frequncy, rad/s

sp
ec

tru
m

 o
f D

1



182 5- DISPLACEMENT AND ACCELERATION DATA FUSION 
 

 
 

𝑧(𝑡) = �𝜙𝑗𝑞𝑖(𝑡)
2𝑛

𝑗=1

= Φ𝑄 

So, the previous equation becomes  

Φ𝑄̇(𝑡) = 𝐴Φ𝑄(𝑡) + 𝐹(𝑡) 

Pre-multiplying by Φ−1 

𝑄̇(𝑡) = Φ−1𝐴Φ𝑄(𝑡) + Φ−1𝐹(𝑡) 

that can be written in 2n uncoupled first-order linear differential equations, that 
is, 

𝑞𝑟̇(𝑡) = 𝑆𝑟𝑞𝑟(𝑡) + �𝜙𝑗 𝑇
𝑛

𝑗=1

f𝑗(𝑡) 

with Sr = −ωrξr + iωr�1 − ξ2  , the eigenvalues of A and ϕj the eigenvectors.  

State equation: 

⎣
⎢
⎢
⎢
⎢
⎡
𝑞̇1
𝑞̇2
𝑞̇3
𝑞1̈
𝑞2̈
𝑞3̈⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑆1

𝑆2
𝑆3

𝑆1
𝑆2

𝑆3⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑞1
𝑞2
𝑞3
𝑞̇1
𝑞̇2
𝑞̇3⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜙11 𝜙12 𝜙13
𝜙21 𝜙22 𝜙23
𝜙31 𝜙32 𝜙33

𝜙14 𝜙15 𝜙16
𝜙24 𝜙25 𝜙26
𝜙34 𝜙35 𝜙36

𝜙41 𝜙42 𝜙43
𝜙51 𝜙52 𝜙53
𝜙61 𝜙62 𝜙63

𝜙44 𝜙45 𝜙46
𝜙54 𝜙55 𝜙56
𝜙64 𝜙65 𝜙66⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
𝑇

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0
𝑢3⎦
⎥
⎥
⎥
⎥
⎤

 

This formulation can be used in our case to construct the state equation of our 
state space model i.e.,  

𝒙̇ = 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡) 

that, with the previous measurement equation,  becomes our state space model: 

 
𝒙̇ = 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡)  

𝒚(𝑡) = 𝐶𝒙(𝑡) 
(5.13)  

The discrete time state-space model corresponds to: 

𝑥𝑇(𝑘) = 𝐴𝑇𝒙𝑻(𝐾 − 1) + 𝐵𝑇𝒖𝑻(𝑘 − 1)  

𝒚𝑻(𝑘) = 𝐶𝑇𝒙𝑻(𝑘) 

The input vector u(t) here is a unit impulse force at mass nr. 3. This makes the 
state-space representation of the formulation on which a discrete-time Kalman 
filter can be applied to obtain estimates of the modal contributions and then 
acceleration information in any node of the structure. 

The implementation herein presented was applied with a chosen sampling rate of 
10 Hz for simplicity, in order to analyze its contribution afterwards with the 
displacement that has the same sampling frequency. A white noise process with 
10% RMS noise-to-signal ratio is superimposed to both the exact displacement and 
velocities.  

The following figures show the Kalman filtering results. In order, first it can be 
seen the modal contribution factors extracted from the analysis, than the 
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representation of the estimated displacements for the three dofs. Furthermore, the 
comparison graphs for the displacement of the first mass utilizing the normal 
Kalman filter and then the smoothed version are presented. The last figure shows 
the Kalman estimate error. 

  
Figure 5.16 Estimated modal coefficients and displacement for the three modes. 

 

 
Figure 5.17 Comparison between estimated and real disp. at mass 1 and its error. 

 

The second possible solution proposed here deals with the use of the system 

matrices. The main difficulty in estimating states for a dynamic system is to 

identify matrixes M, K, D that relate accelerations to velocities and displacement 

quantities, but revealed in some researches [61] [62]. Furthermore, if we determine 

the state matrices A and B in equation (5.13), for example extracted by any 

system identification technique seen in Chapter 3, the problem can easily be solved 

by applying a Kalman filter algorithm. For the stochastic case, where there is no B 

matrix but a K (not stiffness) matrix, during this study it was noticed that B and 

K were similar.  
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However, if the assumption of performing particular system identification 

techniques [61] [62] (to obtain M, M and K) is true or matrices A and B are 

identified, they can be used in the following discrete equations: 

𝑥(𝑘 + 1) = 𝐴𝑇𝑥(𝑘) + 𝐵𝑇𝑢(𝑘) + 𝑤(𝑘), 
𝑦(𝑡) = 𝐶𝑥(𝑘) + 𝑣(𝑘) 

 where the Kalman filter can be applied to estimate displacements. 

Let us consider again the 3-dof example where only velocities (real velocities with 

10-20% RMS noise) are measured from the three masses. By applying the 

aforementioned procedure we can estimate the displacements on every mass.  

 
Figure 5.18 Comparison between estimated and real disp. at mass 1 (2nd solution). 

The third possible solution proposed, similarly to the first one, is based on the 
knowledge of the modal properties of the structure but applied with the concepts 
of the transfer function.    

Suppose that we want to determine the displacement at location r, that the 

accelerations (or velocities) component 𝒖̈ at locations 𝒓𝑚  are measured, and that 
the response of the body can be approximated by a finite number of n modes. The 
equation (5.12), for the two cases can be written as:     

 𝒖(𝑟, 𝑡) = ∑ 𝑞𝑛(𝑡)𝜙𝑛(𝑟)𝑛       𝒖̈(𝑟𝑚, 𝑡) = ∑ 𝑞𝑛(𝑡)𝜙̈𝑛(𝑟𝑚)𝑛  (5.14)  

The second of the previous equations is a linear algebraic equation in the n 

unknowns 𝑞𝑛. If the 𝜙̈𝑛 were known, using n accelerometers (or velocities) would 
allow to solve for these unknowns. If we consider the transfer functions between 

the displacement at location r, which is to be determined, and the n measured 𝒖̈ at 

𝑟𝑚 locations we can reach a solution. Taking the Fourier Transforms of (5.14): 

 𝑼(𝑟,𝑤) = ∑ 𝑄𝑛(𝑤)𝜙𝑛(𝑟)𝑛       𝑼̈(𝑟𝑚,𝑤) = ∑ 𝑄𝑛(𝑤)𝜙̈𝑛(𝑟𝑚)𝑛  (5.15)  

where 𝑄𝑛(𝑤) is the Fourier Transform of 𝑞𝑛(t). Thus we have: 
𝑼(𝑟,𝑤)

 𝑼̈(𝑟𝑚,𝑤)
. Assuming 

that the modes of the structure are uncoupled, that is at each one of the resonant 

frequency 𝑤𝑗 only the contribution of the mode j is significant, we have the 

transfer function ratio:  

𝑼(𝑟,𝑤)
 𝑼̈(𝑟𝑚,𝑤)

= 𝜙𝑛(𝑟)  
𝜙̈𝑛(𝑟𝑚)  
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Therefore, with the mode shape functions 𝜙𝑛(𝑟)  known and the n transfer 
functions measured, we can use the previous equation to calculate the coefficients 

𝜙̈𝑛(𝑟𝑚).  

In order to obtain the displacement u at a generic location r of a structure the 
sequent steps should be taken [63]: 

a) Identification of n modes of vibration and their mode shapes 𝜙𝑛(𝑟) 
b) Have at least n velocity (similar to acceleration) sensors at locations 𝒓𝑚. 

c) Determine the n transfer function values 
𝑼(𝑟,𝑤)

 𝑼̈(𝑟𝑚,𝑤)
 after measuring the 

displacement 𝒖(𝑟, 𝑡) in few locations. 

d) Use the transfer function to calculate the coefficients 𝜙̈𝑛(𝑟𝑚). 
e) Use the velocity signals under operational conditions to solve (5.14) for 

the 𝑞𝑛(𝑡)’s. Substitute these values in (5.14) to get the desired 

displacement 𝒖(𝑟𝑚 , 𝑡). 

This technique was applied to the three-dof example. Displacement was estimated 
in all nodes through measurements of velocity in all nodes and measurement of 
displacement in only one node. Thus, the transfer function between displacement 
in node one and all the other velocities in all nodes, made possible to calculate the 

coefficients 𝜙̈𝑛(𝑟𝑚). These coefficients were in turn used to solve equation (5.14) for 

𝑞1−3(𝑡)’s. Finally, these were substituted in equation (5.14) to reconstruct the 
displacement signal.  

 

Figure 5.19 Comparison between estimated and real disp. at mass 1(3rd option). 

As can be seen from the plots, there is a shift on the estimated displacement that 
will be object of further work in the future. 

All the presented methods need to be better validated and eventually a future 

application on a real structure will be proposed.  
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5.4 Conclusions on Chapter 5 
In this chapter, deflection monitoring of the Manhattan Bridge and its 

application to the data fusion theory with acceleration measurements was 
presented. In the first part of the chapter we saw the relevant displacement 
activity taking place on the main span of the suspension bridge. Besides 
the vertical deflections, the transversal direction on the steel truss and the 
longitudinal direction on the towers were also observed. Over 20 passages 
of transit trains with deflections that could reach 50cm in the vertical 
direction were noticed. Although in transversal direction the deformations 
were smaller, they caused a considerable torsional rotation of the deck 
transmitted in form of fatigue stresses on each structural element.  

In the second part, exploiting the presence of both acceleration and 
displacement sensors, their data fusion has been carried out. By applying a 
multi-rate Kalman filter, displacement and acceleration data have been 
combined in order to improve the deformation results by eliminating noise. 
The resulting displacement and velocity data, besides being free of noise, 
give the possibility to study the signal beyond its Nyquist frequency 
limited by the low rate of displacement sampling. The results show that 
this technique can estimate displacement precisely integrating the higher 
rates of accelerations to the low sampling frequency of the GPS sensors. 

Finally in the last part of the chapter, the non-collocated sensor 
problem is described as a start for future research. At the basis of the 
problem stands the fact that GPS sensors are expensive and their 
deployment is limited to a few position. So, in order to get displacement 
estimations on nodes where we have only acceleration measurements, three 
methods are proposed, described with a simple 3-dof example. The first 
method proposed, based on modal contribution factors and modal 
parameters, show a good correlation between the estimated and the real 
displacement. The second method, based on system identification and 
determination of state matrices, is a more robust procedure that is able to 
estimate all desired displacements. The third technique based on the 
transfer function of different signals did not perform as well as the 
previous. Once one of the methods has been consolidated to work properly, 
it will be applied on a simplified model (17-dof) of the Manhattan Bridge, 
where we have all nodes covered by acceleration measurement and only few 
points of displacement measured. So, the ultimate goal will be the 
assessment of deflections in locations where there are not such sensors. 

 

 



 

 

6  
CONCLUSIONS 

 

his study discussed system identification and data fusion analysis 
in civil infrastructures. The research introduced the state-of-the-

art of stochastic system identification methods – with time and 

frequency domain – along with their theoretical and experimental 
aspects.  

Once familiarized with the random nature of vibrating signals, their 
relation to stochastic state-space models and to the Kalman filter for 
stochastic estimation has been introduced. Additionally, clear theoretical 
basics of dynamic systems were described, including not only FRF and IRF 
but also controllability and observability matrices that led to the system 
identification problem. For the purpose of theoretical interpretation and 
investigation of system identification techniques, the eigensystem 
realization procedure and its application to the stochastic case has been 
exposed firstly.  The use of stochastic system identification to estimate the 
modal parameters of a structure excited by white noise has been exploited 
during the past 20 years to develop techniques such as FDD, data-SSI, 
cov-SSI and PLSCF which are explained in Chapter 3 and later applied in 
Chapter 4.   
Although great theoretical development has been reached in the field of 
modal parameter identification, in this work, it was verified that still not a 
negligible performance difference exists when various modal techniques are 
used in real applications. In fact, during the dynamic tests on ten bridges, 
the research was focused on three main issues: a) to compare the dynamic 
behavior of different kinds of structures; b) to compare the sensitivity (or 
performance) of various modal techniques applied and c) to improve their 
performance with advanced statistical analysis. We have examined the 
response of suspension bridges, slender concrete arch with upper deck 
bridges, masonry arch bridges, simply supported concrete bridges, reticular 
steel bridges and steel box girder bridges. Within these analysis, structural 
identification helped to investigate cases of demolition assessment, 

T 
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validation of a seismic retrofit, damage assessment, short and long term 
monitoring with acceleration, velocity and strain data and finally model 
calibration for each structure. Automated FDD and SSI techniques were 
developed in order to analyze in real time the global behavior of the 
monitored structures. Furthermore, the combined ECCA cluster analysis 
and automatic system identification for long term monitoring could get 
highly accurate modal parameter recognition. The three automatic 
procedures were finally validated with a manual repeated system 
identification, showing a high accuracy. This result was then used in the 
autoregressive models to validate/estimate the behavior of the structure 
and finally detect possible significant changes in the structural properties. 
The results allow to conclude that the environmental effects change the 
dynamic response of the structure. The ambient temperature, the relative 
humidity and the traffic excitation were correlated to the natural frequency 
and displacement. The Auto Regressive models estimated in order to 
evaluate the environmental effects could simulate the natural frequencies. 
Temperature has a significant effect on the dynamic response, but in a 
short term, excitation also plays an important role in frequency fluctuation 
due to day-night traffic cycle. The natural frequency observation seems to 
be a consistent method for damage detection, although no damage occurred 
during the measurement. 

What was noticed by these extensive analyses can be summarized into 
these points: 

→ Slender concrete arch bridges and steel bridges are highly 
susceptible to ambient vibration. All OMA techniques performed 
very well in identifying structural modes. Indeed, it was clearly 
simple to distinguish structural modes by using basic techniques, 
as PP and FDD, or advanced ones such as data-SSI or ECCA. 
Being such flexible structures, their first modal deformations are 
generally bending mode shapes, in vertical or transversal 
direction. Without the need of sophisticated tools as stabilization 
diagrams or cluster analyses, one can easily estimate accurately 
all the structural modes and subsequently calibrate FE models 
or develop automatic system identification for SHM. A 
remarkable property of such structures is the impressive stability 

of damping ratios estimation related to the model’s order. In the 
case of steel bridges, even more features were explored by system 
identification with experimental impact tests, and most of all 
with strain data. Modal Analysis was applied to strain data, and 
the automated identification techniques developed, helped to 
demonstrate the effectiveness of this last discovery that can turn 
the SHM in a very cheap practice in steel bridges. 

→ Squat concrete or masonry arch bridges are challenging 
structures from a system identification point of view. Standard 
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methods in the frequency domain are not suitable for modal 
parameter identification due to weakly exited modes. In one 
case, although the standard SSI could get some more modal 

information, only after applying the ECCA’s stabilization 
diagram and after performing two cluster analysis, more than 12 
structural modes were estimated. This detailed analysis could 
estimate the structural change taking place during the 
demolition process on that particular structure. 

→ High rise masonry (or stone) arch bridges are more rigid than 

concrete arch bridges, but their dynamic behavior is more or less 

similar to them. Standard system identification techniques 

perform very well in these cases when the sensors are positioned 

along the arches, but high model orders are preferred to 

accurately estimate structural modes. Generally, in this kind of 

structures, the first mode is a transversal mode and the second 

one is a longitudinal mode. 

→ Simply supported or continuous r.c. bridges are not as hard to 

identify as masonry bridges; their dynamic behavior is an 

intermediate way between masonry and steel structures. Both 

frequency and time domain techniques can be applied, but 

subspace methods are the preferred methods in estimating their 

typical principal vertical bending modes. Automated Modal 

Monitoring Algorithms developed, in the time and frequency 

domain, appeared to work very well in this kind of structure. 

→ Suspension bridges have a considerably different dynamic 

behavior relative to all the other classes previously described. 

High levels of vibration, low natural frequencies and wind 

excitation are possible to be estimated only with high resolution 

data recordings. In general, principal mode shapes involve the 

main truss (and towers) in both transversal and vertical 

direction, followed by the vertical bending mode of lateral spans 

and with other vertical and torsional modes as well. In this case, 

PSD and SV line -peaks are quite sharp and clear, so they can 

be used to get accurate estimates, whereas SSI methods needed 

to be accompanied by filtering analysis and high model orders 

before obtaining accurate results. Eventually, the huge amount 

of monitoring data were subject to long term survey that 

revealed stable behavior; although, some slight fluctuations 

related to environmental factors, as wind and temperature, were 

seen. 
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When additional GPS sensors are collocated with the accelerometers, 

typical large deformations of suspension bridges can be observed. Besides 

the vertical deflections, transversal movements are also detected during the 

passage of heavy eccentric loads, and high longitudinal movements of the 

tower’s top are observed with maximum load on mid-span. 

The presence of both acceleration and displacement sensors during 
measurement campaigns provide a beneficial redundancy that can be 
utilized to better assess the structural behavior. By applying a multi-rate 
Kalman filter, displacement and acceleration data have been combined in 
order to improve the deformation results by eliminating noise. The 
resulting displacement and velocity data, apart from being free of noise, 
give the possibility to study the signal beyond its Nyquist frequency, 
limited by the low rate of displacement sampling. The efficiency of this 
technique was demonstrated through the application on the measurements 
of the Manhattan Bridge.  

Future Research  

Future research is certainly needed to further improve the treatments 
presented in this study. First of all, other sensitivity analyses must be done 
with the various modal identification techniques and possibly improve the 
automatic modal analysis procedures to use in more structures and in 
SHM.  

Moreover, concerning the case of SHM with strain data, its validation with 
more available data and different system identification techniques must be 
completed. Then, modal analysis with strain measurements must be 
observed in a long term, looking at the stability of the structural response. 
The most effective sensor positioning must be evaluated with different 
deployments on steel bridges. Once this method is consolidated, it can be 
used to install low cost SHM systems for the characterization of both 
global and local behavior of structures, with the deployment of only one 
kind of sensor (strain gauge).  

Regarding the ‘non-collocated sensor problem’, in order to find 
displacement estimations on nodes of the structure where we have only 
acceleration measurements, three possible methods have been proposed, 
shown with a simple 3-dof example. The first and second method proposed, 
based on modal contribution factors and modal parameters, show a good 
correlation between the estimated and the real displacement. Once one of 
the methods has been consolidated to work properly, it will be applied to a 
simplified model (17-dof) of the Manhattan Bridge, where all nodes are 
covered by acceleration measurement but only few points by displacement 
measurements. So, the ultimate goal will be the assessment of deflections in 
locations where there are no such sensors. 
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